RATIONAL MACHINES INSTRUCTION SET
VERSION 1.0

January 3, 1983

Copyright {(C) 1983 RATIONAL MACHINES, INC.

RATIONAL MACHINES PROPRIETARY DOCUMENT

RMI INSTRUCTION SEY —— INTRODUCTION ’ 1

Chapter 1
INTRODUCTION

This document describes the instruction set as defined by the Rational
Machines Architecture. In particular, we provide detailed information
regarding the composition and functionality of each instruction.,
Implementation—specific formats may be found in a <corresponding processor
reference manual. Additionally, the Rational Machines System Concept
document includes a rationale for the organization of this instruction set.
In each of these documents, we presume that the reader has an understanding
of the semantics of the Ada* programming language..

This document is divided into three major sections, namely:

* GENERAL CONCEPTS == Chapter 2.
* DETAILED DISCUSSION -- Chapters 3 - 9.
* SUMMARY INFORMATION -~ Appendices A - C.

Chapter 2 introduces the primitive classes of objects and exceptions
that are recognized by the instruction set. Chapters 3 through 9 are

organized by groups of functionally related instructions. These seven
chapters provide detailed information on the form and effect of every
instruction and their wvariants. The appendices are provided as a

convenience to the reader to aid in locating specific instruction set
information.

For detailed information regarding the organization of each class of
stacks as defined by the architecture, as well as the definition of
modules, messagess, and class descriptorss consult the Rational Machines
Run~time Structure. :

A W OB R W - -

*Ada is a trademark of the Department of Defense, Ada Joint Program
Office

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =—— GENERAL CONCEPTS 2

Chapter 2
GENERAL CONCEPTS

The Rational Machines instruction set directly supports and encourages
the use of modern software engineering methodologies. In particulars the
instruction set is optimized for supporting the application of object-
oriented programming in Ada-like languages. The design of the instruction
set is heavily influenced by the premise that a well-structured program
consists of many small modular components with controlled and well-
specified interfaces.

Every program program segment consists of one or more words , wshere
each word contains one or more instructions. A program segment represents
either a task or a package - and so the number of words per segment will
vary. On the other hand the number of instructions per word is generally a
fixed number for each implementation. Each instruction is further divided
into an opcode and one or more fields which provide operand information for
the instruction. Formally, we may express word and segment as:

type WORD is array{SEGMENTS.INSTRUCTION_INDEX) of INSTRUCTION?
type SEGMENT is array{SEGMENTS.DISPLACEMENT range <>) of WORDJ

2«1« CLASSES

The Rational Machines instruction set is strongly typed, which wmeans
that there exists a unigue and well-defined set of operations associated
with every primitive class recognized by the architecture. We use the ternm
"class™ to avoid confusion with the term ™type®™ as used in a context
relating to the declaration of {(keyword) types in a source program. An
object is an instance of a particular class and so may be manipulated by
various idinstructionsa. No other operations on an object of a given class
are legals and furthermore, as in Ada » obJ@cts of incompatible classes may
not implicitly operate with each other.

This elementary set of classes was designed to directly and efficiently
support the semantics of high—order programming languages similar +to Ada.
Collectively, we <call the primitive types that are recognized by the
architecture the OPERAND_CLASS. The operations associated with objects of
each OPERAND_CLASS are found din Appendix B, the OBJECT/OPERATION
CROSS_REFERENCE.

The following classes are recognized by the architecture:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- GENERAL CONCEPTS : 3

type OPERAND_CLASS is

(ACCESS_CLASS, ANY_CLASS, ARRAY_CLASS,
DISCRETE_CLASS. ENTRY_CLASS, EXCEPTION_CLASS,
FAMILY_CLASS, FLOAT_CLASS, MATRIX_CLASS,
MODULE_CLASS, PACKAGE_CLASS, RECORD_CLASS,
SEGMENT_CLASS, SELECT_CLASS, SUBARRAY_CLASS,
SUBMATRIX_CLASS., SUBVECTOR_CLASS, TASK_CLASS,

VARIANT_RECORD_CLASS, VECTOR_CLASS),

Consult the Rational Machines Run—time Structure for a complete
definition regarding the characteristics of each of these classes and their

representation on the various machine stacks. Following,r we provide a
sumgg&y description of the primitive classes:
AoA

v
ACLCESS_CLASS Denotes a pointer to an object of a specific class.
ANY_CLASS Denotes an object of an arbitrary class. ANY_CLASS objects

are operands only of DECLARE_TYPE, DECLARE_VARIABLE and
EXECUTE, and so represent generic declarative and
imperative instructions. Characteristics of ANY_CLASS
objects are bound at execution time.

ARRAY_CLASS Denotes a composite object consisting of components of the
same component class indexed by n—dimensions.

DISCRETE_CLASS Denotes an enumefation or integer object.
ENTRY_CLASS Denotes an entry of a task.

EXCEPTION_CLASS Denotes an exception.

FAMILY_CLASS Denotes a family of entries.
FLOAT_CLASS Denotes & floating point object.
MATRIX_CLASS Denotes a two dimensional array. MATRIX_CLASS objects are

used entirely to support EXECUTE instruction optimizations.
MODULE_CLASS Denotes a package or a task.
PACKAGE_CLASS Denotes a package.

RECORD_CLASS Denotes a composite object consisting of named componentse
which may be of different classes.

SEGMENT_CLASS Denotes 2 program segment. Objects of this class are used
to transform a data segment of some form into executable
code.

SELECT_CLASS Denctes an executable object that handles processing of a
task select statement.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-- GENERAL CONCEPTS 4

SUBARRAY_CLASS Denotes an n-1 dimensional array as a substructure of an n-
dimensional parent. SUBARRAY_LLASS objects are used
entirely to support EXECUTE optimizations.

SUBMATRIX_CLASS Denotes a one dimensional array as a substructure of a tuwo
dimensional parent. SUBMATRIX_CLASS objects are used
entirely to support EXECUTE optimizations.

SUBVECTOR_CLASS Denotes a slice of a one dimensional parent.
SUBVECTOR_CLASS objects are used entirely +to support
EXECUTE optimizations.

TASK_CLASS Denotes a taske.

VARIANT_RECORD_CLASS
Denotes a discriminated wunion of objects consisting of
named components, which may be of different classes. There
exists a fixed part of the record common to all variantss
and which contains a discriminant field indicating which
one of the possible variants is contained in a particular

instancea.

VECTOR_CLASS Denotes a one-dimensional composite object. VECTOR_CLASS
objects are wused entirely to support EXECUTE instruction
optimization.

A number of instructions operate upon implicit, rather than explicitly
referenced objects. We classify such instructions as unclassed.

2«2+ EXCEPTIONS

The Rational Machines instruction set defines facilities for dealing
with errors that arise during program execution. In particulars, the
architecture recognizes several different exceptions that cause suspension
of normal program execution. These exceptions include:s

CAPABILITY_ERROR, CONSTRAINT_ERROR, ELABORATION_ERROR,
INSTRUCTION_ERROR, MACHINE_RESTRICTION, NUMERIC_ERROR.
OPERAND_CLASS_ERROR, PROGRAM_ERROR», RESOURCE_ERROR,
STORAGE_ERROR, TASKING_ERROR, TYPE_ERROR,
VISIBILITY_ERROR : exception’

Following,r we summarize the conditions under which exception may be raised:.

CAPABILITY_ERROR
Raised when attempting to access an entity that is private
or otherwise out of scope.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— GENERAL CONCEPTS 5

CONSTRAINT_ERROR

Raised in any of the following situations: upon attempt to
violate a range constraint, an index constraint, or a
discriminant <constraint; upon attempt to use a record
component that does not exist for the current discriminant
values; and upon attempt to use a selected component, an
indexed component, a slice, or an attributer of an object
designated by an access valuer if the object does not exist
because the access value is null.

ELABORATION_ERROR
Raised when attempting to access an entity that is not yet
elaborated. :
INSTRUCTION_ERROR
Raised when the machine attempts to execute an illegal
instruction.
MACHINE_RESTRICTION

Raised when attempting to create an object that is larger
than the machine can allocate or index.

NUMERIC_ERROR Raised by the execution of a predefined numeric operation
that cannot deliver a mathematical result {within the
declared accuracy for real types).

OPERAND_CLASS_ERROR
Raised when attempting to perform an operation that is
illegal for an object of the given OPERAND_CLASS.

PROGRAM_ERROR Raised during the execution of a selective wait statement
that has not else part, if this execution determines that
all alternatives are closed. This exception is also raised
upon attempt to execute an action that is erroneous, and
for incorrect order dependencies.

RESOURCE_ERROR Raised when unable to extend a program stack.

STORAGE_ERROR Raised in any of +the following situations: when the
dynamic storage allocated to a task is exceeded; during the
execution of an allocator, if the space available for the
collection of allocated objects is exhausted; or during the
elaboration of a declarative items or or during the
execution of the subprogram <call, 1if storage 1is not
sufficient.

TASKING_ERROR This exception 1is raised when exceptions arise during
intertask communication.

TYPE_ERRODR Raised when attempting to perform an invalid type
derivation or completion.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =—-- GENERAL CONCEPTS

VISIBILITY_ERROR

Raised when attempting %o access an entity that is not

currently visible.

The Rational Machines architecture defines a small set of primitive
operationss, as defined by the type OP_CODE, which we may formally express

ass

type OP_CODE is

(ACTION, BLOCK_BEGIN, BLOCK_HANDLER.
CALL., COMPLETE_TYPE, DECLARE_SUBPROGRAM,
DECLARE_TYPE, DECLARE_VARIABLE, END_LOCALS,
EXECUTE, EXIT_ACCEPT, EXIT_FUNCTION,

oE® EXIT_PROCEDURE, EXIT_UTILITY, INDIRECT_LITERAL,

v JumMP, JUMP_CASE, JUMP_NONZERO,

QJV JUMP_ZERO, LITERAL_VALUE, LOAD,

LOAD_TOP, POP_BLOCK, POP_BLOCK_RESULT,
REFERENCE, SEGMENT_HEADER, SEGMENT_TYPE,
SEGMENT_VALUE, SHORT_LITERAL., STORE);

We may further classify each OP_LODE according to its function, namely:

DECLARATIVE INSTRUCTION
Provides facilities for the creation of program types
objectse. ‘ ~

IMPERATIVE INSTRUCTION
Invokes an operation upon an object of a given class.

DATA MOVEMENT INSTRUCTION

and

Provides facilities for setting, usings and referencing

values of objects.

CONTROL TRANSFER INSTRUCTION

Provides facilities for conditional and un:onditionai

changes in the thread of control.

CONTROL RETURN INSTRUCTION

Provides facilities for returning from a subordinate thread

of control.

LITERAL DECLARATION
Defines simple and compouad literal values.

MODULE LABEL Marks the structure of a given module.
PSevoe of

RATIONAL MACHINES PROPRIETARY DOCUMENT | VERSION 1.0

RMI INSTRUCTION SET —-— GENERAL CONCEPTS ‘ 7

In the following <chapterss we provide a detailed defiq}tion of each
instructions organized by kind of OP_LO0DE.

RATICONAL MACHINES PROPRIETARY DOCUMENT

i

1

L

RMI INSTRUCTION SET —-— DECLARATIVE INSTRUCTIONS : 8

Chapter 3
DECLARATIVE INSTRUCTIONS

A declarative instruction creates the descriptor for a specific typesr
or an object of a given type or subprogram. Since the definition of a typed
entity implies the set of values and operations that are appropriate for a
given type, declarative instructions are the first step needed to enforce
the architectural principle of strong typing. In addition, this mechanism
facilitates the creation of abstract data types and objects, and so permits
the architecture to encourage and enforce user—-defined abstractionss beyond
the relatively small set of primitive class otherwise recognized by the
architecture. ‘

Declarative instructions include the following opcodes:
* DECLARE_TYPE == create the descriptor for a specific type
* COMPLETE_TYPE == ¥inish the descriptor of an incompletely
specified type

* DECLARE_VARIABLE == create an object of a given type
* DECLARE_SUBPROGRAM —- create a subprogram object

In the following sections, we treat each opcode in detail.
3.1. DECLARE_TYPE

The DECLARE_TYPE instruction creates the descriptor for a specific
type.

Formallys, DECLARE_TYPE takes the form:

{ﬂ\ type DECLARE_TYPE_INSTRUCTION is

i record

i PRIVACY : TYPE_PRIVACY;

i TYPE_CLASS : OPERAND_CLASS:

i TYPE_KIND s TYPE_SORT;

W TYPE_OPTIONS = TYPE_OPTION_SET;

end record;

In particular, the TYPE_PRIVALY defines the degree of encapsulation of the
type (and hence, implies its visibility). TYPE_PRIVACY is defined as:
T
|
type TYPE_PRIVACY is {(IS_LOCAL, IS_PRIVATE, IS_PUBLIC);

Generally, IS_LOCAL implies that the type is not visible outside the entity
wherein the type is declared, and IS_PRIVATE and IS_PUBLIC imply that the
type is visible (and private or not). AT PawATN MAAM

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-- DECLARATIVE INSTRUCTIONS 9

Whereas the TYPE_CLASS (of type OPERAND_CLASS) names the class of the
target type that is to be declared, a value of TYPE_SORT further defines
the manner in which the type is to be declared. Formally, TYPE_SORT is
~defined as:.

type TYPE_SORT is
{CONSTRAINED, CONSTRAINED_INCOMPLETE,

DEFINED~ DEFINED_INCOMPLETE.,
DERIVED., DERIVED_INCOMPLETE.,
INCOMPLETE)

Basically, as in Ada, a type may be simply defined, derived from another
types or declared as 2 constrained subtype of a base type. In each casesr
the type may be incompletely declared (as with access types).

Finally, a value of TYPE_OPTION_SEYT further defines the nature of the
type to be declared. Formally,r we have:

type TYPE_OPTION_SET is

record
BOUNDS_WITH_OBJELT : BOOLEAN?
CONSTRAINED s BOOLEAN,
DERIVED_PRIVACY z BOOLEAN,
UNSIGNED s BOOLEAN;
WITH_ENTRIES : BOOLEAN;

end record;

As we will discusss, fields of TYPE_OPTION_SET are relevant only to specific

classes of objects. 7101 cuAss

DECLARE_TYPE is appropriate only for of class:

Leto

ACCESS_CLASS
ARRAY_CLASS

" DISCRETE_CLASS
FLOAT_CLASS
PACKAGE_CLASS
RECORD_CLASS
SEGMENT_CLASS
TASK_CLASS
VARIANT_RECORD_CLASS

* % % % % N X % #*

The use of any other TJYPE_CLASS wvalue will raise the exception
INSTRUCTION_ERROR. In the following sections, we will treat each <class in
detail.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- DECLARATIVE INSTRUCTIONS | 10

3.1.1. ACCESS_CLASS

In the declaration of an ACCESS_CLASS typer the field TYPE_OPTIONS is
not relevant, and therefore ignored. In addition, the TYPE_SORT of a
declared ACCESS_CLASS type may only be DEFINED, CONSTRAINED, DERIVED, or
INCOMPLETE.: Any other combination raises the exception INSTRUCTION_ERROR.

CONSTRAINED
PURPOSE: Declare a constrained ACCESS_CLASS type.
FUNCTION: Pop the CONTROL_STACK to determine the parent object, and

create a new type compatible to the parent, with an
explicit path to the parent. Pop the CONTROL_STACLK again
to determine the constraint, and apply that constraint to
the new type. Write to the TYPE_STALKX to reference the
enclosing subprogram typer the class of the new typesr and
the type information of the new type. Push the neuw
ACCESS_VAR on the CONTROL_STACK, and give it an initial
value of null.

STACKS: Preconditions: Top of CONTROL_STACK <contains the parent
ACCESS_VAR. Top - 1 of CONTROL_STACK contains the
constraining ACCESS_INFO.

Postconditions: Top of CONTROL_STACK is reduced by twosr and
then an ACCESS_VAR is pushed on top of the CONTROL_STACK.
TYPE_STACK now includes a descriptor for the neuw type.

EXCEPTIONS: CAPABILITY_ERROR raised if +the parent type is private.
TYPE_ERROR is raised 1if parent cannot be further
constrained. CONSTRAINT_ERROR is raised if new constraints
are not compatible with the parent.

REEINED
PURPOSE: Declare an ACCESS_CLASS 1type.
FUNCTION: Create a null type link of kind ACCESS_VAR, and mark its

privacy and visibility as appropriate. Pop the
CONTROL_STALK to reference a SUBPROGRAM_VAR {which must be
FOR_UTILITY) that encapsulate the new type, and create a
path to the subprogram. Pop the CONTROL_STACK again to
determine the type of the designated access objects, and
determine if the designated object IS_HOMOGENEODUS,
IS_CONSTRAINED, and its size. Pop a value from from the
CONTROL_STACK to determine a page count, and then create a
collection for the designated objects. An explicit path is
created from the type definition to the collection. Write

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-- DECLARATIVE INSTRUCTIONS 11

to the TYPE_STACK tco reference the enclosing subprogram
typer the class of the neuw typer and the type information
of the new type. Push the ACCESS_VAR on the CONTROL_STACK,
and give it an initial value of null.

STALKS: Preconditions: Top of CONTROL _STACK contains a
SUBPROGRAM_VAR. Top - 1 of CONTROL_STACK contains a classed
object identifying 1the type of the designated access
objectss Top - 2 of CONTROL_STACK <contains a resource
value.

Postconditions: An ACCESS_VAR is pushed on top of the
CONTROL_STACK. " TYPE_STACK now includes a descriptor for
the new type.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if SUBPROGRAM_VAR is invalid.
QERINED

PURPOSE: Declare a derived ACCESS_CLASS type.

FUNCTION: Pop the CONTROL_STACK to determine the parent objectr, and

create a new type compatible o the parent, with an
explicit path to the parent. Write to the TYPE_STALK to
reference the enclosing subprogram typer the class of the
new types, and the type information of the new type. Push
the new ACCESS_VAR on. the CONTROL_STALK, and give it an
initial value of null.

STACKS: Preconditions: Top of CONTROL_STACK <contains the parent
ACCESS_VAR.

Postconditions: Top of CONTROL_STACK is reduced by one, and
then an ACCESS_VAR is pushed on top of the CONTROL_STACK.
TYPE_STACK now includes a descriptor for the neuw type.

EXCEPTIONS: CAPABILITY_ERROR is raised if parent type is private.
INCOMPLEIE
PURPOSE: Declare an incompletely defined ACCESS_CLASS type.

FUNCTION: Create a null type link of kind ACCESS_VAR, and mark 1its
: privacy and visibility as appropriate. {reate a null
utility subprogram that will encapsulate the typer and

create a path to the subprogram. Link the type definition

to a null designated access object, and mark

IS_HOMOGENEOQUS, IS_CONSTRAINED, and its size. MWrite to the

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— DECLARATIVE INSTRUCTIONS 12

- TYPE_STACK to reference the enclosing subprogram type, the
class of the new typer and the type information of the new
type. Push the ACCESS_VAR on the CONTROL_STALK, and give
it an initial wvalue of null.

STACKS: . Postconditions: An ACCESS_VAR is pushed on top of the
CONTROL _STACK. TYPE_STACK now contains descriptor for the
new type.

EXCEPTIONS: Nonea

3+1.2. ARRAY_CLASS

In: the declaration of an. ARRAY_CLASS typer the .only field of
TYPE_OPTIONS that is relevant is BOUNDS_WITH_OBJECT, which implies that the
array type 1is constrained or not.In additions, the TYPE_SORY of a declared
ACCESS_CLASS type may be any of its possible values. ' ‘

CONSTRAINED
PURPODSE: Declare 2 constrained ARRAY_LLASS type.
FUNCTION: Determine the location of the bounds cf the parent type

{whether the type is constrained or unconstrained). Pop the
CONTROL_STACK to reference the indexed operand, and create
2 path to the parent type. Identify shere the bounds of the
new type will be {(with the object or with the typed. Nexts
examine the parent type and determine the dimensionality of
the child. Create a type path to the array information of
each dimension. For each indexs pop the CONTROL_STACK to
determine index bounds (arranged on the stack from 1last
dimension to first), and additionally wupdate the array
information along the path of the new type. Pop the
CONTROL_STACK past all of the constraint information. Write
to the TYPE_STACK to reference the array information for
each dimensions, the enclosing subprograms, and the type
information of the new type. Push the definition of a neuw
ARRAY_CLASS object on the CONTROL_STACK, maintaining the
paths created earliera ‘

STACKS: Preconditions: Top of CONTROL_STALK must contain a
reference to. the parent type. Lower CONTROL_STACK entities
contain constraint information for each dimension.

Postconditions:CONTROL_STACK is popped to the start of all
the constraining information. New ARRAY_CLASS object is
pushed on the CONTROL_STACK. TYPE_STACK now contains a
descriptor for the neuw type.

EXCEPTIONS: CAPABILITY_ERROR raised if index operand is private.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SEY -- DECLARATIVE INSTRUCTIONS , 13

TYPE_ERROR is raised if @a path does not exist for each
dimension of the parent, or if the parent may not Dbe
further constrained. CONSTRAINY_ERROR is raised if the new
type constraints are not compatible with the parent.
ELABORATION_ERROR is raised if the parent type information
is not complete.

CONSTRAINED INCOMPLEITE

PURPOSE: Declare a constrained incompletely defined ARRAY_CLASS
typea.
FUNCTION: Determine the location of the bounds of the parent type

{whether the type is constrained or unconstrained). Pop the
CONTROL_STACK to reference the indexed operand, and create
a path 10 the parent type. Identify where the bounds of the
new type will be (with the object or with the typed). Nexts
examine the parent type and determine the dimensionality of
the <c¢hild. Create a type path to the array information of
each dimension. For each indexs pop the CONTROL_STALK to
determine index bounds (arranged on the stack from last
dimension to first), and additionally wupdate the array
information along the path of the new type. Pop the
CONTROL_STALK past all of the constraint information. Write
to the TYPE_STACK to reference the array information for
each dimension, the enclosing subprograms, and the type
information of the neuw type. Push the definition of a new
ARRAY_CLASS object on the CONTROL_STACLK, maintaining the
paths created earlier.

STACKS: Preconditions: Top of CONTROL_STACK must contain a
reference to the parent type. Lower CONTROL_STACLK entities
contain constraint information for each dimension.

Postconditions:CONTROL_STACK is popped to the start of all
the constraining information. New ARRAY_CLASS object is
pushed on the CONTROL_STACK. TYPE_STACK now contains a
descriptor for the new type.

EXCEPTIONS: CAPABILITY_ERROCR raised if index operand 1is private.
TYPE_ERROR is raised if the parent may not be further
constrained. LCONSTRAINT_ERROR 1is raised if the new type
constraints are not compatible with the parent.

DEEINED

PURPOSE: Declare an ARRAY_CLASS type.

RATIONAL MACHINES PROPRIETARY DOCUMENT | VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS 14

FUNCTION:

STACKS:

EXCEPTIONS:

Pop a wvalue from the CONTROL_STACK to determine the
dimension of the new type. (reate a type link for the new
typer considering a descriptor for each dimension. Pop the
CONTROL_STACK %o determine the enclosing subprogram. Pop
the CONTROL_STACK again to determine the type of the array
component, Build the array information for the new typesr
including information for each dimension index?; this
operation requires that the CONTROL_STACK be popped twice
for each 1index to obtain the range of the index. The
TYPE_STACK is updated to reference the type information for
each index descriptor. Pop the [LONTROL_STACK down %0 the
end of the index information. The TYPE_STALK is updated to
reference the type information for the new type. Push a new
ARRAY_VAR object on the CONTROL_STACK.

Preconditions: Top of CONTROL_STALK <contains a value
indicating the dimension of the array. Top - 1 of the
CONTROL_STACK contains a SUBPROGRAM_VAR. Top = 2 of the
CONTROL_STALK contains a type defining the component type
of the array. Pairs of index bounds follows, in order of the
highest dimension to the lowest.

Postconditions: The CONTROL_STACK is reduced to the 1lewel
below all of +the index information. An ARRAY_VAR is then
pushed on the CONTROL_STACK. TYPE_STACK now contains a
descriptor for the neuw type.

INSTRUCTION_ERROR 1is raised if too many dimension are
specified. TYPE_ERROR is raised if the component type of
the new array is incomplete or otherwise unconstrained.
OPERAND_CLASS_ERRDOR is raised if component type is not
valids or if the SUBPROGRAM_VAR is not wvalid.

DEEINED_INCOMPLEIE

PURPOSE:

FUNCTION:

Declare an incompletely defined ARRAY_CLASS type.

Pop a wvalue from the CONTROL_STACK to determine the
dimension of the new type. Create a type link for the new
types considering a descriptor for each dimension. Pop the
CONTROL_STACK to determine the enclosing subprogranm. Pop
the CONTROL_STACK again to determine the type of the array
component. Build the array information for the neuw types
including information for each dimension index? this
operation requires that the CONTROL_STACK be popped twice
for each index to obtain the range of the index. The
TYPE_STACK is updated to reference the type information for
each index descriptor. Pop the CONTROL_STACK down to the
end of the index information. The TYPE_STALK is updated to
reference the type information for the new type. Push a new
ARRAY_VAR object on the CONTROL_STACLK.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-- DECLARATIVE INSTRUCTIONS 15

- STACKS:

EXCEPTIONS:

RERIVED

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Preconditions: Top of CONTROL_STACK contains a wvalue
indicating the dimension of the array. Top = 1 of the
CONTROL_STACK contains a SUBPROGRAM_VAR. Top - 2 of the
CONTROL_STACK contains a type defining the component type
of the array. Pairs of index bounds follow, in order of the
highest dimension to the lowest.

Postconditions: The C(ONTROL_STACK is reduced to the level
below all of the index information. An ARRAY_VAR 1is then
pushed on the CONTROL_STACK. TYPE_STACK now contains 3
descriptor for the neu type.

INSTRUCTION_ERROR is raised if ¢too many dimension are
specified. TYPE_ERROR is raised if the otherwise
unconstrained. OPERAND_CLASS_ERROR is raised if component
type is not valida.

Declare a derived ARRAY_CLASS type.

The bounds of the new type are inherited form the parent.
Pop the CONTROL_STALK to reference the indexed operand, and
create a path to the parent type. Identify where the bounds
of the new type will be {with the object or with the type)d.
Next, examine the parent type and determine the
dimensionality of +the <child. Create a type path to the
array information of each dimension. For each indexs, Trace
the type path of the parent type for each dimensions and
update the array information along the path of +the new
type. Pop the CONTROL_STACK past all of the constraint
information. Write to the TYPE_STACK to reference the array.
information for each dimensions, the enclosing subprograms
and the type information of the new type. Push the
definition of a new ARRAY_CLASS object on the
CONTROL_STACK, maintaining the paths created earlier,

Preconditions: Top of CONTROL_STACLK must contain a
reference 10 the parent type.

Postconditions:CONTROL_STACK is popped below the parent
type. New ARRAY_CLASS object is pushed on the
CONTROL_STACK. TYPE_STALX now contains a descriptor for
the new type.

CAPABILITY_ERROR raised if index operand is private.
ELABORATION_ERROR is raised if the parent type information
is not complete.

DERIVED_INCOMPLEIE

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

PURPOQSE:

FUNCTION:

STACKS:

EXCEPTIONS:

INCOMPLEIE

PURPOSE:

FUNCTION:

STACKS:

SET —— DECLARATIVE INSTRUCTIONS 16

Declare a derived incomplete ARRAY_CLASS type.

The bounds of the new type are inherited form the parent.
Pop the CONTROL_STACK to reference the indexed operand, and
create a path to the parent type. Identify where the bounds
of the new type will be (with the object or with the type)d.
Next, examine the parent type and determine the
dimensionality of the child, Create a type path to the
array information of e2ach dimension. For each index,r Trace
the type path of the parent type for each dimension, and
update the array information along the path of the neuw
type. Pop the CONTROL_STACK past all of the constraint
information. Write to the TYPE_STACK to reference the array
information for each dimension, the enclosing subprograms
and the type information of the new type. Push the

‘definition of a new ARRAY_CLASS object on the

CONTROL_STACK, maintaining the paths created earlier.

Preconditions: Top of CONTROL_STACK must contain a
reference to the parent type.

Postconditions:CONTROL_STACK is popped below the parent
type. New ARRAY_CLASS object is pushed on the
CONTROL_STACK. TYPE_STACK now contains a descriptor for
the new type.

CAPABILITY_ERROR raised if index operand is private.

Declare an incompletely defined ARRAY_CLASS type.

Pop a wvalue from the CONTROL_STALK to determine the
dimension of the new type. Lreate a type link for the newm
types considering a descriptor for each dimension. Pop the
CONTROL_STACK to determine the enclosing subprogram. Using
incomplete type paths, build the array information for the
new type, including information for cach dimension index.
The TYPE_STACK is updated to reference the type information
for each index descriptor. The TYPE_STACK is updated to
reference the type information for the new type. Push a new
ARRAY_VAR object on the CONTROL_STACK.

Preconditions: Top of CONTROL_STACK <contains a value
indicating the dimension: of the array. Top — 1 of the
CONTROL_STACK contains a SUBPROGRAM_VAR.

Postconditions: The CONTROL_STACK is reduced by one. - An
ARRAY_VAR is then pushed on the CONTROL_STACK. TYPE_STALK
now contains a descriptor for the neu type.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS 17

EXCEPTIONS: INSTRUCTION_ERROR 1is raised if too many dimension are
specified.

3.17.3. DISCRETE_CLASS

In the declaration of a DISCRETE_LLASS typer the only field of
TYPE_OPTIONS that is relevant is UNSIGNED, which implies that the type
represents an integer with a natural range or an enumeration type. In
additions, the TYPE_SORYT of a declared DISCRETE_CLASS type may only be
CONSTRAINED, DEFINED, DERIVED, or INCOMPLETE. Any other combination raises
the exception INSTRUCTION_ERROR.

CONSTRAINED
PURPOSE: Declare a constrained DISCRETE_VAR type.
FUNCTION: Pop 2 DISCRETE_VAR from the CONTROL_STACK as the base type.

Get the <class information from the parents, and pop the
CONTROL_STACK twice +to obtain the maximum and minimum
bounds. CLreate a new type Jjust like the parent, using the
given privacy and visibility information. Determine the
size of the typer and create a type descriptor the the new
type. Push the new DISCRETE_VAR on the {ONTROL_STACLK, and
copy. the type information from the parent. Write the same
type information into the TYPE_STALK, plus an entry for the
bounds information.

STACKS: Preconditions: Top of CONTROL_STACLK must contain the base
DISCRETE_VAR. Top = 1 and top - 2 of the CONTROL_STACK must
contain the new bounds {upper then lower bounds).

Postconditions: Top of {ONTROL_STALK is reduced by three. A
DISCRETE_VAR is then pushed on top of the CONTROL_STACK.

EXCEPTIONS: CAPABILITY_ERROR is raised if +the base type cannot be
constrained. OPERAND_CLASS_ERROR is raised if +the bounds
on the CONTROL_STACK are not valid. CONSTRAINT_ERROR 1is
raised if the new constraints are not compatible with - the
parent type.

DEEINED
PURPOSE: Declare a DISCRETE_CLASS type.
FUNCTION: Construct a type 1link with privacy and visibility set as

appropriate. Pop the CONTROL_STALK to reference the
enclosing subprogram. Pop the CONTROL_STACK twice again to
reference the maximum then minimum value of the discrete

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- DECLARATIVE INSTRUCTIONS 18

STACKS:

EXCEPTIONS:

DERIVED

PURPOSE:

FUNCTION:

STALKS:

EXCEPTIONS:

INCOMPLEIE

PURPOSE:

range. In each caser, the class of the bound must be valid
and not private. Lompute the necessary size of the discrete
typer and push a DISCRETE_VAR on the CONTROL_STACK. Write
to the TYPE_STACLK the type information for the new types,
and include a path to the bounds of the discrete typer
which are also written to the TYPE_STACK.

Preconditions: Top of CONTROL _STACK must contain a
SUBPROGRAM_VAR. Top = 1 of CONTROL_STACLK must contain the
maximum bounds information, followed by the minimum bounds
information at top - 2.

Postconditions: Top of CONTROL_STACK is reduced by threes
then a DISCRETE_VAR is pushed on the CONTROL_STACK. The
TYPE_STACLK is wupdated to include type information and
bounds information.

OPERAND_CLASS_ERROR is raised if the SUBPROGRAM_VAR is not
valids, or if a bound is not of the appropriate 'class',
CAPABILITY_ERROR is raised if a bound is private.

Declare a derived DISCRETE_CLASS type.

Pop a DISCRETE_VAR from the CONTROL_STACK to reference the
parent type. Get the class information from the parent type
on the TYPE_STACK, and then create a new type derived from
the parent. Push a DISCRETE_VAR on the CONTROL_STALX. Copy
the type information from the parent, and write entries
into the TYPE_STACK to provide type information and class
information for the new type.

Preconditions: Top of CONTROL_STACK must contain the parent
DISCRETE_VAR.

Postconditions: Top of CONTROL_STACK i5 reduced by one, and
then a DISCRETE_VAR is pushed on top of the CONTROL_STACK.
TYPE_STACLK now includes a descriptor for the new type.

OPERAND_CLASS_ERROR 1is raised if a the parent type is not

on the CONTROL_STACK. TYPE_ERRDR is raised if the parent
type is not derivable. ‘

Declare an incompletely defined DISCREYE_VAR type.

RATIONAL MACHINES PROPRIETARY DOCUMENT ; VERSION 1.0

RMI INSTRUCTION SET —- DECLARATIVE INSTRUCTIONS 19

FUNCTION: In this instance, the instruction uses the UNSIGNED field
of TYPE_OPTIONS_SET., First, create a type 1link to a
DISCRETE_VAR, using the stated privacy and visibility. Push
the new DISCRETE_VAR on the CONTROL_STACK, and create a
path to the enclosing subprogram. Write entries into the
YYPE_STACK to provide incomplete type and bounds

information.

STALKS: Postconditions: A DISCRETE_VAR is pushed on top of the
CONTROL_STACK.

EXCEPTIONS: None.

3«1ab4. FLOAT_CLASS

In the declaration of a FLOAT_CLASS type, the field TYPE_OPTIONS is not
relevant, and therefore ignored. In addition, the TYPE_SORT of a declared
FLOAT_CLASS may only be CONSTRAINED, DEFINED, DERIVED, or INCOMPLETE. Any
other combination raises the exception INSTRUCTION_ERROR.

CONSTRAINED -
PURPQSE: Declare a constrained FLOAT_VAR typea
FUNCTION: Pop @a FLDAT_VAR from the CONTROL_STACK as the base type.

Get the class information from the parent, and pop the
CONTROL_STACK twice to obtain the maximum and minimum
bounds. Create a new type just like the parent, using the
"given privacy and wvisibility information.Push the new
FLOAT_VAR on the CONTROL_STACK, and copy the type
information from the parent. Write the same type
information into the TYPE_STACKX, plus an entry for the
bounds information.

STACKS: Preconditionsz Top of CONTROL_STACK must contain the base
FLOAT_VAR. Top = 1 and top = 2 of +the CONTROL_STACK must
contain the new bounds {(upper then lower bounds).

Postconditions: Top of CONTROL_STALK is reduced by three. A
FLOAT_VAR is then pushed on top of the CONTROL_STACK.

EXCEPTIONS: CAPABILITY_ERROR is raised if the base type cannot be
constrained. OPERAND_CLASS_ERROR is raised if the bounds
on the CONTROL_STACK are not valid. CONSTRAINT_ERROR is
raised if the neuw constraints are not compatible with the
parent typea.

DEEINED

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

»
r
|
>
i
|
|
|
|

RMI INSTRUCTION SET -— DECLARATIVE INSTRUCTIONS ~ ‘ 20

PUR?QSE‘

FUNCTION:.

STACKS:

EXCEPTIONS:

DERIVED

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Declare a FLOAT_CLASS type.

Construct a +type 1link with privacy and visibility set as
appropriate. Pop the CONTROL_STACK to reference the
enclosing subprogram. Pop the CONTROL_STACK tuwice again to
reference the maximum then minimum value of the discrete
range. In each caser the class of the bound must be ~valid
and not private.i Compute the necessary size of the
discrete typer and push a FLOAT_VAR on the <CONTROL_STACK.
Write +to the TYPE_STACK the type information for the newn
typer and include a path to the bounds of the discrete
type, which are also written to the TYPE_STACK.

Preconditions: Top of CONTROL_STACK must contain a
SUBPROGRAM_VAR. Top = 71 of CONTROL_STACK must contain the
maximum bounds information, followed by the minimum bounds
information at top - 2.

Postconditions: Top of CONTROL_STACK is reduced by threes
then a FLOAT_VAR is pushed on the CONTROL_STALK. The
TYPE_STACLK is updated to include type information and
bounds information.

CPERAND_CLASS_ERROR is raised if the SUBPROGRAM_VAR is not
valids or if a bound is not of the appropriate <class.
CAPABILITY_ERROR is raised if a bound is private.

Declare a derived FLOAT_CLASS type.

Pop a FLOAT_VAR from the CONTROL_STACK to reference the
parent type. Get the class information from the parent type
on the TYPE_STALK, and then create a new type derived from
the parent. Push a FLOAT_VAR on the CONTROL_STACK. Copy the
type information from the parent, and write entries into
the TYPE_STACK to provide type information and <class
information for the new type.

Preconditions: Top of CONTROL_STACK must contain the parent
FLOAT_VAR.

Postconditions: Top of CONTROL_STACK is reduced by ones, and
then a FLOAT_VAR 1is pushed on top of the CONTROL_STACK.
TYPE_STACK now includes a descriptor for the new type.

OPERAND_CLASS_ERROR is raised if a3 the parent type 1s not
on the CONTYROL_STACK,. TYPE_ERROR is raised if the parent
type is not derivable.

RATIONAL MACHINES PROPRIETARY DOCUMENT ' VERSION 1.0

RMI INSTRUCTION SET =-— DECLARATIVE INSTRUCTIONS 21

INCOMPLEIE

PURPOSE: Declare an incompletely defined FLOAT_VAR type.

FUNCTION: In this instance, the instruction uses the UNSIGNED field
of TYPE_OPTIONS_SET. Firsts, create a type 1link to 2
FLOAT_VAR, wusing the stated privacy and visibility. Push
the new FLOAT_VAR on the {ONTROL_STALK, and create a path
to the enclosing subprogram. Write entries into the
TYPE_STALK to provide incomplete type and bounds
information.

STACKS: Postconditions: A FLDOAY_VAR is pushed on top of the
CONTROL_STACK.

EXCEPTIONS: None.

3«1+5+ PACKAGE_CLASS

In the declaration of a PACKAGE_CLASS typer the field TYPE_OPTIONS is
not relsvantr and therefore ignored. 1In addition, the TYPE_SORT of a
declared PACKAGE_CLASS type may only be DEFINED, DERIVED, or INCOMPLETE.
Any other combination raises the exception INSTRUCLTION_ERROR.

REEINED

PURPDSE: Declare a PACKAGE_CLASS type.

FUNCTION: Determine if the declaration is legal, then create an empty
module +type and ¢type path. Pop a SUBPROGRAM_VAR off the
CONTROL_STACK to reference the enclosing subprogram. Pop a
segment position off the CONTROL_STALK and reference the
corresponding segment name and module start. Pop 2a value
off the CONTROL_STACK as the generic counts, and then
another value as the import count. If there are any
imports, then allocate an import space and transfer the
imports from the parent module. Otherwiser create a null
import 1link. MWrite to the TYPE_STACK the type information
for the new type, as well as the class information. Push
the new PACKAGE_VAR on the CONTROL_STACK.

STACKS: Preconditions: TYop of CONTROL_STACK must contain a parent
SUBPROGRAM_VAR, followed by a segment position value on top
=~ 1. TYop = 2 of the CONTROL_STACX contains the generic
countsr and top - 3 contains the import count.
Postconditions: Top of CONTROL_STACK is reduced by 4.

EXCEPTIONS: ELABORATION_ERROR is raised if the declaration 1is not

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET ~-— DECLARATIVE INSTRUCTIONS | 22

DERIVED

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

INCOMPLEIE

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

legalr or 1if the imports cannot be copied from an
unelaborated parent. OPERAND_CLASS_ERROR is raised if the
SUBPROGRAM_VAR is not found.

Declare a derived PACKAGE_CLASS type.

Determine if the declaration is legal, then create an empty
module type and type path. Pop a module object off the
CONTROL_STACK. Get the classr, typer, and subprogram
information from the parent. Create an entry in the
TYPE_STACK indicating the same class, typer and subprogram
information for 2 new type. Push the new PACKAGE_VAR on
the CONTROL_STACK.

Preconditions: Top of CONTROL_STACK must contain a fparent
module variable.

Postconditions: Top of CONTROL_STALK is reduced by oner and
then 2 PACKAGE_VAR is pushed on top of the CUONTYROL_STACK.

ELABORATION_ERROR 1is raised if the declaration i1is not
legal. OPERAND_CLASS_ERROR is raised if the parent object
is not found. CAPABILITY_ERROR is raised if the parent
object is private. TYPE_ERROR is raised if the parent
cannot be derived.

Declare an incompletely defined PACLKAGE_CLASS type.

Determine if the declaration is legal, then create an empty
module type and type path. Create a null package utility,
and write the appropriate typer classr and subprogram
information to the TYPE_STACK. Push the new PACKAGE_VAR on
the CONTROL_STACK.

Postconditions: A PACKAGE_VAR is pushed on top of the
CONTROL_STACK,

ELABORATION_ERROR is raised if the declaration is not
iegal. ,

RATIONAL MACHINES PROPRIETARY DOCUMENT - VERSION 1.0

RMI INSTRUCTION SEY =-- DECLARATIVE INSTRUCTIONS ' 23

3a7«6. RECORD_CLASS

In the declaration of a RECORD_CLASS types, the field TYPE_OPTIONS is
not relevant, and therefore ignored. In addition, the TYPE_SORT of =a
declared ‘RECORD_CLASS +type may only be DEFINED, DEFINED_INCOMPLETE,
DERIVED, DERIVED_INCOMPLETE, and INCOMPLETE. Any other combination raises
the exception INSTRUCTION_ERROR. ‘

DEEINED

PURPOSE: Declare 2 RECORD_CLASS type.

FUNCTION: Pop a value from the CONTROL_STACK indicating the number of
fields in the record. Create a type link for the record
type. Pop a SUBPROGRAM_VAR off the CONTROL _STACK
referencing the enclosing subprogram.. For: each record
components record the type information of each field into
the TYPE_STACK, and then pop the CONTROL_STACLK to the end
of the field information. MWrite an entry to the TYPE_STACK
indicating the type information for the new typer, and then
push a corresponding RECORD_VAR on the CONTROL_STACK.

STACKS: Preconditions: Top of CONTROL_STACK must contain a value
indicating the number of fields in the record. A parent
SUBPROGRAM_VAR is next, followed N entities on the
CONTROL_STACK with the type information for each field.

Postconditions: The CONTROL_STACK is popped to the end of
the field information. A RECORD_VAR is pushed on top of
the CONTROL_STACK. The TYPE_STACKX is updated to include a
descriptor for the new type.

EXCEPTIONS: INSTRUCTION_ERROR raised if the field count is not wvalid.
TYPE_ERROR is raised if there exists and invalid component
type.

DEEINER_INCOMRLEIE

PURPOQSE: Declare an incompletely defined RECORD_CLASS type.

FUNCTION: Pop a value from the CONTROL_STALK indicating the number of
fields in the record. Create a type link for the record
type. Pop a SUBPROGRAM_VAR off the CONTROL_STACK
referencing the enclosing subprogram. For each record
component that is complete, record the type information of
each field into the TYPE_STACK, and then pop the
CONTROL_STACK to the end of the field information. Write
an entry to the TYPE_STALK indicating the type information
for the new type, and then push a corresponding RECORD_VAR
on the CONTROL_STACK. ‘

RATIONAL MACHINES PROPRIETARY DOCUMENT - YERSION 1.0

RMI INSTRUCTION SET —-- DECLARATIVE INSTRUCTIONS 24

STACKS:

EXCEPTIONS:

DERIYED

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Preconditions: Top of CONTROL_STACLK must contain a value
indicating the number of fields in the record. A parent
SUBPROGRAM_VAR is nexts followed entities on the
CONTROL_STACK uwith the type information for cach field that
is complete.

Postconditions: The CONTROL_STALK is popped to the end of
the field information. A RECORD_¥AR is pushed on top of
the CONTROL_STACK. The TYPE_STACK is updated to include a
descriptor for the new typea. :

INSTRUCTION_ERROR raised if the field count is not valid.
TYPE_ERROR is raised if there exists and invalid component
type.

Declare 2 derived RECORD_CLASS type.

Pop a RECORD_VAR of the CONTROL_STACK as the parent type.
Create a new type identical to the parent and mark a path
from the parent to the child on the TYPE_STALX. Pop the
CONTROL_STACK to reference the enclosing SUBPROGRAM_VAR.
Write entries into the TYPE_STALK indicating the type
information of the new type. Copy the type information of
the fields for the parent to the <child. Push a new
RECORD_VAR on the CTONTROL_STALK. :

Preconditions: Top of CONTRDOL_STALK must contain the parent
RECORD_VAR, followed by the enclosing SUBPROGRAM_VAR,

Postconditions: Top of LONTROL_STACK is reduced by two. a
RECORD_VAR is pushed on top of the CONTROL_STACK. The
TYPE_STACK is updated to include a descriptor for the news
type.

TYPE_ERROR is raised if the parent cannot be derived.

DERIVED_INCOMPLEIE

PURPOSE:

FUNCTION:

Declare a derived incomplete RECORD_CLASS type.

Pop a RECORD_VAR of the CONTROL_STALK as the parent type.
Create a new type identical to the parent and mark a path
from the parent to the child on the TYPE_STACX. Pop the
CONTROL_STACK to reference the enclosing SUBPROGRAM_VAR.
Write entries into the TYPE_STALK indicating the type
information of the new type. Copy the type information of

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSIDNV1QQ

RMI INSTRUCTION SET —-= DECLARATIVE INSTRUCTIONS 25

SIACKS:

EXCEPTIONS:

INCOMELEIE

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

the complete fields for the parent to the child; Push a 6em
RECORD_VAR on the CONTROL_STALK.

Preconditions: Top of CONTROL_STALKX must contain the parent
RECORD_VAR, followed by the enclosing SUBPROGRAM_VAR.

Postconditions: Top of CONTROL_STACLK is reduced by two. a
RECORD_VAR is pushed on top of the CONTROL_STACK. The
TYPE_STACK 1is wupdated to include a descriptor for the new
type.

TYPE_ERROR is raised if the parent cannot be derived.

Declare an incompletely defined RECODRD_CLASS type.

Pop a value from the CONTROL_STACK indicating the number of
fields in the record. {reate a type link for the record
type. Pop the CONTROL_STACK ¢to reference the enclosing
subprogram. Create an empty descriptor for the new <types
and write the appropriate type information for each field.
Push a RECORD_VAR on the CONTROL_STACK.

Preconditions: Top of the CON?ROL_STACK contains a wvalue
indicating the number of fields. Top - 1 of the
CONTROL_STALK contains a SUBPROGRAM_YVAR.

Postconditions: Top of CONTROL_STACK is reduced by 2. A
RECORD_VAR is pushed on top of the LONTROL_STACK.

None.

3.1<7. SEGMENT_CLASS

~

In the declaration of a SEGMENT_CLASS type, the fields TYPE_OPTIONS and
TYPE_SORT are not relevant, and therefore ignored.

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Declare a SEGMENT_LLASS type.

Create a site on the TYPE_STACK for the type information of
an empty code segment descriptor. Push a SEGMENT_VAR
referencing this type information on top of the
CONTROL _STACK.

A SEGMENY_VAR is pushed on top of the CTONTROL_STACK.

None.

RATIONAL MACHINES PROPRIETARY DOCUMENT. VERSION 1.0

RMI INSTRUCTION SET —- DECLARATIVE INSTRUCTIONS 26

3+7+8« TASK_CLASS

In the declaration of a TASK_CLASS type, the only field of TYPE_OPTIONS
that has meaning is HAS_ENTRIES, which indicates if the task is an actor
task or not. In addition, the TYPE_SORT of a declared TASK_CLASS type may
only be DEFINED, DERIVED, or INCOMPLETE. Any other combination raises the
exception INSTRUCTION_ERRODR.

REEINED

PURPOSE: Declare a TASK_CLASS type.

FUNCTION: Determine if the declaration is legal, then create an empty
module type and type path. Pop a SUBPROGRAM_VAR off the
CONTROL_STACK to reference the enclosing subprogram. Pop a3
segment position off the CONTROL_STALX and reference the
corresponding segment name and module start. Pop a value
off the CONTROL_STACLK as the generic <counts and then
another wvalue as the import count. If there are any
imports, then allocate an import space and transfer the
imports from the parent module. Otherwise, create a null
import link. Write to the TYPE_STACK the type information
for the new typer, as well as the class information. Push
the new TASK_VAR on the CONTROL_STACK.

STACKS: ' Preconditions: Top of CONTROL_STALK must contain a parent
SUBPROGRAM_VAR, followed by a segment position value on top
- 1 Top =~ 2 of the CONTROL_STALK contains the generic
counts, and top = 3 contains the import count.

Postconditions: Top of CONTROL_STALK is reduced by 4.

EXCEPTIONS: EL ABORATION_ERROR is raised if the declaration is not
legalsr or 1if the imports <cannot be copied from an
unelaborated parent. OPERAND_CLASS_ERROR is raised if the
SUBPROGRAM_VAR is not found.

DERIYED

PURPOSE: Declare a derived TASK_CLASS type.

FUNCTION: Determine if the declaration is legal, then create an empty
module type and type path. Pop a module object off the
CONTROL_STACK. Get the <classs typesr and subprogram
information from the parent. Create an entry in the
TYPE_STACK indicating the same classs, typer, and subprogram
information for a new type. Push the new TASK_¥AR on the
CONTROL_STACK.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— DECLARATIVE INSTRUCTIONS 27

STACKS: Preconditions: Top of CONTROL_STACK must contain a parent
module variable. :

Postcoéditions: Top of CONTROL_STACK is reduced by onesr and
then a TASK_VAR is pushed on top of the CONTROL_STACK.

EXCEPTIONS: ELABORATION_ERROR is raised if the declaration is not
legal. OPERAND_CLASS_ERROR is raised if the parent object
is not found. CAPABILITY_ERROR is raised if the parent
object is private. TYPE_ERROR is raised if the parent
cannot be derived.

INCOMPLEIE

PURPOSE: Declare an incompletely defined TASK_CLASS type.

FUNCTION: Determine if the declaration is legals then create an empty
module type and type path. Create 3 null package utility.,
and write the appropriate types classs, and subprogram
information to the TYPE_STACK. Push the new TASK_VAR on
the CONTROL_STACK.

STACKS: Postconditions: A TASK_VAR is pushed on top of the
CONTROL_STACK.

EXCEPTIONS: ELABORATION_ERROR is raised if +the declaration 1is not
legal.

3.1.9. VARIANT_RECORD_CLASS

In the case of a VARIANT_RECORD_CLASS +typesr the only fields of
TYPE_OPTIONS that are relevant are DERIVED_PRIVATE and CONSTRAINED. In
additions, all values of TYPE_SORT are meaningful when applied to the
declaration of a VARIANT_RECORD_CLASS_TYPE.

CONSIRAINED
PURPOSE: Declare a constrained VYARIANTY_RECORD_CLASS type.
FUNCTION: Pop a VARIANT_RECORD_VAR from the CONTROL_STACK as the base

type. Get the class information from the parent. Create a
new type identical to the base type. For each discriminant,
pop a value from the CONTROL_STACK, and constrain each
field in turn. In the process, type information for each
constrained discriminant and field is written into the
TYPE_STACK. A path from the parent to the child is created.
Values are mritten into the TYPE_STYACK +to indicate the
class and type information for the new typeas A
VARIANT_RECORD_VAR is pushed on top of the CONTROL_STACK.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- DECLARATIVE INSTRUCTIONS 28

STACKS:

EXCEPTIONS:

Preconditions: Top of the CONTROL_STACK contains a base
VARIANT _RECORD_VAR, followed by 3 constraint walue for each
field in turn.

Postconditions: Top of the CONTROL_STACK. is reduced to
below the constraint information. A VARIANT_RECORD_VAR is
pushed on top of the CONTROL_STACK. The TYPE_STACK is
updated to include a descriptor for the new type.

TYPE_ERROR raised if the base type cannot be constrained.
ELABORATION_ERROR is raised if the base type is not

 complete. INSTRUCTION_ERROR is raised if the number of

constraints is not sufficient. CONSTRAINY_ERROR is raised
if a constraint violated any base field. CAPABILITY_ERROR
is raised if an attempt is made to constrain a ‘private
field.

CONSTRAINED _INCOMPLETIE

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Declare a constrained incompletely defined
VARIANT_RECORD_CLASS type.

Pop a VARIANT_RECORD_VAR from the CONTROL_STACLK as the base
type. OGet the class information from the parent. (reate a
new type identical to the base type. For each discriminant,
pop 3 value from the CONTROL_STACK, and constrain each
complete field in turn. In the process, type information
for each constrained discriminant and field is written into
the TYPE_STACK. A path from the parent to the child is
created. Yalues are uwritten into the TYPE_STALK to indicate
the <c¢lass and type information for the new 1type. A
VARIANT _RECORD_VAR is pushed on top of the CONTROL_STACK.

Preconditions: Top of the CONTROL_STALK contains a base
VARIANT_RECORD_VAR, followed by a constraint value for each
complete field in turn.

Postconditions: Top of the CONTROL_STACK 1is reduced to
below the constraint information. A VARIANY_RECORD_VAR is
pushed on top of the CONTROL_STACKa The TYPE_STACK is
updated to include a descriptor for the new type.

TYPE_ERROR raised if the base type cannot be constrained.
ELABORATION_ERROR is raised if the base type is not
complete. INSTRUCTION_ERROR is raised if the number of
constraints is not sufficient. CONSTRAINT_ERROR is raised
if a constraint violated any base field. CAPABILITY_ERROR
is raised if an attempt is made +to constrain a private
field.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- DECLARATIVE INSTRUCTIONS 29

DEEINEDR

PURPOSE: Declare a VARIANY_RECORD_CLASS type.

FUNCTION: Pop a value off the CONTROL_STACK indicating the number of
fields. Pop a value off the CONTROL_STACK indicating the
number of discriminant fields. Allocate space on the
TYPE_STACK for the definition of the +type, and create a
type link. Pop the SUBPROGRAM_VAR indicating the enclosing
subprogram, and then pop a value indicating the number of
variant parts. MWrite the type information for all of the
fixed fields, which reguires that the CONTROL_STALK be
popped for each field typer including initialization. The
TYPE_STACK is also updated to indicate the new field type
information. Next, 2ll of the variant fields are writtens,
which requires that the CONTROL_STACK be popped for each
field type, including initialization. The TYPE_STACK is
also updated to indicated the new field <type information.
The TYPE_STACK is written to include the class information
and the type information for the basic: type. A
VARIANTY_RECORD_VAR is pushed on top of the CONTROL_STACK as
the new type. ‘

STACKS: Preconditions: Top of the CONTROL_STACK must contain a
. value denoting the number of fields. Top - 1 <contains a
value indicating the number of discriminant fields. Top - 2
is a SUBPROGRAM_VAR indicating the enclosing subprogram.
TJop = 3 is a wvalue indicating the number of variant parts.
The next set of objects defined the types and
initialization of the fixed fields, followed by a set of
objects for the variant fields.

Postconditions: Top of the CONTROL_STACK is reduced to the
end of all the field information. A VARIANT_RECORD_VAR is
pushed on top of the CONTROL_STACK.

EXCEPTIONS: INSTRUCTION_ERROR is raised if the number of discriminates
or fields in not wvalid.

DEEINED_INCOMPLEIE

PURPOSE: Declare a defined incomplete VARIANT_RECORD_CLASS type.

FUNCTION: Pop a value off the CONTROL_STACK indicating the number of
fields. Pop a value off the CONTROL_STACK indicating the
number of discriminant fields. Allocate space on the
TYPE_STACK for the definition of the typer and create a
type link. Pop the SUBPROGRAM_VAR indicating the enclosing
subprograms, and then pop a value indicating the number of

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -~ DECLARATIVE INSTRUCTIONS - 30

STACKS:

EXCEPTIONS:

DERIYED

PURPOSE:

FUNCTION:

STYACKS:

variant parts. Write the type information for all of the
complete fixed fields, which requires that the
CONTROL_STACK be popped for each field typesr including
initialization. The TYPE_STACK is also updated to indicate
the new field type information. Next, all of the complete
variant fields are written, which reguires that the
CONTROL_STACK bhe popped for each field typesr including
initialization. The TYPE_STACK is also updated to indicated
the new field type information. The TYPE_STALK is weritten
to 1include the class information and the type information
for the basic type. A VARIANT_RECORD_VAR is pushed on top
of the CONTROL_STACK as the new type. '

Preconditions: Top of the CONTROL_STACK must contain a
value denoting the number of fields. Top = 1 contains a
value indicating the number of discriminant fields. Top - 2
is a SUBPROGRAM_VAR 1indicating the enclosing subprogram.
Top = 3 is a value indicating the number of variant parts.
The next set of objects defined the types and
initialization of the complete fixed fields, followed by a
set of objects for the complete variant fields.

Postconditions: Top of the CONTROL_STACKX is reduced to: the
end of all the field information, A VARIANT_RECORD_VAR is
pushed on top of the CONTROL_STACLK.

INSTRUCTION_ERROR is raised if the number of discriminates
or fields in not valid.

Declare a DERIVED VARIANT_RECORD_CLASS type.

Pop a VARIANT_RECORD_VAR from the CONTROL_STACK as the base
type. Get the class information from the parent. Create a
new type identical to the base type. The type information
for each field and discriminant from the parent is copied
to the new type. A path from the parent to the child is
created. Values are uwritten into the TYPE_STACK to indicate
the <class and type information for the new type. A
VARIANT_RECORD_VAR is pushed on top of the CONTROL_STACK.

Preconditions: Top of the CONTROL_STACK contains a base
VARIANT_RECORD_VAR.

Postconditions: Yop of the CONTROL_STACK is reduced by one.
A VARIANT_RECORD_VAR is pushed on top of the CONTROL_STACK.
The TYPE_STACK is updated to include a descriptor for the
new typea.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— DECLARATIVE INSTRUCTIONS 31

EXCEPTIONS:

TYPE_ERROR raised if the base type cannot be derived.
ELABORATION_ERROR is raised if the Dbase type is not
complete. CAPABILITY_ERROR is raised if an attempt is made
to derive a private field.

DERIVER_INCOMPLEIE

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

INCOMPLETE

PURPOSE:

FUNCTION:

STACKS:

Declare a derived incompletely defined VARIANT_RECORD_CLASS
type.

Pop a VARIANT_RECORD_VAR from the CONTROL_STACK as the base
type. Get the class information from the parent. Lreate a
new type identical to the base type. For each complete
discriminant, copy the corresponding type information from
the parent. A path from the parent tc the child is created.
Values are written into the TYPE_STACK +to indicate the
class and type information for the new type. A
VARIANT_RECORD_VAR is pushed on top of the CONTROL_STACK.

Preconditions: Top of the CONTROL_STACK contains a base
VARIANT_RECORD_VAR.

Postconditions: Top of the CONTROL_STALK is reduced by one.
A VARIANT_RECORD_VAR is pushed on top of the CONTROL_STACK.
The TYPE_STALK is updated to include a descriptor for the
new type. ' :

TYPE_ERROR raised if the base type cannot be derived.
ELABORATION_ERROR is raised if the Dbase type 1is not
complete. CAPABILITY_ERROR is raised if an attempt is made
to derive a private field.

Declare a VARIANT_RECORD_CLASS type.

Pop a value off the CONTROL_STACK indicating the number of
fields. Pop a wvalue off the CONTROL_STACK indicating the
number of discriminant fields. Allocate space on the
TYPE_STACK for the definition of the type, and create 2
type link. Create an empty type descriptor for the new
typer including the types of the discriminant which are
found in turn on the CONTROL_STACK. The TYPE_STACK is
written to include the <class information and the type
information for the basic type. A VARIANT_RECORD_VAR is
pushed on top of the CONTROL_STALK as the new type.

Preconditions: Top of the CONTROL_STACK must contain a

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —= DECLARATIVE INSTRUCTIONS 32

value denoting the number of fields. Top - 1 contains a
value indicating the number of discriminant fields.

Postconditions: Top of the CDNTROL_STACK is reduced to the
end of all the discriminant information. A
YARIANT_RECORD_VAR is pushed on top of the CONTROL_STACK.

EXCEPTIONS: INSTRUCTION_ERROR is raised if the number of discriminates
or fields in not valid.

3.2. COMPLETE_TYPE

The COMPLETE_TYPE instruction finishes the descriptor of an
incompletely specified type..

COMPLETE_TYPE takes the form:

type COMPLETE_TYPE_INSTRUCTION is
record
COMPLETION_CLASS : OPERAND_CLASS?
COMPLETION_MODE =z TYPE_COMPLETION_MODE,
end records

While the COMPLETION_CLASS (of type OPERAND_CLASS) names the class of the
target type that is to be completed, a value of TYPE_COMPLETION_MDDE
further defines the means through which the completion is to be achieved.
formally, the TYPE_CLOMPLETION_MODE is defined as:

type TYPE_COMPLETION_MODE is
(BY_COMPONENT_COMPLETION, BY_CONSTRAINING,
BY_DEFINING, BY_DERIVING);

COMPLETE_TYPE is appropriate only for objects of class:

ACCESS_CLASS
ARRAY_CLASS
DISCRETE_CLASS
FLOAT_CLASS
PACKAGE_CLASS
RECORD_CLASS
TASK_CLASS
VARIANT_RECORD_CLASS

* % R % % X F %

The wuse of any other COMPLETION_CLASS value will raise the exception
INSTRUCTION_ERROR. In the following sections, we will treat each <class in
detail.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— DECLARATIVE INSTRUCTIONS 33

3a2a1a

In

be B8Y_

raises

8X_

ACCESS_CLASS
the completion of an‘A£CESS_£LASS types the COMPLETION_MODE may only

CONSTRAINING, BY_DEFINING, or BY_DERIVING. Any other combination
the exception INSTRUCTION_ERROR. ‘

CONSIRAINING

PURPOQOSE: Complete an ACLESS_CLASS type by constraining.

FUNCTION: Pop an idincomplete ACLCESS_VAR from the top of the

STACKS:

CONTROL _STACK. Pop the parent ACCESS_VAR off the
CONTROL_STACK. Reference the <class information of the
parent. Finish the derivation of the child type based on
the type information of the parent. Pop the CONTROL_STACK
for the constraining ACCESS_INF0. Pop a SUBPROGRAM_VAR from
the CONTROL_STACK and set the path to the enclosing
subprogram. Update the TYPE_STALK to include the new class
and type information for the newly completed type.

Preconditions: Top of the CONTROL_STACK must contain the
incompletely specified ACCESS_VAR. Top = 1 contains the
parent ACCESS_VAR. Top = 2 of the CONTROL_STACK contains
the constraining ACCESS_INFO. Top - 3 contains the parent
SUBPROGRAM_VAR., '

Postconditions: vtONTROL_STACK is popped to Dbelow the
SUBPRDOGRAM_VAR. The TYPE_STACKX is updated to include the
completed type information for the ACCESS_VAR.

EXCEPTIONS: CAPABILITY_ERROR raised if the parent type is private.

BY_

OPERAND_CLASS_ERROR is raised if SUBPROGRAM_VAR is invalid.
TYPE_ERROR is raised if the incomplete type is not valid.

DEEINING

PURPOSE: Complete an ACUESS_CLASS type by defining.

FUNCTION: Pop an incémplete ACCESS_VAR off the top of the

CONTROL_STACK. Pop the {(ONTROL_STACX to reference 23
SUBPROGRAM_VAR {which must be FOR_UTILITY) that
encapsulates the new typer and create a path to the
subprogram. Pop the CONTROL_STACK again to determine the
type of the designated access objects, and determine if the
designated object IS_HOMOGENEOUS, IS_CONSTRAINED, and its
size. Pop a value from the CONTROL_STACKX to deatermine a
page count, and then create a collection for the designated
objects. An explicit path 1is created from the type
definition to the collection., Write to the TYPE_STACLK to

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS 34

reference the enclosing subprogram type, the class of the
new typesr and the type information of the new type.

STACKS: Preconditions: Top of CONTROL_STACK contains a
SUBPROGRAM_VAR. Top = 1 of CONTROL_STACK contains a classed
object identifying the +type of +the designated access
objects. Top = 2 of CONTROL_STACK contains a resource
value.

Postconditions: The CONTROL_STACKX is popped to below the
resource value. TYPE_STACX now includes a descriptor for
the new type.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if SUBPROGRAM_VAR is inwvalid.
TYPE_ERROR is raised if the incomplete type is not valid.

BY_DERINING
PURPOSE: Complete an ACCESS_CLASS type by derivinge.
FUNCTION: Pop an incomplete ACCESS_VAR from the top of the
CONTROL_STACK. Pop the parent ACCESS_VAR off the

CONTROL_STACK. Reference the <class information of the
parent. Finish the derivation of the child ¢type based on
the type information of the parent. Pop a SUBPROGRAM_VAR
from the CONTROL_STACK and set the path to the enclosing
subprogram. Update the TYPE_STALK to include the new class
and type information for the newly completed type.

STACKS: Preconditions: Top of the CONTROL_STACK must contain the
incompletely specified ACCESS_VAR. Top = 1 contains the
parent ACCESS_VAR. Top - 2 contains the parent
SUBPROGRAM_VAR.

Postconditions: LONTROL_STACKX 1is popped to below the

SUBPROGRAM_VAR. The TYPE_STACK is updated to include the

completed type information for the ACLESS_VAR. ,
EXCEPTIONS: CAPABILITYY_ERROR raised if the parent type is private.

OPERAND_CLASS_ERROR is raised if SUBPROGRAM_VAR is inwvalid.

TYPE_ERROR is raised if the incomplete type is not walid.
3«22« ARRAY_CLASS

In the <completion of an ACCESS_CLASS types all values of
COMPLETION_MODE are appropriate. '

BY_COMPONENT_COMPLEIION

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRULTION SET —= DECLARATIVE INSTRUCTIONS ; 35

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Complete an ARRAY_CLASS type by component completion.

Pop the incomplete. type information off the top of the
CONTROL_STACK. Get the array and type information from the
TYPE_STACK for the incomplete typesr and determine the size
of the array items after tracing the TYPE_STALK for the
completed component information. For each dimension of the
arrays trace the index descriptor and update the array
information on the TYPE_STACK. Set the type information for
the array on the TYPE_STACK also.

Preconditions: Top of the CONTROL_STACK contains the
incompletely specified ARRAY_VAR.

Postconditions: Top of the CONTROL_STACK is reduced by one.
TYPE_ERROR is raised if the incomplete type is not wvalid.

CAPABILITY_ERROR is raised if the component information is
out of scope.

BY_CONSIRAINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Complete an ARRAY_TLASS type by constraininge.

Pop the incomplete type information off the top of the
CONTROL_STACK. Determine if the type is already constrained
or not. Pop the LONTROL_STALKX to reference the indexed
operand, and create a path to the parent type. Identify
where the bounds of the completed type will be. Nexts
examine the parent type and determine the dimensionality of
the <c¢hild. C(reate a type path %o the array information of
each dimension. For each indexs trace the type path of the
parent for each dimension, and update the array information
along the path of the new type. Pop the CONTROL_STACK past
all of the constraint information. ¥Write to the TYPE_STACK
to reference the array information for each dimensions, the
enclosing subprograms, and the type information of the new
type.

Preconditions: Top of CONTROL_STACK must contain the
incomplete type definition. Top = 1 of the CONTROL_STACK
must contain a reference to the parent type. Constraint
information for each dimension follouws an the
CONTROL_STACK.

Postconditions: CONTROL_STACK is popped below the
constraint information.

CAPABILITY_ERROR is raised if the index operand is private.
ELABORATION_ERROR is raised if the parent type information
is not complete.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

BY_DEEINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

SY_DERIVING

PURPOSE:

FUNCTION:

SET == DECLARATIVE INSTRUCTIONS 36

Complete an ARRAY_CLASS type by defining.

Pop the CONTROL_STACK to reference the incomplete type
information. Pop the CONTROL_STACK again to determine the
enclosing subprogram. Pop the CONTROL_STACK again to
determine the type of the array component. Build the array
information for the new typers including information for
each dimension index; this operation requires that the
CONTROL_STACK bhe popped twice for each index to obtain the
range of the index. The TYPE_STACK is updated to reference
the type information for each index descriptor. Pop the
CONTROL _STACX down to the end of the index infermation. The
TYPE_STACLX is updated to reference the type information for
he new type.

Preconditions: Top of CONTROL_STACK contains the
incompletely specified type information. Top - 1: of
CONTROL_STACK contains a SUBPROGRAM_VAR., Top - 2 of the
CONTROL_STACKX contains a type defining the component type
of the array. Pairs of index bounds follows in order of the
highest dimension to the louwest.

Postconditions: The CONTROL_STALK is reduced to the level
below all of the index information. TYPE_STACK now centains
a descriptor for the completed type.

INSTRUCTION_ERROR 1is raised if too many dimensions are
specified. TYPE_ERROR is raised if the component <class of
the new array is idincomplete or otheruwise unconstrained.
OPERAND_CLASS_ERROR is raised if the component type is not
valid or if the SUBPROGRAM_VAR is not valid.

Complete an ARRAY_CLASS type by deriving.

Pop the incomplete +type information off the top of the
CONTROL_STACK. Determine if the type is already constrained
or not. Pop the CONTROL_STACK to reference the indexed
operand, and create a path to the parent type. Identify
where the bounds of the completed <type will be. Next,
examine the parent type and determine the dimensionality of
the <c¢hilde. Create a type path %o the array information of
each dimension. For each indexs, trace the type path of the
parent for each dimension, and update the array information
along the path of the new type. HWrite to the TYPE_STACK to
reference the array information for each dimensions the

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —=- DECLARATIVE INSTRUCTIONS 37

enclosing subprograms and the type information of the new
type.

STACKS: Preconditions: Top of CONTROL_STACK must contain the
incomplete type definition. Top - 1 of the CONTROL_STACK
must contain a reference to the parent type.

Postconditions: CONTROL_STALX is reduced by one.
EXCEPTIONS: CAPABILITY_ERROR is raised if the index operand is private.
ELABORATION_ERROR is raised if the parent type information
is not complete.
3e2e3«a DISCRETE_CLASS
In the completion of a DISCRETE_CLASS type, the only wvalues of

COMPLETION_MODE that are relevant are BY_CONSTRAINING, BY_DEFINING, and
BY_DERIVING. Any other combination raises the exception INSTRUCTION_ERROR.

BY_CONSTRAINING
PURPOSE: Complete a DISCRETE_CLASS type by constraining.
FUNCTION: Pop the incomplete DISCRETE_VAR off the top of the

CONTROL_STACK. Get the class information from the parent
typer and then pop the CONTROL_STACK twice to obtain the
constrained bounds (maximum then minimum bounds). Compute
the size of +the completed type, and copy the type
information and bounds information to the TYPE_STACK.

STACKS: Preconditions: Top of CONTROL_STACK contains the incomplete
DISCRETE_VAR. Top = 1 contains the maximum constraint. Top
- 2 of the CONTROL_STALK contains the minimum constraint.

Postconditions: TYop of CONTRDL_STACLK is reduced to below
the constraint information. The TYPE_STACK is updated to
reflect the completed type information.

EXCEPTIONS: TYPE_ERROR is raised if the incomplete type is not walid or
cannot be constrained. CAPABILITY_ERROR is raised if the
incomplete type is out of scope. CONSTRAINT _ERROR is

raised if the constraints to not satisfy the parent.
ELABORATION_ERROR is raised if the bounds are not complete.

BY_DEEINING

PURPOSE: Complete a DISCRETE_CLASS type by defininge

RATIONAL MACHINES PROPRIET&RY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- DECLARATIVE INSTRUCTIONS 38

FUNCTION: Pop the incomplete DISCRETE_VAR off +the +top of the
CONTROL_STACK. Pop a SUBPROGRAM_VAR off the CONTROL_STACK
to reference the enclesing sybprogram, Pop the

CONTROL_STACKX twice more to obtain the upper then lower
bounds of the completed +type. Determine the size of the
typer then update the TYPE_STACK to reflect the type and
bounds information.

STACKS: Preconditicons: Top of CONTROL_STACLK contains an incomplete
DISCRETE_VAR. Top = 1 contains a SUBPROGRAM_VAR., Top - 2
contains the maximum bounds, and top - 3 of the
CONTROL_STACK contains the minimum bounds. ‘

Postconditions: The CONTROL_STACK is popped to below the
bounds information. The TYPE_STACK is updated to reflect
the new type information. '

EXCEPTIONS: TYPE_ERROR is raised if the incomplete type is not wvalid.
OPERAND_CLASS_ERROR 1is raised if the SUBPROGRAM_VAR is not
valide CAPABILITY_ERROR is raised if a dbound is private.
ELABORATION_ERROR 1is raised if the parent and incomplete
type are not both signed or unsigned.

BY_DERIVING
PURPOSE: . Complete a2 DISCRETE_CLASS type by deriving.
FUNCTION: Pop the incomplete DISCRETE_VAR off the top of the
CONTROL _STACK. Pop the parent DISCRETE_VAR off the

CONTROL_STACK. Copy the type information from the parent,
including a determination of the size of the type. Write
the completed class and type information in the TYPE_STACK.

STACKS: Preconditions: Top of CONTROL_STACK contains the incomplete
DISCRETE_VAR. Top — 1 contains the parent DISCRETE_VAR.

Postconditions: Top of CONTROL_STACK is reduced by two.
EXCEPTIONS: TYPE_ERROR is raised if the parent type <cannot be derived.
ELABORATION_ERROR is raised if the parent and incomplete
type are not both unsigned or signed. :
342.4. FLOAT_CLASS
In the completion of a FLOAT_CLASS typer the only values of

COMPLETION_MODE that are relevant are BY_CONSTRAINING, BY_DEFINING, and
BY_DERIVING. Any other combination raises the exception INSTRUCTION_ERROR.

BY_CONSTRAINING

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BY_DEEINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BY_DERIVING

SET —— DECLARATIVE INSTRUCTIONS 39

Complete a FLOAT_CLASS type by‘constraining.

Pop the incomplete FLOAT_VAR off +the top of the
CONTROL_STACK. Get the class information from the parent
typesr and then pop the CONTROL_STACK twice to obtain the
constrained bounds {(maximum then minimum bounds). Compute
the size of the completed type, and copy the type
information and bounds information to the TYPE_STACK.

Preconditions: Top of CONTROL_STACK contains the incdmpleta
FLOAT_VAR. Top - 1 contains the maximum constraint. Top - 2
of the CONTROL_STACK contains the minimum constraint.

Postconditions: Top of CONTROL_STACK is reduced ¢to below

the constraint information. The TYPE_STACLK is updated to
reflect the completed type information. ‘

TYPE_ERROR is raised if the incomplete type is not wvalid or
cannot be constrained. CAPABILITY_ERROR is raised if the
incomplete type is out of scope. CONSTRAINT_ERROR is
raised if the constraints to not satisfy the parent.

Complete a FLOAT_CLASS type by defining.

Pop the incomplete FLOAT_VAR off the top of the
CONTROL_STACK. Pop a SUBPROGRAM_VAR off the CONTROL_STACK
to reference the enclosing subprogram. Pop the
CONTROL_STACK twice more to obtain the upper then lower
bounds of the completed type. Determine the size of the
typer then update the TYPE_STACK to reflect the type and
bounds information.

Preconditions: Top of CONTROL_STALK containms an incomplete
FLOAT_VAR. Top - 1 contains a SUBPROGRAM_VAR. Top - 2
contains the wmaximum bounds, and top -~ 3 of the
CONTROL_STACK contains the minimum bounds.

Postconditions: The CONTROL_STACK is popped to below the
bounds information. The TYPE_STACK is updated to reflect
the new type information.

TYPE_ERROR is raised if the incomplete type is not valid.
OPERAND_CLASS_ERROR is raised if the SUBPROGRAM_VAR is not
valid. CAPABILITY_ERROR is raised if a bound is private.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— DECLARATIVE INSTRUCTIONS | 40

PURPOSE: Complete a FLOAT_CLASS type by deriving.
FUNCTION: Pop the incomplete FLOAT_VAR off the top of the
CONTROL_STACK. Pop the parent FLOAT_VAR off the

CONTROL_STACK. Copy the type information from the parent,
including a determination of the size of the type. Write
the completed class and type information in the TYPE_STALK.

STACKS: ; Preconditions: Top of CONTROL_STACK contains the incomplete
FLOAT_VAR. Top — 1 contains the parent FLOAT_VAR.

Postconditions: Top of CONTROL_STACLK is reduced by tuwo.
EXCEPTIONS: TYPE_ERROR is raised 1if the parent type cannot be derived.
ELABORATION_ERROR is raised if the parent and incomplete
type are not both unsigned or signed.
3.2.5. PACKAGE_CLASS
In +the <completion of a PACKAGE_CLASS type, the only COMPLETION_MODE

values that are appropriate are BY_DEFINING and BY_DERIVING. Any other
combination raises the exception INSTRUCTION_ERROR.

BY_DEEINING
PURPOSE: Complete a PACKAGE_CLASS type by defining.
FUNCTION: Pop the incomplete PACKAGE_VAR off the top of the

CONTROL_STACK. Trace the class information of the +type.
Pop 2 SUBPROGRAM_VAR off the CONTROL_STACK to reference the
enclosing subprogram. Pop a segment position off the
CONTROL_STACK and reference the corresponding segment name
and module start. Pop a value off the CONTROL_STACK as the
generic count, and then another value as the import count.
If there are any imports, then allocate an import space and
transfer the imports from the parent module. Otherwise,
create a null import link. Write to the TYPE_STACK the type
information for the new +typer as well as the <class
information..

STACKS: Preconditions: Top of <the CONTROL_STACK must contain the
‘ incomplete PACKAGE_VAR. Top = 1 must contain the parent
SUBPROGRAM_VAR, followed by a segment position on top - 2.
Top = 3 of the CONTROL_STACK contains the generic count,

and top — 4 contains the import count.

Postconditions: Top of CONTROL_STACK is reduced by 5. The
TYPE_STACK is updated to reflect the new type information.

EXCEPTIONS: TYPE_ERROR is raised if the incomplete type is not valid.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— DECLARATIVE INSTRUCTIONS 41

BY_DERIVING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

CAPABILITY_ERROR is raised if the incomplete type is
private. ELABORATION_ERROR is raised if the declaration is
not legal, or if the imports cannot be copied from an
unelaborated parent. OPERAND_CLASS_ERROR is raised if the
SUBPROGRAM_VAR is not found.

Complete a PACKAGE_CLASS type by deriving.

Pop an incomplete PACKAGE_VAR off the top of the
CONTROL _STACK. Pop 2 module object off the CONTROL_STACK.
Get the classs type and subprogram information from <the
parent. Create an entry in the TYPE_STACK indicating the
same class, typesr and subprogram information for the
completed type.

Preconditions: Top of CONTROL_STACK must contain a parent
module variable.

Postconditions: Top of LONTROL_STACK is reduced by one.
TYPE_STALK is updated to reflect completed type
information.

TYPE_ERROR is raised if the incomplete type is not walid,
or if the parent cannot be derived. CAPABILITY_ERROR is
raised if the incomplete type is private, or if the parent
module is private. OPERAND_CLASS_ERROR is raised if the
parent module is not found.

3.2.6. RECORD_CLASS

In the completion of a RECORD_CLASS typer the only EQH?LETIQN_HGDE
values that are appropriate are BY_COMPONENTY_COMPLETION, BY_DEFINING, and
BY_DERIVING. Any other combination raises the exception INSTRUCTION_ERROR.

BY_COMPONENI _COMPLEIION

PURPOSE:

FUNCTION:

STACKS:

Lomplete 2 RECORD_CLASS type by component completion.

Pop the incomplete RELORD_VAR off the top of the
CONTROL _STACK. For each field in the typer trace the type
path to the field definitions, and update the parent type
field information. Determine the size of the typesr and
update the type information for the now completed type in
the TYPE_STACK.

Preconditions: Top of the CONTROL_STALK contains the
incomplete RELORD_VAR.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

EXCEPTIONS:

BY_DEEINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BY_DEBIVING

PURPOSE:

FUNCTION:

STACKS:

SET ~- DECLARATIVE INSTRUCTIONS ‘ 42

Postconditions: Top of CONTROL_STALK is reduced by one.

TYPE_ERROR is raised if the incomplete type is not wvalid.
CAPABILITY_ERROR is raised if +the incomplete type is
private.

Complete a RECORD_CLASS type by defining.

Pop the incomplete RECORD_VAR from the CONTROL_STACK. Pop
a SUBPROGRAM_VAR off the CONTROL_STALK referencing the
enclosing subprogram. for each record componentsr record the
type information for each filed into the TYPE_STACK, and
then pop the CONTROL_STACX to the end of the field
information. Write an entry to the TYPE_STACK indicating
the type information for the new type.

Preconditions: Top of CONTROL_STACK must contain an
incomplete RECORD_VAR. A parent SUBPROGRAM_VAR is nextsr
followed by N entries on the CONTROL_STACK with the type
information for each field.

Postconditions: The CONTROL_STALK is popped to thé end of
the field information. The TYPE_STALK is updated to include
a complete descriptor for the neuw type.

TYPE_ERROR is raised if the incomplete type in not wvalid or
if there exists an invalid component type.
CAPABILITY_ERROR is raised if the incomplete type is
private.

Complete a RECORD_CLASS type by derivinge.

Pop an incomplete RECORD_YAR off the top of the
CONTROL_STACK. Pop another RECORD_VAR as the parent type.
Update the incomplete +type to match the parent type
informationr, and build a type path from the parent to the
child on the TYPE_STACK. Pop the CONTROL_STACK to reference
the enclosing SUBPROGRAM_VAR. HWrite the completed type
information and field information into the TYPE_STACK for
the completed type.

Preconditions: TYop of CONTROL_STACK must contain an
incomplete RECORD_VAR. Teop = 1 must contain the parent
RECORD_VAR, followed by the enclosing SUBPROGRAM_VAR.

RATIONAL MACHINES PROPRIETARY DOCUMENT | VERSION 1.0

RMI INSTRUCTION SET =-- DECLARATIVE INSTRUCTIONS 43

EXCEPTIONS:

Postconditions: Top of the CONTROL_STACK is reduced by
three. The TYPE_STACK is updated to include a complete
descriptor for the type.

TYPE_ERROR is raised if the incomplete type is not wvalids
or if the parent cannct be derived. CAPABILITY_ERROR is
raised if the incomplete type is private.

3.2.7. TASK_CLASS

In the completion of a TASK_CLASS type, the only COMPLETION_MODE values
that are appropriate are BY_DEFINING and BY_DERIVING. Any other combination
raises the exception INSTRUCTION_ERROR. '

BY_DEEINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BY_DERIVING

Complete a TASK_CLASS type by defining.

Pop the incomplete TASK_VAR off the top of the
CONTROL_STACK. Trace the class information of the type.
Pop a SUBPROGRAM_VAR off the CONTROL_STALK to reference the
enclosing subprogram. Pop a segment position off the
CONTROL_STACK and reference the corresponding segment name
and module start. Pop a value off the CONTROL_STALK as the
generic count, and then another value as the import count.
If there are any imports, then allocate an import space and
transfer the imports from the parent module. {Otherwise.,
create a null import link. Hrite to the TYPE_STALK the type
information for the new type, as well as the <class
information.

Preconditions: Top of the CONTROL_STACK must contain the
incomplete TASK_VAR. Top - 1 must contain the parent
SUBPROGRAM_VAR, followed by a segment position on top - 2.
Top = 3 of the CONTROL_STACKX contains the generic count,
and top - 4 contains the import count.

Postconditions: Top of CONTROL_STACK is reduced by 5. The

TYPE_STACLK is updated to reflect the new type information.

TYPE_ERROR is raised if the incomplete type is not wvalid.
CAPABILITY_ERROR is raised if the incomplete type is
private. ELABORATION_ERROR is raised if the declaration is
not legal, or if the imports <cannot be copied from an
unelaborated parent. OPERAND_CLASS_ERROR is raised if the
SUBPROGRAM_VAR is not found.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS b4

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Complete a TASK_CLASS type by deriving.

Pop an incomplete TASK_VAR off the top of the
CONTROL_STACK. Pop a module object off the CONTROL_STACK.
Get the <classr type and subprogram information from the
parent. Create an entry in the TYPE_STACK indicating the
same <classr typer, and subprogram information for the
completed type.

Preconditions: Top of CONTROL_STACK must contain a parent
module variable.

Postconditions: Top of CONTROL_STACK is reduced by one.
TYPE_STACK is updated to reflect completed type
information.

TYPE_ERROR is raised if the incomplete type is not valid,
or if the parent cannot be derived. CAPABILITY_ERROR is
raised if the incomplete type is privater or if the parent
module is private. OPERAND_CLASS_ERROR is raised if the
parent module is not found.

3.2.8. YARIANT_RECORD_CLASS

In the

completion of a VARIANT_RECORD_CLASS typer every value of

COMPLETION_MODE 1is valid.

BY _COMPONENT _COMPLEIIQN

PURPOSE:

FUNCTION:

STALKS:

EXCEPTIONS:

Complete a VARIANT_RECORD_CLASS type by component
completion.

Pop an incomplete VARIANT_RECORD_VAR off the CONTROL_STACK.
Get the class information from the type. For each fixed
fields, trace the type paths and update the TYPE_STALK +to
reflect the completed type information. If there are any
variant parts, do the same for the wvariant fields. Write
entries dinto the TYPE_STACK to reflect the completed type
information and class information.

Preconditions: Top of the CONTROL_STACK contains an
incomplete VARIANT_RECORD_VAR.

Postconditions: Top of the CONTROL_STACK is reduced by one.
The TYPE_STACK is wupdated to reflect the new type
information.

TYPE_ERROR is raised if the incomplete type is not walid.
CAPABILITY_ERROR is raised if the incomplete type is
private.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

SEY ~— DECLARATIVE INSTRUCTIONS 45

BY_CONSIRAINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BY_DEEINING

PURPOSE:

FUNCTION:

Complete a VARIANT_RECORD_CLASS type by constraininge.

Pop an incomplete VARIANT_RECORD_VAR from the
CONTROL_STACK.. Determine if the type derives privacyr and
trace the class information of the incomplete type. Pop a
VARIANY_RECORD_VAR from the CONTROL_STALK as the base type.
For each discriminant, pop a value from the CONTROL_STACK,
and constrain each field in +turn. In. the processs, type
information for each constrained discriminant and field is
written into the TYPE_STACK. A path from the parent to the
child is created. Values are written into the TYPE_STALKX ¢to
indicate the <class and type information for the completed
type.

Preconditions: Top of the CONTROL_STACK must <contain the
incomplete VARIANT_RECORD_YVAR, followed by the parent
VARIANT_RECORD_VAR. A constraint value for each field is
next on the CONTROL_STACK.

Postconditions:Top of the CONTROL_STACK is reduced below
the constraint information. The TYPE_STACK is updated to
include a complete descriptor for the new type..

TYPE_ERROR 1is raised if the incomplete type is not valid,
or if the parent type cannot be constrained.
CAPABILITY_ERROR 1is raised if an attempt 1is made to
constrain a private field, or if the incomplete type 1is
private. ELABORATION_ERROR is raised if the parent type is
not complete. INSTRUCTION_ERROR is raised if the number of
constraints is not sufficient. CONSTRAINT_ERROR is raised
if a constraint violated any parent field. -

Complete a VARIANT_RECORD_CLASS type by defininge.

Pop an incomplete VARIANT_RECORD_VAR off the CONTROL_STACK.
Pop the SUBPROGRAM_VAR indicating the enclosing subprogranms
and then pop a wvalue indicating the number of wvariant
parts. Write the +type information for all of the fixed
fields, which requires that the CONTROL_STACK be popped for
each field typesr including initialization. The TYPE_STALK
is also updated to indicate the new field type informationa.
Next, 2ll of the variant fields are written, which requires
that the CONTROL_STACKX be popped for each field types
including initialization. The TYPE_STALK is also updated to
indicate the new field type information. The TYPE_STALK is

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

STALKS:

EXCEPTIONS:

BY_DERINING

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

SET =— DECLARATIVE INSTRUCTIONS 46

also updated to include the class information and the type‘
information for the basic type.

Preconditions: Top of the CONTROL_STACK must contain an
incomplete VARIANT_RECORD_VAR. Top - 1 contains a
SUBPROGRAM_VAR indicating the enclosing subprogram. Top - 2
is a value indicating the number of variant parts. The next
set of objects define the types and initialization of the
fixed fields, followed by a set of objects for the variant
fields.

Postconditions: Top of the CONTROL_STACK is reduced to the
end of all the field information.

INSTRUCTION_ERROR is raised if the number of discriminants
or fields in not wvalid. TYPE_ERROR is raised if the
incomplete type is not wvalid., CAPABILITY_ERROR is raised if
the incomplete type is private.

Complete a VARIANT_RECORD_CLASS type by derivinga

Pop an incomplete YARIANT_RECODRD_V¥AR from the
CONTROL_STACK.. Determine if the type derives privacys and
trace the class information of the incomplete type. Pop a
YARIANT_RECORD_VAR from the CONTROL_STACLK as the base type.
Cop the parent type information for each constrained
discriminant and field into the TYPE_STACK. A path from the
parent to the child is created. Values are sritten into the
TYPE_STACX to indicate the class and type information for
the completed type.

Preconditions: Top of +the CONTROL_STACK must contain the
incomplete VARIANT_RECORD_VAR, followed by the parent
VARIANT_RECORD_VAR.

Postconditions:Top of the CONTROL_STACK is reduced by tuwo.
TYPE_STACK is updated to include a complete descriptor for
the new type.

TYPE_ERROR is raised if the incomplete type is not valid.
CAPABILITY_ERROR is raised if the incomplete type is
private. ELABORATION ERROR is raised if the parent type is
not complete. ,

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =— DECLARATIVE INSTRUCTIONS 47

3.3. DECLARE_VARIABLE
The DECLARE_VARIABLE instruction creates an object of a given type.

DECLARE_VARIABLE takes the form

type DECLARE_VARIABLE_INSTRUCTION is

record
VARIABLE_CLASS : OPERAND_CLASS,
VARIABLE_OPTIONS : VARIABLE_OPTION_SET;

VARIABLE_VISIBILITY
end records.

VISIBILITY

While the VARIABLE_CLASS {of type OPERAND_CLASS) names the class of the
target object to be created, a value of VARIABLE_OPTION_SET further defines
the kind of object to be declared. Formally, VARIABLE_OPTION_SET is defined
as:

type VARIABLE_OPTION_SET is
record
BY_ALLOCATION s BOOLEAN?
DATA_TASK s BOOLEAN~
DISTRIBUTOR : BOOLEAN:
DUPLICATE : BOOLEAN?
HEAP_TASK : BOOLEAN,
UNCHECKED s BOOLEANS
WITH_CONSTRAINT : BOOLEANS
WITH_SUBTYPE : BOOLEAN;
WITH_VALUE : BODLEANS

end record;
As we will discuss, fields of VARIABLE_OPTION_SET are relevant only to
specific classes of objects.

A value of VISIBILITY defines, obwviously, the visibility of the
declared object. Formally, VISIBILITY is defined as:
type VISIBILITY is (DEFAULT, IS_HIDDEN, IS_VISIBLE);

DECLARE_VARIABLE is appropriate for only objects of class:

ACCESS_CLASS
ANY_CLASS
ARRAY_CLASS
DISCRETE_CLASS

* % % ¥

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS : 48

ENTRY_CLASS
FAMILY_CLASS
FLOAT_CLASS
MATRIX_CLASS
PACKAGE_CLASS
RECORD_CLASS
SEGMENT_CLASS
SELECT_CLASS
TASK_CLASS
VARIANT_RECORD_CLASS
VECTOR_CLASS

* % % % * % * % % % ¥

The use of any other VARIABLE_LLASS will raise the exception
INSTRULTION_ERROR. In the following sections, we will treat each class in
detail.

3.3.1. ACCESS_CLASS

In the declaration of ACCESS_CLASS variablesr, the only fields of
VARIABLE_OPTIONS that are relevant are BY_ALLOCATION., DUPLICATE,
WITH_CONSTRAINT, WITH_SUBTYPE, and WITH_VALUE. All other options are
ignored.

PURPOSE: Declare an ACCESS_CLASS variable.

FUNCTION: If declaration is BY_ALLOCATION, then pop the ACCESS_VAR
off the top of the CONTROL_STACK, and get the class and
type information for the types; according to the kind of the
designated access objectsr allocate a wvariable in the
DATA _STACKS if the declaration is WITH_CONSTRAINT, the
constraint information must be popped off the
CONTROL_STACK, and the TYPE_STACLK updated accordingly, if
the declaration is WITH_SUBTYPE, the type information must
be popped off +the CONTROL_STACX, and they TYPE_STACK
updated accordingly; if the declaration is WITH_VALUE, then
the initial value must be popped of the CONTROL_STACK and
the DATA_STACKX wupdated accordingly. On the other hand, if
the declaration is a DUPLICATE, the CONTROL_STACK is popped
to reference an ACCESS_VAR. Finallys in all other option
casess the CONTROL_STACK is popped to reference an
ACCESS_VAR; a variable 1is <created with the appropriate
privacy and visibility set. In all cases, the final action
is to push an ACCESS_VAR on | the CONTROL_STACK that
references the declared object. ‘ ~

STACKS: Preconditions: Top of the CONTROL_STACK must contain an
ACCESS_VAR which denotes the type of the variable to be
declared. The rest of the items on the CONTROL_STACLK vary
depending upon the kind of the designated access object,
but may include constraints subtyper and initial wvalue
information.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- DECLARATIVE INSTRUCTfONS 49

Postconditions: The CONTROL_STACKX is popped to the end of
all the constraint, subtyper and initial value information.
An ACCESS_VAR is pushed on the CONTROL_STALK which
reference the newly created variable. The TYYPE_STACK may be
updated to reference any constraints of subtypes. The
DATA_STACK <collection associated with the particular
ACCESS_VAR is wupdated to contain the newly designated
access object, along with an initial value, if any.

EXCEPTIONS: TYPE_ERROR is raised if the ACCESS_VAR is invalid.
OPERAND_CLASS_ERROR is raised if the ACCESS_VAR is not
present., CAPABILITY_ERROR is raised if the ACCESS_VAR is
private. CONSTRAINT_ERROR may be raised if any given
constraints or initial values are not compatible wsith the
parent. STORAGE_ERROR may be raised if there 1is not
sufficient room in the collection for the new declaration.

3.3.2. ANY_CLASS -
In the declaration of an ANY_CLASS variable, the class of the object is

not determined until execution timea Thus» the effect of
VARIABLE_VISIBILITY and VARIABLE_OPTIONS is not bound until execution.

PURPOSE: Declare an ANY_CLASS variable.

FUNCTION: Examine the top of the CONTROL_STACK to determine the kind
of operand on. the topa. Recursively execute the
DECLARE_VARIABLE instruction using this kind as the
VARIABLE_CLASS.

STACKS: State of all stacks is dependent upon the kind of operand

on top of the CONTROL_STALK..

EXCEPTIONS: Kinds of exceptions that may be raised depend upon the kind
of operand on top of the CONTROL_STACK.

3.3.3. ARRAY_CLASS

In the declaration of ARRAY_CLASS wvariables, the only fields of

VARIABLE_OPTIONS that are relevant are DUPLICATE, UNCHECKED, and

WITH_CONSTRAINT. All other options are ignored.

PURPOSE: Declare an ARRAY_CLASS variable.

FUNCTION: If declaration 1is DUPLICATE, then read the top of the
CONTROL_STACK and copy the type information of the variable

located there; allocate space in the DATA_STACK and <copy
the walue from +the original variable. If UNCHECKED or

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS : 50

STACKS:

EXCEPTIONS:

WITH_CONSTRAINT, pop the indexed operand and get the type
information of class; pop the CONTROL_STACK to get the
dimensionality of the objectr and allocate space in the
DATA_STACK for the variable prefaces pop the bounds
information for each index from the CONTROL_STACK and
allocate space in the DATA_STALK for the variable objects
clear or set the initial wvalue of +the wvariable if
necessarye. In all other casess, pop the indexed operand and
get the +type information of the class; trace the type
information of the classs, and allocate space in the
CATA_STACK for the variable object? clear or set the
initial value or the variable if necessary. In all cases,
the final action is to push an ARRAY_VYAR on the
CONTROL_STACK indicating the new variable.

Preconditions: Top of the CONTROL_STACK must contain an
ARRAY_VAR. Stack may next contain dimensionality and bounds
information.

Postconditions: Top of CONTROL_STACK is reduced below
bounds information. an ARRAY_VAR is pushed on top of the
CONTROL_STACK. The TYPE_STACK may be updated to include
bounds information. The DATA_STALKX has space allocated for
the new variable. ‘

ELABORATION_ERROR is raised if the declaration is not
legal. CAPABILITY_ERROR is raised if the class is private.
TYPE_ERROR is raised if the ARRAY_VAR 1is not wvalid.
OPERAND_CLASS_ERROR is raised if +the ARRAY_VAR in not
present. S?ORAGE ERROR is raised if there is no space left
to allocate the variable.

3e3.4. DISCRETE_CLASS

In the

declaration of DISCRETE_CLASS variables, the only field of

VARIABLE_OPTIONS that is relevant is DUPLICATE. All other fields are

ignored.

PURPOSE:

FUNCTION:

STALKS:

Declare a DISCRETE_CLASS variable.

If DUPLICATE, then read the top of the CONTROL_STACLK to
copy the DISCRETE_VAR. In not DUPLICATE, the pop the
DISCRETE_VAR on +top of the CONTROL_STACK, and set the
visibility as appropriate. In both casesr, the final action
is to push a DISCRETE_VAR on top of the CONTROL_STACK with
a null initial value.

Preconditions: Top of L{ONTROL_STACK must contain a
DISCRETE_VAR.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 3.0

RMI INSTRUCTION SET —-- DECLARATIVE INSTRUCTIONS 51

Postconditions: Top of CONTROL_STACK is reduced by one if
not DUPLICATE. A DISCRETE_VAR is pushed on top of the
CONTROL_STACK with a null initial valuea.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the DISCRETE_VAR is not
present. CAPABILITY_ERROR is raised if the DISCRETE_VAR is
private.

3.3.5. ENTRY_CLASS

In the declaration of ENTRY_CLASS variables, all fields of
VARIABLE_DPTIONS are ignored.

PURPOSE: Declare an ENTRY_CLASS wvariable.

FUNCTION: Create a new entry name. Pop the LONTROL_STACK to determine
the number of parameters. Push an ENTRY_VYAR variable on the
CONTROL_STACK denoting the new variable.

STACKS: Preconditions: A wvalue indicating the number of entry
parameters is on top of the CONTROL_STACK.

Postconditions: The CONTROL_STACK 1is reduced by oner, and
then an ENTRY_VAR is pushed on top of the CLONTROL_STACK.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the parameter count is not
present. CAPABILITY_ERROR is raised if the parameter count
is private. ELABORATION_ERROR is raised if the context is
not a task. :

3.3.6. FAMILY_CLASS

In +the declaration of FAMILY_CLASS variables, all fields of
VARIABLE_OPTIONS are ignored.

PURPOSE: Declare a FAMILY_CLASS variable.

FUNCTION: Pop the CONTROL_STALK to get the family index. Trace the
type link to get the bounds of the discrete type. Ureate a
name for the family, and pop the CONTROL_STACK to determine
the number of parameters for the entry. If the family size
is zeror, then simply create an empty

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the family index is not
presenta. CAPABILITY_ERROR is raised if the dindex is
private.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- DECLARATIVE INSTRUCTIONS 52

3.3.7. FLOAT_CLASS

In the declaration of FLOAT_CLASS wvariables, +the only field of
VARIABLE_OPTIONS that is relevant is DUPLICATE.

PURPOSE: Declare a FLOAT_CLASS variable.

FUNCTION: If DUPLICATE, then read the top of the CONTROL_STACK to
copy the FLOAT_VAR. In not DUPLICATE, the pop the FLOAT_VAR
on top of the CONTROL_STACK, and set the visibility as
appropriate. In both casessr the final action is to push a
FLOAT_VAR on top of the CONTROL_STACK with a null initial
value.

STACKS: Preconditions: Top of CONTROL_STACK must contain a
FLOAT_VAR. '

Postconditions: Top of CONTROL_STACK is reduced by one if
not DUPLICATE. A FLOAT_VAR is pushed on top. of the
CONTROL_STACK with a null initial value.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the FLOAT_YAR 1is not
present. CAPABILITY_ERROR is raised if the FLOAT_VAR is
private.

343.8. MATRIX_CLASS

In the declaration of MATRIX_CLASS variables, the only fields of
VARIABLE_OPTIONS that are relevant are DUPLICATE, UNCHECKED» and
WITH_CONSTRAINT. All other options are ignored.

PURPOSE: Declare an MATRIX_CLASS variable.

FUNCTION: If declaration is DUPLICATE, +then read the top of the
CONTROL_STACK and copy the type information of the wariable
located theres; allocate space in the DATA_STACLK and copy
the value from the original variable. If UNCHECKED or
WITH_CONSTRAINT, pop the indexed operand and get the type
information of <class; pop the CONTROL_STACK to get the
dimensionality of the object, and allocate space in the
DATA_STACK for the variable preface; pop the bounds
information for each index from the CONTROL_STALK and
allocate space in the DATA_STACK for the wvariable object’?
clear or set the 1initial wvalue of the variable if
necessary. In a3ll other cases, pop the indexed operand and
get the type information of the <classs; 1trace the type
information of the class, and allocate space in the
DATA_STACK for the variable object; <clear or set the
initial wvalue or the variable if necessary. In 2all casess

RATIONAL MACHINES PROPRIETARY DOCUMENT - VERSION 1.0

RMI INSTRUCTION SET -- DECLARATIVE INSTRUCTIONS k 53

the final action 1is to push an MATRIX_VAR on the
CONTROL_STACK indicating the new variable.

STACKS: Preconditions: Top of the CONTROL_STACK must contain an
MATRIX_VAR. Stack may next contain dimensionality and
bounds information.

Postconditions: Top of CONTROL_STACK is reduced below
bounds information. an MATRIX_VAR is pushed on top of the
CONTROL_STACK. The TYPE_STACK may be wupdated to include
bounds information. The DATA_STACK has space allocated for
the new variable.

EXCEPTIONS: ELABORATION_ERROR is raised if the declaration is not
legal. CAPABILITY_ERROR is raised if the class is private.
TYPE_ERROR is raised if the MATRIX_VAR is not valid.
OPERAND_CLASS_ERROR is raised if +the MATRIX_VAR 1in not
present. STORAGE_ERROR is raised if there is no space left
to allocate the variable.

3.3.9. PACKAGE_CLASS
In the declaration of PACKAGE_CLLASS variables, the only field of

VARIABLE_OPTIONS that is relevant is DISTRIBUTOR.

PURPOSE: Declare a PACKAGE_CLASS variable.

FUNCTION: Pop a PACKAGE_VAR off the top of the CONTROL_STACK. Set the
appropriate wvisibility. Push a PALKAGE_VAR back on the
CONTROL_STACKX. Get a module namer and send the message
DECLARE_MODULE to the module.

STALKS: Preconditions: Top of CONTROL_STALK contains a PACKAGE_VAR.
Postconditions: CONTROL_STACK is reduced by one. A

PACKAGE_VAR is pushed on top of the stack. Other stack
changes occur as a result of normal message passinge.

EXCEPTIONS: OPERAND_CLASS_ERRDR is raised if the PALKAGE_VAR is not
present. CAPABILITY_ERROR is raised if the PACKAGE_VAR is
private. ELABORATION_ERROR is raised if the module

information is not yet elaborated. STORAGE_ERROR is raised
if there is no space to allocate the variable.

3.3.10. RECORD_CLASS

In the declaration of RECORD_CLASS wvariabless, the only field of
VARIABLE_OPTIONS that is relevant is DUPLICATE.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS 54

PURPODSE: Declare a RECORD_CLASS variable.

FUNCTION: If DUPLICATE, then read the top of the CONTROL_STALK and
trace the type information of the RECORD_VAR; copy the type
information of the type, and create 2 duplicate variable by
allocating space on the DATA_STACK, and copying the data
from the original type. If not DUPLICATE, then pop 2
"RECORD_VAR off the CONTROL_STACK; get the type information
and set the wvisibility as appropriate; allocate space on
the DATA_STACK and clear the structure if necessary. Push
a RECORD_VAR on the CONTROL_STACLK.

STACKS: Preconditions: Top of CONTROL_STACK must contain a
RECORD_VAR.

Postconditions: Top of CONTROL_STACK is reduced by oner and
then a RECORD_VAR is pushed on top of the STACK. DATA_STACK
now contains space for the variable.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if reference item for the new
variable is not null or if the RECORD_VAR 1is not found.

ELABORATION_ERROR is raised if the declaration is not
legala.

3e3«11. SEGMENT_LLASS
In +the declaration of SEGMENT_CLASS wariables., all values of
VARIABLE_OPTIONS are ignored.
PURPOSE: Declare a SEGMENT_CLASS variable.
FUNCTION: Pop a SEGMENT_VAR off the top of the CONTROL_STACLK. Set the
visibility of +the variable, and push the SEGMENT_VAR back
on the CONTROL_STACLK.

STACKS: Preconditions: Top of CONTROL_STALK contains a SEGMENT_VAR.

Postconditions: Top of CONTROL_STACK is reduced by one»
then 2 Segment_VAR is pushed on the stack.

EXCEPTIONS: OPERAND_CLASS_ERROR 1is raised if the SEGMENT_VAR is not
found. CAPABILITY_ERROR is raised if the SEGMENY_VAR is
private.

3.3.12. SELECT_CLASS

In the declaration of SELECT_CLASS variabless no field of
VARIABLE_OPTIONS is relevant, and hence they are ignored.

RATIONAL MACHINES PROPRIETARY DOCUMENT ; VERSION 1.0

RMI INSTRUCTION SET —— DECLARATIVE INSTRUCTIONS 55

PURPOSE: Declare a SELECT_CLASS variable.

FUNCTION: Pop a value off the CONTROL_STACX indicating the number of
accept statement. Pop an other value indicating the number
of delay statements. Allocate space in the DATA_STACK for
the SELECT_CLASS variable. For each accept statement, build
the paths to the corresponding entry in the DATA_STACK.
This process involves reading down the CONTROL_STACK for a
SUBPROGRAM_VAR the refers to an accept clause. Pop the
CONTROL_STACK past all the accept information. For each
delay statements, build the paths to the corresponding delay
entry in the DATA_STACLK. This process inwvolves reading doun
the CONTROL_STACK for a SUBPROGRAM_VAR that refers to a
delay clause. Pop the CONTROL_STACK past all the delay
information. Push a SELECT_VAR on the CONTROL_STACK.

STACKS: Preconditions: Top of CONTROL_STALK contains a value
indicating the number of accept statements. TYop - 1
contains a value indicating the number of delay statements.
A SUBPROGRAM_VAR follows for each accept and delay
statement.

Pestconditions: CONTROL_STACKX is popped to below all
SUBPROGRAM_VAR information. a SELECT_VAR is pushed on top
of the CONTROL_STACK.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if either the accept or delay
count are not valid values, or if any SUBPROGRAM_VAR is not
founda. CAPABILITY_ERROR is raised if either the accept or
delay count are private. STORAGE_ERROR is raised if there
is no space to allocate in the DATA_STACK.

33413+ TASK_CLASS
In the declaration of TASK_CLASS variables, the only fields of

VARIABLE_OPTIONS that are relevant are DATA_TASK. HEAP_TASK~» and
DISTRIBUTOR.

PURPOSE: Declare a2 TASK_CLASS variable. V

FUNCTION: If 1is DATA_TASK or HEAP_TASKs then pop a TASK_REF off the
CONTROL_STACK, otherwises pop a TASK_VAR off the
CONTROL_STACK. Create a module name, and push a TASK_REF
or TASK_VAR back on the CONTROL_STACK. If is DATA_TASK

then send the message DECLARE_MODULE to the module
references If 1is HELP_TASK then send the message
ALLOCATE_MODULE to the module reference. Otherwise, send
the message DECLARE_MODULE to the module.

STALKS: Preconditions: Top of CONTROL_STACK contains a TASK_REF or
TASK_VAR. ;

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —- DECLARATIVE INSTRUCTIONS 56

Postconditions: Top of CONTROL_STACK is reduced by one. A
TASK_REF or TASK_VAR is pushed on top of the CONYROL_STACK.
Other stack changes occur as a result of normal message
passages

EXCEPTIONS: ELABORATION_ERROR is raised 1if the reference task is not
elaborated. OPERAND_CLASS_ERROR is raised if the TASK_VAR
or TASK_REF is not present, :

3.3.714. VARIANT_RECORD_CLASS

In the declaration of VARIANTY_RECORD_CLASS variables, the only fields
of VARIABLE_OPTIONS that are relevant are DUPLICATE and WITH_CONSTRAINT.

PURPOSE: Declare a VARIANT_RECORD_CLASS variable.

FUNCTION: If DUPLICATE then read the CONTROL_STACK and trace the type
part of the VARIANT_RECORD_VARZ? allccate space on the
DATA_STACK and copy information from the first variable. In
not DUPLICATE, then pop a VARIANTY_RECORD_VAR off the top of
the CONTROL_STACK; trace the class and type information; if
WITH_CONSTRAINT then pop the constraint information for
each discriminant and allocate space on the DATA_STACK? in
net WITH_CONSTRAINT then allocate the wvariable as iss
initialize the variable, which may require values to be
popped from the CONTROL_STALK. As the final action in any
caser push a VARIANT_RECORD_VAR on the CONTROL_STACK.

STACKS: Preconditions: Top of CONTROL_STACLK must contain 2
VARIANT_RECORD_VAR. Constraint information may follows as
well 2s initialization information.

Postconditions: CONTROL_STACK is popped below all
constraint and initialization information. A
VARIANT _RECORD_VAR is pushed on top of +the CONTROL_STACK.
Space is 2allocated on the DATA_STACK. '

EXCEPTIONS: OPERAND_CLASS_ERROR 1is raised if the VARIANT_RECORD_VAR is
not found, or if any constraint or initialization
information 1is not present., CONSTRAINT_ERROR is raised if
any constraints do not satisfy a discriminant type
STORAGE_ERROR is raised if there is insufficient room in
the DATA_STACK.

3.3.15« VECTOR_CLASS
In the declaration of VECTOR_LLASS variabless the only fields of

VARIABLE_OPTIONS that are relevant 2re DUPLICATE, UNCHECKED, and
WITH_CONSTRAINT. All other options are ignored.

RATIONAL MACHINES PROPRIETARY DOCUMENT ; VERSION 1.0

RMI INSTRULTION SET —-— DECLARATIVE INSTRUCTIONS 57

PURPOSE: Declare an VECTOR_CLASS variable.

FUNCTION: If declaration is DUPLICATE, then read +the top of the
CONTROL_STACK and copy the type information of the variable
located there; allocate space in the DATA_STACK and copy
the value from the original wvariable. If UNCHECKED or
WITH_CONSTRAINT, pop the indexed operand and get the type
information of <classs; pop the LONTROL_STACK to get the
dimensionality of the objectsr and allocate space in the
DATA_STACK for the variable preface; pop the bounds
information for each index . from +the CONTROL_STACK and
allocate space in the DATA_STACK for the variable object?
clear or set the initial value of the variable if
necessarys. 1n all other casess pop the indexed operand and
get the type information of the <class; trace the type
information of the <class, and allocate space in the
DATA_STACK for the variable object; clear or set the
initial wvalue or the variable if necessary. In 2all casess.
the final action 1is to push an VECTOR_VAR on the
CONTRDOL_STACK indicating the new variable. ‘

STACKS: Preconditions: Top of +the CONTROL_STACK must contain an

VECTOR_VAR. Stack may next contain dimensionality and
bounds information.
Postconditions: Top of CONTROL_STACK is reduced below
bounds information. an VECTOR_VAR is pushed on top of the
CONTROL_STACK. The TYPE_STACK may be updated to include
bounds information. The DATA_STALK has space allocated for
the new variable., ‘

EXCEPTIONS: ELABORATION_ERROR is raised if the declaration 1is not
legal. CAPABILITY_ERROR is raised if the class is private.
TYPE_ERROR is raised if the VECTOR_VAR 1is not wvalid.
OPERAND_CLASS_ERROR is raised 4if the VECTOR_VAR in not
present. STORAGE_ERROR is raised if there is no space left
to allocate the variable.

3aho DECLARE_SUBPROGRAM

The DECLARE_SUBPROGRAM instruction creates a subprogram object.

Formally, DECLARE_SUBPROGRAM takes the form:

type DECLARE_SUBPROGRAM is

record
SUBPROGRAM_KIND : SUBPROGRAM_SORT?
SUBPROGRAM_STATE T ELABORATION_STATES
SUBPROGRAM_VISIBILITY : VISIBILITY,.

end record;

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— DECLARATIVE INSTRUCTIONS : 58

A value of SUBPROGRAM_SORT defines the use for the target subprograms and
takes the form:

type SUBPROGRAM_SORT is
{FOR_ACCEPT, FOR_CALL.,
FOR_INTERFACE, FOR_OUTER_CALL.,
FOR_UTILITY),

A value of ELABORATION_STATE specifies the level to which the subprogram is
to be elaborated, and is defined as:

type ELABORATION_STATE is (ACTIVE, INACTIVE. UNSPECIFIED);

Finally, as with DECLARE_VISIBILITY, a wvalue of VISIBILITY defines the
visibility of +the declared subprogram. We have defined VISIBILITY in
section 3.3.

PURPOSE: Declare a subprogram.

FUNCTION: , Create a SUBPROGRAM_YAR and set the visibility, sort, and
elaboration state as appropriate. Push the SUBPROGRAM_VAR
on the CONTROL_STACK.

STACKS: Postconditionss A SUBPROGRAM_VAR is pushed on: top of the
CONTROL_STACK.

EXCEPTIONS: ELABORATION_ERROR is raised if the declaration is not legal
, in the given context.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS 59

Chapter &
IMPERATIVE INSTRUCTIONS

An imperative instruction invokes an operation upon an object of a
given class. Such instructions may be either <classed {(the object is
referenced explicitly) or unclassed (the object is referenced implicitly).
The semantics of these instructions form the key to defining and enforcing
data abstraction and information hiding at the 1lowest levels of the
architecture. As with strongly typed languages, theé architecture permits
only 3 well-defined set of operations for each class of objectsa.

Imperative instructions include the following opcodes:

* ACTION == perform a system level operation
* EXECUTE -= perform an operation upon an object of a given class

In the following sections, we treat each opcode in detail.

4.17. ACTION

The ACTION instruction performs a system level operation. AUTION is an
unclassed instructions, since the target object is referenced implicitly (in
generals, the referent is the subject module of the current thread of
control). Formally, ACTION takes the form: :

type ACTION_INSTRUCTION is
record
TO_PERFORM : UNCLASSED_ACTIONS
end record,

The operation TO_PERFORM is of the type UNCLASSED_ACTION, which we further
define as:

type UNCLASSED_ACTION is

ACCEPT_ACTIVATION., ACTIVATE_TASKS, ACTIVATE_SUBPROGRAM,
ALTER_BREAK_MASK, BREAK_OPTIONAL, BREAK_UNCONDITIONAL,
CALL_IMPORT, CALL_REFERENCE, DELETE_ITEM,
DELETE_SUBPROGRAM. ESTABLISH_FRAME, EXIT_BREAK,

IDLE, ILLEGAL, INITIATE_DELAY,
INTRODUCE_IMPORT, MAKE_NULL _UTILITY, MAKE_SELF,
MARK_AUXILIARY., MARK_DATA, MARK _TYPE,
NAME_MODULE, NAME_PARTNER, OVERWRITE_IMPORT,
POP_AUXILIARY, POP_CONTROL, POP_DATA,

POP_TYPE, PROPAGATE_ABORT, QUERY_BREAK_ADDRESS,
QUERY_BREAK_CAUSE, QUERY_BREAK_MASK., QUERY_FRAME,

QUERY_RESODURCE_LIMITS, QUERY_RESOURCE_STATE, READ_IMPORT,

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SETY —-- IMPERATIVE INSTRUCTIONS 60

RECOVER_RESOURCES., REFERENCE_IMPORT, REMOVE_IMPORT,
RETURN_RESOURCES, SET_BREAK_MASK., SET_INTERFACE_SCOPE,
SET_INTERFACE_SUBPROG, SET_NULL_ACCESS., SET_RESOURCE_LIMITS,
SET_VISIBILITY, SIGNAL_ACTIVATED, SIGNAL_COMPLETION,
SWAP_CONTROL., WRITE_IMPORT);

In the following sections, we provide a deéetailed description of each
UNCLASSED_ACTION, categorized as:

ACTIVATION_ACTION
Provides protocol for the activation of a module.

CREATION_ALTION Provides facilities for the creation of new program units.

IMPORT_ACTION Provides facilities for manipulating the IMPORT_STACK.

INTERFACE_ACTION ;
Provides an interface between modules and their external
environment.

NULL_ACTION. Defines null and illegal instructions.

REFERENCE_ACTION
Provides facilities for the manipulation of remote
subprograms.

RESOURCE_ACTION Provides facilities for allocating and recovering

resourcese.
STACK_ACTION Provides facilities for manipulating various stacks.
TASK_ACTION Provides facilities for putting a module to sleep or

aborting children tasks.

4<1e1. ACTIVATION_ACTION

These operations provide the protocol for the activation of a module
{that 1is, a task or a package). Since the Rational Machines architecture
treats each subprogram as subordinate to another package or tasks
subprogram activation 1is achieved with a different set of instructionss,
namely the CALL instruction for activating 1locally declared subprogramss
and the ALTION REFERENCE_ACTION for activating visible but remotely
declared subprograms.

ACTIVATION_ACTIONs include:

* ACCEPT_ACTIVATION
* ACTIVATE_TASKS

RATIONAL MACHINES PROPRIETAR? DOCUMENT VERSION 1.0

RMI INSTRUCTION

SET -- IMPERATIVE INSTRUCTIONS 61

* SIGNAL_ACTIVATED
* SIGNAL_COMPLETION

ACCERI_ACTIVATION

PURPOSE

Signal that elaboration of the wvisible part of a module is
complete; module is now ready to accept activation from the
parent.

FUNCTION Change module current mode to ACTIVATING, 2and send the
message NOTIFY_DECLARED to the parent module.
STACKS No change except due to message passagea.
EXCEPTIONS None.
ACTIVATIE_TASKS
PURPOSE: Signal all children tasks that they may begin execution.
FUNCTION: Send the message ACTIVATE_MODULE to each <child tasks
, execution of the current module may proceed once all
children have been successfully activated.
STACKS: No change except'due t0o message passage.
EXCEPTIONS: TASKING_ERROR may be raised if a child cannot be activated.
SIGNAL _ACTIYAIED
PURPOSE: Signal the <creator of a module that elaboration of the
module body is complete. For a package module, this means
that the package body has been executed; in: the case of a
task module, this means that the module is activated and is
running concurrently with the parent.
FUNCTION: Change module current mode to EXECUTING, and send the
message NOTIFY_ACTIVATED to the declaring module.
STACKS: No change except due to message pPass5agPl.
EXCEPTIONS: None.
SIGNAL _COMPLEIION

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS | 62

PURPOSE: Signal the <creator of a module that processing of the
module is complete.

FUNCTION: If module is a tasksr, mark the current mode as TERMINATING
and wait for all dependent children to terminate.

Additionally, purge any entry queues and send the message
END_RENDEIYOUS ¢to any waiting callers. Once all children
are terminated or are ready to terminate, send the message
NOTIFY_TERMINATION to the declaring module. When
deallocation of 1the dependent <children and the module
itself Dbegins,s, the module current mode is marked as
COMPLETYED.

If module is a packager wait for a2ll dependent children to
terminate. Once all children are terminated, send the
message NOTIFY_TERMINABLE to the declaring module. Start
deallocation of +the dependent <children and the module
itself, and mark the module current mode as TERMINATED.

STACKS: Postconditions: QUEUE_STACK 1is purged. No other change
except due to message pPassSage.

EXCEPTIONS: If module is a task, and callers are waiting in entry

queuess the message END_RENDEZVOUS has the side effect of raising
TASKING_ERROR in any calling tasks.

4.1.2. CREATION_ACTION

These operations provide a facility for the creation of new
subprogramss, packagesr or tasks within the current context.

CREATION_ACTIONs include:

* MAKE_NULL_UTILITY
* MAKE_SELF
* NAME_MODULE
* NAME_PARTNER
MAKE_NULL_UTILIIX
PURPOSE: Create a null subprogram variable.
FUNCTION: Push a null SUBPROGRAM_VAR control word on the
CONTROL_STACK of the current module.
STACKS: Postconditions: SUBPROGRAM_VAR word pushed on top of
CONTROL _STACK.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

EXCEPTIONS:
MAKE_SELE

PURPOSE:

FUNCTION:

STACKS:
EXCEPTIONS:

NAME_MOQULE
PURPOSE:
FUNCTION:
STACKS:

EXCEPTIONS:

NAME_PARINER

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

SET -- IMPERATIVE INSTRUCTIONS | 63

Nonea.

Create a null program module of the same kind as the
current module. '

If the current module is a task, push a TASK_VAR on the
CONTROL_STACK., else push a PACKAGE_VAR on the
CONTROL _STACK.

Postconditions: Either a TASK_VAR or a PACKAGE_VAR is
pushed on top of the CONTROL_STACK.

None.

Get the name of the module currently on top of the
CONTROL_STACK.

Duplicate the name of the current module and push is as 2
DISCRETE_VAR on the CONTROL_STALK.

Postconditions: A DISCRETE_VAR 1is pushed on top of the
CONTROL _STACK.

None.

Get the name of the module that is in rendezwous with the
current module.

Trace through the CONTROL_STACK to the reference of the
module that is currently in 2 rendezvous with the current
moduler and push the name of that module as a DISCRETE_VAR
on the CONTROL_STACX. If no rendezvous is in progresss,
push the representation for 3 null module.

Postconditions: A DISCRETE_VAR is pushed on top of the
CONTROL_STACK.

None.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- IMPERATIVE INSTRUCTIONS ' 64

‘-1 - 3a 1MPQRT_A£TION
These operations provide facilities for manipulating the IMPORT_STACK.

IMPORT_ACTIONs include:

* CALL_IMPORT

« INTRODUCE_IMPORT
%« OVERWRITE_IMPORT
* READ_IMPORT
REFERENCE_IMPORT
* REMOVE_IMPORT

* WRITE_IMPORT

*

CALL_IMPORY
PURPOSE: Currently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplemented instruction.
EXCEPTIONS: Currently unimplemented instruction.
INIRODUCE_IMPORI
PURPOSE: Add an import item onto a3 given module.
FUNCTION: Pop the CONTROL_STACK 1to determine the target of import.,

and follow the type path to access its current import
information on the <corresponding TYPE_STACK.. Pop the
CONTROL_STACK again to determine the entity that is to be
imported, and add a reference to that entity in the target
module®s IMPORY_STACK, which is extended if necessary. A
path 1is added to the target module”s TYPE_STACK leading
from the target modules” import information and referring
to the imported entity.

STACKS: Preconditions: Top of CONTROL_STACK contains a’HOOULE_VAR.
Top = 1 contains an IMPORT_VAR.

Postconditions: Top of CONTROL_STACK is reduced below the

IMPORT_VAR. The new IMPORT_VAR is pushed on top of the
IMPORT_STACK.

EXCEPTIONS: CAPABILITY_ERROR is raised if the target module is private
or if the module is not statically scoped.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

SET == IMPERATIVE INSTRUCTIONS ‘ 65

INSTRUCTION_ERROR is raised if the target module is null.
OPERAND_CLASS_ERROR is raised if the 1IMPORT_VAR is not
found. :

QVERWRIIE _IMPORI

PURPOSE: Write over an import item in a given module.

FUNCTION: Pop the CONTROL_STACK to determine the target module of
import, and follow the type path to access its current
import information on the corresponding TYPE_STACK. Pop the
CONTROL_STALK again to determine the site of the existing
import that is to be overwritten. Pop the CONYROL_STACK to
obtain the new IMPORT_VAR, and write the information at the
given site.

STACKS: Preconditions: Top of CONTROL_STACK contains a MODULE_VAR.
Top ~ 1 contains a VALUE_VAR indicating the IMPORT_STALK
site. Top - 2 contains an IMPORT_VAR.

Postconditions: Top of CONTROL_STACK is reduced below the
IMPORT_VAR. The IMPORT_STALK contains a new entry at the
given site.

EXCEPTIONS: CAPABILITY_ERROR raised if the target module is private or
if it is not statically nested. INSTRUCTION_ERROR is raised
if the target module is null. OPERAND_CLASS_ERROR is raised
if the IMPORT_STACK does not contain a delete key at the
site of the overuwrite or if the new import is not an
IMPORY_VAR. CUONSTRAINT_ERROR is raised if the intended site
is not on the target IMPORT_STACK. ‘

READ_IMPORI

PURPOSE: Currently unimplemented instruction.

FUNCTION: Currently unimplemented instruction.

STACKS: Currently unimplemented instruction.

EXCEPTIONS: Currently unimplemented instruction.

REEERENCE_IMPORI
PURPOSE: Currently unimplemented instruction.

RATIONAL MACHINES PROPRIETARY DOCUMENT ; » VERSION 1.0

RMI INSTRUCTION SET -— IMPERATIVE INSTRUCTIONS 66

FUNCTION: Currently unimplemented instruction,

STACKS: Currently unimplemented instruction.

EXCEPTIONS: Currently unimplemented instruction.
REMOVE_IMPQORI

PURPOSE\Remove an import item to a given module.

FUNCTION: Pop the CONTROL_STALK to determine the target module of
import, and follow the type path to access its current
import information on the corresponding TYPE_STACK. Pop the
CONTROL_STACK again to determine the site of the existing
import that is to be removed. Pop the CONTROL_STACK to
obtain the new DELETION_KEY, and uwrite the deletion
information at the given site.

STACKS: Preconditions: Top of CONTROL_STACK centains a MOBUiE_V&R.-
Jop = 1 contains a VALUE_VAR indicating the IMPORT_STACK
site. Top - 2 contains a DELETION_KEY.

Postconditions: Top of CONTROL_STACK is reduced below the
DELETION_XEY. The IMPORT_STACK contains a deletion mark at
the given site.

EXCEPTIONS: CAPABILITY_ERRDOR raised if the target module is private or
if 1t is not statically nested. INSTRUCTION_ERROR is raised
if the target module is null. OPERAND_LLASS_ERROR is raised
if the IMPORT_STACK does not contain a delete key at the
site of the deletion. CONSTRAINT_ERROR is raised if the
intended site is not on the target IMPORT_STACK.

WRITE_IMPORI
PURPOQSE: Currently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplemented instruction.
EXCEPTIONS: Currently unimplemented instruction.

belaba INTERFACE_ACTION

These operations provide an interface between modules and their external
environments. INTERFACE_ACTIONs are primarily used in
support of the programming environment debugging
facilities..

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS 67

INTERFACE_ACTIONs include:

EXIT_BREAK

QUERY_FRAME

* % % % A % X R B 2®

ALIER_BREAK_MASK

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BREAK_QRIIONAL
PURPOSE:

FUNCTION:

ALTER_BREAK _
BREAK_OPTIONAL
BREAK_UNCONDITIONAL
ESTABLISH_FRAME

QUERY_BREAK _
QUERY_BREAK_
QUERY_BREAK _

MASK

ADDRESS
CAUSE
MASK

SET_BREAK_MASK
SET_INTERFACE_SCOPE
SET_INTERFACE_SUBPROGRAM

Change the value of the breakpoint mask.

Pop a VYARIABLE_REF off the CONTROL_STACK
and trace the site of the INTERFACE_KEY.
Pop the new break mask value off the
CONTROL_STACK and write the wvalue to the
key site of the current module.

Preconditions: Top of CONTROL_STACK
contains a VARIABLE_REF. Top = 1 contains a
breakpoint value.

Postconditions: Top of CONTROL_STACK
reduced below the breakpoint value. A new
breakpoint value is written at the key site
on the TONTROL_STACK of the current module.

OPERAND_CLASS_ERROR is raised if the
VARIABLE_REF is not founde
CAPABILITY_ERROR is raised if the site of
the INTERFACE_KEY is not in the current
module. INSTRUCTION_ERROR is raised if the

~breakpoint mask is not a legitimate value.

Lause a breakpoint exception if breakpoints
are currently set.

Read the enabled status of the breakpoints

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —- IMPERATIVE INSTRUCTIONS ‘ 68

STACXKXS:

EXCEPTIONS:

BREAK_UNCONDITIONAL

PURPOSE:
FUNCTION:\Raise
STACKS:

EXCEPTIONS:

ESTABLISH_ERAME

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

for the current module. If breakpoints are
sets raise the exception BREAKPOINT_ACTION.

None.

BREAKPOINT_ACTION raised if breakpoints are
sete.

Cause a breakpoint action.
the exception BREAXPOINT_ACTION.
None.

BREAKPOINT_ACTION is raised.

Create a new frame on the CONTROL_STACK.

Pop 2 VARIABLE_REF off the CONTROL_STACK
and trace the type information to the site
of +the INTERFACE_KEY. Pop a value off the
CONTROL_STACK indicating the depth of
search for the parent frame. Trace down the
depth of the search for the site of the
activation record of the frame. If +the
frame existss note that if it is statically:
scoped, it is accessible and if it is not
statically scoped, it is inaccessible. 1f
the frame is accessibles create a
SUBPROGRAM_VYAR linked to the parent outer
frame, indicating the visibilitys, start,
and lexical level of the new subprogram.
Push the SUBPROGRAM_VAR as a nonlocal
frame.

Preconditions: Top of CONTROL_STALK
contains a VARIABLE_REF. Top - 1 contains a
value indicating the depth of the parent
frame.

Postconditions: Top of CONTROL_STACK is
reduced below the depth value.

OPERAND_CLASS_ERROR is raised if the

RATIONAL MACHINES PROPRIETARY DOCUMENT - VERSION 1.0

RMI INSTRUCTION SET —-—- IMPERATIVE INSTRUCTIONS 69

VARIABLE_REF is not found, if the
INTERFACE_KEY is not found, or if the depth
value is not found. CAPABILITY_ERROR is
raised if the site of the INTERFACE_KEY is
not in the current module. :

EXIT_RREAK

PURPDSE: Return from a breakpoint action.

FUNCTION: Determine the location of the INTERFACE_KEY
on the inner frame. Read the INTERFACE_KEY
at that point and restore the breakpoint
maska. Pop the frame on top of the
CONTROL_STACK.

STACKS: Postcondition: The frame on tep of the
CONTROL _STACX is popped.

EXCEPTIONS: INSTRUCTION_ERROR raised if the location of
the key 1is not in the CONTROL_STACK, if the
INTERFACE_KEY 4is not founds, or if the top
frame cannot be popped.

QUEBY_BREAK_ADDRESS

PURPOSE: Return the address of the breakpeint
handler.
FUNCTION: Pop a VARIABLE_REF off the top of the

CONTROL_STACK and trace it to the site of
the INTERFACE_KEY. Push the address
indicated in the INTERFACE_KEY in a
DISCRETE_VAR on the CONTROL_STACK.

STACKS: Preconditions: Top of CONTROL_STACK
contains a VARIABLE_VAR.

Postconditions: Pop the CONTROL_STALK by

oner and then push an address value as a

DISCRETE_VAR on the CONTROL_STACK.
EXCEPTIONS: " DPERAND_CLASS_ERROR is raised if the

VARIABLE_REF is not found or 1if the
INTERFALE_XEY is not found.

QUERY_BREAK_LAUSE

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET ~— IMPERATIVE INSTRUCTIONS 70

QUERY_BREAK_MASK

QUERY_ERAME PURP

FUNCTION:

PURPOSE: Return the cause of the breakpoint action.

FUNCTION: Pop @a VARIABLE_REF off the top of the
CONTROL_STACKX and trace it to the site of
the INTERFACE_KEY. Push the break cause
indicated in. the INTERFACE_XKEY in a
DISCRETE_VAR on the CONTROL_STACK.

STACKS: Preconditions: Top of CONTROL _STACK
contains a VARIABLE_VAR.

Postconditions: Pop the CONTROL_STACK by
oners and then push a DISCRETE_VAR on the
CONTROL _STACK.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the
VARIABLE_REF is not found or 1if the
INTERFACE_KEY is not found.

PURPOSE: Return the value of the breakpoint mask.

FUNCTION: Pop . 2 VARIABLE_REF off <the top of the
CONTROL_STALK and trace it to the site of
the INTERFACE_KEY. Push the break mask
indicated in the INTERFACE_KEY in a
DISCRETE_VAR on the CONTROL_STALK.

STACKS: Preconditions: Top of CONTROL_STACLK
contains a VARIABLE_VAR.

Postconditions: Pop the CONTROL_STACLK by
one,s and then push a DISCRETE_VAR on the
CONTROL _STACK.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the
VARIABLE_REF is not found or if the
INTERFACE_XEY is not found.

DSE:
Determine the status of the target frame.

Pop a VARIABLE_REF off the CONTROL_STACK and trace the type
information to the site of the INTERFACE_KEY. Pop a2 walue
off the CONTROL_STACK indicating the depth of search for
the parent frame. Trace down the depth of the search for
the site of the activation record of the frame. If the

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —=- IMPERATIVE INSTRUCTIODNS 71

STACKS:

EXCEPTIONS:

frame exists, note that if it is statically scopeds, it is
accessible and if it is not statically scoped, it is
inaccessible. If the parent frame is accessidble, create a
DISCRETE_VAR indicating a link to the parent as the outer
frame. Push the DISCRETE_VAR on the CONTROL_STACK; create
another DISCRETE_¥AR indicating a return address and push
the wvalue on the CONTROL_STACK. In any case, if the parent
frame exists of not, create a DISCRETE_VAR indicating the
status of the parent, and push the value on the
CONTROL _STACK.

Preconditions: Top of CONTROL_STACK - contains a
VARIABLE_REF. Top - 1 contains a wvalue indicating the depth
of the parent frame.

Postconditions: Top of CONTROL_STACK is reduced below the
depth value. If the parent exists, a DISCRETE_VAR with
frame 1links, followed by a DISCRETE_VAR with a return
address, are pushed on the CONTROL_STACK. A DISCRETE_VAR is
pushed on the CONTROL_STACLKX in all casess, indicating the
status of the parent frame.

OPERAND_CLASS_ERROR 1is raised if the VARIABLE_REF is not
founds if the INTERFACE_XEY is not founds, or if the depth
v2lue is not found. CAPABILITY_ERROR is raised if the site
of the INTERFACE_KEY is not in the current module.

SEI_3REAK_MAJK

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Set the breakpoint maska.

Pop @ MODULE_VAR off the CONTROL_STACK and trace the module
path to find the name of the particular module instance.
Pop a DISCRETE_VAR off the CONTROL_STACK as the new
breakpoint. wmask. Write the debugging information and the
control state to the CONTROL_STACK.

Preconditions: Top of CONTROL_STACK contains a MODULE_VAR.
Top = 2 contains a DISCRETE_VAR.

Postconditions: Top of CONTROL_STACK is reduced below the
DISCRETE_VAR. Debugging information and control state is
written into the CONTROL_STACK.

CAPABILITY_ERROR is raised if the MODULE_VAR is private or
if a particular instance is not found. OPERAND_CLASS_ERROR
is raised if the MODULE_VAR is not found.

RATIONAL MACHINES PROPRIETARY DOCUMENT ‘ VERSION 1.0

RMI INSTRUCTION SET -- IMPERATIVE INSTRUCTIONS : 72

2EI_INICREACE_SCOPE

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Establish the scope of the debugging information.

Pop a MODULE_VAR off the CONTROL_STACK and trace the module
path to find the name of the particular module instance.
Pop another MODULE_VAR off the CONTROL_STACK indicating the
scope of the debugging information. Write the name of the
second module to the debugging information of the first
module in its CONTROL_STACK.

Preconditions: Top of CONTROL_STACK contains a2 MODULE_VAR.
Top = 1 contains a3 MODULE_VAR. : :

Postconditions: Top of CONTROL_STACK is below the second
MODULE_VAR. Debugging information is written into the
CONTROL _STACK. (

CAPABILITY_ERROR is raised if either MODULE_VAR is private
or if a particular instance of the first module is not
found. OPERAND_CLASS_ERROR 1is raised either MODULE_VAR is
not found.

2EI_INITEREACE SUBPROGRAM

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

Establish the name of the,breakpoint interface subprogram.

Pop a MODULE_VAR off the CONTROL_STALK and trace the module
path to find the name of the particular module instance.
Pop a SUBPROGRAM_VAR off the CONTROL_STACK as the name of
the interface subprogram. Write the name of the interface
subprogram to the CONTROL_STACK of the target module.

Preconditions: Top of CONTROL_STACK contains a MODULE_VAR.
Top = 1 contains a SUBPROGRAM_VAR.

Postconditions: Yop of CONTROL_STACK is reduced below the
SUBPROGRAM_VAR. The name of the interface subprogram is
written to the CONTROL_STACK.

CAPABILITY_ERROR is raised if the MODULE_VAR is private or
if a particular instance is not found. OPERAND_CLASS_ERROR
is raised if the MODULE_VAR is not found. INSTRUCTION_ERROR
is raised if the target subprogram is not designated as an
interface subprograms or if it is not defined at lexical
level 2.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— IMPERATIVE INSTRUCTIONS 73

42145« NULL_ACTION

These operations provide a definition for null and illegal
instructions.

NULL _ACTIONs include:

* IDLE
* ILLEGAL
IDLE
PURPOSE: No operation.
FUNCTION: No operation.
STACKS: None.
EXCEPTIONS: None.
ILLEGAL ‘
PURPOSE: Definition of an illegal instruction.
FUNCTION: Unconditionally raise the exception INSTRUCTION_ERROR..
STACKS: | None.
EXCEPTIONS: INSTRUCTION_ERROR raised.

4e1.6. REFERENCE_ACTION

These operations provide facilities for manipulating remotely declared
subprograms and variables.

REFERENCE_ACTIONS include:

ACTIVATE_SUBPROGRAM
CALL_REFERENCE
DELETE_ITEM
DELETE_SUBPROGRAM
SET_NULL_ACCESS
SET_VISIBILITY

* % % ¥ % %

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =- IMPERATIVE INSTRUCTIONS ' 74

ACTIVATE_SUBPROGRAM

PURPOSE:

FUNCTION:

STALKS:

EXCEPTIONS:

Activate a remotely declared subprogranm.

Pop a SUBPROGRAM_REF off the CONTROL_STACK. Trace the
reference to the SUBPROGRAM_VAR on the CONTROL_STACK. If
the SUBPROGRAM_VAR is defined for a calls, set the
subprogram active and write the reference to the
SUBPROGRAM_VAR.

Preconditions: Top of CONTROL _STACK contains a
SUBPROGRAM_REF.

Postconditions: Top of CONTROL_STALK is reduced below the
SUBPROGRAM_REF. The reference is wuritten to the
SUBPROGRAM_VAR.

OPERAND_CLASS_ERROR is raised if the SUBPROGRAM_REF is not
found. INSTRUCTION_ERROR is raised if the SUBPROGRAM_VAR
is not defined for a call. ‘

CALL_REEERENCE

PURPOSE: Call a remotely declared subprogram.

FUNCTION:

STACKS:

EXCEPTIONS:

DELEIE_IIEM

PURPODSE:

Pop a SUBPROGRAM_REF off the CONTROL_STACK. If the
SUBPROGRAM_VAR is defined for a3 call, trace the reference
to the SUBPROGRAM_VAR on the CONTROL_STACK. If the target
subprogram is active, create 2 new nonlocal frame for the
subprogram.

Preconditions: Jop of CONTROL_STACK contains 3
SUBPROGRAM_REF, '

Postconditions: Top of £0NTRGL-ST§CK is reduced below the
SUBPROGRAM_REF. A new frame is created for the subprogram
call.

OPERAND_CLASS_ERROR 1is raised if the SUBPROGRAM_REF is not
found. INSTRUCTION_ERROR is raised if the SUBPROGRAM_VAR
is not defined for a call. ELABORATION_ERROR is raised if
the target subprogram is not active. .

Delete a referenced variable.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

SET == IMPERATIVE INSTRUCTIONS ’ 75

Pop a VARIABLE_REF of f the CONTROL_STACX. Pop a

FUNCTION:

DELETION_KEY off the CONTROL_STACK. Trace the reference to
the item to be deleted. Set the item as locked, and write a
deletion value to the variable site.

STACKS: Preconditions: Top of the CONTROL_STACK contains a

, VARIABLE_REF. Top — 1 contains a DELETION_KEY.
Postconditions: Top of the CONTROL_STACK is reduced below
the DELETION_KEY.

EXCEPTIONS: QPERAND_CLASS_ERROR is raised if the VhRIABLS_REF or the
DELETION_KEY is not found. CAPABILITY_ERROR is raised if
the item is already locked.

DELEIE_SUBPROGRAM

PURPOSE: Delete a2 referenced subprogram.

FUNCTION: Pop a SUBPROGRAM_REF off the CONYROL_STACK. Pop 3
DELETION_KEY off the CONTROL_STACK. Trace the reference to
the item to be deleted. Set the item as locked, and write a
deletion value to the subprogram site,

STACKS: Preconditions: Top of the CONTROL_STACK <contains a
SUBPROGRAM_REF. Top = 1 contains a deletion key.

- Postconditions: Top of the CONTROL_STACK is reduced below
the DELETION_KEY.

EXCEPTIONS: OPERAND_CLASS_ERROR 1is raised if the SUBPROGRAM_REF or the
DELETION_KEY is not found. CAPABILITY_ERROR 1is . raised 1if
the item is already locked.

SEI_NULL_ACCESS

PURPOSE: Currently Qnimplemented instruction.

FUNCTION: Currently unimplemented instruction.

STACKS: Currently unimplemented instruction.

EXCEPTIONS: Currently unimplemented instruction.

SETI_VISIBILIIY

RATIONAL MACHINES PROPRIETARY DOCUUMENT VERSION 1.0

RMI INSTRUCTION SET =- IMPERATIVE INSTRUCTIONS 76

PURPOSE: Set the visibility of a reference variable.

FUNCTION: Pop a VARIABLE_REF off the CONTROL_STACLK. Trace the
reference to the variable site. Set the wvisibility of the
item as true, lock the items and then write the reference
to the variable site.

STACKS: Preconditions: Top of the CONTROL _stack contain a
VARIABLE_REF. ‘

Postconditions: Top of the CONTROL_STACK is reduced below
the VARIABLE_REF. Visibility is written to the site of the

variable.
EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the VARIABLE_REF is not
found. INSTRUCTION_ERROR 'is raised if there is not a

DELETION_KEY. at the reference site. CAPABILITY_ERROR is
raised if the context is a task.

4.1.7. RESOURCE_ACTION

These operations provide facilities for allocating and recowvering
resources.

RESOURCE _ACTIONs include:

QUERY_RESOURCE_LIMITS
QUERY_RESOURCE_STATE
RECOVER_RESOURCES
RETURN_RESOURCES
SET_RESOURCE_LIMITS

¥ ¥ ¥ % %»

QUERY_RESQURLE_LIMIIS

PURPDSE: Currently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplemented instruction.

EXCEPTIONS: Currently unimplemented instruction.

QUERY_REJQURCE_STAIE

PURPODSE: Currently unimplemented instruction.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET --

FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplemented instruction.
EXCEPTIONS: Currently unimplemented instruction.
RECOYER_RESOQURCES
PURPOSE: Currently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplementéd instruction.
EXCEPTIONS: Currently unimplemented instruction.
RETURN_RESQURLES
PURPOSE: Currently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplemented instruction.
EXCEPTIONS: Currently unimplemented instruction.
SEY_RESQURCE_LIMITS
PURPOSE: Currently unimplemented instruction.
FUNCTION: Currently unimplemented instruction.
STACKS: Currently unimplemented instruction.
EXCEPTIONS: Currently unimplemented instruction.
4.1.8. STACK_ACTION
These operations provide primitive facilities

IMPERATIVE INSTRUCTIONS

various stacks as defined by the architecture..

STACK_ACTIONs include:

* MARK_AUXILIARY

RATIONAL MACHINES PROPRIETARY DOCUMENT

for manipulating the

VERSION 1.0

RMI INSTRUCTION SET ~-- IMPERATIVE INSTRUCTIONS 78

MARK_DATA
MARK_TYPE

POP_DATA
POP_TYPE

* % % R % ¥ B

SWAP_CONTROL

POP_AUXILIARY
POP_CONTROL

BARK_AUXILIARY

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

MARK_DAIA

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BARK_IYPE

PURPOSE:

FUNCTION:

RATIONAL MACHINES PROPRIETARY DOCUMENT

Mark both the DATA_STACK and the TYPE_STACK.

Save the state of the current frame. Push an AUXILTIARY_MARK
on the CONTROL_STACK indicating the TYPE_STALX mark and the
DATA_STALK mark. Set the state of the current frame as
marked, and if it is legal to export the wvalue of the
registers, mark their exports as illegal and create a link
to the marked frame.

Postconditions: An AUXILIARY_MARK is pushed on top of the
CONTROL_STACK indicating the mark of the TYPE_STACLK and the
DATA_STACK.

None.

Mark the DATA_STACK.

Save the state of the current frame. Push an AUXILIARY_MARK
on the CONTROL_STACK indicating the DATA_STACK mark, Set
the state of the current frame as marked, and if it is
legal to export the value of the registerss mark their
exports as illegal and create 2 link to the marked frame.

Postconditions: An AUXILIARY_MARK is pushed on top of the
CONTROL_STACK indicating the mark of the DATA_STACK.

None.

Mark the TYPE_STALK.

Save the state of the current frame. Push an AUXILIARY_MARK
on the CONTROL_STACK indicating the TYPE_State of the

VERSION 1.0

RMI INSTRUCTION

SET == IMPERATIVE INSTRUCTIONS 79

current frame as marked, and if it is legal to export the
value of the registers, mark their exports as illegal and
create a link to the marked frame.

Postconditions: An AUXILIARY_MARK is pushed on top of the

STACKS:
CONTROL _STALK indicating the mark of the TYPE_STALK.
EXCEPTIONS: None.
POP_AUXILIARY
PURPOSE: Pop the TYPE_STACK and the DATA_STACK down to the last

marka.

FUNCTION\Read the top of the CONTROL_STACK for the AUXILIARY_MARK. Pop the

STACKS:

EXCEPTIONS:

POR_CONIROL

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

BQP_DAJIA

PURPOSE:

TYPE_STACK and then the DATA_STACK down to the mark
indicated in the AUXILIARY_MARK. Save the state of the
current frame, and note that the AUXILIARY_MARK has a prior
mark. If this is an export frame, mark the register exporits
as legal, and create a link to the current frame..

Preconditions: Top of the CONTROL_STACK must contain an
AUXILIARY_MARK.

INSTRUCTION_ERROR 1is raised if the AUXILIARY_MARK is not
found.

Pop the CONTROL_STACK by one item.

Read the top word of the CONTROL_STACK and if it is a typed
item, pop the stack by one word.

Preconditions: Top of the CONTROL_STACK must contain a
typed word.

Postconditions: Top of CONTROL_STACK is reduced by one.

OPERAND_CLASS_ERROR is raised if the top word is not a type
item.

Pop the DATA_STACK down to the last mark..

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS

FUNCTION\Read the top of the CONTROL_STACK for the AUXILIARY_MARK. Pop
DATA_STACK down to the mark indicated in
AUXILIARY_MARK. Save the state of the current frame,
note that the AUXILIARY_MARK has a prior mark. If this
an export framer mark the register exports as legal,
create a link to the current frame.

STACKS: Preconditions: Top of the CONTROL_STACK must contain
AUXILIARY_MARK.
EXCEPTIONS: INSTRUCTION_ERROR 1is raised if the AUXILIARY_MARK is
founda '
PQR_IYPE
PURPOSE: Pop the TYPE_STACK down to the last mark.

FUNCTIONARead the top of the CONTROL_STACK for the AUXILIARY_MARK. Pop
TYPE _STACX = doun to the mark indicated in
AUXILIARY_MARK. Save the state of the current frame,

80

the
the
and

is
and

an

not

the
the
and

note that the AUXILIARY_MARK has a prior mark. If this is

an export frames, mark the register exports as 1legal, and
create a link to the current frame.

STACKS: Preconditions: TYop of <the CONTROL_STACK must contain an
AUXILIARY_MARK.,

EXCEPTIONS: INSTRUCTION_ERROR is raised if the AUXILIARY_MARXK is not
found.

SMAP_CONIBOL
PURPOSE: Exchange the top two elements on the CONTROL_STACK.
FUNCTION: Read the top word on the CONTROL_STALK and read the next

word also. If both words are typed, write the first word
to the top = 1 of the CLONTROL_STACK and write the second

word to the top of the CONTROL_STALK.

STACKS: Preconditions: Top two items on the CONTROL_STACK must
typed.
Postconditions: Top two items on the CONTROL_STACK are
swapped.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised of the top two words are
type d.

RATIONAL MACLHINES PROPRIETARY DOCUMENT | VERSION

be

not

1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS ' 81

4e71.9. TASK_ACTION

These operations provide facilities for putting a module %o sleep or
aborting children tasks.

TASK_ACTIONs include:

* INITIATE_DELAY
* PROPAGATE_ABORT

INITIAIE_DELAY
PURPOSE: Delay the current thread of control.
FUNCTION: Pop a value off the CONTROL_STACK indicating the delay

time. Insert the name of the current module in the delay
gqueue for that time. Mark that module as 'delayings and
initiate a2 context swap.

STACKS: Preconditions: Top of the CONTROL_STACK must contain a
VALUE_VAR.
Postconditions: No change except due to a normal context
swap.

EXCEPTIONS: None.

BROBAGAIE_ABORY

PURPOSE: Currently unimplemented instruction.

FUNCTION: Currently unimplemented instruction.

STACKS: Currently unimplemented instruction.

EXCEPTIONS: Currently unimplemented instruction.

4a2. EXECUTE
The EXECUTE instruction performs an operation upon a classed object.

Formally, EXECUTE takes the form:

RATIONAL MACHINES PROPRIETARY DOCUMENT ' VERSION 1.0

RMI INSTRUCTION SET =-— IMPERATIVE INSTRUCTIONS 82

type EXECUTE_INSTRUCTION is
record :
DPERATOR : OPERATOR_SPEL?
end record;

The OPERATOR 1is of the type OPERATOR_SPEC, which discriminates among
classes of operands that require a field specification, namely objects of
the class PACKAGE_CLASS, RECORD_CLASS, SELECT_CLASS, TASK_CLASS, and
VARIANT_RECORD_CLASS. We may further define the OPERATOR_SPEC as:

type OPERATOR_SPEC{CLASS

OPERAND_CLASS =
op :

DISCRETE_CLASS?
OPERATION E

= EQUAL_OP) is
record
case 0P is
when FIELD_OPERATION =>
FIELD : FIELD_SPEC{CLASS, 0OP);
when others =>
null;
end cases
end records

A FIELD_OPERATION is a subtype of the +type OPERATIONs, and includes +the
operators COND_CALL_OP» ENTRY_CALL_OP, FAMILY_CALL_OP, FAMILY_COND_OP,
fAMILY_TIMED_OP., FIELD_EXECUYE_OP., FIELD_READ_OP, FIELD_REFERENCE_OP.»
FIELD_TYPE_OP, FIELD_WRITE_OP, GUARD_WRITE_OP, SET_BOUNDS_DP»
SET_VARIANT_OP, and TIMED_CALL_OP.

Formallys, FIELD_SPEC takes the form:

type FIELD_SPEC{CLASS : OPERAND_CLASS := DISCRETE_CLASS,
oP : OPERATION := EQUAL_OP) is
record
case OP is
when PACKAGE_CLASS | TASK_CLASS =>

QOFFSEY s FIELD_INDEX>,

when RECORD_CLASS] SELECT_CLASS =>
NUMBER s FIELD_INDEX;

when VARIANT_RECORD_CLASS =>
COMPONENT : ACCESS_SPECA(OP)/
INDEX : VARIANT_RECORD_INDEX;

when others =>
null;

end cases
end record;

The FIELD_INDEX and VARIANT_RECORD_INDEX define the type of the index
into an object of a3 <class that requires a field specification, and are
formally defined as:

RATIONAL MACHINES PROPRIETARY DOCUMENTY VERSION 1.0

RMI INSTRUCTION SET —-- IMPERATIVE INSTRUCTIONS 83

type FIELD_INDEX is new INTEGER range impplemenitation defineds
subtype VARIANT_RECORD_INDEX is FIELD_INDEX range 1 .. FIELD_INDEX

The type ACCESS_SPEC further discriminates the componeﬂts of a
VARIANT_RECORD_ CLASS object, and can be formally expressed as:

type ACCESS_SPEC{OP : OPERATION :
record
case 0P is
when COMPONENTY_OPERATION =>
KIND : FIELD_SORTY;
MODE : FIELD_MODE;
when others =>
null;
end cases
end records

1]

EQUAL_OP) is

A COMPONENT_OPERATION is a subtype of FIELD 0P, and includes the operations
FIELD_READ_ OPz FIELD_REFERENCE_OP, and FIELD WRITE_OP.

Finally, we define the FIELD_MODE and FIELD_SORT as:

type FIELD_MODE is (DIRECT, INDIRECT)/
type FIELD_SORT is (FIXED, VARIANT);

Whereas the type ALCESS_SPEC, FIELD_SPEC, and OPERATOR_SPEC relate the
EXECUTE instruction to a particular <classs, the basis action if defined
through the type OPERATION. In general, the target operand will reside on
top of the CONTROL_STACK, Or courser since the architecture is strongly
typeds only well defined operations are defined for each OPERAND_CLASS. If
an attempt to EXECUTE an OPERATION that is not appropriate for the target
classr the exception INSTRUCTION_ERROR is raised. If the OPERATION is
appropriater, but the object of the target class is not founds, then the
exception OPERAND_LLASS_ERROR is raised. Finallys, if the target if found
but the object is private or otherwise out of scoper the exception
CAPABILITY_ERROR is raised.

Formally, we define the type OPERATION as:

type OPERATION is

ABORT_OP., ABOVE_RANGE_OP, ABSOLUTE_VALUE_OP,
ACTIVATE_OP, ADDRESS_OP., ALL_READ_OP.
ALL_REFERENCE_OP, ALL_WRITE_OP, AND_OP,

APPEND_OP, AUGMENT_IMPORTS_OP, BELOW_RANGE_OP.,
BOUNDS_CHECK_OP, BOUNDS_OP, CATENATE_OP,
CHECK_IN_ROOT_TYPE_OP, CHECK_IN_TYPE_OP, COND_CALL_OP,

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- IMPERATIVE INSTRUCTIONS 84

CONTINUE_OP, CONVERT_ACTUAL_OP, CONVERT_OP,
COUNT_OP. DECREMENT_OP, DIVIDE_OP,
ELABORATE_OP., ELEMENT_TYPE_OP, ENTRY_CALL_OP,
EQUAL _OP, FAMILY_CALL_OP, FAMILY_COND_OP,
FAMILY_TIMED_OP, FIELD_EXECUTE_OP, FIELD_READ_OP,
FIELD_REFERENCE_OP, FIELD_TYPE_OP, FIELD_WRITE_OP,
FIRST_OP., GET_SUBUNIT_OP, GET_SUBUNIT_COUNT_OP,
GREATER_EQUAL_OP, GREATER_EQUAL_ZERO_OP, GREATER_OP,
GREATER_ZERO_OP, GUARD_WRITE_OP, IN_RANGE_OP,
IN_TYPE_OP, ' INCREMENT_OP., INSTRUCYION_READ_OP,
INSTRUCTION_WRITE_OP, INTERRUPT_OP, IS_CALLABLE_OP,
IS_CONSTRAINED_OP, IS_NULL_OP., IS_TERMINATED_OP,
IS_ZERO_OP, LAST_OP, LENGTH_OP,
LESS_EQUAL_OP, LESS_EQUAL_ZERO_OP, LESS_OP,
LESS_ZERO_OP, MAKE_ADDRESS_OP, MAKE_ALIGNED_OP,
MAKE_CONSTANT_OP, MAKE_CONSTRAINED_OP, MAKE_VISIBLE_OP,
MINUS_OP, MODULO_OP, NAME_OP,
NOT_EQUAL_OP, NOT_IN_RANGE_OP, NOT_IN_TYPE_OP,
NOT_NULL_OP, NOT_OP, NOT_ZERO_OP,
OR_OP, PLUS_OP. ' PREDECESSOR_OP,
PREPEND_OP., RAISE_OP, REMAINDER_OP,
RENDEZVOUS_OP., REVERSE_BOUNDS_OP, RUN_UTILITY_OP.,
SCOPE_OF_RAISE_OP, SET_BOUNDS_OP, SET_CONSTRAINT_OP,
SET_SUBUNIT_OP., SET_SUBUNIT_COUNT_OP, SET_VARIANT_OP,
SIZE_OP, SLICE_READ_OP, SLICE_WRITE_OP,
SUBARRAY_OP, SUCCESSOR_OP, TIMED_CALL_OP,
TIMES_OP, UNARY_MINUS_OP, XOR_OP~

WORD_WRITE_OP);

In- the fellowing sections, we provide a detailed description of each
OPERATIONs categorized as:

ACCESS_OPERATION : -
Defines operations specific to access objects.

ARITHMETIC _OPERATION
Provides primitive mathematical facilities.

ARRAY_OPERATION Defines operations specific to array objects.

ATYRIBUTE_OPERATION :
Provides facilities for accessing attributes of an entity.

BOUNDS_OPERATION
Provides facilities for manipulating the bounds of an
iterator.

CONVERSION_OPERATION

Provides facilities for explicit conversions from one class
to another, '

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —=— IMPERATIVE INSTRUCTIONS k 35
EXCEPTION_OPERATION
Defines operations specific to exception objects.

FIELD_OPERATION Provide operations on <classes of operands that require a
‘ field specification.

LOGICAL_OPERATION :
Provides primitive boolean operations.
MEMBERSHIP_OPERATION
Provides primitive type checking operations.
MODULE_OPERATION
Provides primitive operations for manipulating modules and
segments.
RANDOM_OPERATION

Provides unique operations for various classes of operands.
RANGE_OPERATION Provides facilities for manipulating the range of a class.

RELATIONAL_OPERATION
Provides primitive relational operations.

Since we have already mentioned the conditions under which the exceptions
CAPABILITY_ERROR, INSTRUCTION_ERROR, and OPERAND_CLASS_ERROR can be raiseds
we will omit references to such exceptions in the following sections.

4e2.1. ACCESS_OPERATION
These instructions provide actions specific to access objects.

ACCESS_OPERATIONs include:

ALL_READ_OP
ALL_REFERENCE_OP
ALL_WRITE_OP
IS_NULL_OP
NOT_NULL_OP

* % % * %

ALL_READ_OP

PURPOSE:
ON CLASS: ACCESS_CLASS

FUNCTION:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -~ IMPER&TIVE INSTRUCTIONS

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

ALL_BREEERENCE_QP

PURPOSE:

ON CLASS: ACCESS_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

ALL_WRIIE_QP

PURPOSE:

ON CLASS: ACCESS_CLASS

FUNCTION:

STALKS: Precenditions:
Postconditions:

EXCEPTIONS:

I3_NULL_QP

PURPOSE:

ON CLASS: ACCESS_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT

86

VERSION 1.0

"RMI INSTRUCTION SET —-— IMPERATIVE INSTRUCTIONS 87

EXCEPTIONS:

NOT_NULL_QP2

PURPOSE:

ON CLASS: ACCESS_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

4.242. ARITHMETIC_OPERATION

These instructions provide several primitive mathematical manipulation
operations.

ARITHMETIC_OPERATIONs include:

ABSOLUTE_VALUE_OP
DECREMENT_OP
DIVIDE_OP
INCREMENT_OP
MINUS_OP
MODULE_OP

PLUS_OP
REMAINDER_OP

% % B % % % »

»

TIMES_OP
% UNARY_MINUS_OP

ABSQLUTE _¥ALUE_QP

PURPOSE:.

ON. CLASS: DISCRETE_CLASS, FLOAT_CLASS
FUNCTION:

STACKS: Preconditions:

Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS

EXCEPTIONS:

DECREMENI_QP

PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STALKS: Preconditions:
Postconditions:
EXCEPTIONS:
DIVIDE_QP
PURPOSE:
ON CLASS: DISCRETE_CLASS, FLOAT_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
INCREMENI_OP
PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
MINUS_QP

RATIONAL MACHINES PROPRIETARY DOCUMENT

88

VERSION 1.0

RMI INSTRUCTION SET -— IMPERATIVE INSTRUCTIONS 89

PURPOSE:

ON CLASS: discrete_CLASS, FLOAT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

MORULQ_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

BLUS_QF

PURPOSE:

ON CLASS: DISCRETE_CLASS, FLOAT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

REMAINDER_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS

RATIONAL MACHINES PROPRIETARY DOCUMENT k ?ERSION'?.G

RMI INSTRUCTION SET -- IMPERATIVE

FUNCTION:
STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

IIMES_QP

PURPOSE:

ON CLASS:
FUNCTION:
STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

UNARY _MINY3_QP

PURPOSE:

ON CLASS:

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

4.2.3. ARRAY_OPERATION

These instructions provide

ARRAY_OPERATIONs include:

APPEND_OP
CATENATE_OP
ELEMENT_TYPE_OP
PREPEND_OP

* % % %

INSTRUCTIONS

DISCRETE_CLASS, FLOAT_CLASS

DISCRETE_CLASS, FLOAT_CLASS

actions specific to

RATIONAL MACHINES PROPRIETARY DOCUMENT

- 90

array objects..

VERSION 1.0

RMI INSTRUCTION SET —=— IMPERATIVE INSTRUCTIONS 91

* SLICE_READ_OP
* SLICE_WRITE_OP
* SUBARRAY_OP

APPEND_QP
PURPOSE:
ON CLASS: VECTOR_CLASS
FUNCTION:
STALKS: Preconditions:
Postconditions:
EXCEPTIONS:
CATENATE_OP
PURPOSE:
ON CLASS: VECTOR_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
ELEMENI_IYPE_QP
PURPOSE:
ON CLASS: ACCESS_CLASS, ARRAY_CLASS, MATRIX_CLASS, VECTOR_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:’

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION

PREPEND_QP

PURPOSE:
ON CLASS:
FUNCTION:

STACKS:

EXCEPTIONS:

SET —= IMPERATIVE INSTRUCTIONS

VECTOR_CLASS

Preconditions:

Postconditions:

SLICE_READ_QP

PURPOSE:
ON CLASS:
FUNCTION:

STALKS:

EXCEPTIONS:

VECTOR_CLASS

Preconditions:

Postconditions:

SLICE_WRITE_QP

PURPOSE:
ON CLASS:
FUNCTION:

STACKS:

EXCEPTIONS:

2UBARRAY QP

PURPODSE:

VECTOR_CLASS

Preconditions:

Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT

92

VERSION 1.0

RMI INSTRUCTION SET —-- IMPERATIVE INSTRUCTIONS

ON CLASS: ARRAY_CLASS, MATRIX_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

4e2.4e. ATTRIBUTE_OPERATION

These instructions facilitate accessing. wvarious
entity.

ATTRIBUTE_OPERATIONs include:

ADDRESS_OP
COUNT_OP

FIRST_OP
IS_CALLABLE_OP
IS_CONSTRAINED_OP
IS_TERMINATED_OP
LAST_OP

LENGTH_OP
PREDECESSOR_OP
SIZE_OP
SUCCESSOR_OP

* %k A % % % X X H

ADDRE33_QP

PURPOSE:
ON CLASS: ANY_CLASS, EXCEPTION_CLASS, SEGMENT_CLASS
FUNCTION:
STACLKS: Preconditions:
Postconditions:

EXCEPTIONS:

COUNI_QP

PURPOSE:

RATIONAL MACHINES PROPRIETARY DOCUMENT

93

attributes of an

VERSION 1.0

RMI INSTRUCTION SET -- IMPERATIVE INSTRUCTIONS
ON CLASS: ENTRY_CLASS, FAMILY_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
EIR3I_QP
PURPOSE:
ON CLASS: ARRAY_CLASS, DISCRETE_CLASS,
VECTOR_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:

I3_CALLABLE_QP

PURPOSE:
ON CLASS:
FUNCTION:

STACKS:

EXCEPTIONS:

MOBULE_CLASS

Preconditions:.

Postconditions:

IS_GONSIRAINED_QP

PURPOSE:
ON CLASS:

FUNCTION:

VARIANT_RECORD_CLASS

RATIONAL MACHINES PROPRIETARY DOCUMENT

FLOAT_CLASS,

MATRIX_CLASS,

VERSION 1.0

RMI INSTRUCTION SET =-- IMPERATIVE INSTRUCTIONS
STACKS: Preconditions:

Postconditions:
EXCEPTIONS:

I3_IERMINAIED. QP

PURPOSE:

ON CLASS: MODULE _CLASS

FUNCTION:

STACKS: Preconditions:
Postcondiiions:

EXCEPTIONS:

LASI_QP

PURPOSE:

ON CLASS: ARRAY_CLASS, DISCRETE_CLASS, FLOAT_CLASS,
VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

LENGTIH_OP

PURPOSE:

ON CLASS: ARRAY_CTLASS, MATRIX_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT

95

MATRIX_CLASS,

VERSION 1.0

RMI INSTRUCTION SET —-- IMPERATIVE INSTRUCTIONS

EXCEPTIONS:

PREQECESIOR_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION: |

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

21ZE_QP

PURPOSE:

ON CLASS: ANY_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

SUCCESSOR_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

RATIONAL MACHINES PROPRIETARY DOCUMENT

96

VERSION 1.0

RMI INSTRUCTION SET.-- IMPERATIVE INSTRUCTIONS 97

4a2.5. BOUNDS_OPERATION

These operations provide facilities for manipulating the bounds of an

iterator.

BOUNDS_OPERATIONs include:

* BOUNDS_CHECK_OP

* BOUNDS_OP

* REVERSE_BOUNDS_OP

BOUNDS _CHECK_QP

PURPOSE:
ON CLASS:
FUNCTION:

STACKS:

EXCEPTIONS:

BQUNDS_QP

PURPOSE:
ON CLASS:
FUNCTION:

STACKS:

EXCEPTIONS:

DISCRETE_CLASS

Preconditions:

Postconditions:

ARRAY_CLASS, DISCRETE_CLASS, MATRIX_CLASS, VECTOR_CLASS

Preconditions:

Postconditions:

REYERSE_BOUNDS QP

PURPOSE:

ON CLASS:

ARRAY_CLASS, DISCRETE_CLASS, MATRIX_CLASS, VECTOR_CLASS

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS ' 98

FUNCTION:

STACKS:

EXCEPTIONS:

Preconditions:

Postconditions:

4.2.6. CONVERSION_OPERATION

" These operations provide facilities for explicit conversion from one
class to another.

CONVERSION_OPERATIONs include:

* CONVERT_ACTUAL_OP

* CONVERT_OP

CONVERI_ACTUAL_OP

PURPOSE:
ON CLASS:
FUNCTION:

STACKS:

EXCEPTIONS:

CONYERI_QP

PURPOSE:

ON CLASS:

FUNCTION:

STACKS:

ANY_CLASS, ARRAY_CLASS, MATRIX_CLASS, VECTOR_CLASS

Preconditions:

Postconditions:

ACCESS_CLASS, ANY_CLASS» ARRAY_CLASS, DISCRETE_CLASS,
FLOAT_CLASS, MATRIX_CLASS, MODULE_CLASS, RECORD_CLASS~,
VARIANT_RECORD_CLASS, VECTOR_CLASS

Preconditions:

Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— IMPERATIVE INSTRUCTIONS

EXCEPTIONS:

4e2e7« EXCEPTION_OPERATION

99

These operations define actions specific to exception objects.

EXCEPTION_OPERATIONs include:

* NAME
* RAISE_oOP

* SCOPE_OF_RAISE

NAME
PURPOSE:
ON CLASS: EXCEPTION_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
BRAISE_QP
PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
3CQPE_QF _BAISE
PURPOSE:

RATIONAL MACHINES PROPRIETARY DOCUMENT

VERSION 1.0

RMI INSTRUCTION SET == IMPERATIVE INSTRUCTIONS
ON CLASS: EXCEPTION_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:

4.2.8. FIELD_OPERATION

These operations provide actions specific to
require a field designation.

FIELD_OPERATIONs include:

COND_CALL_OP
ENTRY_CALL_OP
FAMILY_CALL_OP
FAMILY_COND_OP
FAMILY_TIMED_OP
FIELD_EXECUTE_OP
FIELD_READ_OP
FIELD_REFERENCE_OP
FIELD_TYPE_OP
FIELD_WRITE_OP
GUARD_WRITE_OP
SET_BOUNDS_OP
SET_VARIANT_OP
TIMED_CALL_OP

ok % Ok N % % N B * * %

COND_CALL_QP
PURPOSE:
ON CLASS: TASK_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:

ENIRY_CALL_QP

RATIONAL MACHINES PROPRIETARY DOCUMENT

100

classes of operands that

VERSION 1.0

RMI INSTRUCTION SET —- IMPERATIVE INSTRUCTIONS
PURPOSE:
ON CLASS: TASK_CLASS
FUNCTION:
STACKS: Preconditionss:
Postconditions:
EXCEPTIONS:

EAMILY _CALL_QP

PURPOQOSE:

ON CLASS: TASK_CLASS

FUNCTION:

STALKS: Preconditions:
Postconditions:

EXCEPTIONS:

EANMILY_COND_QP

PURPOSE:

ON CLASS: TASK_CLASS

FUNCTION: |

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

EAMILY_IIMED_QP

PURPOSE:

ON. CLASS: TASK_CLASS

RATIONAL MACHINES PROPRIETARY DOCUMENT

101

VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS 102

FUNCTION:

STACKS:

EXCEPTIONS:

Preconditions:

Postconditions:

EIELD_EXECUIE_QP

PURPOSE:
ON CLASS: PACKAGE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
EIELD_READ_QP
PURPOSE:
ON CLASS: ARRAY_CLASS.,
SUBMATRIX_CLASS~,
VECTOR_CLASS
FUNCTION:
STACLKS: Preconditions:
Postconditions:
EXCEPTIONS:
EIELD_REEERENCE_QP
PURPOSE:
ON CLASS: ARRAY_CLASS»,

RATIONAL MACHINES PROPRIETARY DOCUMENT

SUBARRAY_CLASS,

MATRIX_CLASS,

MATRIX_CLASS.

PACKAGE_CLASS, SUBARRAY_CLASS,

SUBVECTOR_CLASS, VARIANT_RECORD_CLASS,

PACKAGE_CLASS, RECORD_CLASS,

SUBMATRIX_CLASS, SUBVECTOR_CLASS,

VARIANY_RECORD_CLASS, VECLTOR_CLASS

VERSION 1.0

RMI INSTRUCTION SET —-- IMPERATIVE INSTRUCTIONS 103

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

EIELR_TYPE_QP

PURPOSE:

ON CLASS: RECORD_CLASS, VARIANT_RECORD_CLASS

FUNCTION:

‘STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

EIELD_WRITE_ QP

PURPOSE:

ON CLASS: ARRAY_CLASS, MATRIX_CLASS, PACKAGE_CLASS, RECORD_CLASS,
SELECT_CLASS, SUBARRAY_CLASS, SUBMATRIX_CLASS,
SUBVECTOR_CLASS, VARIANTY_RECORD_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

GUARD_WRIIE_QP

PURPOSE:
ON CLASS: SELECT_CLASS

FUNCTION:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— IMPERATIVE INSTRUCTIONS

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

28I_BOUND3 QP

PURPOSE:

ON CLASS: VARIANT_RECORD_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

SEI_VYARIANI_QP

PURPOSE:

ON CLASS: VARIANT_RECORD_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditionss:

EXCEPTIONS:

IINED_CALL_QP

PURPOSE:

ON CLASS: TASK_CLASS
FUNCTION:

STACKS: Preconditions:

Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT

104

VERSION 1.0

RMI INSTRUCTION SET —-— IMPERATIVE INSTRUCTIONS 105
EXCEPTIONS:

44209« LOGICAL_OPERATION

These operations provide primitive boolean actions.
LOGICAL_OPERATIONs include:

AND_OP

NOT_OP

OR_OP
XOR_OP

* % % »

AND_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

NQI_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

QR_QP

PURPOSE:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS

ON CLASS: DISCRETE_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

XQR_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

4.2.10. MEMBERSHIP_OPERATICN

These operations provide primitive type checking actionss
MEMBERSHIP_OPERATIONs include:

CHECK_IN_ROOT_TYPE_OP

CHECK_IN_TYPE_oOP

IN_TYPE_OP
NOT_IN_TYPE_OP

* * A *

CHECK_IN_ROOI_TYRE_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS
FUNCTION:

STACKS: Preconditions:

Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT

106

VERSION 1.0

RMI INSTRUCTION SET =— IMPERATIVE INSTRUCTIONS 107

EXCEPTIONS:

CHECK_IN_IYPE_QP

PURPOSE:
ON CLASS: ACCESS_CLASS», ARRAY_CLASS, DISCRETYE_CLASS, FLOAY_CLASS,
' MATRIX_CLASS, VARIANT_RECORD_CLASS, VECTOR_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
IN_IYPE_QP
PURPOSE:
ON CLASS: ACCESS_CLASS, ARRAY_CLASS, DISCRETE_CLASS, FLOAT _CLASS»,
MATRIX_CLASS, VARIANT_RECORD_CLASS, VECTOR_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:

NOI_IN_IYPE_QP

PURPOSE:

ON CLASS: ACCESS_CLASS, ARRAY_CLASS» DISCRETE_CLASS, FLOAT_CLASS,
MATRIX_CLASS, VARIANY_RECORD_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-— IMPERATIVE INSTRUCTIONS 108

4.2.11. MODULE_OPERATION

These operations provide primitive actions for manipulating modules and
segments.

MODULE_OPERATIONs include:

ABORT_OP

ACTIVATE_OP
AUGMENT_IMPORTS_OP
CONTINUE_OP
ELABORATE_OP
GET_SUBUNIT_OP
GET_SUBUNIT_COUNT_OP
INSTRUCTION_READ_OP
INSTRUCTION_WRITE_OP
INTERRUPT_OP
MAKE_ADDRESS_OP
SET_SUBUNIT_OP
SET_SUBUNIT_COUNT_OP
WORD_WRITE_OQP

L I B B NS N B AR LI R A

ABORI_QP
PURPOSE:
ON CLASS: MODULE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
ACTIIVAIE_ QP
PURPOSE:
ON CLASS: MODULE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SEY —— IMPERATIVE INSTRUCTIONS

EXCEPTIONS:

AUGMENT _IMPORIS_OP

PURPOSE:

ON CLASS: MODULE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

CONIINUE_ QP

PURPQOSE:

ON CLASS: MODULE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

ELABORAIE_QP

PURPOSE:

ON CLASS:

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

GEI_SUBUNITI_OQP

RATIONAL MACHINES PROPRIETARY DOCUMENT

109

VERSION 1.0

RMI INSTRUCTION SET == IMPERATIVE INSTRUCTIONS

PURPDSE:

ON CLASS: SEGMENT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

GEI_SUBUNIT _CQUNI_QP

PURPOSE:

ON CLASS: SEGMENT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

INSIBUCTION _READ_QP

PURPOSE:

ON CLASS: SEGMENT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

INSTRUCTION WRITE_QP

PURPOSE:

ON CLASS: SEGMENT_CLASS

RATIONAL MACHINES PROPRIETARY DOCUMENT

110

VERSION 1.0

RMI INSTRUCTION SET =~ IMPERATIVE INSTRUCTIONS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

INIERRUPY_QP

PURPOSE:

ON CLASS: MODULE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

MAKE_ADDRES3_QP

PURPOSE:

ON CLASS: SEGMENT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

2EI_SUBUNITI_OP

PURPOSE:
ON CLASS: SEGMENT_CLASS
FUNCTION:
STACKS: Preconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT

111

VERSION 1.0

RMI

INSTRUCTION SET ==~ IMPERATIVE INSTRUCTIONS

Postconditions:

EXCEPTIONS:

SEI_SUBUNIT_COQUNT 0P

PURPOSE:

ON CLASS: SEGMENT_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

WQRD_WRITE_ QP

PURPOSE:

ON CLASS: SEGMENT_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

4-2‘

* % % ¥ % % %

12. RANDOM_OPERATION

112

These operations define unique actions upon various operand classes.

RANDOM_OPERATIONs include:

MAKE_ALIGNED_OP
MAKE_CONSTANT_OP
MAKE_CONSTRAINED_OP
MAKE_VISIBLE_OP
RENDEZVOUS_OP
RUN_UTILITY_OP
SET_CONSTRAINT_OP

RATIONAL MACHINES PROPRIETARY DOCUMENT

VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS

MAKE_ALIGNER_QP

PURPOSE:

ON LLASS: ANY_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

MAKE_CONSTANI_QP

PURPOSE:

ON CLASS: ANY_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

MAKE_CONSTRAINED_QP

PURPOSE:

ON CLASS: VARIANY_RECORD_CLASS .

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

MAKE_YISISLE_QP

PURPOSE:

RATIONAL MACHINES PROPRIETARY DOCUMENT

113

VERSION 1.0

RMI INSTRUCTION SET —- IMPERATIVE INSTRUCTIONS ' 114

ON CLASS: ANY_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

RENDEZIVOUS QP

PURPOSE:

ON CLASS: ENTRY_CLASS, FAMILY_CLASS, SELECT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

BUN_UTILIIY_ QP

PURPOSE:

ON CLASS: ANY_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

2EI_CONSTRAINI_QP

PURPOSE:
ON CLASS: VARIANT_RECORD_CLASS

FUNCTION:

RATIONAL MACHINES PROPRIETARY DOCUMENT

VERSION 1.0

RMI INSTRUCTION SET —-— IMPERATIVE INSTRUCTIONS : 115

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

4.2.13. RANGE_OPERATION.

These operations provide facilities
classe.

RANGE_OPERATIONs include:

* ABOVE_RANGE_OP
* BELOW_RANGE_OP
* IN_RANGE_OP
* NOT_IN_RANGE_OP
ABOQVE_RANGE_QP
PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
BELOW_RANGE_QP
PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS: |

RATIONAL MACHINES PROPRIETARY DOCUMENT

for manipulating the range of a

VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS

IN_RANGE_ QP
PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:

NOI_IN_BANGE_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

4.2.14. RELATIONAL_OPERATION

* % % % % X % X A % % %

RATIONAL MACHINES PROPRIETARY DOCUMENT

These operations provide primitive comparison actions.

RELATIONAL_OPERATIONs include:

EQUAL_OP

GREATER_OP
GREATER_EQUAL_OP
GREATER_EQUAL_ZERO_OP

- GREATER_ZERO_OP

IS_ZERO_OP
LESS_OP
LESS_EQUAL_OP
LESS_EQUAL_ZERO_OP
LESS_ZERO_OP
NOT_EQUAL_OP
NOT_ZERO_OP

116

VERSION 1.0

RMI INSTRUCTION SET -- IMPERATIVE INSTRUCTIONS 117

EQUAL_OQP

PURPOSE:

ON CLASS: ACCESS_CLASS, ANY_CLASS, ARRAY_CLASS, DISCRETE_CLASS,
FLOAT_CLASS», MATRIX_CLASS, RECORD_CLASS,
VARIANT_RECORD_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

GREAIER_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS, FLOAT_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

GREAIER_EQUAL_QP

PURPDSE:

ON CLASS: DISCRETE_CLASS, FLOAT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

GREATER_EQUAL_ZERQ_QP

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET ~— IMPERATIVE INSTRUCTIONS 118

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:.

GREAIER_ZERQ_QP

PURPOQOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
I3_ZERQ_QP
PURPOSE:
ON CLASS: DISCRETE_CLASS
FUNCTION:
STACKS: Preconditions:
Postconditions:
EXCEPTIONS:
LESS_QP
PURPOSE:
ON CLASS: DISCRETE_CLASS, FLOAT_CLASS

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— IMPERATIVE INSTRUCTIONS 119

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

LES3_EQUAL_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS, FLOAT_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

LESS_EQUAL_ZERQ_QP

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION:

STACKS: Preconditions:
Postconditions:

EXCEPTIONS:

LESS_ZERO_QFP

PURPOSE:

ON. CLASS: DISCRETE_CLASS
FUNCTION:

STACKS: Preconditions:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- IMPERATIVE INSTRUCTIONS 120

Postconditions:

EXCEPTIONS:

NOT_EQUAL_QP

PURPOSE:

ON CLASS: ACCESS_CLASS» ANY_CLASS, ARRAY_CLASS, DISCRETE_CLASS»,
FLOAT_CLASS, MATRIX_CLASS, RECORD_CLASS»,
VARIANT_RECORD_CLASS, VECTOR_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditions:

EXCEPTIONS:

NOI_ZERQ_OQP

PURPOSE:

ON CLASS: DISCRETE_CLASS

FUNCTION:

STACKS: Preconditions:

Postconditionss

EXCEPTIONS:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- DATA MOVEMENT INSTRUCTIONS 121

Chapter 5
DATA MOVEMENT INSTRULTIONS

A data movement instruction provides facilities for setting, using, and
referencing wvalues of objects. Values may not be assigned indiscriminately
to any objectsr but the architecture guarantees that values are compatible
with the class of the target object.

Data movement instructions include the following opcodes:

* LOAD == push the value of a named object on top of
the CONTROL_STACK

* LOAD_TOP == push the value of an object already on the
CONTROL_STACK on top of the LONTROL_STACLK

* STORE == pop a value from the CONTROL_STACK and save it into
named object

* REFERENLE —- push a reference to a named object on top of the
CONTROL_STACK

In the <case of the instructions LOAD, STORE, and REFERENCE, each reqguires
the specification of an 0BJECY_REFERENCE, which we may formally express as:

type OBJELT_REFERENCE(LEVEL : LEXICAL_LEVEL == () is
record
case LEVEL is
when 0 .. 1 => SCOPE_OBJECT
when others => FRAME_OFFSET
end cases
end record,

SCOPE_DELTA?
FRAME_DELTA?

LT 1]

The OBJECT_REFERENCE thus specifies an object declared on the IMPDRT_STACK
or outer frame {lex level 0 and 1 respectively) or an object declared in an
inner frame. Formally, we may define these types as:

type FRAME_DELTA is new INTEGER range jmplementation defined
type LEXICAL_LEVEL is new INTEGER range jpplementation defined
type SLOPE_DELTA is new INTEGER range jimplemenitation defined

In the case of the LOAD_TOP instructions, an object on the CONTROL_STACK
must be designated as a STACK_TOP_OFFSEY. Formally, we have:

type STACK_TOP_OFFSET is new INTEGER range implementation defined

In the following sections, we treat each opcode in detail.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— DATA MOVEMENT INSTRUCTIONS 122

5.7. LOAD

The LOAD instruction pushes the value of a named object on top of the
CONTROL_STACK. Formally, LOAD takes the form:

type LOAD_INSTRUCTION is
record
OBJECT : OBJECT_REFERENCE?
end records;

PURPOSE: Push the value of a named object on top of the
CONTROL _STACK. ‘
FUNCTION:z If +the object resides on the IMPORT_STALK, then read the

variable reference at the stated SCOPE_OFFSET, validating
the display 1if necessary. If the object resides on some
frame, then resolve the object reference at the stated
FRAME_OFFSET, +tracing through the display registers as
needed. The final action in either case reguires that the
variable bhe made hiddenr any renaming is traced back to the
parent, and then the value 1is pushed on %top of the

CONTROL_STACK.

STACKS: Postcondition: A wvalue is pushed on top of the
CONTROL_STACK.

EXCEPTIONS: INSTRUCTION_ERROR is raised 4if the import display is not
valid and the object resides on the IMPORT_STACK, or if the
referenced object 1is not located at all. Finally»,
INSTRUCTION_ERROR is raised if the referenced object is not
a TYPED_VAR, VALUE_VAR» SELELT_VAR, MODULE_KEY,

EXCEPTION_VAR~, or DELETION_KEY.

5«.2. LDAD_TOP
The LOAD_TOP instruction pushes the value of an object on the
CONTROL_STACK. Formally, LOAD_TOP takes the form: '

type LOAD_TOP_INSTRUCLTION is
record
AT_OFFSET : STACK_TOP_OFFSET,
end record;

PURPOSE: Push the value of an object on the CONTROL_STACK.

FUNCTION: Trace through the reference on the CONTROL_STACK from the
STACK_TOP_OFFSET to determine the site of the variable. If

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTICON SET --— DATA MOVEMENT INSTRUCTIONS 123

STACKS:

EXCEPTIONS:

5.3. STORE

the object resides on the IMPORT_STACK, then read the
variable reference at the stated SCOPE_OFFSET, wvalidating
the display if necessary. If the object resides on some
frame, then resolve the object reference at the stated
FRAME_OFFSET, +tracing through the display registers as
needed. The final action in either case requires that the
variable be made hiddensr any renaming is traced back to the
parent, and then the value is pushed on top of the
CONTROL _STACK.

Postcondition: A wvalue is pushed on top of 4the
CONTROL_STACK. :

INSTRUCTION_ERROR is raised if the import display is not
valid and the object resides on the IMPORT_STACK, or if the

referenced object 1is not located at all. Finallys,
INSTRUCTION_ERRDOR is raised if the referenced object is not
a TYPED_VAR, = VALUE_VAR, SELECT_VAR, MODULE_KEY,

EXCEPTION_VAR, or DELETION_KEY.

The store instruction pops a value off the CONTROL_STACLK into a named
object. Formally, STORE takes the form:

type STORE_INSTRUCTION is

record
OCBJELT

OBJECT_REFERENCE;

end record;

PURPOSE:

FUNCTION:

STACKS:

Store a wvalue from the CONTROL_STACK into a named object.

If the object resides on the IMPORT_STALK, then read the
variable reference at the stated SCOPE_OFFSET, wvalidating
the display if necessary. If the object resides on some
frames then resolve the object reference at the stated
FRAME_OFFSET, +tracing through the display registers as
needed. Read the old value through this referencer, and also
read the new value from the top of the LONTROL_STACK. Copy
the wvalue over the old valuer and pop the CONTROL_STACLK by
one value.

Preconditions: A value must reside on top of the
CONTROL_STACK.

Postconditions: A wvalue 1is stored in the site of the
referenced object. The CONTROL_STACLK is popped by one.

OPERAND_CLASS_ERROR is raised if the value to be stored is

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

EXCEPTIONS:

RMI INSTRUCTION SET -- DATA MOVEMENT INSTRUCTIONS 124

not compatible with the target object. CAPABILITY_ERROR is
raised of an attempt 1is made to store a value %o a
PACKAGE_VAR, TASK_VAR, or SEGMENT_VAR.

Se%4« REFERENCE

The REFERENCE instruction pushes a reference to a named object on top
of the CONTROL_STACK. Formally, REFERENCE takes the form:

type REFERENCE_INSTRULTION is
record
OBJECT = OBJECT_REFERENCE?
end record;

PURPOSE: Push a reference to a2 named object.

FUNCTION: If the object resides on the IMPORT_STALK, then read the
variable reference at the stated SCOPE_OFFSETs, wvalidating
the display if necessary. If the object resides on some
framer then resolve the object reference at the stated
FRAME_OFFSET, tracing through the display registers as
needed. Copy the reference to the object. If the object is
an INDIRECT_VAR, VARIABLE_REF, or SUBPROGRAM_REF, make' the
reference hidden. Push the new reference on top of the

CONTROL_STACK.

STACKS Postconditions: Push a reference on top of the
CONTROL_STACK.

EXCEPTIONS sINSTRUCTION_ERROR is raised if the import display is not

valid and the object resides on the IMPORT_STACKs, or if the
referenced object is not located at all. Finallys
INSTRUCTION_ERROR is raised if the reference is not of the
class VALUE_VAR, ENTRY_VAR, INTERFACE_XEY, INDIRECT_VAR»,
VARIABLE_REF, SUBPROGRAM_REF, or SUBPROGRAM_VAR.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET ~-= LCONTROL TRANSFER INSTRULTIONS 128
Chapter 6
CONTROL TRANSFER INSTRUCTIONS
A control transfer instruction provides facilities for conditional an
unconditional change in the thread of control. Briefly, these instructions

provide simple branching and subprogram invocation.

Control transfer instructions include the following opcodes:

CALL -= invoke a subprogram object

*

* JUMP -= branch unconditionally

* JUMP_NONZERO -~ branch conditionally {(if not zero)

* JUMP_ZEROD == branch conditionally {(if zero)

* JUMP_CASE -= branch computed on the value of an expression .

is specified as a PL_OFFSET. Formally, PC_OFFSET is defined as:

type PC_OFFSET is new INTEGER range ipplementation defiped-

In the case of the CALL instructions, the target module is designated by an’
OBJECT_REFERENCE as we defined in Section 5. Finally, the JUMP_CASE
instruction branches to a part of a case statement, specified as some
CASE_MAXIMUM, which we define formally as: '

In the case of JUMP, JUMP_NONIERO, and JUMP_ZERO, the address of the branch
type CASE_MAXIMUM is new INTEGER range jimplemgntation defined’

In the following sectionss, we tread opcode in detail.

6«.1. CALL
The L{ALL instruction invokes a subprogram object.
Formally, CALL takes the form:
type CALL_INSTRULTION is
record
OBJELT : OBJECT.REFERENCE?
end record;

PURPOSE: Invoke a subprogram object.

FUNCTION: Trace the DOBJECT_REFERENCE +to find the cofrespcnding

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI - INSTRUCTION SET —— CONTROL TRANSFER INSTRUCTIONS 126

STACKS:

EXCEPTIONS:

6.2. JUMP

The JUMP

SUBPROGRAM_VAR. If the object is not in the import space
and the subprogram is activer, mark the CONTROL_STACK 1o
indicate the creation of a new frame, and transfer control
to the first instruction of the SUBPROGRAM_VAR. If on the
other hand the reference is to a SUBPROGRAM_REFs, trace the
reference through the CONTROL_STACK +to determine the
subprogram site; if the subprogram is activesr mark the
CONTROL_STACK to indicate the creation of a new frame, and
transfer control to the first instruction of the referenced
SUBPROGRAM_VAR.

Postconditions: Add a new frame on the CONTROL_STACK.
INSTRUCTION_ERROR is raise if +the SUBPROGRAM_VAR is not

founds ELABORATION_ERROR is raised if the SUBPROGRAM_VAR
is not active.

instruction causes an wunconditional branch in the current

thread of control.

Formally, JUMP is defined as:

type JUMP_INSTRUCTION is

record
RELATIVE

: PL_OFFSET>

end record;

PURPOSE:
FUNCTION:
STACKS

EXCEPTIONS:

Cause an unconditional branch,
Add the PL_OFFSET to the current program counter value.
No stacks are affected.

None.

6.3. JUMP_NONZERO

The JUMP_NONZERO instruction causes a branch only if the wvalue on top
of the CONTROL_STACK is not zero.

Formally, JUMP_NONZERQ is defined as:

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— CONTROL TRANSFER INSTRUCTIONS 127

type JUMP_NONZERD is
record
RELATIVE : PC_OFFSET,
end records

PURPOSE: Cause a branch only if the value on top of the
CONTROL_STACK is not zero.

FUNCTION:. Pop a value off the £0N¥ROL;5Tacx. If the DISCRETE_VAR has
a nonzero values add the PL_OFFSET to the current program
counter value.

STACKS: Preconditions: Top of CONTROL_STACK must contain a
DISCRETE_VAR.

Postconditions: Top of CONTROL_STACK is reducéd by ore.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the DISCRETE_VAR is not
found. CAPABILITY_ERROR is raised if the DISCRETE_VAR is

privatea.

6.4. JUMP_ZERD

The JUMP_ZERO instruction causes a branch only if the value on top of
the CONTROL_STACK is zero.

Formally, JUMP_ZERO is defined as:
type JUMP_ZERO is
record

RELATIVE : PL_OFFSET;
end records

PURPOSE: Cause a branch only if the value on top of the
CONTROL_STACLK is zero.

FUNCTION: Pop a value off the CONTROL_STACK. If the DISCRETE_VAR has
a zero value, add the PCL_OFFSET to the current program

counter value.

STACKS: Preconditions: Top of CONTROL_STACK must contain a
DISCRETE_VAR.

Postconditions: Top of LONTROL_STALK is reduced by'one.

RATIONAL MACHINES PROPRIETARY DOCUMENT : YERSION 1.0

RMI INSTRUCTION SET —-— CONTROL TRANSFER INSTRUCTIONS 128

EXCEPTIONS: OPERAND_CLASS_ERROR 1is raised if the DISCRETE_VAR is not
found. CAPABILITY_ERROR is raised if the DISCRETE_VAR is
private.

6.5. JUMP_CASE

The JUMP_CASE instruction causes 38 branch computed on the value of an
expression.

Formallys, JUMP_CASE is defined as:

type JUMP_CASE is
record
CASE_MAX = CASE_MAXIMUMS
end record’;

PURPOSE: Cause a branch computed on the value of an expression.
FUNCTION: Pop a value off the CONTROL_STACK. Add the ©offset to the
current program counters, which will now point to another

unconditional branch instruction.

STACKS: Preconditions: Top of the CONTROL_STACK must contain a
DISCRETE_VAR. : '

Postconditions: Top of the [ONTROL_STACK is reduced by one.

EXCEPTIONS: CONSTRAINT_ERROR is raised if the DISCRETE_VAR value is not
between 0 and the value of [ASE_MAX.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —— CONTROL RETURN INSTRUCTIONS 129

Chapter 7
CONTROL RETURN INSTRUCTIONS

A control return instruction provides facilities for return from a
subordinate thread of control. It 1is important to note that these
instructions follow the semantics of Ada for return of contrel, in that
unit may not be exited until all dependencies with subordinate wunits are
resolveda.

Control return instruction include the following opcodes:.

* EXIT_PROCEDURE == return from a procedure

* EXIT_FUNCTION == return from a2 function

* EXIT_ACCEPT == return from an accept clause

* EXIT_UTILITY == return from a utility subprogram
* POP_BLOCK -= return from a block

*

POP_BLOCK_RESULT == return from a block with a result

In the case of the instructions EXIT_PROCEDURE, EXIT_FUNCTION., EXIT_ACCEPT:
and EXIT_UTILITY, the amount by which the CONTROL_STACK is popped is
specified as an INNER_FRAME_DELTA, which we formally express as:

type INNER_FRAME_DELTA is new INTEGER range jimplementation defiped-r

In the case of the instructions POP_B8LOLK and POP_BLOCK_RESULT, the mark to
which the CONTROL_STALK is popped is specified as a TARGEY_LEX, which we
formally express as:

type TARGET_LEX is new INTEGER range implementation definsds.
In the following sectionsr, we treat each opcode in detail.

7«1« EXIT_PROCEDURE

The EXIT_PROCEDURE instruction returns the thread of contrel from a
procedure. '

Formally, EXIT_PROCEDURE is defined as:
type EXIT_PROCEDURE_INSTRUCTION is
record

POP_AMOUNT : INNER_BLOCK_DELTA?
end records

RATIONAL MACHINES PROPRIETAR? DOCUMENT ' VERSION 1.0

RMI INSTRUCTION

PURPODSE:

FUNCTION:

STACKS:

EXCEPTIONS:

SET —— CONTROL RETURN INSTRUCTIONS 130

Return from a procedure.

If the frame has no children, then simply pop the frame
over the number of parameters indicated in POP_AMDUNT. If
the frame does have childrens, then if all the children are
completed, iteratively deallocate each <child, and then
deallocate the current module; if 211 the children are not
complete, then set the current state of the module as
waiting for children, and set the micro state of the module
t0 repeat the current instruction; finally, then command a
context swap.

Postconditions: CONTROL_STACK micro state and <child paths
will be altered due to the deallocation; upon completions
the CONTROL_STACK will pop to the previous frame.

None.

7.2. EXIT_FUNCTION

The EXIT_FUNCTION instruction returns the thread of contrel from a

function.

Formally®, EXIT_FUNCTION is defined as:

type EXIT_FUNCTION_INSTRUCTION is

record

POP_AMOUNT : INNER_BLOCK_DELTA;
end record;

PURPOSE:

FUNCTIODN:

STACKS:

Return from a function.

If the frame has no children, then first copy the function
result from the top of the CONTROL_STACK, pop the frame
over the number of parameters indicated in POP_AMOUNT, then
push the result back on the CONTROL_STACK. If the frame
does have children, then - if all the children are completed,
iteratively -deallocate each childs and then copy the
results deallocate the current module and push the result
back on the CONTROL_STALK, if all the <children are not
completer then set’ the current state of the module as
waiting for children, and set the micro state of the module
to repeat the current instruction; finally, then command a
context sSwape

Postconditions: CONTROL_STACK micro state and child paths
will be altered due to the deallocation’ wupon completions,
the CONTROL_STACK will pop to the previous frame.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- CONTROL RETURN INSTRUCTIONS 131

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the result on top of the
CONTROL_STACK is not a typed value. TYPE_ERROR is raised if
the type of the result does not persist after potential
deallocation.

7.3. EXIT_ACCEPT

The EXIT_ACCEPYT instruction returns the thread of control from an
accept clause. '

Formally, EXIT_ACCEPT is defined as:

type EXIT_ACCEPT_INSTRUCTION is
record
POP_AMOUNT : INNER_BLOCK_DELTA;
end record;

PURPOSE: Return from an accept clause.

FUNCTION: If the frame has nouw childrens, or if the deallocation of
the children is complete then complete the following: Pop
the frame over zeroc parameters, and then read the current
ACCEPT_LINK on top of the CONTROL_STACK. Pop the
CONTROL_STACK over the POP_AMOUNT, and then pop doun over
all +the out parameters. This last action requires that the
out values be copied to a block. If the accept clause 1is
part of a select statement, then push a DISCRETE_VAR on top
of the CONTROL_STACK indicating which accept of the select
has been exited. Send a message to the accept link partner
indicating END_RENDEZVOUS, and include the out wvalues
copied to a block.

STALKS: Preconditions: Top of the CONTROL_STACK must contain an
ACCEPT_LINK. ,

Postconditions: CONTROL_STALK is popped to below all the
accept parameters. A DISCRETE_VAR may be pushed on top of
the CONTROL_STACK. Stacks are also affected through normal
message transmission.

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the out parameters are not
typed values. ’

Tebhe EXIT_UTILITY , .

The EXIT_UTILITY instruction returns the thread of control from 2a
utility subprogran.

RATIONAL MACHINES PROPRIETARY DOCUMENT ’ VERSION 1.0

RMI INSTRUCTION

Formally, EX

type EXIT_UT
record

POP_AMOU

end record

PURPOSE:

FUNCTION:

STACKS:

EXCEPTIONS:

7.5. POP_BLOCK
The POP_BLOC

Formally, PO

SET -~ CONTROL RETURN INSTRULTIONS 132
IT_UTILITY is defined as:

TILITY_INSTRUCTION is

NT : INNER_BLOCK_DELTAS

;

Return from a utility subprogram.

Simply pop the frame over the number of parameters
indicated in POP_AMOUNT. :

The CONTROL_STACK will pop to the previous frame.

None.

K instruction returns the thread of control from a block.

P_BLOCK is defined as:

type POP_BLOCK_INSTRUCTION is

record
TO_LEVEL
end record

PURPOSE:

FUNCTION:

STACLKS:
EXCEPTIONS:

7.6. POP_BLOCK_R

The POP_BLOC
block with a res

Formally, PO

RATIONAL MACHINE

: TARGET_LEX,
H
Return from a block.
Check that a pop to the target level is legal. If the frame
does not have any childrens, or if the deallocation of the
children is completed, then repeatedly pop the
CONTROL_STALK until the target lex level is reached.

Postconditions: The CONTROL_STACK is popped to the target
lexical level.

INSTRUCTION_ERROR is raised if the target lewvel does not
exist.
ESULT

K_RESULT instruction returns the thread of control from a
ﬁl ta

P_BLOCK_RESULY is defined as:

S PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET == CONTROL RETURN INSTRUCTIONS 133

type POP_BLOCK_INSTRUCTION is

record
TO_LEVEL

T TARGEY_LEX;

end record,s

PURPOSE:

FUNCTION:.

STACKS:

EXCEPTIONS:

Return from a blocka

Copy the result from the top of the UONTROL_STACK. Check
that a pop to the target level is legal. If the frame does
not have any <children, or if the deallocation of the
children is completeds then repeatedly pop the
CONTROL_STACK wuntil the target lex 1level 1is reached.
Finally, push the result back on top of the CONTROL_STACK.

Preconditions: Top of +the CONTROL_STACK must contain a
typed value.

Postconditions: The CONTROL_STACK is popped to the target
lexical level. A copy of the initial typed value is pushed
back on top of the CONTROL_STACK.

INSTRUCTION_ERROR 1is raised if the target level does not
exists OPERAND_CLASS_ERROR is raised if the result on top
of the CONTROL_STACK is not a typed value. TYPE_ERROR is
raised if the type of the result does not persist after
potential deallocation.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -~ LITERAL DECLARATIONS 134
Chapter B8
LITERAL DECLARATIONS

A 1literal declaration instruction defines simple and complex literal
values for use on the CONTROL_STACK.

Literal declaration instruction include the following opcodes:.

* LITERAL_VALUE -— marks a discrete, floating point, or array value
* SHORT_LITERAL == pushes a short discrete value
* INDIRECT_LITERAL ~-- pushes a referenced LITERAL_VALUE

In the following section, we treat each opcode in detail.

8.1. LITERAL_VALUE

The LITERAL_VALUE instruction is not executable, but rather serves to
mark a discrete, floating point, or array value.

Formally, LITERAL_VALUE is defined as:
type LITERAL_VALUE is
record

VALUE = LITERAL;
end record’

We further define LITERAL as:

type LITERAL(OF_KIND = OPERAND_CLASS :
record
case OF_KIND is
when ARRAY_CLASS =>
ARRAY_LITERAL T BASELARRAY_LITERAL,
when DISCRETE_CLASS =>
DISCRETE_LITERAL = BASEL.DISCRETE?
when FLOAT_CLASS =>
FLOAT_LITERAL : BASELFLOAT;
end cases
end record;s

DISCRETE_CLASS) is

]

The type of each BASE literal is implementation defined.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-- LITERAL DECLARATIONS

8.2« SHORT_LITERAL

The SHORT_LITERAL instruction pushes a short literal on top of
CONTROL _STACK.

Formallys, the SHORT_LITERAL instruction is defined as:

type SHORT_LITERAL_INSTRUCTION is
record
SHORT_VALUE : BASE.SHORT_LITERAL?
end record,

The type of the BASE literal is implementation defined.

PURPOSE: Push a short literal on the CONTROL_STACK.
FUNCTION: Push the SHORT_VALUE on the CONTROL_STACK.
STACKS: Postcondition: A DISCRETE_VAR 1is pushed on top of

CONTROL_STACK.

EXCEPTIONS: None.

Be3. INDIRECT_LITERAL

135

the

the

The INDIRECT_LITERAL instruction pushes 2 referenced LITERAL_VALUE on

the CONTROL_STACK.

Formally, INDIRECT_LITERAL is defined as:
type INDIRECT_LITERAL_INSTRUCTION is
record
VALUE_CLASS = OPERAND_CLASS»

VALUE_RELATIVE PC_OFFSET,
end records

The type PC_OFFSET is defined in Chapter 6.

PURPOSE: Push a2 LITERAL_VALUE on the CONTROL_STACK.

FUNCTION: Take the VALUE_RELATIVE +to reference a LITERAL_VALUE,
Follow the reference, and push the corresponding value on

the CONTROL_STACK.

STACKS: Postcondition: A DISCRETE_VAR, FLOAT_VAR, or ARRAY_VAR
pushed on top of the CONTROL_STACK.

is

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =-—- LITERAL DECLARATIONS 136

EXCEPTIONS: OPERAND_CLASS_ERROR is raised if the reference does not
lead to a LITERAL_VALUE.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— MODULE LABELS

Chapter 9
MODULE LABELS

137

Module labels are not executable instructions, but rather servé to mark

structures in a given module.

Module labels include the following opcodes:

* SEGMENT_HEADER -=- define a list of segment names

* SEGMENT_TYPE -- define the name of a current segment
* SEGMENY_VALUE == define the location of a segment

* BLOCK_BEGIN == mark the start of code of a segment
+ BLOCK_HANDLER -= mark the segment exception handler

* END_LOCALS == mark the end of local entities '

In the following sections, we treat each opcode in detail.

9.1. SEGMENT_HEADER

The SEGMENT_HEADER defines a list of all segment names defined within

the current segment.

Formally, SEGMENT_HEADER takes the form:

type SEGMENT_HEADER_INSTRUCTION is
record
DESCRIPTION = SEGMENTS.HEADER,
end record;

SEGMENT.HEADER is an implementation defined list of segment

9«2+ SEGMENT_TYPE
The SEGMENT_TYPE defines the name of a segment.,
Formallys, SEGMENT_TYPE is defined as:
type SEGMENT_TYPE is
record

TYPE_NAME : SEGMENTS.TYPE_NAME;
end record;

SEGMENTS.TYPE_NAME is a unique implementation defined name.

RATIONAL MACHINES PROPRIETARY DOCUMENT

namese.

VERSION 1.0

RMI INSTRUCTION SET =-- MODULE LABELS

9.3. SEGMENT_VALUE
' The SEGMENT_VALUE defines the address of a segment.

Formally, SEGMENT_VALUE is defined as:

type SEGMENT_VALUE is

record
MODULE_START = SEGMENTS.ADDRESS?

end record;

SEGMENTS.ADDRESS is an implementation defined address.

9«4. BLOCK_BEGIN

138

The BLOCK_BEGIN marks the start of the executable code for a segment.

Formally, BLOCK_BEGIN is defined as:

type BLOCK_BEGIN is

record
LOCATION :z SEGMENTS.REFERENCES

end records

SEGMENTS.REFERENCE is an implementation defined label.

9.5. BLOCK_HANDLER

The BLOCK_HANDLER marks the location of the exception

segment.

Formally, BLOCK_HANDLER is defined as:

type BLOCK_HANDLER is

record
LOCATION : SEGMENTS.REFERENCE?

end records

SEGMENTS.REFERENCE is an implementation defined label.

RATIONAL MACHINES PROPRIETARY DOCUMENT

handler fbr the

VERSION 1.0

RMI INSTRUCTION SET -- MODULE LABELS

9.6. END_LOCALS

END_LQOCALS marks the end of any
CONTROL_STACK.

Formallys, END_LOCALS is defined as:

type END_LOCALS is
record
OFFSET : SCOPE_DELTAS
end records.

SCOPE_DELTA is defined in Chapter S.

RATIONAL MACHINES PROPRIETARY DOCUMENT

locally

139

declared entities on the

VERSION 1.0

RMI INSTRUCTION SET -~ INSTRUCTION SET SUMMARY ; 140
Appendix A
INSTRUCTION SET SUMMARY
This appendix provides a formal definition of the Rational Machines
instruction set. The packages BASE and SEGMENT are omitted since they

define implementation dependencies; their implementation may be found in a
corresponding processor reference manual.

with BASE.,
SEGMENTS?
package CODE is
VERSION : constant == 17

type OP_CODE is

CACTION., BLOCK _BEGIN, BLOCK_HANDLER,
CALL, COMPLETE_TYPE, DECLARE_SUBPROGRAM,
DECLARE_TYPE, DECLARE_VARIABLE, END_LOCALS.,
EXECUTE, EXIT_ACCEPT, EXIT_FUNCTION.,
EXIT_PROCEDURE, EXIT_UTILITY, INDIRECT _LITERAL,
JUMP, JUMP_CASE, JUMP_NONZERO.,
JUMP_ZERO, LITERAL_VALUE, LOAD,
LOAD_TOP, POP_BLOCK., POP_BLOCK_RESULT,
REFERENCE., SEGMENT_HEADER, SEGMENT_TYPE,
SEGMENT_VALUE, SHORT_LITERAL., STORE);

type OPERAND_CLASS is
(ACCESS_CLASS, ANY_CLASS, ARRAY_CLASS,
DISCREYE_CLASS, ENTRY_CLASS, EXCEPTION_CLASS,
FAMILY_CLASS, FLOAT_CLASS, MATRIX_CLASS»,
MODULE_CLASS, PACKAGE_CLASS, RECORD_CLASS,
SEGMENT_CLASS» SELECT_CLASS., SUBARRAY_CLASS,
SUBMATRIX_CLASS, SUBVECTOR_CLASS, TASK_CLASS,

VARIANT_RECORD_CLASS, VECTOR_CLASS),

type OPERATION is

ABORT_OP, ABOVE_RANGE _OP, ABSOLUTE_VALUE_OP,
ACTIVATE_OP, ADDRESS_OP, ALL_READ_OP,
ALL_REFERENCE_OP, ALL_WRITE_OP, AND_OP,

APPEND_OP, AUGMENT_IMPORTS_OP, BELOW_RANGE_OP,
BOUNDS_CHECK_OP. BOUNDS_OP, CATENATE_OP,
CHECK_IN_ROOT_TYPE_OP, CHECK_IN_TYPE_OP, COND_CALL_OP,
CONTINUE_OP., CONVERT_ACTUAL_OP, CONVERT_OP,
COUNT_OP, : DECREMENT_OP, DIVIDE_OP,
ELABORATE_OP, ELEMENT_TYPE_OP, ENTRY_CALL_OP,
EQUAL_OP., FAMILY_CALL_OP, FAMILY_COND_OP,
FAMILY_TIMED_OP, FIELD_EXECUTE_OP., FIELD_READ_OP,
FIELD_REFERENCE_OP, FIELD_TYPE_OP, FIELD_WRITE_OP,
FIRST_OP, GET_SUBUNIT_OP, GET_SUBUNIT_COUNT_OP
GREATER_EQUAL_OP, GREATER_EQUAL_ZERO_OP, GREATER_OP,

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET ~— INSTRUCTION SET SUMMARY

GREATER_ZERO_OP,
IN_TYPE_OP,
INSTRUCTION_WRITE_OP,
IS_CONSTRAINED_OP.,
IS_ZERO_OP,
LESS_EQUAL_OP,
LESS_ZERO_OP,
MAKE_CONSTANT_OP,

"MINUS_OP,

NOT_EQUAL_OP»
NOT_NULL_OP,
OR_0P,
PREPEND_OP,
RENDEZVOUS_OP,
SCOPE_OF_RAISE_OP,
SET_SUBUNIT_OP»,
SIZE_OP,
SUBARRAY_OQP,
TIMES_OP.,
WORD_WRITE_OP),

type UNCLASSED_ACTION is

ACCEPT_ACTIVATION,.
ALTER_BREAK_MASK,
CALL_IMPORT,
DELETE_SUBPROGRAM,
IDLE,
INTRODUCE_IMPORT,
MARK_AUXILIARY.,
NAME_MODULE,
POP_AUXILIARY»
POP_TYPE,
QUERY_BREAK_CAUSE,
QUERY_RESOURCE_LIMITS,
RECOVER_RESOQURLCES,
RETURN_RESDURLCES,
SET_INTERFACE_SUBPROG,
SET_VISIBILITY,
SWAP_CONTROL,

GUARD_WRITE_OP,
INCREMENT_OP»
INTERRUPT_OP,
IS_NULL _0OP.,

LAST_OP,
LESS_EQUAL_ZERO_OP,
MAKE_ADDRESS_OP,
MAKE_CONSTRAINED_OP,
MODULO_OP.,
NOT_IN_RANGE_OP~,
NOT_OP,

PLUS_OP.,

RAISE_OP.
REVERSE_BOUNDS_OP»,
SET_BOUNDS_OP,
SET_SUBUNIT_COUNT_OP,
SLICE_READ_OP,
SUCCESSOR_OP,
UNARY_MINUS_OP.,

ACTIVATE_TASKS,
BREAK_OPTIONAL.,
CALL_REFERENCE,
ESTABLISH_FRAME,
ILLEGAL,
MAKE_NULL_UTILITY,
MARK_DATA~
NAME_PARTNER,
POP_CONTROL.,
PROPAGATE_ABORT,
QUERY_BREAK_MASK.,
QUERY_RESOURCE_STATE,
REFERENCE_IMPORT,
SET_BREAK_MASK.,
SET_NULL_ACCESS,
SIGNAL_ACTIVATED,
WRITE_IMPORT);

141

IN_RANGE_OP»
INSTRUCTION_READ_OP»
IS_CALLABLE_OPs

“IS_TERMINATED_OP»
LENGTH_OP~,
LESS_0P»
MAKE_ALIGNED_OP»
MAKE_VISIBLE_OP,
NAME_OP.,
NOT_IN_TYPE_OPs,
NOT_ZERO_OP,
PREDECESSOR_OP,
REMAINDER_OP,
RUN_UTILITY_OP,
SET_CONSTRAINT_OP,
SET_VARIANT_OP,
SLICE_WRITE_OP,
TIMED_CALL_OP,
XOR_OP,

ACTIVATE_SUBPROGRAM,
BREAK _UNCONDITIONAL,
DELETE_ITEM,
EXIT_BREAK»
INITIATE_DELAY,
MAKE_SELF.,

MARK _TYPE,
OVERWRITE_IMPORT,
POP_DATA»
QUERY_BREAK_ADDRESS,
QUERY_FRAME,
READ_IMPORT,
REMOVE_IMPORT,
SET_INYERFACE_SCOPE,
SEY_RESOURCE_LIMITS,
SIGNAL _COMPLETION,

type ELABORATION_STATE is (ACTIVE, INACTIVE, UNSPECIFIED),

type

LITERAL (OF_KIND = OPERAND_CLASS

:= DISCRETE_CLASS) is

record
case OF_KIND is
when ARRAY_CLASS =>
ARRAY_LITERAL : BASE.ARRAY_LITERAL>

when DISCRETE_

CLASS =>

DISCRETE_LITERAL : BASE.DISCRETE>
when FLOAT_CLASS =>
FLOAT_LITERAL : BASE.REAL,

when others =>

RATIONAL MACHINES PROPRIETARY DOCUMENT

VERSION 1.0

type

type

type

type

type.

type

type

type
type
type
type
type
type
type
type

null;
end cases
end record.

SUBPROGRAM_SORT is
(FOR_ACCEPT,

FOR_UTILITY);

FOR_CALL,
FOR_INTERFACE, FOR_OUTER_CALL,

TYPE_COMPLETION_MODE is
(BY_COMPONENT_COMPLETION, BY_CONSTRANING.,

BY _DEFINING,
TYPE_OPTION_SET is
record

BOUNDS_WITH_OBJECT

CONSTRAINED

DERIVED_PRIVATY

UNSIGNED

WITH_ENTRYS
end record;

E

4 Bk s 44

BY_DERIVING);

BOOLEAN
BOOLEANS
BOOLEAN>,
BODLEAN>
BOOLEAN?

RMI INSTRUCTION SET ~--— INSTRUCTION SET SUMMARY

142

TYPE_PRIVACY is (IS_LOCAL, IS_PRIVATE, IS_PUBLIC)’

TYPE_SORT is

(CONSTRAINED, CONSTRAINED_INCOMPLETE,

DEFINED.,
DERIVED,
INCOMPLETE),

VARIABLE_OPTION_SE

record
BY_ALLOCATION
DATA_TASK
DISTRIBUTOR
DUPLICATE
HEAP_TASK
UNCHECKED
WITH_CONSTRAIN
WITH_SUBTYPE
WITH_VALUE

end record;

T

T

TR '™
o

DEFINED_INCOMPLETE,
DERIVED_INCOMPLETE.

BOOLEAN?
BOOLEAN>
BOOLEAN?
BOOLEAN,
BOOLEANS
BOOLEAN,
BOOLEAN,
BOOLEAN/
BOOLEAN/

VISIBILITY is (DEFAULT, IS_MIDDEN, IS_VISIBLE)?

CASE_MAXIMUM
FIELD_INDEX
FRAME_DELTA
INNER_FRAME_DELTA
LEXICAL_LEVEL
PC_OFFSET
SCOPE_DELTA
STACK_TOP_OFFSET

subtype TARGET_LEX

is
is
is
is
is
is
is
is

is.

new
new
new
ney
new
new
new
new

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER.
INTEGER
INTEGER
INTEGER

range
range
range
range
range
range
range
range

LEXICAL_LEVEL range
subtype VARIANT_RECORD_INDEX is FIELD_INDEX range 1 .. FIELD_INDEX"LAST,

RATIONAL MACHINES PROPRIETARY DOCUMENT

iprplementation_defineds
isplemeniation _defiped’
implementation_defiped-
ioplementation_defined-
ivplemeniatiocn_defined’
isplementation_defiped’
implementation_defiped’
isplementation_defined’

ipplemeniation_defineds

YERSION 1.0

RMI INSTRUCTION SET == INSTRULTION SET SUMMARY

type FIELD_SORT = is {FIXED, VARIANT),
type FIELD_MODE is {DIRELTY, INDIRELT);

type ACCESS_SPEC (0P : OPERATION z= EQUAL_OP) is
record
case 0P 1is
when COMPONENT_OPERATIONS =>
KIND 2 FIELD_SORT;
MCDE : FIELD_MODE>
when others =>
null;
end cases
end record;

= DISCRETE_CLASS;
= EQUAL_OP) is

type FIELD_SPEC (CLASS OPERAND_CLASS :
op : OPERATION :
record
case CLASS is

when PACKAGE_CLASS | TASK_CLASS =>
OFFSET = FIELD_INDEXS

when RECORD_CLASS] SELECT_CLLASS =>
NUMBER = FIELD_INDEXS

when VARIANT_RECORD_CLASS =>

COMPONENT : ACCESS_SPEC (0OP);

INDEX s VARIANT_RECORD_INDEX?
when others =>

null;

end case,
end record;

DISCRETE_CLASS;

type OPERATOR_SPEC {(CLASS : OPERAND_CLASS
3 EQUAL_OP) is

opP OPERATION

[T 1)
Hou

record
case OP is
when FIELD_OPERATIONS =>
FIELD : FIELD_SPEC {(CLASS, OP);
when others =>
nulls;
end cases
end records

type OBJECT_REFERENCE {LEVEL : LEXICAL_LEVEL == Q) is
record
case LEVEL is
when 0 .. 1 => SCOPE_OFFSET : SCOPE_DELTAZ
when others => FRAME_OFFSET : FRAME_DELTA;
end case,
end record;

ACTION) is

type INSTRUCTION (FOR_OP : OP_CODE :

RATIONAL MACHINES PROPRIETARY DOCUMENT

143

VERSION 1.0

RMI INSTRUCTION SET —= INSTRUCTION SET SUMMARY

record
case FOR_OP is
when ACTION =>
TO_PERFORM 2 UNCLASSED_ACTION:
when BLOCX BEGIN | BLOCK_HWANDLER =
LOCATION 2 SEGMENTS.REFERENCE>
when CALL] LOAD] REFERENCE | STORE =>
DBJECT 2 OBJECT_REFERENCE?
when COMPLETE_TYPE =>

COMPLETION_CLASS
COMPLETION_MODE
DECLARE_SUBPROGRAM
SUBPROGRAM_KIND
SUBPROGRAM_STATE
SUBPROGRAM_VISIBILITY
DECLARE_TYPE
PRIVACY
TYPE_CLASS
TYPE_KIND
TYPE_OPTIONS
DECLARE_VARIABLE
VARTABLE_CLASS
VARIABLE_OPTIONS
VARIABLE_VISIBILITY
END_LOCALS
OFFSET
EXECUTE
OPERATOR
EXIT_ACCEPT

when

when

when

when
when
when
POP_AMOUNT
INDIRECT_LITERAL

VALUE_CLASS
VALUE_RELATIVE

when

when

(2]

(1] [TN TEE I) [T 1]

[T Y]

"

-

[T 1]

OPERAND_CLASS;
TYPE_COMPLETION_MODE;

=>
SUBPROGRAM_SORT;
ELABORATION_STATE;
VISISILITY;

=>
TYPE_PRIVACY;
OPERAND_CLASS?
TYPE_SORT;

TYPE_OPTION_SET;

=>
OPERAND_CLASS/
VARIABLE_OPTION_SEY?
VISIBILITY,

=
SCOPE_DELTAS

=>
OPERATOR_SPEC,

1 EXIT_FUNCTION |
EXIT_PROCEDURE | EKIT_U?ILIT?

=>
INNER_FRAME_DELTAS
=>
OPERAND_CLASS’
PC_OFFSET;

JUMP | JUMP_NONZERO] JUMP_ZERO =>

RELATIVE : PC_OFFSET;
when JUMP_CASE =>
CASE_MAX : CASE_MAXIMUM?
when LITERAL_VALUE =>
VALUE 2 LITERALS
when LOAD_TOP =>
AT _OFFSET s STACK_TOP_OFFSET:
when POP_BLOCK] POP_BLOCK_RESULT =>
TO_LEVEL _ s TARGET_LEX>
when SEGMENT_HEADER =>
DESCRIPTOR s SEGMENTS.HEADER>
when SEGMENT_TYPE =>
TYPE_NAME : SEGMENTS.TYPE_NAME,
when SEGMENT_VALUE =>
MODULE _START : SEGMENTS.ADDRESS>
when SHORT_LITERAL =>

SHORT_VALUE

RATIONAL MACHINES PROPRIETARY DOCUMENT

(1]

BASE.SHORT_LITERAL;

VERSION

144

1.0

RMI INSTRUCTION SET == INSTRUCTION SET SUMMARY 145
end cases
end record;
type WORD is array {(SEGMENTS.INSTRUCTION_INDEX) of INSTRUCTIONS

type SEGMENT is array (SEGMENTS.DISPLACEMENT range <>) of WORD;
end CQODE;

RATIONAL MACHINES PROPRIETARY DOCUMENT ' VERSION 1.0

RMI INSTRUCTION SET ~-— OBJECT/OPERATION CROSS~REFERENCE

Appendix B
OBJECT/OPERATION CROSS—-REFERENLE

146

This appendix lists each class of objects recognized by the

architecture and the instructions that operate upon them.
Balae CLASSED INSTRULTIONS

ACCESS_CLASS

COMPLETE_TYPE,ACCESS,BY_DEFINING
COMPLETE_TYPE,ACCESS,BY_DERIVING
COMPLETE _TYPE,ACCESS,BY_CONSTRAINING

DECLARE_TYPELACCESS,CONSTRAINED,LOCAL
DECLARE_TYPE,ACCESS,CONSTRAINED,PRIVATE
DECLARE _TYPELACCESS,CONSTRAINED,PUBLIC
DECLARE_TYPE,ACCESS,DEFINED,LDCAL
DECLARE_TYPE,ACCESS,DEFINED,PRIVATE
DECLARE_TYPE,ACCESS,DEFINED,PUBLIC
DECLARE_TYPE,ACCESS,DERIVED,LOCAL
DECLARE_TYPE,ACCESS,DERIVED,PRIVATE
‘DECLARE_TYPE,ACCESS,DERIVED,PUBLIC
DECLARE_TYPE-ACCESS,INCOMPLETE,LOCAL
DECLARE_TYPE,ACCESS,INCOMPLETE,PRIVATE
DECLARE_TYPE,ACCESS,INCOMPLETE,PUBLIC

DECLARE_VARIABLE,ACCESS,DUPLICATE
DECLARE_VARIABLE,ACCESS,HIDDEN
DECLARE_VARIABLE,ACCESS,HIDDEN,BY_ALLOCATION
DECLARE_VARIABLE,ACCESS-HIDDEN,BY_ALLOCATION,WITH_CONSTRAINT
DECLARE_VARIABLE,ACCESS,HIDDEN,BY_ALLOCATION,WITH_SUBTYPE
DECLARE_VARIABLE,ACCESS,HIDDEN,BY_ALLOCATION,WITH_VALUE
DECLARE_VARIABLE,ACCESS,VISIBLE
DECLARE_VARIABLE,ACCESS,VISIBLE,BY_ALLOCATION
DECLARE_VARIABLE,ACCESS,VISIBLE,BY_ALLOCATION,WITH_CONSTRAINT
DECLARE_VARIABLE,ACCESS,VISIBLE,BY_ALLOCATION,WITH_SUBTYPE
DECLARE_VARIABLE,ACCESS,VISIBLE,BY_ALLOCATION,WITH_VALUE

EXECUTE,ACCESS,ALL_READ
EXECUTE,ACCESS,ALL_REFERENCE
EXECUTE,ACCESS,ALL_WRITE
EXECUTE,ACCESS,CHECK_IN_TYPE
EXECUTE,ACCESS,CONVERT
EXECUTE,ACCESS,ELEMENT_TYPE
EXECUTE,ACCESS,EQUAL
EXECUTE,ACCESS,IN_TYPE
EXECUTE,ACCESS,IS_NULL
EXECUTE,ACCESS,NOT_EQUAL
EXECUTE,ACCESS,NOT_IN_TYPE

RATIONAL MACHINES PROPRIETARY DOCUMENT

VERSION 1.0

RMI INSTRUCTION SET -— OBJECT/OPERATION CROSS-REFERENCE 147

EXECUTE,ACCESS,NOT_NULL
ANY_CLASS

DECLARE_TYPE,ANY,DERIVED,LOCAL
DECLARE_TYPE,ANY,DERIVED,PRIVATE
DECLARE_TYPE,ANY,DERIVED,PUBLIC

DECLARE_VARIABLE,ANY,HIDDEN
DECLARE_VARIABLE,ANY,VISIBLE

EXECUTE,ANY,ADDRESS
EXECUTE,ANY,CONVERT
EXECUTE,ANY,CONVERT_ACTUAL
EXECUTE,ANY,EQUAL
EXECUTE,ANY,MAKE_ALIGNED
EXECUTE,ANY,MAKE_CONSTANT
EXECUTE,ANY,MAKE_VISIBLE
EXECUTE,ANY,NOT_EQUAL
EXECUTE,ANY,RUN_UTILITY
EXECUTE,ANY,SIZE

ARRAY_CLASS

COMPLETE_TYPE,ARRAY,BY_COMPONENT_COMPLETION
COMPLETE_TYPE,ARRAY,BY_CONSTRAINING
COMPLETE_TYPE,ARRAY,BY_DEFINING
COMPLETE_TYPE,ARRAY,BY_DERIVING

DECLARE_TYPE,ARRAY,CONSTRAINED,LOCAL
DECLARE_TYPE,ARRAY,CONSTRAINED,LOCAL,BOUNDS_WITH_OBJECTY
DECLARE_TYPE,ARRAY,LONSTRAINED,PRIVATE
DECLARE_TYPE,ARRAY,LONSTRAINED,PRIVATE,BOUNDS_WITH_OBJECT
DECLARE_TYPE,ARRAY,CONSTRAINED,PUBLIC
DECLARE_TYPE,ARRAY,CONSTRAINED,PUBLIC,BOUNDS_WITH_OBJECT
DECLARE_TYPE,ARRAY,CONSTRAINED_INCOMPLETE,LOCAL
DECLARE_TYPE,ARRAY,CONSTRAINED_INCOMPLETE,LOCAL,BOUNDS_WITH_OBJECT
DECLARE_TYPE,ARRAY,CONSTRAINED_INCOMPLETE,PRIVATE
DECLARE_TYPE,ARRAY,CONSTRAINED_INCOMPLETE,PRIVATE,BOUNDS_WITH_OBJECY
DECLARE_TYPE,ARRAY,CONSTRAINED_INCOMPLETE,PUBLIC
DECLARE_TYPE,ARRAY,CONSTRAINED_INCOMPLETE,PUBLIC,BOUNDS_WITH_OBJECY
DECLARE_TYPE,ARRAY,DEFINED,LOCAL
DECLARE_TYPE,ARRAY,DEFINED,LOCAL,BOUNDS_WITH_OBJECY
DECLARE_TYPE,ARRAY,DEFINED,PRIVATE
DECLARE_TYPE,ARRAY,DEFINED,PRIVATE,BOUNDS_WITH_OBJECT
DECLARE_TYPE,ARRAY,DEFINED,PUBLIC
DECLARE_TYYPE,ARRAY,DEFINED,PUBLIC,BOUNDS_WITH_OBJECLT

DECLARE _TYPE,ARRAY,DEFINED_INCOMPLETE,LOCAL
DECLARE_TYPE,ARRAY,DEFINED_INCOMPLETE-LOCAL,BOUNDS_WITH_OBJECT
DECLARE_TYPE,ARRAY,DEFINED_INCOMPLETE,PRIVATE
DECLARE_TYPE,ARRAY,DEFINED_INCOMPLETE,PRIVATE,BOUNDS_WITH_OBJECT
DECLARE_TYPE,ARRAY,DEFINED_INCOMPLETE,PUBLIC

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- OBJECT/OPERATION CROSS-REFERENCE 148

DECLARE_TYPE~,ARRAY,DEFINED_INCOMPLETE,PUBLIC,BOUNDS_WITH_OBJECTY
DECLARE_TYPE,ARRAY,DERIVED,LOCAL
DECLARE_TYPE,ARRAY,DERIVED,PRIVATE
DECLARE_TYPE,ARRAY,DERIVED,PUBLIC
DECLARE_TYPE,ARRAY,DERIVED_INCOMPLETE,LOCAL
DECLARE_TYPE,ARRAY,DERIVED _INCOMPLETE,PRIVATE
DECLARE_TYPE,ARRAY,DERIVED_INCOMPLETE,PUBLIC
DECLARE_TYPE,ARRAY,INCOMPLETE,LOCAL
DECLARE_TYPE,ARRAY,INCOMPLETE,LOCAL,BOUNDS_WITH_OBJECT
DECLARE _TYPE,ARRAY,INCOMPLETE,PRIVATE
DECLARE_TYPE,ARRAY,INCOMPLETE,PRIVATE,BOUNDS_WITH_OBJELT
DECLARE_TYPE,ARRAY,INCOMPLETE,PUBLIC
DECLARE_TYPE,ARRAY,INCOMPLETE,PUBLIC,BOUNDS_WITH_OBJECT

DECLARE_VARIABLE,ARRAY,DUPLICATE
DECLARE_VARIABLE,ARRAY,HIDDEN
DECLARE_VARIABLE,ARRAY,HIDDEN,UNCHECKED
DECLARE_VARIABLE,ARRAY,HIDDEN,WITH_CONSTRAINT
DECLARE_VARIABLE-,ARRAY,VISIBLE
DECLARE_VARIABLE,ARRAY,VISIBLE,UNCHECKED
DECLARE_VARIABLE,ARRAY,VISIBLE,WITH_CONSTRAINT

EXECUTE-,ARRAY,BOUNDS
EXECUTE,ARRAY,CHECK_IN_TYPE
EXECUTE,ARRAY,CONVERT
EXECUTE,ARRAY,CONYERT_ACTUAL
EXECUTE,ARRAY,ELEMENT_TYPE
EXECUTE,ARRAY,EQUAL
EXECUTE,ARRAY,FIELD_READ
EXECUTE,ARRAY,FIELD_REFERENCE
EXECUTE,ARRAY,FIELD_WRITE
EXECUTE,ARRAY,FIRST
EXECUTE,ARRAY,IN_TYPE
EXECUTE,ARRAY,LAST
EXECUTE,ARRAY,LENGTH
EXECUTE,ARRAY,NOT_EQUAL
EXECUTE,ARRAY,NOT_IN_TYPE
EXECUTE,ARRAY,REVERSE_BOUNDS
EXECUTE,ARRAY,SUBARRAY

DISCRETE_CLASS

COMPLETE_TYPE,DISCRETELBY_CONSTRAINING
COMPLETE _TYPE,DISCRETE,BY_DEFINING
COMPLETE_TYPE,DISCRETE,BY_DERIVING

DECLARE_TYPE,DISCRETE,CONSTRAINED,LOCAL
DECLARE_TYPE,DISCRETE,CONSTRAINED,PRIVATE
DECLARE_TYPE,DISCRETE,CONSTRAINED,PUBLIC
DECLARE_TYPE,DISCRETE,DEFINED,LOCAL
DECLARE_TYPE,DISCRETE,DEFINED,PRIVATE
DECLARE_TYPE,DISCRETE,DEFINED,PUBLIC

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— OBJECT/OPERATION CROSS-REFERENCE 149

DECLARE_TYPE,DISCRETE,DERIVED,LOCAL
DECLARE_TYPE,DISCRETE,DERIVED,PRIVATE
DECLARE_TYPE,DISCRETE,DERIVED,PUBLIC
DECLARE_TYPE,DISCRETE,INCOMPLETE,LOCAL
DECLARE_TYPE,DISCRETE,INCOMPLETE,LOCAL,UNSIGNED
DECLARE_TYPE,DISCRETE,INCOMPLETE,PRIVATE
DECLARE_TYPE,DISCRETE,INCOMPLETE,PRIVATE,UNSIGNED
DECLARE_TYPE,DISCRETE,INCOMPLETE,PUBLIC
DECLARE_TYPE,DISCRETE,INCOMPLETE,PUBLIC,UNSIGNED

DECLARE_VARIABLE,DISCRETE,DUPLICATE
DECLARE_VARIABLE,DISCRETE,HIDDEN
DECLARE_VARIABLE,DISCRETE,VISIBLE

EXECUTE,DISCRETE,ABOVE_RANGE
EXECUTE,DISCRETE,ABSOLUTE_VALUE
EXECUTE,DISCRETE,AND
EXECUTE,DISCRETE,BELOW_RANGE
EXECUTE,DISCRETE,BOUNDS
EXECUTE,DISCRETE,BOUNDS_CHECK
EXECUTE,DISCRETE,CHECK_IN_TYPE
EXECUTE,DISCRETE,CHECK_IN_ROOT_TYPE
EXECUTE,DISCRETE,CONVERT
EXECUTE,DISCRETE,DECREMENT)
EXECUTE,DISCRETE,DIVIDE
EXECUTE,DISCRETE,EQUAL
EXECUTE,DISCRETE,FIRST
EXECUTE,DISCRETE,GREATER
EXECUTE,DISCRETE,GREATER_EQUAL
EXECUTE,DISCRETE,GREATER_EQUAL_ZERO
EXECUTE,DISCRETE,GREATER_LZERD
EXECUTE,DISCRETE,IN_RANGE
EXECUTE,DISCRETE,IN_TYPE
EXECUTE,DISCRETE,INCREMENT
EXECUTE,DISCRETE,IS_ZERD
EXECUTE,DISCRETE,LAST
EXECUTE,DISCRETELLESS
EXECUTE,DISCRETE,LESS_EQUAL
EXECUTE,DISCRETE,LESS_EQUAL_ZERD
EXECUTE,DISCRETE,LESS_ZERO
EXECUTE,DISCRETE,MODULO
EXECUTE,DISCRETE,MINUS
EXECUTE,DISCRETE,NOT
EXECUTE,DISCRETE,NOT_EQUAL
EXECUTE,DISCRETE,NOT_IN_RANGE
EXECUTE,DISCRETE,NOT_IN_TYPE
EXECUTE,DISCRETE,NOT_ZERO
EXECUTE,DISCRETE,LOR
EXECUTE,DISCRETE,PLUS
EXECUTE,DISCRETE,PREDECESSOR
EXECUTE,DISCRETE,RAISE
EXECUTE,DISCRETE,REMAINDER

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =- OBJECT/OPERATION CROSS-REFERENCE

EXECUTE,DISCRETE,REVERSE_BOUNDS
EXECUTE,DISCRETE,TIMES
EXECUTE,DISCRETE,SUCCESSOR
EXECUTE,DISCRETE,UNARY_MINUS
EXECUTE,DISCRETE,XOR

ENTRY_CLASS
DECLARE_VARIABLE,ENTRY

EXECUTE,ENTRY,COUNT
EXECUTE,ENTRY,RENDEZVOUS

EXCEPTION_CLASS

EXECUTE-EXCEPTION,ADDRESS
EXECUTELEXCEPTION, NAME
EXECUTE,EXCEPTION,SCOPE_OF _RAISE

FAMILY_CLASS
DECLARE_VARIABLE,FAMILY

EXECUTE,FAMILY,COUNT
EXECUTE,FAMILY,RENDEZVOUS

FLDAT_CLASS

COMPLEYE_TYPE,FLOAT,BY_CONSTRAINING
COMPLETE _TYPE,FLOAT,BY_DEFINING
COMPLETE_TYPE,FLOAT,BY_DERIVING

DECLARE_TYPE,FLOAT,CONSTRAINED,LOCAL
DECLARE _TYPE,FLOAT,CONSTRAINED,PRIVATE
DECLARE_TYPE,FLOAT,CONSTRAINED,PUBLIC
DECLARE_TYPE,FLOAT,DEFINED,LOCAL
DECLARE_TYPE,FLOAT,DEFINED,PRIVATE
DECLARE_TYPE,FLOAT,DEFINED,PUBLIC
DECLARE_TYPE,FLOAT,DERIVED,LOCAL
DECLARE_TYPE,FLOAT,DERIVED,PRIVATE
DECLARE_TYPE,FLOAT,DERIVED,PUBLIC
DECLARE_TYPE,FLOAT,INCOMPLETE,LOCAL
DECLARE_TYPE,FLOAT,INCOMPLETE,PRIVATE
DECLARE_TYPE,FLOAT,INCOMPLETE,PUBLIC

DECLARE_VARIABLE,FLOAT,DUPLICATE
DECLARE_VARIABLE,FLOAT,HIDDEN
DECLARE_VARIABLE,FLOAT,VISIBLE

EXECUTE,FLOAT,ABSOLUTE_VALUE

EXECUTE,FLOAT,CHECK_IN_TYPE
EXECUTE,FLOAT,CONVERT

RATIONAL MACHINES PROPRIETARY DOCUMENT

150

VERSION 1.0

RMI INSTRUCTION SET —-— OBJELT/OPERATION CROSS—REFERENCE 151

EXECUTE,FLOAT,DIVIDE
EXECUTE,FLOAT,EQUAL
EXECUTE,FLOAT,FIRST
EXECUTE,FLOAT,GREATER
EXECUTE,FLOAT,GREATER_EQUAL
EXECUTE,FLOAT,IN_TYPE
EXECUTE,FLOAT,LAST
EXECUTE,FLOAT,LESS
EXECUTE,FLOAT,LESS_EQUAL
EXECUTE,FLOAT,MINUS
EXECUTE,FLOAT,NOT_EQUAL
EXECUTE,FLOAT,NOT_IN_TYPE
EXECUTE,FLOAT,PLUS
EXECUTE,FLOAT,TIMES
EXECUTE,FLOAT,UNARY_MINUS

MATRIX_CLASS

EXECUTE,MATRIX,BOUNDS
EXECUTE,MATRIX,CHECK_IN_TYPE
EXECUTE,MATRIX,CONVERT
EXECUTE,MATRIX,CONVERT_ACTUAL
EXECUTE,MATRIX,ELEMENT_TYPE
EXECUTE,MATRIX,EQUAL
EXECUTE,MATRIX,FIELD_READ
EXECUTE,MATRIX,FIELD_REFERENCE
EXECUTE,MATRIX,FIELD_WRITE
EXECUTE,MATRIX,FIRST
EXECUTE,MATRIX,IN_TYPE
EXECUTE,MATRIX,LAST
EXECUTE,MATRIX,LENGTH
EXECUTE,MATRIX,NOT_EQUAL
EXECUTE,MATRIX,NOT_IN_TYPE
EXECUTE,MATRIX,REVERSE_BOUNDS
EXECUTE,MATRIX,SUBARRAY

MODULE_CLASS

EXECUTE,MODULE,ABORT
EXECUTE,MODULE,ACTIVATE
EXECUTE,MODULE,AUGMENT_IMPORTS
EXECUTE,MODULE,CONTINUE
EXECUTE,MODULE,CONVERT
EXECUTE,MODULE,INTERRUPT
EXECUTE,MODULE,IS_CALLABLE
EXECUTE,MODULE,IS_TERMINATED

PACKAGE_CLASS

COMPLETE_TYPE,PACKAGE,BY_DEFINING
COMPLETE_TYPE,PACKAGE,BY_DERIVING

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-— OBJECT/OPERATION CROSS—REFERENCE

DECLARE_TYPE,PACKAGE,DEFINED,LOCAL
DECLARE_TYPE,PACKAGE,DEFINED,PRIVATE
DECLARE _TYPE,PACKAGE,DEFINED,PUBLIC
DECLARE_TYPE,PACKAGE,DERIVED,LOCAL
DECLARE_TYPE,PACKAGE,DERIVED,PRIVATE
DECLARE_TYPE,PACKAGE,DERIVED,PUBLIC
DECLARE_TYPE,PACKAGE,INCOMPLETE,LOCAL
DECLARE _TYPE,PACKAGE,INCOMPLETE,PRIVATE
DECLARE _TYPE,PACKAGE,INCOMPLETE,PUBLIC

DECLARE_VARIABLE,PACKAGE,HIDDEN
DECLARE_VARIABLE,PACKAGE,HIDDEN,DISTRIBUTOR
DECLARE_VARIABLE,PACKAGE,VISIBLE
DECLARE_VARIABLE,PACKAGE,VISIBLE,DISTRIBUTOR

EXECUTE,PACKAGE,FIELD_EXECUTE,QFIELD_NUMBER
EXECUTE,PACKAGE,FIELD_READ,QFIELD_NUMBER
EXECUTE,PACKAGE,FIELD_REFERENCE,RFIELD_NUMBER
EXECUTE,PACKAGE,FIELD_WRITE,IFIELD_NUMBER

RECORD_CLASS
COMPLETE_TYPE,RECORD,BY_COMPONENT_COMPLETION

COMPLETE _TYPE,RECORD,BY_DEFINING
COMPLETE _TYPE,RECORD,BY_DERIVING

DECLARE_TYPE,RECORD,DEFINED,LOCAL
DECLARE_TYPE,RECORD,DEFINED_INCOMPLETE,LOCAL
DECLARE_TYPE,RECORD,DEFINED,PRIVATE
DECLARE_TYPE,RECORD,DEFINED_INCOMPLETE,PRIVATE
DECLARE_TYPE,RECORD,DEFINED,PUBLIC
DECLARE_TYPE,RECORD,DEFINED_ INCOMPLETE:PUB&Ii
DECLARE TYPE:RECORﬂ:DﬁRIYEB:LOCAL
DECLARE_TYPE,RECORD,DERIVED,PRIVATE
DECLARE_TYPE,RECORD,DERIVED,PUBLIC
DECLARE_TYPE,RECORD,INCOMPLETE,LOCAL
DECLARE_TYPE,RECORD,DERIVED_ INCOMPLETE,LOCAL
DECLARE_TYPE:RECORD:INCOMPLETE:PRIVATE
DECLARE_TYPE,RECORD,DERIVED_INCOMPLETE,PRIVATE
DECLARE_TYPE,RELORD,INCOMPLETE,PUBLIC
DECLARE_TYPE,RECORD,DERIVED_INCOMPLETE,PUBLIC

DECLARE_VARIABLE,RECORD,DUPLICATE
DECLARE_VARIABLE,RECORD,HIDDEN
DECLARE_VARIABLE,RECORD,VISIBLE

EXECUTE,RECORD,CONVERT

EXECUTE,RECORD,EQUAL
EXECUTE,RECORD,FIELD_READ,RFIELD_NUMBER
EXECUTE,RECORD,FIELD_REFERENCE,QIFIELD_NUMBER
EXECUTE,RECORD,FIELD_TYPE,AFIELD_NUMBER
EXECUTE,RECORD,FIELD_WRITE,QFIELD_NUMBER

RATIONAL MACLHINES PROPRIETARY DOCUMENT

152

VERSION 1.0

RMI INSTRUCTION SET -- OBJECT/OPERATION CROSS-REFERENCE

EXECUTE,RECORD,NOT _EQUAL
SEGMENT_CLASS

DECLARE _TYPE,SEGMENT,DEFINED,LOCAL
DECLARE_TYPE,SEGMENT,DEFINED,PRIVATE
DECLARE_TYPE,SEGMENT,DEFINED,PUBLIC

DECLARE_VARIABLE,SEGMENT,HIDDEN
DECLARE_VARIABLE,SEGMENT,VISIBLE

EXECUTE,SEGMENT,ADDRESS
EXECUTE,SEGMENT,GET_SUBUNITY
EXECUTE,SEGMENT,GET_SUBUNIT_COUNT
EXECUTE,SEGMENT,INSTRUCTION_READ
EXECUTE,SEGMENT,INSTRUCTION_WRITE
EXECUTE,SEGMENT,MAKE_ADDRESS
EXECUTE,SEGMENT,SET_SUBUNIT
EXECUTE,SEGMENT,SET_SUBUNIT_COUNT
EXECUTE,SEGMENT,WORD_WRITE

SELECT_CLASS
DECLARE_VARIABLE,SELECT
EXECUTE,SELECT,FIELD_WRITE,@FIELD_NUMBER
EXECUTE,SELECT,GUARD_WRITE,AFIELD_NUMBER
EXECUTE,SELECT,RENDEZVOUS

SUBARRAY_CLASS
EXECUTE,SUBARRAY,FIELD_READ
EXECUTE,SUBARRAY,FIELD_REFERENCE
EXECUTE,SUBARRAY,FIELD_WRITE

SUBMATRIX_CLASS
EXECUTE,SUBMATRIX,FIELD_READ
EXECUTE,SUBMATRIX,FIELD_REFERENCE
EXECUTE,SUBMATRIX,FIELD_WRITE

SUBVECTOR_CLASS
EXECUTE,SUBVECTOR,FIELD_READ
EXECUTE,SUBVECTOR, FIELD_REFERENCE
EXECUTE,SUBVECTOR,FIELD_WRITE

TASK_CLASS

COMPLETE_TYPE,TASK,BY_DEFINING
COMPLETE _TYPE,TASK,BY_DERIVING

RATIONAL MACHINES PROPRIETARY DOCUMENT

153

VERSION 1.0

RMI INSTRUCTION SET -~ OBJECT/OPERATION CROSS-REFERENCE 154

DECLARE_TYPE,TASK,DEFINED,LOCAL
DECLARE_TYPE,TASK,DEFINED,LOCAL,WITH_ENTRYS
DECLARE_TYPE,TASK,DEFINED,PRIVATE
DECLARE_TYPE,TASK,DEFINED,PRIVATE,WITH_ENTRYS
DECLARE_TYPE,TASK,DEFINED,PUBLIC
DECLARE_TYPE,TASK,DEFINED,PUBLIC,WITH_ENTRYS
DECLARE_TYPE,TASK,DERIVED,LOCAL
DECLARE_TYPE,TASK,DERIVED,PRIVATE
DECLARE_TYPE,TASK,DERIVED,PUBLIC
DECLARE_TYPE,TASK,INCOMPLETE,LOCAL
DECLARE_TYPE,TASK,INCOMPLETE,LOCAL,WITH_ENTRYS
DECLARE_TYPE,TASK,INCOMPLETE,PRIVATE
DECLARE_TYPE,TASK,INCOMPLETE,PRIVATE,WITH_ENTRYS
DECLARE_TYPE,TASK,INCOMPLETE,PUBLIC
DECLARE_TYPE,TASKs INCOMPLETE,PUBLIC,WITH_ENTRYS

DECLARE_VARIABLE,TASK,DATA_TASK
DECLARE_VARIABLE,TASK,DATA_TASK,DISTRIBUTOR
DECLARE_VARIABLE,TASK,HEAP_TASK
DECLARE_VARIABLE,TASK,HEAP_TASK,DISTRIBUTOR
DECLARE_VARIABLE,TASK,HIDDEN
DECLARE_VARIABLE,TASK,HIDDEN,DISTRIBUTOR
DECLARE_VARIABLE,TASK,VISIBLE
DECLARE_VARIABLE,TASK,VISIBLE,DISTRIBUTOR

EXELUTE,TASK,COND_CALL,3FIELD_NUMBER
EXECUTE,TASK,ENTRY _CALL,BFIELD_NUMBER
EXECUTE,TASK,FAMILY_CALL,RFIELD_NUMBER
EXECUTE,TASK,FAMILY_COND,@FIELD_NUMBER
EXECUTE,TASK,FAMILY_TIMED,QFIELD_NUMBER
EXECUTE,TASK,TIMED _CALL,RFIELD_NUMBER

VARIANT_RECORD_CLASS

COMPLETE _TYPE,VARIANT_RECORD,BY_COMPONENT_COMPLETION
COMPLETE_TYPE,VARIANTY_RECORD,BY_CONSTRAINING
COMPLETE _TYPE,VARIANY_RECORD,BY_DEFINING

COMPLETE TYPE,VARIANT_RECORD,BY_DERIVING

DECLARE_TYPE,VARIANT_RECORD,CONSTRAINED,LOCAL
DECLARE_TYPE,VARIANT_RECORD,CONSTRAINED_INCOMPLETE,LOCAL
DECLARE_TYPE,VARIANT_RECORD,CONSTRAINED,PRIVATE ,
DECLARE_TYPE,VARIANT _RECORD,CONSTRAINED_INCOMPLETE,PRIVATE
DECLARE_TYPE,VARIANT_RECORD,CONSTRAINED,PUBLIC
DECLARE_TYPE,VARIANT_RECORD-CONSTRAINED_INCOMPLETE,PUBLIC
DECLARE_TYPE,VARIANT _RECORD,DEFINED,LOTAL
DECLARE_TYPE,VARIANT_RECORD,DEFINED_INCOMPLETE,LOCAL
DECLARE_TYPE,VARIANT _RECORD,DEFINED,PRIVATE
DECLARE_TYPE,VARIANT_RECORD,DEFINED_INCOMPLETE,PRIVATE
DECLARE_TYPE,VARIANT_RECORD,DEFINED,PUBLIC
DECLARE_TYPE,VARIANT _RECORD,DEFINED_INCOMPLETE,PUBLIC
DECLARE_TYPE,VARIANT _RECORD,DERIVED,LOCAL :

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —- OBJECT/OPERATION CROSS—REFERENCE 155

DECLARE_TYPE,YARIANT _RECORD,DERIVED_INCOMPLETE,LOCAL
DECLARE_TYPE,VARIANT _RECORD,DERIVED,PRIVATE
DECLARE_TYPE,VARIANT _RECORD,DERIVED_INCOMPLETE,PRIVATE
DECLARE_TYPE,VARIANT_RECORD,DERIVED,PUBLIC
DECLARE_TYPE,VARIANT _RECORD,DERIVED_INCOMPLETE,PUBLIC

DECLARE _TYPE,VARIANT_RECORD,INCOMPLETE,LOCAL '
DECLARE_TYPE,VARIANT_RECORD,INCOMPLETE,LOCAL,CONSTRAINED
DECLARE_TYPE,VARIANT _RECORD,INCOMPLETE,LOCAL,DERIVED_PRIVATE
DECLARE_TYPE,VARIANT_RECORD,INCOMPLETE,PRIVATE

DECLARE _TYPE,VARIANT _RECORD,INCOMPLETE,PRIVATE,CONSTRAINED
DECLARE_TYPE,VARIANT _RECORD,INCOMPLETE,PRIVATE,DERIVED_PRIVATE
DECLARE_TYPE,VARIANT_RECORD,INCOMPLETE,PUBLIC
DECLARE_TYPE,VARIANT _RECORD,INCOMPLETE,PUBLIC,CONSTRAINED
DECLARE_TYPE,VARIANT _RECORD,INCOMPLETE,PUBLIC,DERIVED_PRIVATE

DECLARE_VARIABLE,VARIANT_RECORD,DUPLICATE
DECLARE_VARIABLE,VARIANT_RECORD,HIDDEN
DECLARE_VARIABLE,VARIANT_RECORD,HIDDEN,WITH_CONSTRAINT
DECLARE_VARIABLE,VARIANT_RECORD,VISIBLE
DECLARE_VARIABLE,VARIANT_RECORD,VISIBLE,WITH_CONSTRAINT

EXECUTE,VARIANT_RECORD,CHECK_IN_TYPE

EXECUTE,VARIANT_RECORD,CONVERT

EXECUTE,VARIANT_RECORD,EQUAL
EXECUTE,VARIANT_RECORD,FIELD_READ,FIXED,DIRECT,@FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_READ,FIXED,INDIRECT,3FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_READ,VARIANT,DIRECT,3FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_READ,VARIANT,INDIRECT,3FIELD_NUMBER
EXECUTE,VARIANT _RECORD,FIELD_REFERENCE,FIXED,DIRECT,3FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_REFERENCE,FIXED,INDIRECT,FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_REFERENCE,VARIANT,DIRECT,3FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_REFERENCE,VARIANT,INDIRECT,aFIELD_NUMBER
EXECUTE,VARIANT _RECORD,FIELD_WRITE,VARIANT,INDIRECT,3FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_WRITE,FIXED,DIRECT,RFIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_WRITE,FIXED,INDIRECT,QFIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_WRITE,VARIANT,DIRECT,3FIELD_NUMBER
EXECUTE,VARIANT_RECORD,FIELD_TYPE,RFIELD_NUMBER
EXECUTE,VARIANT_RECORD,IS_CONSTRAINED
EXECUTE,VARIANT_RECORD,IN_TYPE
EXECUTE,VARIANT_RECORD,MAKE_CONSTRAINED
EXECUTE,VARIANT_RECORD,NOT_EQUAL

EXECUTE,VARIANT_RECORD,NOT_IN_TYPE
EXECUTE,VARIANT_RECORD,SET_BOUNDS,aFIELD_NUMBER
EXECUTE,VARIANT_RECORD,SET_CONSTRAINT
EXECUTE,VARIANT_RECORD,SET_VARIANT,3FIELD_NUMBER

VECTOR_CLASS
EXECUTE,VECTOR,APPEND
EXECUTE,VECTOR,AND

EXECUTE,VECTOR,BOUNDS
EXECUTE,VECTOR,CATENATE

RATIONAL MALHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =- OBJECT/OPERATION CROSS—REFERENCE 156

EXECUTE,VECTOR,CHECK_IN_TYPE
EXECUTE,VECTOR,CONVERT
EXECUTE,VECTOR,CONVERT_ACTUAL
EXECUTE,VECTOR,ELEMENT_TYPE
EXECUTE,VECTOR,EQUAL
EXECUTE,VECTOR,FIELD_READ
EXECUTE,VECTOR,FIELD_REFERENCE
EXECUTE,VECTOR,FIELD_WRITE
EXECUTE,VECTOR,FIRST
EXECUTE,VECTOR,IN_TYPE
EXECUTE,VECTOR,LAST
EXECUTE,VECTOR,LENGTH
EXECUTE,VECTOR,NOT
EXECUTE,VECTOR,NOT_EQUAL
EXECUTE,VECTOR,NOT_IN_TYPE
EXECUTE,VECTOR,OR
EXECUTE,VECTOR,PREPEND
EXECUTE,VECTOR,REVERSE_BOUNDS
EXECUTE,VECTOR,SLICE_READ
EXECUTE,VECTOR,SLICE_WRITE
EXECUTE,VECTOR, XOR

Ba2. UNCLASSED INSTRUCTIONS

ACTION

ACTION,ACCEPT_ACTIVATION
ACTION,ACTIVATE_SUBPROGRAM
ACTION,ACTIVATE_TASKS
ACTION,ALTER_BREAK_MASK
ACTION,BREAK_OPTIONAL
ACTION,BREAK_UNCONDITIONAL
ACTION,CALL_IMPORT
ACTION,CALL_REFERENCE
ACTION,DELETE_ITEM
ACTION,DELETE_SUBPROGRAM
ACTION,ESTABLISH_FRAME
ACTION,EXIT_BREAK
ACTION,IDLE
ACTION,ILLEGAL
ACTION,INITIATE_DELAY
ACTION,INTRODUCE _IMPORT
ACTION,MAKE_NULL_UTILITY
ACTION,MAKE_SELF
ACTION,MARK_AUXILIARY
ACTION,MARK_DATA
ACTION,MARK_TYPE
ACTION,NAME_MODULE
ACTION,NAME_PARTNER

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- OBJECY/OPERATION CROSS—REFERENCE

ACTION,OVERWRITE_IMPORT
ACTION,POP_AUXILIARY
ACTION,POP_CONTROL
ACTION,POP_DATA
ACTION,POP_TYPE
ACTION,PROPAGATE_ABORT
ACTION,QUERY_BREAK_ADDRESS
ACTION,QUERY_BREAK_CAUSE
ACTION,QUERY_BREAK_MASK
ACTION,QUERY_FRAME
ACTION,QUERY_RESOURCE_LIMITS
ACTION,QUERY_RESOURCE_STATE
ACTION,READ_IMPORT
ACTION,RECOVER_RESOURCES
ACTION,REFERENCE_IMPORT
ACTION,REMOVE_IMPORT
ACTION,RETURN_RESOURCES
ACTION,SET_BREAK_MASK
ACTION,SET_INTERFACE_SCOPE
ACTION,SET_INTERFACE_SUBPROG
ACTION,SET_NULL_ACCESS
ACTION,SET_RESOURCE_LIMITS
ACTION,SET_VISIBILITY
ACTION,SIGNAL_ACTIVATED
ACTION,SIGNAL_COMPLETION
ACTION,SWAP_CONTROL
ACTION,WRITE_IMPORT

CALL
CALL,RLEX_LEVEL_DELTA

DECLARE_SUBPROGRAM
DECLARE_SUBPROGRAM,FOR_ACCEPT
DECLARE_SUBPROGRAM,FOR_CALL,HIODEN,ACTIVE
DECLARE_SUBPROGRAM,FOR_CALL,HIDDEN,INACTIVE
DECLARE_SUBPROGRAM,FOR_CALL,VISIBLE,ACTIVE
DECLARE_SUBPROGRAM,FOR_CALL,VISIBLE,INACTIVE
DECLARE_SUBPROGRAM,FOR_INTERFACE
DECLARE_SUBPROGRAM,FOR_OUTER_CALL,HIDDEN
DECLARE_SUBPROGRAM,FOR_OUTER_CALL,VISIBLE
DECLARE_SUBPROGRAM,FOR_UTILITY

EXIT_ACCEPT
EXIT_ACCEPT,3NEW_TOP_OFFSET

EXIT_FUNCTION

EXIT_FUNCTION,3NEW_TOP_OFFSET

RATIONAL MACHINES PROPRIETARY DOCUMENT

157

VERSION 1.0

RMI INSTRUCTION SET —— OBJECT/OPERATION CROSS—-REFERENCE

EXIT_PROCEDURE
EXIT_PROCEDURE,QNEW_TOP_OFFSET
EXIT_UTILITY
EXIT_UTILITY,3NEW_TOP_OFFSET
INDIRECT_LITERAL.
INDIRECT_LITERAL,ARRAY,3PC_DISPLACEMENT
INDIRECT _LITERAL,DISCRETE,3PC_DISPLACEMENT
INDIRECT_LITERAL,FLOAT,3PC_DISPLACEMENT
Jump
JUMP,@PC_DISPLACEMENT
JUMP _CASE
JUMP_CASE,@CASE_MAXIMUN
JUMP_NONZERO
JUMP_NONZERO,8PC_DISPLACEMENT
JUMP_ZERO
JUMP_ZERO,Q3PC_DISPLACEMENT
LOAD
LOAD,@LEX_LEVEL_DELTA
LOAD_TOP
LOAD_TOP,ASTACK_TOP_OFFSET
POP_BLOCK
POP_BLOCK,3TARGET_LEX
POP_BLOCK_RESULT
POP_BLOCK_RESULT,3TARGT_LEX
SHORT_LITERAL
SHORT_LITERAL,3LITERAL_VALUE

STORE

RATIONAL MACHINES PROPRIETARY DOCUMENT

158

VERSION 1.0

RMI INSTRUCTION SEYT -~ OBJECT/OPERATION CROSS-REFERENCE

STORE,ALEX_LEVEL_DELTA
REFERENCE

REFERENCE,QLEX_LEVEL_DELTA

RATIONAL MACHINES PROPRIETARY DOCUMENT

159

VERSION 1.0

RMI INSTRUCTION SET -- GLOSSARY 160

CLASS

EXCEPTION

KIND

MODULE

OBJECT

REFERENCE

SEGMENT

Appendix C
GLOSSARY

Refers to membership in a set of data which are recognized
and manipulated by the Rational Machines architecture. The
class of an object determines its representation in memorys
and hence the primitive means for interpreting the object.
The definition of a <class specifies a set of operations
applicable to objects of that class; no other operations on
an object of a given class are legals and furthermoresr
objects of incompatible classes may not implicitly operate
with one another.

An event that causes suspension of normal program
execution.

Used to distinguish distinct wvarieties of memory {i.e.
programs, control, type, data, import, and gqueuel), and to
distinguish a particular representation for a word in
memory. ,

Used.to indicate the logical group of segments which are

associated with +the value of a package or tasks, and which
share the same name. A given module will a2iways have a
control segment and program segment allocated, but may or
may not have type, datar importsr or queue segments
allocated.

An entity together with some means for identification and
interpretation of the entity. The means of interpretation
may provide selection of attributes of the entitys such. as
values, text representations etCar may ~provide
transformation into other objects, or may ,pravide'the
mechanism for the construction and interpretation of other

objects. An object is an instance of a particular class
and hence 1is associated with a set of applicable
operations. An object in the sense of the Rational

Machines architecture has a broader definition than in Adas
for example, the architecture recognizes program units such
as packages as tasks as objects.

Refers to an address exther in the form of lex levelZldelta
in an instruction {an object reference) or in the form of
processor/memory kind/offset/index (a machine logical
address).

A portion of ¢the full logical address space of the
architecture, referenced using a specific processor/memory
kind/. The term STACK is synonymous with SEGMENY in the
case of control, typer and data memory kinds.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— GLOSSARY 161

SPACE Used to either describe the total 1logically addressed
memory of the architecture or that portion wahich may be
referenced using a logical name.

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -— Index

Index

ABORT_OP 108
ABOVE_RANGE_OP 115
ABSOLUTE_VALUE_OP 87
ACCEPT_ACTIVATION 81
ACCESS_CLASS 3, 146
ACCESS_OPERATION 85
ACCESS_SPEC 83, 143
ACTION 59

ACTIVATE_OP 108
ACTIVATE_SUBPROGRAM 73
ACTIVATE_TASKS 61
ACTIVATION_ACTION 60
Ada 1, 2

ADDRESS_OP 93
ALL_READ_OP 85
ALL_REFERENCE_OP 86
ALL_WRITE_OP 858
ALTER_BREAK_MASK 67
AND_OP 105

ANY_CLASS 3, 147
APPEND_OP 91
ARITHMETIC _OPERATION 87
ARRAY_CLASS 3, 147
ARRAY_OPERATION 90
ATTRIBUTE_OPERATION 93
AUGMENT_IMPORTS_OP 109

BELOW_RANGE_OP 115
BLOCK_BEGIN 138
BLOCK_HANDLER 138
BOUNDS_CHECK_OP 97
BOUNDS_OP 97
BOUNDS_OPERATION 97
BREAK_OPTIONAL &7
BREAK_UNCONDITIONAL 68

CALL 125

CALL_IMPORT 64
CALL_REFERENCE 74
CAPABILITY_ERROR 4
CASE_MAXIMUM 125, 142
CATENATE_OP 91
CHECK_IN_ROOT_TYPE_OP 106
CHECK_IN_TYPE_OP 107
Class 2, 3, 160
COMPLETE_TYPE 32
COMPONENT_OPERATION 83
COND_CALL_OP 100
CONSTRAINT_ERROR S

RATIONAL MACHINES PROPRIETARY DOCUMENT

162

VERSION 1.0

RMI INSTRUCTION SET -- Index

CONTINUE_OP 109

Control return instruction
Lontrol transfer instruction
CONVERSION_OPERATION 98
CONVERT_ACTUAL_OP 98
CONVERT_oOP 98

COUNT _OP 93
CREATION_ACTION 62

Data movement 121
Data movement instruction

Declarative instruction bs

DECLARE_SUBPROGRAM 57
DECLARE_TYPE 8
DECLARE_VARIABLE 47
DECREMENT_OP 88
DELETE_ITEM 74
DELETE_SUBPROGRAM 75
DISCRETE_CLASS 3, 148
DIVIDE_OP 38

ELABORATE_OP 109
ELABORATION_ERROR S
ELABORATION_STATE SBrs 141
ELEMENT_TYPE_OQOP 91
END_LOCALS 139
ENTRY_CALL_OP 100
ENTRY_CLASS 3, 150
EQUAL_OP 116
ESTABLISH_FRAME 68
Exception 4s 160
EXCEPTION_CLASS 3, 150
EXCEPTION_OPERATION 99
EXECUTE 281

EXIT_ACCEPY 131
EXIT_BREAK 69
EXIT_FUNCTION 130
EXIT_PROCEDURE 129
EXIT_UTILITY 132

FAMILY_CALL_OP 101
FAMILY_CLASS 3, 150
FAMILY_COND_OP 101
FAMILY_TIMED_OP 101
Field 2
FIELD_EXECUTE_OP 102
FIELD_INDEX 83, 142
FIELD_MODE 83, 143
FIELD_OPERATION 82, 100
FIELD_READ_OP 102
FIELD_REFERENCE_OP 102
FIELD_SORT 83, 143

RATIONAL MACHINES PROPRIETARY DOCUMENT

163

VERSION 1.0

RMI INSTRUCTION SET =-- Index 184

FIELD_SPEC 82, 143
FIELD_TYPE_OP - 103
FIELD_WRITE_OP 103
FIRST_OP 94
FLOAT_CLASS 3, 150
FRAME_DELTA 121, 142

GET_SUBUNIT_COUNT_OP 110
GET_SUBUNIT_OP 109, 111
GREATER_EQUAL_OP 117
GREATER_EQUAL_ZERO_OP 117
GREATER_OP 117
GREATER_ZERO_OP 118
GUARD_WRITE_OP 103

High—order language 2

IDLE 73
ILLEGAL 73
Imperative instruction 6, 59

IMPORT_ACTION 64
INCREMENT_OP 88
INDIRECT_LITERAL 135
INITIATE_DELAY 81
INNER_FRAME_DELTA 129, 142
Instruction 2¢ 145
INSTRUCTION_ERROR 5
INSTRUCTION_READ_OP 110
INSTRUCTION_WRItE_OP 110
INTERFACE_ACTION 68
INTERRUPT_OP 111
INTRODUCE_IMPORT 64
IN_RANGE_OP 115

IN_TYPE_OP 107
IS_CALLABLE_OP 94
IS_CONSTRAINED_OP 94
IS_NULL_OP 856
IS_TERMINATED_OP 95
IS_ZERO_OQO°P 118

JUMP 126
JUMP_CASE 128
JUMP_NONZERO 126
JUMP_ZERO 127

KIND 160

LAST_OP 95

LENGTH_OP 95
LESS_EQUAL_OP 119
LESS_EQUAL_ZERO_OP 119
LESS_OP 118

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET —-- Index

LESS_ZERDQ_OP 119
LEXICAL_LEVEL 121, 142

LITERAL

134, 142

Ltiteral declaration 6r 134
LITERAL_VALUE 134

LOAD

122

LOAD_TOP 122
LOGICAL_OPERATION 105

MACHINE_RESTRICTION 5
MAKE_ADDRESS_OP 111
MAKE_ALIGNED_OP 112
MAKE_CONSTANT_OP 113
MAKE_CONSTRAINED_OP 113
MAKE_NULL_UTILITY 62
MAKE_SELF 63
MAKE_VISIBLE_OP 113
MARK_AUXILIARY 78
MARK_DATA 78
MARK_TYPE 78

MATRIX_

CLASS 3, 151

MEMBERSHIP_OPERATION 106
MINUS_OP 88

MODULE
Module
MODULE

MODULE_
MODULE_
MODULE_

NAME

160
label 6
LABELS 137
CLASS 3, 15%
op 89 ‘
OPERATION 108

99

NAME_MODULE 63
NAME_PARTNER 63
NOT_EQUAL_OP 120
NOT_IN_RANGE_OP 116

NOT_IN_

TYPE_OP 107

NOT_NULL_OP 87

NOT_OP

105

NOT_ZERO_OP 120
NULL_ACTION 73
NULL_WORD 145
NUMERIC_ERROR 5

Object

2, 160

Object~oriented programming

OBJECT_

Opcode

Dperand

REFERENCE 121, 143
2
2

OPERAND_CLASS 2, 140
OPERAND_CLASS_ERROR 5
OPERATION 84, 141

OPERATOR_SPEC 82, 143

RATIONAL MACHINES PROPRIETARY DOCUMENT

165

VERSION 1.0

RMI INSTRUCTION SET -— Index

OP_CODE 6, 140
OR_OP 105
OVERWRITE_IMPORT

Package 2
PACKAGE_CLASS 3,
PL_DFFSET 125, 1
PLUS_OP 89
POP_AUXILIARY 79
POP_BLOCK 132
POP_CONTROL 79
POP_DATA 79
POP_TYPE 80
PREDECESSOR_OP 9
PREPEND_OP 91
Program segment
PROGRAM_ERROR 5
PROPAGATE_ABORT

QUERY_BREAK_ADDRES
QUERY_BREAK_CAUSE
QUERY_BREAK_MASK
QUERY_FRAME 70

QUERY_RESOURCE_LIM
QUERY_RESOURCE_STA

RAISE_OP 99
RANDOM_OPERATION
RANGE_OPERATION
Rational Machines
Rational Machines
Rational Machines
READ_IMPORT 65
RECORD_CLASS 3,
RECOVER_RESOURCES
REFERENCE ;
REFERENCE_ACTION
REFERENCE_IMPORT
REFERENCE_OPERATIO
RELATIONAL _OPERATI
REMAINDER_OP B9
REMOVE_IMPORT 66
RENDEZVYOUS_OP 11
RESOURCE_ACTION
RESOURCE_ERROR 5
RETURN_RESOQURLES
REVERSE_BOUNDS_OP

65

151
42

6
2
81

S 69
69
70

ITS 76
TE 76

112

115

Architecture 1

Run=time Structure 1, 3
System Concept 1

152
77

124, 160

73

65

N 60
ON 116

4
76

77
97

RUN_UTILITY_OP 114

SCOPE_DELTA . 121,

142

SCOPE_OF_RAISE 99

Segment

RATIONAL MACHINES PROPRIETAR

2, 145, 160

Y DOCUMENT

166

VERSION 1.0

RMI INSTRUCTION SET == Index 167

SEGMENT_CLASS 3, 153
SEGMENT_HEADER 137
SEGMENT_TYPE 137
SEGMENT_VALUE 138
SELECT_CLASS 3, 153
SET_BOUNDS_OP 104
SET_BREAK_MASK 71
SET_CONSTRAINT_OP 114
SET_INTERFACE_SLOPE 71
SET_INTERFACE_SUBPROGRAM 72
SET_NULL_ACCESS 75
SET_RESOURCE_LIMITS 77
SET_SUBUNIT_COUNT_OP 112
SET_VARIANY_OP 104
SET_VISIBILITY 75
SHORT_LITERAL 135
SIGNAL_ACTIVATED 61
SIGNAL_COMPLETION 61
SIZE_OP 96
SLICE_READ_OP 92
SLICE_WRITE_OP 92
Software engineering 2
SPACE 161

STACK_ACTION 77
STACK_TOP_OFFSET 121, 142
STORAGE_ERROR 5

STORE 123
SUBARRAY_LLASS 4, 153
SUBARRAY_OP 92
SUBMATRIX_CLASS 4, 153
SUBPROGRAM_SORTY 58, 142
SUBVECTOR_CLASS 4
SUCCESSOR_OP 96
SWAP_CONTROL 80

TARGET_LEX 129, 142
Task 2

TASKING_ERROR 5
TASK_ACTION 31
TASK_CLASS 4r 153
TIMED_CALL_OP 104
TIMES_OP 9D
TYPE_COMPLETION_MODE 32, 142
TYPE_ERROR 5
TYPE_OPTION_SET 9, 142
TYPE_PRIVACY 8, 142
TYPE_SORT Y, 142

UNARY_MINUS_OP 90
UNCLASSED_ACTION 60, 141

VARIABLE_OPTION_SET 47, 142

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET -- Index 168

VARIANT_RECORD_CLASS 4, 154
VARIANT_RECORD_INDEX 83, 142
VECTOR_CLASS 155

VISIBILITY 47, 142
VISIBILITY_ERROR 6

Word 2, 145
WORD_WRITE_OP 112
WRITE_IMPORT 66

XOR_OP 106

RATIONAL MACHINES PROPRIETARY DOCUMENT VERSION 1.0

RMI INSTRUCTION SET =— Table of Lontents

Table of Contents
1. INTRODUCTION
2. GENERAL CONCEPTS

2e1. CLASSES
2.2« EXCEPTIONS
2.3. OPCODES

3. DECLARATIVE INSTRUCTIONS

3.7. DECLARE_TYPE
311, ACCESS_CULASS
3.1.2. ARRAY_CLASS
3473« DISCRETE_CLASS
3elabs FLOAT_CLASS
3.1.5. PACKAGE_CLASS
3e1e6e RECORD_CLASS
3ale7« SEGMENT_CLASS
3.1.9. VARIANT_RECORD_CLASS
3.2. COMPLETE_TYPE
3.2.1. ACCESS_CLASS
3.2.2. ARRAY_CLASS
3.2.3. DISCRETE_CLASS
3.2.4. FLOAT_CLASS
3.2.5. PACKAGE_CLASS
3.2.6. RECORD_CLASS
3e2e7. TASK_CLASS
3.2.8. VARIANT_RECORD_CLASS
3.3. DECLARE_VARIABLE
3.3.1. ACCESS_CLASS
34342« ANY_CLASS
3.3.3. ARRAY_CLASS
3e3.4. DISCRETE_CLASS
3354 ENTRY_CLASS
3.3.6. FAMILY_CLASS
3.3.7. FLOAT_CLASS
3.3.8. MATRIX_CLASS
3a3.9« PACKAGE_CLASS
3.3.10. RECORD_CLASS
3.3.71. SEGMENY_CLASS
3243412+ SELECT_CLASS
323413 TASK_CLASS
3.3.14. VARIANT_RECORD_CLASS
3.3.15. VECTOR_CLASS
3.4. DECLARE_SUBPROGRAM

RATIONAL MACHINES PROPRIETARY DOCUMENT

'.m

VERSION 1.0

RMI INSTRUCTION SET -- Table of Contents

4. IMPERATIVE INSTRUCTIONS

ACTION
LT I R
4.1.3.
4a1a5.
baleba
bele?a
4.1.9%.

EXECUTE

4.2.1.
4. 2'3. ‘
halaba
422454
4e2.7
“‘ 2. 8.
4.2.10.
4. 2']1.
422124
4.2.13.
42014

ACTIVATION_ACTION
CREATION_ACTION
IMPORT_ACTION
INTERFACE_ACTION

NULL_ACTION

REFERENCE_ACTION
RESOURCE_ACTION
STACK_ACTION
TASK_ACTION

ACCESS_OPERATION
ARITHMETIC_OPERATION
ARRAY_OPERATION
ATTRIBUTE_OPERATION
BOUNDS_OPERATION
CONVERSION_OPERATION
EXCEPTION_OPERATION
FIELD_OPERATION

LOGICAL_OPERATION
MEMBERSHIP_CPERATION

MODULE_OPERATION
RANDOM_OPERATION
RANGE_OPERATION

RELATIONAL _OPERATION

5. DATA MOVEMENT INSTRUCTIONS

5.1

LOAD

5.2. LOAD_TOP

543.
Seba

STORE

REFERENLCE

6. CONTROL TRANSFER INSTRUCTIONS

6.1
6.2‘-
6‘3.
6.4.
6.5.

CALL
JUMP

JUMP_NONZERO
JUMP_ZERO
JUMP_CASE

7. CONTROL RETURN INSTRUCTIONS

Te1a
?.2.
7.3,
Teba
?‘s.
-

RATIONAL MACHINES PROPRIETARY DOCUMENT

EXIT_PROCEDURE
EXIT_FUNCTION
EXIT_ACCEPT
EXIT_UTILITY
POP_BLOCK
POP_BLOCK_RESULT

ii

59
59

62
64
66
73

73

76
77

81
85
87
90
93
97
98
99

100

105
106
108
112
115
116

121

122
122

123

124
125

125
126
126
127
128

129

129
130
131
131
13

132

VERSION 1.0

RMI INSTRUCTION SET -- Table of Contents

8. LITERAL DECLARATIONS

8.1,
8.2.
8.3.

9. MODULE

9.1.
9'2-
9. 3‘
Vaba
Fe5.
9.6

LITERAL_VALUE
SHORT_LITERAL
INDIRECT_LITERAL

LABELS

SEGMENT_HEADER
SEGMENT_TYPE
SEGMENT_VALUE
BLOCK _BEGIN
BLOCK_HANDLER
END_LOCALS

A. INSTRUCTION SET SUMMARY

B. OBJECT/OPERATION CROSS—REFERENCE

3'1.
8-2‘

CLASSED INSTRUCTIONS
UNCLASSED INSTRUCTIONS

Ca GLOSSARY

Index

RATIONAL MACHINES PROPRIETARY DOCUMENT

iii

134

134

135
135

137
137
137
138
138
138
139
140
146

146
156

160
162

VERSION 1.0

