RRRR EEEEE cccce 000 EEEEE RRRR

v Vv Y Y 4 4
R R E c 0 0OV V E R R Y Y 4 4
R R E c 0 0V V E R R YY 4 4
RRRR EEEE € 0O O V V EEEE RRRR 7 44444
R R E c 0 0 V V E R R Y 4
R R E c 0D 0O VV E R R Y 4
R R EEEEE C€CcC 000 v EEEEE R R Y 4
DDDD 000 ccee 4 3 1
D DO O C 4 4 11
D DO O C 4 4 1
D D O O C 44444 1
D DO O C 4 1
D D O O C 4 1
DDDD 000 ccec 4 111

#START# Job RECOVE Req #112 for WAW Date 23-Jul-82 21:27:39 Monitor: Rational
File RM: <GPA. DOC>RECOVERY4.DOC. 41, created: 18-Jul-82 12:04:1%9

printed: 23-Jul-82 21:27:40
Job parameters: Request created: 23-Jul-82 21:27: 39 Page limit: 126 Forms: NORMA
File parameters: Copy: 1 of 1 Spacing: SINGLE File format:ASCII Print mode: A



Crash Recovery & Disk Recovery

Capabilities of the R1000
DRAFT 4

July 15, 1982

i. Overview

The purpose of this document is discuss the basic recovery
capabilities of a rational machine. We are primarily concerned here
with crashes, single processor failure, and IOP/disk failure.
Hardware failures such as failing tape units, lineprinters.,
communications, etc are not considered here. System software
|
|
i

component failure is also not considered here.

Table of Contents
1. Overview
Crash recovery semantics
Disk recovery semantics

Crash recovery details

g b WP

Disk recovery details
Appendices:
A. MTBF and MTD for disk system

B. Backup and recovery times
C. Independent volume reconstruction



2. Crash recovery semantics

This section defines snapshots and crash recovery from the point of
view of an Ada programmer.

2.1 Definition of crash

A crash is an event which causes the system to stop operation. The
event does not cause disk data loss other than writes in progress at
the moment of the crash.

Crashes are typically caused by some sort of hardware failure.
Software may also crash the system, but presumably only in VERY rare
circumstances.

Crash recovery refers to the action taken by the system when it
comes back up after a crash.

2.2 The lifetime tree

Let unit mean a package, task or collection. All concrete objects
are either units, or integral components of a unit. I# a unit is
annihilated, its integral components also cease to exist. In this
context, there is a parent-child relationship between units, as
defined by Ada. Thus, there is a tree of units. The root is the
R1000 package. A unit exists iff it is reachable from the root of
this tree.

2.3 The notion of permanence

The permanent lifetime tree is defined as the lifetime tree less all
of its temporary subtrees. A temporary subtree is always rooted by a
task unit. By default, all tasks are temporary. There is "permanent"
pragma which may be applied to a task to make it be part of the
permanent subtree. We may also desire some other method of control
over the permanent attribute so that not all instances of a particular
task type are constrained to the same value of the permanent
attribute. OFf course, declaring a task to be permanent is legal iff
there are no intervening temporary tasks in the path from the root (of
the lifetime tree) to the task being declared permanent.

The above definition implies that all directory packages are
permanent. And it implies that all non—task. non-collection objects
placed in a directory are permanent.

Examples: Diana is in the permanent portion of the tree (expect for
local copies serving as a sort of cache). Permanent files and other
such objects are obviously in the permanent portion of the lifetime
tree. Tasks created by the environment to run user commands are in
temporary subtrees. Sessions run in the temporary portion of the
lifetime tree.

2.4 Snapshot

Conceptually, a snapshot is defined as follows. The physical
processors are stopped at instruction boundaries. The state of all
pages of all address spaces which comprise the permanent portion of
the lifetime tree are recorded (on disk) as an atomic action. The
processors are then allowed to proceed. Note that the saved state is



retained until successful completion of the next snapshot, at which
point it is discarded.

The snapshot is transparent to programs running on the system with
the following exception: Permanent tasks will be unrunable for
Troughly a half a second while the snapshot is taking place. Temporary
tasks continue execution.

Normally, a special system task causes snapshots to be taken at
regular intervals (like every 3 minutes). However, it is possible for
the customer to have explicit control over the timing of snapshots.

Crash recovery involves restoring the system to the previous
snapshot. This implies that temporary obgjects vanish.

The execution state of a permanent task is included in the snapshot.
Thus, a task which was waiting for a rendezvous (at the instant of the
snapshot) will still be waiting for a rendezvous after recovery. I¢
the task was running, it will be running after recovery (at wherever
the saved PC indicates). If the task was delaying, its delay is
restarted as part of recovery. The task state also includes all
intact messages from calling tasks (including temporary ones). It
placing a message into a task’s queue is not atomic with respect to
snapshots, then assume that partial messages are automatically
discarded when encountered.

2.5 Rendezvous between permanent and temporary task

I# we have a permanent client and temporary server involved in a
rendezvous when the system crashes, recovery will cause the server to
disappear. The client will receive TASKING_ERROR. This is consistent
with Ada defined abort semantics.

If, on the other hand, the client is temporérg and the server
permanent then the server will carry the rendezvous (with a ghost) to
completion without knowing that the client has vanished. This is also
consistent with Ada abort semantics.

2.8 Atomic operations on permanent objects

Consider a temporary task making a change to an aobject in the
permanent portion of the lifetime tree. The system can take a
snapshot at any time; and it might later restore itself to that
snapshot. This is equivalent to annihilation of the temporary task at
any arbitrary point in its execution.

To properly program updates to a permanent object in this
environment, one should always have a permanent task which protects
the object. Assuming that an atomic action takes the obgject from one
consistent state to another, then the permanent task should have entry
calls for the various atomic actions which can be applied to the
object. Since the state of the permanent task and the permanent
object are snapshotted in synchrony, and once the task starts the
action it gets to finish it, the action is atomic even in the face of
arbitrary snapshot and recovery points.

It is theoretically possible to have atomic actions be as simple as
assigning @ single value to some variable in the permanent object.
Consequently, one might argue that atomic updates to the permanent
object need not be routed through tasks.



For example, suppose we have a tree represented in a permanent
collection. To atomically change a particular subtree, one could make
a new copy of the subtree which includes the desired change, and
change the pointer to the subtree (in the parent node) with a single
assignment statement. (Garbage, created by interruption of the
algorithm, is auvtomatically reclaimed by the garbage collector).

To program updates to permanent objects from temporary tasks, the
Ada programmer needs a precise specification of the atomicity of all
operations available in Ada. We certainly don’t want the programmer
to have to understand the architecture, and second guess the code
generator, just to program updates to permanent objects. For example,
suppose the name of the permanent object is A, and it has type T. Is
the assignment "A := B" atomic with respect to crashes? The answer
seems to depend on T. If T is a private type, then the answer is
unknown in the context of the assignment statement. This implies that
abstract type specifications should include information about the
atomicity of operations on the type.

Programming in this fashion generally involves very subtle details
totally unrelated to the conceptual object at hand; such details make
program correctness arguments even more difficult. Thus, this
programming practice is prone to bugs which exhibit themselves only
after recovery.

Furthermore, a program which takes advantage of these subtleties
will undoubtedly not be portable to other RMI architectures.

Consequently, there will be no specification of what Ada operations
are atomic. One cannot update a permanent object from a temporary
task and expect defined results.

2.7 Nested atomic actions

Suppose we have permanent tasks A and B which protect corresponding
objects, and provide appropriate atomic actions. Suppose we wish to
program a larger atomic action (like moving money from bank A to bank
B). Simply construct a new permanent task C which supports the action
of moving money between accounts.

2.8 Recovery notification

There is a special entry call known as the recovery call. It a
permanent task contains an accept for the recovery call, then when
recovery occurs the task will be called (at the recovery entry).

2.9 Snapshot info

There is a system function which will return the current system
snapshot number. Note that snapshot numbers are not unique in the
life of the system. From the user’s point of view, the system is free
to restart the sequence number generator whenever the system goes
down, so don’t store them in permanent data structures.

2.10 Limited support for TPS
There are lots of applications which embody the transaction concept

used in transaction processing systems (TPS) but without the demand
for high volume and guaranteed commit.



For example: The insurance agent fills out the application online.
When it is completed, a hard copy is printed. The agent explains it
to the customer. The customer signs it. This entire activity may
span many minutes. The application program could give the agent
confirmation when the next snapshot (following completion of the
application) occurs. Confirmation will probably occur prior to the
customer leaving the office. But in any case, the agent simply needs
to keep track of unconfirmed applications for the few minutes between
snapshots. In the event of a crash, the agent can reenter the
application from the hard copy.

There are many significant applications which can be programmed in
this fashion.

Even airline reservations could be handled this way. The terminal
could record the transactions since last snapshot. In the event of a
crash, the transactions could be automatically redone. (This works
because we distributed the log function to the terminal; given disks
as 1/0 devices, the log could be kept on the R1000 instead.)

2.11 Real time applications

The delay in execution of permanent tasks doesn’t necessarily rule
out real time applications. The RTS (real time system) could control
the snapshot timing, allowing it to occur when the delay doesn’t
effect system operation. Or:. the RTS could use buffering (temporary)
tasks between permanent storage and the active temporary tasks to keep
the active tasks from "hanging up" on permanent storage during the
snapshot interval.



3. Disk recovery semantics

This section describes the backup and recovery capabilities that we
know the R1000 will have (presumably in early deliveries). Appendix C
discusses independent volume reconstruction - a proposed additional
capability. ’

3.1 Virtual memory system

The "virtual memory"” (or V-mem for short) is a set of one or more
fixed media disk drives which comprise the permanent secondary storage
of the system. There may be other drives, called “free drives", fixed
or removable, but these are treated as garden variety I/0 devices,
like a tape drive. By default, all fixed media drives are part of
V-mem.

The "backup and recovery" capabilities provide for repair of the
V-mem following disk drive failures. They do not provide individual
archival +eatures. There is another tool for this purpose; it is
described elsewhere.

3.2 Volume

The V-mem is partitioned into one or more volumes, each volume being
comprised of one or more fixed media drives. The system will default
to 1 drive per volume. Address spaces are wholly contained within
volumes.

The programmer need know nothing about volumes. The system manager
needs to know that the time to recover from disk drive failures is
minimized with one drive per volume. There is a tradeoff between
recovery time and allowing for gigantic address spaces (larger than
free space per volume). This tradeoff is left to the system manager.

3.3 Changing disk configuration

The V-mem configuration is recorded in the V-mem itsel#f. I¢
component drives are missing at boot time, the system will not come
up. Existence of drives other than those in the V-mem configuration
are simply ignored at boot time. They have to be explicitly mounted,
etc. Disks that are not components of V~mem may be added/removed at
any time (not physically, of course).

New drives can be added to the V-mem. The physical connection is
done with the system down. The initial formatting may be done online.
Adding a physically connected formatted drive to the V-mem
configuration can be done online. It may be added to an existing
volume, or may become a new volume.

Drives may not be removed from V-mem without resorting to the drive
failure recovery procedures (to be described).

3.4 Basic backup and recovery procedures

Let T denote the time when the full save is started. Let T’ denote
the time of the snapshot taken just prior to T. A "full save" makes a
complete copy of the state saved by the snapshot at time T'. That is,
later restoration of the system using the full save is equivalent to a
crash at time T.



Full saves can be created in one of two ways. There is a rTaw copy
facility which dumps V-mem track—-by—track to the backup media. Raw
copy only works offline.

The compactifying copier copies the address spaces (in the snapshot)
one at a time to the backup medium; it is called compactifying because
the backup medium ends up with all blocks of a particular address
space being contiguous. Compactifying copy only works online. The
online full save manages to save the snapshot in a consistent fashion,
even though the system is up and running.

An "incremental save” also saves a snapshot of V-mem. Again use T
and T’ to denote the save and prior snapshot times, respectively. The
"base save" refers to some previous full/incremental save. Let S’
denote the snapshot saved by this previous base save. The incremental
(at time T) makes copies of only those (address space) pages that have
changed between S8’ and T’. As for full saves, later restoration of
the system using the incremental is equivalent to a crash at time T.

Incremental saves are always created with the compactifying copier.
And incremental saves are consistent despite the fact that the system
is up and running.

"Save set" refers to the set of target packs/tapes consumed by the
full/incremental save.

A "recovery path" is a set of k., k > O, save sets with the following
properties: (a) The first save set is a full save. Let T(0O) denote
the snapshot time of the full save. Any additional save sets, in the
recovery path, are incrementals. (b) Let S(i) and T(i) denote the
base and snapshot times for the ith incremental in the recovery path.
Then, S(i) = T(i-1), for i in 1..k.

The recovery procedure takes a recovery path and reconstructs the
snapshot at time Tk. Thus, a recovery path is equivalent to a full
save at time Tk. Consequently, we say that an incremental takes a
snapshot of V-mem: on the assumption that the incremental is a member
of some recovery path.

3.5 Failures

We are concerned here with the V-—mem disk subsystem. Some failures
can cause V-mem to get messed up (a disk head crash, for example).

Section A. 3 provides illustrative figures for MTD (mean time to
destruction). @Given that such an event has occurred, one’s only
recourse is to use the recovery procedure to restore a snapshot taken
prior to the failure. Appendix B illustrates a typical backup
strategy and the corresponding recovery times and expected work lost.

Section A. 2 provides illustrative figures for MTBF. Given a failure
of one of the disks of V—mem, one has only two choices. (a) Wait
until the problem is fixed, and hope that no data was lost. This
avoids losing work (most of the time), but makes the system
unavailable until the problem is fixed. (b) Immediately perform
recovery to prior save point. This maximizes system up time, at the
expense of losing work. (It also assumes spare capacity. etc; see
section 3. 7).



3.6 Mirrored V-mem

There is an option for mirroring V-mem. In this case, every drive

{in V-mem) has a mated mirror image drive on another IOP. Loss of any

single component of the disk subsystem will simply cause the loss of
one or more mates. Loss of these mates does not cause the system to
crash, it will simply keep running without the lost mates. The system
may have to be momentarily stopped to allow the repair man to prune
the damaged components, and to reconnect them once repaired, but
otherwise the system will run without interruption. At some point
following the repair of the mates, they can be reintegrated into
V-mem. The reintegration period involves bringing a repaired mate
back to a state where it mirrors the mate that was uneffected by the
failures. This process occurs online.

Thus, mirrored V-mem can only fail if there is a second component
failure before the first failure can be repaired and reintegration
completed. Failure rates for mirrored V-mem are given in section A. 4.

3.7 Choice of backup media

The backup and recovery system will operate with either tape or
disk. The tape may be vanilla or streamer. The disk may be fixed or
removable (but not part of V-mem).

As indicated by the figures in appendix B, there is no speed
advantage in saving/restoring an incremental to/from disk instead of
tape, due to the random access nature of of incrementals. However:
saving/restoring a full save is significantly faster using a disk.

One might want to use disk for small incrementals so that they can
be performed automatically without operator assistance in mounting
media.

Although raw copy can make full save run 20 times faster than with
compactifying copy (see Appendix B), it has one major disadvantage:
The save set can only be restored to an identical set of drives. 1f
you want to be able to restore prior to repair of a failed drive, and
you want to use raw copy for speed, then you will need a spare drive
which is not part of V-mem, and does not contain the save sets in the
recovery path. (I# you have different capacity drives in V*mem. you
would need more than one spare).

When compactifying copy is used for full save, then recovery can
reload V-mem onto a different configuration provided: (a) There is
sufficient capacity. And (b) there aren’t any problems with fitting
gigantic address spaces into the new configuration.

3.8 Parallel backup/recovery

It is possible to do backup/recovery by volume. Given multiple
backup devices, the real time required can be kept to a minimum by
backing up (or recovering) several volumes simultaneously.

3.9 Fast recovery option

In this case, the incremental information is effectively kept both
on the source volume, and the target backup medium. There is very
little time overhead associated with keeping the info on the source
volume; one is simply retaining the snapshotted generations until next



incremental.

Recovery is faster because: (a) For surviver volumes, simply roll
back to the snapshot generations. (b) For the destroyed volume,
reconstruct it from backup.

3. 10 Compacting disk space

Doing a compactifying copy full save followed by restore will compact
address spaces on disk. This may be advantageous in some cases.

3.11 Reliability
Sufficient error correction capabilities are provided in the tape

subsystem that backing up and restoring V-mem to and from tape should
be no less reliable than doing it to disk.



4. Crash recovery details
4.1 Address space structure

 Each address space has a distinguished page, called the root page.
from which all other pages of the address space may be located. For
code/import spaces, this is page O of the code/import segment:; for
module spaces, this is page O of the control stack. ‘

The root page contains mappings for some set of the pages of the
address space. These are the so called “fast access pages". The
(page —~> disk block) mapping for the remaining pages is contained in
an index.

Each index page is an array of R entries. Each entry is of the form
(snapshot #, disk block #). The block number references a son of the
index page. The son may be either another index page, or a data page
in the logical address space. Let T denote the number of the last
snapshot. The son has been changed since the last snapshot iff its
snapshot number is T+i. The first time the son is changed after a
snapshot, it is assigned a new block number; when this new block
assignment is made, the number of the next snapshot is recorded in the
index page entry. Blocks assigned to pages changed since the previous
snapshot are known as shadows. Note that a change to a data page
cauvses shadows to be created for the entire root to data page path.

The (page ——> disk block) mapping for a particular page is obtained
from the index as follows: Take the page number and represent it as a
string of digits in radix R: d0,d1,...,dn. Digit di corresponds to
the subscript of an entry in the index page at level i the tree.

Thus, the digit string describes the path from the root to the desired
page. (Obviously, if R is a power of 2, the digit string can be
constructed with simple field extraction from the page number.)

The (page ——> disk block) mapping for the fast access pages is a set
of entries (as in the index) stored in the root page.

(In the case of module spaces, there is either 1 index per segment.,
or the indexes are combined, or some combination thereof; the exact
details don’t seem relevant to the remainder of the discussion.)

"Generation" refers to the version of an address space which is
delimited by a snapshot.

This structure has the following important properties:

Property A: Recall that a block being written at the moment of a
power failure induced crash has a high probability of being partially
written: neither the before or after image survives the crash. The
address space structure is not sensitive to these failures because
updates to the address space always occur to shadows.

Property B: Recall that an incremental saves all pages changed since
some prior snapshot. The index structure directly supports easy
calculation of the changed page set. Note that the calculation need
only traverse those portions of the index that have themselves
changed.

Property C: The index structure provides a natural mechanism for



refaining old generations. This mechanism is useful in a variety of
situations: full save snapshot retention, mutatory retention, etc
(these will be discussed in later sections).

Property D: Recall that the garbage collector requires region lists
for its implementation. Let P denote the time at which a region is
made empty. Let G denote the time at which it later becomes an
evacuating region. All pages changed in the interval (P..Q) are in
the region list. Let X denote the number of the earliest snapshot
which occurred after time P. Similarly, Y denotes the snapshot
occurring after Q. (Note that Y is probably in the future). The set
of all pages whose snapshot number is in the range (X..Y) is a
superset of the pages in the interval (P..Q). 1If# the collector wants
the region list to be static, it can wait until snapshat Y has
occurred. As for incrementals, calculating the region list is quite
simple and efficient.

Property E: Accessing pages and updating the index is relatively
trivial. There are no reorganization issues, since the index is
always balanced.

4.2 Task control block contents

The crash recovery mechanism assumes the task contrel black (TCB)
contains the following information:

- Address space kind

— A bit indicating whether or not this address space is permanent

- For modules, a bit indicating that the module is a task

- For tasks (at least), the parent link (in the lifetime tree)

~ For tasks, a state variable

~ For tasks, a bit indicating that the task desires a recovery call

We assume the following values for task state:

-~ RUNABLE

— DELAYING

- WAITING_FOR_PAGE

- WAITING_FOR_IO

- WAITING_FOR_CALL ‘

-~ WAITING_FOR_RETURN -- from rendezvous call

4.3 Disk catalog

The catalog is a data structure implemented in stable storage which
retains the mapping (address space name —2> block for root page). The
mapping also includes the TCB info as described above. This assumes
that all pages of the address space leave main memory prior to the
TCB. The catalog contains a mapping for each retained generation of a
permanent address space.

4.4 Catalog cache

The catalog cache is a set of main memory pages which contain
copies of disk catalog entries, and entries which indicate additions,
modifications or deletions to the disk catalog. Catalog entries are

physically deleted only after the snapshot following the logical
deletion.

The catalog entry for a temporary address space would not typically



make it to the disk catalog; but it might get there if the address
space was paged out and the catalog cache doesn‘t have enaugh room.

4.5 Dump buffer

A "dump buffer" is a set of N contiguous disk blocks used by a
particular snapshot. There are two dump buffers per processor. We
assume that for a particular snapshot, no two processors have their
dump buffers on the same disk drive.

The number of dirty permanent pages cannot exceed "N" for a
particular processor. A counter of permanent writable pages, per
processor, is sufficient to enforce this invariant.

Assuming 1 Gbyte of disk per processor, 8 Mbytes of main memory per
processor, and N = 6000, the dump buffers would consume 1. 24 of the
disk space.

Note: it is tempting to reduce the dump buffer size by making the
rule that if there are more dirty permanent pages than will fit in the
dump buffer, then we do some cleaning prior to starting the snapshot.
But: neither the hardware nor microcode currently keep track of the
number of dirty pages. And it takes 30-50 milliseconds to scan the
tag store to compute this value. We are trying to avoid any algorithm
which requires a tag store scan that cannot be interleaved with task
execution. Come back and read this argument later, it should make
more sense then.

4.6 Tag store contents

In addition to various other goodies, the tag store contents include
a permanent bit for each page, derived from the corresponding bit in
the TCB.

4.7 Snapshot

Assume that the last snapshot was number X. The next snapshot is
Y=X+1. The actions required to take snapshot Y are as follows:

4.7.1 Alternating dump buffers

Snapshots alternate between the two dump buffers. This provides
protection in case there is a crash during a snapshot.

4.7.2 Coordinator and worker snapshot tasks

There is a special system task which controls the timing of
snapshot, and is called the snapshot coordinator. Each processor has
a snapshot worker task. These tasks are temporary, and (re)created
when the system comes up.

4.7.3 Overview of phases

The snapshot occurs in two phases. In phase one, the workers tie up
all permanent pages. writing them to the dump buffer. They also write
the catalog cache to the buffer. During this phase, the workers
proceed without synchronizing with the coordinator or other workers.
When all the permanent info has been written, the worker waits for
notification of phase two from the coordinator, who starts phase two
only after all workers have completed phase one. In phase two, the



workers increment their snapshot numbers, and release the permanent
pages for further activity.

4.7.4 Phase one

The first phase starts by the coordinator sending an appropriate
message to each of the workers. During phase one, each worker
independently takes the following actions:

4.7.4.1 Seek to dump buffer

The worker causes the cessation of further I/0 on the drive
containing the worker processor’s dump buffer. When the last I/0
finishes, the worker causes the drive to seek to the cylinder
containing the first block of the dump buffer for this snapshot.

4.7.4.2 Don’t run permanent tasks

It a permanent task is running when the seek completes, it stops
running at an appropriate macro boundary. When the seek completes.,
the worker causes the processor to enter a state where permanent tasks
will not be run and where servicing of faults for permanent pages is
disabled; that is, a fault for a permanent pages causes the faulting
task to enter the WAITING_FOR_PAGE state.

4.7.4.3 Don’t modify permanent TCBs

We assume that permanent TCBs are kept in separate lists (etc) from
temporary tasks. Thus, the only event that can now cause the TCB for
a permanent task to be written is a response to previously issved I/0.
We handle this as follows: (a) Requests by other processors to write
this processor ‘s pages cause the other processor to fault. (b) Data
from the IOP (corresponds to reads issued prior to beginning the
snapshot) is discarded. (c) All 1/0 completion status is recorded in
a special temporary buffer for this purpose.

4.7.4. 4 Write dirty permanent pages

The worker incrementaly scans the tag store. I# it finds a
writable permanent page, it changes the page state to some special
form of read-only. If the page was dirty, it queuves it up for writing
to the dump buffer. As the dirty pages are written, their dirty bits
are reset. For dirty permanent pages, it records the page id in a
main memory information buffer. If it finds a page corresponding to a
TCB for a temporary task, it gets the parent link, and records it in
the info buffer.

The above process is interleaved with execution of temporary tasks.
4.7.4.5 Write cache and info buffer

After all of the permanent pages have been written, the catalog
cache is copied (indivisibly) to a temporary memory buffer. This
locks out temporary task execution for less than 0.5 milliseconds.
From there, the cache is copied to the dump buffer. And the info
buffer is written to the dump buffer.
4.7.4.6 Wait for phase two

Writing the processor’s permanent state is now complete. At this



point, I/0 on the drive containing the dump region is reenabled, and
the worker sends a message to the coordinator indicating the
completion of phase 1. It waits for the coordinator to send a message
starting phase two. Temporary tasks continue to run while the worker
is waiting for the start of phase two.

4.7.5 Phase two

To start phase two, the coordinator sends the appropriate message to
each of the worker tasks. The message includes the number of the next
snapshot.

The worker reenables fault handling for permanent pages. Tasks
suspended in the WAITING_FOR_PAGE state (for permanent pages) can now
be serviced. The permanent pages are released on demand; that is, if
a task faults on a permanent page in the special read—-only state, the
page’‘s state is changed to writable, and the task proceeds.

Any changes to (page —-> disk block) mappings use the new snapshot
number.

Previous I/0 completion codes (recorded in the temp buffer) are
reprocessed at this point. This may require reissuving I/0 requests.

4.7.6 Assignment of snapshot numbers

We assume a 3 byte unsigned integer for snapshot numbers. The
sequence number generator is stored on disk. It is incremented by the
snapshot coordinator. We assume that the coordinator takes several
hundred snapshot numbers from the disk at a time, in such a fashion
that crashes never reuse snapshot numbers.

Assuming snapshots are taken no more frequently than once every 100
seconds, snapshot numbers are not reused for 53 years.

4.7.7 Snapshot time

Assume: 8000 pages per physical processor. One IOP (with disk) per
processor. 3504 of pages are dirty. 10% of dirty pages belong to
permanent address spaces. This equals 0.4 Mbyte of stuff to write to
the dump buffer. We assume that with contiguous sector allocation we
can make the IOP write 1 Mbyte to disk per second. Thus, the ballpark
figure for snapshot time is 0.4 seconds.

4.7.8 Activity concurrent with snapshot

During this 0.4 second interval, the system can run, but with
certain limitations: (a) Permanent pages cannot be changed; but a
temporary page can be changed. (b) A temporary task which faults on a
page not in main memory will probably have to wait until the snapshot
is over before the fault can be serviced. Similarly, page cleaning
operations probably have to wait. (c) Other high bandwidth I1/0
activities, such as tape 1/0, will probably have to wait until the end
of the 0.4 seconds. Presumably, terminals, lineprinters and other
relatively slow devices will still operate without noticeable
degradation.

4.7.9 Hidden snapshot overhead

Also note that each snapshot causes the minor computational overhead



of allocating shadows and updating indexes for permanent pages that
are truly in the working set of dirty permanent pages. Since we do
not keep separate generations for temporary address spaces, there is
no shadowing overhead for temporary address spaces.

4.7.10 Generation retention

The normal scenario is: Assume that the last snapshot was number X,
the next snapshot will be X+1. After snapshot X+1 occurs, the
generation created by snapshot X may be discarded. However, there are
special cases where old generations are retained (during online full
save, for example).

Logically deleted address spaces (both permanent and temporary) are
physically retained until the snapshot following their logical
deletion.

4.8 Crash recovery
4.8.1 Alternating dump buffers

Recovery needs to choose between two sets of dump buffers. Dump
buffers are written in such a manner that if a crash occurs during a
snapshot that recovery will discard that buffer. Otherwise, recovery
chooses the dump buffer corresponding to the latest snapshot.

4.8.2 Simple reload doesn‘t work

Intuitively, one would think that recovery simply involves reading
the dump buffer back in, incrementing the current snapshot number, and
taking off. Unfortunately, the dump buffer may not fit! Suppose we
have 4 processors; three have 8 Mbhytes, and 1 has 4 Mbytes. Suppose
we have to recover the system with just the single 4 Mbyte processor.
To guarantee that all permanent pages would fit, we would have to
restrict the world to 2 permanent pages per line. Rather than make
this assumption, recovery assumes that the dump buffer will not all
fit.

4.8.3 Idempotent recovery

It is vital that a crash during the recovery procedure not destroy
the recovered snapshot. Thus, recovery must take a new snapshot
number to cause updates to go to shadows. This helps make the
recovery procedure idempotent. :

4.8 .4 VPid reassignment

Due to the VPid reassignment following the crash, processors may
have to read stuff that belongs to their VPids from several dump
buffers.

4.8.5 Dump buffer reload

Set the current snapshot number to a number that is larger than the
number of the snapshot to which we are recovering. This is vital to
the idempotency of the recovery. Think of it this way: The snapshot
info (being recovered from) must last until the next snapshot is
taken.

Reload the catalog ctache. This is done by conceptually reading each



individual catalog entry (belonging to this processor) from the dump
buffer, and copying it into a fresh cache (created by recovery). This
avoids collisions between pages of the cache, and confusion over
VPids.

Remove any catalog entry for a permanent address space generation
created after the snapshot was taken. This undoes work following the
snapshot, including any partially completed recovery activity.

Reload the entries from the information buffer(s) that belong to the
VPid set for this processor.

Now begin loading permanent pages (for this processor) from the dump
buffer(s). Pages are loaded for a single address space at a time.
The root page (contains the TCB) is loaded first. Then any index
blocks, top down. Then any data pages. Of course, these pages are
marked as dirty as they are read in.

During the loading process, we may encounter a situation where a
page cannot be loaded, because the target line in memory is full. In
this case, clean a page on that line.

Note that the page cleaning operation invokes the normal procedure
for integrating changed pages into a shadow index structure for the
new generation. It is vital that the pages for a particular address
space be loaded top down:; this ensures that index information in the
dump buffer is used in constructing the new generation.

4.8.6 Single processor failure

This recovery scheme requires that a single processor failure be
treated by crashing the system.

4.8.7 Update catalog

We make sure that all permanent tasks in main memory are cataloged
(in the cache is OK). This simplifies the logic that follows.

4.8.8 Fix child lists

Permanent address spaces with temporary task children must get their
child lists fixed to reflect the vanishing temporary tasks. Recall
that a child list contains the address space name for each of the
children, and a count of the number of children which are not X, where
X is one of (terminable, terminated). Because we do not keep the
states of temporary tasks synchronized with the states of their
permanent parents, one would think we have to recompute the dependency
count.

Rather than do that, let there be two dependency counts in a
child list, one for temporary task children. and one for other
children. Then we need only set the temporary dependency count to
zero. The other count is correct since the counted dependents are all
permanent. '

For each parent link recorded in the info buffer (see 4.7.4), and
for each cataloged temporary task address space, consider the parent
link in its TCB. If# the link references a permanent address space.
then go look at the child list in the parent. It is possible for the
list to no longer be there; forget it in this case. Note that the



tagged architecture of the type/control stacks allows us to verify
that the supposed parent link really references a child list (perhaps
not the same one).

Assuming the parent link references a child list, reset the
temporary dependent count to zero. I# the permanent count is also
zero, and the parent was waiting to terminate, then change the
parent’s state to RUNABLE (or whatever it takes to later get it to
realize it can terminate). If the temporary task is in the child
list, remove it.

Note that we do NOT ignore catalog entries corresponding to deleted
temporary tasks.

4.8.9 Get rid of faults for temporary pages

Find permanent tasks in the WAITING_FOR_PAGE state (look in the
catalog). It the desired page corresponds to a temporary page, mangle
its state such that the appropriate exception will occur, and make the
task RUNABLE (or equivalent).

4.8.10 Get rid of 1/0 waits

Find permanent tasks in the WAITING_FOR_IO state (look in the
catalog). Mangle its state such the appropriate exception will occur,
and make the task RUNABLE (or equivalent).

Reissuing old (non disk) I/0 does not make sense for lots of
reasons. ‘

4.8.11 Fix client death

Find permanent tasks in the WAITING_FOR_RETURN state. If the task
is not waiting for a permanent task to return, mangle its state such
that TASKING_ERROR will result., and make the task RUNABLE (or
equivalent).

4.8. 12 Take snapshot
4.8.13 Zap temporary address spaces

I# there are any catalog entries corresponding to temporary address
spaces, delete them. Must take snapshot prior to this action, since
the snapshot from which we are recovering requires the temporary task
states for fixing up the child lists.
4.8.14 The system is up

All processors synchronize prior to this event.
4.8 15 Restart tasks

Any task whose state is (or was made) RUNABLE should be reentered
into the appropriate run queues. Similarly, a DELAYING task needs to
get its delay restarted.

4.18. 16 Restart fault I/0

~Find permanent tasks in the WAITING_FOR_PAGE state (look in the
catalog). The desired page must be permanent. Reenter the task into



the appropriate fault queue. Reissued the I/0.

4.8.17 Miscellaneous pruning

A permanent task may have been elaborating a temporary task. I¢ it
wasn’t caught by the above actions, it will eventually fault on the
non existent task, and get the exception at that point. Similarly, a
permanent server which uses a reference parameter from a ghost
temporary task will fault and get an exception.

4.8.18 Transparent return to ghost

In a rendezvous where the client is temporary and the server
permanent, IN parameters are passed by value, IN DUT parameters are
passed by value result, and OUT parameters are returned by valvue.

When the server returns its results and finds the client has vanished,
the results are placed in the bit bucket, transparent to the server.

An argument has been advanced that the programmer be required to
explicitly program the parameter copying, and handling of the
exceptions that result from referencing a non existent address space
(because of reference OUT parameters).

There seems to be a strong counter argument that the requirement for
copying parameters and handling exceptions in this fashion is going to
be difficult to explain. Because lots of peaple either don‘t
understand it, or they are simply not methodical enough, this copying
technique won’t be used all the time. Which means that you won’t find
out about the places where you forgot to program the copy and
exception handling until a crash occurs at just the right moment.

It is not at all clear that we gain any efficiency by making the
programmer deal with this issue. In fact, it may be less efficient.
An abstraction which claims to have any general purpose utility would
have to do the copy and exception handling. Consequently, we might
find that a very large percentage of servers are doing the copy., even
though the call does not cross the permanent/temporary boundary.

4.8. 19 Recovery time

We assume that all processors can recover in parallel. The
following time estimates are per processor. Assume 20K catalog
entries at 32 bytes each. Reading the entire catalog at random takes
30 seconds. But it should be primarily contiguous. Consequently, we
assume 10 seconds here. To random read the TCB for 200 tasks takes 10
seconds. We assume most temporary tasks are rooted under just a few
permanent parents. Therefore, fixing the child lists should be short
compared to the above. In the worst case, assume we have to clean
half of the permanent pages. That takes 15 seconds. The total is
around 35 seconds.

4.9 Block reclamation

Given two generations, X and Y=X+1, we wish to discard generation X.
LLet P denote some page of the address space. I# P is in both X and Y,
but has different snapshot numbers in the two generations, the block
corresponding to P in generation X can be freed. This applies to
index pages has well as data pages.

Rather than explicitly free these pages as generations are deleted,



we propose to simply toss the shadow structure for the discarded
generation, and rely on garbage collecting the lost blocks.

Assuming that shadows are created at the rate of 5 per second per
drive, shadows would consume 18 Mbytes per hour. Assuming that the
garbage collector has to look at 1% of the disk in order to garbage
collect free blocks, the garbage collector consumes 1.5 minutes of
random access disk time. I# this is spread over the hour, the
collector would consume 2. 5% of the disk bandwidth, and garbage would
consume an average of 3. 6% of the disk.

4. 10 Lifetime tree maintenance

As long as the operations which maintain the permanent portions of
the lifetime tree run in permanent tasks, there should be no problems
related to losing address spaces or bogus pointers.
4.11 Sleeping the system

To gracefully take the system down, abort all temporary tasks: clean

all pages, force all cached catalog entries to disk, and take a
snapshot.



5. Disk recovery details
9.1 Error detection/correction capabilities

Given the way the system is structured, it seems that hard read
errors are just as disastrous as head crashes. So, we have 2 choices:
(a) Do read after write verification (at the cost of 10% reduction in
expected disk bandwidth). (b) Use a disk controller which has state
of the art error correction capabilities such that the probability of
a hard read error is significantly less than once every 100,000 hours.
This would mean that hard read errors are masked by the media
destruction errors, and can be ignored. '

We assume that the UDASO controller has these properties and that
EMULEX will have a knock—off for the UDASQC prior to first deliveries.
That is, we have chosen strategy #b.



Appendix A

MTBF and MTD for Disk System

A.1 Subsystem MTBFs

Subsystem MTBF Comments

R1000 processor 8,000 hrs Includes the processor,
its memory., the sysbus,
and single I0 adapter.
in single processor config.

I0 Processor 9,000 hrs Includes the PDP-11, its
memory., fans, power supply,
Unibus, etc.

Disk Ctlr 30, 000
- 70.000 hrs
Comm Ctlr 30, 000

- 50,000 hrs
Disk Dr (£xd) 10,000 hrs Somewhere between 10 and 100%
of these failures cause loss
or more than last block written.

A.2 Disk subsystem MTBF for various configurations

Configuratioh MTBF
i each of (IOP, ctlr, drive) - 5.7 months
2 I0P, 2 ctlr, 4 drive 2.0 months
3 I0P, 4 ctlr, 8 drive 1.1 months
4 I0P, 8 ctlr, 16 drive 0. & months



A.3 Disk subsystem MTD

We assume that the probability that the drive will cause massive disk
data loss far exceeds the probability that an IOP or a disk controller
will cause massive data loss. Let MTD stand for Mean Time to
Destruction of disk data.

; System MTD
Single drive MTD 2 drives 16 drives
100, 000 hrs 5.8 yrs 8. 7 mos
(10%Z of total failures)
50,000 hrs 2.9 yrs 3.3 mos
(50% of total failures)
10,000 hrs 6.9 mos 0.8 mos

(100% of total failures)

A. 4 Disk subsystem MTBF for mirrored configuration

We redefine MTBF to mean failure in one component plus a failure in a
second component prior to re—integration of repaired first component.
We assume that repair and integration can be performed within 24
hours.

Configuration MTBF

2 I0P, 2 ctlr, 4 drive 16. 7 years

4 1I0P, 8 ctlr, 16 drive 14. 5 years



Appendix B

Backup and Recovery Times

B.1 Full save times

The following table indicates the time it takes to perform a
full save (complete backup) under various assumptions about
available media.

We assume a system configuration of 4 250 Mbyte winchester drives.
For tape backup, we assume one tape unit in the configuration. For
disk backup, we assume one removable media in the configuration.

"Raw capy" refers to the scenario of copying track—-by—-track. That
is, media copy, without regard for its structure.

"Compactifying copy" refers to the scenario of copying address
spaces, with the system up and running. In this case, we assume the
disk capacity is 75% utilized, and that backup is allowed to consume
2/3 of the source drives random access bandwidth while it is backing
up address spaces on that drive. In this case, the backup is limited
by the random access capability of the source drives, and the target
backup media has little or no effect on the speed of the full save.

Technology Time/Gbyte Units/Gbyte
1600 bpi 6.2 hrs 29 tapes
75 ips
vanilla tape
Taw copy
3200 bpi 1.8 hrs 11 tapes
streamer tape
raw copy
removable disk .99 hrs 4 packs
Taw copy ‘
any tape or disk 10. 5 hrs as above

compactifying copy

B.2 Incremental times

The time to take an incremental save is calculated from M # T; where
"M" is the fraction of used disk capacity which has changed from
previous save; and where "T" is the "compactifying copy"” time from
B. 1.

B. 3 Restoration times.

Assuming the system is down during restoration, restoring a full
save consumes the time indicated by one of the “"raw copy" rows of the
table in section B. 1.

Restoring an incremental save is 33% faster than the time consumed



in creating it.

B.4 Typical backup strategy.

Assume most activity occurs between BAM and &6PM, Monday through
Friday. Assume slack time in the following slots: 12PM .. 1PM and
&PM. . 7PM.

Once each week, take a full save. This would usually be done on a
weekend, probably at night. Once each day, take an incremental save,
back to the previous full save. This might be done at &6 AM. At 12PM
and 6PM, take an incremental save, back to the morning incremental.

As indicated in B.1, the full save takes from 1.8 hrs to 10.5 hrs,
depending upon method. As indicated in B. 2, the 6AM incremental would
take up to 2.6 hrs at the end of the week, assuming 25% of the used
capacity has been changed by the end of the week. Assuming that no
more than 54 of used capacity has changed since the 6AM incremental,
the 12PM and 6PM incrementals should take at most 0. 52 hrs.

B. 3 Parallel backup.

It is relatively straight forward for backup to be able to proceed
in parallel to independent backup units. Thus, quadrupling the system
size needn’t increase backup time. Assuming multiples of the above
configuration, the real time should stay constant. (Of course, one
may need multiple operators to mount the 100 tapes consumed by full
save to vanilla tape.)

B. & Relative cost of backup media

A 250 Mbyte removable media drive is roughly 3-4 times more
expensive than a vanilla tape drive. The cost per byte of the disk
pack is roughly 6~7 times more expensive than the tape. However, the
tape may only have 1/3 the lifetime. So the disk media may only be
2-3 times more expensive.

B.7 Recovery times

The following table indicates the time to recover to a "consistent"
state following a drive failure.

Technology Recovery time

vanilla tape ’ 6.2+ 1.7+ .34 = 825 hrs
streamer tape 1.8+ 1.7 + .34 = 3.84 hrs
removable disk .99 + 1.7 + .34 = 2 59 hrs

B. 8 Parallel recovery

In a fashion analogous to that specified in section B. 5, recovery
can be made to run in parallel, to keep the recovery times from
exceeding the above numbers.

B.? Fast recovery option



This option will cost you 30% more disk capacity. But recovery time
is only 25% of the time indicated in section B.7.

B. 10 Average amount of work lost
Despite the faster recovery. the average amodnt of work lost is

still quite high. For daytime workers, its 3 hours. For graveyard
types, its & hours.




Appendix C

Independent Volume Reconstruction

C. The problem

In section 3.5, we discuss the customer’s options for recoverying
from a disk failure. They are: (a) Wait until the drive is fixed. In
?0% of the cases, the data was not lost, and we come back up without
losing any data. But the system was down for a lengthy period of
time. (b) Or, we can immediately recovery the entire system to a
previous save point. This gets the system back up (in a minimum of
roughly 40 minutes), but at the expense of losing all work that took
place after the save point.

We would like to add one additional option: When the drive fails,
let the system run without the "down" drive. The system is up during
the repair period. I# the data was not lost, bring the drive back
online. In this case we get the best of both worlds: the system is
not down and we do not lose work already done. If the data was lost,
we reconstruct the data for just that drive from the save sets. The
reconstruction can happen while the system is up. Then we somehow
reintegrate the drive back into V—mem.

The remainder of this appendix discusses problems associated with
implementing such a capability, and presents solutions to many of the
problems. But there are many unresolved issues. We are certainly not
presenting a fully-debugged design strategy. (That’s why this stuff
is stuck in an appendix.)

C.1 General problems
C.1.1 Partitioning V-mem into useful divisions

Somehow, we have to partition V-mem into sections such that stuff
used by a particular programmer is mostly in one section. That way,
if we lose 1 of 5 sections, 4/5ths of the programmers can still do
work (mostly).

C.1.2 Faults for pages on a down drive

When a drive goes down, tasks may be waiting for page fault service
from that drive. Additional tasks may later fault for pages on that
drive. How do we deal with that? (Do we suspend or create
exceptions, or both?) Furthermore, how do we clean pages that belong
to the down drive? :

C.1.3 Reintegration

Assuming a down drive is repaired, but we find the data is bad, we
can certainly reconstruct its contents as of the prior save point.
But how do we reintegrate this "old version” back into a running
system?

C.2 The volume tree as a possible partitioning

All of the so called "directory packages" live on the root volume.
All of the system catalogs live on the root volume. There are other



volumes, called leaves. (We have just a 2-level tree of volumes).
Each directory has a single leaf volume associated with it. Certain
objects "in the directory" really live on the associated leaf volume
(as opposed to the root volume where the directory package itself
lives). In fact, the only objects that can be placed on leaf volumes
are elaborated tasks, and then only in certain ways.

Assume the following declarations:

task type T is ...
type T_PTR is access T;

Given a directory package "GLENN", the only way a task of type T can
be placed on the leaf volume (for Glenn) is by inserting one of the
following definitions into GLENN’s directory package:

X: Ti
P: constant T_PTR := new T;

Actually, the above restrictions (on task creation) need only apply to
permanent tasks. Presumably, temporary tasks go away during
reintegration, and are not a problem. Note that the above definitions
imply that task X cannot create a permanent child of type T, without
calling the system to insert "Q: constant T_PTR := new T;" into some
directory.

C.3 Reintegration: putting an object back into the directory

Suppose T is a container for some data, like a phonelist. I have a
phonelist, X. Then the system takes a snapshot. I create a new
phonelist, Y, and copy the contents of X into Y. I make some changes
to Y. The changes look good. So I delete X. Now, the leaf volume
(which contains X and Y) fails: and is restored to the save point
taken before Y was created. Do I have X, or Y, neither, or both? On

a conventional machine, I would have just X. An answer of neither X nor

Y seems terribly unfriendly. Note however, that if X and Y are on
different volumes, the conventional machine would leave you with
neither X nor Y.

‘By the above argument, it seems that objects saved by an incremental
should reappear when the volume is recovered. even if they were
deleted after the incremental was taken.

Under that definition, deleting X from GLENN‘s directory package
must be implemented as follows: The deletion request deletes the
address space(s) consumed by the task (named by X), and the entry is
removed from the catalog. However, the DIANA node which describes X
must remain in a sort of “"deleted but not yet expunged" shadow state.
Likewise, the control stack slot for X and the tasks participation in
the child list (and dependency count) of the GLENN package must
remain. When the reconstructed volume (which contains the address
spaces for the task that used to be named by X) is reintegrated into
the system, the catalog has to get updated (to reference these revived
address spaces), and DIANA must be informed, to "undelete" X’s
declaration. The directory information for X cannot really go away
until the save point following its deletion (assuming the rule that
the reconstructed volume goes back exactly one save point; otherwise,
restore the entire system).

Observe that this deleted but not yet expunged paradigm must apply



to directories themselves. If, in addition to deleting X, I delete
the directory package GLENN, reviving X also requires reviving the
directory. (Also handled by conventional machine. )}

Notes: (A) If we were deleting P instead of X, we would similarly
have to delay updating the collection’s child list until after the
next save point. (B} The task control block identifies the creator,
in addition to the parent in the lifetime tree, of the task. Thus,
the TCB has a back link to the directory package, in both the X and P
cases. This information can be used to simplify f;nd1ng the DIANA
node during reintegration.

C.4 Partitioning DIANA

Unfortunately, the above definition does not go far enough. It
seems clear that if we allow all of DIANA to reside on the root
node we will have a lousy partition. The DIANA partition needs to
correspond to something tangible (from the user’s point of view).

So, it seems we need the following rule: The DIANA task for a
compilation unit living in directory GLENN must be placed on GLENN'’s
leat volume (along with the tasks for X and P). And any code segments
need to go along with their corresponding DIANA task. The DIANA task
would be named by a variable in the directory package, just like X and
P;i the directory entry might want to be elided.

C.5 DIANA reintegration

Assume that there is one DIANA task which stores the parse tree for
a particular compilation unit. When you add semantic information to
the tree, you end up with references from one DIANA task to nodes
contained in a different DIANA task. How do we reintegrate an “"old
DIANA task" back into the whole structure?

Of course, this raises the general issue of configuration
management. (Which we will try to sidestep.)

Let‘s assume that "A is different from B" (where A and B are
distinct versions of some compilation unit) is defined elsewhere.
(If the visible part changed between A and B, they are clearly
different. If just the body changed, it is not clear whether they

-should be considered different; a minor bug fix might want to be

considered not different, whereas a major change in function might
want to be considered different, even though only the body changed
So, we assume some prior definition.)

Given DIANA tasks R and S, and a semantic reference from R to S, we
assume that the representation of the reference is such that if we
make a new version of S, 8‘ and S’ is different from S, that existing
semantic references from R to 8 are invalidated. R must be
resemanticised.

Deleting and reviving compilation units should be handled the same
as for the tasks X and P (as described above). If a reconstructed
volume contains some DIANA task S, we can stick it back in the
directory the same way we did for X and P. I# some other DIANA task R
(on a different volume) had a semantic reference to S prior to the
save point (to which we recovered), but then got changed to reference

S5’ (which is different from S), then all the references from R to S

become invalidated (by the previous paragraph).



When the system runs across one of these invalidated references, it
could avtomatically resemanticised R, to create new references that are
valid. But wouldn’t the user want to know? The user might consider
it a favor to be informed that the volume reconstruction caused some
work to get lost (namely the change from S to S‘), particularly since
the user doesn’t really know when the save point happened!

There is an analogous problem with code segments. Prior to the
volume failure, I have a running program. I like what it does.
Because of the reconstruction, one of the code segments used by the
program is restored to an old value, which is not "different", but
nevertheless now has bugs which were previously fixed. After
reintegration, is it really reasonable to have the program still run?

C.6 The effect of partitioning on collections

The volume tree definitions have certain implications for
collections. A "leaf collection” is one whose declaration occurred in
a task stored on the lea#f.

By definition of tasks and leaf volumes, all access variables for a
leaf collection live on the same volume as the collection.
Furthermore, there can be no references to collection members (created
by parameter passing mechanisms, for example) stored on other than the
leat volume.

The type T_PTR is a good example of a "global root collection”. In
this case, access variables and references may be stored on any
volume. :

Exiting the scope of a global root collection is not exacerbated by
the delayed child list update, since the global root collection must
be statically nested.

Any partitioning scheme based on divisions at task boundaries will
have the above properties.

C.7 The effect of reintegration on garbage collection

Restoring a volume to some prior state means that a leaf collection
may have a different flip state than the rest of the system. This
implies that any partitioning scheme must have the property that a
collection living on a leaf have all references to its members stored
on the same leaf, otherwise you have the incredibly messy problem of
one member reference being is one flip state while another reference
is in a different flip state.

It also implies that the hardware gadgets for detecting mutator
references to collection members must be able to handle different f1lip
states on a per volume basis.

Given the current hardware, one can do this as follows: Apply
meaning to 5 more bits of collection names {(only). These O bits
identify the volume on which the collection lives. (All regions of a
collection live on the same volume). Then the hardware gadget is
programmed using the 5 volume bits, the 3 region bits, and the
read/write bit. This achieves the objective of independent flip
states, per volume.



Leaf collections ﬁag garbage collect and flip at will.

However;, root collections are somewhat constrained. One has to keep
the save point state around on all the leaf volumes (using the same
generation retention mechanism that is used to take a consistent save
in the first place) until the next save point. The garbage collector
also scans these old generations. This guarantees that volume
reconstruction does not revive pointers to members whose space has
since been reassigned. Furthermore, one has to synchronize flips with
save points, since all references (which may be on different volumes)
must be in the same flip state at the same time).

C.8 The effect of reintegration on rendezvous

C.8.1 The problems

A cross volume rendezvous causes difficulty because during the
rendezvous the server or client may disappear or be reset to some
state prior to entering the rendezvous due to volume reconstruction
and subsequent reintegration. This problem seems to divide as
follows:

First, given that a client is waiting for the completion of a

~rendezvous that can no longer complete, it must be given a

TASKING_ERROR exception.

Second, given that a server is processing in a rendezvous that can
no longer complete, it must be allowed to rendezvous with the ghost in
a transparent fashion. An architectural concern arises from the fact
that the server may have reference parameters that are out of date;
this is a "security problem”.

C.8.2 The solution

Use a small integer (about 3 bytes will do) to uniquely identify
save points.

Keep track of clients. Given sections 4.2 and 4.3, the catalog
gives us a handle on all clients, since their task state is something
like WAITING_FOR_RETURN.

When a client initiates a rendezvous, it’‘’s state records the
following information: (a) A reference to the server task. (b} The
number of the most recent save point.

A busy server is one which is not blocked waiting for a rendezvous
at call level 0. Call level is defined as follows: A task initially
has call level 0. Every time an accept body is entered, the call
level is incremented. When an accept body is exited, the call level
is decremented.

When the call level is incremented, the identity of the client is
recorded in the state of the server. In addition, the client passes
its recorded value of save point number. The server records this
value along with the reference to the client.

In a cross volume call, the server is required to take all IN
parameters by value. IN OUT parameters are passed by value result.
OUT parameters are returned by value. When the server returns its
results, it is obligated to first verify that the client is still



waiting for rendezvous completion with this server, and that its wait
state has the same save point number. In the event that these two
conditions are not met, the results are placed in the bit bucket,
transparent to the server.

'Th9~reintegration procedure is as follows:

Examine all clients (tasks blocked waiting for rendezvous
completion). Examine the server on which the client is waiting. The
server must exist. It must be at call level 1 or higher. Look
through its state. Exactly one of its call levels must correspond to
the client and have the identical save point number. If any of the
above conditions is not met, give the client a TASKING_ERROR
exception.

We don‘t need to examine busy servers. They will complete their
rendezvous with ghosts in a transparent fashion, and there is no
"security problem" since the server verifies that the client is still
waiting for results (from the same rendezvous) prior to returning
them.

We do not take any explicit action for messages in the queue space
of a server. After reintegration, it may service stale requests.

C.8.3 Notes

An argument has been advanced that the programmer be required to
explicitly program the parameter copying in cross volume calls. The
reintegration procedure would scan the entire control stack of all
servers, "nilling" any references to the address spaces of a client
that is no longer blocked waiting for the particular rendezvous. The
programmer is required to explicitly handle the exceptions that result
from referencing a non existent address space or a parameter whose
reference has been "nilled". See section 4.8.18 for arguments to the



