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Preface

This is an overview of the R1000 hardware. It is a document that can be used
by new employees and will be used as source material to be included in other

documents such as the FRU (Field Replaceable Unit) manual, or system overview
manual (maybe others).

The reader for this document is a new employee to the technical support areas
or manufacturing. The reader is assumed to be familiar with current minicom-
puters or microprocessors.

This i3 a company proprietary document! It will not be distributed outside
of Rational!
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Chapter 1: Physical System Overview

The R1000 is a large multiprocessor system housed in a single double-width rack
or frame. There are one to four peripheral (19”) racks (sometimes called mass
storage racks) on the right of the main rack. There may also be peripheral racks
on the left of the main rack. Terminals and printers also are included in the
system.

The main rack contains one to four central processor units (CPUs) and one to
four I/O subsystems (10Ss). There are also 32 or 64 asynchronous communication
lines and connectors. A remote diagnosis auto-dial modem, connections for the
system console, power supplies and ventilation fans are also in this rack.

The right hand peripheral racks contain all of the mass storage in the system
(disk and tape units). Each rack contains a 6250 BPI streaming tape unit and
may contain four 475 Mbyte disk units.

The left hand peripheral racks contain additional communications lines, network
lines, and modems. Up to 192 additional asynchronous communications lines can
be added in these racks (64 to a rack), beyond the 64 lines that can be put in
the main rack. Ethernet and X.25 network connections can be added in these
racks. Modems for the asynchronous lines can also be added.

Terminals are 64 line by 80 character in size. They are supplied by C. Itoh and
are called CIT-500. Other terminals, like VT-100s, may also work and may be
allowed on our system. The CIT-500s are what we will sell.

Printers will initially be a line printer. There are several we could use and we
have not chosen yet. Later, we may add a laser printer for better quality output.
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Figure 1-1
Main Rack

Processing System

The processing system in the main rack is the up to four CPUs and up to four
10Ss. The logic for the system occupies one large chassis of vertical PC boards
plus up to four PDP11/24 computers in their own smaller chassis below the main
chassis. Behind the PDP11/24s are the power supplies and ventilation fans for
the system. All these components are shown in Figure 1-1.

Each CPU consists of 9 large PC boards. They are 19.5 inches by 21 inches and
contain 600-700 chips apiece. These PC boards are the:

e Memory boards (4 of them - 713 chips apiece)
e Microsequencer board (659 chips)
o Field Isolation board (665 chips)

RATIONAL
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Figure 1-2
Main Chassis Layout

e Value (henceforth called Val) board (603 chips)
o Type board (589 chips)
o Sysbus board (593 chips)

Each 10S consists of 1 large PC board (the 1/0 Adapter or I0A) and a PDP11/24
(sometimes called the IOP). The I0A, like the CPU boards, is 19.5 inches by 21
inches and contains roughly 650 chips. The IOA connects the PDP11/24 to the
other processing elements in the system. The PDP11/24 is connected to the I0A
via the UNIBUS (DEC’s standard 1/O bus).

These boards and where they reside in the main chassis are shown in Figure 1-2.

The four CPUs and four 10As are connected via a single 64-bit bus known as the
Sysbus. This bus allows any of the CPUs or 10As to communicate with any other
CPU or I0A. This can be done at the rate of 40 Mbytes/second.

Figure 1-3 shows the four CPUs and four 10As and how they are connected via
the Sysbus.
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Figure 1-3

Sysbus/Processor Interconnection

The 9 boards of each CPU are logically connected via a set of buses. These buses
are the:

o Type bus - 64 bits
o Value (henceforth called Val) bus - 64 bits
e FIU bus - 64 bits
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e Address bus - 67 bits
e Microaddress bus - 14 bits

These buses connects the nine boards in each processor over a foreplane and a
backplane. There is a separate foreplane for each CPU and a single backplane
for the entire system. The foreplane carries the Val, Type, and FIU buses while
the backplane carries the Address, Sysbus, and Microaddress buses.

All of these buses also have parity error checking (usually byte parity). The
parity checking is sometimes called “odd parity”. However, that becomes con-
fusing when the bus is sometimes inverted and sometimes not. The easiest way
to remember the parity algorithm is: if all of the bits (including the parity bit)
are a 1, then there is a parity error.

Figure 1-4 shows the nine boards of the CPU connected via that set of buses.
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Figure 1-4
CPU Buses

RATIONAL




RATIONAL Proprietary Document

Chapter 2: Logical System Overview

We will look at each board individually but first we must look at some of the
system-wide logic designs that transcend individual boards. We will also look
at the schematics and specifications that are available.

Functional Organization

The R1000 is a multiprocessor system containing from 1 to 4 processors. Each
processor is identical (except perhaps in its quantity of memory). Each processor
is microprogrammed having its own control store and sequencing logic.

The basic architecture of the processors has many points:
o stack machine
o segmented memory
e virtual memory
e strong typing

e support complex data structures like discriminated records and arrays with
lots of dimensions

The basis of this architecture is that the R1000 was designed to run Ada, the
new high-level language from the Department of Defense.

Ada-based machine

RATIONAL
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The R1000’s main function is to run Ada programs. Ada is a very extensive
high-level language that puts new and unique demands on a system.'

Ada is a highly typed language which means that each variable (in Ada, variables
are called objects) has additional information with it besides its value. When
we think of an integer, we think only of its value. But it also has limits (in most
cases the limits of the machine to represent integers). These limits are part of
the object’s type.

Ada lets you define objects with arbitrary limits. For example, you can define
an object that only has “legal” values of 0 to 10. The machine (in our case) is
responsible for making sure that the object does not get a value higher than 10
or lower than 0.

Likewise, Ada does not let you store floating point numbers in integer objects
and visa versa. The architecture must prevent this from happening.

Some other machines claim to deal with this strong typing. In general they
accomplish it by running extra code within the programs to check for limits and
types. This becomes very inefficient compared to our machine.

CPU design

This strong typing is just one example of how the language Ada forced the CPU
(hardware and microcode) to do some not-so-obvious things. It also explains
why there are separate boards for the type information (the Type board) and
for the data or value information (the Val board).

Something that Ada did not force is the mechanism for the bit-packing of
arrays and records. Imagine having a large array of boolean values. In many
current machines, each boolean is forced into a separate memory location: very
expensive when each memory location is 128 bits like ours are.

So the CPU allows bits of an array to be packed into the smallest space they
would otherwise occupy. But this requires hardware to pack and unpack quickly.
Otherwise the gain in memory compaction is lost in extra processing to pack
and unpack. This hardware is the Field Isolation Unit or the FIU board.

'For more information on Ada, see Grady Booch’s book Software Engineering with Ada;
there are copies available here.
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Two other boards in the CPU are fairly obvious what they do. One is the memory
board(s). It stores 2 Mbytes organized as 128K locations of 128 bits per location.

The other obvious board is the microsequencer board. It provides the sequenc-
ing through microcode, generating microaddresses, decoding instructions, and
responding to various types of interrupts (called “events™).

The last CPU board is the Sysbus board. It is responsible for communicating
with the other CPUs and 10Ss in the system. They are all connected via the
Sysbus and this board provides the buffers and protocol handling for that bus.

I0S design

The remaining logic components of the system make up the I/0 System(s). Its
design is not governed by Ada like the CPU is. Instead it was governed by the
realization that it is impractical to design an entire new 1/0O system including all
the peripherals and their controllers.

So a common, readily available I/O bus, 1/O processor and peripherals were
chosen. The only logic that had to be designed then was an adaptor board that
connected the 1/O processor with the Sysbus.

This 1/0 processor (I0P) is Digital Equipment Corporation’s PDP11/24 and the
1/O bus is the Unibus. The IOP controls its I/O devices via the Unibus. We can
attach peripherals from a large collection that are made for the Unibus.

The adaptor board is called the I0A board. It provides functions similiar to
the Sysbus board of the CPU (buffers and protocol handling for the Sysbus).
The I0A also provides the system console control via the “master” diagnostic
microprocessor it contains. (The diagnostic microprocessors will be discussed
further later in this chapter).

Specs and Schematics

There are specs for each board. Their principle function is to provide the spec
for the microcode that exists on the board. These specs were used to define
the microcode simulator. They are of use only for finding the definitions of the
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microcode for each board. They don’t describe much about how a board does
any particular function. And there isn't a spec for the memory board, though
there is a spec on the memory monitor functions (generates controls for memory)
which are distributed over several boards.

The schematics are produced for each board on the Daisy logic capture systems.
They include a set of block diagrams. However these block diagrams are subop-
timal (a cute but overused word here that means “less than great”, often “much
less than OK”).

These block diagrams have several restrictions placed on them by the Daisy sys-
tem that makes them that way: each block must have every input and output on
it that the corresponding page(s) of schematics do; each block must correspond
to one or more full pages of schematics; and blocks can not be created that
constitute less than one full page of schematic.

This leads one to believe that the block diagrams are worthless. Not quite.
Many large blocks are represented well in the block diagrams. It is the subtle
blocks that don’t easily correspond to pages of the schematic that are a problem:
they don’t appear on the block diagrams at all. Nonetheless, we must use these
block diagrams for our discussions since you probably will be using them and
the schematics at some time.

The schematics have several conventions worth mentioning. One is the use of ‘~
' (tilda). It usually appears as the last character of a signal name. It represents
inversion (SIGNAL™ represents the inverse of SIGNAL).

Also the use of signal name extensions (like filename extensions) to signify mul-
tiple copies of the same signal. If, for example, SIGNAL was required to drive so
many loads that one signal was not enough, you would see SIGNAL.BO and SIG-
NAL B1 as two separately-buffered but otherwise equivalent signals. Functionally,
those two signals are identical.

Another example of signal name extensions is for board prefixes. The two signals
T.MUMBLE and V.MUMBLE are identical except that the first appears on the Type
board and the second appears on the Val board.

The bit numbering is sometimes a source of confusion: the industry is not con-
sistent which bit in an arbitrary word is bit 0. We number bits from left to
right: bit 0 is the left-most or most-significant bit.

RATIONAL
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A memory “word” also needs to be defined. Our memory boards always transfer
128 bits at a time. While some of those bits may be ignored or shifted around
by the processing logic, and there is no 128-bit bus, and the meaning of those
128 bits is very context sensitive, we will from time to time use the word “word”
when refering to the 128 bits from memory.

It is also worth mentioning while we are talking about memory words that they
are usually divided into two separate halves: the Type half and the Val (Value)
half. The division is so common that there is not a single memory data bus but
two buses, the Type bus and the Val bus, that transfer data to or from memory.

System clock generation

All systems must have a set of clocks for synchronizing data transfers and func-
tions within the system. Our clock scheme begins on the “master” I0A board,
I0A0. There a master oscillator generates a 40 Mhz clock CLK.8X. This is divided
into two other clocks which are distributed to all the Sysbus boards and I0A
boards in the system. They are a 20 Mhz clock, PROC0.CLK.4X, and a 5 Mhz
phase clock, PROCO.PHASE.

Each Sysbus or I0A board takes the two clocks and produces two other clocks,
CLK.2X.BP (both positive and negative versions), and PHASEBP. These clocks are
distributed within each processor.

Each processor board takes these two clock signals and produces the necessary
clock signals for the board. In general, that means producing four “quarter”
clocks, Q17 through Q4". Each quarter clock is a 75% duty cycle clock that are
each 90 degrees out of phase from each other. In other words, each produces a 50
ns. pulse and each pulse does not overlap with any other pulse. Each microcycle
is composed of four quarters. The microcycle begins and ends between Q4™ and
Q1". Figure 2-1 shows these signals.

Another pair of signals that many boards use is H1 and H2. These signify the
first and second half of a microcycle.

Most boards however, use a clock signal with the .SCLK extension for clocking
microcycles. This is because a microcycle can be aborted for several reasons.

RATIONAL
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Figure 2-1
CPU Quarter-Cycle Clock Signals

The figure shows the four signals the make up the primary data movement clocks in the
system. The boundary between Q4 and Q1 marks the end of one microcycle and the beginning
of another.

When this happens the “state clocks” are held or stopped to prevent the results
of a microcycle from being latched. Thus clocks with the .SCLK (or similar)
extension are not free running and may be stopped by various abort mechanisms.

There are two mechanisms for stopping these state clocks. One is for a parity
error detected in the processor logic. This would result incorrect results. Each
board can “freeze” the entire processor when such an error occurs with the signal
FREEZE. This signal, when active, prevents the processor from continuing until
the diagnostic system reactivates it.

The other mechanism for stopping the state clocks is used much more frequently
and with much less disastorous results. At certain times in the normal opera-
tion of the machine, the sequencing logic assumes certain events won't happen.
When they do, the sequencing logic forces the processor to wait a cycle before
continuing processing. These events include all microevents, some macroevents,
and bad hints explained in the microsequencing chapter). The board generating
the event causes the processor to stop with the signal STOP.

CPU Microarchitecture

RATIONAL
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The microcode implements the instruction set of the machine using the hard-
ware. In the R1000, this instruction set is very complex as suggested before. The
microcode is correspondingly complex. The microcode is very wide; over 200
bits are used in each machine cycle.

Facilities

The hardware provides many features for the microcode to use in implementing
the instruction set:

o 8 Mbyte “associative” memory - supporting the multi-segmented virtual
address space

e ERCC memory - corrects single bit errors, detects multiple bit errors
o two 64-bit ALUs - allow type and value operations concurrently

o hardware accelerators for control stack - provides register-to-register speed
on a stack machine

o 64-bit shifter/field extractor - minimizes overhead for bit-packed data
structures such as arrays and records

o internal parity checking on all data paths and static RAMs
e hardware 16-bit by 16-bit multiply

e dedicated hardware to support type checking

e dedicated hardware for addressing multiple frames in stack

These facilities will be discussed further as each board’s capabilities are discussed
in the following chapters.

Events

The microcode responds to “events”. Events are similiar to interrupts but can
be generated by many different sources. There are two types of events: macro
and micro. Both macroevents and microevents will cause the flow of control to
change temporarily.

Macroevents are events that can only occur on between (or at the beginning of)
instructions. Therefore, there is no microcode state to be saved. Instruction
execution can begin again after the event is handled easily.

RATIONAL
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Macroevents include:
— Instruction queue empty
— Interrupts from other processors
—  Memory refresh
— Memory reference resolution
— Control Stack accelerator overflow or underflow
— Top-of-stack address resolution

Microevents are events that can occur during any microcycle. These events,
while not necessarily more severe, require the entire microcode state to be saved
so that processing can continue from the exact microcycle that caused the event.

Microevents include:
— Page crossing
—~  Page fault
— ERCC correctable error
— Class check
- Privacy check

Events can be generated by any board and are funnelled to the microsequencer
for dispatch.

Control Store

The control store for the microcode is distributed. In many machines, the control
store is on the microsequencer board. In the R1000, the control store is distributed
on each CPU board (except memory boards).

There are several advantages to this. Each board can run its own microcode in-
dependently (without the other boards). This means each board can be “brought
up” stand alone. It also means the diagnostic programs can exercise the board
very thoroughly via on-board control store. It also means that the microse-
quencer board does not have to send out 200 separate signals (the microinstruc-
tion); it only sends out the address of the microinstruction (14 bits.).

RATIONAL
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Diagnostic System

The diagnostic system is both the control of the master console (system console)
and the assurance that the entire R1000 system is properly operating. It performs
many tasks such as:

e Performs the power-up sequences:

Resets all system elements

Insures power is within tolerances

Performs power-up tests on all system elements
Loads diagnostic microcode into all system elements
Runs short diagnostic tests on all system elements
Loads system microcode

Loads initial program image

Begins running the programming environment

e Monitors all system functions for “fatal” errors

Records all system errors
Shuts down offending processor
Calls Rational service center to notify us of error(if allowed)

Reconfigures system to run without offending processor (if possible)

¢ Runs diagnostic programs when problem is suspected

Can isolate problems to FRU or sub-FRU level

Provides support for component-level troubleshooting including scopel
loops, logic analyzer triggers, etc.

Can be run remotely (via remote modem connection to Rational
service center)

Can be run automatically on any system element whenever it detects
a “fatal” error

e Runs system console

Provides access to system error logs

Provides debugging aids

The diagnostic system is composed of a set of microprocessors. In a sense, there
is a master microprocessor on the I0A board which resides in slot xx (called 10A0).

RATIONAL
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Figure 2-2

Diagnostic Microprocessor System

The figure shows the set of slave microprocessors (one per board) and how they are connected
to the master microprocessor on ICAQ. Polling is used by the master to determine what condi-
tions exist in the slaves.

All other CPU and I0A boards contain “slave” microprocessors that provide rudi-
mentary diagnostic capability and error detection. The master microprocessor
polls the slaves for information or downloads them with diagnostic instructions.
All of this communication is done over serial asynchronous comm. lines that are
built into the backplane of the R1000. Figure 2-2 shows these microprocessors
and their connections to the various boards in the system.

RATIONAL
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Operation of the slave microprocessors is based on the notion of experiments.
Experiments are a sequence of primitive operations and data manipulations that
are run on the slave microprocessors (8051s). The data manipulations are in-
structions and subroutines on the slaves. The primitive operations are sequences
of commands sent to various components on the particular board. These prim-
itive operations are called DFSM commands (pronounced Dee’-fi-sum for Diag-
nostic Finite State Machine) and they are different on each board.

DFSM commands are an important mechanism. Each board runs at 200 ns.
per microcycle when executing Ada programs, yet the 8051s could not keep up
with that speed. The DFSM commands (and the corresponding hardware for
implementing them) provides the synchronization mechanism for enabling the
slower 8051 to, in a sense, single step the board. A DFSM command is executed
by the board at full speed.

Each slave contains a set of up to 32 DFSM commands it can run on its board.
They are stored in PROMs. Each DFSM command can also have up to 8 modes
or qualifiers.

Each command may be a series of steps that the board must go through. There
can be up to 16 steps in each command. This is reflected in the DFSM state bits.

When a slave is told to run a certain experiment, it sends out the appropriate
data on its command bus for each DFSM command in the experiment. When each
command is complete, the slave is interrupted and the results of the command
(if any) are available on the slave’s data bus.

The sequencing of steps within a DFSM command is accomplished with a PROM
and register pair (the DFSM). The DFSM outputs feed one or more pairs of PROMs
and registers which generate stimuli - signals that control or effect the operation
of the board. These stimuli do things like:

- Load and store registers

-~ Increment counters

— Enable and disable drivers

— Force errors (like parity errors)
— Control board states

— Initialize board registers

With these stimuli, it is possible for DFSMs to perform, in general, any function

RATIONAL
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the board is capable of performing, in a controlled and isolated manner, such
that any problems with the board are quickly discovered.

One additional function that is performed with these stimuli is the reading and
writing of the non-volatile RAM or “NOVRAM”. This RAM contains things like
the board ECO level and other semi-permanent information about the board.
This type of RAM can retain its information without power. So when the board
is powered on or reset, it can find out about itself by reading this RAM. This is
important for maintaining correspondence between the microcode and hardware,
and for tracking by customer service and manufacturing.

Figure 2-3 shows the typical logic for the slave microprocessor, the DFSM and a
set of stimuli PROMs.

The slave microprocessors often need to read and write large registers over its
16-bit bus. This includes state registers that must be initialized or interrogated
after an error. Most DFSM commands require one or more registers on a board to
be read or written. The slave accomplishes this with one or more scan chains.

Scan chains are a serial linking of registers such that the registers can be loaded
and used in parallel during normal operations or can be serially read or written
into the slave. This allows the slave to shift arbitrary data into or out of any
register of any size on a board.

Scan chains usually link multiple registers together. However, there may be
more than one scan chain on a board. Scan chains will be discussed for each
board.

Often, these scan chains bring data into the slave in a very disjointed fashion.
The scan chains may bring a byte at a time into the slave which then has to
rearrange the bits into the correct order. This is called “permuting the bits” and
the slave has code specifically to permute its scan chains into complete registers.
In this fashion, reading or writing a typical register requires a number of scan
chain shifts and then a subroutine in the slave to arrange the bits properly.

One last point about the slave microprocessors. Typically, they are passive
during the actual running of the R1000. That means they sit there quietly
waiting for some error to happen or some command to come from the master
microprocessor: they don’t participate in the running of R1000 code.

RATIONAL
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Figure 2-3

Slave Microprocessor with Experiment Logic

The figure shows the typical DFSM (Diagnostic Finite State Machine) logic that implements
a set of stimuli-producing commands on each board. These commands are used by the siave
microprocessors to run experiments on a board to verify its proper operation.

There are cases however when that is not true. The DFSM stimuli have the
capability of changing state at every half cycle. This capability is used in some
cases to make some stimuli active signals even when the slaves are passive. This
can be a confusing attribute of the slaves in a circumstance that would imply
that all stimuli are unchanging.

RATIONAL
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We'll point out such signals when they occur.

RATIONAL
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Chapter 3: Memory Board design

The memory board has several functions:

provide 2 Mbytes of storage

computes the logical to physical address algorithm for those pages cur-
rently on this board.

maintain a set of “least recently used” locations for optimal management
of page replacement

This really is the set of things that the memory board does. But that isn't
necessarily “how” the memory board does them. The following list is the set of
functional blocks that make up the memory board. They are also shown on the
block diagrams.

two data stores of 137 64K by 1 RAMs each (plane 0 and 1)
two tag stores of 18 1K by 4 RAMs each (tag store 0 and 1)
a 145-bit write data register (128 data, 9 check, 8 parity)
two 137-bit read data register (128 data, 9 check)

two 72-bit tag value registers (64 data, 8 parity)

" a 60-bit address register

address generation/multiplexing logic
RAM control logic
general control logic

diagnostic processor

That is the basic blocks you'll see on pages 1 and 2 of the schematics. But that
isn't the “how” either. Unfortunately, we have to use words to describe how the
board does the first list using the second list.
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Functional Design

The memory board contains 2 Mbytes of storage. This is two planes of 137 64K
RAMs. The 137 bits per location is divided into 64 bits for the TYPE bus, 64 bits
for the VAL bus, and 9 check bits.

The memory board at first glance looks ordinary enough. The large RAM array,
read and write data registers, address register and multiplexing all are very
common components of any memory board. The complexity of the board first
becomes apparent when you start looking closer at the address logic. Why is
there a 60-bit address register when there is only 2 Mbytes of storage onboard?
Why is there those tag stores and tag value registers? And how does the board
know what locations are “least recently used”?

We'll try to answer those questions and more.

The starting point for the discussion is that the address is a “logical” address.
The translation from a 60-bit logical address to a 17-bit physical address is a
very obscure process on each memory board. This is where the tag store comes
in.

The 2 Mbytes of storage are broken up into 1 Kbyte “page frames”. Each
page frame can contain 64 128-bit words {(or locations). Each page frame has
associated with it a tag. This tag contains the logical address of the physical
page that is currently in the page frame. There are millions of logical pages
(actually 2® pages or about 40 trillion) that can be put in each page frame: the
tag tells you which one really is in there.

Now, we can show how the 60-bit address is dealt with. The address is broken
into the following pieces:

— 8 bits of VPID (virtual processor ID)

— 24 bits of segment name

3 bits of address space
— 19 bits of page select
— and 6 bits of word offset

To be fair, we should point out that there are 7 additional address bits (a total
of 67) but the least significant 7 select a bit within a word. That bit selection
process takes place on the FIU board so are not needed on the memory boards.

RATIONAL




RATIONAL Proprietary Document

When an address is latched into the address register at the end of a microcycle
(pages 5 and 6 of schematics) it is broken into those parts listed above. Some
of the segment, space, and page select bits are sent through a “hash function”
(page 14) to select a location corresponding to a page frame in each tag store.
(We'll come back to this hash function.)

The selected tag store locations are interrogated (page 16 and 19) during @2~

and Q4™ of the following cycle. The output of the tag store and the supplied
logical address are compared to check (page 17 and 20) generating NAME MATCH
and PAGE MATCH. If both are true for either tag store during either Q2™ or Q4",
then there is a hit (page 25) on the corresponding plane.

A hit means the selected page frame contains the requested logical page. This
allows the main RAMs to be addressed with the same address that addressed the
tag store along with the word select bits (pages 14 and 30 - 39). The read data
then is supplied via the read data register (pages 11 - 13) or the write data is
supplied with the write data register (pages 8 - 10). This all happens during the
cycle following the tag store interrogation (memory cycle 2).

If a hit does not occur on this board (or any other memory board), a microcode
event happens (an interrupt to the microsequencer) and the microcode resolves
the “page fault”. !

That is how a basic memory cycle works. You'll want to get that basic cycle
thoroughly down before plunging in much further (it gets a lot worse).

Why are there two tag stores; wouldn’t one be enough? And why are the tag
stores interrogated twice (in Q2™ and Q47)?

The answer lies in performance reasons. You want as many interrogations per
memory request as possible. That increases the likelyhood that one of the in-
terrogations will produce a hit. (A hit is much higher performance than the
alternative, a miss, which results in accessing a disk.) So each memory board
provides 4 “sets” of tags and each set is checked for each memory request. There
are 512 “lines” of sets.

The memory provides this with two banks of tag store which it then time-
multiplexes each into two halves. That makes it appear that there are 4 sets of
tags. Two sets (one from each physical set of RAMs) are checked in Q2" of the
first memory cycle and the other two sets are checked in Q4™ of the first memory
cycle.
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But can’t more than one of these sets produce a hit? What if there is a hit on
more than one memory board: won't that mess things up?

Well, yes it would if the hardware and microcode didn’t cooperate to prevent it.
They must make sure that each of the 16 sets (4 on each of 4 boards) contains
a different tag for each page frame.

They do this by careful maintenance of the tags during a “miss”, also called a
“page fault”. The microcode is interrupted and begins executing a “page fault
handler”. The function of this routine is to find a place for the page that missed
and loaded into memory from disk. It must find this place among the 16 tags
where that particular logical address can be placed.

This routine looks through the set of 16 tags that the faulted page could be put
into. Its algorithm for finding an page frame is as follows:

(1) Look for any frames that are empty or available.
The new page can be placed directly into the page frame.

(2) If none exist, look for the page frame that has not been used for the longest
time (least recently used) that has not been modified (has not been written
to).

In this case, the new page can be written over the old page in the page
frame (the old page is still on disk and does not need updating).

(3) If none exist, look for the page frame that has not been used for the longest
time and has been modified.

In this case, the old page must be written back to disk before the new
page can be loaded into the page frame. Note this is the most expensive
option in terms of performance because of the additional disk traffic.

To support this microcode activity, the memory must provide additional access
to the tags. Diagnostic operations on the memory board must also be supported.

We must now discuss the total set of operations the memory board is capable
of.

There are actually 16 different operations or modes of the memory. Table 3-
1 lists all 16 along with the encodings on the MEM.MODEO through MEM.MODE3
signals.
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Table 3-1

Memory control codes

Operation Code LRU Mod Explanation

Physical Write 0 pass pass Bypass associative mechanisms, use
VPID bits 0 - 3 to select a set, and
write directly into the selected mem-
ory location

Physical Read 1 pass pass Bypass associative mechanisms, use
VPID bits 0 - 3 to select a set, and
read directly from the selected mem-
ory location

Logical Write 2 update set If hit, write into selected memory lo-
cation

Logical Read 3 update pass If hit, read from selected memory lo-
cation

Copy to Plane 0 4 pass pass Diagnostics only

Memory to Tag 5 t t Diagnostics only

Copy to Plane 1 6 pass pass Diagnostics only

Test TVR 7 t t Diagnostics only

Tag Write 8 write write Update the tag store with informa-
tion about a new page

Tag Read 0 pass pass Read the tag store

Initialize MRU A pass pass Reset all LRUs in the tags to be equal
tag’s set number

Tag Query B pass pass Check if requested tag is in one of

the four tags selected by the current
address lines

Name Query C pass pass Check if requested name is in one of
the four tags selected by the current
address lines

LRU Query D update pass Check if one of the four tags cur-
rently selected by the address lines is
the least recently used

Available Query E pass pass Check if one of the four tags cur-
rently selected by the address lines is
available (i.e., invalid)

ldle F hold hold Do no memory operation

t During diagnostic operations, Tag Store 1 is used to save the read data. Therefore, the LRU
and modified bit fields of Tag Store 1 are written with the corresponding data.

This mode is sent along with the address (which note isn’t always logical). (See
schematic page 24). The address and mode are sent from the memory monitor
every Q4 .

We should also show exactly what is the contents of the tag store and how is it
addressed (i.e., what is that “hash function”).
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Table 3-2
Tag Contents

Fleld Name Bits Explanation

Name Tag 0-31 The segment name which contains the selected page

Page Tag 32-50 The page within the segment

Modified bit 51 The bit specifies whether the page is dirty or clean (has
been written to or not)

LRU position 52-55 The relative position of this tag location between least
recently used (‘0000’) and most recently used (‘1111’)

Page State 58-57 The state of the page (defined below)

Manager Flags 58-60 Only bit 80 currently used (defined below)

Space Tag 81-63 The type of segment

Each tag location must contain enough information to provide the entire logi-
cal page address for the tag interrogations as well as status for the page fault
handler. Table 3-2 shows the contents of a tag location:

The LRU bits of the tag store are particularly important. Assuming a four board
system, each of the 16 sets must have status information for the page fault
handler that tells it which set was “most recently used.” This is the purpose of
the LRU bits.

Each set’s LRU bits are initialized to their static position within the 16 sets.
From then on, whenever a set has a hit, its LRU bits are set to I, (or B,, for
a three board memory system, 7 for a two board system, 3 for a one board
system). In addition, all sets between F,, and the previous LRU value of the set
that had the hit are decremented. In this way, all sets have a unique LRU value
and the least recently used set will have a LRU value of 0.

An example of maintaining the LRU bits might help. Let’s assume a one board
system for simplicity. Of the four sets on the board, we’ll assume they have just
been initialized. That means set 0 has LRU value 0, set 1 is a 1, set 2 is a 2, and
set 3 is a 3. Now let’s assume the first logical memory operation is a hit on set
1. The following steps occur.

(1) Set 1 broadcasts the fact is has a hit. It sends its set number (1) to all
other boards in the memory system so they know that here was a hit and
which set had it.
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Table 3-3
Page State field contents
Bits | Name Explanation
00 Invalid All logical queries will miss
01 Read/Write | All logical operations are allowed
10 Read Only All logical write operations will miss
11 Loading Reserved for during a disk transfer into the page: all logical write
operations will miss; logical read operations are intercepted at the
FIU board and will also miss

(2) Set 1 broadcasts its current LRU number. We'll call this the previous LRU
number. In the example this is a value of 1.

(3) Set 1 sets its new LRU number to 3. Remember this example is for 2 one
board system. Thus set 1 becomes the most recently used.

(4) All sets whose LRU number is between 3 {the top most LRU value) and the
previous LRU number (broadcast by the set which had the hit — in this
case a 1) decrement their LRU number. Thus set O still has an LRU value
of 0, set 1 has 3 {the most recently used), set 2 has 1, and set 3 has 2.

Notice this algorithm maintains a unique LRU number in each set.

The Page State bits of the Tag Store provide access protection for the operating
system. All logical reads and writes to any particular page of memory must be
explicitly allowed by the operating system when a new logical page is loaded
into the page frame. Both separate read and write protection is provided.

Table 3-3 defines the Page State field of the Tag store:

Bit 60 of the tag store is the Write Protect Flag. It is used only when the page
frame is in the Loading state. The loading state is when the operating system
has requested a new logical page and the disk is in hte process of transfering
that page to memory. The Write Protect Flag indicates whether the new page
is write protected or not (it can’t be write protected until after the disk transfer
is complete).

Table 3-4 defines the hash function used to address the tag store:

That completes the data for the tag stores. There is one other area that has not
been covered: the Data Store.
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Table 34

Tag store address (hash function)

Address Line | Function

Line0 Segment15 xor Pagel8
Linel Segment186 xor Pagel?
Line2 Segment17 xor Pagel6
Line3 Segment18 xor Pagel5
Line4 Segment19 xor Pagel4
Lines Segment20 xor Pagel3
Line8 Segment21 xor Pagel2
Line? Segment22 xor Spacel
Line8 Segment23 xor Space2

The data store is two planes of 64K RAMs. Each plane, therefore requires 16
bits of address and a plane select.

When the tag store is interrogated (a tag query), you'll remember it uses a hash
function to select which page frame the logical address may reside in. That
same hash function is used for part of the RAM address.

The remainder of the RAM address is made up first of the word select bits from
the logical address (remember the tag interrogations only select a page frame).
These six bits are the least significant of the logical address.

One additional bit is used in the RAM address. It comes from the tag query logic
and it specifies which of the two queries for that particular data plane had the
hit.

Which of the two planes is selected is also accomplished with signals from the
tag query logic.

64K RAMs are addressed in two parts. The first part is called a row address and
is latched into the memory chips with a signal called RAS. The second part is
the column address and it is latched into the memory with CAS. Table 3-5 shows
the row and column addresses for the data store RAMs.
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Table 3-5
Data Store RAM address bits
Address Bit Function
Row0 Segment15 xor Pagel8
Rowl Segment18 xor Pagel?
Row2 Segment17 xor Pagel8
Row3 Segment18 xor Pagel5
Row4 Segment19 xor Pagel4
Row$ Segment20 xor Page13
Row8 Segment21 xor Pagel2
Row? Segment22 xor Spacel
Column0 Segment23 xor Space2
Columnl1 Set selected (when logical -
otherwise VPID2)
Column2 Word0
Column3 Word1
Column4 Word2
Column5 Word3
Column8 Word4
Column? Word5

Microcode design

There is no microcode on the memory boards. All memory functions are con-
trolled by microcode on the other CPU boards, principly the FIU board.

There are no microcode events generated by the memory boards either. They
are generated by the FIU board for things like page faults.

Diagnostic design

The diagnostic processor is on pages 21 - 23 of the schematics.

The diagnostic processor on the memory board (the slave) can read and write
(directly or indirectly) all storage elements on the memory board. This is typi-
cally for verifying that the board is running correctly. The slave also can provide
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status information whenever a parity error occurs in the tag store or on the Val
bus or on the Address bus.

The slave can read and write the following set of functional units on the memory
board:

— The 60-bit memory address register. This is accessible with 8 serial scan
chains (7 are 8 bits long, 1 is 4 bits long). The bytes read or written must
be permuted.

— The 8 parity bits of the memory address bus.

— The 145-bit write data register. This is accessible with 8 serial scan chains
(6 are 20 bits long, 1 is 12 bits long, and 1 is 13 bits long). These bytes
must be permuted.

~ The 8 parity bits of tag store 0.
— The 8 RAM address bits of either data store.
— An 8-bit scan chain which includes the memory control state.

— A 7-bit scan chain which includes the LRU control state and the tag parity
error bits.

— The 2 bit board ID.

The slave also has a 12-bit counter at its disposal which it can read or write,
increment or clear. It can use this to address the NOVRAM on the memory board,
the tag stores, or the data stores.

The slave can specify any of the memory operations discussed earlier in this
chapter as well as generate any of the stimuli in Table 3-6. Between these two
capabilities, the slave can perform (at full speed) any operation the memory can
perform under microcode control plus several high speed operations specifically
to verify the memory’s correct operation.
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Table 3-6

DFSM stimuli, Memory board

Signal

Function

Force Refresh

Scan Mar

Diag Tsadr.oe
Diag Adr.oe
Diag Rd RDR
Diag RTV
Diag Rd TVR

Stop RDR
Enable Registers

Freeze En
Diag LD MAR
Diag MAR sel

MEM.CTL S0 and S1

Scan WDR
Diag SH WDR

Diag LD WDR
Perr S0 and S1

MRU Sel0 and Sell

If the microcode does not refresh the memory within a certain
time, the 8051 can force refresh to occur with this signal.

Enables 8 bits of the MAR into the 8051.

Enables 8 bits of the Tag Store 0 value {specifically the 8 parity
bits) into the 8051.

gggtl:es the data store RAMSs to be addressed with 8 bits from the

Enables the Read Data bus onto the Type, Val, and check bit
busses.

Enables the tag value bus register onto the Read Data bus (oth-
erwise the data store registers are enabled).

Enables the Read Data bus onto the Val bus and Val parity bus
(used with Diag RTV to read tag store values).

Inhibits the loading of the Read Data Register (RDR).

Allows the loading of the Write Data Register (WDR) and the
Memory Address Register (MAR).

Enables the “freezing” of the CPU due to a parity error.

Load the MAR.

Selects parallel loading the MAR (normal case) or right shift (scan
case).

Selects four operations on the memory control registers - load,
shift left, shift right, hold.

Enables 8 bits of the WDR into the 8051.

Along with Diag LD WDR, selects loading or shifting right the
WDR.

Along with Diag SH WDR, selects loading or shifting right the
WDR.

Selects four operations on the parity error register - load, shift
left, shift right, hold.

Selects four operations on the memory state and hit set register
- load, shift left, shift right, hold.
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Table 3-6 (continued)

DFSM stimuli, Memory board

Signal

Function

Scan Control

Diag Ctr Ld
Diag Ctr Inc
Diag Xcvr.oe
Rd Diag Bus
Diag Buz Off
FSM Done
Diag Ctr CIr
NovRAM CS
NovRAM WE
NovRAM Store
Bank Select
Trigger Scope

Enables the Diagnostic address counter, board ID, and scan chain
into the 8051.

Loads the Diagnostic address counter.

Increments the Diagnostic address counter.

Enables data to or from the 8051.

Directs data to or from the 8051.

Enables data onto the Type and Val busses.

Signals the 8051 that the DFSM command is complete.
Clears the Diagnostic address counter.

Enables the NovRAM.

Writes the NovRAM.

Puts current data into non-volatile part of NovRAM.
Most significant bit of DFSM state bits.

Backpanel pin for triggering scopes or logic analyzers.
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Chapter 4: Microsequencer Board design

The microsequencer board has several functions:
e List’em

This really is the set of things that the microsequencer board does. But that
isn’t necessarily “how” the microsequencer board does them. The following list
is the set of functional blocks that make up the microsequencer board. They
are also shown on the block diagrams.

e List’em

That is the basic blocks you'll see on the first few pages of the schematics. But
that isn’t the “how” either. Unfortunately, we have to use words to describe
how the board does the first list using the second list.

Functional Design

- follow simple operations of board first
- diverge into more complex operations

- refer to schematics occasionally (with page and signal name)
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Microcode design

- organization of microcode fields on this board
- macro and micro events generated

- refer to spec, microsim, or microcode if appropriate

Diagnostic design

- design of microprocessor on this board (how different from others)
- set of experiments on this board

- cross reference to listings occasionally
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Chapter 5: Val Board design

The Val board has one primary function: to perform all the value calculations
and operations within the instruction set. This includes both integer and floating
point operations.

These calculations are done in parallel to all other functions on all the other
boards in the system. In particular, the Type board operations are separately
controlled and done in parallel with all Val board operations. The Type board
can provide range checking, privacy checks, class checks, and visibility checking
in parallel with the value operations being done on the Val board.

The Val board is completely controlled by microcode. It takes a microaddress
from the microsequencer, looks up the contents of its control store at that ad-
dress, and executes its portion of the microinstruction.

The following list is the set of functional blocks that make up the Val board.
They are also shown on the block diagrams.

e 1K by 64 bit register file

e 16-bit by 16-bit multiply logic

o General purpose 64-bit ALU

e 64-bit Val half of write data register (WDR)

o Shift-mux for selecting write data for the register file
o Leading zero counter

e 10-bit loop counter

e 40-bit control store with microinstruction register
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o and the standard slave diagnostic microprocessor

The Val board also has four buses that connect the various blocks: ALU bus, A
bus, B bus, and C bus.

That is the basic blocks you'll see on the first few pages of the schematics. How
the Val board performs the value operations within the instruction set is really
a function of microcode. We'll look at the microcode organization on the Val
board briefly first. Then we’ll go through the functional design of the Val board.

It should be pointed out that the Val and Type boards are very similar. The bus
structure, register file organization, and many other functional blocks are the
same on the two boards. The prime difference is the Val board has the multiply
logic and the Type board has type checking logic.

Microcode organization

The portion of the microinstruction contained on the Val board is 40 bits wide,
including a parity bit. This is broken into 10 fields. Table 5-1 provides the
breakdown of these bits and a brief description of each field.

The first page of the schematic provides a summary of all encodings for all fields
of the Val portion of the microinstruction. The specification for the Val board
contains a full description of all the encodings of all the fields.

The Random field is particularly distinct because its operations are not asso-
ciated with each other (that's why it’s called random). Table 5-2 provides a
summary of all the encodings of the Random field.

The Val board does not generate any macro or micro events.

Functional Design

To show how the Val board operates, we'll make up a single, simple microin-
struction and show how it routes data through the board. It won’t show all of
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Table 5-1
Microcode fields, Val board

Field Name Bits Explanation

A Address 0-5 Selects the A bus value; includes sources like TOS,
TOS-3, loop counter, multiplier product

B Address 8-11 Selects the B bus value; includes sources like TOS,
TOS-3, Val bus, GP

C Address 12-17 Selects the C bus destination (within the register file or

loop counter); includes destinations like TOS, TOS+1,
GP, loop counter

Register Frame 18-22 Selects one of 32 frames within the register file for
frame local A, B, or C addresses

Mux Source 23-24 Selects a (possibly shifted) source for the C bus

Random 25-28 Selects one of 18 various operations; includes incre-

menting or decrementing loop counter, various split
bus operations, control the multiplier, count zeros

Multiplier A Source 29-30 Selects which 16 bit field is used as the A input to the
multiplier

Multiplier B Source 31-32 Selects which 18 bit field is used as the B input to the
multiplier

ALU Function 33-37 Selects the operation the ALU performs

C Source 38 Selects FIU bus or Mux Source for the C bus

Parity 39 This parity bit should be a 1 if all of the bits in the

microword on the Val board are 1

the paths nor all of the functional units. But it will give you an easy view of
how the board operates in its simplest way.

First, a description of what this microinstruction is to do. We want to read a
value from memory, mask out some of the bits with a mask already in a register,
and place the result into another register. The value from memory comes via
the Val bus which is the least significant half of the 128-bit data to or from
memory (the Type bus is the most significant half).

Again, we'll point out that this operation can be in parallel to type checking on
the Type board, memory access, and field isolation on the FIU board, as well as
sequencing operations.

The symbolic encodings for this microinstruction are shown in Table 5-3.

The Val board uses the four cycle quarter signals, Q1™ through Q4, as well as
the cycle half signals, H1 and H2. These were discussed in Chapter 2.

The microinstruction is selected in the previous cycle. The microaddress comes
from the microsequencer board and selects a location in the control store on
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Table 5-2

Random Field Encodings, Val board

Encoding Name

Explanation

inc loop counter
dec loop counter

condition to FIU

split C source

count zeros

immediate op
pass A high
pass B high
divide

start multiply
product left 18

product left 32

increments the 10 bit loop counter
decrements the 10 bit loop counter

substitutes the selected Val condition for the least significant bit of the
FIU bus. If all zeros are driven onto the other bits, this allows a boolean
variable with the value of the condition to be used.

half of the data driven onto the C bus comes from the MUX and the other
half comes from the FIU bus.

activates the leading zero counter.
causes the least significant byte of data on the B bus to come from the Val
bus and all of the other bytes to come from the register file (as usual).

the lower half of the ALU performs the operation selected by the mi-
crocode, the upper half of the ALU performs the PASS A operation.

the lower half of the ALU performs the operation selected by the mi-
crocode, the upper half of the ALU performs the PASS B operation.
activates several miscellaneous hardware support mechanisms to assist the
microcode divide algorithm.

causes the multiplier to latch the data currently being driven on the A
and B buses for use as multiplier operands.

forces the least significant bit of the multiplier output to be aligned on
bit 47 instead of bit 63 (i.e., the output is shifted left 18 bits).

forces the least significant bit of the multiplier output to be aligned on
bit 31 instead of bit 63 (i.e., the output is shifted left 32 bits).

Table 5-3

Example Microinstruction, Val board

Field Name Explanation

A Address Mask register (can be 2ny register in the file)
B Address Val bus (the value coming from memory)
C Address Result register (again any register in the file)
Register Frame don’t care

Mux Source ALU unshifted

Random No Operation

Multiplier A Source
Maltiplier B Source
ALU Function

C Source

don’t care
don’t care
AANDB
MUX

each board. On the Val board, the outputs from the control store are latched
in a microinstruction register (schematic pages 57 and 58) by UIR".SCLK. This
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starts the beginning of a microcycle.

In our example, we start just as the microinstruction register has been loaded
with the microinstruction outlined above.

The Mask register from the register file is selected by the A Address lines (from
the A Address field) during H1 (page 49) and latched into the A input latch at
the end of Q2 (page 23). The A input latch drives the A bus during Q2 through

Q4.

The B Address could select another register from the file if that was required.
Instead, the B Address selects the memory data from the Val bus. The memory
data is buffered by the Val bus transceiver (page 36). It drives the B bus during
Q2 through Q4.

The ALU is active during the entire cycle (pages 32 and 33). Its inputs are valid
during Q2 and its outputs (ALU bus and several conditions) become valid during
Q3 or Q4, depending on the selected function.

The ALU bus is driven onto the C bus during all of H2 (pages 16 and 17) as
selected by the C source field and the Mux source field.

The destination register is selected during all of H2 by the C Address field.
Data from the C bus (and its logical equivalent, the C_BUF bus) is latched in the
selected register at the end of Q4 by A_RFWE™ and B_RF.WE™ if the microcycle
has not been aborted.

This ends the example microinstruction. Now let’s point out where the example
is simplified.

There isn't one register file where two operands can be accessed at the same time.
There are two register files (A and B) where each reads a separate operand and
both are written with the same operand at the end of the cycle (pages 18 thru
21). The register files also maintain byte parity on their contents.

The register files contain 1024 locations which are broken down into “frames”.

There are 32 frames of 32 locations (0 thru 31). Frame 31 is reserved for the
16 general purpose registers which are implicitly addressed and for a “control
stack accelerator” (CSA).

Fifteen locations of the register files are maintained as a cache of the top of
the control stack. This is called the control stack accelerator (CSA). There isn’t
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much control logic on the Val board for the CSA, but there is the counters to
maintain the top of stack location (page 52). Most of the control logic for the
CSA is on the Type and FIU boards.

The multiply logic consists of two 64-bit input registers (A and B - pages 25 and
26), four 8 by 8 bit multiply chips arranged as a 16 by 16 multiplier (page 27),
nibble propagate and carry propagate adders (page 28), and an output latch
and driver (pages 29-31). The A and B input registers are loaded from the
A and B bus respectively. The output latch drives the A bus. Steering logic
(page 60) selects one of the four 16-bit quarters of each A and B registers for
partial product generation. Additional steering logic directs output to maintain
significance in the partial product. Full 64 bit by 64 bit multiplies take 16 cycles
excluding any type checking or other setup.

The 10-bit loop counter can be loaded from the C bus and can drive the A
bus (the least significant 10 bits of each - page 10). The loop counter can be
used by microcode in any number of ways. The counter can be incremented
by microcode and overflow and counter equals zero (page 34) can be used as a
condition or as an address for the register file.

The leading zero counter (pages 11 and 12) can determine how many leading
bits are zero of the ALU bus. Typically this is used for normalization of floating
point numbers but can be used for anything. The count can drive the A bus.

There is a write data register that latches the contents of the Val bus during
every memory write. This can be used as a C source to be loaded into a register
in the register file at the end of any cycle. Byte parity from the Val bus is also
retained.

The shift mux provides several possible sources for the C bus (pages 16 and
17). The mux, under the direction of the mux source microcode field, allows two
shifted versions of the ALU output, the unshifted version of the ALU output, as
well as the WDR to be driven onto the C bus.

The FIU bus may be driven or received on the Val board. The contents of the
A bus may be driven onto the FIU bus and the contents of the FIU bus may be
driven onto the C bus (page 38).

One of several conditions from the Val board may be selected for conditional
sequencing. The microcode field to select the condition is latched on the microse-
quencer board. Several select lines come to the Val board via the backplane to
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select three conditions (pages 34 and 35). These three conditions are sent back
to the microsequencer via the backplane where final selection occurs.

Conditions can also be used for one other important operation: selecting one
of two ALU operations. Particularly in divide operations, a condition is used to
select addition or subtraction in the ALU.

One point about conditions: each has associated with it the notion of when in
the microcycle the condition may become valid. This allows some conditions
to affect the next microinstruction currently being read from control store (the
early conditions), or conditions that can not be used until the following microin-
struction (the late conditions). These are annotated on schematic page 35.

The ALU output may also be used as an address. It, under control of microcode,
can be enabled onto the address bus (pages 40 and 41). Address parity is also
maintained. Appropriate address constraints are imposed by this logic.

The remaining functional unit is the control store and microinstruction register
(pages 53-60). There is a microaddress counter for loading the control store
which is controlled by the diagnostic microprocessor. The control store is 40
16K by 1 static RAMs including a parity bit.

Diagnostic design

The diagnostic microprocessor on the Val board (the slave - pages 61-63) can
read and write (directly or indirectly) all storage elements and test all functional
units on the Val board. The slave can also provide status information whenever
a parity error occurs on the Val bus, in the register files, in control store, etc.

The slave can read or write the following functional units:

—~ The 40-bit microinstruction register. This is accessible via 5 8-bit scan
chains. The microinstruction register (UIR) is also the source of data when
writing the control store. So, from this one register, (and with the diag-
nostic counter), the entire control store is accessible to the slave.

— A 14-bit diagnostic counter. This is a load or increment counter which
can be used to address the control store. This register can not directly be
read.
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— The 72-bit write data register (WDR). This is accessible via 6 12-bit scan
chains. It can be used as input and output for board experiments.

— The 4-bit CSA (control stack accelerator) offset register. This register
points to the register in the register file which contains a copy of the
top-of-stack. It is a write-only register and must be set during initializa-
tion or context-restore.

— An 8-bit parity error status chain.
— The 3 conditions that are sent to the sequencer board are also accessible.

The slave thus has the capability of loading control store with any microcode
(diagnostic or otherwise), and loading the WDR with any data, and running the
board a number of cycles and testing the WDR for results. Since the slave can
provide any microcode, the slave can run experiments the exercise the board in
exactly the same way as the real R1000 microcode.

Table 5-4 lists all of the stimuli that the slave can generate.

All of these stimuli are used in the experiments on the Val board. The set of
experiments are described in a separate document:
xx:<usd.value.diagnostic>experiments. text

A separate set of experiments are collected into a program for diagnosing the

entire board: the FRU diagnostic for the Val board. These experiments are

described in a separate document:
xx:<usd.value.fru>experiments.text.
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Table 5-4

DFSM stimuli, Val board

Signal Function

cm.diag_on Enables diagnostic control of the C mux and C source

diag_mux_sel Selects the C mux for the C bus

bank_select Most significant bit of DFSM state bit

val.diag—on Enable the Val bus drivers while in diagnostic mode

fiu.diag_on Enable the FIU bus drivers while in diagnostic mode

fsm_done Signals the 8051 that the experiment is over

diag.wdr.s0 and sl Selects the shift right, shift left (not used), load, or hold function of
the WDR

a_l.diag off Disable A latch

force_pass_a Forces the ALU function to be pass and forces the most significant 5
offset bits of the address bus to 1s

b_l.diag_off Disable B latch

acs.diag_off Disables all reads and writes to the A register file

bes.diag off Disables all reads and writes to the B register file

diag.wdr.en Enables diagnostic control of the WDR

diag_stop Stops all writes to CSA, condition latches and zero counter

csa.diag.en Enables clocking of CSA

novram.cs Enables reading or writing the NOVRAM

diag.no_stop Enables writing the NOVRAM and prevents outside events from
stopping the Val board

cond.diag.en Enables clocking of conditions

uir.diag_off Forces UIR.SCLK off t

uir.diag_on Forces UIR.SCLK on

t This is an active signal when the R1000 is in “run” mode. The UIR.SCLK signal is forced off
during H1 and passes a 2X clock during H2. This effectively makes UIR.SCLK a Q4 signal.
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Table 54 (continued)
DFSM stimuli, Val board

Signal

Function

b_o.diag_on
c_d.diag_on
adr.diag_on
a_o.diag_on

diag_mode

freeze.en

pareg.sel0 and sell
diag—write0 and 1

csa.diag0, 1, and 2

scan_control
wes.diag.we
scan—wdr

read__diag- bus

scan_uir

nov_store.d

trigger_scope
loop.diag.ld
loop.diag.ct
loop.diag.en
diag_cntr.en
diag_cntr.ld
uir.sel0
adr.diag_off

diag_uadr.sel

Disables microcode control of the B bus sources
Disables the C bus to C_BUF bus driver

Disables microcode control of the address bus drivers
Disables microcode control of the A bus sources

Disables microcode control of the Val and FIU bus drivers. Enables
diagnostic control of the CSA control registers. Disables the latching
the multiplier input latches,

Stops all microstate clocks and notifies other boards in the system
that the Val board is frozen

Selects the bold, right shift, load, or load if parity error occurred
function of the parity error register

Controls writing the A and B register file while under diagnostic
control

Controls the CSA control registers

Reads the parity scan chain and the 3 condition bits into the 8051
Enables writing the control store

Reads the WDR scan chains into the 8051

Controls the direction of the diagnostic data bus; selects reading or
writing
Reads the UIR scan chains into the 8051

Writes the current contents of the RAM part of the NOVRAM into
the permanent ROM part

Provides a signal for triggering scopes or logic analyzers
Loads the loop counter

Increments the loop counter

Enables incrementing the loop counter

Enables incrementing the diagnostic counter

Loads the diagnostic counter

Selects the shift right or load function of the UIR
Enables the address bus drivers

Selects the diagnostic counter or the sequencer board’s microaddress
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and operations within the instruction set. This includes things like class checks,
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Chapter 6: Type Board design

privacy checks, of-kind checks, range checks, etc.

These calculations are done in parallel to all other functions on all the other
boards in the system. In particular, the Val board operations are separately
controlled and done in parallel with all Type board operations. The Val board
can provide integer or floating point operations in parallel with the type opera-

tions being done on the Type board.

The Type board is completely controlled by microcode. It takes a microaddress
from the microsequencer, looks up the contents of its control store at that ad-

dress, and executes its portion of the microinstruction.

The following list is the set of functional blocks that make up the Type board.

They are also shown on the block diagrams.

The Type board also has four buses that connect the various blocks: ALU bus,

1K by 64 bit register file

Specific hardware for type checking (of-kind, privacy, class)
General purpose 64-bit ALU

64-bit Type half of write data register (WDR)

Shift-mux for selecting write data for the register file
10-bit loop counter

47-bit control store with microinstruction register

and the standard slave diagnostic microprocessor

A bus, B bus, and C bus.
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Table 6-1

Microcode fields, Type board

Field Name Bits Explanation

A address 0-5 Specifies the A bus contents

B address 6-11 Specifies the B bus contents

Register frame 12-18 Selects one of 32 frames within the register file or the
least significant 5 bits of a class literal

Class Literal 17-18 The most significant 2 bits of a class literal

Parity 19 The parity bit should be a 1 if all of the bits of the
microword {on the Type board) are 1

Random 20-23 Selects one of 18 random operations including split
bus operations, incrementing or decrementing the loop
counter, and special class and privacy checks

C address 24-2¢0 Selects the destination for the C bus

Privacy check 30-32 Selects what privacy check(s) is to be performed

Mux source a3 Selects the write data register or the ALU output for
possible use on the C bus

ALU function 34-38 Selects one of 32 possible functions for the ALU

C source 39 Selects the Mux source or the FIU bus for the C bus

MAR control 40-43 Specifiesthe operation to be performed on the memory
address register

CSA control 44-46 Specifies the operation to be performed on the control

stack (both Type and Val halves)

That is the basic blocks you'll see on the first few pages of the schematics. How
the Type board performs the type operations within the instruction set is really
a function of microcode. We'll look at the microcode organization on the Type
board briefly first. Then we'll go through the functional design of the Type

board.

It should be pointed out that the Type and Val boards are very similar. The
bus structure, register file organization, and many other functional blocks are
the same on the two boards. The prime difference is the Type board has the

type checking logic and the Val board has multiply logic.

Microcode organization

The Type board contains 47 bits of microcode including 1 parity bit. These are

broken up into 13 fields. Table 6-1 describes each of these fields.
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Table 6-2
Random Field Encodings, Type board

Encoding Name Explanation

inc loop counter increments the 10 bit loop counter.

dec loop counter decrements the 10 bit loop counter.

split C source half of the data driven onto the C bus comesfrom the MUX
and the other half comes from the FIU bus.

check class A lit check that the least significant 7 bits of the A bus are
equal to the class literal. If not, generate a class check
microevent.

check class B lit check that the least significant 7 bits of the B bus are
equal to the class literal. If not, generate a class check
microevent.

check class A eq B check that the least significant 7 bits of the A bus are equal

to the least significant 7 bits of the B bus. If not, generate
a class check microevent.

check class AB lit check that the least significant 7 bits of the A bus and B
bus are equsal to the class literal. If not, generate a class
check microevent.

pass A high the lower half of the ALU performs the operation selected
by the microcode, the upper half of the ALU performs the
PASS A operation.

pass B high the lower half of the ALU performs the operation selected

by the microcode, the upper half of the ALU performs the
PASS B operation.

carry in Q selects the Q bit from the Val board to be the carry into
the ALU (used when doing a divide).

write outer frame loads the outer frame register with the data driven on the
most significant half of the B bus.

set pass privacy sets the Pass Privacy control bit in the privacy checking
logic (forces the next cycle to pass a privacy check).

check class system check that the least significant 7 bits of the B bus are equal
to the class leteral. If not, generate a system class check
microevent.

add dec 128 causes the INC A (INC B) ALU operation to increment

(decrement) the value on the A bus by 128 rather than by
1.

The exact encodings are shown in the summary sheet attached to the front of
the schematics. The specification for the Type board cotains a full description
of all the encodings of all the fields.

The Random field is particularly distinct because its operations are not asso-
ciated with each other (that’s why it's called random). Table 6-2 provides a
summary of all the encodings of the Random field.

One other area of interest that should be covered before getting into the hard-
ware is what “events” can this board generate. Events, you will recall, are
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Table 6-3
Microevents, Type board

Event Name Explanation

Binary Equality One or both of the operands does not allow assignment or
equivalence operations

Binary Operation One or both of the operands does not allow arbitrary binary
operations

TOS Operation The top-of-stack object does not allow any unary opera-
tions

TOS1 Operation The object one below the top-of-stack does not allow any
unary operations

Class An object is not of the correct class for a particular oper-
ation

Check System A system object (unaccessible to user programs) is not of

the correct class for a particular operation

interrupts to the microsequencer that temporarily change the flow of microcode.
The Type board only generates microevents and Table 6-3 shows them.

Functional Design

To show how the Type board operates, we'll make up a single, simple microin-
struction and show how it routes data through the board. It won’t show all of
the paths nor all of the functional units. But it will give you an easy view of
how the board operates in its simplest way.

First, a description of what this microinstruction is to do. We want to read an
operand from memory, and a second operand already in a register, check some of
the resulting bits for specific type information, and place the Type information
from memory into another register. The value from memory comes via the Type
bus which is the most significant half of the 128-bit data to or from memory
(the Val bus is the least significant half).

Again, we'll point out that this operation can be in parallel to value operations
on the Val board, memory access, and field isolation on the FIU board, as well
as sequencing operations.

The symbolic encodings for this microinstruction are shown in Table 6-4.
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Table 6-4

Example Microinstruction, Type board

Field Name Explanation

A Address Operand register (can be any register in the file)
B Address Type bus (the value coming from memory)
C Address Result register (again any register in the file)
Register Frame don’t care

Class Lit don’t care

Random No Operation

Privacy Check For Equality check

Mux Source ALU

ALU Function Pass B

C Source MUX

MAR Control No operation

CSA Control No operation

The Type board uses the four cycle quarter signals, Q1™ through Q47, as well as
the cycle half signals, H1 and H2. These were discussed in Chapter 2.

The microinstruction is selected in the previous cycle. The microaddress comes
from the microsequencer board and selects a location in the control store on
each board. On the Type board, the outputs from the control store are latched
in a microinstruction register (schematic pages 54-56) by UIR".SCLK. This starts
the beginning of a microcycle.

In our example, we start just as the microinstruction register has been loaded
with the microinstruction outlined above.

The operand from the register file is selected by the A Address lines (from the
A Address field) during H1 (page 45) and latched into the A input latch in Q2
(page 21). The A input latch drives the A bus during Q2 through Q4.

The B Address could select another register from the file if that was required.
Instead, the B Address selects the memory data from the Type bus. The memory
data is buffered by the Type bus transceiver (pages 32 and 33). It drives the B
bus during Q2 through Q4.

The ALU is active during the entire cycle (pages 28 and 29). Its inputs are valid
during Q2 and its outputs (ALU bus and several conditions) become valid during
Q3 or Q4, depending on the selected function.
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The ALU bus is driven onto the C bus during all of H2 (pages 16 and 17) as
selected by the C source field and the Mux source field.

The destination register is selected during all of H2 by the C Address field.
Data from the C bus (and its logical equivalent, the C_BUF bus) is latched in the
selected register at the end of Q4 by A_RFWE™ and B_RF.WE" if the microcycle
has not been aborted.

This ends the example microinstruction. Now let’s point out where the example
is simplified.

There isn’t one register file where two operands can be accessed at the same
time. There are two register files (A and B) where each reads a separate operand
and both are written with the same operand at the end of the cycle (pages 18
thru 21). The register files also maintain byte parity on their contents.

The register files contain 1024 locations which are broken down into “frames”.
There are 32 frames of 32 locations (0 thru 31). Frame 31 is reserved for the
16 general purpose registers which are implicitly addressed and for a “control
stack accelerator” (CSA).

Fifteen locations of the register files are maintained as a cache of the top of the
control stack. This is called the control stack accelerator (CSA). The control
logic for both the Val and Type board CSAs are on the Type board (pages 48
and 56). Additional logic for the CSA is on the FIU board.

The CSA control keeps track of which of the fifteen registers contains the top
of the stack, which contains the bottom of the accelerated locations, and de-
termines whether there are sufficient control stack locations locally to perform
the next instruction (based on useage specified by the microsequencer board).
Events are generated (on the microsequencer board) if there are insufficient CSA
words to complete the instruction (CSA underflow) or too many CSA words lo-
cally that will require writing cut to memory (CSA overflow).

The checker logic includes an outer frame register, privacy check logic, class
check logic, of-kind check logic, and event generation logic (pages 23-27). Pri-
vacy checks make sure that an object is accessible meaning that the type of the
object was not declared private. Class checks make sure that two objects are of
the same type class such that operations between those two objects are allowed.
Of-kind checks make sure that the two objects are of the same representation
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class so that the operations make sense. These checks are required by the Ada
rules on typing.

One or two types are presented on the A and B bus and this type checking logic
determines if those two types are compatible for any given operation. The pri-
vacy, class_lit, and randoms microcode fields specify what type of operation(s) is
planned and events are generated and sent to the microsequencer if the planned
operation is not allowed. Certain conditions checked by this logic, may cause
the processor to stop.

The 10-bit counter can be loaded from the C bus and can drive the A bus (the
least significant 10 bits of each - page 10). The loop counter can be used by
microcode in any number of ways. The counter can be incremented by microcode
counter equals zero (page 30) can be used as a condition.

There is a write data register that latches the contents of the Type bus every
cycle. This can be used as a C source to be loaded into a register in the register
file at the end of any cycle. The Type bus and write data register maintain byte
parity.

The shift mux provides one of two possible sources for the C bus (page 15).
The mux, under the direction of the mux source microcode field, selects the ALU
output or the WDR to be driven onto the C bus.

The FIU bus may be driven or received on the Type board. The contents of the
A bus may be driven onto the FIU bus and the contents of the FIU bus may be
driven onto the C bus (page 38).

One of several conditions on the Type board may be used on the microsequencer
for conditionals. The microsequencer contains the microcode field that selects a
condition in the processor. It sends out three select lines which is used on the
Type board to select five of the 33 conditions on the board. The condition logic
(pages 30 and 31) sends these five conditions to the microsequencer board where
the final selection occurs.

Conditions can also be used for one other important operation: selecting one
of two ALU operations. Particularly in divide operations, a condition is used to
select addition or subtraction in the ALU.

The ALU output may also be used as an address. It, under control of microcode,
can be enabled onto the address bus (pages 36 and 37). Address parity is also
maintained. Appropriate address constraints are imposed by this logic.
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The remaining functional unit is the control store and microinstruction register
(pages 49-56). There is a microaddress counter (diagnostic counter) for loading
the control store which is controlled by the diagnostic microprocessor. The
control store is 47 16K by 1 static RAMs including a parity bit.

Diagnostic design

The diagnostic microprocessor on the Type board (the slave - pages 57-59) can
read and write (directly or indirectly) all storage elements and test all functional
units on the Type board. The slave can also provide status information whenever
a parity error occurs on the Type bus, in the register files, in control store, etc.

The slave can read or write the following functional units:

— The 47-bit microinstruction register. This is accessible via 5 8-bit scan
chains, and a 7-bit chain. The microinstruction register (UIR) can also be
the source of data when writing the control store. So, from this one regis-
ter, (and with the diagnostic counter), the entire control store is accessible
to the slave.

— A 14-bit diagnostic counter. This is a load or increment counter which can
be used to address the control store.

— The 72-bit write data register (WDR). This is accessible via 6 12-bit scan
chains. It can be used as input and output for board experiments.

— An 8-bit CSA status scan chain. This is loaded and stored with the UIR
chains.

— The 4-bit CSA (control stack accelerator) offset register. This register
points to the register in the register file which contains a copy of the
top-of-stack. It is a write-only register and must be set during initializa-
tion or context-restore.

— An &-bit parity error status chain.

— The 6 microevents that can cause microcode interruptions.

RATIONAL

52



RATIONAL Proprietary Document

Table 6-5
DFSM stimuli, Type board

Signal Function
cm.diagon Enables diagnostic control of the C mux and C source
bank_select Most significant bit of DFSM state bit

type.diag_on
fiu.diag on
fsm_done

diag.wdr.s0 and st

a_l.diag_off
force_sp_hi
b_l.diag_off
tadr.diag_on
acs.diag off
bes.diag_off
diag.wdr.en
diag_stop
csa.diag.en
novram.cs

diag.no_stop

cond.diag.en
uir.diag_off

uir.diag_on

Enable the Type bus drivers while in diagnostic mode
Enable the FIU bus drivers while in diagnostic mode
Signals the 8051 that the experiment is over

Selects the shift right, shift left (not used), load, or hold function of
the WDR
Disable A latch

Forces the space address bits to 1s

Disable B latch

Disables microcode control of the address bus

Disables all reads and writes to the A register file

Disables all reads and writes to the B register file

Enables diagnostic control of the WDR

Stops all writes to CSA, condition latches and zero counter
Enables clocking of CSA

Enables reading or writing the NOVRAM

Enables writing the NOVRAM and prevents outside events from
stopping the Type board

Enables clocking of conditions
Forces UIR.SCLK oﬁT
Forces UIR.SCLK on

t This is an active signal when the R1000 is in “run” mode. The UIR.SCLK signal is forced off
during H1 and passes a 2X clock during H2. This eflectively makes UIR.SCLK a Q4 signal.

— The5 conditions that are sent to the microsequencer board are also accessible.jj

The slave thus has the capability of loading control store with any microcode
(diagnostic or otherwise), and loading the WDR with any data, and running the
board a number of cycles and testing both conditions and the WDR for results.
Since the slave can provide any microcode, the slave can run experiments the
exercise the board in exactly the same way as the real R1000 microcode.

Table 6-5 lists all of the stimuli that the slave can generate.

All of these stimuli are used in the experiments on the Type board. The set of
experiments are described in a separate document:
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Table 6-5 (continued)
DFSM stimuli, Type board

Signal

Funection

b_o.diag_on
c_d.diag_on
a_o.diag_on

diag_mode
freeze.en
pareg.sel0 and sell
diag_write0 and 1

csa.diag0, 1, and 2

scan—control

wes.diag.we
scan—wdr

read_diag_bus

scan_uir

nov_store.d

trigger_scope
loop.diag.ld
loop.diag.ct
loop.diag.en
diag_cntr.en
diag_cntr.ld
uir.sel0
adr.diag_off

diag_uadr.sel

Disables microcode control of the B bus sources
Disables the C bus to C_BUF bus driver
Disables microcode control of the A bus sources

Disables microcode control of the Type and FIU bus drivers. Enables
diagnostic control of the CSA contro! registers.

Stops all microstate clocks and notifies other boards in the system
that the Val board is frozen

Selects the hold, right shift, load, or load if parity error occurred
function of the parity error register

Controls writing the A and B register file while under diagnostic
control

Controls the CSA control registers

Reads the parity scan chain, the 5 condition bits, and the 8 mi-
croevents into the 8051.
Enables writing the control store

Reads the WDR scan chains into the 8051

Controls the direction of the diagnostic data bus; selects reading or
writing
Reads the UIR scan chains into the 8051

Writes the current contents of the RAM part of the NOVRAM into
the permanent ROM part

Provides a signal for triggering scopes or logic analyzers
Loads the loop counter

Increments the loop counter

Enables incrementing the loop counter

Enables incrementing the diagnostic counter

Loads the diagnostic counter

Selects the shift right or load function of the UIR
Enables the address bus drivers

Selects the diagnostic counter or the sequencer board’s microaddress

xx:<usd.type.diagnostic>experiments. text.

A separate set of experiments are collected into a program for diagnosing the
entire board: the FRU diagnostic for the Type board. These experiments are
described in a separate document:

xx:<usd.type.fru>experiments. text.
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Chapter 7: Field Isolation Board design

The Field Isolation Unit (FIU) board has several functions:

e provide 1- to 64-bit insertion and extraction into arbitrary up-to-128-bit
data

e provide memory control and monitor functions
e provide control stack accelerator control and monitor functions
This really is the set of things that the FIU board does. But that isn’t necessarily

“how” the FIU board does them. The following list is the set of functional blocks
that make up the FIU board. They are also shown on the block diagrams.

e 128-bit input, 64-bit output rotator (barrel shifter)
e 64-bit merge data register (MDR)

o 128-bit merger

e 64-bit Val bus assembly register (VAR)

o 64-bit Type bus assembly register (TAR)
o Val, Type, and FIU bus transceivers

e Parameter and field control

e Memory address register (MAR)

e Refresh counter

e Memory state and control

e CSA monitor state

e 39-bit control store and microinstruction register
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¢ and the standard slave diagnostic microprocessor

The FIU board also has seven buses that connect the various blocks: FI bus, VI
bus, VO bus, TI bus, TO bus, RDATA bus, and MAR bus. The MAR bus is broken
down into several sections: the 3 MAR.SPACE bits, the 32 MAR.NAME bits, and
the 32 MAR.OFFSET bits.

Those are the basic blocks you'll see on the first few pages of the schematics..

How the FIU board performs those functions within the instruction set is really
a function of microcode. We'll look at the microcode organization on the FIU
board briefly first. Then we’ll go through the functional design of the FIU board.

Microcode organization

The portion of the microinstruction contained on the FIU board is 39 bits wide,
including a parity bit. This is broken into 17 fields. Table 7-1 provides the
breakdown of these bits and a brief description of each field. The specification
for the FIU board provides a more complete description.

One field, in particular, provides insight into what the board is capable of per-
forming. This field controls the operation of the rotator and merger as shown
in Table 7-2.

The FIU board generates four microevents as shown in Table 7-3.

In fact, the last three microevents are grouped under a common event called
“memory exception”. The microcode responding to the memory exception must
interogate status bits to determine which event actually occurred.

The FIU board also generates one macroevent, Refresh Memory. Memory is
refreshed in a single burst every 2 milliseconds by microcode. A counter on the
board requests the microcode to refresh all of memory whenever the counter
overflows.
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Table 7-1
Microcode fields, FIU board

Field Name Bits Explanation

Offset literal 0-6 Specifies a bit offset within the 128-bit input of the ro-
tator of the beginning of the field to insert or extract.

Length/fill literal 7-13 Specifies a bit length and fill mode of the field to insert
or extract.

Length/fill register control 14-15 Specifies to load and from where to load the length/fill
register.

Operation select 18-17 Selects one of four operations; see Table 7-2.

Merge vmux select 18-19 Selects one of three sources for one input to the merger.

Fill mode source 20 Selects either the fill register or the fill literal to specify
the fill mode.

Offset register source 21 Selects either the address bus or the offset literal to
load into the offset register.

TI VI source 22-25 Selects the source(s) for the TI and VI buses.

Load offset register 26 Selects load or hold for the offset register.

Load VAR 27 Selects load or hold for the Val bus assembly register.

Load TAR 28 Selects load or hold for the Type bus assembly register.

Load MDR 20 Selects load or hold for the Merge data register.

Memory start 30-34 Selects an operation for memory.

Rdata bus source 35 Selects the MDR or the rotator output for the Rdata
bus.

Parity 38 This bit should be a 1 if all of the other bits in the
microword on the FIU board are 1.

Length Source 37 Selects either the length literal or the length register to
specify the length.

Offset source 38 Selects either the offset literal or the offset register to
specify the offset.

Functional Design

Since there are three functional areas on the FIU board (Rotator/Merger, Mem-
ory Monitor, and CSA Monitor), we will divide up the discussion along those
line.

Rotator/Merger

As with other boards, we’ll make up a simple, single microinstruction and show
how it routes data through the Rotator/Merger. It won’t show all of the data
paths nor all of the functional units. But it will give you an easy view of how
the Rotator/Merger works.
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Table 7-2
Operation Select Encodings, FIU board

Encoding Explanation

Extract Specifies that a bit string of some length (0-84 bits) and at some offset within the
128-bit input word, right-justified in a 64-bit halfword, filled with zeros or sign-
extended, and (presumably) stored in some register on another board or into the
assembly registers on the FIU board.

Insert Specifies that a bit string of some length (0-84 bits) is to be inserted into a 128-bit
word at some offset.
Insert first Specifies that some most significant portion of a bit string of some length (0-84

bits) is to be inserted into the least significant portion of the 128-bit word at some
offset. Assumes that the remaining least significant portion of the bit string will
be inserted into the next word by the next operation: Insert last.

Insert last Specifies that some least significant portion of a bit string of some length (0-84 bits)
is to be inserted into the most significant portion of the 128-bit word. Assumes that
the remaining most significant portion of the bit string has already been inserted

into a previous word by the previous operation: Insert first.

Table 7-3
Microevents, FIU board

Event Name Explanation

Page crossing The MAR has been incremented across a half page boundary. Note
the half page boundary. Note zlso no memory start is required to get
this exception.

Cache miss One of three conditions: A memory start was requested for a location
that is not in main memory; a memory write to a read-only memory
page; or a memory start to a page that is in the loading state.

Out of range A control stack address was requested beyond valid control stack ad-
dresses. In other words, & memory start to a control stack location
above the current top-of-stack.

Scavenger trap No longer used.

First, a description of what this sample microinstruction is to do. A record
in memory contains a 30-bit field beginning at bit 54. The 128-bit word that
contains that field is being read from memory and will be placed in a register
on the Val board. This sample microinstruction will take the 128-bit word from
memory, remove the requested 30 bits, right-justify and sign-extend it, and send
it via the FIU bus to the Val board.

The symbolic encodings for this microinstruction are shown in Table 7-4. The
fields have been rearranged for clarity of purpose.

As with all other boards, the microinstruction is selected and read from control
store in the previous cycle (schematic pages 35-38). The outputs of the control
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Table 7-4

Example Microinstruction, FIU board
Field Name Explanation
Operation select Extract
Offset literal 54 - position of first bit to extract
Offset source Offset literal
Offset register source Don’t care
Load offset register Don’t care
Length/fill literal 29 - positive means sign fill; length-1
Fill mode source Fill literal
Length source Length literal
Length/fill register control Don’t care
TI VI source Type/Val — use Type and Val buses as input to rotator
Merge vmux select Sign bit - source of sign extension bits
Rdata bus source Rotator — use rotator output as input to Merger
Load VAR Don’t care
Load TAR Don’t care
Load MDR Don’t care
Memory start Don’t care
Parity as appropriate

store are latched in a microinstruction register (page 39) by UIR.CLK. This starts
the beginning of a microcyecle.

The Type bus and Val bus tranceiver (pages 6-9) receive that memory data from
the Type and Val buses near the beginning of the cycle. (The memory data is
placed on these buses by microcode on another board.) This data is enabled
onto the TI bus and VI bus for the duration of the microcycle.

The 128-bit input of the rotator is the TI and VI buses. This input is shifted,
in three tiers, to the right 44 bits (pages 17-20). The rotate amount (in the
example 44) is calculated (page 33) from the length and offset specified in the
microcode (pages 31 and 32). The sign bit of the 30-bit result is also extracted
(page 21). The 30-bit result appears in the least-significant bits of the 64-bit
rotator output (the RDATA bus).

The merger, in this case, is used to sign-extend the output of the rotator. The
merger takes the output of the rotator (the RDATA bus) and the sign bit repli-
cated in all bit positions from the Merge Vmux as data inputs. Control logic
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generates the start bit position and end bit position of valid data (page 34). The
start bit and end bit positions are used by the merger to generate a merge mask.
The merge mask selects which of the two inputs is selected in each bit position
(page 25 and 26).

In the example, the start bit is 98 and the end bit is 127. The merge mask in
the example is zero in positions 0 through 97 and is one in positions 98 through
127. This selects the TI bus in positions 0 through 63 (which doesn’t matter
since the upper 64 bits of the merger aren’t used), the sign bit in positions 64
through 97, and the rotator output in positions 98 through 127.

The least-significant 64 bit output of the merger is enabled onto the FIU bus to
complete the example (page 10 and 11). From there, another board will enable
it into a register.

This completes the example. It and several other example operations are shown
in Figure 7-1.

Now let’s go back over the functional blocks describing all of the capabilities.

The Type and Val bus transceiver maintains and monitors byte parity on each
bus. The transceiver connects these buses to the TI and VI buses. These internal
buses have sources of the Type and Val bus transceiver as well as the FIU TV
driver (page 12) which brings data in from the FIU bus, the MAR, the frame (or
physical memory) address, and the Type and Val assembly registers (TAR and
VAR - pages 13 and 14). The internal buses have destinations of the rotator, the
merge vmux, and the merger.

The rotator and merger both take control information from the field control
logic (pages 33 and 34). This logic generates the rotate amount for the rotator
and the start and end bit positions for the merge mask. These three values are
generated based on the operation selected as shown in Table 7-5.

The field control logic gets offset and length information from the parameter
generation logic (pages 31 and 32). This logic generates the length, offset and
fill parameters. A length/fill register can be loaded from the length literal field
in microcode, from the TI bus, or from the VI bus. An offset register can be
loaded from the offset literal field in microcode, or from the Address bus. Either
or both registers can be used in any later cycle instead of the respective literal
fields from that current microinstruction.
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Figure 7-1
Examples of Rotator/Merger Operation

The 64-bit Merge Data Register (MDR — page 22) is used to hold data from the
rotator for merging into data in another cycle. It can be loaded in any cycle with
data from the rotator and used in any later cycle as an input to the merger.

The Merge Vmux (pages 23 and 24) selects one 64-bit source for the merger. Its
inputs are the FI bus (an internal version of the FIU bus), the VI bus, or the sign
bit of the rotator output which has been replicated in all 64 bit positions. The
selection is made specifically by microcode.

The merger (pages 25-30) has two 64-bit halves: the Val half, and the Type half.
Each half is actually 64 2-to-1 multiplexors. Each multiplexor is controlled by
a unique bit in the 128-bit merge mask. The merge mask is generated from the
start bit and end bit positions supplied by the field control logic.

The Val half selects bits from either the Merge Vmux output or the RDATA bus.
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Table 7-5

Field control generation

Operation Value Calculation
Insert Rotate Amount (length + offset)mod 64
Start bit (offset)mod 128
End bit {offset + length - 1)mod 128
Insert First Rotate Amount not used
Start bit offset
End bit 127
Insert Last Rotate Amount not used
Start bit 0
End bit (offset + length - 1)mod 128
Extract Rotate Amount (-(offset + length))mod 64
Start bit 128 - length
End bit 127

Its output can be loaded into the Val assembly register or driven onto the FIU

bus. The Val assembly register, in turn, supplies the VI bus.

The Type half selects bits from either the TI bus or the RDATA bus. Its output
can be loaded into the Type assembly register. The Type assembly register, in
turn, supplies the TI bus.

Memory Monitor

The memory monitor is the control center for the entire set of memory boards.

It:

o maintains the memory address register (MAR),

e controls the operation of the memory boards based on microcode on the

FIU board and events throughout the system,

o refreshes the entire memory set,

o and watches for pages of memory that are not in the memory but are

instead on disk.

The memory monitor has three primary sources of information to perform these
functions; the memory address register (MAR),, the memory status signals, and
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Table 7-6
Memory Address Register

Field Name Bits Explanation

Refresh Interval 0-15 Specifies the number of cycles which must elapse before a
Refresh Memory macro-event is requested — page 60

Refresh Window 16-31 Specifies the number of cycles which must elapse between the

requesting of a Refresh Memory macro-event and the error
condition Refresh Machine Check which freezes the processor
— page 60

Memory State 32-35, 37-40 Memory state bits: Scavenger trap (no longer used); CSA
out-of-range; page crossing; cache miss; physical last; write
last; MAR modified; incomplete memory cycle - page 44
Fill mode register 38 The fill mode as explained in the Rotator/Merger section
selects the type of §ll: zero or sign-extend page 32

unused 41-42

Length Register 43-48 The length register as explained in the Rotator/Merger sec-
tion contains the length-1 of the field requested — page 32

unused 40-60

Space 61-63 Specifies one of seven memory spaces — page 53

Name 64-95 Specifies a segment name — page 53; sometimes broken into
the following two fields

Name - Segment 84-87

Name - VPID 88-05 Selects a virtual processor

Offset 98-127 Specifies a bit offset within the named segment — page 53;
usually broken into the following fields:

Offset - Page 06-114 Selects 2 page within the named segment

Offset - Word 115-120 Selects a word within the page

Offset — Bit 121-127 Selects a (initial) bit within the word

the memory start field of microcode. The (MAR) is shown in Table 7-6 with
the page number in the schematics the field appears on. The memory status
lines include the four memory board hit lines which indicate that which, if
any, memory board has the requested location, and the page state bits of the
requested page which indicate what state the page is in. The memory start field
includes microorders for starting logical or physical memory reads or writes,
checking, reading or writing tags, conditional starts, and page-mode starts.

The MAR is controlled by a field of microcode which is contained in the control
store on the Type board (see the chapter on the Type board). Principle functions
include loading or incrementing the MAR. Incrementing the MAR is used for page
mode reads and writes (pages 44 and 54).

The memory monitor communicates with the memory boards principly via four
control signals, FMEM_CTLO through FMEM_CTL3 (page 42). These four signals
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select one of the 16 functions that the memory boards can perform (see the
chapter on the Memory board).

The memory boards communicate with the memory monitor principly via four
hit signals, F.BOARD_HITO through FBOARD_HIT3 (page 43). These signals en-
able the memory monitor to know whether the requested memory location is in
memory or not. If it is not, the memory monitor signals a memory exception
microevent, FMEM_EXCEPTION™ (page 43 — also called a “cache miss”).

The memory monitor takes the 5-bit memory start field from the microinstruc-
tion register, and inputs it into a state machine (page 42). The state machine
also uses the two abort signals, LATE_ABORT and EARLY_ABORT. These abort
signals are asserted by the microsequencer board whenever a memory operation
may have been started but should be aborted (see the chapter on the Microse-
quencer board). Both are asserted by the FIU board whenever a microevent
occurs.

The state machine generates two state bits, the four control signals that go to
memory, a continue signal which effects a page mode read or write, and several
other signals.

The page mode operations are initiated with the signal F.CONTINUE™ (page 42).
This tells the memory boards that the same operation should be done again
at the new (presumably incremented) memory address. Page crossings must be
detected by the memory monitor to prevent memory addresses from increment-
ing across page boundaries as that might result in a page fault. Page crossings
(actually done on half page boundaries) cause a microevent (page 43).

The memory monitor can also generate a frame address {(or physical address).
The hash function that the memory boards use to translate logical memory
addresses into physical addresses is duplicated via a lookup table (page 55).
The lookup table is a pair of RAMs that are loaded by the diagnostic processor.

The memory monitor also has a scavenger RAM (page 61). This was intended
to provide a garbage collection scheme for the memory manager. However, that
scheme was abandoned and the scavenger RAM is no longer used.

CSA Monitor
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The Control Stack Accelerator (CSA) is a set of 15 registers on both the Type
and Val boards that maintain a set of the top few locations on the control stack.
The CSA monitor must watch for memory accesses that are contained in the
CSA and direct them to the registers on the Type and Val boards instead of
to memory. It also must perform several operations in adjusting the CSA as in
removing several entries or adjusting for CSA overflow or CSA underflow.

The simplest case to study is the watching for memory addresses that are in
the CSA. It is important that references to memory locations that are actually
in the CSA be caught since the CSA will contain more up-to-date data than the
memory locations.

The CSA monitor maintains a CTOP register (actually a counter — page 46) which
contains the address of the top-of-stack. The memory address (pages 53 and 54
— see discussion under memory monitor above) is subtracted from the CTOP to
produce a difference (pages 49 and 50). This difference is compared to the number
of valid entries (NVE) in the CSA, which is maintained by the Type board (page
50). The comparison yields CSA_HIT which is an input to the memory monitor.

CSA_HIT has the effect, via logic on several boards, of forcing data onto the Type
and Val buses from a selected CSA location in the Type and Val board’s register
files. This data is used instead of the data from memory.

The CTOP register must be decremented and incremented as necessary to keep
track of the top-of-stack address. This is done by incrementing or decrementing
the register as directed by the Type board.

There is one other operation, called a “pop down to”, that the CSA monitor
must participate in. The pop-down-to operation is used to remove a number
of locations from the top-of-stack, typically removing temporary variables from
the stack when returning from a subroutine. Microcode specifies how many
locations to remove in a two step process, but microcode does not know whether
the new top-of-stack is already in the CSA. The CSA monitor, using the same
facilities as discussed above, can determine this.

An additional register is used: the OLD_CTOP register (also called the Pop Down
register). This register is loaded with the old CTOP value in the first step of the
pop-down-to process (page 46). Then the old CTOP value is used instead of the
MAR during the subtraction in the second cycle of the process (page 48). The
difference between that and the number of valid entries, if positive, is the new
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number of valid entries after the pop-down-to. This value is sent to the Type
board to update the number of valid entries along with ¢SA_HIT which indicates
that the CSA contains the new top-of-stack.

Diagnostic design

The diagnostic processor (slave) on the FIU board can read and write, directly
or indirectly, most storage elements on the board. This is used to verify the
correct operation of the board as well as provide status when errors occur. The
slave is on pages 64-66.

The slave can read or write the following set of functional units:
— The 64-bit Merge data register. This is accessible via 8 serial scan chains.

— The 4-bit MAR control field. This field is normally supplied by the Type
board but can be supplied by the slave.

— The 3-bit CSA control field. This field is normally supplied by the Type
board but can be supplied by the slave.

— The 39-bit microinstruction register. This is accessible via 3 8-bit chains,
a 7-bit chain, a 6-bit chain, and a 2-bit chain.

The microinstruction register can also be used to load a control store
location. This, along with the control addressing via the refresh counter,
allows the slave to read and write the control store.

— The Space, Name, and most-significant 25 Offset bits. These 60 bits (all
but the least-significant 7 bit-offset bits) of the MAR are accessible via 7
8-bit chains and a 4-bit chain.

— The Scavenger RAM data. An addressed byte from the scavenger RAM
can be read or written. (The scavenger RAM is addressed by the most-
significant 9 bits of the MAR.

-~ A read-only bit from the MAR control PROM.
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— An 8-bit chain which includes parity error bits from the Type, Val, FIU, and
Address buses, plus the refresh machine check, the microaddress parity
error, the microinstruction parity error, and the scavenger RAM parity
error.

— The two read-only conditions from the the FIU board.

The NOVRAM is addressed by 8 bits from the Merge data register. It is read or
written with data directly from the slave.

The slave can specify any microinstruction and can specify microcode which nor-
mally originates on another board. It also can specify many diagnostic functions
and controls not available via microcode. These capabilities allow the slave to
exercise the board at full speed in the same way microcode does. These capa-
bilities are shown in Table 7-7.
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Table 7-7
DFSM stimuli, FIU board

Signal

Function

Diag _WCS.WE
Diag__Hash.CS
Diag__Hash.WE
DiagCLKSTP.EN
Diag_ CLKSTP
Diag CNT.EN
Diag_CNT.DIS
Diag_Load _CNT
Diag. MEMABORT
Diag_MEMHOLD
Diag_ MCTL.EN
Diag_ADR.SEL

MAR.SELO and 1
Scan_MAR
Event_CLKSTP.EN
Diag.Fpar
Diag.Apar
MDR.SELO and 1

Scan_MDR
UIR.mode
Scan_UIR

Write the addressed control store location
Enable the Hash function RAMs

Write the addressed hash function RAM location
Enable diagnostic stopping of the state clocks
Stop the state clocks

Enable diagnostic incrementing of the refresh counters
Disable all incrementing of the refresh counters
Load refresh counters from TI bus

Abort all memory operations in progress

Hold all memory state

Enable sending all memory control signals

Selects the normal microaddress or the refresh counter for addressing
control store

Selects load, shift left, shift right, or hold function of the MAR
Enables MAR scan chains onto the diagnostic data bus

Enable memory events from stopping processor

Force a parity error in the FIU bus parity detectors

Force a parity error in the Address bus parity detectors

Selects load, shift left, shift right, or hold function of the Merge data
register
Enables MDR scan chains onto the diagnostic data bus

Enables load or shift right functions of the microinstruction register

Epables UIR scan chains onto the diagnostic data bus
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Table 7-7 (continued)
DFSM stimuli, FIU board

Signal Function
Dfreeze.FSM Freeze the entire processor
Dsync.FSM Sync the entire processor

Sel_Diag_cntl

Diag_TV.EN
Diag_T.EN
Diag_V.EN
Diag_F.EN
Diag_ADR.EN
FSM_done
Sync_Frez.EN

Scan_misc

Read_Diag bus
NOVRAM.WE
NOVRAM.CS
NOVRAM.STORE
DT.EN
PAREG.SELO and 1

Scope_Syne
UIRCLK.EN

My_{freeze.EN
Q4_disable
Set_State0

Enable diagnostic control of the Val, Type, FIU, and Address bus
drivers

Enable Diagnostic control of the TI and VI bus sources
Drive the Type bus

Drive the Val bus

Drive the FIU bus

Drive the address bus

Signals the slave that the DFSM command is complete
Enable control of sync or freeze

Enables the parity scan chain, the bit from memory monitor control,
the FIU board code, and the two FIU conditions onto the diagnostic
data bus

Enables data into the slave

Write the addressed location in the NOVRAM

Enable reading or writing the NOVRAM

Store all locations in the NOVRAM in the ROM portion
Trigger a state change in the DFSM

Select load, shift left, shift right, or hold function in the parity error
register

Backpanel pin for triggering scopes or logic analyzers

Enable clocking new microinstructions into the microinstruction reg-
ister

Freeze the FIU board only

Disable all Q4 state clocks

Force the DFSM command into the upper set of 8 states
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Chapter 8: Sysbus Board design

The sysbus board has several functions:
o List’em

This really is the set of things that the sysbus board does. But that isn't
necessarily “how” the sysbus board does them. The following list is the set of
functional blocks that make up the sysbus board. They are also shown on the
block diagrams.

e List'em

That is the basic blocks you'll see on the first few pages of the schematics. But
that isn’t the “how” either. Unfortunately, we have to use words to describe
how the board does the first list using the second list.

Functional Design

- follow simple operations of board first
- diverge into more complex operations

- refer to schematics occasionally (with page and signal name)
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Microcode design

- organization of microcode fields on this board
- macro and micro events generated

- refer to spec, microsim, or microcode if appropriate

Diagnostic design

- design of microprocessor on this board (how different from others)
- set of experiments on this board

- cross reference to listings occasionally

RATIONAL

71



RATIONAL Proprietary Document

Chapter 9: 1/O Adapter Board design

The I/O Adapter (IOA) board has several functions:
e List’em

This really is the set of things that the IOA board does. But that isn’t necessarily
“how” the IOA board does them. The following list is the set of functional blocks
that make up the IOA board. They are also shown on the block diagrams.

e List’em

That is the basic blocks you'll see on the first few pages of the schematics. But
that isn't the “how” either. Unfortunately, we have to use words to describe
how the board does the first list using the second list.

Functional Design

- follow simple operations of board first
- diverge into more complex operations

- refer to schematics occasionally (with page and signal name)
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Microcode design

- organization of microcode fields on this board
- macro and micro events generated

- refer to spec, microsim, or microcode if appropriate

Diagnostic design

- design of microprocessor on this board (how different from others)
- set of experiments on this board

- cross reference to listings occasionally
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Chapter 10: Examples of Operations

- run through power-up sequence

- show example of instruction execution (from DRS'’s patent discussion)
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Draft Status

This draft outlines the entire book but only fills out only some of the chapters.
The book is being developed even as you read this, though there are higher
priority things I need to work on. As you read this book, think about whether
itf cdover? all that you think a new person here should know to a reasonable level
of detail.

This draft is being used to test TEX macros as well. Please excuse TEX's (my)
mistakes.

Please notice the words in the upper right hand corner of most pages like the one
on this page. They are the words that appear in the index. If there is a word on
any page that has been overlooked (or one that should have been) please mark
such corrections on the list in the corner.

Please return any comments to RJB.

This draft was created on 1/10/1984.
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