RRRR U U N N TTTTT III M M EEEEE M M 000 DDDD
R R U U N N T I MM MM E MM MM O 0 D D
R R U U NN N T I MMM E MMM O g D D
RRRR U U NNN T I M M EEEE - ~———- M M 0O 0O D D
R R U U N NN T I M M E M M O 0 D D
R R U U N N T I M M E M M O 0O D D
R R ULUUU N N T III M M EEEEE M M 000 DDDD
TTTTT X X TTTTT 1 222 999
T X X T 11 2 2 9 ?
T X X T 1 2 9 9
X T 1 2 999
T X X T 1 2 ?
T X X T 1 2 9
T X X T 111 22222 999

#8TART# Job RUNTIM Req #115 for EGB Date 23-Jul-82 21:38:38 Monitor: Rational

File RM:<SIM. DOC. ARCHITECTURE>RUNTIME—-MODEL. TXT. 129, created: 14-Apr-82 10:30:33
printed: 23-Jul-82 21:38:39

Job parameters: Request created: 23-Jul-82 21:30:27 Page limit: 54 Forms: NORMAL.

File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode: A



R1000 RUNTIME MODEL

1. Intraoaduction

While machine architectures are traditionally characterized by their
instruction set, the architecture of the R1000 is best understood by
examining the runtime representation of programs. There are several
reasons for emphasizing the runtime representation rather than the
instruction set. First, many of the frequently executed expression
evaluation instructions can be understood in isolation, but the
magjority of the instructions can only be understood in terms of how
they modify the runtime state and what runtime invariants they
preserve.

A second major reason for emphasizing runtime representation of
praograms is that modern languages such as Ada are very declarative
languages which place considerable emphasis on type and object
declarations. Such languages require large amounts of information to
be kept at runtime to represent complex objects and implement the
dynamic semantics of type checking. A key feature of the R1000
architecture is its support for the declarative nature of modern
languages. By including a complete representation of type
declarations at runtime, the R1000 supports a very space efficient
representation of objects and accelerates addressing objects and
object components, eliminating many space/time tradeoffs required on
other machines. The runtime representation of types and objects in
the R1000 also allows direct hardware support for efficient dynamic
type checking.

A third reason for emphasizing runtime representation of programs is
that modern languages include very powerful control regimes, including
simple procedures and functions, recursion, retentive control (module
variables are not deallocated on leaving the module), coroutining, and
true parallelism. While the design of modular and maintainable
software is greatly enhanced by using such powerful control
structures, the control and storage management overhead associated
with such control structures can be prohibitively expensive. An
effective runtime representation for supporting modern languages must
address activation record construction, parameter transmission,
maintenance of the storage structure in which the activation records
reside, searching the storage structure for space for activation
record allocation (in many runtime models) and the reclamation of
unused storage within the structure. The R1000 design is based on a
runtime representation which addresses these issues by closely
modelling the semantics of modern languages. By exploiting the
semantics of such languages; the runtime representation provides near
optimal performance in terms of both space and time.



A fourth reason for focusing on runtime representation is the issue of
protection and security. Modern languages place considerable emphasis
on scope and visibility. Modern programming practices based upon
encapsulation and abstraction depend upon these scope and visibility
rules to enforce modularity and control interfaces. While security
and protection have been important issues in machine architecture for
several years, most recent efforts have focused on general purpose
protection schemes that are unrelated to programming language
semantics. The R1000 architecture gaurantees security (in the sense
that a running programming cannot corrupt another program) through
enforcement of the encapsulation and abstraction semantics of modern
languages. This means that the protection facilities of the machine
correspond exactly to the programmer conception of how objects are
protected, allowing the programmer to write reliable and secure
software. The R1000 runtime model is the key to enforcing this
protection model with no performance penalty.

A final reason for emphasizing the runtime representation rather than
the instruction set is that the role of the instruction set in the
R1000 is much different from that of a conventional machine. On most
machines the instruction set provides the interface between software
and hardware. The instruction set defines the programmer’s view of
the machine and is the vehicle for insuring software compatibility
between different machines in the same family. RMI intends that the
Ada language serve this role, rather than the instruction set of any
particular machine implementation. There will be no facilities for
programming the R1000 in machine (or assembly) language. The Ada
language provides the user view of the machine, and provides software
compatibility. While other languages may be supported on the R1000,
it is anticipated that the majority of those languages would be
translated to an extended Diana representation and then compiled with
the Ada compiler. This approach allows maximum freedom in tailoring
the basic instruction set to a given hardware technology and target
market, without sacrificing a consistent software interface.

This section introduces the R1000 runtime model and describes the
manner in which the runtime representation corresponds to Ada
semantics. Only those features of Ada semantics which have
substantial impact on the runtime model are addressed in this section.
This document is intended to introduce the basic concepts of the R1000
architecture and to document some of the higher level design decisions
that are not easily extracted from the architecture simulation. At
this point the architecture simulation is the primary reference
document for detailed information about the architecture.

It should be noted that a thorough understanding of Ada semantics is a
prerequisite to understanding the R1000 architecture. The reader is
strongly encouraged to carefully study the Ada language reference
manual and to write a couple of reasonably large programs before
approaching the R1000 architecture.

We will first introduce the basic runtime structures in the R1000 and
then look at specific architectural issues through a series of
examples. Each example includes an Ada source program, the R1000
assembly code, and a script with explanatory narrative for running the
example on the architecture simulation (the default directory

for all filenames given in this document is <sim. doc. architecturel).



2. Basic Runtime Structures

The basic component of Ada programs is the package. The package is
the fundamental mechanism for modularizing programs, encapsulating
types and data, and defining abstractions. The Ada task also provides
modularity and encaspulation, in addition to implementing concurrency
(including synchronization and communication). Correspondingly, the
module (package or task) is the fundamental unit in the R1000 runtime
model. Figure 1 (see Daisy. Arch. Intro) illustrates the basic runtime
structure of a module.

Every module instance has a unique name and a set of address spaces
that are accessed with that name. Address space creation and deletion
is managed automatically in the R1000. The segment name generally
consists of two parts, a virtual processor number and a segment
identifier. The R1000 virtual address space is divided into 256
virtual processors for purposes of load leveling and crash recovery.

A module is always associated with the same virtual processor, but the
mapping between virtual and physical processors may be changed over
time.

Each module instance includes a control stack (used for expression
evaluvation, parameter transmission, and activation records), a type
stack (use for type descriptors of types declared in that package),
and a data stack (used for data storage for all data structures
declared in that module). A task also includes a queue address space
which contains the message queues for the entries of that task. Each
module instance makes use of an import segment associated with each
instance of the module type (there may be many modules of the same
type). For a single source definition of a module there may be
several elaborated instances of the module type, but they all share a
single program segment. Within the architecture virtual addresses
consist of a memory sort (control, type, data, queue, import. or
program), a segment (or address space) name and an offset within the
segment. We will briefly describe the structure of each address
space.



2.1 Program Segments.

The first words of the program segment are reserved for holding
program segment names. The very first word contains a pointer to the
module body start address and then the first three program segment
names. Four program segment names may be stored in successive words.
Program segment names must be included for every module type to be
declared when executing the subject program segment.

The remainder of the code segment is organized into sections. The
first section contains code for the module body. the other sections
contain code for any subprograms declared in the module. Each section
consists of some exception handling information followed by the
instructions (eight per word) and literals for the declarative part,
statement part, and exception handlers (in order).

The exception handling information includes the number of declared
locals and the boundaries between declarative, statement and exception
handling code. This information allows the machine to determine
whether an exception should be propogated immediately (if the
exception occured in the declarative or exception handling code) or
whether it should be handled locally after cleaning up any partially
evaluated expressions. This exception handling information
effectively takes up the space of the first three instructions of each
section. This leaves room for only five instructions in the first
word of a section.

A program segment address includes a 24-bit segment number and a
15-bit instruction address (2##12 words). Relative program segment
addresses are included in the jump and long literal instructions
(since literals are stored in the program segment). An absolute start
address is pushed on the stack when declaring a subprogram variable.
Otherwise there are no instructions for addressing code segments.



2.2 Import Segment

In the Ada language each module is an open scope; that is, all objects
declared in an outer package before the declaration of an inner
package are visible within that inner package. For improved security
and efficiency and to support languages other than Ada, the R1000
treats modules as closed scopes. From the point of view of the
instruction set, the basic addressing mechanism involves refering to
objects on the control stack by a static lexical level (0..15)

and relative offset. Lexical level 1 corresponds to the outer frame
of a module. Lexical level O refers to the import segment associated
with the module type. Thus the import space can be viewed as a shared
outermost control stack frame for all modules of the same type

When a parent module elaborates the declaration of a module type
visible part, it first pushes a list of objects (types and variables)
on its control stack. These objects are imported by the child module.
and are therefore placed in an import segment created for that module
type. Further imports may be provided when elaborating the
declaration of the module type body. This approach gives the parent
explicit control over the portions of the current environment which
are available to the child. Thus the import space can also be viewed
as an access rights list.

An import segment address includes a 32-bit segment name and a 9-bit
word offset. Import addresses are generated by instructions which refer to
lexical level 0.



2.3 Control Stacks.

The control stack is the primary runtime structure for a module
instance. All words on the control stack are tagged. A control stack
consists of a task control block followed by a series of activation
records. The task control block includes information about the state
of the module, resource limits, scheduling, debugging, context
information, microstate save areas, etc. This information is
maintained automatically in the R1000.

Each activation record consists of a two word mark followed by one
word for each object in the frame. The mark words include the static
link and outer frame pointer (forming an abbreviated display), dynamic
link, lex level, return address, and other information. Activation
records are built automatically in the R1000. The call and exit
instructions save and restore frame state and implement Ada semantics
for subprogram call and exit. As mentioned above, all addressing is
relative to the currently visible activation records. The R1000

- automatically maintains the abbreviated display and performs address

computations (converting lexical level and delta into a control stack
address) invisibly. Parameters are pushed on the stack before
invoking a subprogram and are addressed with negative offsets from the
mark words.

All types and statically named variables are allocated one word on the
control stack. Most objects on the control stack consist of a 64-bit
value part and a 64-bit type part. For a type object, the value part
is meaningless. The type part of the word includes a tag indicating
the class (package, task, discrete, float, array, record. etc.),
information about visibility and protection, and a link to a full type

descriptor on a type stack. If the type was declared in the same
module as the object, then the type link points to the type stack with
the same segment name as the control stack. The contents of the value

part of a control word depends upon the class of object. For
discrete, float, access, package and task objects, the value is
represented directly in the control word. For records and arrays, the
value part is a data stack reference, pointing to the location of the
data structure on the data stack.

A control stack address includes a 32-bit segment name and a 20-bit
word offset. Control stack addresses are generated by instructions
which include a lex level and delta. All expression evaluation and
parameter transmission implicitly uses the top of the control stack.
All objects are loaded on the top of the control stack before being
manipulated. Formats for all of the words on the control stack can be
found in <sim. def>stacks. ada. Precise bit formats can be found in
<sim. doc>control-word. format.



2.4 Type Stacks.

The type stack contains descriptors for the types declared in the
corresponding module. A single type descriptor is shared by all
instances of an object. Type descriptors include information such as
the bounds of a scalar type, index bounds and addressing constants for
an array type, field type and location for a record field, etc. Type
descriptors provide support for address computations, dynamic
constraint checking, protection, type conversions, and implementing
various attributes.

Like the control stack, the type stack is organized into frames
corresponding to the outer package and any subprogram activations.
There are no mark words on the type stack (top and frame information
for the type stack are in the mark words on the control stack).

In addition to holding type descriptors, the type stack holds the list
of the names of the children created by a frame. Children include any
modules, collections, or import spaces declared in that frame.
Basically this is the list of address spaces which must be reclaimed
when exiting a frame. For the outer frame of a package, one of the
module control block words points to the first child word in that
frame. For subprogram activations, the first word of the type stack
frame is reserved for the first child word. Since the number of
children being declared is not known until complete elaboration of the
frame, the child words are scatter between the type descriptors, and
are connected in a linked list. Thus each child word includes a link,
a count of the number of children in this word (0..3) and the names of
up to three children.

Formats for all of the words on the type stack can be found in the
package stacks ({sim. def>stacks. ada). The package descriptors
(<{sim. def>dscrpt. ada) gives an Ada description for most of the type
descriptors on the type stack.

A type stack address includes a 32-bit segment name and a 20-bit word
offset. The type stack is fixed format and word aligned to allow
direct hardware support. Type stack addresses never appear explicitly
in instructions, but are generated implictly as required.



2.5 Data Stacks.

The data stack is organized as a string of zero to 2##32 bits and is
completely uncontainerized. Data structures (records and arrays) are
stored on the data stack and are accessed through variables and
expression temporaries on the control stack. All data structures are
interpretted in accordance with the appropriate type descriptor.

Sizes and intermediate addresses are computed when the type descriptor
is elaborated, based on any dynamic constraints. The sizes represent
the minimum number of bits required to represent the object, and the
object is stored in this minimal representation on the data stack.

A data stack address includes a 32-bit segment name and a 32-bit bit
offset. Data stack addresses never appear explicitly in instructions,
but are generated implictly as required.

2.6 QGQueue Segments.

A queue segment is associated with every task instance. The queue
segment is organized into a series of linked lists of messages and
free space. Each entry variable on the control stack (or on the data
stack if it is a member of an entry family) contains a pointer to the
head of the corresponding free list and pointers to the head and tail
of the corresponding message list. The first word in the queve
address space is reserved for resource management information (current
extent of the address space, maximum extent permissible, etc.).

A queue address includes a 32-bit segment name (corresponding to the
name of the associated task) and a 20-bit word offset. Queue
addresses never appear explicitly in instructions, but are generated
implictly as required.

3. Simple Type and Object Declarations.

This section presents a very simple example designed to introduce the
basic principles for declaring types and objects on the R1000. The
source code for this example can be found in EX1. ADA, the assembly
code can be found in EX1. ASM, and EX1.PHO is a photo file recording a
session executing this example on the simulation. Hardcopies of these
three files are probably required to make it through the rest of this
section. The photo file may be used to assist in following the script
for this example and seeing the exact commands to enter.

The source code for this example is very simple. We have a package
EXAMPLE_1 with no visible part (a main program on the simulation is
usually a package with no visible part). In the body of EXAMPLE_1 we
declare a new integer type and five variables of that type. We also
declare a character variable used for input/output. We then perform a
number of simple computations on the local variables, printing out the
final result.

If we look at EX1. ASM (created by running the Ada compiler on EX1. ADA)
we see a close correspondence between the source code and the object
code. We will explain the operation of each instruction by stepping
through the execution of this example on the simulation.

Before running the simulation at 9600 baud, insure that Xon/Xoff is
enabled on your terminal. The simulation is invoked by typing
"simulation"” (for now use the version <sim. tests>simula. new instead).



It takes several seconds for the simulation to initialize all of its
component packages, and then it will display a prompt character (}-2).

The set of simulation commands can be displayed by typing "?" at this
point. If we wish to record a transcript of the session we type
"photo" (note that the simulation command interpretter will complete
commands upon entry of a unique prefix; here we give full command
names for readability).

Before executing EXAMPLE_1, we must first load the program segment
into the simulation using the command "load <sim. doc. architecturerex1i".
This resolves all Jjump addresses in the ASM file and produces a
program segment address space in the simulation. On the R1000 there
will be software tools for building a binary image of a program
segment (as a data structure) and then special operations on the
SEGMENT_VARs to convert the data structure into a program segment. We
can see the results of this operation on the simulation by using the
command “"show program status" to see that a program segment has been
created with a number given to identify that segment.

We can examine the loaded segment with the command "“words program
<segment-number> 0" followed by a space to see each additional word
and a carraige return (CR) to stop. We can see that the format of the
program segment is exactly as described above (in section 2.1).

To start the example program we now enter the "initiate
<segment-number>" command. This elaborates the package EXAMPLE_1,
building all required runtime structures. We can see that a control
stack was created by using the "show control segments" command.
Control stack zero is created by the simulation to act as an outermost
main package. Control stack one is the package standard, also created
by the simulation. Control stack 16 is the control stack created by
the initiate command.

We can now look at the state of the processor with the “show program
registers" and "show control registers" commands. These two commands
can be used at any time during the execution of the simulation to
orient the user and see the current state of simulation.

The “"show program registers" command displays the current value of the
program counter and the current value of the instruction buffer.

The "show control registers" command displays the name of the control
stack we are executing on, the top of that stack, and some statistics
on the control stack accelerator register file. The statistics
gathering stuff is not enabled in this version of the simulation.

We can look at the contents of the control stack with the "words
control <current-stack> <word-offset>" instruction. Using a word
offset of zero and then hitting space for each additional word, we can
see all of the control information at the base of the stack. We will
come back to the set of words at the bottom of the stack in later
examples. All of the control words are described more completely in
<sim. defs>stacks. ada.

We can execute the first instruction by entering the "continue"
command. The first instruction was a load 0,0, which has loaded a
package variable on top of the stack. We can see (using the word
command to display the top word of the control stack) that this is a
package variable refering to stack #1 (everything in the simulation is



on processor 1), the package standard. The first & instructions of
EXAMPLE_1 are concerned with getting local copies of standard types
(string, character and integer). If we enter “continue", the
simulation will execute the next instruction, a field read instruction
which will read the nth object out of the visible part of the package
identified by the package variable on top of the stack. If we now
look at the control registers ("show control registers") we see that
the top of the stack is still at 146. Looking at the top word on the
stack (“"word control 16 16") we see that the package variable has been
consumed and replaced by the type string (an array variable with no
value part).

Now we should “"set instruction_trace foo" (to display each instruction
as it executes) and "set state_display (to auvtomatically display
frequently useful state) and then we can execute the next two
instructions with a single command ("step 2"). We can see that the
top has moved up one, and we can see that a discrete variable has been
placed on top of the stack to represent the type character. We can
trace the type link by wsing the "word type <{stack and offset out of
the type 1link>" command. We see from the type descriptor on the type
stack of package standard that character is a discrete type with
bounds 0..127.

We can execute the next two instructions ("step 2"), again see that
the control stack top has moved up one, and see that the item on top
of the stack is a discrete with bounds INTEGER‘FIRST.. INTEGER 'LAST.

The next four instructions declare the local type ANSWER. The first
three instructions push parameters to the declaration, and the last
consumes the parameters, replacing them with the new type. If we
"step 3" and then look at "words control 16 19" (hit space bar twice
to get second and third parameters) we see that the two bounds have
been pushed on the stack and we have copied the type INTEGER to the
top of the stack. If we then "continue" (or "step 1"} the
DECLARE_TYPE instruction checks that the two bounds are within the
bounds of the parent type, builds a type descriptor on the type stack.,
and pushes the new type on top of the control stack (after removing
the three parameters). The new type is on top of the stack, and we
can see that its type link points to this stack (all of the previously
examined type links pointed to types on the package standard). It we
then look at the first three words of the type stack we see that a
full type descriptor has been built for the new discrete type (see
<sim. defs>dscrptr. ada), including the bounds and the exact size for
objects of that type. The type utility is a subprogram associated
with a type for use by the compiler to implement initialization,
complex attributes:. and other functions.

The next ten instructions declare five variables of type ansuwer. It
should be noted that there are more optimal code generation sequences
which are more than twice as fast. I+ we step ten and then look at
the control stack we can see that five variables have been created and
left on top of the stack.

The next two instructions (“"step 2") load the type character onto the
top of stack and then declare a variable of that type.

The next two instructions load a literal on the stack and then store
it into the variable A (performing constraint checking). We can step
2 and then look at A using the resolve reference command. A is at lex
level 1, delta 7 (counting up from O and leaving two words for the



frame mark). We can then either step 4 and see the value for B (lex
level 1, delta 8), or step 1 four times to see the two operands
loaded:, the result computed and then stored. Similarly we can step 4
more each to see C and D (lex level 1, deltas of 2 and 10). Finally
if we step 4 more we can see the final answer stored into E (lex level
1, delta 11).

The next several instructions are designed to output the answer (E).
Input/output in the simulation is modelled as a special package in the
package standard with visible operations for I/0. Rather than step
some number of times, we can say "BREAK <program segment number>
<word-offset> <instruction-index>" to set a break point right after
the last print statement. We then say something like step 1000, and
the simulation will vrun until it hits the break point. I+ we then say
"exhibit", the output buéffer is displayed. I# we then step 100, the
simulation runs until it reaches the input statement (which also
forces the output buffer to print). If we enter some character, the
example runs to completion. We will address the SIGNAL_ACTIVATED and
SIGNAL_COMPLETION instructions in a later example.






