RATIONAL

RATIONA ro

R1000 Architecture

ii



' ——

RATIONAL Proprietary Document

Preface

This is an overview of the R1000 architecture. It is a document that can be used by
new employees and will be used as source material to be included in other documents
such as the system overview manual (maybe others). At some point, this document
may be cleaned up so that it can be given to customers. But for the moment, it is
internal only.

The reader for this document is employees in the development, technical support
areas, or manufacturing. The reader is assumed to be familiar with current mini-
computers or microprocessors.

This 13 a company proprietary document! It will not be distributed outside
of Rational!

RATIONAL iii




RATIONAL Proprietary Document

Contents

Introduction to the Rational Architecture
Complicated Data Structure Support

Stack Based Architecture . . . . . . . . o
Lexical Addressing Structure . . . . . . . o

Multiprocessor Support e
High-Level Tasking Support . . . . . . . . . . . . . . . . . . ..
Highly Segmented Virtual Memory . . . . . . . . . . . . . . . ..

Run-time Model . . . . . L
Types and Objects . . . . . . . . . .

Segmented Virtual Memory . . . . . o
Exceptions e

Utility subprograms . . . . . . . . . . . . . . ..

Privacy and Visibility . . . . . . . . . . . . . . . ..

Stack Management . . . . . . . . . . . . . . .. .
Controlstack . . . . . . . . . . . ...
Typestack . . . . . . . . . .0
Datastack . . . . . . . . . . . . . . ..

Displays . . . . . . . . . . S

Addressing . . . . . . . ...
Lex-level Delta . . . . . . . . . . . . . e
Full Logical addresses

Discrete Types . . . . . . . . . . . . ..

Representation . . . . .

Declaring Types s

Declaring Objects . . . . . . . . . . . . . . . ...

Operations . . . . . . . . . . . . . ...

RATIONAL

W Iy JI~ITOoOo e b W OO e

O O O O O o ®©



Floating Point Types .

Representation
Declaring Types

Declaring Objects

Operations

Array Types
Representation
Declaring Types
Declaring Objects
Operations

Record Types
Representation
Declaring Types
Declaring Objects
Operations

Variant Record Types
Representation
Declaring Types
Declaring Objects
Operations

Access Types .
Representation
Declaring Types
Declaring Objects
Operations

Package Types
Representation
Declaring Types
Declaring Objects
Operations

Task Types
Representation
Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Documest

. 10
. 10
. 10
.10
. 10

.11
.11
11
11
.11

.12
.12
.12
.12
. 12

.13
.13
.13
13
.13

.14
. 14
.14
. 14
. 14

. 15
19
.15
.15
. 15

. 16
. 16
. 16
. 16
. 16



Segmented Heap Types

Representation
Declaring Types
Declaring Objects
Operations

Generic Types
Representation
Declaring Types
Declaring Objects
Operations

Subprogram Types
Representation
Declaring Types
Declaring Objects
Operations

Exception Types
Representation
Declaring Types
Declaring Objects
Operations

Instruction Dictionary

RATIONAL

RATIONAL Proprietary Document

17
.17
17
17
17

.18
. 18
.18
.18
. 18

. 19
. 19
.19
.19
.19

. 20
. 20
. 20
. 20
. 20

.21

vi



RATIONAL Proprietary Document

Chapter 1: Introduction to the Rational Architecture

Rational took a fresh clean look at computer architectures when it began designing
its products. Typical computer architectures, whose underlying characteristics were
first attributed to John von Neumann, were first designed in the 1940’s. While some
advances have been made, very few current architectures are significantly different
from those of 30 years ago.

Classic von Neumann architectures provide a simple homogenous address space and
generalized addressing structure. They were fine when software was inexpensive and
hardware was expensive before the advent of recent high-level languages. Classic
architectures provide enormous flexibility and simplicity at the expense of reliability
and ease of expressing complex data structures or algorithms.

Now it has become clear that the real expense in current computer systems is not the
hardware but the software. Recent high-level languages have been built to improve
the reliability, maintainability, ease of expression, and efficiency of the software
written in those languages which reduces the cost of that software. Now it is time
for architectures to reflect those same high-level language ideas.

In 1984, Rational began producing a series of machines based on a new architec-
ture. The application of these machines is for system design using the Rational
Design Environment. The RDE is an advanced computer-aided system design tool
which vastly increases the productivity of programmers and other designers. The
RDE requires a machine whose architecture optimizes the use of recent high-level
languages.

Recent programming languages like Ada' have incorporated the best ideas for im-
proving reliability, maintainability, ease of expression, and efficiency. The Rational

'Ada is a registered trademark of the United States Department of Defense.

RATIONAL




RATIONAL Proprietary Document

architecture is designed for only Ada and Ada-like languages so many architectural
features are derived from a corresponding Ada construct.

For instance, Ada has a very easy and efficient multitasking capability which en-
courages programmers to use multiple tasks. Yet few current von Neumann archi-
tectures provide for efficient tasking; some machines require tens of milliseconds to
rendezvous with another task.

The Rational architecture provides for direct tasking support built into the ma-
chine. On the R1000, the first implementation of the Rational architecture, task
rendezvous typically takes a few microseconds.

Ada and other recent languages also encourage the use of complex data types. For
example, variant or discriminated records allow a program to treat a set of data as
a unit while also allowing access to individual (and possibly quite interdependent)
items within that unit. Fulfilling all of the type checking and other constraints that
Ada imposes on an object of that complexity often requires a significant number of
simple operations in most von Neumann architectures.

In the Rational architecture, manipulating variant records are single operations just
like manipulating integers. The handling of complex data structures is inherent in
the architecture. This is another example of how the Rational architecture provides
simple, direct and efficient support for high-level language constructs.

An architecture built for the purpose of supporting high-level languages provides
two key advantages:

o Efficiency — The architecture knows to do much more with each operation since
the architecture knows much more about the program it’s running. Also the
operations can more directly match the language operations. As mentioned,
tasking support is integral to the architecture, not system calls or subrou-
tines.

o Reliability — The architecture knows not to do operations that don’t make
sense in the context of the program it is running. This is the simpliest and
most reliable form of protection. This protection (e.g., type checking, privacy
checking) is also integral to the architecture.

These advantages mean that the Rational architecture provides better facilities
for building and running software written in languages like Ada than most other
architectures.

RATIONAL

[ 3]



RATIONAL Proprietary Document

Here are some of the more important features of the architecture that make these
advantages so significant:

e Support for all complicated data structures.
o Stack based architecture.

o Lexical addressing structures.

o Multiprocessor support.

o High level tasking support.

o Highly segmented virtual memory.

The remainder of this chapter describes these features.

Complicated Data Structure Support

All values within the machine are tagged. These tags not only specify what repre-
sentation class the value is (e.g., integers, floating point, variant record), but also
what type the value is as in the Ada sense of types (bounds, structure, etc.). No
value exists in the architecture that does not have an explicit type. Therefore, no
operation can occur on a value of an illegal or non-sensical type.

Stack Based Architecture

Many machines use stacks for activation records and evaluation of expressions but
most make the use of the stack cumbersome and inefficient. Operations in the
Rational architecture implicitly use a stack. Further, since Ada encourages the em-
ployment of modern software engineering techniques including high modulization,
most programs will be highly modular with many tasks and subprograms that re-
quire efficient manipulation of the stacks. The Rational architecture is designed
specifically for high stack usage.

RATIONAL




RATIONAL Proprietary Document

Lexical Addressing Structure

The addressing structure used in the architecture knows that all programs written in
Ada-like languages exhibit localsty in its use of program variables. Locality suggests
that, for the most part, only those variables declared in the local procedure block
or enclosing blocks will be used. Thus, the addressing structure can be tailored to
provide easy access to those variables that are declared on the current record of
execution (the current stack). The addressing structure, which is called lez-level
delta, uses the lexical level at which the addressed object was declared as the basis
for addressing all objects in the architecture.

Multiprocessor Support

The Rational architecture allows implementations to take advantage of multipro-
cessing techniques. The distribution of virtual memory addresses on distinct proces-
sors is an implementation issue not specified by the architecture. Memory references
to locations contained in other processors is handled by the architecture, not the
system software. Programs are not bound to specific processors but may be moved
to an available processor when more than one processor exists.

High-Level Tasking Support

The Ada model of a task is implemented directly in the architecture. A task is
conceptually a program unit that executes in parallel to other program units. Syn-
chronization is provided for in Ada and implemented directly in the architecture.
Task calls (rendezvouses) are handled in a similar fashion to procedure calls. Task
calls to tasks on other processors are no different than task calls to tasks on the
same processor.

Highly Segmented Virtual Memory

RATIONAL




RATIONAL Proprietary Document

The Ada model of high modularity is supported by a highly segmented virtual
memory. Memory segments are catagorized as one of seven segment types called
spaces. These spaces, in turn, are divided into numerous segments. Each segment
typically contains a specific type of information (e.g., code, data, ete.) for a specific
program module. Cross-segment references are carefully protected.

RATIONAL




RATIONAL Proprietary Document

Chapter 2: Run-time Model

A run-time model is an image of what a program looks like when it is running on the
architecture. It shows where the various parts of a program are in memory and other
architectural entities. It shows how the program is represented and partitioned.

The run-time model for the Rational architecture starts with a discussion of a
principle programming language construct: all variables in the language are typed.
This means that each variable has associated with it certain parameters like upper
and lower bounds, bit length, and structure or representation.

Types and Objects

Talk about the separation of church and state (I mean the separation of types and
objects). Show creating types, instantiating objects, elaborating objects, ete.

Show declaration, derivation, completion, etc.
Show bounds-with-type vs. bounds-with-object

Show how some things are referenced on control stack and others are placed on
control stack (mumble-by-reference vs. mumble-by-value)

Show different representation classes: discrete, float, access, task, etc. Essentially
introduce the following N chapters.

RATIONAL




RATIONAL Proprietary Document

Segmented Virtual Memory

List 6 segments (control stack, type stack, data stack, import space, queue space,
code segment). Define what is in each one. Refer to appropriate specs for bit
patterns of segment contents.

Do we talk about the other 2 segment types???
Exceptions

Show how they are generated at Ada source level, how architecture handles them.

What exceptions can be raised from within instructions and what do they mean.
Utility subprograms

Show common use: enumeration types

Privacy and Visibility

Show difference at both architecture level and at Ada source level.

Stack Management

Show how stacks are used implicitly for most instructions.

Show how calling another task changes stacks and packages don't.
Control stack

Show uses.

Show (or refer to) specs of contents.

RATIONAL




RATIONAL Proprietary Document

Type stack

Show uses.

Show (or refer to) specs of contents.

Data stack

Show uses.

Show (or refer to) specs of contents.

Displays

Explain use of display.

Show typical contents under subprogram calls, etc.

Addressing

Explain Various types of addresses generated in the machine.

Lex-level Delta

Show how a typical instruction addresses an object.

Show how imports are mapped into lex level 0.

Full Logical addresses

Show what a full logical address looks like.

RATIONAL




RATIONAL Proprietary Document

Chapter 3: Discrete Types

Representation

Describe how discrete types and objects are represented on the Type, Data, and
Control stacks. Show bit patterns or reference specs where bit patterns are found.

Declaring Types

List operations for declaring types. Show analogous Ada constructs where feasible.
Point out any anomolies.

Declaring Objects

List operations for declaring objects. Show analogous Ada constructs where feasible.
Point out any anomolies.

Operations

List operations for manipulating objects. Show analogous Ada constructs where
feasible. Point out any anomolies.

RATIONAL




Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 4: Floating Point Types

10



Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 5: Array Types

11



Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 6: Record Types

12



Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 7: Variant Record Types

13



Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 8: Access Types

14



Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 9: Package Types

15



RATIONAL Proprietary Document

Chapter 10: Task Types

Representation

Declaring Types

Declaring Objects

Operations

Includes: rendezvous, selects, entries, families, queue segments, etc.

RATIONAL

16



RATIONAL Proprietary Document

Chapter 11: Segmented Heap Types

Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

17



RATIONAL Proprietary Document

Chapter 12: Generic Types

Representation

Declaring Types

Declaring Objects

Operations

Explain how generics are not macro-expanded. Why we need special instructions.

RATIONAL

18



RATIONAL Proprietary Document

Chapter 13: Subprogram Types

Representation

Declaring Types

Declaring Objects

Operations

Includes: all program flow stuff, calls, returns, etc.

RATIONAL

19



Representation

Declaring Types

Declaring Objects

Operations

RATIONAL

RATIONAL Proprietary Document

Chapter 14: Exception Types

20



RATIONAL Proprietary Document

Chapter 15: Instruction Dictionary

Arranged by representation class.
See index for alphabetical listing.

Roughly 450 instructions in this chapter. At an average of 2 per page, that’s a lot
of pages in this chapter.

RATIONAL

21



RATIONAL Proprietary Document

Draft Status

This draft outlines the entire book but only fills out only some of the chapters.
The book is being developed even as you read this, though there are higher priority
things I need to work on. As you read this book, think about whether it covers all
that you think a new person here should know to a reasonable level of detail.

This draft is being used to test TEX macros as well. Please excuse TEX's (my)
mistakes.

Please notice the words in the upper right hand corner of most pages like the one
on this page. They are the words that appear in the index. If there is a word on
any page that has been overlooked (or one that should have been) please mark such
corrections on the list in the corner.

Please return any comments to RJB.

This draft was created on 1/25/1984.

RATIONAL




