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Chapter 1
Introduction

This section introduces the Rational Machines Architecture and provides
some of the motivation for its creation. The Ada language is also
introduced.

1.1. Goals of the architecture

Over the last three decades, computer architecture and programming
languages have evolved a great deal. Computer architecture has moved from
small memory, irregular instruction set, special purpose machines to larger
memory, more regular instruction set, general purpose machines. :
Improvements in technology have contributed greatly to this, as has the
recognition of the role and importance of software and higher-level
languages.

An important design parameter of computer architectures now is the ease
with which high-level languages can be implemented under them. Thus, the
evolutionary paths of languages have now become intertwined with those of
machine architecture. )

Programming languages have also been evolving extensively over the past
several decades. Initially, languages were only slightly embellished

~versions of the order code of the machine. ‘High—level’ languages and the

notion of machine independence were a major step {oward programming
languages that were closer to the problem than to the machine
implementation. Subsequent evolutionary steps recognized the importance of
problem-specific constructs in languages to ease the solution of certain
tlasses of problems. * This was tempered with the notion of ‘general
purpose’ languages that would be applicable for many problems. The two
ideas were compromised somewhat with the recognition that abstraction
mechanisms whereby the programmer could define a data structure and set of
operations that provided an ‘integrated’ facility not originally present in
the language could provide many of the good features of both the special
purpose and general purpose world.

In addition, a number of specific language characteristics and features ,
were recognized to provide support for the construction of large. reliable
programs.

The Ada language is a product of the current language evolutionary trend.
It provides abstraction mechanisms and a number of other features currently
recognized as supportive of the programming process.

The goal, then, of the Rational Machines Architecture is to take the next
step in the combined evolution of computer architecture and programming
languages and provide an architecture that strongly supports the
implementation of modern programming languages such as Ada. As Ada is a
step beyond current production languages, having an architecture that
supports Ada well will make a system architecture that provides superior
price/performance characteristics at its level of functionality.
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A good programming environment is also a critical requirement for the rapid
production of quality software. The Rational Machines Architecture must
also support such a programming environment. Thus, requirements of the
environment alse influence the architecture.

1.2. General description of Ada

The Ada language has all sorts of stuff in it. See section 1.2 of the Ada
manual.

1.3. Architectural implications for support of Ada

They‘re not small.
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Chapter 2
Overview of the Architecture

This section gives a general overview of the architecture and distinguishes
between architecture and implementation.

2. 1. Architecture vs implementation

We must distinguish between the notions of ‘architecture’, ‘architecture
implementation’, and pure ‘implementation’. In general, ‘architecture’
refers to the abstract properties of the machine in terms of what is
visible from the point of view of the instructions. This would include
memory types (if distinguishable from the instructions), stacks. procedure
and parameter mechanisms (though not specific structures of stack markers
unless visible to the instructions), and other features of this nature.
Binary machine instructions are not necessarily transportable between two
machines conforming to the same architecture. High level programs,
however, are. Different code generators may be required, and there may be
different restrictions on maximums and minimums of various parameters, but
machines conforming to the same architecture would be substantially similar
in function.

‘Architecture implemetation’ includes issues such as address sizes,
instruction encodings, and descriptor formats. Programs in binary are
transportable between machines having the same architecture
implementations. Such machines have the same functionality and encodings
of program data.

‘Implementation’ refers to the internal structure of the machine. This
structure is not visible to a running program in any way except for
performance speed. Thus: implementation issues refer to uses of caches,
pipelines, internal registers; and things of that nature.

In general, the term ‘Rational Machines Architecture’ refers to the
architecture level, ‘<machine—name> architecture’ (where <machine—-name> is
the name of a machine in the RMI product line) refers to an architecture
implementation, and ‘<{machine-name> implementation’ refers to the
implementation of the given machine.

2. 2. General organization

Many basic concepts of Ada extend directly into the architecture.
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Type checking
Every object in the system has a type. Whenever an instruction
performs an action on an object, the type of the object is
checked for compatibility with the operation being performed.
Unacceptable types cause machine~-raised exceptions. The exact
function performed by the operation will depend on the type(s)
of the operand(s). For example, ADD will add numbers of
various types, performing the appropriate operation based on
the actual type.

Early detection of inconsistencies in the program is
facilitated by type checking and contributes to a decrease in
debugging time and an increase in veliability. The type
information provides a knowledge of data structure (eg:. array.
record) at the machine level and leads to more efficient access
to such structures.

Abstract types
The machine enforces abstractions as defined in Ada. This is
the primary protection mechanism. When an abstract type is
declared, concrete operations on the abstract data objects
(private types in Ada) can only be performed in the part of the
program that defined the type. The machine knows if an
abstract type is being operated upon and prevents unauthorized
accesses.

Tasking There are a number of features in the architecture to
facilitate the Ada tasking functions. The architecture
supports the notion of tasks: rendezvous, delays, and task
initiation and termination. For example, the return—-from-
procedure-call instruction auvtomatically waits until any local
tasks have terminated before returning.

Collections
Collections are the memories that are accessed by access types.
The archecture provides a special memory segment type for
collections.

Access to data types
The basic structured types in Ada (arrays, records, variant
records) are supported in the architecture with special
instructions that provide efficient access and appropriate
constraint checking.

Exception Handling
The Ada exception handling functions are also directly
supported in the architecture.

Subprograms/Packages

There are facilities in the architecture that support package
instantiation, elaboration, and termination.
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2.3. Run—~Time Model

The run-time environment revolves around the Ada
task). Although modules could be implemented in
different translators, the architecture reflects
implemented as follouws.

module (a package or
different ways by
an intent that modules be

There is one program segment for each module. This segment contains all
the code for the module, and the names of the program segments for enclosed

‘modules.

There is also one control stack and type stack for each module. As types
are defined in the module, entries are made on the control and type stack.
As objects are declared in the module, entries are made on the control

stack with pointers to the type (in a type stack) and to the value (on the
data stack) if the object is a structure. Procedure activations also are

placed on a module‘s control stack but only if i
task or a package during package elaboration).
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Chapter 3
Data Units

3.1. Introduction

This section describes the addressing and simple data types in the
architecture. It also describes the R1000 architecture-defined formats of
several of these types. Through most of this section, the R1000
architecture is described rather than the architecture in abstract form.
Occasionally, the distinctions are noted.

3.2. Storage of Information in the R1000 Architecture

This section begins the description of the R1000 architecture. The R1000
memory is a typed segmented memory system. Memory is divided into a number
of variable sized segments each of which has a class. The classes are:
control stack (CS), data stack (DS), type stack (TS), program segment (PS).,
collection (COLL), and import segment (IS). :

Each of the segments has a unique name. This name is composed of a segment
id and the segment class. Thus, a type stack, for example, can be
associated with a control stack by having the same segment id.

A control stack consists of a number of frames each of which contains a
marker and data. A frame is pushed on the CS for each block that is
entered (which is usvally by a subprogram call). The marker contains
return address, context, and block cleanup information.

The data part of the frame contains data objects. Each object is either a
type variable, or a (type:, value) pair. (A type variable is also a (type,
value) pair, but the value part is ignored.?}? There is a type variable for
each type introduced in an Ada program.

The type part of the (type, value) pair contains protection and access
information and a pointer to a type descriptor on a type stack. The value
part either contains the value of the object if it is a scalar small enough
to fit (64 bits in the R1000 architecture), or else a pointer to the object
on the data stack.

A type stack contains type descriptors for each of the data objects .
referenced by a control stack. Each control stack is associated with a
unique type stack, however, a control stack can refer to type information
on any type stack. Range and constraint information for scalars, arrays.
and records are stored within a type stack. There are no instructions to
directly address memory within a type stack. The type stack also contains
resource allocation information for local tasks and collections.

Statically named structures (arrays, records, etc.) are allocated on the
data stack. (R1000 Implementation note: The data stack is bit—-packed for
maximum storage density. Each element is allocated the minimum number bits
based on its range.) Data stack elements are pointed to by CS entries.
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Dynamically allocated data elements are allocated in collection segments.
There is one collection segment for each access type. Pointers in Ada are
used to access data that is stored in collection segments. The pointers
themselves, however, may be stored in control stacks, data stacks., or
collection segments.

Program segments contain executable code. Some exception handling
information is imbedded within the program segement.

Import segments contain references to objects not declared within a module
but accessed from within it.

(The abstract architecture provides for memory segments of type CS, DS, PS,
COLL, and IS. Packing is strictly an implementation issue. The
architecture does not specify the location of the type information.)

(Implementation note: Data are containerized in the CS, TS, and PS, meaning
that objects are of fixed size and aligned. Information in collections and
data stacks is not containerized, allowing optimal storage packing. The
architecture is such that obgjects are first brought to the control stack
before being operated on. This allows an implementation that optimizes
operation on fixed sized objects; variable sized packed structures are
extracted and replaced in their memory segments and converted to fixed
sized objects prior to actual use. This provides advantages of both fast
operation on fixed sized objects and excellect packing density with objects
or arbitrary size.)

3. 3. Addressing Structure

The architecture provides a variety of techniques for accessing objects.

Since each object has a type, there are addressing modes specifically

designed for accessing objects of particular types (eg, arrays, records).
The following table summarizes the addressing modes:

Name Parameters Use
CS 0bject l.ex Level, Delta Accessing any
statically named object.
PS Relative Offset Branches within a
program segment.
PS Absolute Segment id, Offset Program segment branches.
Array subscripts Array element access.
Record Field field number Record field access.
Package Field field number Inter—-package access to

data or subprogram.

Rational Machines proprietary document DRAFT 14 February 4, 1982



RMI Architecture —- Data Units : : -8

3. 4. Types

The following types are supported in the architecture:

DISCRETE_VAR: A signed or unsigned value. The minimum and maximum
value are part of the type descriptor.

FLOAT_VAR: A floating point vaiue. The minimum and maximum value are
part of the type descriptor. Accuracy, etc???

ACCESS_VAR: A pointer to an object. The type is the actual type of
the object pointed to (which is fixed) and the collection
pointed to.

MODULE_VAR: A package or task type. The type consists of the name of
the program segment that contains the code for the module,
parameters (generic) of the module, and objects imported into
the module from other modules.

RECORD_VAR: A union of several other objects which may be of different
‘ types. Each field of the record descriptor specifies a type,
size, and location in the record for the record field.

VARIANT_RECORD_VAR: A discriminated union of objects which may be of
different types. There is a fixed part of the record common to
all variants which contains a discriminant field indicating
which of the possible variants is contained in each instance.

A variant record may be constrained by being bound to contain
only one of several possible variants.

ARRAY_VAR: A union of several objects each of which is of the same
type. The different objects are indexed by a DISCRETE type.
The type descriptor includes the number of dimensions and the
minimum, maximum, and type of each of the dimensions.
ENUMERATION_REF: A pointer to an enumeration object.

INTEGER_REF: A pointer to an integer object on the data stack of in a
collection segment.

FLOAT_REF: A pointer to a floating point object.

ACCESS_REF: A pointer to a pointer object.

MODULE_REF: A pointer to a module object.

REFERENCE_VAR: An intermodule import, indicating the actual object and
’ its context (pointer to control stack). Used for the importing

of subprograms into one module from another, and other special
things.
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SUBPROGRAM_VAR: A callable object. Either a procedure,
utility subprogram (used for structure initialization),

function,
or 7.

SELECT_VAR: An executable object that handles processing of the Ada

SELECT construct.

ENTRY_VAR: An object corresponding to an Ada entry into a task.

to keep track of entry calls.

Used

EXCEPTION_VAR: Left on the control stack when an exception is raised.

Ob yjects of this type represent an exception,
identity and where it was raised.

including its

SEGMENT_VAR: Used to create code segments. Ob jects of this type are
created and used by the compiler to tranmsform a data Segment of

some form into executable code.

The following table summarizes R1000 architecture memory reference

structures. Numbers by themselves indicate the number of bits in the
field. Angle brakets enclose reference structures with substructure.

Program segment reference

REFERENCE: <WORD: 9; INSTRUCTION: 3>
ADDRESS: <SEGMENT: 20; WORD: 9; INSTRUCTION: 3>
JUMP_OFFSET: 11 (signed)

CASE_MAXIMUM: @

Segment reference (of any class)

ID: 24
MODULE_ID: 24 (w/ bit 23 = 0)
CDLLECTIDN_ID 24 (w/ bit 23 = 1)
NAME: <PROCESSOR: 8i; NUMBER: ID>

Control stack reference

OBJECT_REFERENCE: <LEX_LEVEL: 4; OFFSET: 9 (signed)>
CONTROL_REFERENCE: <STACK: NAME; OFFSET: 20>

Type stack reference

TYPE_DISPLACEMENT: 20
TYPE_REFERENCE: <STACK: NAME; OFFSET: TYPE_DISPLACEMENT>

Data stack reference
DATA_REFERENCE: <STACK: NAME; OFFSET: 32>

CHILD_POINTER: <OFFSET: TYPE_DISPLACEMENT: INDEX: 2>
IMPORT_NAME: <PROCESSOR: 8; NUMBER: 24>
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Chapter 4
Ma jor functions

4. 1. Introduction

This chapter describes the major architectural features of the Rational
Machines Architecture. Each feature relates to the implementation of some
programming language feature. The major run—time structures are outlined
here; the specific instructions are described in Instruction Set Summary.

In most sections, a small example program is given along with the R1000
instructions that implement it. Some of the early examples may contain
instructions not yet discussed or may be incomplete in other ways. The
general idea of the instructions can be deduced, however. Just ignore the
instructions not yet discussed or return to the example in a second
reading. ‘

Also, the full details of the instructions are not discussed. Refer to the
Rational Machines Instruction Set document for additional details.

4. 2. Run—time Environment
4.2.1. Memory Segments for a Module

As described in earlier chapters, each module has associated with it at
least four segments: a program segment containing code, a control stack
containing activation information, parameters, and most scalar variables, a
data stack containing statically named strcutures declared in the module,
and a type stack containing descriptors for types defined in the module.

For each object there is a control stack word that contains either the
object’s value or a pointer to it, and type information about the object
which includes a pointer the the type descriptor for the object on the type
stack of the module that defined the object’s type.

Ob jects that are indirectly accessed (ie, not statically named) are
allocated in collection segments. All objects in a collection are of the
same type. Before an such an object can be accessed, an access variable
that points the the object’s value must be placed on the control stack.
The access variable is then dereferenced, yielding the indirect variable’s
value.

4 2.2. Declaration of Types and Objects

Both types and variables must be created before they can be used. The DECL
instruction is used to create and modify types. The VAR instruction is
used to create variables. Variables and types can also be created by
copying existing variables and types (typically with the VAL instruction).

Types are created by specifying their specific parameters to the DECL
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instruction. Once created, variables of that type can be created. The
complete information about a variable consists of the type itself and
access information. The access information is kept in the control stack
entry for the variable and can be different for variables of the same type.
The access information indicates whether the variable is private, is
limited, is visibile, and is a constant.

4.3. General Object Addressing
4.3 1. Lexical Levels

The normal state of affairs of a running module involves a number of frames
on its control stack. Each frame represents an activation of a subprogram
or block and contains the objects declared by that activation. Each such
activation is associated with a fixed lexical level that is based on the
block’s static position within the module text.

Lexical levels are numbered based on the position of an object within its
declaring module. Level 1 is the outer—most level with level numbers
increasing from there.

Ob jects are accessed by giving a lexical level and offset. The lexical
level specifies a specific stack frame and the offset within that frame
specifies an object. Positive offsets refer to objects declared within the -
specified activation; negative offsets refer to parameters passed to the
activation.

Lexical levels are numbered from zero. Level zero specifies the import
segment, and only positive offsets are allowed at this level. Level 1 is
the first activation and contains the static objects declared at the module
level. Only tasks will have frames at levels greater than one (except
during package elaboration or reelaboration).

4.3. 2. Access of Operands

The architecture defines a stack instruction set. Most instructions take
their operands from the top of the control stack for the active task.

There are instructions for loading values onto the stack and storing values
from the top of the stack in other locations in memory.

Constant operands may be pushed on the stack from an immediate field in the
instruction (SHORT_LIT) or from locations in the program segment (LIT,
LONG_LIT).

Three instructions that are used to access operands are VAL, STO, and REF.
Each takes a lexical level number that specifies the frame in which the
referenced object exists, and an offset to the object within that frame.
VAL is used to load a value to the top of the control stack; STO pops the
control stack and stores the value; REF forms a pointer to an object,
pushing it on the control stack.
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-— A sample package.

—— Ao BJ
P at level 1

C at level 1

A, B, C: integer;
procedure P is
D, E: integer;
begin
A= 1; B := A;
D := B; E := 10;
C := 74543567865;
end P;
end lex;
l.ocation Instruction
O: VAL P
1: VAR DISCRETE, HIDDEN
VAL 1,3
VAR DISCRETE, HIDDEN
VAL 1,3
VAR DISCRETE, HIDDEN
SHORT_L.IT 3
SUBPROG FOR_CALL, HIDDEN
SYS_0OP SIGNAL _ACTIVATED
2: sSYS_0OpP SELECT_TERMINATION
-— Subprogram P
3: VAL 1,2
VAR DISCRETE, HIDDEN
VAL 2,2
VAR DISCRETE, HIDDEN
4: SHORT_LIT 1
STO 1.3
VAL 1.3
STO 1.4
VAL 1.4
STO 2,2
SHORT_LIT 10
STO 2,3
5: LIT DISCRETE, 5, 3
sSTD 1,5
EXIT_PROC 0
LIT_VAL DISCRETE, 7824091129

DECL

D, E at level 1

; Comment
push "integer"” (magic}
create A

create B
create C
push address of P

create P
vis part fini (see modules)

push "integer"”
create D

ctreate E

{level 1 offset 3)

>
]
[y

(level 1 offset 3)
(level 1 offset 4)

o

(D: level 2 offset 2)

C := 7824091129
return from P

4.3.3. Summary of Instructions in this Section

Declare or modify a type

Rational Machines proprietary document
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VAR ~ Declare a variable

VAL Push a value on the stack

STO Pop a stack value and store

REF Construct a reference and push on the stack

SHORT_LIT Push a short literal constant

LIT Push a longer constant loaded from the program
segment

4.4 Types and Protection
4.4. 1. Type Information

Type information is-divided between the control stack and the type stack.
Simple information needed to access the value is kept in the control stack
s0 that it can be quickly accessed with the data object itself. This
information includes:

- A pointer to the additional information in the type stack.

- The visibility of the object (which indicates if it is in the
visible part of a module).

= Privacy information about the object indicating whether the
object is public (representation available in packages other than
where the object is defined), private (accessible only through
abstract operations), limited-private (private and not copyable),
or local (available only in the package where the object is
defined).

- An indication of whether the object is based on another that was.
private. (derives privacy)

-~ An indication of whether the object is based on another that was
limited. (derives limitation)

- An indication of whether the object is a constant.

- An indication of whether the object is constrained if the object
is an array., variant record, or access variable.

4.4.2. Operand Type Checking

The access information forms the basis of the protection mechanism defined
by the architecture. The architecture guarantees that objects will be
accessed only in accordance with the way in which they are declared.

When an operand is accessed, some of the following checks are performed.

Failure of any of them results in an exception being raised and the
operation not being performed.
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Type check. The type of the operand must be acceptable for the
operation to be performed. This precludes things such as
invoking data objects or indexing objects other than arrays.

Operand consistency. If the operation requires more than one operand,
the aperands supplied must be of consistent types.
(OPERAND_CLASS_ERROR) ‘

Operand Privacy. If# the operand is private or limited private then the
instruction must be executed in the "scope of privacy"” (ie, in
the body of the module where the type is defined). The
instruction is executing in the scope of privacy if the segment
id of the outer frame pointer (pointing to the global level) is
the same as that of the type descriptor pointer, or if the
segment id of a statically enclosing module is the same that of
the type descriptor pointer. This means that the subprogram
executing is declared in the same module as the type, or in a
module enclosed by the module that declared the type.
(CAPABILITY_ERROR)

Operand Visibility. When in inter—-module reference is made, the
referenced operand must be ‘visible’ from outside its defining
module: it must have been declared in the visible part of the
module (and hence have its ‘visible’ indication set). In
addition, if the operand is a subprogram: its package must have
been elaborated before it can be invoked. (VISIBILITY_ERROR.,
ELABORATION_ERROR)

Operand Limitation. Some operations (assignment, equality test) are
only allowed on non-limited types. Any such operation on a
limited type can only be done in the “scope of limitation”
where the representation of the object is known (the module
body where the type is defined). The instruction is executing
in the scope of limitation if the outer frame pointer of the
current activation (lex level 1) is the same as the scope-of-
limitation field of the type information of the object.

Constant check. Certain operations cannot be performed on constants.

4.4.3. Data abstraction (privacy, limitation)

In Ada, obgjects can be declared public, private, limited-private, or local.
Public objects can be accessed and concrete operations applied by any
module that imports the object. Objects of a private type can be declared
and accessed in any module, but only functions supplied by the defining
module can apply concrete operations to the object. Limited private types
are like private but assignments and equality tests cannot be performed.
Local objects are known only within the defining module and cannot be
accessed from outside.

The architecture supports these concepts directly. The tests made for
operand access are described above.
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The DECL instruction is used to create types and takes the level of privacy
as an operand. In this way, the protection information is known for each
object (as each object has a type). Objects are created with the VAR
instruction. The visibility of the object (whether or not it is in the
visible part of a module) is an operand of this instruction.

4.4.4, Constants

Part of the type information for each object indicates whether the object
is a constant. This applies only to the object, not all objects of that
type.

Constants are created by first creating a variable object, assigning it a
value, and executing the MAKE_CONSTANT_OP operator. This changes the
object to a constant. There is no subsequent way to alter the value of
that object.

4.4.5. Creation and Alteration of Types

Type objects are created and altered by the DECL instruction. The
instruction specifies the specific type which may be any of the types
listed in the previous section. (?) New types can be created, derived
types created based on existing types, or existing types constrained. The
operands depend on the type being created.

Sometimes the type must be introduced and its actual content specified
later. The COMPLETE_OP is used to complete type definitions.

4.4.6. Summary of Instruction in this Section

DECL Create or modify a type

VAR ' Create a variable

SUBPROG Create a subprogram variable
OP MAKE_CONSTANT_OP Make an object into a constant
OP COMPLETE_OP Complete a type

4. 5. Modules

4.5.1. Package/task correspondence

A module in Ada is either a package or a task.

Module types are prototypes for module instances. A module type
corresponds to a task type, a generic package type, or a normal package (in
which case there is only one module instance). Thus, a module may have
parameters and is characterized by the objects that are declared in its
visible part and by its body code.

A module instance is a ‘runnable’ version of a module type with any
parameters filled in. A module instance is generated by a declaration of a
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package test is
type T1 is new integer; -— T1 is a new (derived) type
Cl: constant T1 := 23; -- C1 is a constant
type P is private:; -— P is a private type
type P2 is limited private; —— P2 is a limited-private type
private ‘
type P is new boolean;
, type P2 is new integer;
end test;
package body test is )
type T2 is range 1..3; -— T2 is a new type
subtype T3 is T2 range 2..3; -—— T3 is a constraint on T2
end test;
Location Instruction Comment
0O: VAL 0.0
oP MODULE. FIELD_READ_QOP. 2 -— push "boolean"
VAL 0,0
opP MODULE, FIELD_READ_OP, 40 -- push "integer"
1: VAL 1,3
DECL DISCRETE, PUBLIC, DERIVING -—- create T1
VAL 1. 4
VAR DISCRETE, VISIBLE, NONE —- create Ci
SHORT_LIT 23
8STO 1,5 -~ C1 := 23
oP DISCRETE, MAKE_CONSTANT_OP -~- make Cl1 constant
VAL 1.2 —— push "boolean"
DECL DISCRETE, PRIVATE, DERIVING -- create P
2: VAL 1,3 —— push "integer"
DECL DISCRETE, LIMITED_PRIVATE, DERIVING -~ create P2
8ys_op ACCEPT_ACTIVATION —-— end:vigsible part
SHORT_LIT 1 "
SHORT_LIT 3
DECL DISCRETE. LOCAL, DECLARING -- create T2
SHORT_LIT 2
SHORT_LIT 3
3: VAL 1,8 ~= push "T2"
DECL DISCRETE, LOCAL, CONSTRAINING —— create T3
8YS_0OP SIGNAL _ACTIVATED -— end: body
sYS_0P SELECT_TERMINATION
Figure 4-1: Example of types and protection
non—generic package, a generic package instantiation, a task declaration,
or an instantiation of a task type.
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4.5 2. Module memory space

There is a program segment associated with each module type. This segment
contains the code for the module. There is a control stack associated with
each module instance. This control stack contains the statically named
objects declared in the visible part of the module and in the module body.
The control stack is also used for stack frames of subprogram invocations.
If the module is a package, frames created from calls during package
elaboration go on the package’s control stack. If the module is a task,
then subprogram calls made by the task create frames on its control stack
(which includes those made during task elaboration).

The base of the control stack contains information about imports into the
package, scheduling information. resource utilization and limit

information, and state information for the package or task associated with
the stack. There are no instructions to directly access this information.

In addition to a control stack., the module instance’s memory space includes
a type stack, and a data stack. Other segments may be created by the
module as it executes. The program segment and import segment of the
module instance are those associated with the module type.

The type stack contains type descriptors for types defined by the module.
Each object has an associated type and this type is characterized by a
reference to its type descriptor on a type stack. The type pointer points
to the type stack of the module in which the type is declared. If the type
is defined in the same module as the object, then the pointer points to the
module’s own type stack.

Modules are implemented as closed scopes in the architecture. This
requires an import segment for each module type that contains references to
ob jects referenced by a module but declared in another. The import segment
provides the initial addressing of the foreign object; once located, other
references to it can be placed on the control stack and in other locations.
The import segment is structured similarly to a control stack and contains
entries that reference objects and types.

4.5.3. Program Segments

There is a program segment for each module of source program. Thus, the
program space is divided into a number of program segments. Each program
segment has a unique segment name and consists of some header information
and one or more subprogram bodies.

The header (accessed at negative offsets from the PS address in the R1000
architecture) is a list of the program segment names of all modules
declared immediately within this one. This is where the module finds the
program segment names of contained modules when it creates them (see
below).

The first subprogram handles module elaboration and is invoked during the
module creation process. It is passed any generic parameters if the module
is generic.
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Each subprogram is broken into four parts. First (the first 8 bytes in the
R1000 architecture) comes information used for exception handling. Next is
code for elaborating the declarative part. Next comes the code for the
subprogram body. Finally comes the exception handling code for the
subprogram. Each instruction is 1& bits long in the R1000 architecture.

Long literal constants are intermixed with the code in program segments.
They must not be placed in the path of execution or else.

The normal and exception handling code must be separated; the normal code
is followed by the exception handling code. This is because when an
exception is raised: the current instruction location determines whether
the handler chosen will be in the current subprogram or its dynamic
predecessor.

4.5. 4. Creation and Deletion of Modules

New modules are instantiated through a multi-step process. Tasks and
packages are instantiated in much the same way except for a few differences
near the end of the process. In the following sequence:. ‘Parent’ refers to
the module declaring the new module and ‘Child’ refers to this new module.

- The Parent executes a VAR instruction to declare the Child. This
causes a ‘declare’ message to be sent to the system which results
in the creation of appropriate segments for the Child.

- The Child begins execution by executing the code to elaborate its
visible part.

— The Child executes an ACCEPT_ACTIVATION SYS_OP to indicate that
the elaboration of its visible part is complete. This causes a
‘declared’ message to be sent back to the Parent which then
continues executing.

— The Parent executes an ACTIVATE_ALL op if the Child is a task, or
an ACTIVATE op if the child is a package. This results in an
‘activate’ message being sent to the Child.

~— The Child then elaborates its body and, if it is a package,
executes'its body. Then, it sends a ‘signal activated’ message
back to the parent. If the Child is a task: concurrent execution
begins at this point.

~ The Parent continues sequential execution when it receives the
‘signal activated’ message. If the Child is a task, it continues
executing as well.

An example of instructions dealing with modules follows.
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4.5.5. Instructions dealing with Modules

DECL Declare a module type

VAR Create a module instance

OP FIELD_READ_OP Read a field of a module (from its visible part)

OP FIELD_WRITE_OP Write into a field of a module (from its visible

: part)

OP FIELD_EXE_OP Invoke a visible field of a module (hopefully a
subprogram)

OP ACTIVATE_OP Elaborate a module

OP ACCESS_ACTIVATE_OP Elaborate a module pointed to by an access
variable

SYS_OP ACCEPT_ACTIVATION _
Inform parent that elaboration of visible part is
complete

SYS_OP ACTIVATE_ALL Tell a child task to begin

8SYS_0P SIGNAL_ACTIVATED
Inform parent that elaboration of body is
complete ,

SYS_OP NAME_MODULE Construct a module variable for the current
module

4 4. Procedures and Parameters

Subprograms in Ada may be procedures or functions. In addition, the
architecture defines a number of other subprograms: most related to
tasking. This section discusses Ada procedures and functions primarily.
but the general invocation and return sequences apply to most other types
of subprograms.

4.6.1. Subprogram Invocation and Return

Subprogram invocations allocate a new stack frame on the control stack of
the invoker. This frame contains a marker which contains the following
information: \

~ Subprogram return address

- Data stack frame pointer

~ Type stack frame pointer

— Package—level frame pointer (outer block scope)

- Enclosing frame pointer (most recent lexical level) ("static

link®)
~ Current lexical level
- Previous frame pointer ("dynamic link")

The general approach is to create a new stack environment that will be
eliminated when the subprogram returns, restoring the current environment.
Subprograms may have local package or task objects declared within them.
Restoration of the pre—-invocation environment requires the termination and
deallocation of any local modules.
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4. 6.2. Resource Contral

All resources allo{ated'must be accounted for. This is done by recording
allocations on what is called the "child list" which lists resources that

must be freed on subprogram return. (Implementation note: ¢the child list
is kept on the type stack.)

The specific resources accounted for on the child list are:
- Local tasks
- Local packages
~ Collections associated with local access types.
~ Import segments associated with local modules types.

The accounting of resources created and deallocation on subprogram return
are performed automatically by the instructions that create types and
objects (DECL and VAR) and that handle subprogram return (EXIT_PROC,
EXIT_FUNC, EXIT_ACCEPT).

4.6 3. Parameter Passing and Return

Parameters are passed on the control stack. The general parameter
processing steps are as follows. First, the caller pushes result and
value-result parameters. These must be processed after the called
subprogram returns. Then, the caller pushes value parameters. These are
removed by the called subprogram as part of the return step.

The invocation instruction is then issuved. This creates a new stack frame

and saves markers to restore the pre-call environment. The subprogram then
Tuns.

When the subprogram executes a return instruction, the resources allocated
by the subprogram are freed. If the subprogram is a procedure, then the
stack is restored and the value parameters removed. The caller then
processes the result (out) parameters.

I+ the subprogram is a function, the frame pointer for the stacks are
restored to their pre—call values, but the top pointers are not restored
and the function result is on the top of the stack. It must be processed
before the stack is restored. When the statement that executed the
function call has completed, it can execute the POP_DATA and POP_TYPE
SYS_0OP instructions to remove the activation frame of the invoked function.

The procedure calling sequence is:

= Push result parameters (out and in out scalars)

- Push value and reference parameters (in and structures)

-~ Issue call to the procedure.

# a new stack frame is created

# pointers to the tops of the type and data stack are saved
The called procedure executes

# parameters are accessed with negative offsets in the current

lexical level

The called procedure returns
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% execution is delayed until any local tasks terminate
# local resources are freed
# the stack frame is removed and the data and type stacks are
restored to their pre—-call points
~ The caller pops and stores the result parameters

The function calling sequence is:
- Push value and reference parameters (all in parameters)
- lIssue call to the function.
# a new stack frame is created
# pointers to the tops of the type and data stack are saved
~ The called function executes
# parameters are accessed using negative offsets in the
current lexical level
-~ The called function returns
# execution is delayed until any local tasks terminate
# local resources are freed
# the return value word on the control stack is popped, the
stack marker and in parameters removed. and the return value
pushed back on
# the stack frame pointers are restored
# the stack top pointers of the data and type stack are left
unchanged ‘
# the caller may, at a later time, flatten (ie, remove any
information left by the function) the data and type stack
frames

4. 6. 4. Procedure Variables
They exist. (fil1l in later)
4.6.5. Subprogram Related Instructions

The following instructions are used to handle subprograms.

SUBPROG Declare a subprogram variable

CALL Invoke a subprogram (possibly waiting for a
rendezvous)

OP RUN_UTILITY_OP Invoke a utility subprogram (See Arrays)

OP FIELD_EXE_OP Invoke a subprogram in another module

SYS_O0OP CALL_BY_REFERENCE
: Call a non—-local procedure

EXIT_PROC Return from a procedure

EXIT_FUNC Return from a function

EXIT_ACCEPT Return from a rendezvous subprogram

POP_PROC Multi-level procedure return

POP_FUNC Multi—-level function return

SYS_OP POP_DATA Pop the data stack frame after a function return
SYS_0OP POP_TYPE Pop the type stack after a function return
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4.7. Blocks

Blocks with no local objects or exception handlers are executed inline.
Blocks with local objects or exceptions have the same properties as
subprograms without parameters. They exist in their own stack frame.
Blocks in Ada are implemented as subprograms without parameters. Thus, a
subprogram containing several blocks is transformed into a series of calls
to the "subprogramed" version of each block.
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package body test is

begin
declare x: integer;
begin
X = 1;
end;
declare x: integer;
begin
x 1= 2
end;
end test;
Location Instruction
0: HEADER 1, 3
HANDL.ER 0. O
LOCALS i
PARAMS 0
VAL 0, O
oP MODULE, FIELD_READ
sYS_0OP ACCEPT_ACTIVATION
SHORT_LIT 2
i: SUBPROG FOR_CALL, HIDDEN
SHORT_LIT 4
SUBPROG FOR_CALL., HIDDEN
CALL 1, 3
CALL i. 4
sSYS_0OP SIGNAL _ACTIVATED
8YS_0OP SELECT_TERMINATION
2: HEADER 2, &
HANDLER 0, 0O
LOCALS i
PARAMS 0
VAL i, 2
VAR DISCRETE. HIDDEN,
SHORT_LIT 1
sSTO 2, 2
3: EXIT_PROC 0
4: HEADER 4, &
HANDL.ER 0, O
LOCALS i
PARAMS 0
VAL i, 2
VAR DISCRETE, HIDDEN,
SHORT_LIT 2
STO 2, 2
9 EXIT_PROC 0

Rational Machines proprietary document

_OP,

NONE

NONE

-— First block

-=- Second block

Comment
-—- Pracedure header

40

-- end vis elaboration
—— 18t block subprog

-— 2nd block subprog
-— do 1st bloack
-— do 2nd block
-— pkg body completed
-~ pkg completed

-— Header:1st block

—-—- Push "integer"
—— Create x
-—x =1

-- 15t block done
-— Header: 2nd block

-— ¢reate x
- x = 2

-— 2nd block done
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4.8. Control Transfer

The architecture supports conditional and unconditional jumps within a
program segment, and a multi—-way branch. The following instructions relate
to control transfer:

JUMP Unconditional control transfer
JUMPF Conditional control transfer

JUMPT Conditional control transfer
CASE_JuUMP Multi-way branch based on case index

4. 9. Arrays

Arrays are collections of objects each of which has the same type. Each
object in an array is called an array element. Each element is identified
by one or more array indices:, the number of which is the array’s
dimensionality.

4.9.1. Array Structure
4.9.2. Array Creation

Array types are created with the DECL instruction. This creates a new
type, a derived type or a constrained type.

4.9.3. Array Instantiation

Arrays are instnatiated with the VAR instruction applied to an array type.
This results in the allocation of sufficient data stack space to hold the
array and initialization of this space.

4.9. 4. Array Access

Arrays can be accessed as a single object for assignement or passing as a
parameter. Sections ("slices") or arrays can be created and manipulated
using the SLICE and SLICE_ASSIGN operators. Individual array elements are
accessed using the FIELD_READ and FIELD_WRITE operators, giving them the
array variable, and an appropriate number of subscripts.

Other type and index range information can be extracted from array
variables and types.

4.9.5. Array related Instructions

DECL Create an array type

VAR Create an array variable

OP IS_CONSTRAINED_OP Check if a type is constrained

OP LENGTH_OP Get the number of elements in an array

OP RUN_UTILITY_OP Invoke the utility subprogram of an array
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package test is

A: array(l..  100) of boolean;
end test;
package body test is
B: array (1..10, 20..30) of integer;
type T is arrau(INTEGER range <>) of integer;
C: T(2..8);
E: B’RANGE(Q): -- type is 20..30
begin
A(2) := ¢true;
B(3,12) := €C(4);
end test;
VAL 0, 256
oP MODULE, FIELD_READ_OP, 40 —— INTEGER
VAL 0, -256
oP MODULE., FIELD_READ_OP,2 -~ BOOLEAN
-— A: array (1 .. 100) of BOOLEAN;
SHORT_LIT 1 -1
SHORT_LIT 100 ~- 100
VAL 1,3 -— BDOLEAN
SHORT_LIT i
VAL 0, -256
oP MODULE. FIELD_READ_OP, 136
DECL ARRAY. PUBLIC, DECLARING
VAL 1. 4
VAR ARRAY, VISIBLE -— A
8sYS_0P ACCEPT_ACTIVATION
== B: array (1 .. 10, 20 .. 30) of INTEGER:
SHORT_LIT 1 -1
SHORT_LIT 10 -— 10
SHORT_LIT 20 - 20
SHORT_L.IT 30 - 30
VAL 1,2 -— INTEGER
SHORT_LIT 2
VAL 0, -256
oP MODULE, FIELD_READ_QOP, 136
DECL ARRAY, LOCAL, DECLARING
VAL 1,6 ,
VAR ARRAY, HIDDEN -— B
Figure 4-2: Array Example
OP CHECK_CONSTRAINT_OP -
OP SLICE_OP Construct an array slice
OP SLICE_ASSIGN_OP Assign an array slice
OP CONCATENATE_QOP Concatenate two one-dimensional arrays
OP ELEMENT_TYPE_OP Get array element type
OP RANGE_TYPE_OP Get type of an array index
OP FIELD_READ_OP Read an element of an array
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-— type T is array (INTEGER range <>) of INTEGER:

VAL, 1,2 - INTEGER
oP DISCRETE, BOUNDS_OP
VAL 1,2 -— INTEGER
SHORT_LIT 1 ~
VAL 0, ~-256
ap MODULE, FIELD_READ_OP. 136
DECL ARRAY, LOCAL., DECLARING - T
-— C: T (2 .. 8);
SHORT_LIT 2 -2
SHORT_LIT 8 -— 8
VAL 1.8 i
VAR ARRAY, HIDDEN, WITH_PARAM - C

-= E: B‘RANGE (2);
SHORT_LIT 1

VAL 1,7 -- B
oP ARRAY, RANGE_TYPE_OP -= B’RANGE (2)

VAR DISCRETE, HIDDEN -- E
begin ‘

-—= A(2) := TRUE;

SHORT_LIT 1 -- TRUE
SHORT_LIT 2 -2
VAL 1,5 - A
opP ARRAY, FIELD_WRITE_OP,O -~ A (2)

-= B(3, 12) := C (4);

SHORT_LIT 4 - 4
VAL - 1,9 - C
or ) ARRAY., FIELD_READ_OP, 0 -- G (4)
SHORT_LIT 3 - 3
SHORT_LIT 12 - 12
VAL 1.7 -- B
oP ARRAY, FIELD_WRITE_OP,O -— B (3, 12)
sys_0OpP SIGNAL _ACTIVATED
sSYS_0OP SELECT_TERMINATION
end module
Figure 4-2, continued
OP FIELD_WRITE_OP Write into an element of an array

4.10. Records
4.10. 1. Record Structure
Records consist of one or more fields:, each of which is a typed object.

The type decsriptor for a record contains descirptors for each of the
fields.
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4. 10. 2. Record Creation

Record types are created with the DECL instruction. A complete description
of the types of all fields must be given at that time.

Variant records are structures that are based on one or more discriminant
fields which determine the structure of the remainder of the record. They
are similarly created with the DECL instruction.

4. 10.3. Record Instantiation

Record instances are created with the VAR instruction. The discriminant
fields must be defined at that point. If it is possible to assign to the
record, the maximum space must be allocated to the record so that its
largest variant can be accomodated.

4.10. 4. Record Access

Record fields are accessed with the FIELD_READ and FIELD_MRITE operations.
These read or write the contents of a specified record field.

4. 10. 5. Record related Instructions

DECL. Create a record type
VAR Create a record variable
OP CHECK_CONSTRAINT_OP

Check the constraint on a variant

OF SET_VARIANT_OP Set the variant of a record

OP FIELD_READ_OP Read a field of a record

OP FIELD_WRITE_OP Write into the field of a record
OP FIELD_TYPE_OP Get the type of a record field

10. 6. Access Types
10.7. Access Structure
10.8. Access Creation

10.9. Access Instantiation

I O

10. 10. Access Dberation

The only operation on objects of access type are assignment, equality test,
and dereference.
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package body test is

type R is record
Fil: integer;
F2: integer;
F3: boolean:;
end record;

~= A record type

Example: R; ~--~ A tecord variable
begin
Example. F3 := true;
Example. F2 := Example. F1;

end test;
VAL 0. -256
oP MODULE, FIELD_READ_OP. 2 -~ BOOLEAN
VAL -0, ~256
op MODULE, FIELD_READ_OP, 40 -— INTEGER
SYS_OP ACCEPT_ACTIVATION

~— type R is
VAL 1,3 -— INTEGER
VAL 1,3 —— INTEGER
VAL 1,2 -— BOOLEAN
SHORT_LIT 3
VAL 0. "256
oP MODULE, FIELD_READ_OP, 136
DECL RECORD, LOCAL., DECLARING -- R

-— EXAMPLE: R;
VAL 1,4 -= R
VAR RECORD, HIDDEN -— EXAMPLE

begin

~-- EXAMPLE. F3 := TRUE;
SHORT_LIT i --— TRUE
VAL 1,95 -~ EXAMPLE
oP RECORD. FIELD_WRITE_OP, 2 -- F3

—-— EXAMPLE.F2 := EXAMPLE.F1;
VAL 1,5 -— EXAMPLE
oP RECORD, FIELD_READ_OP. O -- F1i
VAL 1,5 -—- EXAMPLE
oP RECORD, FIELD _WRITE_OP, 1 -- F2
sYS_0P SIGNAL _ACTIVATED
SYS_0OP SELECT_TERMINATION

end module

28

Figure 4-3: Record Examples
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Note: The code for this example
Details pending.
package body test is

type Ind is access integer;

is not quite

A: Ind;
B: integer;
begin
A := new integer; -- Allocate a n
A all := §;
B := A all;
end test:;
VAL 0,0
oP MODULE, FIELD_READ_OP, 40
sYsS_0opP ACCEPT_ACTIVATION
-- 1,1 type IND is access INTEGER:;
DECL ACCESS, LOCAL, DECLARING
vaL 1,2
VAL 1,3
LIT 16777216
SHORT_LIT 0
oP ACCESS, COMPLETE_OP
- 1,7 A : IND;
VAL 1,3
VAR ACCESS, HIDDEN
-- 1,8 B : INTEGER:
VAL 1,2
VAR DISCRETE:. HIDDEN
begin :
-— 1,10 A := new INTEGER;
VAL 1,3
VAL 1,2
oP ACCESS, NEW_OP
sTO 1,4
-— 1,11 A . all := 5;
SHORT_LIT S
VAL 1,4
oP ACCESS, ALL_WRITE_OP
-~ 1,12 B := A.all;
VAL 1.4
oP ACCESS, ALL_READ_OP
8TO 1,5
SYS_0OP SIGNAL _ACTIVATED
8SYS_0OP SELECT_TERMINATION

end module
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4.10.11. Access related Instructions

DECL Create an access type

VAR Create an access variable

OP NULL_OP Create a null pointer

OP NEW_OP Allocate a new object of the specified type
OP ALL_READ_OP Dereference a pointer

OP ALL_WRITE_OP Assign to access referent

OP AlLL_REF_OP Construct a reference to an indirect scalar

4.11. Tasking

Tasking prvides a fcaility for the creation, management, and
synchronization of multiple threads of control through a program.

4.11.1. Task Instances

Tasks may be instantiated by eloborating the declarative part of a package.
task, subprogram. or block. Tasks may also be created dynamically through
a task type in Ada. The instructions used are outlined in the section on
modules in the first case, and NEW_0OP and ACCESS_ACTIVATE_OP in the latter.
4.11.2 Task Instantiation

Tasks are instantiated by using the VAR instruction on a task type. Ada
tasks and packages are treated almost identically. The sequence of steps
described in the section on modules covers the important aspects of task
intantitation.

4.11.3. Task Initiation

4.11. 4. Rendezvous
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task test is
entry foo;
entry bar;
end test;

task body test is
begin
accept foo do null;
accept bar do null;
end test;

end +foo;
end bar;

== 1,19 entry FOO;

SHORT_LIT 0

VAR ENTRY, VISIBLE
-- 1,8 entry BAR;

SHORT_LIT 0

VAR ENTRY, VISIBLE
8YS_0OP ACCEPT_ACTIVATION
--= 1,10 accept FOO do

SHORT_LIT 2

<push ref to subprog #1>
SUBPROG FOR_ACCEPT, HIDDEN
-— 1,10 accept BAR do
SHORT_LIT 3

<push ref to subprog #2>

SUBPROG FOR_ACCEPT, HIDDEN

SYS_0OP SIGNAL _ACTIVATED
begin
-~ 1,10 accept FOO do

REF 1.4

REF 1,2

oP ENTRY. RENDEZVOUS_0OP
-~ 1,16 accept BAR do

REF 1.5

REF 1.3

oP ENTRY, RENDEZVOUS_OP

sYs_0opP ACCEPT_TERMINATION
begin -- foo rendezvous body subprogram

EXIT_ACCEPT O
end subprogram

begin -- bar rendezvous body subprogram
EXIT_ACCEPT O

end subprogram

end module

Rational Machines proprietary document
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4.11.5. Select

A special subprogram is created to handle the select statement.

4.11. 6. Termination

Tasks terminate when they are aborted explicitally., reach their last
statement, or select termination in concert with their siblings., parents.

and children.

4.11.7. Task related Instructions

SUBPROG Create a subprogram variable for various tasking
functions

OP IS_TERMINATED_OP Determine if a task is terminated

OP COUNT_OP Determine number of queued entry calls

OP FIELD_GUARD_OP Set guard field of a select structure

OP ENTRY_CALL_OP Peroform an entry call

OP COND_CALL_OP Perform conditional entry call

OP TIMED_CALL_OP Perform timed entry call

OP FAMILY_CALL_OP Perform an entry call to a family member

OP FAMILY_COND_OP Perform a conditional entry call to a family
member

OP FAMILY_TIMED_OP Perform a timed entry call to a family member

OP DELAY_OP Delay for a specified time

12. Exception Handling
12. 1. Raising exceptions
12. 2. Location of exception handlers

12. 3. Interrogation of exception information

IS N

12. 4. Machine—-Raised Exceptions

OPERAND_CLASS_ERROR
VISIBILITY_ERROR
CAPABILITY_ERROR
CONSTRAINT_ERROR
TYPE_ERROR
UNIMPLEMENTED_OPERATION
ILLEGAL _INSTRUCTION

4.12. 5. Exception related Instructions

OP RAISE_OP Raise an exception
OP RAISED_EXCEPTION_OP
Determine number of raised exception
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package body test is
Mistake: exception;
Val: integer;
begin
Val := 3;
raise Mistake; -- Raise an exception
null; -
exception
when Mistake => Val := 1;
when others =2 null;
end test:;
VAL 0.0
orP MODULE, FIELD_READ_OP, 40 -— INTEGER
8YS_0P ACCEPT_ACTIVATION
- 1,1 MISTAKE : exception;
-— 1,9 VAL : INTEGER:;
VAL 1,2 -— INTEGER
VAR DISCRETE, HIDDEN - VAL
-— 1,7 VAL := 3;
SHORT_LIT 3 -3
sT0 1,3 -— VAL
-- 1,8 raise MISTAKE;
LIT 310 -~ value of "Mistake"
VAR EXCEPTION, HIDDEN -~ create exception var
orP EXCEPTION, RAISE_OP
- 1,9 null;
8SYS_0OP SIGNAL_ACTIVATED
SYS_0OP SELECT_TERMINATION
exception
-= 1,11 when MISTAKE =>
LIT 310
VAR EXCEPTION, HIDDEN
VAL 1,4
oP EXCEPTION, EQUAL_OP
JUMPF é
-~ 1,11 VAL := 1;
7: SHORT_LIT 1 -1
8ST0 1,3 -— VAL
8SYS_0OP SIGNAL _ACTIVATED
sYS_0OP SELECT_TERMINATION
-= 1,12 when others =>
-= 1,12 null;
b sSYS_OP SIGNAL _ACTIVATED
SYS_OP SELECT_TERMINATION
end module
Figure 4-4: Exception Example
OP RAISED_ADDRESS_0OP Determine address where exception was raised
OP RAISED_SCOPE_OP Determine scope where exception was raised
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4. 13. Program Creation

4.13. 1. Program creation related Instructions

OP LOAD_OP Create a prorgam segment
OP SEGMENT_NUMBER_OP Get unique integer for segment

4. 14. Re~elaboration
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