Resource Management and Task Scheduling
DRAFY 1

by
Walter A. Wallach

Rational Machines proprietary document.

Resource Management and Task Scheduling Introduction and Summary 1

Introduction and Summary

This document presents the concepts of resource menagement and test
scheduling as implemented in the R1000. Resource mapagempent 1is
defined to be the control and apportionment of certain system
elements, particularly CPU time, main- memory and paging server
bandwidth, to tasks. Scheduling is the activity by which tasks are
given access to those managed resourcese.

1« Definitions

This section defines some terms and concepts upon which R1000 resource
management is based.

1«1« Main Memory and Thrashing

Main memory in the R1000 is a very large set associative cache.
Backing store for the <cache is moving head disk. Cache faults are
resolved either by creating a new logical page in an available cache
frame, or by 1invoking software to locate a missing logical page on
backing store and read it in. Management of the cache is implemented
in microcode. ;

1«11« Available Cache Frames

Page frames are reclaimed by two mechanisms: tasks terminating and
releasing their memory resources and aged pages being swapped out of
the cache to backing store. The latter mechanism may be applied at
page fault time by any faulting task, and explicitly by a page clganer
task. The page cleaner runs periodically to monitor the demand for
cache frames and maintain a pool of <clean frames available for
allocation to new logical pages and receiving pages from backing
store. When the page <cleaner determines that the pool of available
pages in the cache is not adequete, it causes the balance set to be
reduced.

We require at least 25 percent of the frames on each cache line to be
available (either clean or unallocated) at any time. If the page

cleaner finds 1itself wunable to maintain this level, the medium term
scheduler 1s asked to reduce the balance set. ’

1«1.2. Backing Store Bandwidth
Page fault microcode monitors traffic to backing store, keeping track
of the available backing store bandwidth in order +to prevent
oversubscribing backing store.

1«2« Tasks States

A tast may be either blocked or unblogckedr and, at the same timer, it
may be in the balance set ot out of the balance sel.

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 2

1«2.1« Blocked vs Unblocked

A task is blocked uwhenever it is unable to proceed until some external
event occurs. A task 1is unblocked whenever it is able to proceed
whenever it is given the resources it needs.

A task may be blocked awaiting disk I/0 {DISK_WAIT), awaiting memory
(PAGE_CLEAN), executing a delay {(_DELAY), or awaiting an entry call
{in an accept) or executing an entry call (_RENDEIVOUS_WAIT).

Te2<2« In or Out of the Balance Set

A task is in the balance set whenever it holds resources. In
particular, we say it is in the balance set when its T(CB is in memory.
In all liklihood, such a task has other pages of its stacks in memory
as well. The key idea here is that the tasks cache pages cannot be
reclaimed without first cleaning them by copying them to backing
store. '

A task is out of the balance set when its TCB is not in memory, or.,
its TCB 1is in memory, clean and not threaded on any memory-resident
queue {a page is clean if there is a copy of it on backing store, so
the memory can be reclaimed without first copying the page to backing
store).

A task is said to be rgady if it is unblocked and in the balance set.
All tasks on a ready qQqueue are ready. ‘

Normally, blocked tasks will remain in the balance set until their
memory resources are required by other tasks. Thens, their pages will
migrate out to backing store as they age. When a task becomes
unblockeds it will be made ready only if the system has the resources
to support that task”s entering the balance set.

Modules which are in the balance set are under the care of the memory
resident resource managers: the short term scheduler and the memory
manageres Tasks out of the balance set are in the care of the medium
term scheduler and the delay manager.

The schedulers are discussed in the next section. The delay manager
is not discussed explicitly, but may be subsumed by the MTVS.

2. Short and Medium Term Scheduling .

Scheduling occurs at two levels: short term dispatching of the
processor and medium terp scheduling. The short term scheduler is
implemented in microcode and may run within a tasks, or on behalf of
the system when no task is running on the processor. Periodically,
the short term scheduler chooses the highest priority task among these

ready to run, and gives that task the processor.
s

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 3

The medium term scheduler is a permanent system task implemented in
software. It manages all unblocked tasks that are not in the balance
setr and manages multiplexing tasks between its medium term scheduling
queue and ready gueues.

2.1« Task State Transitions

From the resource management point of view, a task®™s state is
reflected in which gqueuer if any, he is on, and who can name hime. A
task that is blocked must be namable by an unblocked task before the
task can again run. For example, if a task is blocked in an accepts
it will remain blocked until another task executes an entry call to
it. If no task can execute such an entry <c¢all, the task remains
blocked forever.

Tasks which are blocked naturally are namable by the events which will
unblock them. Tasks which have executed delays or are blocked on an
accept or in an entry are examples of such tasks. Tasks which are
become blocked because of failure to aquire a resource must be blocked
until that resource becomes available. Such tasks are blocked
unnaturally, and they must be remembered by the resource manager until
the resource becomes available. These tasks are remembered on queues
by the short term scheduler and the memory manager {(tasks in the
balance set) and by the medium term scheduler {(tasks out of the
balance set). Unnaturally blocked tasks include those awaiting disk.
1/0, awaiting memory and awaiting room in the balance set {(swapped
out).

A naturally blocked task can be removed from the balance at any time.
When the task becomes unblecked, it will be reintroduced 1into the
balance set, if there is rooms or else it will be unnaturally blocked
and placed in the medium term scheduler”s care until it can be put
back into the balance set. An unnaturally blocked task cannot be
removed from the balance set without first removing it from its queue.
In certain casess it must be put on a similar queue for tasks out of
the balance set (tasks executing delays).

222« Short Term Scheduling

Short term scheduling policy is last in first out preemptive resume
{LIFO-PR)» meaning that, when a task of the same or higher priority
than the one currently running becomes readys, the current task is
preempted and placed at the front of his ready queuer while the new
task 1is given the processor. When the currently running task becomes
unable to continue {r.g.s because it has page faulted), it is removed
from the processor and the last task to be put in the highest priority
ready gueue is given to processore.

On top of the LIFO-PR policy is a FIFO0 time slicing policy., which
insures fairness. When a task has accumulated a certain amount of CPU
time, it is removed from the front of the ready queue and placed at
the back of the queue. Such a task will not gain access to the

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 4

Module State Transitions

SHORT_TERM_SCHEDULER
(balance set)

MEDIUM_TERM_SCHEDULER
{out of balance set)

i1
11
11
#mm e T T +
| 11 }
\1/ 11 i
+==> RUNNABLE ========mc-===—m=—= > || ==mmm—————- > SWAPPED =----- >}
| | AR I : }
| \1/ Y P
]<== RUNNING =====-- + | 1 1
| * Kk] i 1]
| | |) 1 i
J $ommmmm - | ——===>{ i i
| |] 11 {
]<== DISK_WAIT <==—-% I 1]
} | } | (R i
| tommmmm | === > i1 i
}]] 11 i
J<=- PAGE_CLEAN <=-=+ { 11 |
l WAIT } i 11 }
| } [| 11 1
s et | --me-- £ 1
| l il i
]<=- SHORT_DELAY <--+ 11 +-==> LONG_DELAY =-->]
] | | 11 H i
| Pommmmem—- | === > 1} =====-- + {
1 i 1l |
+-=- SHORT <==+ 1 LONG i
_RENDEZVOUS 11 _RENDEZVOUS '}
_WAIT mmmmmmmmmmeemee- > |] =mmm—m————— > _WAIT ————t
% % % g] Rt

“Notes: (1) *%%x means that we do not explicitly maintain a set of
tasks in this state. (e.g.sr no gueue of such tasks).

processor until it has migrated to the front of his ready gueuer
either because other tasks become blocked, or are demoted according to
the time slicing policy.

2«3« Medium Term Scheduling

Often, the aggregate resource requirements of all unblocked tasks
exceed the resources available. In such circumstancess a subset of
the unblocked tasks are readieds and the remainder are maintained in 3
medium term scheduling gqueue. The medium term scheduler periodically
removes some of the ready tasks from the balance set to make room for
tasks in the medium term scheduling queue.

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 5

2.4« Reducing the Balance Set

When system resource managers determine that a system resouce is
oversubscribed, the medium term scheduler is invoked and asked to
reduce the balance set.

The MTS +then scans the ready gueues and disk wait gueues, choosing
tasks to be removed from the balance set. These tasks are removed
from their queues, entered into the medium term scheduling queuesr and
their TCBs are unwired. Their memory resources are available for
reclaimation {(we may choose to clean all dirty task pages at this.
time).

I1f the short term scheduler determines that there are insufficient
resouces to run an unblocked tasks, the task is given to the medium
term scheduler, and entered into the medium term scheduling Qqueue.
The MTS will run the task when sufficient resources become available.

2ebales System Shutdouwn

At system shutdown time, the MTS removes all permanent tasks from the
balance set and places them in the medium term scheduling gqueue {tasks
are removed from both the ready queues and the disk wait queued. all
termorary tasks are purged from the medium term scheduling queue.
Since the MTS is a permanent tasks, its gqueue persists until the next
R1000 session.

2ef4el2s Non—=Paging 1/0

Permanent tasks cannot perform I/0 themselves. Permanent tasks cannot
execute entry calls on termorary taskse. Therefore, at crash or
shutdown time, we can ignore all outstanding I/0 activity <{tasks in
the disk wait queue will fault their reguired pages into the cache
when the system comes back upl. :

3. Short Term Scheduler

The short term scheduler manages the ready queues. When a task makes
an entry call, the short term scheduler must quickly decide if the
target task®s TCB is still in the the cache and, if so, put is on a
ready queue. If the target task is not still in the cacher the target
task®s TCB must be faulted in from backing store, and the short term
scheduler must decide is there are sufficient resources available for
entering the task into the balance set. If there are not, either the
medium term scheduler must reduce the balance set, or the target task
must be given to the medium term scheduler and run at a later time..

Normally, we expect tasks to remain in the cache for gquite some time,
unless explicitly swapped out to backing store. When executing an
entry c¢2ll, the <calling task is suspended in favor of the accepting
task. Therefore, the only real decision the short term scheduler must
make is whether the target task®s TCB can be wired into the cache.

Rational Machines proprietary document DRAFY 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary)

When the target task exits the accepts, both the caller and the target
task are able to run. If the caller has been removed from the balance
sets the short term scheduler must decide if there are sufficient
resources to put him back into the balance set. Normally, se expect
the caller to remain in the cache, and be moved back to the ready
gqueue.

The most important decision made by the short term scheduler is
whether to schedule a newly created module. When a module declares a
package or tasksr a new TCB 1is allocated such that the TLB can be
introduced into the balance set. If there are insufficient resources
to. support the new task f{which will be in a phase transition and will
generate a high demand for memory), the declaring task 1is suspended
until resources are available for creating its child. Note that, in
this situations, the declaring module is still unblocked. It can be
suspended most"easily by simulating a delay within the tasks thereby
blocking it.

The page replacement policy gives memory priority to TCBs of blocked
tasks {(they will not be swapped out unless no other page frame can be
reclaimed without hurting the system). When a T(CB is swapped outs all
of that modules stack pages may be cleaned (this may be done more
efficiently as a single operation rather than faulting each page out.
It makes a larger number of cache frames available for reuser and
makes swapping the task back into the cache more efficient).

We may choose not to wire TCBs of non—-system taskss, letting the page
replacement policy (implemented in microcode) decide if a T(B must be
swapped out. The page replacement policy would not reclaim a TCB
unless no other page on that cache line could be used. If a T7T{B was
reclaimed, it would be removed from its ready queue and all of its
stack pages cleaner {as described above).

System tasks are always wired.

4o Medium Term Scheduler

The medium term scheduler is implemented as a permanent task. Its
name 1is stored 1in +the pack 1label on the system disk. At system
initialization time, the MTS is recovered from the file systems, and it
chooses the tasks to be placed in the ready queues.

4.1. Balance Set Management

The MTS provides two primary entries: one for placing specific tasks
into its gueue, and the second to reduce the balance set.

When the microcode discovers that an unblocked task cannot be run
(eeGe.r because there is not sufficient memory), or that a TCB must be
cleaned and its page frame reclaimed,it calls this MTS entry, passing
the task”s name. After the task”s name has been entered onto the MTS®
queue space, the task may be removed from his resident queue.

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 7

When any resource manager discovers that the balance set is too larger
the second MTS entry is invoked. This causes the MTS to scan the
ready queues and disk wait gueuess, choosing tasks to be removed. from
the balance set and entering them into the MTS queue. The MTS may or
may not call the file system to clean the chosen tasks” stack pages.

The MTS is organized as a pair of tasks: the MTS proper is a permanent
task maintaining the MTS queuer and a temporary tasks, which interfaces
the MTS with the resident queues. When the balance set 1is to be
reduced, the temporary task is invoked to scan the resident queues and
choose tasks to remove. Fach chosen task is passed to the MTS® queue
spaces then its TCB is removed from its queue and its stack pages are
cleaned.

4.2« Replacing the MTS

The medium term scheduler provides an interface for reading all tasks
in its medium term scheduling queue. If a new MTS 1is replacing the
current oner the microcode is informed not to call the MTS. The news '
MTS calls the old, requesting the contents of its queue. When the new
MTS” queue has been built, it places itself in the pack label of the
system disk, aborts the old MTS, and gives its name to microcode. The
system then proceeds.

4e3. The Medium Term Scheduling Queue

The medium term scheduling queue is the finite sized, wired data stack
of the MTS. 1If this gueue is not large enough to hold all unblocked
taskss th2y must be (e.g.) delayed until there 1is room in the MT
queue. Alternatively, the MTS may be an unwmired tasks; this requires
the microcode to wait. until +the MTS resolves page faults before
completing balance set adjustments.

5. Page Replacement Policy

The page allocation and page cleaner microcode implement the page
replacement policye. The page allocator 1is called within the
regquesting task whenever a cache frame is required for a logical page.
This will occur when a stack is being extended and when a frame is
required for loading a page from backing store.

5«1« Page Allocator

If the page allocator can find an available frame within the least
recently used guarter of the cache line, it allocates this frame to
the page. If there is no such frame, the page cleaner microcode is
invoked within the requesting task. Page cleaner microcode is also
invoked from the page cleaner task. [An ayazilable frame 1is a page
frame containing an invalid pager a page thats not within anyone”s
stack, or a clean page. Any clean page must also be cataloged, and
may be replaced without losing any data.l

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 8

S«2« Page Cleaner

Page <c¢leaning 1is performed by the page cleaner microcode. This
microcide is called from within a task when the page allocator fails.
to find an available page frame, and is called periodically from the
page cleaner task to maintain the proper pool of available pages.

The page cleaner microcode locates a likely victim page to clean (copy
to disk), and asks the file system to store +the page. The store
request may require several backing store operations before the
missing page has been located. Each page that is read from Dbacking
store (for file system data bases) requires a frame to be allocated
(which could result in more page cleaningle. The page cleaner is
implemented such that, if one clea2ning operation reguires another, the
first is abandoned and the other is performed. Normallyr, the file
system will have the required data base elements 1inm the cache to
complete the store operation.

The page cleaner task maintains information about the current demand
for memory. If it cannot maintain the required number of free cache
frames, it may run more often (providing that backing store bandwidth
is available). It may also ask the MTS to reduce the balance set.

5.3. Backing Store Bandwidth

The page fault microcode and the disk controller tasks wmaintain
metrics reflecting the portion of backing store bandwidth being used
{and thereforer the amount of bandwidth in reserve). This metric is
available to the short and medium term schedulers for making decisions
about entering new tasks into the balance set. The algorithm is still
to be determineda. However, it must be able to predict the paging
traffic caused by each task in the system, since this is one metric
used in balance set management.

6. Load Control

It is difficult to identify any notion of working set, given the
amorphous groups of cooperating tasks we envision to be running on the
R1000. It is also critical that memory and backing store bandwidth
not be oversubscribed.

6.1 Oversubscribed Memory

Memory may become over subscribed in two ways, because too many
requests are being made to a single cache line (called thrasbipg on 2
cache 1lipe)r or an insufficient pool of awvailable pages exists
throughout the cache. The former requires that selected tasks be
removed from the balance sets, probably be choosing a page on the line
and finding its TCB, or choosing a TCB within the oversubscribed line.
The latter requires that the MTS scan the ready qQueues. C(are must be
taken that, when a task faults a page into the cache, it is not stolen
before the task can run and reference the page.

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 9

5«2« Oversubscribed Backing Store

The paging behavior of the task mix may oversubscribe backing store
bandwidth without oversubscribing memory. This may occur is too many
tasks are in phase transitions {i.e.r, are changing their resident set
of pages). A newly created task is an example of this. Tasks in
phase transitions consume page frames faster than tasks between
transitions. This high consumption increases backing store bandwidth
used for page cleaning and reduces the available page pool.

The short term scheduler will not introduce a new task into the system
unless the system can support another task in a transition. A rule of
thumb 1is that one phase transitioning task per backing store device
can be supported. Transitioning tasks ars not associated with any
particular devicer, rather, a system with four backing store devices
and support the aggregate backing store traffic associated with four
tasks 1in phase transitions. We need not be this strict, as long as a
proper available page pool can be maintained <(we want the system
optimized for task creation as well as rendezvous). Choice of the
proper load control parameters requires experimentation with a running
R1000.

6«3« Deadlock Control

Cleaning of cache frames requires that portions of the file system
data bases be paged in as needed. In the 1limiting casers
oversubscription of memory may prevent paging in such a portionss
leading to a deadlock. The system attempts to prevent oversubscribing
memory by monitoring availability and demand for memory. This section
describes policies and mechanisms which deal with potential deadlocks.

6«3-1. Emergency Page Buffers

The Address Space Manager maintains enough wired page buffers to hold
the maximum number of file system data base pages required to clean
any page {the maximum depth of any logical to disk address translation
is five levels, requiring, at most, five pages of emergency
buffering). Normally, the ASM will read pages of its data base 1into.
memorys, to be accessed associatively (like any other page in the
system). When the page cleaner task makes a STORE request which fails
because of no memorys, it can call an entry to the ASM which will use
the emergency buffers. When this entry is called, the ASM becomes
single threaded; no other ASM requests are honored until the one using
the emergency buffers completes, including waiting for disk requests
to complete.

Single threading requests obviates the need to lock the emergency
buffers. The page cleaner task is the oaly task able to call the
emergency STORE entry to the ASM, and he calls it only in situations
which appraoch deadlocke. ’

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Introduction and Summary 10

6+.3+.2« The Page Cleaner Task Queue

The page cleaner queue is a2 list of all tasks in the system blocked
awaiting available memory. We expect this queue to be empty as 1long
as memory is not oversubscribed {(since the page cleaner is maintaining
the minimum number of available frames on each cache line).

The. page cleaner task runs periodically, scanning all lines of the
cache to make sure the required number of available pages is
maintained. I1f he finds that he can clean no pages without receiving
a page create barrier from the ASM, and either the number of available
pages 1s not adequete or there are tasks on the page cleaner queues he
calls the emergency STORE entry to the ASM. This call effectively
single threads the virtual memory system until the necessary number of
available pages of memory has been restored.

Single threading the virtual memory system serves to throttle demand
for memory, as well as simplifying the mechanisms required for
breaking the insufficient memory deadlock. While the ASM is single
threaded, requests may accumulate. Therefore, if memory management
microcode cannot rendezvous with the ASM immediately, it executes a
delay on behalf of the requesting task.

6«3.3. Page Allocate—-time Page Cleaning

The page allocator will attempt to <clean a pager if no page 1is
available on the required cache line. If the ASM returns a create
barrier, the page cleaning microcode puts the reqguesting task onto the
page cleaner task”s gueue, blocking that task until the page cleaner
can increase the number of available pages 1in the system. The
requesting task is unnaturally blocked, and may be removed from the
balance set as if it were a ready task.

6.3.4. Barriers to the Medium Term Scheduler

The medium +term scheduler is an unwired task. Should he encounter a
create barrier while cleaning a pager he is placed on the page cleaner
queue. By using the emergency STORE entry and associated buffers, wuwe
should never enter a deadlock as a result of oversubscribed memory.

6.4. Task Unblocking

When a task decides to unblock another task {e.g.-, the task exits an
accept), microcode locates the blocked task®s TCB, and changes 1its
state. The unblocking task requests the short term scheduler to ready
the blocked taske ' :

The short term scheduler decides if resources permit running the
blocked task. [This probably hinges of whether the blocked task was
already in the balance 'set. If so, then we assume resources exist to
run that task.]

Rational Machines proprietary document DRAFT -1 January 24, 1983

Resource Management and Task S5cheduling Introduction and Summary 11

If +the blocked task®s TCB3 is not in memory, the unblocking task”’s
attempt to change the TCB"s state will fault it into the cache. This
happens transparent to the unblocking task. Once faulted into memory.
the blocked task can be unblocked and readied.

Wwhen <cleaning a TCB, we may decide to clean all resident stack pages
for that task as well. When someone tries to restore that task to the
balance set by referencing its TCB and adding it to the ready gqueuer
we may swap the entire task back into memory by reading all stack
pages that were cleaned along with the TCB. This reduces the 1loading
transient associated with running the task and uses backing store
bandwidth more efficiently. To facilitate this, we want a short term
scheduler call to unblock a task, rather than embedding that operation
in instruction microcode.

Rational Machines proprietary document DRAFT 1 January 24, 1983

Resource Management and Task Scheduling Table of Lontents

Table of Contents

1« Definitions
1«1« Main Memory and Thrashing
1-1<1. Available Cache Frames
1«12« Backing Store Bandwidth
1.2. Tasks States
1e2.1. Blocked vs Unblocked
1e2e.2« In or Out of the Balance Set
2« Short and Medium Term Scheduling
2.1. Task State Transitions
2e2. Short Term Scheduling
2.3. Medium Term Scheduling
2.4« Reducing the Balance Set
2421 System Shutdoun
2ebe2. Non-?aging 1/0
3. Short Term Scheduler
4. Medium Term Scheduler
4.1. Balance Set Management
4.2. Replacing the MTS
4.3. The Medium Term Scheduling Queue
5« Page Replacement Policy ‘
5.1« Page Allocator
5.2. Page Cleaner :
5.3. Backing Store Bandwidth
6. Load Control
6.17. Oversubscribed Memory
6.2« Oversubscribed Backing Store
6.3. Deadlock Control
6.3.1. Emergency Page Buffers
6e3.2« The Page Cleaner Task Queue.
6.3.3. Page Allocate-time Page Cleaning

o34 Barriers to the Medium Term Scheduler

6.4. Task Unblocking

[l

= PR YN e 3
OO WOVOMOWOONNNYOOUNWU IS WINDN N N b b wb o wd

Rational Machines proprietary document DRAFT 1 January 24, 1983

