L e

The Epsilon System

Principles of Operation
Volume I

User Interface Description

Revision 0.8
April 23, 1986

Rational Proprietary Document

Table of Contents

1. Overview

1.1.
1.2.
1.3.
1.4.

L.5.
1.6.

1.7.

Ada-Orientation

Editor-Based

Extensible

Integrated

1.4.1. Related Sets of Facilities
1.4.2. Uniform Vocabulary and Usage
1.4.3. Ownership of Objects
Maxims and Cliches for Developers
Error Handling

1.6.1. Directory and IO Errors
Switches

1.7.1. Switch Hierarchy

1.7.2. Switch Parameters

1.7.3. Switch Editor Interface

2. Directory Structure

2.1.

2.2.

2.3.
2.4.

3. Ada

3.1.

3.2.

Simple Objects

2.1.1. Worlds

2.1.2. Views

2.1.3. Types Of Views
2.1.4. The Default View
2.1.5. The System View
2.1.6. Objects and Names
2.1.7. Directories

2.1.8. Libraries

Naming

2.2.1. Naming Object and Versions
2.2.2. Object Handles
Invisible Objects
Questions

Basic Principles

3.1.1. Compatibility, Consistency, and Completeness
Compilation

3.2.1. Command Windows

4. Execution

4.1.
4.2.
4.3.

Accounts and Sessions
Jobs
Persistent Elaboration

Rational Proprietary Document

00 I 3 U i OW

4.4. Batch
4.5. Debugging
4.5.1. Views, Execution, and Changes
4.5.2. Execution in Context
5. Editor Interface
5.1. Core Editor
5.2. Object Editors
5.2.1. Permanence
5.2.2. Common Operations
5.2.2.1. Selection Operations
5.2.2.2. Cut and Paste
5.2.2.3. Ada Operations
5.2.2.4. Image/Object Relationship
5.2.2.5. Traversal
5.2.2.6. Miscellaneous
5.3. Interaction Protocols
8. Issues Requiring More Thought
6.1. Error handling
6.2. Input/Output
6.2.1. Error Messages
6.2.2. Interactive 10
6.3. Ada Command Interface
6.3.1. Overhead
6.3.2. Names
6.3.3. Command Design
6.3.4. Additional Functionality
Appendix 1. Change History
I.1. Revision 0.8
Index

INTERFACE.MSS.21

Table of Contents

31
32
32
33
36
35
36
36
36
36
37
37
38
39
39

REBEEESS

23-APR-86 13:25

2 Principles of Operation

INTERFACE.MSS.21 23-APR-86 13:18

1. Overview

1.1. Ada-Ori=atation

The primary purpose of the environment is to aid in the development of Ada programs.
Ada units are represented by their Ada names, structured as Ada subunits, removing the
need for implicit translation between file names and program names. Programs are
stored with sufficient context to provide assistance in navigation through existing units
and in construction of Ada units, statements and declarations.

The command language for the system is Ada. The goal is to provide the power of
direct access to Ada constructs without imposing the structure of a compiled, strongly-
typed language. Accomplishing this goal requires assistance with both syntax and
semantics in a way that allows the required program fragment to be constructed from
the user's intention.

1.2. Editor-Based

User interaction with the system and his own programs is through the editor. The users’
investment in learning these facilities is repaid in increased functionality and more
uniform interface.

The user is primarily interested in mahipulating the entities that make up the
environment. The user interface is concerned with providing an orderly and convenient
method of expressing these manipulations. The user communicates by pressing keys or
other input device. Though system entities are often presentable in a readable form, the
objects themselves are not made up of the characters used to present them. As a result,
the user interface is constructed to interact with the user through character editor and
with the entities themselves in terms of their own representation. To accomplish this, the
editor is separated into two layers:

L. The visible interface is a multi-window editor that provides a core set of
facilities for handling user input, editing and screen management. This is
called the Core Edstor.

2. The type-specific, object-knowledgeable portion of the editor is called the
Object Editor. Which object editor is used depends on the type of the object
(entity). A set of common operations are supported by each of the object
editors (to the degree applicable). Specific object types can also provide
operations unique the the particular type of object. .

Further details on Core Editor and Object Editor functionality are presented in 5.1 and
5.2.

Rational Proprietary Document

4 Overview

1.3. Extensil:le

All of the mechanisms that are required to build the interface should be available for
users to write similar programs that use all of the features of the R1000 interface. The
alternative is to end up writing everything that ever runs on the R1000. Historically,
there have been problems with doing this:

1. The interface we need is too complicated for customers

This is really a stalking horse for the complaint that the only interface is the
implementation-level interface, which we intended for internal usage and
didn’t expect non-compiler-writers (or other discipline) to have to deal with.
Lowest level system call interfaces normally have this problem, but there are
usually tool interfaces.

One of the goals of the system call interface has to be providing an interface
that provides access to the complete set of facilities in a manner that the
appropriate customer personnel can understand. We should also anticipate
that this interface will be taken seriously by customers.

2. Making the implementation visible is dangerous

Very similar to the point above, but somewhat more threatening. With the
reduced reliance on segmented heap pointers, this may be less of a risk.

For new functionality (or new specs for existing functionality), consideration
should be given to making it possible to expose the interface without risking
system integrity. For the small number of high-frequency paths for which
speed is more important than safety, there need to be safer interfaces that
provide equivalent functionality.

3. The code isn’t structured that way

A number of parts of the system implementation are designed to provide the
functionality that we use and making it possible to do something a different,
but functionally equivalent, way can be a lot of work. This is hard to do
anything about; resources are finite and complete generality is expensive.

Separation of policy and mechanism is useful in making it less likely to
introduce new instances.

1.4. Integrated

INTERFACE.MSS.21 23-APR-86 13:18

Integrated 5

1.4.1. Related Sets of Facilities

There are a number of conceptual levels at which users will need to deal with objects.
Some objects will provide all of the various interfaces described.

1. Interactive Editor
Editor interfaces provide an interactive form of object display and the ability
to change characteristics that are presented without interposing a specific -
naming or command discipline. Basic paradigms are direct modification and
select/operate. Section 5.2 describes the common operations provided by
editor interfaces; each editor can provide object-speci fic operations as
required.

Editor operations are provided for ease of user interaction. Complete system
functionality should be available without resorting to editor interfaces.

9. User Commands

Commands are ada procedures that it is expected will be conveniently
entered into command windows by the general user community.

a. Procedures with in parameters that have reasonable defaults and are
types with constants (e.g. string, boolean, integer, duration,
enumerations) or, less desirably, nullary functions.

b. Object name parameters deal with wildcards and selections.

¢. String parameters have defaults that are quoted; if there is not
reasonable default, the parameter is a recognizably illegal value that
briefly describes what successful replacements would be.

d. Except where the purpose of the command is access files, output is to
Current _Output and Current_Error. Do not require user input to
clarify options. Use Current_Input if absolutely necessary.

e. Any command should be able to execute successfully as a background
job with the user logged out.

3. Tool Interfaces

Tool interaces are Ada units for use in programs or advanced command
windows; perform I/O only on objects provided as parameters. Collectively,
along with the IO packages, provide all of the functionality necessary to
implement commands. Commands can be implemented on non-visible
interfaces in the interest of efficiency, but there should be understanding of
how and why non-exported functionality is required.

Rational Proprietary Document

6 Overview

4. Input/Output Access of Objects

Input/Output interfaces are provided for easy programmatic interface to a
variety of objects. Two related forms of interface are possible:

a. Open/Close/Get/Put interface to object images. For any object for
which there is an editor-provided image, there should be an interface to
read the image (or selection) as text. For object editors that provide
Read/Write capability, output should be supported. Users should be
able to write applications that read the current image/selection, change
it, and write it back.

b. A uniform Open/Close/Read/Write access should be provided for
objects that consist of streams of interesting types (e.g. links, activities
in Gamma)l. This makes it easy for implementors to write tools or
generics built around a standard, familiar interface.

5. Script or Interpreter Interfaces

A number of parts of the system provide script-based command interpreters
or question/answer interfaces. These are provided for low-level interfaces
and for interactions where many non-standard operations must be performed
in an interaction pattern that is unsuited to an editor interface. These are
often the easiest form of interface to build and frequently outlive their
originally projected lifetime.

a. Any response should be recognized if it is a prefix of exactly one of the
possible responses. Responses should be chosen so that they are not
only meaningful, but tend to be unique in the first few characters.

b. The input/output streams that provide the script should be done in a
manner to allow them to be relocated by appropriate request, e.g.,
should not be limited to only working on the operations console.

c. Context-dependent and history dependent prompt defaults should be
provided, as in the kernel command interpreter.

d. Command interpreters should be prepared to accept parameters on the
same line as the commands being issued, omitting prompts as the
corresponding parameters are supplied ahead of time. Appropriate
accomodations for flushing type-ahead in the face of errors is also
useful.

e. Command interpreters should provide a convenient way of accessing
functionality, they shouldn’t be the functionality.

lThins is a special case of uniform vocabulary and a non-trivial design task.

INTERFACE.MSS.21 ’ 23-APR-86 13:18

Integrated 7

One of the problems in providing a comprehensive facility to be used with the mix of
possible execution environments is providing appropriate levels of input for each
particular use. On» sitractive solution is a progress object, first introduced in the merge
processor. The ceniral idea is to have an object that represents the work done or to be
done. The object can be modified equally well by editors or commands. If the
appropriate information is captured in the object, it is possible to create the equivalent
of a log and it is possible to create an object editor to display the information involved.
A description of how such a facility for Ada compilation is described in 3.2.

1.4.2. Uniform Vocabulary and Usage

Ideally, the user should be able to construct a reference to perform a standard operation
_on a known object type in a known package without actually having to look at the
package specz. This is particularly well done in a subset of the abstract types, where an
experienced user can predict common operations are done.

One area of change needs to be choice of parameter names. While it is useful to have
parameter names that provide useful guides to their meanings, being too specific leads to
very similar procedures to have subtly different parameter names. This is a problem
when completion provides full name notation and the user wants to convert to a similar
procedure, or just another procedure in the same package, to perform a related

3

operation®.

1.4.3. Ownership of Objects

The user is encouraged to look upon images as representing the underlying objects. It is
particularly frustrating to encounter self-locking. If the user can see the object, it should
be possible for an invoked tool to read the object. If the user can write the object, tools
should be able to. There are obviously restrictions on the number of user jobs that can
read/write the object concurrently, but there shouldn’t be issues of locks held by the
wrong places. Committing an object makes it permanent and makes it potentially
visible to other users; it isn't necessary for the user to reference it from commands or
tools. Facility is available to specify the last committed version should it be important
to see the state of the object as seen by other users.

Looking at an object doesn’t keep others from looking at the same version or from
creating a new version of the same object. Two users cannot simultaneously create new
versions of the same object in the same view; the possibility of doing so is detected when
the user first expresses intent to change the object, not when the commit is attempted.

2The current universe specs bear the mark of their pluralistic origins. Different conventions are used,
different names for objects, different names for similar functions, etc. This means that the user is required
to know how the particular package is constructed.

3Work is required to better specify the vocabulary and usage conventions.

Rational Proprietary Document

8 Overview

1.5. *jaxizus and Cliches for Developers

1. Z'manle Things are Simple
Frovuiing power is important, but it needs to be layered so that the most

common operations can be performed by users who don’t really understand
Ada, the environment or temporal logic.

2. Customer Programs Run on Target Machines

Providing a good environment for developing Ada programs natively is a first
step, but it doesn't solve the basic user problem. Having integrated facilities
for the R1000 target makes it more important to have similarly integrated
interfaces for target development. Moving from the 2060-MV based
development to the R1000 was a great improvement; customers won't
appreciate making the transition in the other direction.

3. We Aren’t Representative

The typical customer is interested in getting programs to work, not in
learning how to write compilers or every last detail of the LRM. Because we
are very interested in language issues, the local vocabulary and usage is
heavily steeped in Ada concepts that the customer won’'t want to become
familiar with. Each customer can be assumed to have a working knowledge
of Ada and we don’t currently have much choice except to assume knowledge
of English; assuming more invites negative customer reaction.

4. Details are Important

There are a variety of ways in which the product will be judged, including
functionality, integration, ease-of-use; each user will view some of these as
more important than others. No matter how well the product rates on these
criteria, users will expect the system to work. Having additional
functionality doesn’t buy forbearance for details that don’t work; small
problems can cast doubt on large areas of functionality.

5. The User Owns the Name Space

No tool should preempt names in user contexts. There must be a way for the
user to choose the name/directory into which state is placed. Reserved, non-
Ada names are an option provided they don't appear by default, don’t match
simple wildcards, and don’t prevent the destruction of the world, view, or
directory. An extension of this rule requires that tools not dump garbage in
the user’s home directory.

6. Windows are Expensive

Placing a window on the screen takes another window off of the screen. If
the user asked for the window (e.g., definition), it is reasonable to bring it

INTERFACE .MSS.21 23-APR-86 13:18

Maxims and Cliches for Developers

10.

up4. Ou the other hand, it is much less likely that the user will welcome the
appearance of and unbidden window, even if it promises help or other
information. In particular, if the information wasn’t really wanted, the loss
of the window will far outweigh the good intentions in providing the helps.

. Never Force Interaction

Commands that require additional information should be set up to allow this
information to be provided by additional parameters or commands. Unless
the command provides a general command interpreter or editor interface, it
shouldn’t expect the user to provide input to answer questions. Not only
does this force interaction in undesirable ways, it has unexpected
ramifications when commands are run other than interactively. Where
additional information is required and it is expected that users may be willing
to answer questions, it is possible to have parameter values filled in by
functions that request information; this allows user choice as to how
information is acquired.

. Unify Similar Operations

Commands to do the same or similar thing should be unified. To the degree
that flexibility requires multiple operations, these should be built using the
same paradigm, recognize the same switches, and in general act like they
work together. In addition to there being too many commands, there are too
many packages. .

_Tailor Commands to User Needs

Commands should be tailored to do things that users want to do, not to do
things that are easily implemented. Commands should be grouped in terms
of operations that the user is likely to want to perform together; this may not
create command packages that correspond to the implementation scope of a
single group or developer.

Tools packages are expected to supply a complete and consistent set of
functionality; commands are expected to provide operations that are
commonly executed. As long as commands can be implemented using the
tools packages, there is a limit to the degree that all functionality must have
a corresponding command.

Assume the User is Right

Except for destructive operations, make the assumption that the operation
that was requested made some sense. Strict construction of the user’s

4There are issues about window replacement, but that's a different problem.

5Menu windows are helpful in some, but not all, of the circumstances when they pop up.

Rational Proprietary Document

10 Overview

requests will most typically require that they be re-phrased to do what the
command could have done originally except that the environment can,
presumably, do so faster than the user. Certain operations require some
precision is specification because they are deemed to be destructive. Care in
these cases is considered to be in the user’s best interest (whether it is or not).

In addition to the rules for cursors, selections, cursors in selections, ete. If
something is selected for an operation, the closest containing object selected
set of objects should be operated on. If the object containing the selection
doesn’t have Diana references, the selection should be interpreted as if the
text had been typed into the parameter to operation. Some clarification of
the relation between cursors, selections, and images is required.

11. Support Standard Protocols

Operations that look like they should work, should work. Whatever user-
level mechanisms are supported in the environment should be supported
everywhere that would make sense to the user. The user is much more
likely to view the appropriate function of the system in terms of the way the
screen looks and the analogy to how other things work than to act on the
basis of specific rules.

12. Succeed Quietly, Fail Loudly

It should be possible to tell that an operation didn’t work by its messages.
For simple operations, it should be possible to tell that they did work by their
completion.. Operations should not fail quietly. An operation that fails
should provide enough information to allow a novice to understand what
happened in terms that are appropriate to the problem encountered. Resist
the temptation to express the problem in the precise terms that would be
used by the implementor; use terms that will make sense to the user.

13. Avoid Directory Nesting

Don’t create extra levels of directory to solve name conflicts. Although there
seemed to be little choice, the Gamma subsystem tools are particularly bad
about this. If nested directories are required, they should be used for
information that the user doesn’t create and seldom accesses, t.e., it is OK to
hide things in out-of-the-way places as long as they aren’t frequently named
by the user.

14. Avoid Hidden State

It is reasonable to allow the user to specify characteristics of how the system
will operate for particular circumstances. It is not reasonable to have these
characteristics change based on or depend on state that is not readily
apparent to the user. Information in banners should explain state. Text
banners currently have the bad characteristic of seeming to show a context,
but not maintaining it.

INTERFACE.MSS.21 17-APR-86 14:45

Maxims and Cliches for Developers 11

15. Pay As You Go

The work required to perform an operation should be proportional to the
work required do what the user thinks was requested. Simple interactive
operations should be fast.

16. Provide a Complete Facility

When introducing an object or capability into the system, provide sufficient
facility to meet the spectrum of user needs. This includes tools interfaces,
the ability to get back any value that can be set, an object editor, etc.

1.8. Error Handling

The following is a list of goals for the Epsilon error detection and reporting scheme.

Flexible Error messages need to exist separately from the programs. This allows
the text of messages to be edited for consistency, wording and language
changes.

Specific Many current error messages include information specific to the particular

instance. There needs to be some way to associate this information with
the text of the message. Content insertions may not be ordered the same
in the final message as in the implementor’s initial conception.

Detail There needs to be a way of aséociating additional information, LRM
references, etc. with error messages.

Separation Service routines (e.g. directory naming) detect many of the errors that are
made. The errors are reported by some higher level. There need to be
separate, but compatible, facilities for recording errors and reporting them.

Detection It should be predictable under what circumstances an error that has been
detected will have generated a reasonable error indication.

Efficiency One program’s error is another program’s normal processing state. The
overhead of reporting errors should be limited to the processing required to
capture what happened, not formatting and processing the actual message.

Reporting Error reporting should take place through some uniform interface that
determines what and where to print the message, depending on profile,
interactive nature of program, etc.

6Consider the counter-example of keyboard macros. Keyboard macros are very useful, as is the ability
to save them. The can only be saved as a group, there is no way to remove one, view or change its
contents, associate a name, comments or documentation with it, there are no tool interfaces, etc.

Rational Proprietary Document

12 Overview

Use It should be possible for any implementor to effectively report errors
detected at lower levels without major effort. It should be possible to add
new errors to the set detected without prior planning and without undo
inter-group coordination.

Response Messages should make it clear whether the error is the result of something
the user did wrong or whether the system has malfunctioned. Any
mysterious hex numbers should be clearly marked as being intended for
Rational personnel to diagnose our problems.

Programs There should be a programmatic interface that implements all of the
appropriate metaphors.

1.6.1. Directory and 10 Errors

Most user programs, especially those not intended to tailor the environment to their
development style, will tend to use standard IO and directory interfaces. Epsilon will
provide better handling for these errors. One method that is being provided is the
ability, having received a bad status, to call another interface with some of the same
parameters and the offending status to get appropriate details. Chapter 14 IO packages
cannot use exactly the same form, since they are constrained to raise for all error cases.
It would be possible, however, to attach the error status to the file handle and provide a
separate package to give the appropriate detail.

Another improvement is the conversion of the exceptions in I0__ Exceptions into flavored
exceptions, as with Constraint _Error. This is done by assigning a range of exception
values to one JO__Exception exception and having the IO (and other) packages use the
specific versions. User programs can still catch the non-specific version, but the name of
the exception that come out of the debugger or into the message window can be more
precise. More work is required to make the list complete.

1.7. Switches

Switches are used to control the environment in a number of different situations that are
often confused with each other. Customer applications should have access to all of these
wonderful facilities.

Taste Different users have different taste about how they want the system to
behave. User tastes change relatively slowly.

Parameter The specific purpose for which this operation is being done requires
different behavior than the default.

Declaration Characteristics of operations that are expected to be constant over the
related set of objects, e.g., target key.

INTERFACE.MSS.21 19-APR-86 14:36

Switches 13

e Data_Error

o Output Value; attempt to write a value not in type
o Syntax Error; input value had incorrect syntax
o Type Error; attempt to write an unsafe type

° Device_Error7

o File Gone; reading file with no lock and it disappears

e End _Error
e Layout Error

° Mode_Error
e Name _Error

o Ambiguous

o Directory Not Found
o Malformed Name

o Object Not Found

o Version Not Found

e Status__Error

o Already Open
o Not Open

e Use_ Error

o Access Error

o Check _Out Error; object not checked out®
o Class Error; existing object is different class
o Frozen

o Lock Error

Figure 1-1: Flavored IO Exceptions

7This could be a very long list, even though the exception is not frequently seen.

8Difl‘erent from Lock Error?

Rational Proprietary Document

14 Overview

1.7.1. Switch Hierarchy

All of the following are possible switch setting scopes:

System An installation wants different defaults from what we have written into the
code.

View Operations on objects in the view.

Directory =~ Operations on object in a sub-directory of a view.

User Specific user tastes.
Account Specific user taste tailored to a specific purpose.
Session Changes to the characteristics of the session while it is logged in that are

not saved as new Account defaults.
Job A specific, related set of operations.
Procedure Passed as a parameter to a particular command or tool procedure.

The scopes are presented in order of increasing specificity. More general scopes override
less-specific ones. Procedure, job, session, account, and user are one related group;
directory and view another; system is clearly the least specific. Ordering is completed by
making user more specific than directory. Not all situations require supporting all
scopes, but it needs to be clear which switch value has precedence if there are many to
choose from.

Some switches can only be set on a view or directory basis, e.g., target key.

Providing a hierarchy of switches implies a value for each switch corresponding to *don’t
care®. This must be maintained individually for each switch and complicates otherwise
simple situations, e.g., Boolean switches.

1.7.2. Switch Parameters

One of the basic problems with switches is that, though they provide flexibility, they also
introduce complexity. One of the issues, addressed by the current profile package, is
that it isn't reasonable to have one parameter for each possible switch. This is
particularly true when commands are composed of other commands or tools with their
own switches, possibly requiring the union of the individual switches. This is particularly
noticeable because the number of parameters and their types must be pre-specified for
Ada procedures.

INTERFACE.MSS.21 21-APR-86 10:08

Switches 15

Some flexibility is added by the ability to push/pop switch state around a particular
function, essentially implementing something similar to parameters, but with a different
syntax. This is limited by the depth of stack provided, not to mention inconvenience in
typing extra calls into command windows.

The issue of how to specify switches is integrally tied up in the challenge of making Ada
serve as a convenient command language for normal, trivial user requests. See section
6.3 for more details.

1.7.3. Switch Editor Interface

There a large number of switches in the current system; this number is likely to grow
considerably. For users to be able to effectively deal with the switch explosion, some
more structure must be imposed. In particular, the switches need to be organized by
user-perceived functionality. This impacts two different axes of switch management:
switch names/grouping, and the ability to see the switches that a program would see,
regardless of the level at which they were specified.

Switches should to be grouped by purpose, rather than by implementation client. Initial
display in the switch object editor would show the major categories. This could be kept
to a set of manageable size and expanded to provide more detail. All switches should
take effect when they are committed. Since the most general form of resolution may be
too expensive, there should be some form of notification to persistent environment when
switches change.

Rational Proprietary Document

16 Overview

INTERFACE.MSS.21 15-APR-86 18:30

17

2. Directory Structure

2.1. Simp!= Objects

The Epsilon Directory system consists of Objects of distinct classes. Among these classes
are the Ada units class, the files class, the directory class, which includes both Worlds
and Directories, and the view class. Other classes exist (as in Gamma), but for the
purposes of this discussion they have the same properties as files.

The Epsilon Directory system is a hierarchy of Worlds and Directories. Worlds and
Directories may contain any object, including other Worlds and Directories. Worlds and
Directories have one part. Each object immediately within a Directory or World must
have a simple name distinct from the simple names of other objects immediately within
the same Directory or World.

2.1.1. Worlds

A World is associated with a disk volume (VPID) and is stored on that unit. Other
objects in the directory system are stored on the volume associated with the closest
containing World.

Software development in the Epsilon system takes place in one or more worlds. A world
is a collection of related objects, and for Ada units can be thought of as an LRM Ada
Library. A world contains objects, each of which can have multiple versions. An object
cannot be in more than one world. Within a world, the simple names of Ada compilation
units must be unique. An Ada unit can with any spec in its own world. However, no
units in other worlds are visible without taking specific action.

2.1.2. Views

During the life of a world, the various objects that it contains will change, new objects
will appear, objects will disappear. Versions allow the user to capture the state of an
individual object at a particular time; multiple versions will exist over time. For most
purposes, however, it is most natural to think of a particular version of an object as
representing the object. A view is a set of versions that, taken together, represent a
world at a particular time. For worlds with exactly one view, the result is the same as
for a conventional directory system: each object has one version that is easily accessible.
For worlds with multiple views, each view gives the illusion of representing the versions
of the objects that are accessible.

Though views and worlds are very different from an implementation perspective, a view
will appear to be the same thing as its associated world in the same way that a version
appears to be the same thing as the object it represents. In normal system interactions,
the goal is for the multiplicity of views to impinge on the users’ consciousness as seldom

Rational Proprietary Document

18 Directory Structure

as possible, and only in contexts where it is necessary to understand the relationship
between distinct versions of the same object(s).

A user, working within a world, must have selected a view for that world. The installed
versions of Ada units in a world, selected by a view, are consistent with each other,
which (loosely) means they are subject to change analysis and obsolescence propagation.

A world can have many views. As such, views can be used to keep variants of a library,
to keep releases over time, or both. As said before, views are the mechanism for storing
and maintaining various related sets of versions in a world.

A view is an object with one version, and its contents can be retrieved regardless of what
other view (if any) is in use. In other words, views do not select versions of views. Views
can be frozen, which means the view itself cannot be modified to select a new version of
an object, and no version selected by the view can be modified in any manner.

A view can select views of other worlds. When this is done, the view can describe some
set of versions across multiple worlds. These views of other worlds are selected via the
tmport operation. This operation makes a specific view of one world visible to a specific
view of another world.

Views within the same world are di fferential; making a new view from some view does
not cause new versions to be created for objects referred to by the original view. The
versions are shared between the views. New versions are made only when the user or
compiler selects for use a view sharing a version, and then tries to modify that version.
When this occurs, a new version is automatically created and replaces the shared version
in the selected view, and the modification proceeds.

2.1.3. Types Of Views
There are four types of views. These are:

1. Release View

A release view is a frozen view. The versions selected by such a view are all
frozen. It can import views of other worlds, all of which must be frozen.
The world containing the view is consistent with all imported views, and the
imported views are all compatible with each other.

A release will select versions of a number of objects related to the versions of
Ada units in the view. It is possible to remove various classes of these to save
space; doing so remove the ability to do associated operations:

1. Diana trees. Compilation, definition, tools, and some debugging.
2. Image. Viewing.
3. Code segments. Execution.

INTERFACE.MSS.21 15-APR-86 18:30

Simple Objects

4. Debug tables. Debugging.
5. Assembly code, listing files, etc.

Removing an image without removing the Diana tree is not supported;
similarly, removing code segments while retaining debug tables makes no
sense (at least for Native code). The full set of objects associated with
various targets cannot be pre-determined, but similar space saving may be
required.

It is not possible to delete a frozen view that is currently referenced by
another view®,

. Working View

A working view is one where the view and the selected versions in the world
are not frozen, but all imported views are. This is used when the world is
supporting active development; the view selects the versions of objects that
can be changed. The Epsilon system enforces consistency between the
unfrozen view and all of the selected views. The various frozen views are
compatible with each other.

. Composite View

A composite view selects zero or more working views and zero or more frozen
views. This type of view allows construction of a view that has no
. oy 0q° 4 . . i
consistency or compatibility properties. The selected working views and

frozen views are referred to as original views.

This type of view allows the user to build a view that operates as if it were a
working view on all of the original worlds. All of the operations that operate
on working views accept a composite, and look through the composite. The
goal is to make a composite view work as if all of the versions represented by
the unfrozen original views made up a single working view. The process of
compiling all of the version in a composite view may cause new releases to be
made of some of the original views and imported into others for compilation
to succeed. The composite view is never used directly by compilation, so it
need not import the compilation closure.

. Unmanaged View

An unmanaged view is one that selects versions of objects, but provides no
guarantees about the relationship between the versions in the world and
versions in other worlds. Unmanaged views can only be imported by other
unmanaged views. All operations on views are available for unmanaged
views, but no attempt is made to enforce consistency or compatibility.

Rational Proprietary Document

19

9Seems that there should be some restriction that makes it impossible to delete Diana trees while the
view is in the compilation closure of an unfrozen view, but don’t know precisely what that restriction is.

20 Directory Structure

This kind of view is used for worlds that are not used for organized software
development, e.g., users’ home worlds, system log directories, etc.
Consistency and change analysis are enforced within the view. A user’s home
world is probably this type of view.

The first three types of views are referred to as managed views.

It is important to note that when consistency is enforced, it is between the versions
selected by a view and the imported views. At no time is consistency enforced between
two imported views. However, compatibility is enforced between imported views in
working and release views.

2.1.4. The Default View

Every world has an unmanaged view created with the world and an indication of what
its default view is. When a world is created, this indication is set to the initial
unmanaged view for the world. It can be changed at any time to refer to some release
view; the significance of this operation is explained in the next section.

2.1.5. The System View

The system view is a special view, constructed by the environment. It is built by
iterating over every world on the system, finding the default view for the world, and
inserting the portion of the view that describes its own world into the system view. In
other words, it is the union of the default views after any imported worlds have been
removed. This view is used in the view stack.

This mechanism facilitates sharing of information between worlds, such as home worlds,
without undue structure. It also facilitates controlling visibility of tools and the like;
changing the system view will change visibility for a large class of users.

Changing the default view for a world has immediate effect on the system view.

2.1.6. Objects and Names

Every object in the world has a simple name. In this case, a simple name is a string
composed from a set of visible characters!®. Users are encouraged to use Ada simple
names for most purposes and required to use Ada naming for Ada units. Various
environment functions will construct non-Ada simple names to represent associated
objects that are not customarily visible; these names follow a known pattern so that
users can avoid conflicts.

10Clearly have to restrict use of some punctuation and non-visible characters; don’t see any reason to
enforce all of Ada naming restrictions. Should be possible to express the restriction in terms of character
set, not character order

INTERFACE.MSS.21 15-APR-86 18:30

Simple Objects 21

Remember that all objects exist independent of views; views select versions of objects,
not the objects themselves. It is, therefore, possible to resolve a name to an object
without requiring a view. It is also possible to reference a version of that object without
a view, but this requires an explicit version qualification be specified as part of the name.
Any object can have child objects, and the names of these child objects are also available
without using a view. Children can find their parent object without using a view. Thus,
the structural name tree can be built and traversed without using views. Because
objects exist independent of views, version qualification is only necessary (or possible) in
reference to the version itself, not its parents in the directory system™".

The existence of objects independent of views implies that as long as there exists a
version for an object, that object logically appears in the name space of all views for that
world. This will require care in name resolution specification; users will more often be
interested in whether there is a version with a particular name in a view than whether
there is an object in the world. Ideally, the implementation should make it possible to
ignore the existence of objects for which there are no visible versions. If the class of a
version is inherited from its object (i.e., all versions have the same class), this will not be
possible, leading to considerable confusion. A more subtle restriction is imposed by the
existence of objects that have only one version; their existence would seem to be harder
to overcome in another view.

2.1.7. Directories

Directories are objects used by naming to logically structure a name space. They have
no affect on Ada naming within a world, but do affect qualified names for objects and
versions. Ideally, directories would be entirely a naming construct, with no other side-
effects. There is no usefulness in their having versions, but an implementation that
prohibits versions of directories may also feel constrained to prohibit re-use of the name
of a directory in one view as long as another view of the world still references the
directory. This is an unfortunate, but not fatal, property.

2.1.8. Libraries

Worlds consist of objects. Views select versions of objects. A library is a world seen
through a view. As such, a library corresponds to the LRM concept of a library, at least
in the relationship of the Ada units represented therein. Although libraries don’t directly
correspond to any single implementation objectm, they do correspond to what the user
actually sees under normal circumstances. Only part of the objects in most worlds are
visible (for worlds with a single view, the world and its library are identical). A view

11There is an issue with specifying the code segment associated with X'V(27). It has to be
X'Code’V(F(X'V(27))), instead of X'V(27)'Code; fortunately, this is not the most common form of access

12As a result, libraries don’t have convenient names.

Rational Proprietary Document

22 Directory Structure

represents objects in more than one world, so it isn’t strictly precise to speak as if views
were to worlds as versions are to objects.

2.2. Naming

The syntax for names is assumed to be the same as for Gamma, except where noted.
Although the interpretation of names changes and there are some additional features,
there don't seem to be any Gamma naming features that become obsolete in Epsilon.

2.2.1. Naming Object and Versions

A name is used to find an object, and the result of this process is an object handle!®. An
object handle is a small, convenient, alternate form of the name of the object. This
handle is combined with a view to select a specific version of the object.

In addition, a specific version can be named, resulting in an object handle already
selecting a version. This form does not need a view. In most cases this form cannot be
used to open a version for update.

2.2.2. Object Handles

There are many ways of naming objects and versions, with different resulting object
handles. They all involve a name, with optional qualification. In the examples below,
the assumption is made that the object exists and the name is valid.

1. Only A Name

This method builds an object handle identifying only the object. Specifically,
no version is selected; if one is ever needed, the view stack is to be used. The
name

!World.Directory.Object

is an example of this form. This method is expected to be the most
commonly used.

2. Name With View

This method builds an object handle identifying the object and the view to
use if versions are needed. No version is selected at this point, and the view
stack is not used. The name

!World.Directory.Object’V(!World.View)

is an example. The evaluation context for the view parameter to 'V is the

13This seems to be a central user concept with an ugly name. Need to do something about that.

INTERFACE.MSS.21 15-APR-86 18:30

Naming 23

context of the object being named, i.e., the default naming context for
selecting the + 2w is the same as for the object“. For example,

1World.Dirscucry.G:ject’ V(View)
is equivalent to

IWorld.Directory.Object’V(!World.Directory.Object .View)

3. Name With Path

The object handle built is identical to the 'name with view’ form. The
difference is the selecting of the view. In this case, the working view of the
path is selected. If there is no working view, the default view is selected.
The name

iI¥orld.Directory.Object’V(!World.Path)

is an example of this form. The rules for determining the context of the path
parameter to 'V is the same as for views.

4. Name With Explicit Version
This form doesn't require a view at all. The version to be selected is
explicitly named. The syntax is

IWorld.Directory.Object’V(34)

where 34 is the version number of the desired version.

2.3. Invisible Objects
There are lots of new objects that will have names. Need places to put them, naming

conventions, etc.

Relation between names and when they are seen, e.g., subunits may or may not be
visible in LOE, code segments and listings, user-created subordinate objects.

2.4. Questions
Questions about views.

1. What do they really look like?

2. What are the naming conventions?

3. How do I think about them?

4. How do I deal with multiplicity, disambiguation, mismatches?

Mgince the class of objects that can appear in the parameter is limited, it may be appropriate for view
names to have the same flat namespace characteristics that Ada units have.

Rational Proprietary Document

24

5. How do I deal with invariants; how are they enforced?
6. How to assure that simple things are simple?

INTERFACE.MSS.21

Directory Structure

15-APR-86 18:30

25

3. Ada

3.1. Basic Principles

The Epsilon system supports a more flexible model of compilation, obsolescence and
execution than that supported in Gamma. To a large extent, the system’s notion of
wstate® is understood at the granularity of declarations and statements. Within an Ada
unit, Diana trees as small as declarations and statements may change state
independently. The recognized incremental states are unparsed (text), parsed,
semanticized, and phase-1 coded (code attributes assigned)ls. Consequently, the
operations of assigning coding attributes, editing, semanticizing, and obsolescing can all
be performed on individual declarations and statements.

In contrast, the user deals with full Ada units. The smaller granularity understood by
the system is used only to enhance performance. The user edits an Ada unit, but the
editor determines which declarations and statements have actually changed. The user
promotes a unit, but the semanticist needs to look only at the trees that have changed
(and any trees in the scope of changed declarations). Change analysis determines how the
changes to declarations in the unit affect referencing statements and declarations outside
the unit.

The presentation state of a unit, the state of a unit presented to users, is a function of
the state of all of its components and the state of all units in its with-closure. The
possible presentation states are: coded, installed, and source. For example, a coded unit,
Foo, will be demoted to source when the user changes a statement or declaration of Foo
(but not white space or a comment), or when one of the units that Foo with’s is edited,
or when a unit Foo with's is potentially obsolete because of changes to units it with's.
In the latter cases, the system may be able to re-install Foo simply by re-installing its
with'ed units and verifying that changes made to them have no impact on Foo after all.

Editing a unit involves opening the unit for update, mb.king changes to the unit, and
then committing those changes. Note that pieces of the unit are not selected for
incremental changes; separate windows are not created. Rather, the unit is edited ®in
place.*®

See section 5.2 for more details on object editing and 5.3 for more information on the
interactions between editing and promotion.

15Thexse are the states for the R1000 target; other targets will have corresponding states for the first
three, but may have more or fewer coding states. For the R1000 target, a unit must still be coded as a
whole; this is a characteristic of this code generator implementation, not a fundamental restriction of the
model).

Rational Proprietary Document

26 Ada

3.1.1. Compatibility, Consistency, and Completeness

The term conststency refers to Ada naming consistency, and for emphasis is often
referred to a Ada-consistency. Thus, a set of units are consistent if compiling them
together would produce no semantic errors. Naming consistency is constantly enforced
within an Ada unit and between Ada units in the same library. A change in an Ada unit
that would affect name resolution in that unit or its importing units causes immediate
obsolescence and subsequent recompilation of the affected units.

The system enforces naming consistency between different libraries only during specific,
user-initiated operations: when a world is first imported or when that import is
subsequently updated. Even though two libraries are inconsistent, programs built from
them may still be executed if the weaker notion of compatibility is satisfied.
Compatibility ignores name resolution conflicts that might have been introduced during
incremental changes to a unit.

For a unit to be a legal Ada unit (as specified by the LRM) it must be complete as well
as consistent. Completeness is required only at the time a program is to be loaded. To
make incremental compilation a more natural process, the system allows Ada units and
libraries to be incomplete. A procedure spec may appear in a package spec even though
there is no body for the procedure in the body of the package. There might not even be
a body for the package in the library. There is command/editor support for computing
the completeness of a unit of set of units. This facility includes the ability to detect non-
terminal prompts that would lead to execution errors, even though executing such
prompts causes runtime exceptions or debugger action.

3.2. Compilation

~ One of the areas of continuing interest is how compilation is managed. The goal for
Epsilon is to make it possible for compilation to take place in the most convenient
manner for the user without making major distinctions between editor and batch
compilation facilities. As described in 1.4.1, assume that there is a progress object
defined for a view!S. There is a variety of information that could be of interest from a
successful compilation: when compiled, by whom, time required, etc. All of this could be
saved in some form, but for the current purpose, the focus is on the work to be done, not
what has been done.

To represent the work to be done, the units that need to be compiled are added to the
progress object based on the initial compilation request, regardless of source. As each
unit is successfully compiled, its entry is updated; either removed or set to the next level
of compilation, e.g., code generation. When the entire compilation is complete, the

16Issuet; of concurrency with multiple compilations in the same view and compilations for different
purposes.

INTERFACE.MSS.21 ’ 15-APR-86 18:17

Compilation 27

object represents work remaining. Since error messages from compilation are attached
to the Ada object as part of its permanent representation, this object serves as an index
to the units with errors. It would be possible from this object and the Ada units it
references to generate a conventional batch log; this would be the expected result from
reading the object with Text__IO (form parameters or switches could be used to indicate
whether this is to be a list of units, a compilation log, or a set of program listings with
interlinear errors). Units that are compiled that obsolesce other units can either be added
to the set of units to be compiled in this run or added as units requiring processing in a
later run.

Separate objects of the type could be created for a particular purpose and act as the
specification of work to be completed. This would be particularly useful for creating a
display of the objects that were demoted by an incompatible spec change.

3.2.1. Command Windows

Command windows in Epsilon are essentially the same as in Gamma.

Command windows are Ada declare blocks. The Ada library units that are visible to the
block are determined by the search list defined for the session. As in Gamma, the search
list is an ordered list of libraries. The semanticist searches each library in order until an
Ada library unit is found whose simple name matches the symbol being resolved. For
these purposes, an Ada unit is only *found® if there is a version of the unit visible
through the appropriate view of the world. Each entry in the search list indicates
whether the link pack usually associated with the library is to be searched for the desired
Ada unit.

All names in the command window must be Ada names, unless they are enclosed in
string quotes. Command processing, probably in the Command OE, should be made to
understand the naming characteristics and provide the appropriate quotes necessary to
smooth the interface.

Rational Proprietary Document

28 Adsa

INTERFACE.MSS.21 23-APR-86 14:14

29

4. Execution

4.1. Accounts and Sessions

Gamma sessions are static objects that represent the both static and dynamic
characteristics of user interaction with the system. Gamma enforces that there is at
most one active session for each account, but confuses jobs from different logins if they
are from the same account. To deal with the problems introduced with this dichotomy,
Epsilon supports two related concepts: account and session.

Account Users log into accounts in the same way they log into Gamma sessions.
Multiple accounts for a user can be used to tailor the environment for a
particular purpose and/or to provide differentiated accounting information.
A user can log into the same account more than once at the same time.

Session The name for the active entity that controls user interaction for jobs
started between the login and completion of the last job. A session is
uniquely attached to a particular account; its lifetime is from login until
the termination of the last job started from the session.

The login process consists of entering a user name with optional account and a
passrwordl . '

A session can be suspended and later restarted on the same terminal type. A suspended
session is disconnected from its terminal port, but is otherwise active, i.e., jobs running
on behalf of the session continue to run, can write output to windows, etc. Jobs started
by a session can continue to execute after the session has completedls.

4.2. Jobs

A job is the unit of system execution, corresponding to a command, a system component
or a persistently elaborated set of subsystems. A job inherits state from the session that
spawns it. Facilities for starting jobs allow specification of context information. Other
than this context information, the new job behaves as a child of the spawning session,
not the specific job doing the spawn.

State for the job consists of two parts, session state and job state. The session state lives
from job to job; the job state is used by the job as temporary storage. A job can modify
either state; changes to the session state live on after the job, and subsequent jobs see
the changes.

17Seems no need to provide different passwords for different accounts for the same user.

1Shnages and files will have the same representation, so output to a window can have its image made
permanent without requiring the session to be active during the output.

Rational Proprietary Document

30 Execution

The session state is cojied intc the job state when a job is initiated, and is not changed
if other jobs modify the sessica state while the jobs is running. However, modifications
to the session state by the running jobs are reflected in the session state immediately,
and jobs started after the change see the change, even if the original job is still running.

Context information consists of:

e Directory context

® View

o Standard Input/Output/Error files!?
e Switches

The assumption is that successive commands issued without disconnecting will re-use the
same job. There should be a way of specifying resource allocation and limits for jobs,
either before they are started or while they are running, assuming that the particular
parameter can be changed. What volume the job is to use for storage is not changeable
once the job starts running. Jobs started with Run_Job can specify a volume. There
exists a command to discard the current job for future command execution.

4.3. Persistent Elaboration

Persistent elaboration is intended as system-implementation feature and is not an
*advertised® feature of the environment. There will be interfaces that we provide that
may require persistent elaboration to work‘(e.g., object editors and target code
generators), but the facility is not per se presented as an interesting feature. Additional
functionality required to support internal uses of persistent elaboration are not discussed.

There is a way of specifying the subsystems to be elaborated, what job they are to be
elaborated in, and other important characteristics. There is a way of making it so that a
user does or doesn’t get a particular instance. For subsystems that are elaborated as
part of system initialization, users who do nothing will execute this elaboration.
Persistent elaboration is explicitly requested; it is never the side-effect of some other
execution.

There is a way to specify that a subsystem must be persistently elaborated to be
executed. Users controlling the elaboration process are responsible for maintaining any
uniqueness invariants expected, but not enforced, by the subsystem.

An explicit elaboration request must specify which job the elaboration is to take place in.
The job specified can already have persistently elaboration state, in which case all of the
elaborations share the same lifetime, except that unelaboration can be accomplished

ngob files are represented by a stack of their own.

2OThese switches override system-wide switch state and must be copied after session state.

INTERFACE.MSS.21 23-APR-86 14:14

Persistent Elaboration 31

according to a stack discipline. Persistent elaboration and normal job execution cannot
coexist in the same job.

It is always possible to determine which view and which elaboration of the view would be
executed for a particular purpose. Elaboration instances must be named in a manner
natural for users.

If debugging is possible in persistently elaborated code, facilities are provided to allow
the elaboration being executed to be correctly debugged. If user debugging of such code
is not possible, the debugger must know this also.

4.4. Batch

Jobs and the session they are associated with can run independently. This accomplishes
one of the purposes of a traditional batch processing system, but not all. A batch system
would need to have the basic characteristics of traditional batch system and support for
normal environment mechanism:

1. Full Ada Support

The preparation of the unit to be executed should be done with the standard
Ada editing facilities. This means that the batch queue entries have enough
information to be executed: code segments, context, etc. All necessary job
state is available for execution and user examination (including program
text). Runs just like a disconnected job except for queueing characteristics
and files.

One ramification of this is that jobs cannot be submitted to execute programs
that cannot be loaded. This can be overcome by submiting a program.run of
the string to be executed. Incorporation of a facility to execute strings is a
possible extension, but not a possible substitution.

2. Access to Files

Ability to specify input, output and error files. If not specified, these do not
default to the current terminal session, but to appropriate log files.

3. Queue Permanence

As with the print spooler, batch queues must be able to live through crashes
and restart effectively. Jobs in progress at the time of a crash have the
option of being restarted.

4. Resource Limits

Ability to limit CPU utilization to keep jobs from running away while
unattended. Ability to set execution priority, volume and disk limits.

Rational Proprietary Document

32 Execution

5. Job Slots

A batch request that has not yet begun execution must not be allocated a
job. Doing so places limits on the size of the batch queue and other system
resources that are undesirable.

6. Flexible Scheduling

Scheduling facilities should include those provided by competitive batch
systems. These would include:

1. Before or after a particular time, interval or job.

2. Periodically.

3. Equivalence class (priority, volume, resource limit, etc).

4. Load limit.

5. Pre-emption characteristics. Allow another job to play through.
6. Running jobs. Suspend job and place in batch queue.

To the degree possible, there should be a single queueing mechanism that works for
printing, system daemons, and user batch jobs. The contents of the queues will be
different, but most of the criteria are shared.

4.5. Debugging

Users will be debugging programs that run on the host and programs that execute on
targets. The interfaces to accomplish this should be as similar as the implementation
allows. This could be accomplished by a general (native) debugger interface and target
specific operations packages.

The initiation of execution and debugging need not be coincident. It should always be
possible to start debugging a program after it has started running.

Various code generators and other tools will be available that alter the ability of the
debugger to provide full service, e.g., no Diana trees or debug tables. Under these

circumstances, the debugger must be given enough information to know what is possible
for it to do.

The interface for the native debugger and target debuggers should be essentially the
same, much the same way editor operations are the same across different object types.
This will require provision of a way of selecting target-specific operations based on the
target.

4.5.1. Views, Execution, and Changes

When executing a program loaded from a particular view (i.e., calls from command
windows to procedures in the world), the effect should be as close as possible to having

INTERFACE.MSS.21 23-APR-86 14:14

Debugging 33

the view for execution correspond to that the user had when the program started
execution. As long as none of the units has changed, this is straightforward. When a
unit is changed, the program that has been modified and the one that is being executed
are now different. Since there are two active referencers, there are two distinct versions
(the second created by changing the program being executed). Any debugger references
to differentiated units will refer to the pre-change version; further changes will have to
be made to the changed version. Sufficient information to describe the views involved
should retained to support this. Ideally, selections in the changed version would be
mapped into the corresponding debug version references, where possible; attempts to edit
the debug version should end up in the changed version.

The correspondence between a program that is being debugged and an open view can be
of interest even if the connection is not as close as the one described above. A general
facility could look on the view stack to find the topmost modifiable view for a world,
even if there is a frozen view on the stack above it. This facility removes some of the
urgency to completely disambiguate the view being used to reference a version reachable
from two different views.

The issue of execution retaining a view so that versions can be retained for debugging is
also interesting for code that is being executed on targets. The debugging issues are the
same, i.e., access to Diana trees, setting breaks, changing code, etc. There is the
additional problem that the notion of when the program is executing is less controlled by
the environment, so the creation of temporary view corresponding to those being
debugged is less automatic. Exactly how this is handled depends somewhat on the
degree of tool integration (source vs. code downloading). The issues are similar to those
in doing cross-debugging from the MV with unfrozen worlds.

4.5.2. Execution in Context

Current command windows allow the general execution of Ada programs in static
contexts. This facility should be extended to allow execution of similar blocks in
dynamic contexts. In addition to the technical issues in making this happen, there are a
pumber of interface issues involving visibility and the level of access to environment
functions in dynamic contexts. Consider, for example, the relation between a normal
command window and one for executing code in the context of a program running on a
different target.

Rational Proprietary Document

34 Execution

INTERFACE.MSS.21 16-APR-86 13:20

35

5. Editor Interface

5.1. Core Editor

The Core Editor provides character editing facilities. This section is intended to explain
areas of core editor functionality that should be improved. No importance is attached to
the order in which the following are presented.

1. Undo/Redo should be implemented in the core editor. Appropriate
granularity is line-by-line, with some operations modifying multiple lines.
For read/write object editors, this can be accomplished by reporting changes
as if the user had gone back and made the changes. No attempt is made to
reverse side-effects, i.e., if a change obsolesces units, undoing it doesn’t un-
obsolesce them, except by running the compiler.

2. Marks should be made to retain their position on the same logical position in
the image, rather than the same absolute line/column position.

3. Keyboard macros should be extended to have names, images, help, etc.

4. Key mapping should be implemented to allow any user function to be
mapped to a key without running the compiler. Such a facility should
provide improved support for changing keymaps.

5. A programmatic interface with access to the appropriate window, cursor,
argument, etc. values should be implemented.

6. Window managment should be redesigned without overlapping windows, but
with improved real estate management and replacement policies.

7. Elision should be implemented as a core editor notion, allowing object editors
that need to do so to deal with complete images. There are a number of
design issues with how this can be done to allow appropriate representation
of the elided text while retaining core editor control. Some object editors will
continue to perform elision as they do now.

8. Object and text selection mechanisms are to be unified so that there is only
one form of selection and appropriate interfaces for extracting the
appropriate object structure to represent objects or lists of objects where the
distinction is important.

Rational Proprietary Document

36 Editor Interface

5.2. Object Editors

The object editor provides th:: transformations between the object and its image.

5.2.1. Permanence

An object is represented in the editor by an image. For images that the user can change,
the image represents the prospective contents of the object. When the image is
committed (or otherwise made permanent), the object and the contents of the image are
made to coincide with the image; operations exist for making the image correspond to
the previous contents of the object. The explicit commit is desirable and should be
observed where possible. The only known exception is libraries, where the image is the
table of contents of another object and changes are not made directly. Other editors
could have similar models.

5.2.2. Common Operations

One of the useful characteristics of object editors is that there are a common set of
supported operations. This is particularly useful if all of them are supported in a similar
manner.

The following is an attempt at a standard definition for each. Some of the operations
are new; all of the operations currently nested in Object will be directly in Common.
The object underlying the image is discussed in terms of the image to reduce confusion
with selected subobjects, which are referred to as the selection.

5.2.2.1. Selection Operations

The following operations are used to create or modify the current selection on the basis
of object structure characteristics.

Add_ Next Augment the current selection by joining it with the object that would be
selected by Next. The position of the cursor is unchanged.

Add_ Previous
Augment the current selection by joining it with the object that would be
selected by Previous. The position of the cursor is unchanged.

Child Select the largest strictly contained subobject of the current selection; a
selection always results. The position of the cursor is unchanged.

Next Select the object that is the immediate successor of the current object. If
there is no current selection, make a selection using the current cursor
position, then apply the rule for Next. The cursor will be on the first
position of the new selection.

INTERFACE.MSS.21 17-APR-86 12:26

Object Editors 37

Parent Select the next largest selectable object containing the current selection.
The selection should grow visibly for each application until the entire
image is selected. The position of the cursor is unchanged.

Previous Select the object that is the immediate predecessor of the current object.
If there is no current selection, make a selection using the current cursor
position, then apply the rule for Previous. The cursor will be on the first
position of the new selection.

5.2.2.2. Cut and Paste

Operations for performing normal cut, paste and relocation operations. For editors
where an image represents an object (e.g., Ada or Text), these correspond to comparable
- Region operations and have the same interactions with the Hold stack, etc. For editors
where an image represents a collection of objects (e.g., Library), these operations are
convenient shorthand for the corresponding simple operations.

Copy Copy the selected object(s) to the current cursor position. Selections are
interpreted to include any objects for which significant characters are
selected.

Delete Delete the selected object(s).

Move Move the selected object(s) to the current cursor position. Selections are
interpreted to include any objects for which significant characters are
selected.

5.2.2.3. Ada Operations

It is possible to reference Ada objects through a number of different object editors. It is
desirable to perform basic compilation operations from each of these. As such, the
following are ®*common® in the sense that they are operations that are (at least
potentially) provided by all object editors, not because they apply to the range of objects
edited. Some additional detail is provided in section 5.3. All of these operations will
attempt to format the image if that is necessary for their operation.

Note that there is no Demote operation. The Epsilon obsolescence model and editor
changes make it superfluous.

Code Bring the unit to coded. Includes installing and coding the closure of units
that would be required to execute the designated unit, as necessary and
possible. Coding of the closure is abandoned if the closure is unable to
install. ;

Install Bring the unit to installed. Includes installing corresponding visible part,
parent units and withed units, as necessary and possible.

Rational Proprietary Document

e
38 Editor Interface

Semanticize Determine whether the current image or selection is semantically
consistent. Doesn’t attempt installation of closure. If successful, the image
can still be edited and subsequent installation will require no work if no
changes intervene.

Install and code make the current changes to the image permanent, even if the operation
is unsuccessful; i.e., they express an intent to make the results of the operation
permanent that isn’t implied by semanticize.

5.2.2.4. Image/Object Relationship

For most editors, there is an object and an image of the object. These operations control
the correspondence between the image, its object, and the locks that are available.
These operations are changed from Gamma. Part of the change is due to changes in the
underlying implementation; part are an attempt to separate image and window issues.
Each of the following has a parameter to indicate the disposition of the window, so key
bindings similar to the current ones could be retained.

Close Make the contents of the current image permanent, make the image read-
only, and release locks on the object.

Commit Make the contents of the current image permanent, but leave it writeable.
Edit Acquire a write lock on the current image and to the underlying object.

New_ Version
The same as edit, except that a new underlying version is forced. If
changes have been made since the last commit, they become part of the
new version, s.e., the new version is created from the permanent version
without changing the image.

Promote The operation corresponding to the most frequently requested major
commit/promote/execute operation for the particular object type. For
Ada, corresponds to Install or Code, depending on the current state to the
object (though the closure promote is the Install closure, regardless).

Revert Make the object and the image consistent by restoring the last permanent
version to the editor image.

Write_File Write the image of the object to the named file. The image adopts the
name of the file only if it was previously unnamed.

INTERFACE.MSS.21 17-APR-86 12:26

Object Editors 39

5.2.2.5. Traversal

Definition Move the cursor to the object referenced by the current position of the
cursor or the selection, creating an image on the object if not part of the
current one. Any new image that results is read only. An editor is obliged
to make its best effort to have definition succeed. In general, this means
extracting string names from the current image, making use of whatever
information is available from the context.

Enclosing Bring up the image of the object containing the current image; typically
the directory or Ada unit containing the current image.

Implementation
The same as definition, but go to the implementation (body) of the object
named.

5.2.2.86. Miscellaneous

The remainder of the operations. The careful observer will note the absence of Undo
and Redo, which have been moved into the core editor, and Insert, which is no longer
required. The core editor will be principally responsible for elision and expansion, but
there will continue to be an type-dependent component of these operations.

Complete Provide assistance in making the current selection or the object associated
with the cursor. Provide prompts and/or values required to make it
possible for the user to successfully promote the image. As possible, should
provide successively more complete information as applied to the same
location. An advanced form of completion would provide prompt values
that are based on additional information (e.g., function calls referencing
user state). Where more than one completion is possible, there should be a
mechanism for cycling through the possible values. Implies format.

Command Create/goto a command window associated with the window associated
with the current image. Context of the command is the same as that for

the apparent context of the imagezl. Appropriate use clauses are added, as
necessary, to provide visibility to object-type-specific operations.

Elide Reduce the level of displayed detail.
Expand Reduce the level of displayed detail.

Explain Provide additional information that may be of interest to the user. Most
frequently used to display explanations for error designations. The notion

21rhis interacts with how text output windows are presented.

Rational Proprietary Document

40 Editor Interface

of error designation must be expanded to include unsuccessful completions
and designations added by user tools.

Format Make the image syntactically consistent and pretty.

New Line Insert a new line at the current position. Used to allow object editors
access to the return key for formatting, etc. If used as a commit key
surrogate, should be switch-selectable. The default operation is to insert a
line an position cursor on the new (empty) line at the appropriate
indentation. For read-only editors, goes to the beginning of the next line of
the image.

5.3. Interaction Protocols

The process of editing an image involves a number of transitions for both the image and
the object that underlies it. Making these interactions convenient an predictable has
material impact on how easy the system is to use. The table below attempts to capture
these relationships”.

Although the new Ada editing model provides considerable additional performance and
facility, the additional performance is somewhat unpredictable without experience and
an understanding of the changes made; taking a unit from source to coded one time may
be much faster than going from source to installed another time, due to the impact of
changes made. After the user community has become used to it being much faster, they
will begin to be bothered by their inability to predict the performance of operations.
Some thought needs to be given to helping providing predictors for the time required.

22The table is too complicated, as modify always seems to imply write lock and no-modify implies
supersedable read. This will be fixed in a later release of the table.

INTERFACE.MSS.21 17-APR-86 12:26

Definition
Edit

New Version
Close
Commit
Semanticize
Install

Code

Legend
Read

nc

with
Execute
note 1

note 2

Moadify
work fasl
No No
Yes Yes
Yes Yes
No No
Yes Yes
ne Yes
No nc
No nc

Lock
work fail
Read Read
Write Write
Write Write
none none
note 1 note 1
note 1 Write
Read ne
Read ne

Supersedable read.

Not changed by this operation.
Install with closure of the unit.

Code execution closure of the unit.

State

work

note 2
Installed
Coded

Read lock upgraded to Write by modification.

Unit is installed; Write lock demotes to source.

Closure

none
with
Execute

Table 5-1: Impact of Oper;s,tions on Locks and Unit State

Rational Proprietary Document

41

42 Editor Interface

INTERFACE.MSS.21 21-APR-86 15:48

6. Issues Requiring More Thought

This chapter consists of random notes that are in even more primitive state than the
preceding.

6.1. Error handling

Editor puts in message window and/or highlight specific locations. Commands print
messages through a standard filter that controls appearance and destination (Log
package or similar). Tools return error status and provide a method for acquiring
additional detail. IO packages raise standard exceptions, but leave traces in known place
for discovering the underlying cause. Any error handling package (e.g. error _reporting)
* should be available to users. See 1.6.

6.2. Input/Output

6.2.1. Error Messages

There are currently 3 *known reasonable® places to have program output go, all of
which have problems:

1. Text window. Uses up a window; takes up screen band-width while running;
goes away when the session terminates (causing job to fail if still running).

2. Message window. Limited space. Can be scrolled away without being
noticed; not in the line of sight; appears out of context from background job.

3.Log file. Has to have a name; fills up directory; outside of normal
consciousness.

In addition, there is the issue of amount of output desired. Current default is clearly
excessive; need a simple statement of what *should® be printed by normal commands.
Problems include different expectations for large batch jobs and for interactive
commands (which aren’t easily distinguished), and client differences (I may want to see
detail of compilation, but not of moving files). Not enough control over " agsociated ®
messages; e.g.,] want to see position messages when I get errors, but I don’t want
position messages for the warnings that I don't see.

The use of progress objects helps this problem by reducing the volume of output that

comes from operations that are expected to have interesting error patterns. Not a
complete solution.

Rational Proprietary Document

44 Issues Requiring More Thought

6.2.2. Interactive IO

The normal Text IO-style IO provided in an environment window has a number of
attractive features, but also some deficiencies relative to conventional systems.

1. Page mode or equivalent.

2. Background jobs and window scrolling.

3. Ability to stop output.

4. Single character input; i.e., without commit.

5. Loss of position due to edit of already processed input.
6. Inability to access (copy, select) output text.

7. Organization/tracking of output from commands.

6.3. Ada Command Interface

There are a number of challenges remaining to make Ada the ideal command interface.
Some of the things that make Ada most attractive as a specification and programming
language make it cumbersome to type for simple commands. Programs are designed,
commented and documented; the contents of a command window usually aren’t®3. On
the other hand, many of the problems that the current command interface has are
problems with the command interface, not with the command language. Many of our
customers believe that command windows provide power and unity to the interface and
would like to see their functionality extended (e.g., execution in context)%.

The future success of commands hinges on general improvements in the performance of
what is in Gamma, additional mechanism to provide creature comforts and improve ease
of use, and changes to the command set to make it work well with the mechanisms that
we do support. Many of the current problems with commands are the result of
assumptions that functionality would be available (possible) that isn’t.

This section requires additional work. It is organized as a set of problems that need to
be solved with notes about possible solutions.

23Despit.e problem reports about comments disappearing in command windows.

24Siguificantly fewer resources might be required to provide a simple command interpreter. This
doesn’t seem to be the right path, however. It would add a new mode to the system that requires
documentation, training and explanation, not to mention additional clutter to the interface. It also
reduces positive product differentiation. Designing and implementing such an interface is left as an
exercise for the reader and is ignored in this discussion.

INTERFACE.MSS.21 21-APR-86 15:48

Ada Command Interface 45

6.3.1. Overhead

1. Creating Command Windows

Bringing up a command window is expensive. To create a standard
command window, requires approximately 200 characters to be transmitted
to the screen; 40 to turn the running flag on and off again, 120 to redraw the
banner, and 40 to draw the initial contents of the window. Without allowing
for any processing, this means that 0.2 seconds is the fastest that a command
window can come up25. Deleting a command window takes between 160
(banner and running flag) and 320 (two lines of window) and causes the
system to lose the command undo/redo script for the window. Leaving
command windows on each object window cost from 10 to 20 percent of the
screen and slows inter-window cursor movement.

Redrawing banners could be fixed by rewriting the terminal controller.
Turning the running flag on and off could be reduced by making the
indicator shorter, by not having it flicker on and off (which requires that
there be no perceptible delay), or by making it a function of the terminal.
Command history should be unrelated to whether the command window has
been deleted.

2. Using Command Windows

Committing a command window involves parsing the command, pretty-
printing it, highlighting the result, semanticizing the contents and either
interpreting or code-generating the result. This takes a fair amount of time.
A major part of the time is spent in the pretty-print and redraw, since this
typically involves minor spacing, capitalization, and punctuation changes and
computing how to redraw them. Using the Epsilon model, where formatting
is optional, some of this be reduced. The requirements are that unacceptable
commands are retained in the command window and that the text of
successful commands be available for modification or re-execution. For most
purposes, making completion automatic and formatting optional would make
commands more convenient.

3. Syntax

The typical command is a procedure call with one or more parameters (most
of the ones with no parameter are already on keys). Having to type the
leading parenthesis and quote adds some psychological cost to the operation.
If more than one parameter is required, quotes have to match and commas
have to be provided.

25This may not seem long, but if the 2060 waits that long to return a prompt, people assume it is
heavily loaded; it also exceeds customer standards for "trivial interactions®.

Rational Proprietary Document

46 Issues Requiring More Thought

Part of this will be solved by changes to the parser that make it possible to
do better recognition and correction of such simple structures; there are not
many (f.e., I know of none) places in Ada where two identifiers appear
adjacently. By appropriate assumption, then, a series of tokens without
punctuation could be assumed to represent a procedure call and its
parameters.

Quoted strings are a little more of a challenge. The most common form of
actual provided for string formals is a literal, where leaving off the quotes
makes it theoretically difficult to determine whether a literal or an expression
was intended. In practice, the number of nullary functions that return
strings is small and only infrequently clashes with strings the user wishes to
supply?6.

A user typing:
copy a b
should be able to reasonably expect that it means the same thing as

Copy ("A®, "B");

6.3.2. Names

Providing a complete Ada name for a simple operation generally requires a
package.procedure reference. This leads to longer names than those used by
conventional systems, but provides a better structuring mechanism and helps to
compartmentalize a relatively broad interface. The solution to this is to provide short
names for the longer ones. Prefix recognition (or other stylized abbreviation schemes)
are usually provided, but most are limited to a known set of names’.

1. Abbreviations

Most command shell abbreviation systems are special cases of the word
abbreviations provided by Emacs and other editors. Since command entry is
done from the editor, we can provide these mechanisms by implementing
such a facility and making it sensitive to the command environment that it
will be used in. Details that need to be resolved include: trigger key,
specification method for abbreviations, context-sensitivity (different
abbreviations for different situations, e.g., packages and procedures).

2. Fine-grain completion of names

261! a string function existed, it should be used; correct entries shouldn’t have their semantics changed.

27Just try to name a command the prefix of one of AOS’s builtin commands.

INTERFACE.MSS.21 21-APR-86 15:48

Ada Command Interface 47

There needs to be a completion facility that works on the name under the
cursor and completes just that name or that name segment. This isn't a
replacement for the more comprehensive completion that we now provide,
but would be used much more frequently.

3. Completion for String Names

Whatever fine-grain completion facilities are provided should be able to work
on object names as they will appear in commands.

4. Improved recognition for narrow contexts

Many references in command windows include parameters that are
enumeration literals. In these cases, it is almost always that case that the
only reasonable context in which to search for the enumeration literals is in
the package defining the type. It serves no purpose to verify that the user
know how to find the literals (the same would hold for integer parameters
with conventional constants, i.e., extensible enuerations). Completion should
be able to find the appropriate literals. Similarly, the pumber of functions
returning a package type are usually limited; effort should be made to find
the simple name in all of the reasonable places and provide the qualification.

In general, completion needs to be changed to be a program designed to provide useful
information on the basis of all available information. Completion and semantics share
data structures and Ada, but have very different goals; they need to be separate
programs that share service routines.

6.3.3. Command Design

Most commands have some required parameters and optional parameters. Optional
parameters overlap in functionality with switches (see Section 1.7). A number of
possibilities exist for specifying these options (all of which have been used in the
environment). Unfortunately, a good command represents a number of normal Ada
procedure calls (as used when programming) and, as a result, tends to have more
optionszs.

1. Each Option is a Parameter

This corresponds to the normal Ada programming style, where parameters
with default values are used to provide options. Currently, this leads to
imposing parameter lists when completion is used. This can be addressed by
improving completion to understand required and optional parameters.
Using multiple levels of completion, the user need not see all parameters on
the first completion. This requires some form of registration of which
parameters are to be provided with each level of completion. There would

28An unattractive alternative that has been used involves greatly increasing the number of commands.

Rational Proprietary Document

48 Issues Requiring More Thought

also have to be support for more flexibility in resolving parameter names and
recognizing that the user provided a value for a parameter that appears due
to completion. The ability to provide the names for parameter values that
can be recognized by their type would also help.

Another drawback of this style is that adding functionality involves a spec
change. In concert with the Epsilon view mechanisms, this would work
reasonably for commands typed in command windows, but there are no plans
to support additional default parameters as an "upward compatible* change.

2. Strings as Switch Parameters

This is the approach described in the LRM for the form parameter. While
we will have to support form parameters, making them central to
environment functioning is unattractive. Their principal advantage is
flexibility; ¢.e., the Ada spec can remain uncyanged in the face of major
functionality changes. First-class support for this sort of facility would
require registration of switches, possible values, etc. to provide help and
completion. A system-provided switch parsing and recognition package
‘would be required for environment and user programmers to implement the
same interface.

A variant of this strategy involves attaching switches to string parameters,
typically names. This shares most of the drawbacks above, but doesn’t
require an additional parameter. This is the closest to conventional switch
mechanisms, but requires naming to understand switch syntax.

3. Composite Switch Parameters

This is the approach provided by the Profile package in Gamma. It fits
into Ada usage patterns and provides compactness, completion support, ete.
In Gamma, it is difficult to construct values as part of commands; it is most
often used as a switch interface to session state, which is then referenced by
the default value.

Better completion facilities could deal with this to a degree. The current
completion for a profile parameter is the name of the function that will be
invoked to provide the value of the parameter; to be effective at changing
that value, the user needs to know what the value is, not how to compute it.
Expressing this value is interesting. Ignoring that it is private, it could be
displayed as a record aggregate. This would provide all of the values in a
form that they could be modified, but shares the problem of the first
alternative above: completions could be quite long. For records, selective
completion is harder since there is no such thing as a default value for a field
in an aggregate. Making the type private makes it possible to add fields
without changing the interface, but makes it harder to express the aggregate
without adding parameters to the functions that return values of the type.

INTERFACE.MSS.21 21-APR-86 15:48

Ada Command Interface 49

4. Switches as Separate Procedures

A common way of dealing with Gamma Profile-style switches it to enter a
command that chszg: the value of setting for the job in command(s)
preceding the command io be executed. This is cumbersome to type, but
relatively easy to urderstand. In the case of Profile, it depends on implicit
state in the form of profile switches. A similar method could be used with a
switch object, but this would require typing its name twice. :

6.3.4. Additional Functionality

In addition to the issues above, there are a number of areas of functionality that are
available in one or more other systems that some subset of the user community will miss.

1. Tool Composition

The ability to compose tools or programs that might work together. Using
procedural composition is possible, though it requires that the user type the
name of the object being used for the composition in each of the calls that
deal with it; this is normal programming practice, but cumbersome for
commands. Another form of composition is provided by functions, but
without providing command windows that accept (or complete) function
calls, this would require each function exist also exist (with the same name
and parameters) as the function.

The most widely copied form of command composition is pipes. The effect of
pipes could be modelled by default input and output values that move
through a sequence of values with each reference. If each tool opened its
input and closed its output, it would be possible to have a conventional value
that represented current _input the first time opened and the previous value
of current _output for each subsequent usage, etc. This could be made more
explicit by procedures whose sole function was supporting such plumbing.

2. File Redirection

File redirection is available in Gamma, but the full Ada paming used is
sufficiently cumbersome that it is seldom used. This could be helped by
making the commands to do redirection shorter and featuring them more
prominently in the interface. In addition, the environment paradigm (select
and operate) strongly suggests that input and output should be redirectable
to/from the selected region. Except for issue of naming and the
implementation of a selection coupler, this doesn’t seem hard. If this facility
were available, the ease of file redirection would be more of an issue.

3. General String Processing

Command languages are usually some form of string-handling language;
commands are basically entered as strings. They normally provide easy ways

Rational Proprietary Document

-

50 Issues Requiring More Thought

of dowg siring substitution for name and parameter abbreviation, facilities
for dealing with wildcards, etc. While all of these can be programmed in
Ada, none of them are concise enough to use realistically in commands. They
can, however, be incorporated into the editor interface and completion.

A possibility for some of these is to provide operations on command windows that specify
their input/output, ete. characteristics outside of their parameters. Program.Run__Job
provides the ability to set standard _input, etc. outside of the program. Commands
could be provided that similarly condition the external environment of a command
window, e.g., set standard input to the current selection.

INTERFACE.MSS.21 21-APR-86 15:48

51

A ix I
Cha?lgg gtory

Reverse chronological list of notable changes in the document. References to section
numbers are from the current version.

1.1. Revision 0.8

43 Changed persistent elaboration section to reduce user exposure.

Rational Proprietary Document

52 Index

INTERFACE.MSS.21 23-APR-86 13:25

Index

Account 29
Ada-consistency 26

Coded 25

Common operations 5
Compatibility 26
Compilation closure 19
Completeness 26
Composite view 19
Consistency 20, 26
Consistent 18

Core Editor 3

Debugging 31
Default view 20, 23
Differential 18
Directories 21
Frozen 18

Import 18, 19, 20
Library 21, 26
Managed views 20
Name 22

Object 17,21

Object Editor 3
Object handle 22

Object-specific operations 5

Original view 19

Parsed 25
Path 23

Persistent elaboration 30

Phase-1 coded 25
Presentation state 25

Progress object 7, 26, 43

Release view 18, 20

Search list 27
Semanticized 25
Session 29
Simple name 20
System view 20

Unmanaged view 19
Unparsed 25

Version 17, 18, 23
Version number 23
View 17,18, 22

Working view 19, 23
Worlds 17

Rational Proprictary Document

53

Figure 1-1:

List of Figures

Flavored 10 Exceptions

Rational Proprietary Document

13

iv

INTERFACE.MSS.21

List of Tables

23-APR-86 13:25

Table 6-1:

List of Tables

Impact of Operations on Locks and Unit State

Rational Proprietary Document

41

