GCC PPEP AL
G (S o ol A
G P oA A
G Golo PEREYD AABRAA
G G ok A A
G G P I A

GGG P 3 A
User: GPA

Object: 'DELTA_KKSREVI_O_C o UNITS.OMSOBJECT _MANAGEMENT
Version: V(5)
Request: 1266

Date: April 24, 1934
Cueueo: 11225205 AN
Printeu: ile3a218 A

YOELTA K onf

. ~
‘Jl_u_

Cxport view

- - o e o - -

with
with
with
with
with
with
with
with
with

Jou.

Uisk.,

gError:
Action.
Naming,
Otject.
Machine;
Execution,
Om_Services_

2.0 01T,

1.

Dre JUJECT_MANAGESTHT OV ()

with
with

package Ubject_Managenent

Om_Definitions:

Kernel _

-= Thnis

This
fronm

package
packane
package
packaze
package
package
packsge
package
package

Opject_~anage
Suthsumes

Clients of this

Clients

Clients

Services_1.

is
Dactkane
the lernel
exsort

«will shield client

gefines the

ment subsystem (which for these purposes
functionality as

“standard export view' of the
well).

view
5 tror the ravages 5217 manual pack3age

a compilation point of view.

should 1ignore t
renames Job.,
renates 2is«;.
renatxes Srror,
renates Actions
renares Naeming.,
renames Object,
renanes
renames Lxecuti
renames 7 _Detfi
snoulgd

rl
Pe
P35
P b
PS
P66
)
-7
e

-- Exporteu vackages --

i'nore the

he following declarations:

ratnine;

on.
nitinnss
abhove declarations:

Jm_Services_l.Link
Ju_oservices_l.User
Irm_Services_l.View

ervices_l.Worla.,

cernel_bervices_l.Trigger;

nait_%S2rvice rendues nernel_Services_l.¥ait_Service:

Um_Services_l.Access_Controlt.

- .
D

package Job renames 1.
package Disk renam2s P2;
packaje Link renarnes

package User renames

package view renames

package crror renames F3;
package <orld renames Um_5
package nctivn renames 24;
packagye Nawmint renames i'5;
vackaae Ut ject renames 7o
packaye “achine rensnes i,
peckage lrigyer renames =
packasjge iLxecutizcn renames rP7;
package

package access_Contrcl renames
package Or_{Definitions renames
packhace yte_Strin._lonversions

renames

paae

should always rename throuah this packaue.

inteagratiocn.,

YOl LTA _KRanZVI_0_daUnilTS3.0%08JECT_MANAGEMCNTIV(S)
Kernel_Services_l.uyte_String_Conversions:

end UObject_™Management,

paage

5GC poano AL
< G P a2y A
G i) A A
G Gy PEpo AABAN
b G P A A
G s P A A

CRCICICI & A A
Jser: GoA

Otject: 'OLLTA_KKeREVI_0_0LUNITS.COM.JOB
Version: V(z3)
Feguest: 1247

Jate: April 24, 19n
vueued: 11:25:51 A
Printed: 11:34:1.

LA

with
with
with
with
Wwith

pack

TA_ KK aREVI_D_04dNITS.0%aJd03W(E2) . page
Cisks

frror,

Hachine .

Calendar;
Om_lefiniticons,

age Job is
-~ pragma Sudbsystem (Om_Definitions):

package Om renames Omn_Definitions,
== From the (% client's point of viewr, each command runs in 3 new jODe.

-- This package attempts to capture most of the interesting "job state",
-=- as perceived by the 0OM client. Job state includes:

- (a) The runtime representation of the *“program”.

- (b) The job worlua. This is a named world object containin3g the
- disk space which stores the runtime representation (i.e.r

-- architectural modules and import spaces) of the “orogram”.
- (c¢) Various jor attrioutes, such as the job id, start time, etc.
-- {(n) # stack of various job state, such as current ocirectory naming
- contexta

- (e) A stacx of views which controls version resolution by the

- Chject packaue,

- (f) A stack of input/output/error files.

- (g3) Schedulina information. ,
-- (h) Persistently elaborated subtsystems. The semantics are fully
-- specified in the Lxecution patkage.

-= Functions in this package attempt to return nil when errors are
-= encountered,

-= Job Attributes =--

function Exists (The_Job : Cm.Job_Id) return 3oolean;
-- Return true iff there is a job with Current = The_Job.
function Current return Om.Job_Id;

function Start_Time (71_Job : Om.Job_Id := Current) return Calendar.Time;
function Elapsed_Time (Lt_Jov : Om.Job_Id := Current) return Luration;

tfunction Garpage_Directory return Om.Object_Handle;
function Garvaje_Uirectory (Of_Jotb : Om.Job_Ild) return Om.Onject_Hancle:
procedure Set_Gartaie__irectory (Dir Om.Object_Handle:

Status : out crror.Coadition;

Cf_Jdob 2 Um.Jdon_ld 2= Current).

- Initially, a jJoon's garbase directory nas the name

-- VachinesJdoh_larcage.unit_xxxeJOD_yyy

== t¢here

- (i; "xxx" is the ‘'nit_iurver on which ths job's world Llives:
- (2) "yyy" 15 tre obo_Numi.er.

- (Z) "unit_xxx" is the root of an object world:

- (&) “Jor_yyy™ 1s a directory.

LTA _nCaxV_ D B dITS. ¢, a0y (i3) paae
The jou's Ggarvage hears Live in this directory. Temp files creates oy
== luject.Create (4ith null navwe strings) go here. Rational creastec

== objects will follow trne “_Foo_" convention to avoid conflicts with
user ap;lications, ~nich are free to store objects in this directory.

The system reserves the right to immediately expunge all objects in the
directory (identified by the Garbage_Directory function) at job

== termination, but Joes not guarantee to do so. It is highly recomemeniej
that one never c¢omTit actions which create objects in the

== Garbagje_[irectory, since this policy will guarantee that job terminstion
== does not leave objects in the Garbage_Directory.

== The first function is equivalent to the second, supolyiny Jopo_Stack anc
-= Tope.

-= Possible errors:
- Is_Lad_version_Hdanile (Status)
-- Is_Access_Control_“rror (Status)

function “araged_Clarus.o_Fesy return Machine.Segment _Names
function ' anagei_Carcise_teap (Cf_Jou : UmaJdoo_1Tla)
return 4achine,Segment_Name;

== This heap 1s Cre.te. when the jobh starts, may be expunjed shen the job
== finisnes, and is never "cut-back". Clients must manage their own

=< garpage:; that 1is, exclicitly keep free lists. The first function

== 1s equivalent tu the second, supplying Job.Current. This heap is createsz
in the GSarnaze_lirectory, with simplé name "_Manajed_Garnase_Heap_".

function Stacked_~Garuvage_Heao return “achine.Segment_Name:
function Stacked_Garpbage_Heap (Uf_Jop : Umadoo_1d)
return “schine.Segment_Name;

== This neap is crested when the jobL sterts, may Ce exnuniel when the jor
== finishes, anz can e “cut-vack®™ in a "stack-like" fashion. A proara-
== without tsasking con use & technique where 3 sdoprogram c¢3n "“mark" tne
== stack on entfry, and cut=nack to the mark o1 exit. The first function
== 1s eocuivalent to the second., supplying Joov.lurrent. This heap is create’
in the larbage_Directory, with simple name *_Stackea_Garnaje_Heap_".

function Job_world return Om.Object_Handle:
function Job_worio (uf_Joo : On.Job_Id) retura Om.Object_Handle:

== Returns the nate of the uirectory oonject (a world) which contains the
== funtiae representation of the identified jooe. This can be fed to the
world package, wnicn provides operations to get disk consumption
statistics and opnesrations to control disk space allocation.

== The first function is the same as the second if Current were suproclio+.

== These ojeratiors return the same value for every joo in the
== Same SessSi10n.
tfunction Session (Uf_Jon : Um Jorv_Id ==

. : urrent) return Jm.5ession_I14;
== Same tor every jou in tne sare "sess

C
ion".

VORLLTA_FKRIVI_D_CoUNTITS2vadan'v(s3) page

functinn User (Jf_Jos : (medo_I1d t= Current) return Om.02ject_-ancles
~=- Object_nandle of root directory of user's world.
-= Same for every joo in the same "session”.

function User return Om.Jser_Ics
function User (0f_Joo : Um.Job_Id) return Om.User_1d:
-= Internal, shorter, i1dentity of user.

function Account (0Of_Job : Om.Job_Id := Current) retura On.Joject_Handle;
=« Opject_handle of a directory with subclass Account.
-= Same for every job in the same *"session".

- Stack conventions -

type Stack_ld 1s new Long_Intecer,;

-= type Stack_ld (For_Session : Boolean) is

- recorc

-- case For_Session is

- when false =>

- The_Jdobh ¢ OmaJdob_Ila:

- when true =)

- The_Session : OmeSession_Id:
- end casey

- end record,

3
tunction Job_Stack (Lf_Jot @ Umaedon_Id %= Current) return Stack_Id:
function Session_Stack (uf_Session : Om.Session_Id 2= Session)

1

return Stack_1d.

-~ To orerates on & stack associated with "your" job, simuly suooly the
-~ result of the Job_Stack function, with default parameter. To operate
-- on a stack associated with "your™ session, simply supply the result
-= ¢f the Session_Stack function, with default parameter. NOte that

-- Jot_5tack (~oot_Job (5ession))

-= and Session_S5Stack (Current)

-= are NOUT the same!

-=- Subject to access control restrictions, one can operate on the stack
-=- of any jJou or sessionr.

subtype Stack_.ocation is Integer.
Yop : constant Stack_Location := 0;

-- TJo look at the stack state that would be current following =«
-=- invocations of the 2op_State operation, use a Stack_Location of Tor- ..

-= The "aepth”™ of the stack is the number of "pops"™ that ctan be overformec
== before vetting steocr underflow.

- Jou/Sessinn state stack -

function Stack_leonth (Stack = Stack_lo :

= v_Stack) return Natural.,
function State_Txists (5tack : Stack_Id ==

ob_Stack.

« ©

VOTLTA Y= VI 0 0L giITS. N a.d25 W (L) raae

Location : Stack_Location := Top) return :oclean;

-- These can pe used to determine the current depth of the stack, as well
== a5 the existance of particular stack Locations.

subtype (ontext is Om.iNaming_Context;

function Cefsault_Context (Stack = Stack_1Id := Job_Stack:
Location ¢ Stack_Location 2= Too)
return Om.Pathname_String:
function bLefault_Context return Context:
function Default_Context (Stack : Stack_1Id,

Location = Stack_Location) return Context:

-- The second function is equivalent to the third., supolying Joo_Stack an”
- Top.

procedure _et_vefault_C(cntext (The_(ontext : Jdm.Unique_wildcard;
Action : Um.Action_Id;
Status : out Error.Coadition.
In_Context : Context := Default_Context;
Stack ¢ Stack_Ild := Job_Stack.
Location : Stack_Location 2= Top);

The_Context, Action and In_Context are used according to the usual rules
of Naming.Fesolve to compute a Version_Hanile, which is tnen stored as
== the default context for sunsequent cdlls to Naming.Zesolve.

’

-= Possisle errors:

-- Is_sau_rathname (LHtetus)
-- Is_tad_Actior (>tatus)
- Is_Access_Clortrol_Zrror (Status)

procedure Set_Jefault_(ontext (The_Context = Context;
Status : out trror.Condition;
Stack 2 Stack_laog = Job_Stack.
Location : Stack_Location := Top).

== Possible errors:
- Is_bad_Version_Kandle (Status)
-- Is_4dccess_Control_trror (Status)

function Name (Stack : Stack_Id := Job_Stack:;
~ocation : Stack_Location := Top) return String;
procedure Set_Name (New_x~ame = Strings
Status : out Error.Condition;
Steck : Stack_I1d = Joo_Stack:
~2Cati0on : Ztack_Location := Top);

== tere of trne jot (as uisplayed by whatoJons). Always tne null strino
== in the ses510n stack. JoL names longer tnan about 1006 characters
== ere truncatec at the left in order to fit within that limit.

-= Possiule errors:
-- Is_Access_Clontrol_Zrror (Status)

i~

TOELTA_KKGREVI_9_0aJAIT5.0%4JCGBVIE3) page

function Ternination_-lessage
(Stack : Stack_Ild := Jot_Stack:
Location : Stack_Location := Top) return String:
procedure Set_Termination_#essage (New_Message : Strinj:,
Status : out Error.Condition;
Stack = Stack_Id := Job_Stack:
Location : Stack_Location := Top):

== Wnen non=-null, job completion will include this string in messace that
-- goes to the initiator's message window. This can be used by a progran
-= to display abnormal termination information. Always tne null string
-= in the session stack. Termination messages longer than about 1000

-~ characters are truncated in order to fit within that limit.

-- Possioble errors:
- Is_Access_Control_trror (Status)

function Cefault_bkait return vuration:
function Default_Vkait (Ztack : Stack_1lds
tocation ¢ Stack_Location) return DJuration,
procedure Set_Uefault_wait (>tatus : out Error.Condition;
Sefault_Max_wait ¢ Duration 1= 5 % 60.0;
Stack : Stack_Id 2= Job_Stack:
Location : Stack_Location := Top),

-=- liseg as tne default time to wait fortobject locks.

-= The first function is equivalent to the second, supolying Job_Stack and
- TOD.

-= Fossinle errcrs:
-- Is_iccess_lontrol_crror (Status)

function Max_Actions return lnteger;
function Max_Actions (5tack = Stack_Id:
Location = Stack _Location) return Integer.
procedure Set_Max_Actions (Status : out Error.Condition: '
“ax_Actions : Integer := 25;
Stack : Stack_Id := Job_Stack.,
Location ¢ Stack_Location := Top):

function Max_Action__ocks return Integer;
function Max_Action_Locks (Stack = Stack_Id;
Location ¢ Stack_Location) return Integer;
procedure Set_max_tction_Locks (Status = out Error.Condition:
Vax_Action_Locks : Integer := 257:
Stack : Stack_Id 2= Jon_Stack.
Location : Stack_Location = Top):

rax_Actions serves to Limit the number of actions which can pDe consumed
-= by a jote <Lurrently, there is a Llimit of about 4000 concurrent actions.
-- Since cumwands are compiled and therefore consume actions, running the
-- system out of actiasns can bhe very painful! Zach acvion lock consumes

-~ system resources as well. dere the Limit is the amount of disk space

-

PDLLTE VR axo VI N _ 0 0NITS. 03w (53)

== available.

== Fossiule errors:
-- Is_Access_lontrol_“rror (Status)

package rrofile is

== Currently a skeleton - to be filled in with "current

type Kesponse_Profile is private;

function Get (Stack = Stack_Id := Job_Stack:
Location : Stack_Location := Top)
return Response_Profile;
procedure Set (vew_Profile : Response_Profile;
Status : out Error.Condition;
Stack : Stack_Id 2= Job_Stack;
Location : Stack_Location := Top).

== 20ssiule errnrs:
-- Is_tccess_<ontrol_Lfrror (Status)

function Get_Default (Stack : Stack_Id := Job_Stack:

rocation = Stack_Location :=
return kesponse_Profiles

procedure Set_vefault (iNew_Profile : Response_Profile;
Status : out trror.Condition:
Stack : StacR_Id := Job_Stack.
Location : Stack_Location ==

-= Possiule errors:
- Is_Access_Control_Error (Status)

private

tyoe hesponse_rrofile is new Boolean: =- ha ha
end Profile:

procedure Push_State (Status : out Error.Conditions:

Stack : Stack_Id :z= Joo_Stack):
procedure Pop_State (Status : out Error.Condition:
Stack : Stack_Iug := Job_Stack):;

paze r

spec’

Top)s

== Pop_State throws away the top element of the identified state stack.

== it on top of the state stack.

-~ Possiule errors:

-- State_Stack_fliverflow

- State_Staci_Underflou

-- Is_tccess_Tortrel_ rror (Status)

S T S R e e T m Cm T C mr o e - - - - - - - - ————— - .- -

- Jon/bession view stack -

T T e e e e e o e o e o oo - - - - - -

== This stack is operate. independently of the state stacke.
== the sarme conventigns. 4n agoitional feature: The System

Fush_5tate operation copies the top element into a new record, pushinu

It tollows
view appears

YOELTA_FRaNoVI_U_Cad vITS. MM oJ03 (0 2) page 7
-=- to 2s2e an unremovable entry at the pottom of tne stack.
function View_Stack_uvepth
(Stack : Stack_Id := Job_Stack) return Natural;
function View_5State_ixists
(5tack ¢ Stack_Id := Job_Stack:
Location : Stack_Location := Top) return Boolean.
-- These can be used to determine the current depth of the stack, as well

function Default_View (5tack :
Location :

function Default_View (Stack @
Location :

Stack_1Id
Stack_Location
return Om.Pathname_String;
Stack_1Id
Stack_Location

procedure 5Set_iiefault_View (The_Context

Action :
Status =

Stack :
Location

Possiule errors:
Is_bac_Pathname (Status)
Is_Bad_action (5tatus)
Is_Access_Control_“rror (Status)

procedure Set_vefault_View (The_Context

Status :
Stack :
Location

identifieo view
will return the

stacke.
System view.

Possible errors:
Is_Bad_Version_Handle (Status)
Is_Access_Control_Error (Status)

function Default_wortla_vView (0Of_World
return Um.Version_Id;
function Default_world_vVview (Uf_World

Stack =
-= Scans down tne
-= view «hicn nas a non-nil slot
-=- treats the stack as if the System view
-= Yersion_Io of the

such 4 universe views, returns Nil.

Viewa

ingirect chain may pe ovroken).

These operations simply read/write the
Note that if the stack

identified universe view stack looking
for the given worla.

as the existance of particular stack locations.

:= Job_Stack.
c= Top)

= Job_Stack:
s= Top) return Context;

¢ Om.Unique_wWildcard:

Om.Action_1d:

out Error.Condition,
in_Context
Stack_Id ==
Stack_Location ==

Default_Context.
Job_Stack:
Tonlds

Context ==

: Context:

out Error.Condition.:
Stack_Id :=
Stack_Location

Job_Stacks
:= Ton):

- -

ideatifiec location 1n the
is empty, the functions

Machine.Object_worldsY

Machine.Object_Worlds:

Stack_Id) return Om.Version_Id:

for a universe
Tor this purpose,
is at the pottoT. Returns the

selected universe view. If the stack does not contain

This operation does NJT follow the

indirect chain which may lead from the slot of the returned universe
tote that a non-nil result does not imply tnat tne referenced
universe view selects a world view which exists (in particular, an

TUELTA_ M enm VI_C_ D, 1TS.01.J05W(E3) raje

== This oreration 1s us>3 by the Cbject package to bind Version_+andle's,

Trhis first function is equivalent to the seconds, when 3iven Jot_Stack.

procedure Fush_View_State (Status : out Error.Condition:
Stack : Stack_Id := Job_Stack):
procedure Pop_View_State (Status : out Error.Condition;
Stack : Stack_Jld == Job_Stack).
== Pop_Universe_State throws away the top element of the identified view
stack. Push_Jniverse_3tate operation copies the top element into a new
== record, pushing it on top of the identified view stack.

-= Possible errors:

- View_Stack_Dvertlow
-- View_Stack_dnderflow
- Is_Access_lontrocl_Zrror (Status)

-= Job's files ==

== Note that current input/output/error have their own indeoendent job

== state stacks. Job start and finish semantics for jobo files is

== implemented usinz a coupling mechanism which is not generally avaitznle.
-= See the Jur_Files package in CDIG. '

-= Execution context =--

- e s - G A e - - e e

== kach jou . session has an execution state stack which follows the sa~-=
== b&sic parajizar 35 ths job view stack. See the Execution packange for
-=- details.

== Job schedulingy --

package Scheduling is

function Kind (’f_Jou : Om.Job_Id)
return sm.Jdobh_Kind;

== Seturns Om.Terminatei for jobs which do not “"exist"”.

function Priority (2f_Jou : Om.Job_Id := Job.Current)
return dni.Jdo! _Priority.
functicn “tate (f_Jct @ Jr.doo_lc = Jor.lurrent)
return 9‘m.Jol._State.
function Cio_Consunptiun (0f_Job Omaedon_1ld 2= Jova.lurrent)
return Lonji_Integer: =- msec
function isx_Consumption (0f_Jou 2 Umeodoo_Id = Jobt.lurrent)
retura Loungy_Integer; == plocks transferrel
function Current_“emory_Consumption
(if_Jou 3 Omadoo_Ia = Job.Current)

POELTA_KKSREVI_C_J.UNITS.CYaJDLV(ED) page

return Lony_Integer; =-=- pages 1in cache
-= fNeturns Nil for non existant jobs.

procedure tnable (The_Jdob : Om.Jdob_1d:
s>tatus : out Error.Condition),

procedure Disable (The_Job : Om.Job_Id:
Status : out Error.Condition):

-=- Possivle errors:
-- Is_Access_Control_Error (Status)

function Working_Set_Limit (0f_Job : Om.Job_Id 2= Job.Current)
return Long_Integer; == cache pages
procedure Set_working_Set_Limit . ,
(The_Job : Om.Job_Id := Job.Current.
New_Limit : Long_lnteger; -- cache Dsages
Status @ out Error.Condition):

-=- fussivle errors:
-- Is_Access_Control_Error (Status)

procedure Attach (Joo : Um.Job_Id:

status : out Error.Condition),
procedure JDetach (The_Job : Om.Job_Ilas

Status : out Error.Condition);

-=- Ppssivle errors: -
- Is_Access_Control_Error (Status)

function Run_lLoad (interval : Duration := 60.0) -- seconds
return Long_Integer; -- load % 100

function Uiskh_Loed (Interval : Duration

2z 60.0) =-- seconds
return Long_Integer:; -- load *

o 10¢
function withheld_Loao (Interval 2 Duration := 60.0) =-=- seconds
return Lony_Integer; =- load % 109

= more stuff to follow
end Scheduling:

~-= Session control =--

function Exists (The_Session : Om.Session_Id) return Boolean;

-- heturns true iff there exists at least one job for which the Session
-= function matcnes civen Session_Jd parameter.

function Lefault_Unit (2f_Session @ Um.Session_Id := Johe.Session)
return Disk.Unit_Number.
procedure Set_.eofault_unit (Lf_Session : Om.Session_Id := Joo.Session:
Unit : Disk.uUnit_Numuer,
Status = out Error.Congition).

VO LLTA M VI _ (o UhITS.0 00029y (2 3) naye 1°
== / velue of Nil measns that the system will choose the “sest™ unit
== On #hich to run ned jJobs for the given session. & non=nil value

Causes the syster to always run new jobs on the specified unit (unless
== extenuating circurstances reqguire otherwise).

-=~ Possible errors :
- Is_Access_Clontrol_Srror (Status)

function Root_Joo (if_Session 3 Om.Session_Id := Job.Session)
return Dm.Job_1d.

-- Returns the id of the first job created unjer the givel session. If the
-= session parameter is garbage, or the job does not exist, returns Nil.

function Subsystem_State (0f_Session : Om.Session_Id := Job.Session)
return Om.Job_1Id.

A session may have an associated job which is used to keep persistentiy

-- elaborated conies of subsystems. This function returns Nil when the

== sessinn cCLes not exist or does not have such an associated job. See
== the Ixecution packase for further details.

rrocedure Kill_b5ession (The_Session : Om.Session_1lds
Status : out frror.Condition);

-- Does a Kill on every job with the given Session_Id.

v

-- Fossible errars:
- incluaes those for Joos.nill on a Job_Ic¢

procedure wait_ior_Ter~ination (The_Session : IJm.Session_I14d);

== returns imme<distely when The_session is garoage or otherwise does not
-~ exist.

function Terminal ()f_Session : Om.Session_la
return Jn.version_Handle,

= Joh.Session)

== Identifies the terminal to which the session is "attached",
== possible Wil.

function Messaje_window (0f_Session : Cm.Session_Id := Joo.Session)
return Om.version_Handle;

function lu_window (Z1_Lession : Om.Session_Id := Job.Session)
return Ja.version_Handle:

-- Return tiles with subclass Message_window and Io_Window, respectively.

== Used with 1) to read/write to screen via editor.

-=- There is no relatinsnsnip vetween jobs other than the fact some jous have

== the same Session_ld. ln particular, there s no notion of parent/child
bt etC.

generic

TDELTA_KKSRZVI_O_N.JnITS.064.400'v(e3) page

type Parameters is private.
with procedure Execute (P ¢ in out FParameters).
package Initiate_Generic 1is

proceadure Iai1tiate

(vame : String.

P ¢ in out Parameters:
New_Job : out Om.Job_Il4d,;
Status : out Error.Condition;

-- Initial job files:
Current_Output : Om.Unique_wWildcard :
Current_Error : Om.Unique_wWildcard == “";
Current_Input : Om.Unique_wildcard = .

-- New session parameters:
Start_New_Session : boolean :=
New_User : Om.Object_Handle :
Jsers_Password : String = ""
Jsers_Account @ String = "",;

False:
Om.Nil_Object _Hancle:

e

jerminal : Om.Object_Handle := OJm.xil_Gbject_Handle:

-~ “iiscellaneous parameters:
Unit : Disk.Unit_Number := Job.Default_uJnit:
After : Duration == 0.0;
Jon_KRind : Om.Job_Kind := Om.Attached_Job:
wait_for_Completion’: Soolean = False);
The joo's world will live on the specified unit (or “best™ unit
when Nil i3 specified)e.

The first architectural module created in a new job is known as the

“root threao"; there is a function to fetch this value. The
generic formal suuprojram (Execute) is run on the root thread of
the new job. lhe job terminates when this root thread terminates.

The first jou created in a new session is known as the "root job":

there is a function to fetch this value. For interactive
sessions, this job runs the editor.

Setting Start_New_Session to true is used to run a job under a
different Session_Id. If the value of New_User is Nil, the new
session runs with the id of Job.User, and no password check is
performed. Jtherwise, checks password. Checks other login profile
parameters. Jraates time of last logini when the last job of the
session terminates, will update time of last logout:, also appends
appropriate entries to the accountino log.

Coller can implement almost arbitrary rutes for the state of the
new jo.L by passing information via the Parameters to the “xecute
tvroceuure (anu feedina these values to the various joo state Set_
operations, atLovele

The built in rules for inheritance of tne state andi view Stack
are follows:

as
(1) when starting a new session, both the new session and its

root job have state and view stacks which are copies of the

PULLTA KL aRIVI_0_(.U 1TSS)%0JNsoy(53) raae 1

initiator's jou stacks. This allows the session initiator
to use i1ts jobH stacks as parameters to this overation.
(¢) wnen starting a new job (within an already existing
session), the state stack, view stack and execution state
stack of the new job are initially covies of the
corresponding session stackse. .
Note that "disconnect” simply detaches an already running job,
leavinz it with whatever job stacks it had. The new job (createi to
run commands) will start with session state (as defined in rule 7
above). Tnus, jobs share changing state only when they explicitly
manipulate session state.

In any case, a Set_Name (and Push_State if necessary) is
performed to set the job name as specified.

Tne j0 files for the new job are always as specified by the

job files parameters. Recall that setting an io file to "" will
cause first reference to the file to attempt to opan the
session®s terrinale.

Tne persistent suusystem state of sessions & jobps is suecified
in the Execution package.

Jot terminatian will send a non-Nil Ternination_Messaye to the jou's
current error file. Recall that “termination" includes normal

job completion as well as operations such as Joo.Terminate_Self
and Job.<ilLl.

v

“ossicle errors:
Is_resource_Limit_Error (Status)
0 System_ls_Out_0Of_Job_wWorld_Numbers
Is_Sad_Start_Jovo_Parameter (Status)
0 Sacd_Jou_Current_Output_Parameter
fad_Joon_Current _Error_Parameter
0 Sad_Job_Current_Input_Parameter
Is_Login_Error (Status)
0 _oein_Jser_ld_voes_Not_Exist
0 .ogin_User_Password_Invalid

(@]

end Initiate_Generic;

procedure Kill (The_Jov : OUm.Job_1ld:

Status : out Error.Condition;
“essagze : String = "");

vorks on self and editors. 1f the caller susplies a nov~null Messace,
its value is assigned to the killed job's Termination_Message.

Otherwise, the job's Termination_Message will be automatically set tno
either

(1) "<j300> has heen killeg" or
(2) "<j52> has been killea by <user>"

where trtie value 0of <joou> comes from tne killed Joo's Name, an< the
value of Kuser> comes fros the User function of thne executing jnb.
The first string is producec when the session of the killer is the same

as tne session of tne killed jou. The secong string 1s produced in the
remaining cases.

YDELTA_KKNRIVI_C_CLJINITS.0MaJ03 'V (E3) paje

-=- Possiole errors:

- Is_Cxecution_Ltrror {(Status):

- o Subsystem_ls_5till_Shared

-- The specified job has elaborated copies of subsystem which
- are currently shared by other jobse.

- Is_Access_Control_czrror (Status),

procedure Terminate_5Self;

-=- Same as Job.Xill on self, but produces no job termination message.

procedure wait_For_Termination (The_Job = Om.Job_Id),

1%

-= Returns immediately when The_Job is garbage or otherwise does not exist.

function ™y_Task_Id return Machine.Task_I1d.

== "task id" of the executing thread. Note that packajes also have
-— task 14S.

function Job_Ut (The_Task : MachineesTask_Id) return Om.Joo_1d:

-=- The job to which the task pelongs. When this job termitates, the task
-= 45 certainly ternsinated. ’

+

function %oot_Thread (uf_Jot 2 Om.Job_Id := Current) return Machine.Task_Jlal

-=- The "task 13" of the first thread created in the job. If this task

-~ dies, the job will certainly be dealt a severe blow (its actions woulg
-=- be avanidoned, for example). Other than some interesting issues related
-~ to allocation of tasks from persistently elaborated collections, the
-~ jou would orouvavly eventually die.

function Is_Callable (The_Task : Machine.Task_Id) return 3oolean;

-- As per the *Callable attribute in the LRM. Used by the action manager
-~ to determine if an action's guardian is "alive” (not alive causing the
-- action to be auto abandoned).

procedure S>et_Associated_Heap (To_Heap : Machine.Segment_Name);

function Get_Associatec_Heap return Machine.Segment_Name:

function Get_Associated_Heap (For_Module : Machine.Module_Name)
return Machine.Segment_Name.

-=- The above operations are used by Diana to set/get the task's current
-=- Dians unit. The sacond Get_ operation is subject to access control.

generic
type Tesk_Type 1s limited privates
type Pointer is access Task_Type,

procedure Allocated_~ew_root_Thread
(In_Job 1 OmaeJou_Id := Job.Current,

New_Task : out rointer;

VOELTA RN aHIVI_O_ Do IHITS 0N d0L v (23) page 1=

end

Status ¢ out frror.Condition);

This operation allows one to allocate a task in another joo. The new

task 1s consiueres to be an additional root threaa in the tarset joon.
Termination of the target job will cause the termination of all these
additional root tureads.

In the Gamma system the rules for task allocation (in a collection) are
that the allocated task runs in the same job as the allocating thread
(unless pragma Virtual_Processor is used). In Epsilon, the praagma
Virtual_#rocessor is not available, and tasks cannot be allocated in
other jobs without using this operation.

Possible errors:
Is_Access_Clontrol_Error (Status):

Joou.

GCe Ppep AXA
G 5 P P A A
G P P A A
G Gg PPPP AAAAA
G G P A A
3 G P A A

wG6Ge A A
Jsers: GPA

" Object: YDELTA_KKoREVI_0_0.UNITS.KK.DISK
Version: V(30)

request: 1268&

Date: April 24, 1934
Queued: 11:25:58% AmM
Printed: 11:35:20 A

YOELTA MR o2oVI_(_ e dNITS.naISKV30)
with Sys,
with jiacnine,

with Um_cefinitions.

package visk 1is
package System renames Sys;

N1l 2 constant = {;

== Null value tfor all scalar types in this package.,
== unless stated otherwisea

type Unit_Number is new Long_Integer range 0..15:

== Denotes the ohysical drive unit number. Wote that the unit numuer of

== @ drive car change when its jumpers are changed.

type Spindle_Size 1is
record
Cylinders : Lonj;_Integer range 0..2 %% 16 - 1;
Tracwks P Lony_Integer range 0..2 *%¥ 2 = 1,
>ectors : _ony_Integer range Jea2 %% & = 1;
ena record.

pragma Assert (Spindle_Size'Size = 32);
type Sector_XNumber is new Long_Integer ranje 2..2 %% S = 1;
type Track_numper is new Lon;_Integer rdnge 0..2 ** & = 1;

type Cylinder_wumber is new Long_Integer range 0..2 *% 12 - 1;

type Address is new _onjy_Integer range 0..2 %**x 23 - 1:

- record

- Cylinder : Cylinder_Number;
- Track t: Track_Number:

- Sector : Sector_Number;
- end record.

== Corresponds to the disk address at the IOP interface

Can_Pad_Address_To_Get_lop_Address : constant Zoolean = True;

== Can pad Address on the left with zeroes, and treat it as a subtype

== of the iop's disk address format.

function To_Address
(Cylinuser : Cylinder_Number;

Track : Track_Number;

Sector : Sector_Number) return Address:
function Cylinder (Aolr : Address) return Cylinder_Numoer;
function Track (Ador : Address) return Track_Number;
function Sector (Addr : Address) return Sector_Number:

function Increront (Adar : Address; Size : Spindle_Cize) return
function Decremsnt (rdur : Address; Size = Spindle_Size) return

-= the 3Jiven adaress.

type Address_ksrray is array (Natural range <>) of Address:

iddress;
Aacress:

Weturn the ajdresses of the next and prior nlockse resd>ectively, of

YUELTA KR aREVI_(_0.JiITS.<Xna ISk v(3) vace

type Address_Range is new Lon3_Integer range 0..2 *%* 55 - 1;

-- record

- First : Address.,
- Last s Address;
- end record,

function To_Address_Range
(First : Address:; Last : Address) return Address_Range:

function First (The_"ange : Address_Range) return Address:
function Last (The_"anye : Address_Range) return Address:
Null_Address_Range : constant Address_Range := To_Address_Range (1, 0);
function Is_Null_Range (The_Range : Address_Range) return Boolean;
function In_range (Aocdr : Aadress: The_Range : Address_Range)

return loolean; : :
function Ranges_Overlan (Range_1, Range_2 : Address_Range) return toolean’
type Address_~ange_irray is array (Natural range <)) of Address_Range:
Sector_Size_In_tytes : constant := 512;

subtype Region_~vunmusr is Cylinder_Number,

-- A region is composed of one or more adjacent disk cylinders, and is
-~ denoted by the Cyltinder_Number of the first cylinder in the region.

subtype Region_Count is Long_Integer range 0..2 %% 16 - 17
pragma Assert (Secion_Count'Size >»= (ylinder_Number?Size):

subtype Block_Address is Address.:
-=- A block is composed of one or more adjacent sectors.

subtype lock_Count is Long_Intecer range 0..2 *% 32 - 1,
pragma Assert (5lock_Count*®3ize >= Address'Size);

Block_Size_FEquals_raje_Size : constant Boolean :
tlocks_Span_Tracks : constant Boolean :

subtype Cluster_Address is Address:

-= A cluster is composed of one or more adjacent blocks. The cluster
== size may vary from world to world. Note that the Volume_™manager
-=- allocated clusters, not blocks. '

Cluster_Size_Is_multiple_Of_Btock_Size : constant Boolean 3= True:
Clusters_Span_Tracks : constant Boolean := False:

Cluster_Size_Ffqguals_~aze_Size : constant Houlean = Trues
-= True in the first irnlementation, but false in future revs.

sutitype Cluster_Count is tong_lnteger ranue .ol %% 52 = 1.
pragma Assert (Cluster_Count'Size >= Address®>ize);

tyoe Full_Adoress is new Long_Integer range 0..2 *% 32 = 1,
- record

-- Jnit ¢ Jdnit_Number;

POLLTA KK X TvI_T_2.UNITSanhaUISKV(30)

vaae

- Cylinder : Cylinder_tumber;
- Track : Track_Numbier:

-- Sector : Sector_Number,
- end recorgc,

function To_Full_Adcress

(Jnit : Unit_Number:

Cylinger : Cylinder_Number:

Track = Track_Number:

Sector : Sector_Number) return Full_Address:
function To_Full_Address

(Jnit : Unit_Number; Addr : Address) return Full_Address;
tunction To_Address (Addr : Full_Address) return Address;
function Unit (Addr : Ful l_Address) return Unit _Number;
function Cylinder (Addr : Full_Address) return Cylinder_Numper,
function Track (Addr : Full_Address) return Track_Number:
function Secter (Addr : Full_Address) return Sector_Number:

function Increment (Addr Full_Address:

Size : Spindle_Size) return Full_A3dress;
function fLecrement (Adar : Full_Address;
S5ize : Spindle_Size) return Full_Aadress:

== FReturn the aZdresses of the next and prior dlocks, resoectively, of
== the given address.

type Full_Address_Array is array (Naturgt rande <>) of Full_Address;

subtype Full_"lock_Address is Full_Addréss:
subtype Full_Tluster_Aadress is Full_Address:

ALL_Dirty_world_Info_™Mapped_Under_Its_Vp : constant Soolean := True;

== This invariant is fundamental to the window of vulneranilty mechanism,
== actions, and crasn recovery. Therefore, one should taks jreat care
with the vorld parameter in the following function.

Be extra careful when using "special worlds"™ (like Machine.Om_World an-
-=- Machine.Miscellaneous_wWortd).

function To_Disk_Mapping_Address
(Aadr ¢ Full_Address;
world : ~achine.World_Numper) return Machine.Page_Aadress;

ALl unwired kk_om data structures are in cache pages whose vp
corresponds to the world in which the data structure lives. Data

== structures which are not implemented in heads use this function to mag
== their disk adoresses to cache pages.

-= Converts tne 3isx adjress to a page address as follows:

- v T ulls \

- unit & nits -=> segment

-- cylinaer ic pits /

- vorld paranm 10 pDits ===> vp

-- track z pDits \

-- secter 5 DIts --> page number
-] 3 vits [/

-= ¢ 1¢v npits =-=> bhit offset

POLLTA KX KEVI_0_0L UNTITS k0 lSKYY(3() rage

- A 3 vits =--=-) segment kind (data)

-- Note that this magoing implies that ucode must not allocate module
-= names with sejment numbers smaller than 2 % 16 (ie, 1/64 of the
-= name space is preallocated by CM).

== Note that it is possible for the same Full_Address to pe mapoed by many
-- different Fage_Addresses, each with a different vWorld_Number component.
-= by convention, DOUN'T DO THAT!

function Is_Cisk_Mapping_Page (Addr : Machine.Page_Address) return Boolean;

-= Returns true iff the most significant 6 bits of the address are 0 and
-= the least significatnt bits of the address are 4 (kind).

function To_Disk_Address (Adar : Machine.Page_Address) return Full_Address;
-~ Inverts tne above mapping. Returns a bogus ogisk address if the agiven
-=- page address i1s nct a diskh mappinu page (the bogus result is quaranteed

-=- to cause an error when used to issue a physical disk 10).

type Kegion_I1d is new Long_Integer range 0..2 %% 16 - 1;

- record

- Unit s Unit_%umber.

- reaion : wRegsiun_hwumnber;

- eni recorg:)

*

function To_ireuion_la (Unit ¢ uUnit_humber;

' Region : Kegion_Number) return Region_Id.,
Xejion_Id) return Unit_Number:

: Region_1d) return Region_Number;

function linit (Id :
function hkegion (lu

function Base_aJdaress (Uf_Kegion @ Region_Id) return Address;
function Full_kRase_~tzdress (Jf_egion : Kegion_I1d) return Full_Address;
-=- Feturns an address with same cylinder #, and zero for tracx anc sector.

type Block_Kinds is new Long_Integer range 0..2 *% 8 - 1;

-« "GStandard header™ for disk blocks:

- record

- Kino : =lock_Kinds:

- cae : Fitter.Filler_8;

- Instance : um_lefinitions.Unigue_Id:

- Home : Full_Address:

- -- the above fields consume the first 96 bits.

-= "Semi=-stancaroc header'” for disk blocks:

- record

-- aese : Filler Filler_64;

- PR : Fitler.Fiatler_64:

-- Kind : “lock_Kinds,

- aes s rillersFiller_8&;

- Instance : ur_vefinitions.lUnique_id;,
- Fome : Full_Address:

- -- the anhove fields consume the first 128 + 94 bits.

1or

!
—

TA M e vI_S_CaUNITSanaISKIV(30) page

== This convention is fundamental to the apility to detect gyarbane

in

== kernel gsts structures. It also greatly simplifies one's apility to

-= poke arounc a3t Jdisk data structures, and make sense out of them.

-- headers for compatanility with ucode interporetation of the first
== wWord in a heap. Unless stated otherwises, all other block kinds

The Pack_Lavel has a non-standard header, for historical reasons.
The List_Section_wlock and Gbject_Header_Block have seni-standard

== have stanaard headers. oBlock_Kinds takes on the following valtues:

Size_Of_The_Standard_Slock_Header : constant &=
Block_Xinds*Size + 5 +
tm_Sefinitions.Unique_ld'Size +
Full_Aodress'Sizes

Jninitialized_5Slock : constant Block_Kinds := 15#0#;
== Slock_King has not yet been assigned to the block.

Ketarget_Datanase_3lcck : constant Plock_Kinds := 1lo6#%l¢f;
== Individual vlock in trne retarget datapvase.

Wworld_Allocation_*t Llock : constant 2lock_Kinas = 16&2%;
== Map frorm vorld_Nunber to location of worla_-deader_Block.
Worla_Header_2lock : constant 3lock_Kinds 1= 12%32#;

== At the beginning of tne root region of an existing world.

List_Section_itlock : constant Slock_Kinds 3= 16#4;
== Lsea to cunstruct tists of disk aadresses.
-= Uses "semi=stano1ar, teager”.

Object_Header_slock : constant 3lock_kings = lawzi#;
== Contains ucose contryis KK_0O control, ang initial user 1data of
-=- Uses "semi-standard header".

Free_Cvnject_rieaser_ lock : constant 3lock_Kinds = 163874,
== An unused object header block.

-= Uses "“semi-standard header".

Machine_Segment_Inaex_Block s constant Block_Kinds := 16#10#;
== Index_Block for a segment created by the architecture.
Heap_Seament_lnuex_Z>lock : constant 3lock_Kinds := 15411#%,
== Index_FPflock for a segment underlying a permanent object.
Object_Cataloc_Rranch_:lock : constant Block_Kinds := 16#20%#;
Jyoject_Catalog_rLeaf_clock : constant Block_Kinds = 15#21#;
Jow_Cataloy_"ranch_Tlock : constant 3lock_Kinas = 156§22%;
Job_Cataloy_teaf_ilock : constant 3lock_Kinags 1= 16#23%;
== Btree nozes for the segment cataloase. N
Structural_-apn_=rancn_ Llock : constant Alock_Kinds = 12m32#;
Structural_Men_teaf_ lucek : constant “lock_Kinaos 1= 1633514

== notree nodes for cirvctory's structural map.

version_veap_nrench_'lock : constant 3lock_rinds 1= 16732#;
Version_wap_Leaf_tlock : constant 3lock_Kinas = 15£#33#;
== wtree noces for directory's version map.

heay.

SLLLTA_KKGRIVI_C_2.UnITS YN oISV30) paae

Version_nap_Data_ilock : constant 2lock_Kinds = 14834%;
-~ Contains information about particular versions of oojects.

Link_Pack_3ranch_Elock_1 : constant Slock_Kinds 2= 16#36¢%;
Link_Pack_Leaf_~lock_1 : constant Block_Kinds == 16#37¢%;
-- Btree nodes for the reconstructed portion of the Link_2ack state.
Link_Pack_franch_Flock_2 : constant Block_Kinds = 16#3%#;
Link_Pack_Leaf_3lock_2 : constant Block_Kinds 2= 156%33¢#;

-= Btree nodes for the temporary portion of the Link_Pack state.
Action_Log_Head_Block ' : constant Block_Kinds := 16#40¢#;

Action_Log_Block = constant Block_Kinds = 1lof&4l#;
-- Used to build action logs.

endg Uisks

GGG LDon bt
G I 2 A A
G P 2 A A
C G5 FPPR ARARA
G o F A A
G ¢ F A A

GGGCL P A A
User: G A

Cbject: 'DELTA_KK.REVI_0_0.UNITS.KK.ERROR
Version: V(51)

Heguest: 1269

Date: April c4, 1984
wueued: 11:26:G5 AH
Printed: 11:35:44 = -

YDELTA_MKaREVI_0_0.JnITSKRaxnd 'V (5]1) paqe
package Error 1is

type Status is new Lonz_lInteger range Uee2 ** 16 = 1,
--= Vanilla status code

type Condition_Information is new Long_Integer range 0..2 *% 43 - 1;

type Condition is new Long_Integer;

== Status plus info which is a function of the status
-= record

- Info : Condition_Information:
- RKeason : Status:
-=- end records

function Info (The_Condition : Condition) return Condition_Information:
function Reason (The_Condition : Condition) return Status:
function To_Condition (Info : Condition_Information;

Keason : Status) return Condition,

-= Success --

Successful_Status : constant Status :
Successful : constant Condition

T~

N

0:

function ls_Successful (The_Status : Status) return Boolean;
function Is_Successful (The_Condition :2’Condition) return Joolean;
-- Kketurns true for the following values of Status:

- Successful

-- It is considerea 3. for clients to use "=" to compare either a

-=- Status or Condition to the value Successful, insteaa of callina the

-= Is_Successful function, which cannot be inlined due to compiler/debugoer
-= restrictionsa

-=- Bad Object_1d/Version_1d (010x) =--

function Is_sad_Version_ld (The_Status : Status) return Boolean;

function Is_iad_version_Id (The_Condition : Condition) return Boolean:
function Is_=ad_OUbject_Iag (The_Status : Status) return Eoolean;

function Is_sad_Object_Id (The_Condition : Conaition) return 3Boolean;
function Is_Bad_Version_Handle (The_Condition : Condition) return Eoolean:
function Is_sad_0Object_dandle (The_Condition : Condition) return Boolean;

sorld_Does_Not_Exist

Ubject _Class_Does_~ot_ixist
Cbject_Index_Does_wotr_txist
Ubject_Instance_Joes_iot_riatch constant Status
Object_Vversion_Joes_not_cxist constant Status
No_worl3J_Vview 2 constant Status == 16#01064.
Object_tot_In_view constant Status
Universe_UDoes_iot_Exist constant Status
Max_lndirection_Exceeded constant Status

16#0101%:
1640132+,
14801034,
16730104+,
1680153,

constant Status
constant Status
constant S>tatus

o ae ee a6 Be
non

e 00 00 g0 #0

1]

168010772,
164C103;
167#0139=;

ELTA_KKRIVI_O_N N ITS KK RSOV (51) pace ¢

function Is_scad_Pathname (Tne_Status : Status) return 3oolean;
function Is_gad_Pathname (The_Condition : Condition) return Boolean:

Filename_Syntax_Error : constant Status := 164#0111#%;
- Condition identifies the character in the name whicnh caused the
error, as well as the token class which was expected.

Child_Goject_Does_hot_Exist 2 constant Status := 16#011¢4;

- Condition identifies the segment (of the name) which caused the
- error. The prefix to the lLeft of this segment resolved without

-- error. The identified segment does not identify any child object.

Link_Pack_Entry_voes_Not_Exist : constant Status := 16#01134;

- Condition identifies a segment (of the name) which was resolved by
- lookiny through tne link pacs, which failed.
Chilo_“ame_Is_troiguous : constant Status = 16#0114%;

- Similar to the previous status, but the identified name segment
identifies more tnan one child object.

Set_Cause2s_hAnbisuity : constant Status = 16#0115-;
- Condition identifies a segment (of the name) which uses set
- notation to identify more than one obpject/version.

Indirect File_Causes_Ambiguity : constant Status := 1640110%;
-- Condition identifies a segment (of the name) which identifies an
indirect file which identifies more than one object/version.

D EE G L GD M s em G e SR EE G e s am e s an S e 4

tunction Is_ftac_Action (The_Status : Status) return Boolean;
function Is_3ad_Action (The_Condition : Condition) return Soolean;

Action_Does_inot_tCxist T constant Status := 16#0121%;
Hot_The_Action_lwner T constant Status := 16#01224+.
Commit _Has_5Seern_rrevented : constant Status := 15#01234%;
Action_Already_Has_Update_Locks : constant Status := 16%01244;
Update_Has_Been_Prevented 2 constant Status := 16#0125#;
Action_Owner_Not_wWilling 2 constant Status == 15#012%%;
Cant_Xfer_Ownership_Cross_Jobs : constant Status == 16#0127#;
Action_Owner_Not_Dead s constant Status = 16#0123%:
Master_Action_Does_v ot_[Cxist 2 constant Status = 15#0129%;
Action_Is_A_Uevendent_Action T constant Status := 15%012A%#;
Action_Already_Has_Derenaent ¢ constant Status := 15#(0123%;
Action_Guardian_Not_Jead 2 constant Status = 15#012C#;

- e s e e e e - e

function Is_Lock_frrur (The_Status : Status) return Boole3n;
tunction Is_Loct_trror (1he_Conaition : Condition) return Hoolean;

Cant_Get_Ooject_Lock
Cant_Get_Kecora__ock
Cant_Get _View_>lot_Lock
Cant_Get_Lock_0Un_Predecessor

constant Status
constant Status
constant Status
constant Status

16801317,
16%0137+%:
16#3013%35=;
16#0134%,

s se e 0
"

YDELTA_FXRIVI_N_ Lo HITOKKaindr'y (51
Illeyal _rLock_Mode
Invalid_Ubject_Lock_riandle
Object_Is_tvot_Locked

o8 0% &9

-=-. load_Ilmage errors ({0lax) ==

Load_Image_Is_Too_i3ijg
Not_A_Secondary_Load_Image

~= Code segment errors (J15x) ==

Not_A_Cross_Cg_Seagment
Not_In_Cross_Cg_Ubject_wortid
Not_A_wew_{ode_5Segmant

Bad_Stack_l1d : constant Status :=
Bad_Job_1d : constant Status := 16
Bad_Session_Id ¢ constant Status :
State_Stack_Overflow
State_Stacx_Jncerflow
Yiew_Stack_uverflow
View_Stack_Underflow
Invalid_Stack_Location

88 89 00 ¢33 od @0

== (Other

Unit_Coes_Not_Exist
Parent_Object_voes_ct_ixist
‘Predecessor_Version_ls_"ot_Known
Segment _Does_tot_Exist

world_Already_txists
Link_Pack_Entry_Already_Exists

Link Pack Errors (02Bx)

function lIs_Link_trror (The_Status
function

identification errors (02xx)

)

constant
constant
constant

constant
constant

constant
constant
constant

168016045
#0161#;
= 1640162

Statu

S

Status

Statu

Statu
Statu

S

s
S

Status

Statu

S

Status

¥

constant Status
constant Status
constant Status
Status
Status

constant
constant

constant
constant
constant
constant

constant
constant

Status
Status
Status
Status

Status

Status

s 2 0o

Hn

wonon

164801354,
16#3156%.
16#0137+#,

16#0141%;
16%#01424;

16#0151#;
1680152#%.:
1680153+,

16#3153¢;
16#%1%44;
16#01654:
16#%#0166%:
16#01574%.

16#0221%;
1680222#%:
16#0223+:
16#02244#;

16#02a0#;

16#02A145

c Status) return Boolean:

Is_cink_Irror (The_Condition :
Link_hanre_voes_Not_Sxist : constant
Cant_Celete_lnternal_Link : constant
Duplicate_Link_Nane : constant
Lxternal_Link_To_Local_Juject : constant
Cant_Create_Internal_Lirk : constant
Cant _Create_zcxtornal_Link : constant
Cant_Delete_cxternal_Link : constant

Status
Status
Status
Status
Status
Status
Status

mwnnnn

Condition) return boolean:

16#0280%.
1680201%;
16#020245:
16#02834,
16#0234%,
16#0285#:
1640285#%;

page

PELLTA KN eREVI_ O _CoiNTITS KR .ERR2'W(51) race 4

Cant_ldentify_Link : constant Status := 16%#0207#;

function Is_View_Error (The_Status : Status) return &oolean:
tunction Is_View_Error (The_Condition : Condition) return 3oolean;

vad_Cbject_Index_Constraint : constant Status := 16%32D0%;

Itlegal_Class : constant Status := 16#0301#:
Object_Mismatch : constant Status := 16#0302#;
Object_Class_Mismatch : constant Status == 16#0303#;
Too_Many_Versions : constant Status := 16#0304%;
version_Is_Still_FReferenced : constant Status
Muitiple_Versions_ivot_Supported : constant Status
worla_View_Is_Frozen : constant Status := 16#0307%;
Version_Is_Frozen : constant Status := 163030°4%;
wkorlu_S5tili_lontains_Uujects constant Status

1650305+ ¢
163506336+,

16206309#;

World_Still_Contains_Subworlas : constant Status = 163030Az;
Object_Index_Already_In_Use ¢ constant Status == 16%#030R#;
Explicit_Version_Creation_Not_Allowed : constant Status := 167030C#;

Object_Already_~xists : constant Status := 16%#03uD#;
Object_Is_inot_Reserved ¢ constant Status
Must_Update_vie_View 2 constant Status := 16+030F#:

lo#0305%;

function Is_Resource_Limit_Errcr (The_Status : Status) return Boolean:
tunction Is_resource_Limit_Error (The_Condition : Condition) return zoolean;

Object_Is_Out_Cf_Version_Numbers 16204G1-7

constant Status :

World_Is_Out_Of_Segment_Numbers

constant Status 16#04105;

World_Is_Gut_Of_Code_Searent_Numbers 2 constant Status := 16#0411:;
Aorld_Ils_Cut_Nt_orject_Indices : constant Status := 16#04125;
world_Is_Past_Low_5pasce_warning_Threshold : constant Status := 16#0413%;
Insufficient_Object_Indices_Available 2 constant Status = 16#0414=;
Unit_Is_rPast_low_Space_sarnina_Threshold : constant Status := 16#0420:;
Unit_Is_Jut_uUf_Tisk_Snpace : constant Status := 16#0421#;

Systen_Ys_"ut_of_tction_sumvers : constant Status := lAzaLT0;
System_ls_vuut_0f_Job_world_humters : constant Status := 15#0431=;

Systea_ls_vut_uf_Cuject_worlu_*umbers constant Status 1630432

System_Is_uvut_uf_Session_iumbers constant Status 16#06332;

Jou_ls_%t1_Action_Limit : constant Status

= 1%:0440%5;

YOELTA_KN N aRIVI_C_0 UnITSokRERxUrIV(51)
Job_Is_At_Action_MNode_Limit

-= Access control errors (U5xx) ==

page 5

: constant Status := 15#0441%7

function ls_Access_Control_Error (The_Status : Status) return 3oolean’
function Is_Access_Control_Error (The_Condition : Condition) return Eoolean:

-= Physical 1/0 errors (101x) --

Page_Does_Not_Fit_In_Cache < constant Status := 16#1011#7
Page_Is_Not_In_The_Cache s constant Status == 156#1012%;
Page_Is_Already_wired ¢ constant Status := 15#10134#.;
Page_lIs_Already_Loading : constant Status 3= 15#1014%;
Unrecoverable_Disk_Error s constant Status == 15#%#1015#:
-= KK/0O™ errors (Dxxx) =-

Page_Is_Alresdy_ovefined

: constant Status @
Page_Is_Rot_vefined s comnstant Status @
Page_Is_Already_>hadoweqd : constant Status :
Header_Already_5S5torez_In_Free_List @ constant Status :

-= Status conditions that are not even visible from =-

- internal KK/0m interfaces {(Fxxx)

L R T R Y ek

end trror.

wonouwn

1648200143
1o#5002=,
lo#e0d34;
15#200445;

GG PrEP At
G c F E I3
G P D4 A
G GG PPP? AAAAA
G o P A A
G G P A A

6366 P A A
User: GPA

Object: POELTA_KKaREVI_0_0 UNITS.OMJACTION
Version: V(93)
reguest: 127¢

Date: Anpril 24, 1G»
aueueds: 11:20:212 &8¢
Frinted: 11:30:27 4

YDELTA

_KKaRIVI_C_0.UNITS. 31, ACTION'V(93) paoce

with Jot.,

with Sys.

with Error;

with Machine,

with Versioa_%ap: == private eyes
with Om_Definitions:

pragma

Frivate_Eyes_Only;

with Action_Layout.

package Action 1is

pragma Subsystem (Object_Management).:
pragma Module_Name (4, ?);

package >ystem renames Sys.
package (m renames Om_Definitions.

subtype Version_Id is Jm.Yersion_Id;
subtype Action_JId 1s Jm.Action_Ila;
subtype Lock_rode 1s Om.lLock_Mode;
subtype Kecord_KXey 1s (Cm.kecord_Key.:

function Max_Lenath_Uf_Log_Record return Natural.

subtype Log_kecord_value is System.Bit_String:

-=- Basic action operations == .

+

procedure Start_Abtion (Id : out Action_Id:

Status : out Error Conditio
Jpoate_Prevented : Roolean

n

:= Talse:
Commit_Prevented : Boolean :
L

:

= False.
Guardian @ Machine.VTask_Id :=
Master : Action_Id := Om Nil)

Job.Root _Threads

Used to start an action. Update_Prevented = true is ejuivalent to
calling Prevent_Update. Similarly, Commit_Prevented = true is

equivalent to calling Prevent_Commit. Note that Update_Prevented

makes starting and finishing the action considerably faster (since
n> 10 is reguired to write commit records).

The callino task is said to be the “owner” of the action. One will
observe that only tne owner can operate on the action (but there is
3 mechanism for transferring ownership).

I1f both the owner and the guardian die (become not *callable), the
action will eventually get auto-abandoned. The default value for

the Guardian parameter causes actions to almost never Jet auto zhandonec
(tecause death of the root thread implies termination of the job, and
job termination iwmolicitly invokes Abandon_AlLl_Actions_In_Jdou).

Specifyiny a Nil “aster causes the new action to be a master.
Specifying a non=i.il 4aster causes the new action to be a ugependent of
the named “aster, ana to pecome commit preventeo. whed the master is
finished (by explicit Commit, Abandon, or auto-abandon), its associated
dependent is Abancon's. The guardian and owner of a dependent action

YLELTA_KKeREVI_P_ G UNTITS OV ACTIONV($3)
-= are those of 1ts master.

-- Poussiole errors:

- Is_dad_Action (Status):

-- o Master_Action_Does_Not_Exist

- The identified Master does not exist.

- o Not_The_Action_Owner

-- Not the owner of the Master action.

-- o Action_ls_A_lLependent_Action

-- The Master parameter refers to a dependent action.
-- 0 Action_Already_Has_[Uependent

- Master's can have at most one dependent.
- Is_Resource_Limit_Error (Status):

- 0 System_Is_Out_Of_Action_Numbers

-- o Job_Is_At_Action_Limit

- o Job_Ts_At_Action_Node_Limit

procedure ftcyuuire_Object_Lock
(ld : Action_1ld:
Gn_Version : Version_1ld:
Map_Location : Version_Map.lata_Item_Pointer;
In_Mode : Lock_Mode;
For_'lew_vVersion : Boolean:
Status : out Error.Condition;
Max_wait : ODuration := Duration'Last);

type Object_Lock_Handle is private;
Nil_Object_Lock_Handle : constant Object _Lock_+dandle;

procedure Acquire_Recora_Lock_Intention
(lu : Action_lcu.
un_VYersion : Version_Id:
Fap_Location : Version_M4ap.Data_ltem_Pointer.
In_Mode : Lock_Mode:
Handle out Object_Lock_Handle:
Status out Error.Condition:
Max_wWait : Duration := Duration®lLast):

procedure Acquire_Record_Read_lLock
(Id : Action_14d:
un_Version : Ubject_Lock_Handle:
On_Item : Record_Key:
Status : out Error.Condition:
Max_wait : VDuration := Duration'lLast):

jeneric
with function frovise_Loz_Entry return Lon_Recorc_value:

procedure fcguire_necord_write_Lock
(1d : Action_1l4d,
On_Version : Guject_Lock_Handles
Un_Ttem : Recoru_sey:
status © out Srror.Conaition:
4ax_wait : Duration := Duration'lLast):;

page

POELTA_KNeREVI_O_0.JRITS. 0% ACTION'V(93)

page

-- These operations are used by an action to acquire a lock.

-=- The Acquire_Joject_Lock and Acquire_Record_Lock_Intention operations
-= are usea to acguire ouvject level lockse.

-~ used prior to acgqguiring record lockse.

The second operation must be.

-~ The Acquire_<ecord_nead_Lock and Acquire_Record_Write__ock operations

-~ are used to acquire record locks.

The client passes

17 the

-- Object_Lock_Handle which was returned by a previous call to
-- Acquire_Record_Lock_Intention (which locked some object "X"). In the
-=- case of Acquire_Record_Kead_Locks, the call gets a Record_kead lock on

-- the record (specified by On_Item) in object

-xl..

-- In the case of Acyuire_Record_Write_Locks, the call gets a Record_Write
-=- lock on the record (specified by On_Item) on object "X". In addition,
-- once the Kecord_write lock has been acquired the client must supply

-~ the "log record”, via Provide_Log_Entry, which will be stored in the
-- action loc, and processed in order to commit/abandon the action.

-- Tihe ®rovide_Log_fntry operation should not acquire any action locks

-~ or mutex's, else you risk getting the action manager deadlocked.

-=- The appropriate calls to the Heap_Segment_Manager are made. In
-= particular, For A¢auire_Object_Lock:

-~ calls Create_v~vew_Version:; else calls Open_For_Read or
-= Spawn_New_Generation, as appropriate.
== Acquire_Record_tock_Intention.,
-= Spawn_New_Generation, as apirropriate:

-=- by the Hean_5Segrent_~anager.

== Lock compatibility matrix:

if For_New_Version is true, then

Similarly, for
calls Open_“or_Read or

Assumes caller does N2T

== currently hold the mutex in the supptltied version maop eltry. Will

~=- acquire and release the mutex once the object has been locked.

-=- Modifies fields of the segment descriptor and version mao as specified

RWwO RR RW SRO U

X

- Current Lock

-- (py different action)
- R0 Wi RRC

- RDO ¢ X X

- :

- W3)

-= PDesired RRO X X X

-~ Lock :

- AT 3 X X

-- R= X

- r :

-- SHD X 1 X 1 X 1
- S 4 A D X X X X

[LIESE

X

Y.

-- Apsence of an "A" iniicates that the cgesired access will not pe oranted
-- i1 any UTHiKh action (not including requesting action) has the indic3ated
-~ current accesse. The] indicates that while this packaje does not

YDELTA_

FReRIVI_U_0oUNITS D% ACTIUN YV (93) paile

allow compativility, the Object package will "do the right thing” to
allow users the view that they are compatible. Via Max_Wait, queueing
is availaole when access is denied.

Lock upgrade matrix:

Current Lock
(by same action)
20 &0 RIO RWO RF RW SRO U

RO 3 X * X X X

w0 ; *2 * X X

Cesired RKO ; X X X X X
Lock :

RS X X X X

K™ ; X * X X

" ; %2 * ¥ X

SR ; X X » bl Y, X X y

J ; X X X X X X X X

Absence of an "X", "%x", or "%2" jindicates that the desired access

will not oe granted. #Presence of oné of these indicators indicates
that the desired access will be granted, even thougn there are other
actions waiting for incompatable access; but note that an action can
upgrade from <0 to «7 iff it is the only action with R). The three
positions witn "s#"s jdentify the actual upgrade cases. ~Note that there
are "X"s in tne same positions as in the comoatizility matrix.

The semantics of Supersedeable_Read_Object are as follows: Obviously.,
if the version in question coes not undergo updates while the s=reader
has the version, the s-reader sees the same value as a vanilla readsr.
The remaininz ceses: (1) The version is open for update when the
s-reader arrives. In this case, reader sees the writer's pbefore imaze.,
and continues to see it even after the writer commits. The
implementation will cause the reader to make a full codoy of the before
image at open time. (2) The version is already open by an s-reader when
the write arrives. The reader continues to see the same image. The
writer simoly makes 3 new version, in a fashion similar to the implicit
versions caused by various version control policies. Implementation
note: most of the imolementation of supersedeable read actually hancens
in the Ubject package.

The semantics of JUnsychronized are as follows: If the version is not
alreaagy ogen, tne u=-duener will have no access. If the version is
alreacy orLen, the y-opener will have access to the same jJ2neration as
the a2ther opener's. Take note that this means that the u=o0oener has
access to the sarc 4eneration as a writer, and can in fact make chanjes
to the writer®s inage. shen the version is closed ny atll of the other
opener's, the u-opener will have no access. The u=-opensr should be
capaole ot dealiny with non_Existent_Paze_Srror at any time, since
access may Yo away at any time. The above semantics may chanue from
software release to software release, so con't write lots of coce that

4

TOELTA_KRARIVI_0_0.UNITS.MACTION'V(93) page

-- depbends on 1t. In particular, this mode should NOT se directly
== available to customers (exception: ok when shielded by the 1L
-= packages).

== In some cases, the action manager considers the action to be in

-- deadlocks, or near deadlocks, and returns Lock_Error immegiately, even
-- thought the acquire operation gave a non-zero Max_Wait. Example:

== Actions Al and A2 hola RG locks on object X: action A2 attempts to
-- upgrade to wl, but can't pecause of the RO held by Al:; action A2

~= will get Lock_Frror immediately. Another example: Another exampole:
-=- Action A holds a wJ lock on object X and attempts to get a RwO lock
== on X with non-zero Max_wait: it will get Lock_Error immediately.

-~ *%«dARNING*%%* The presence of the upgrades marked by "+" allows for
-=- strange behaviour. 2 scenarios are described below:

-- Consider: task Tl uses action A to get a record write lock on some

== record A:; task Tl passes ownership to task T2 which proceeds to also
-=- get 3 record write lock on the same recorc X: tasks T1l and T2 each

-~ proceed to operate on the record toncurrentiy; unless these tasks are
-- preparea for this, one may get strange resuslts. Tasks can protect

-- themselves via the following technique: acguire the lock (which may be
-=- via upgraue) and ao not relinquish ownership of the action until after
=-- leaving the "¢critical region".

-- Consider a example which involves just a single task: Procedure X has 2a

-=- handle for action A, gets a "file handle™ for write on object 0, does

== wor« (like building upy context in the file), and calls some procecure
== Y, passini it A. The exact effect of procedure Y is not precisely

== known by X. Y gets yet another "file handle’” for write on object C

== (this is allowed by the upgrade semantics), and completely changes the

-=- contents of object (. GOn returns, X gets very confused. The only known

-- solution is for applications to understand whats going on.

-- These operations are only available to the OM supsystemn, and to other
-- "registered” environment clients (like the IO packages). In particular.,
-=- these operations are not available to "users™.

-= Possible errors:
- Is_Bad_Action (Status):

- o Action_Does_Not_Exist

- o wWot_The_action_Owner

- o Update_Has_bHeen_Prevented

- Is_Lock_Error (5tatus): o

- o Cant_Get_Ubject_Lock (1st & 2nd ops only)

- o Cant_Get_Record_Lock (3rd and 4th ops only)

- o Illegal_Lock_™Moae

- The Acquire_Object_Lock operation onltly takes modes
- Read_Jdbject and Write_Object. The

- Acquire_record_Lock_Intention overation only takes modes
- Yecord_~c3d_Cbject and Record_write_Operation.

-- Is_xXesource_Limit_crror (Status):

- o Jot_Is_At_Action_inode_Limit

procedure Acquire_Recoro_Read_Lock_And_Object_Lock
(Ic : Action_la:
hecord_Read_Lock_Version : Cbject_Lock_Handle.s
On_Item : Record_Key:

VUILTA _KKWREVL_0_0,JINTTS. 040 nCTION V(93) page

Jbject _Lock_Version : Version_Id:
Hap_Location I Version_Map.Data_lterm_Pointer;
Ubject_~ode : Lock_Mode:

Status : out Error.Condition;

Max_wait : buration := Duration®lLast):

procedure Acquire_record_Read_Lock_And_Intention_Lock
(1d : Action_Id,
Record_~ead_Lock_Version : Object_Lock_Hanale:
On_lten : Kkecord_Key:
Jdbject_iLock_Version : Version_ld.
Map_Location : Version_Map.Data_Item_Pointer;
Object_Mode : Lock_Modes
Handle : out Object_Lock_Handle;
Status : out Error.Condition.
Max_wait : ODuration := Duration'lLast):

These operations are 3 composite of Acquire_record_read_Lock and
== Acquire_Opject_Lock or Acquire_Kecord_Read_Lock and

-- hcquire_Record_Lock_Intention. FEither both locks are acjuired or
== neither is.

procedure Appen-_Log_Ffntry (ic : Action_ld.
Un_Version : Version_ld:
On_Item : Record_<Key.
Log_FRecord : Log_Record_Value:
Status : out Error.Condition);

’

== In some special coSes, additional information is needed to avandon an
-- action. If On_Jtew is nil, the action must have a write_Ovject lock
== on the version. If On_Item is not nil, the action must have a

== Hecord_«rite_Ubject lock on the version and a Record_Write lock on

== Un_Item., Currently, this operation is only used by load image's.

procedure ne_Open_Seyment (On_Version : Versioa_I1d;
dap_Location : Version_HMape.Jdata_Item_Pointer;
Status : out Error.londition).

-- Due to the internsl workings of commit in the face of multiple writers
== on the same object, tasks will occasionally handle
Write_To_Read_Only_Page conditions by callinc this routine.

-- This operation is availanle only to CM subsystems.

-=- Possible errors:
- Vversion_Is_Frozen

procedure Abandon_All_Actions_In_Job (The_Job : Machine.Job_worlds;
Status : out Error.londition);

-- Used uy Job termination to avandon every asction crested and still coerp
== by the specifieu jou. Assumes the joo's modules have already teen
-=- terminatei.

== This operation is available only to (" supbsystems.

-=- bossivule errovrs:
- Is_wad_Actior {(xtatus):

TDELTA_MKarmVI_0_ 0. dnITS 0MaACTION'V(93) paze

- o Action_Owner_inot_Uead

- o will get this if there exists a task (in The_Jobh, other
- than the thread running this procedure) which still

- claims to pe owner of an action owned by The_Job.

-- o Action_Guaroian_Not_Dead

- o will get this is the guardian task is not dead.

-=- Basic action operations =-
procedure Commit (Id : Action_Id:
Status : out Error.Condition);

-- None of the updates of this action actually take place until Commit
~-= is called. :

-=- Pgssivle errors:

- Is_wvas_Action (Status):

-- o Action_voes_~Not_Exist

-— o Not_TYThe_sction_Owner

-- o Commit_Has_seen_Prevented

- o Action_Is_A_Dependent_Action

procedure Atangon (la : Action_1Id;
Status : out Error.Condition).

-=- Used to unco the upcates of this actjon. Imolicitly called when the
-- owning task/job is abnormaliy terminated, and when the systew crashes.

-=- Possiole errors:

- Is_~ad_Action (Status):

-- o Action_UDoes_~ot_Exist

-- o Mot_The_Action_uwner

-— o Action_is_A_uvependent_Action

procedure Prevent_Commit (Id : Action_Id;
Status ¢ out Error.londition):

-= Used to prevent an action from being committed. Useful when an

-=- error is detected at the "bottom®” of an aljorithm, and it wants to
-- guarantee that erroneous changes to open objects are not committed.
== 0k if the action is already commit-prevented.

-= Possible errors:

- Is_bad_Action (5tatus):
- o Action_boes_Not_ixist
- o Not_The_Action_Gwner

procedure Prevent_uUnaaste (Id : Action_la,
Status : out frror.londition);

-- Usea to prevent an action from acquiring an Jpbject_write or Fecord_vrite
-- lock on any ovject. This is implicitly called vy Object.upen when the
-- Supersedatle parameter is true. Uk if the action is alreauy

-- update=-preventeaq.

-- {Yossicle errors:

YOLLTA _KReRLVI_D _CoaIuIT0021 ACTID 'V (53) paae
- Is_nad_Action (Status):
- 0 Action_uoes_+ot_Cxist
- o ivot_The_Action_Owner
- o Action_Alreany_Has_Update_Locks

proceoure Give_uUp_Uwnership (Id 3 Action_1Id;
Status ¢ out Error.Condition).

procedure Take_Dlwnershio (Ic : Action_1d:

Status : out Error.londition).

These operations are used to cause ownership to be traasfered from one
== task to another. Tne current owner (task T1l) executes Give_. Any
== future operations by Tl will result in Not_The_Action_Jwner. The

proposed new owner (task T2) then executes Take_ and pbecomes the new
-= owhner.

In other words, once uive_ has been callea, the only exported

== overation that can ve successfully applied to the action is Take_. In
the winoow between the call to Give_ andg the call to Taike_, the

== action is protected (frow auto-abandonment) by the continued existance
of task Tl. Tne new owner must be in the same job as the previous owner.

== If a task is currentiy the owner, and dies, it does an implicit Give_.

== Possible errors:

- Is_vadag_Action (Status):

- 0 Action_Uoes_~Oot_Exist .

- o hot_The_Action_0Uwner (1st op- only)

- 0 Action_dJwner_xct_willing (2nd op only)

- o Cant_Afer_dwnershipo_Cross_Jobs (2nd op only)
- 0 Action_JIs_A_uvependent_Action

== Information reguests =--

function Is_In_Progress (Id : Action_Id) return poolean;

== When false, the reason could be one of: (a) The given Id is

== garbage, and has never been started, (b) the action has committed.,
== and (c) the action has abandoned. There are no exported w3ys to
== distinguish petween these cases.

function Is_Commit_frevented (IJ : Action_Id) return 8solean;
function Is_Update_Preventea (ld : Action_Id) return Bool2an;

-=- Returns tne corresponuiny attributes of the action. Returns false for
== garpage input.

function Is_Locked (The_version : Version_Ig) return Rpsolean;
function Is_Lockec (The_version : Version_Id;
Tne_lter : Zecord_Xey) return Eoaslzan;

True 1ff the object/item is currently locked (in some mode, other
== than Unsyncnronized). <Returns false for garbace version_ld.

function Owner (lc : 4ction_ld} return Machine.Task_Id;

YOLLTA _FReREVI_O_O4dnITSaDMeACTION'V(93) page
function Uwner (]Id : Action_la) return OmaJob_I1d:

-~ heturns Nil when the given action is not in progress, or the Action_Igd
-=- is garbage.

function Guardian (la : Action_ld) return Machine.Task_Id;:

-- Returns Nil when the given action is not in progress, or the Action_lc
-=- is garbage.

function Master (Id : Action_Id) return Action_Id:

-=- Returns Nil when the given action is a master, is not in progress, or
-= the Action_Id is garbage.

functipn Cependent (lId : Action_Id) feturn Action_Id;

-- fBeturns Nil when the given action is not a masters is 20t in progressy
-= or the Action_Jd 1s garbaje.

function (onsumeca_Log_+tlock (Id 2 Action_Id) return Integer:
function Action_Noaes (la : Action_Id) return Integer:

-= Keturns { when the Jgiven action is not in orogress, or the Action_I:
-=- is garbage. These values reflect how much of the Action_Manager's
-=- resources are being consumed by the given 3action.

generic '
with prcceaure Visit (Locker_Id : Action_Id;
Locker_Job : Ome.Job_Id;
In_Mode : Lock_Mode)s

proceduare Traverse_Lockers (The_Version : Version_Id.
The_Item : Record_Key).:

-- Usea to find all the actions which have some lock on the given

~=- version/item. Calls visit iff the version/item is Llocked in some

-- mode other than Unsynchronized. May call Visit more than once for the
-~ same action. Nooz for garbage input.

generic
with procedure Visit (The_Version : Version_Ild;
The_ltem : Record_Key:
In_imode = Lock_Mode):

procedure Traverse_Locks (Id : Action_Id):

-- Used to find all the tLocks currently held by the given action. Does not
-- call Visit if the given action is not in proaress. In_vode will never
-~ be Unsynchronized. May call Visit more than once for the sawe

-=- version/item. Noou ftor garbage indut.

procedure Set_vaemon_#sit_Interval (Interval : Duration):
private

type Object_rock_Hancle is new Action_iLayout.Lock_List_FPointer,
Nil_Ubject_Lock_Handle : constant Object_Lock_dandle = null,

TDLLTA_KKGRIVI_P_Ca0 IT5.G%ACTION Y v (93)

end Action;

paye

lf\

G G P 2 A A
G p P A A

G Gu FP2PP AAAAA

G G F A A

G G P A A

CGGG P A A
User: G°A

Object: YDELTA_KKREVI_O_0.UNITS.UMJNAMING
Version: V(41)
Request: 1271

Date: April 24, 1955
Jueued: 11:26:18 Aw
Printed: 11:36:50 A

"OLLTA_

Ao v 1_U_0dUNITSLOMORAMINGYV(41) page 1

with Job.,
with Error.
with Om_Definitions:

package Naming 1is

pragma Subsystem (Ouject_management):

Note that there is a parallel package, Naming_Messages, wnich will
interpret bad status and produce error messasge strings.

package Om renames Om_vefinitions:

subtype Context is Om.Naming_Context:

Name resolution --

The rules from Tiw's Gamma Max document need to be reprodjuced here.

Additional feature: Assume that we have a name of the forn

“eeaf00'"W(eee)e _et "'!'...Kernel™ denote the root of tae world
containing the object identified by "...Fo0". The following are |
examples of uses of the “*V" attribute: |

(a8) eeeFoOO'V() refers to version 7 of Foo

(D) s..Fo0'V(Gamma.treen) "t.doKernel.0amma"™ is a directory
with subclass Path.
"te.e.Kernel.G0amma.areen™ is s

universe view: assuming it refers

to a world view which refers to version

14 ot Foo, then the given string refers

to version 14 of Foo.
(C) eeafFo0'V(33amma) same as "ee.o.FoO'V(sammna.lurrent)"

(d) aaefoO0'V(_Viea'V(3)) "t eeoKernel._View'VvV{(3)" is a world
view: assuming it refers to version 21
of Foo, then the given string refers to
version 21 of Foo.

Note that "...Foo'v(GCamma)"” is not just a shorthand for "...Foo'V(7)".
In particular, as tne destination of an operation (say “Copy"., for

example), “...Fo0'V(3amma)” can cause the new version to be created in
the Samma view.

we do not currently support full pathnames or complex wildcards in the
"'v" attribute. In particular, the only special characters supportes
in thne "'W" sttribute are "." and "a".

Adsitional feature: “ational reserves all simple nawmes which both start

ana end witn an underscore. The empty string is not consideres well
formede.

procedure <esolve (hamne : Um.Unique_wildcard;

Actioaon : Om.Action_Id.,
Fesult : out Om.Version_HKandle;

TDELTA_KKRLVI_C_0.INITS. 04 NAMING'V (41) page

Status : out Error.Condition.
In_Context : Context := Joo.lefault_Context.
Max_Wait : Duration := Job.Default_wait);

-- To be successfully resolved, the given wildcard must match exactly
-=- one object. Exception: search lists cause success on first match.

== The object referenced by the given wildcard is identified oy

-- Result.Vversion. If the given wildcard specifies a specific version

== number (by using "'V(7)", for example), then Result.Version.Number

-- identifies that particular version; otherwise, Result.Version.Number is
-=- Nil. If the given wildcard specifies a universe/world view (by using

== "'V{(Gamma)“”, for example), then Result.Universe identifies that

-= particular universe/world view; otherwise, Result.Universe is Nil.

-= Note that the syntax is such that Result.Version.Nusber and

~= Result.universe cannot both be non=-Nil. These rules are such that

-= operations like {bject.Open "do the right thinc".

-=- Action and rMax_wait are used iff Name refers to indirect filese.
-- Note that this form of resolve does NOT produce Diana.lfree.

-=- Possivle errors:
- Is_Bad_0Object_Id (Status)

- o These are caused by a context which does not identify an
- existing ovject. These are possible iff Name does not
- start witio v,

- Is_Bad_Fathname (Status) '

- Is_zZago_Action (>tatus) '

generic

with procedure Visit_Roof (Roof : Om.0bject_Handle):
with procedure Visit (Result : Om.Version_Handle):
with procedure Handle_Error (Status : Error.Condition).

procedure wild_Resolve
(Name 2 Om.Full_wWildcards
Action ¢ Om.Action_1Id:
In_Context : Context := Job.Default_Context:
Suppress_Duplicates : Soolean := False;
Max_Versions : Integer = 2 %% 16:
Calculate_Roof : Soolean := False:
Max_wait : Duration := Job.Default_VWait):

-= Similar to the Resolve procedure, with these differences: Is happy

-=- with § or more matches, calling Visit for each match. After an error.,
-= this procedure will simply stop searching further in tne active context,
-- going pack to any remaining contexts in its stack. The caller is free
-- to raise arcitrary exceptions in the generic formal sudprograms,:, these
-=- terminate the resolution.

-=- when Suppress_Duclicates is false, it is possible for sets, indirect

-=- filess, and wildcarded universes to cause the same odject to pe Visit'd

-=- more than once. when true, this procedure has to build up an internal

-=- map to filter out duplicates:; this has considerable performance impact.

'DELTA_

KKeXEVI_G_CoUNTITS O 4.nAMING'V(4T) page 7

The Visit_Roof procedure is called ift Catculate_roof 1s true. In this
caser, Visit_Zoof is called prior to any calls to Visit. A “roof" is

an oobject which is a parent of every object identified Ly Visit. This
routine attempts to find the "best roof', namely the parent which

i1 furthest from the root. Use of this feature causes the procedure

to suild up an internasl map anc has consideratle performance impact.

Max_Versions is used if either Suppress_Duolicates or Visit_Roof is
true. It limits the size of the internal map and therefore the numoer
of versions which can result from the resolution. If the error
loo_Many_Versions is returned, resolution stops, ana Visit is called
for all of the versions currently in hand.

Possible errors:
Is_Gad_vVersion_Handle (Status)
' 0o Something wrong with In_Context.
Is_5aa_rathname (>tatus)
0 Somethin; wron3 with Name.
Too_Many_versioas
0 "ax_Versions is smaller than the number of objects which
match tne wilocerd. Cannot be returned unlass

Suppress_Cunlicates or Calculate_Roof is true.
Is_tad_Action (Status)

type Create_hind is new Long_Irteger ratge 0..2 %% 3 = 1;
Creating_New_Version : constant Create_Kind := 1,

Creatinj_New_Ouject : constant Create_Kind :
Creating_Temu_Unject : :

= 2.
= 3.

constant (Create_Kind

procedure nesolve_for_Create (Name : Om.Unioue_Wildcard;

Action : Om.Action_Id:

Kind : out Create_Kind;

“esult : out Om.dbject_Handle:

Chila_NKame : out Gm.Simple_Nane;
Class_Of_New_Object : out Un.lliass_Mtumber;
Status 2 out Error.Congition,

In_Context : Context == Job.vefault_Context:
ax_Wait : Duration := Job.default_Wait).

This operation is usea by the string form of Object.Create. Assuminc
Status is is Successful: If the given Name resolves to an already
existing ohject, then xind will be Creatingy_New_Version, and Result
will identify the ouject (for which a new version is to be created).,
just as it the vanilla Resolve had been invokede If the string is empty
(with the possible exception of a "*C" attribute) then Kind will be
Creating_Temo_Object, Child_iame will be a simple name string generatec
from a unique id (returned by Om.Get), and Class_Of_New_Object will be
N1l Cor the value of the optional ™'C"™ attribute). Utherwiser Xind will
pe Creating_vJew_"nject, Jesult will juentify the darent of the new
object, (nild_Name will contain the simple name of the new otject, and

Class_uUf_ilew_Object will pe Nil (or the value ot the ootional "t*C"
attrioute).

Fossivle errors:
incluaes all those that can be returned by vanilla Hesolve

YOLLTA_KRAREVI_C_J.UNITS.OMJNAMING'V (4D page

procedare Substitute (The_Object : Om.Version_Handle:
Source : Om.Full_Witldcard:
Destination : Om.Full_wildcard:
Result 2 out Om.Pathname; ‘
Status : out Error.Condition);

~= Given a source name (with wild cards) that matches the name of the

-=- given object, return a Result string in which substitution characters
-~ have been replaced by the matching portions of the object's name as
== indicated by the destination pattern.

-= Substitution semantics need to be fully specified.

-~ Used by Opject.wild_Copy.

-=- RESTRICTIUN: not supported in 1lst qtr imple

-= Fpssicle errors:

- Is_tau_Version_Hanale (Status)

- 0 Somethino wrong with The_Object.

- Is_nadg_rathnamne (Status)

- 0 Sometning wronc with Source or Destination. Use tne
- Is_sell_Formed function to see which one 15 bad.

-= [etailed structure of names ==

function Is_well_Formed (Nam2 : Ome.Full_ Wildcard) return osoolean:
procedsre Check_well_Formed (iame =z Om.Full_Wildcard,
: Status : out Error.Condition).

-=- Possible errors:

- Filename_Syntax_Error
- o Status identifies the character in Name which caused the error.,
- as well as the token class which was expected.

function Prefix (hName : Omo.Full_Wildcard) return Om.Full_dWildcard:
function Head (tiame : um.Full_Wildcard) return Om.Full_wWilocard.
function Tail (Name : Om.Full_wildcard) return Om.Full_Wildcard:

== Given ill formed names, these functions proijuce undefited results.
-- Prefix removes the last segment. Head returns only the first segnent.
-= And Tail removes the first segment. R

-- Prefix ("A.B.C") => "A.8"
- - Pref.ix (OIAIO) :> "”n

-- Head ("A.B.C™) =) "a”

- - Head ("A") :) l‘Al'

-- Tail ("A.3.C") =, "3.C"

- - Tait (l.'L‘ll) => "mae

function Attrioutes (isame : Om.Full_wildcard) return String:
function Class_*ttrinute (tame 2 Om.Full_wildcard) return String.
function Version_fttripute (Name : COm.Full_vildcardg) return Stringc,
function Part_Attribute (Name : Om.Full_wildcard) return 5tring.

-=- Given ill formea names, these functions proiuce undefined results.
-- /ttriputes returns the attributes at the ena of the Name, including the

POt TA _KCaREVI_O_ G ilTS 240 dANINGY VY (41)

pace

== leaading "', or a null string if Name has no a attributes. The
== remaining functions return the indicated attribute.

procedure Get_Full_''ame (The_Object : Om.0Object_Handle:
Full_Name : out Om.Pathname;
Status : out Error.Condition).

procedure Get_Simple_<ame (The_Otject : Om.Opject_Handle:
wame : out Cm.Simple_Name;
Status : out Error.Condition):

Returns the full/simple name for The_Object, excluding qualifying

== attributes (like the "'V" attribute). The Version_Numbsr component
== The_Object is ignored.

~- Possible errors:
- Is_Bad_Version_Handle (Status)

procedure Get_uniaue_Full_nName (The_Object : Om.Version_Handle;:
Full_Name : out Um.Pathname,
Status : out Error.londgition).

procedure vet_Jnicus_Simule_Kare (The_Object ¢ Om.Version_Hanale:
Name ¢ out Om.Simple_tame;
Status = out Frror.Condition).

== feturns the fully/simple nane for The_Object, includiny jualifying
== attrioutes (like the "'V" attribute)!?

== Possible errors:
- Is_Bad_version_Hanale (Status)

function iroct return Um.urject_%andles
== Returns the JOvject_Id for "'".

procedure Get_Parent (Lhila : Om.Object_Handle:
Parent : out Om.Object_dandtle;
Status : out Error.Condition);

== Returns the nanole of tne Child's parent. If Child refers to "t*,
== returns Nil_0Object_randle.

-- Possinle errors:
- Is_iao_Ubject_1d (Status)

procedure uet_Contsining_Directory
(Uf_Cuject : Um.Object_Hancdle;
containing_Directory : out Gm.Ubject_Handle:
Status : out trror.Conaition);

proceaure Get_Containin:_world
(cf_ouvject ¢ Om.ibject_randle;
Containinia_world : out Cm.Object_Hanale:
otatus : out Error.Condition):

of

then

YULLTA K oREVI_O_GoJNTTS.OMONAMING®V(41]) page

procedure Get_Associated_Directory
(For_Object 2 Om.Object_Handle:
Associated_Directory : out Cm.0bject_Handle:
Status : out Error.Condition);:
procedure Get_Associated_wWorld
(For_Ubject : Om.QObject_Handle:
Associated_World : out Om.0Object_Handle:
Status : out Error.Condition);

-- The Containing_ functions return the nearest enclosing world/directory.
-- The Associated_ functions are the same as the Containing_ functions,
-- except if the argument is a world/directory, the argument is returned,

-- Possible errors:
- Is_Bad_Version_Handle (Status)

procedure Set_Child (Parent : Om.Object_Handle:
Chitd_iame : Om.Simple_wildcard.
Child_Id : out Om.Object_Handle:
Status : out Error.Condition).

-=- Returns the {Ovject_Handle of the one child (of parent) whose simple
-=- name matcnes Chila_nName (which may include wildcards).

-=- Possiole errors:

- Is_Zad_Version_standle (Status)

- 0 Somethins wrong with Parent

- Is_vad_Pathname (S5tatus) o
- o Something wrongy with Child_Name
generic

with procedure Visit (Child_Id : Om.Ubject_Handles:

Chitd_Name = Om.Simple_Name):

procedure Traverse_Children (Parent : Um.0Object_Handle:
Status : out Error.Condition).

-~ Calls Visit for every child object of Pareat. Visit is called in
-=- sort order, by Child_xName.

-= Possible errors:

- Is_Bad_Version_Handle (Status)
- o Somethinyg wrong with Parent
generic

with procedure Visit (Depth : Positive:
The_QOtject 2 Om.version_Handle:
Its_Name : Om.Simple_Name_String:
Go_Deeper : out Boolean):

with procedure Handle_Error (Status : Error.Concition).

procedure vepth_First_Traversal
(Root_0t _Traversal : Um.Ubject_Yandle.
Pattern : Um.%imple_wildcard == “a";
Class & Ur.Class_xumper = Om.Nil;
Suovunits : ®oodxtesan = Trueq
Directories : doolean := True.
worlds : 3ocolean = True:

POELTA_KReRIVI_O_CoJNITS.Dw.nAAING'V (41) page

enc

Versions : Doolean := False):
Calls Visit for svot_uf_Traversal, with Depth = 1. Its chilaren will
have a depth of 2, etc. Child objects are visited in sort order by
Its_Yame. Versions are visited in sort order by Version_Number. Assume
that objects "C1" ana "(C2" are children of object "P". “depth first"
implies tnat all of Ci's children (including all their wversions) are
Visit'd prior to visiting C2 or its children. It also implies that all
versions of Cl1 are visited prior to any version of (2.

The Go_Deeper out parameter of Visit can be used to praine the traversal,

The Pattern, Class, Subunits, Directories, Worlds and Versions
parameters are filters which prune the traversal.

The caller is free to raise arbitrary excestions in the generic formal
Subprograms: these terminate the resolution.

Possiule errors:
Is_:.ad_vVersion_handle (Status)
0 Somethiny wrony with Root_Of_Traversal
Is_tau_Fathnawe (Status)
0 S>omethingy wron) with Pattern

tiaming:

GGG pPppPR2 AAA
G a P 2 A A
G P P A A
G GG PPPP ALAAA
G G P A A
G ¢ P A A

GGGG P A A
User: GPA

Object: YDELTA_KKREV1I_0_GJUNITS.OM.OBJECT
Version: V(173)
Regquest:s 1272

Date: Aporil 24, 1955
Gueued: 11:20:30 Ax
Printea: 11:37:20 AM

YUZLTA_

KRaRIVI_U_CaUnITSi04aUsJdICTV(173) L

with Job,

with Error;

with Action:

with Machine;

with Calendar:

with Om_Definitions:

package Ubject 1is
== pragma Suvbsystem (OiLject_Management);

package Om renames “m_letfinitions;

subtype Unique_ld is Om_uefinitions.Unique_Ild;

subtype Context is Om.Naming_Context;

pasic Operations ==

- D SR D SR D G S ws GE AR EE e e .-

Normally, objects have 1 or more versions:; that s, exounging th
version of an ovject will normally cause the object itself to be
eéxpungyeJs. However, the user model includes the ability for objec
exist with no versions. In particular, when tne last version of
object is expunyeds, but the object still has children, then the
object will continue to exist, with no versions. when the child

are expunged, the parent object (with no versions) will also bpe
expunged). '

A view can select a version of a child object without selectino
version of the parent object.

Note that the atove semantics apply to directories as well as ot
objects (since all object classes may have children).

The phrase "usual rules for Naming.kesolve™ means that the opera
takes 3 parameters:

ivame : Ume.dnique_wildcards

Action ¢ Om.Action_Id:

In_Context : Context := job.default_context:
These parameters are passed to Naming.Resolve to compute the
Version_Handle. Typically a second form of the operation is also

age

e last

ts to
an

parent
objects

a3

her

tion

provided wnich takes a Version_Handle, to avoid calliny Namning.”esolve.

The term "retention List"” refers to the set of versions selected
a world view, The “current"” version (selected by a3 worli view)
the “top”™ item of tne retention list. "Pusning® causes a new ve
to be added to the top of the retention tist., becoming current.

by

is

rsion

note however that if current is Nil, pushina simply causes the new
version tc replace current. 1f the retention list was already full (as
svecified ¢y the retention count in force for tne world view, then

pusting may alsu cause the "bottom™ item to be removed from tne

tist,

the removed versiun 1s expunaed if possible (as defined oy the txpunge

orccedure later in this spec). The retention List (together with
reserves rit) is alsc referred to as the "slot" for the object.

the

The vhrase "usual rules for interpretation of Version_dandle” means:
() A5 the source of an operation (or ths target >f an ooperation

Py

‘ODELTA_

KNePEVI_O_CadinlTS.0M.05JECTIV(173) page

which does not create a new version): If :
Version_Handle.Version.Number is not Nil, then the specifieag
version is used, and Version_Handle.Jniverse 1s igngored.
Otherwise, we use the Version_Number which is current in the
selected world view. The “selected view" is specified by the
«Universe component or Job.Default_world_View when the .Universe
component is Nil. A Record_Read lock is acquired on the slot.
(c) As the target of an operation which creates a nes version,
Version_Handle.Version.Number is ignored, and th2 new version is
created in the selected universe/world view; the definition of
“selected” is identical to that above. A Record_write lock is
acauired on the slot. (If the Record_write lock fails because
the action already has Object_Write, updates to world views
will use the Object_Write lock instead.)

The. phrase "usual rules for creation of new version"™ means:

"explicit version creation” (calling Create) causes the new

version to be pushed onto the retention list (for the object in the
selected world view), thereby becoming its "current versioa”. This may
cause the bottom predecessor version to become no longsr selected by
the world view (as required by the retention count); this predecessor
version will be expungeag at action commit time. A ecord_write lock is
acquired on the slot.

“Implicit version crestion™ (calling OUpen with an update mode and
appropriate Vversion_Control_Policy) §s identical to the above case when
the Version_Control_Folicy does NCOT ﬁave the
Implicit_versions_Replace_Current bit set. Otherwise, the new version
simply reolaces the current version in the retention list: the replaced
version is expunged at commit time; and a Record_wWrite lock is acquired.

Inctuded in the usual rules for new versions are the followiny Ada
specific properties: If the object has Class_Ada and & parent which is
not Class_Ada, and the "current version” (in the selected world view)
was previously wil, then an appropriate Link_Pack entry is made. If the
selected view's Link_Pack is currently shared with other views, then a
new version is made (this copy is committed immediately, and will
therefore not be undone by action abandon). This latter rule is
referred to as the "usual rule for undifferentiating tne Link_Pack”.

Unless specified otherwise, all locks are acquired on behalf of the
given Action, and the operation will suspend for up to Max_wWait for
each lock. The order in which operations acquire Locks is not specified,

Unless specified otherwise, one can assume that an operation which
fails leaves "the world"” the way it was prior to the ooeration.

An exception: when an operation fails, it does NOT release locks that
it acquired prior to the failure; if no modifications have been made,
the action simply holds extraneous locks: if modifications have been
made, the action wiltl become (ommit_Prevented.

procedure hesolve (The_ubject : Om.Version_Handle:

The_Version = out Om.Version_Id.:
Status : out Error.Condition);

Takes the given Version_Handle and computes the actual Version_Id

AN

POLLTA _KReRoVI_0_CuaJNITSL04.08JECTYV (173) pace B

== according to the usual rules for interpretation of source
-= Version_ranule's.

-- Possivle_trrors:
-- Is_cad_Version_randle (Status):
type Jpen_Handle is private;

Nil_Upen_Handle : constant Gpen_Handle;

procedure (reat2 (iame : Um.uUnique_Wildcard;

Action = Om.Action_Id;
Handle : out Open_Handle:
Status : out Error.Condition:

Class : Om.Class_Number = JOmoNil:s

In_Context ¢ Context == Job.Default_Context;

Initialize : Boolean := False:

Subctass ¢ JIm.Subclass_Numpber := OmaNil;

version_pPolicy : Om.Version_Control_Policy == Om.Nil;
Incex : Om.Object_Index 2= Jmadils:

Creation_1d : Om.Net_Unique_Id 2= Om.Nit_Vlet_Jnicue_I4;
Max_walt : Quration := Jot.default_Wait).,

procedure (reate (The_unject : Om.Object_Handle:
Action : Um.Action_Ild:
Handle out Open_Handle;
Status out Error.Congition;
fnitialize : Boolean ¢= False:
Suvclass I Um.Subclass_Number = Om.Nil:
Max_wait : Duration 2= Job.lefault_dait);

== In the first form, Naming.Resolve is used to compute the Jpject_Hancle.
== If this succeeds, then a new version of the object is created.

== Otherwise, if the name is null (except for an optional "*'(" attribute).,
then a "temporary object” is created. In this case, In_Context is
== ignored. The object is created in the Job.3arbage_Directory with a

unique name constructed from the time and date. The given action
== becomes commit prevented.

Otherwise, Prefix(Name) and In_Context are used to comdute the
Opject_Id of the parent (of the opject to be createi); the last sedrent
is used as the siwple name of the child object (to pe created).

For a newly create; ovject, the "*C" attrioute may ne used to specifv
== the class of the object, as well as the Class parameter.

-- For a newly created object, the Version_Policy parameter specifies

how future operations on the object will behave. ALl versions of the

== ouject will follow tn- sanme policy. If a Nil Version_2olicy is supolie.
the Jefault_vVersion_“olicy is useu.

For 3 newly creastes oLject, the “eserved uvit is set.

For a newly created object, it is possinle to specify the desired
== Object_Ingex and Lreation_Jd. This facility is used to restore an
== an object from "archive"” or move it from macrtine to machine, ir the
context of a varticular view or world.

YDELTA_KKAKIVI_O0_C UNITS 0% 3BUECTV(173) : page

In the second form, The_0Opject refers to an existing onject, for
whicth 3 new version is created.

The following rules apply to both forms:

Usual rules for interpretation of the Object_Handle. Jsual rules for
creation of a new version.

The Version function can be used (with the the returned Open_Handle) to
determine the id of the newly created version. The Version_Number field
(of the id) will se non-Nil. The new version is held with an
Object_Write lock, and is open.

If Initialize is false, the new version is empty, and we say that “an
empty version was created”. 1If the operation creates the first version
of a new object, the Initialize parameter is treated as if it were
false. Utherwise, an JUbject_Kead lock is acquired on the brevious
version (selected by the selected world view) and its data bits are
copied into the newly created version, and we say that “a non=-empnty
version was created”,

The Predecessor_iipdate_Id function can be used (on the returned
Open_Handle) to deterwine the stamp of the copied version.

1f a non=Nil value is supplied for Subclass, then the subclass of the
new version is set as specified (note that, untike class, different
versions may have different subclasses). If a Nil value is supplied,
and Initislize is treateo as True, then the subclass of the new version
is copied from the predecessor version. In the remaining cases, the
subclass of the new version is Nil.

If Initialize is treated as True, the Predecessor_Update_ld attribute
is set to the Last_Update_Id of the source (of the new version's
data bDits), else Predecessor_Update_Id is Nil.

Class specific serantics (these are in addition to or countermand the
general rules given above); there are no subclass specific semaatics:

‘Llass_Directory: The directory witl NOT be the root of a new world:’

must use the wWorld package to do that. The returned Open_Handle will
be Nil. The Initiatize parameter is ignored.

Class_File: An empty file has organization Binary_File, and contains
no data bits. A non-empty file has the same organization, and data
bits. Unly the 1) packages should use this operation; "users™ should
use the Create in the 11U packages.

Class_Pipe: An empty pipe has some default buffer size, whereas a
non-empty pioe has the same buffer size as the predecessor. The pipe
is Llocked as specified by the %Mode, and is open fron the point of
view of this packaje. Kote that a mode of xecord_Wwrite is typically
more useful than the gefault of Object_wWrite. Only the IO packages
should use this operation:; "users” should use the Create in the I0
PaCkaJeSe

Class_Auga: Adaitional semantics supplied by the Ada coupler and are as
yet unspecifieaq. ‘

IR

'DELTA_

KKeRIVI_0_0.JNITS.04.00J05CT*V(173) page

Class_Aga_Attributes: Additional semantics supclied by tne AJa coupler
and are as yet unspecified.

Class_Code: _ike other classes of objects (such as files), a code
version is modified using the segment operations at the end of this
package. Just as for other classes of objects, the contents of the
version can only be addressed (as a heap) while Dpen. In addition to
this "heap name", each version of a code o2ject also has a distinct
code segment name assigned to it; the contents of the version can
always be addressed via the code segment name, even when the version 1is
not Openi but the version cannot be modified via the code segment name.
A page fault on page "I" of the code segment is resolved by creating
the code page [as a copy of the current value of page I+1 of the hea:c
page (of the corresponding version).

Class_Load_Image: Initialize is always treated as false.

Possible errors:
Is_BLad_vVersion_nandle (Status):
Is_Sac_FPathname (Status):

0 '1aht be because an object must be created, but the last segment
(nane of new child) contains wildcardse.
Is_caa_Action (Status)
Is_tLock_Error (Status):
Predecessor_Version_Is_Not_Known
o Attempting to create a new version of an existing object, and
the Initialize parameter is true, but the selected world view
does nct currently select a version of the obj2ct, therefore,
we don't know the version number of the "predecessor”.
Link_Pack_Zntry_Already_Exists
0 Attenpting to create a new Ada library unit with a simple
name which conflicts with the name of some unit which is
already in the Link_Pack of this wirlde.
Illegal_Class
o This operation is not supported for Class_world_View,
Class_Universe_Views, Class_Link_Pack, Class_Taove, or
Class_Terminal.
Ubject_Class_Mismatch
o Can occur in 1st form only. If the object already existed.,
means that the existing object does not have the class specifies
by the non-4Wil Class parameter. If the object did not already
exist, ano the class param ana "'C” attribute are both specifiea
and neither is Nil, then this means that they are not egual.
Ooject_Index_Already_1ln_Use
o The Index parameter is non=Nil and refers to an already
existing object.
world_View_Is_frozen
o The specified world view is frozen: therefore it is not
possible to> create a version of the object.
Is_iesource_Linit_Trror (Status):
Is_Version_Policy_trror (Status):
0 Unagefined_version_Policy
o Multiple_Versions_~ot_Supported ‘
veans trnat either the class of the existiny ooject does not
support multiple versions, or the
Allow_Explicit_Create_Version bit is not set in the aiven
policy options. Note that directories canr have at most 1

g

TDELTA_KK«RZIVI_D_0oUNITS.OM.u3JECTV(173) page £

version.
o Juject_Is_Not_Reserved
Attempting to create a new version of the object, but

the ovbject®s slot (in the target view) does not have the
Keserved DIt set.

procedure Open (Name : Om.Unique_Wildcard.:

Action : Om.Action_Id;

Mode : Jm.lLock_Mode:

Handle out Open_Handle,

Status out Error.Condition;

Class : Um.Class_Nhumber := Om.Nil;
In_Context : Context == Job.Default_Context:
Ignore_Reserved_Bit : Boolean 2= False;
Max_wait : Duration == Job.Default_Wait),

" s

procedure Jpen (The_Version : Om.Version_Handle:

Action : Om.Action_1d:

Yode : Ym.Lock_Mode.:

dHandle : out Jpen_Handle:

Status : out Error.Condition,;
Ignore_Reserved_Bit : Boolean := False.:
Max_Wait : Duration := Job.Default_wWait).

Usual rules for Naming.Resolve, and interpretation of the Version_Handle.
The followina special rules take prededence over the usual rules:

I1If (a) The_Version.vYersion.ilumber specifies a hil version and
(L) ““ode 1s one of the update modes (egr, Write_Object) and
(c) Tne selectec worla view is not frozen and
(d) Either ; .
(1) The Private_Version_On_Every_Update policy bit
is set, or ‘
(2) The Private_Version_On_First_yUpdate policy bit
is set, and the version that would be selected as a
target under the normal rules is either frozea or
referenced more than once
then an Open_Handle is generated by an implicit call to Create, with

‘Initialize = True:; this is known as "differentiation®™. If the

Implicit_versions_Replace_Current policy bit is set, the management of
the retention list is slightly different (than the rules specified for

the Create procedure). Specifically, the nes version simoly replaces
the current version.

If (a) The_Version.Version.Number is not Nil and

(b) Mode is one of the update modes (e3, Write_Jdbject) and

(c) The Prevent_Update_Without_View policy bit is aot set and

(3) The specified version is not frozen
then the identitied version is opent'd for usdate. Wote that this rule
will allow the following: Une can update an unfrozea version which is
shared by more than one view. One can update a deleted (but not yet
expunjed) version.

I1f The_version.Version.humber is Nil and the Mode is not in the set
{Unsynchronized, Supercedeable_Readl, then the action acquires a
Kecord_read lock on the slot: in all other cases, the jiven action

'"DELTA _KKaREVI_C_0.UNITS. 0% UBJECTI' V(173 page

== acquires no slot lock. In any case, the action acquires tnhe requested
== lock on the selected version. Note that if differentiation results, a
seperate action is created which acquires a slot Record_write locks, and
Cbject_Read lLlock on the copied (predecessor) version, and is committed.

Due to internal implementation requirements, when a new version is
implicitly created (as defined by the above paragraph), the
undifferentiation is actually done on a separate action which is

-= committed immediately: thus, the undifferentiation «ill not be undone
== by action abandon. This should be "transparent”.

== when a new version is implicitly created, the new version inherits
the subclass attribute from the source (of the new versioa's data bits).

When a new version is implicitly created, the Predecessor_Jpdate_Id
== attribute is set to the Last_Update_Id of the source (of the new
== version's data bits), else Predecessor_Update_Id is Nil.

== When an object is first Open'd (for Supersedable read), ani later

== Upen'd for upsate, the Prior_Update_Id function should be usei to
== detect a situation in which the ooject has been modified between the
== initial Open (for read) and the subsequent Upen for update.

== To fincd out what version was Open'd, feea the Open_randle to the Version
== function.

-~ Class specific semantics:

1
== Class_Code: Jpserve that if 'ode is one of the update modes, but
== differentiation wos not performed, this operation gives one the
abpility to chanye the contents of an existina code segnent.
Fememuer that code se;ment names are assigned to new versions., not
new generations. See the Refresh_Code_Segment operation.

Class_Load_Imace: Upcate moces are not allowed in conjunction witn
-— objects of this class. One must use the Create operation and get a
== new version. This restriction might be relaxeo at some future date.

-= Possible errors:
el Is_Bad_Version_Handle (Status)

- Is_Baa_FPathname (Status)
- Is_bad_Action (Status)
- Is_Lock_Frror (Status):

- Illegal_Class

o This operation is not supported for Class_ODirectory.,
Class_Universe_View, Class_wWorld_View, and Class_Link_Pack.

- Version_Ils_Frozen

- Is_Resource_Limit_Error (Status):
- Is_Version_rPolicy_Srror (Status):
- 0 Chiject_ls_Not_Feserved

Atter:ted to Open with one of the update modes,
The_version.versionr.humber is Yils, tne
Isnocre_ieserved_iiit parameter is False, ani the

the ovject®s slot (in the target view) does not have the
eserveg sit set.

- 0 "ust_Upaate_Via_view

The_VYersion.Version.Number is not Nil, aut the
“revent_Update_wWithout_View policy bit is set.

IDELTA_KKaREVI_C_QCuJINITS.01.08JECT'V(1I73) page

procedure Celet2 (Name : Om.Unique_wWildcard:
Action : Om.Action_I1d;
Status : out Error.Conditione
In_Context : Context = Job.Default_Context.
Max_Wait : Duration := Job.Default_Wait):

procedure [elete (The_Object : Om.Object_Handles
Action : Om.Action_Id:
Status : out Error.Condition;
max_wait 3 Duration := Job.Default_Wait):

== The usual rules for Naming.Resolve. Usual rules for selecting a
== world view (from The_Object).

== The following additional rules apply: Object.Versior.Number is ignored.
== Nil is pushed onto the retention list (of the selected view),

== following the usual rules for creation of a new version (the new

-= version simuly haopens to be NWild.

-~ Note that the "deleted” version(s) can still be named (using string
-- names) vis other referencinyg world views, or by use of the "'V"
-= attribute; and they can, of course, be named by their Version_Id's,

-~ If the deleted version has Class_Ada and a parent which is not
-=- Class_Ada, then the corresponding Link_Pack entry is deleted, with the
-= usual rules for undifferentiating the Link_Pack. There are additional

-= (unspecified) ousolecense rules for Class_Ada., Class_Ada_Attributes, and
== Class_Coade.

-=- The action will acjuire a Record_Write lock on the corresponding slot.,

-~ Possipble errors:

-- Is_sad_Version_tandile (Status)
- o Ouject_Not_In_View
- o The ovject is already deleted in this view.

- Is_tiad_Pathname (Status)
- Is_Bad_Action (Status)
== Is_Lock_Error (Status):
- Itlegal_Ctlass

- o This operation is not supported for Class_Universe_View,

- Class_Worli1_Views, and Class_Link_Pack.

-- wortd_View_Ils_Frozen

- Is_Resource_Limit_FError (Status)

- Is_Version_Policy_crror (Status):

- o Ubject_Is_Not_Reserved

-- The opject*s slot (in the target view) does not have the
- Reserved bit set.

generic

with procedure Visit (Version_To_B8e_Deleted : Om.Version_-dandle).

with procedure Handle_Resolve_Error (Status : Error.Condition):

with proceaure Handle_uelete_Error (Status : Error.Condition;
bad_Version : JmJ.Jdoject_tandle);

procedure wild_celete (Name : Om.Full_Wildcard:

PCELTA_KKeRIVI_O_0.UNITS.0%.JBJECTIV(173) _ page °

Action : Om.Action_Id;
In_Context : Context
YVax_wait : Duration :

= Jab.Nefault_Context.
Jop.Default_wait):

== Basically, employs Naming.Wild_Resolve (using Name, Action, and
In_Context) to produce a sequence of Version_Handle's; errors produces
== by Wild_Resolve are fed to Handle_Resolve_Error. For each

-- Version_Handle produced by Wild_Resolve, calls Visit (with a fully

-=- resolved Version_Handle), and then the correspondiny form of Delete:
== its errors are fed to Handte_Delete_£Error.

== As usuals the caller is free to raise arbitrary exceptions in the
generic formal subprograms; these terminate the deletion process,

== however, it is up to the client to abandon the actions, if that is what
-=- is desireg.

== Note that one can use "...Fo0'V(#)" to cause the object to be deleted
~= from all views.

Note that one can do things like: set Max_Wait to 0, and ignore
calls to Handle_lelete_Error which produce Status for which
== Is_Lock_Error is true.

Clearly, this operation can do lots of damage, esvecially when followed
== by World.txpunge.

== RESTRICTION: not supported in 1st qtr imol.
]
-- Fossivle errars: ’

0 Union of those produced by Naming.wild_Resolve and the
- Version_tandle form of Delete.

procedure Jncelete (Name : Om.Unique_Wilacard:
Action : Om.Action_Id.;
Status : out Error.Condition,
In_Context : Context := Jov.Default_Context.
Max_wait : Duration := Job.Default_Wait):

procedure uUndelete (The_Version = Om.Version_dandtie:
Action : Om.Action_Id:
Status : out Error.Condition;
“ax_watt 3 Duration := Job.Default_wait):

== Usual rules for Haming.Resolve.

== The version to be unijeleted (and the view from which it is undeletez) is
== chosen by the normal rules for the interpretation of a source
-~ Cpbject_handle.

== Tne followinc aaditional rules apply:

-=- If The_version.version.hNumber = Nil then

- If the currernt version is Nil then

- por the il off the top of the retention list.

-- Causinz the acauisition of a Kecord_wWrite lock on the slot;
- else

- tne operation fails.

- end 1%,

'DELTA_

FrRaRTVI_C_0.JNITS.O%a02JECT'V(173) page

else
1f it refers to a version in the retention Llist th2n :
the identified version is removed from the retantion list, and
pushed on at the top of the Llist, secoming current, and

causing the acquisition of a Kkecord_Write lock on the slot:
else

the operation fails:
end if,
end 1f;

When il is popped off, a Link_Pack entry may be created, according tec
the usual rules for creation of new versions.

There are additional (unspecified) obsolecense rules for Class_Ada,
Cla;s_Ada_Attributes:»and Class_~Code.

The action will acguire a Pecord_Write lock on the corresponding slot.

Fossiule errors:
Is_mau_Version_Handle (Status) -
o Object_Not_In_View

li'\.

o Fither the specified version is not in the reatention list,

or no version was spec1f1ed and the retention Llist
contains all Nils.
Is_Bad_Pathname (5tatus)
Is_oad_Action (Status)
Is_Lock_Error (Status)
Jllegal_Class : ’
o This operation is not supported for Class_Universe_View,
Class_World_Vviews, and Class_Link_Packe.
world_view_Is_Frozen
Is_Resource_Limit_trror (Status)
ls_Version_Policy_Error (Status):
o Npject_Ils_Not_Reserved
The obJect's slot (in the target view) does not have the
Reserved bit set.

procedure Expunge (VName : Om.Full_wildcard,

Number _Expunged : out Natural.;
NDisk_3locks_Freed ¢ out Natural.

Status : out Error.Condition:

In_Context : Context := Job.Default_Context;
Violate_Safeguards : Boolean := False):

procedure Expunge (The_vVersion : Om.Version_Handle:

Number_Expunged : out Natural;
Disk_dlocks_Freed ¢ out Natural,

Status : out Error.Condition:
Vviolate_Safeqguards : Boolean := False);

The meanino of the word “expunae” is aefined by the semantics of this
operation. “ote that these semantics apply to all classes of object.,
includina interestiny cases like universe views, world views, and
directories.

Hote that this is the only operation for destroyin3j universe views.,

anc tnerefore the only operation for removal of unwanted releases, etc.

YOLLTA_

RRNaPiV1_U_CaUnITH.0%a02JECT V(173 cage 1?
Note that one can protect frozen views fron expungye via access control.

Usual rules for ‘aming.<esolve and interpretation of Version_Handle.
Flus the followinu:

It The_Version.Version.Number is Nil then
remove all deleted versions in the reteation list
(by "deleted", we mean one which is not current).
causing the acquisition of a Pecord_write lock on the slot:
else
remove the specific version from the retention Lists, if its there,

causing the acquisition of a Record_write lock on tne slot;
end 1t;

Note that the above rule is simply a noop in the case where the

selected universe view does not reference a world view, or the slot
cannot be locked.

If any versions removed (from the retention List) in the aocove step are
expungeable, then rectaim their disk space.

It (at this point) the object itself is exdungeable, then it ceases to
exist. note that if the object itself is not expungeable, this
operation may leave tne object in existence, without any versions.

It the object itself is exounged, and the object's parent is

expungeahle, then tne parent is also expunyed. This rule is aprlied
recursively. !

’

A version is physically exoungeable if it is not open (in a mode
other than JUnsynchronized).

A version's expunge safeguards are satisified if the version is not

(1) Referenced oy a world view; and not

(2) A world view referenced by a universe view in the
same worla; and not

(3) A world view protected by a still existing universe view
in a potentially different world: ani not

(4) A secondary loaa image referenced by a still existing
primary:; and not

(5) An Ada unit referenced by a load imajes; and not

(6) A cooe segment referenced by a Load image.

A version is expungeable if
(1) 1t is physically expungeable: and

(2) Either the version's expunge safeguards are satisfied, or the
Violate_Safeguards parameter is true.

An object is expungeable if
(1) There are 0 versions of the object: and
(2) Tne ouject has no children.

In the event that an object/version is expunged even taough the
safeguard conditions are not met, the operation does NOT attempt to
first remove the references, rather it leaves the references
"aanglinu"l this gsehaviour is desirable in cases where the references
come from damaqged or wmysteriously vanisned objects. Generally speaking,
this option is used only as a "last resort”. It might ne usea to

PDELTA_KKREVI_0_0 UNITS.0M.02JECT 'V (173) page 12

-=- recover from objects which have been damaged by software pugs or disk
-= errorse. ;

-- Note that this operation does not follow action semantics.

-=- 0On return, Number_fExpunged indicates how many versions this operation
-= actually expunged, and Disk_Blocks_Ffreed indicates how many 1K byte
-=- blocks were freed.

-= Class specific semantics:

-~ Class_Directory (subclass World): The single version of the world
== is not expunged by this operation. Use World.Destroy instead.

-= Class_Load_Image: If any of the referenced Ada units or code segments
~-= are now no longer referenceds, then the referenced version {and possibly
-= object) is expunged. For a primary Load image., -expunges 3all of the

-- referenced secondary load image versions (and probably objects).

-= Possible errors:

- Is_sad_version_Kandle (Status)

- Is_resource_Limit_Error (Status)

-- world_View_Is_Frozen

- Illegat_Class '

- o This operation is not supported for Class_Universe_View,

- Class_World_Views, and Class_Link_Packe.

- Is_Version_Policy_trror (Status):

-- o Opject_Is_Not_Reserved *

- The coject®'s slot (in the target view) does not have the
- Reserved pit sete. This will only result when one attempts to
- effect the "current®” version,

procedure Copy (Source : Om.Unique_Wildcard:
Destination : Om.Unique_wWildcard:
Action : Dm.Action_Id;
handte : out Upen_Handle;
Status : out Error.Condition;
Source_Context : Context := Job.Default_Context:
Destination_Context : Context := Job.Default_Context;
Max_wWwait 2 Duration := Job.Default_Wait):

procedure Copy (Source : Om.0Onject_Handle:
Destination : Om.Object_Handle;

Action : Om.Action_Id:
Handlte : out Open_Handle;
Status : out Error.Condition:

Max_wait : Duration := Job.Default_¥ait);
-~ Usual rules for naminy.Resolve and interpretation of Uoject_randle's.

-~ 0Open the source basically as follows:
- Object.Open (Sourcer, Action, Mode => Fead_0Object):
-=- This acquires the usual slot and version locks, as specified by Open.

== 1If (3) Source anu Target refer to the same object: and
- (u) Either the Private_Version_On_First_uUpdate or
-- Private_version_in_Cvery_uJpdate policy bits are set

TDELTA_KKaRIVI_O_0.JNITS.OMLOBJECTV(173) page 13

o

then the tarjet view is modified to reference the source version, as
== follows. 1f the otject is deleted in the target viewr, or Open for
update woulc create and push a new version, then the version is pushed

== onto the target retention list; otherwises, the version simply replaces
== current in the target retention list.

Note that above capability can be used to construct arbitrary world vieuws

and can therefore be used to merge paths, etc, by building the
== appropriate differential view.

In the remaining cases, we actually copy data. If the object is deleted
== in the target view, then we open the target as follows:

- Create (Destination, Action, Initialize =) False):
-= else:
- Open (Destination, Action, Mode =) Write_Object);

The data pits of the source are then copied into the target. The

virtual length of the target becoming the same as the virtuatl length of
== the source.

== The target version is left open, by the returned Open_dandle.

== korks for Class_Load_Image:; in the case of a physical copy, does the

== "right thiny" with respect to reference counts on the referenced
== Ada and code versions.

== Possible errors:

o Jynion of those produced by Open and Create.

- o Illegsal_Class

o This operation is not supported for Class_Directory.,
Class_Universe_Views, Class_World_View, Class_Link_Pack.,
Class_Tape, and Class_Terminal.

-- o Ubject_Class_mismatch

o It the destination object already exists, it must have the
same class as the source.

- Is_Version_Policy_Error (Status):

- o UOoject_Is_Not_Reserved

o Can result from attemaoting to copy by reference in a siot
(in the destination view) which does not have the

Keserved bit set. Can result from the implicit calls to
- Create or Open.

generic

with procedure Visit (Source : Om.Version_Handle;
Destination : Om.Version_Handtle).
with procedure Handle_Resolve_Error (Status : Error.Cyndition);
with procedure Handle_Substitution_Frror
(Status : Error.Condition.
Bad_Version : Om.Version_Handle);
with proceoure fanile_Copy_frror
Status @ Error.Condition:
Attenpted_Source : Cm.Pathname_Stringa:s
Attempted_Target : Or.,Pathname_String).

procedure #ild_CTopy (Source : Om.Full_wildcard:
Destination 2 Om.Full_wildcard;
Action : Om.Action_Id:

IDELTA_KK.REVI_O_0.UNITS.0OM.0BJECTV(173) ‘ page 14

Source_Context : Context := Job.Default_Context,
Destination_Context : Context := Job.Default_Context:
Max_Wait : Duration := Job.Uefault_¥ait):

== tmploys Naming.Wild_rResolve (using Source, Action, and Source_Context)

~= followed by Jbject.kesolve to produce a sejuence of Version_Handle's:

-=- errors are fed to Handle_Resolve_Error. For each Version_dandle produced
== by resolve, employs Naming.Substitute (using the generated

-=- Version_Handle, its pathname, and the Destination substitution pattern)
== to produce the target name; errors are fed to

== Handle_Substitution_Error. Calls the string form of copy for each

-=- generated pair of pathnames (using the full pathnames, Action, and

== Option): errors are fed to Handle_Copy_Error; calls Visit prior to each
-= ¢all to Copy.

== Properly handles creation of directories in the target context.
== Wwhat does it do with source universe and world views?
= RESTRIICTION: not supported in 1lst qtr impl.

-- Possiple errors:
-- o Jynion of those produced by Naming.Wild_Resolve.,
- ‘ NamingeSutstitute, Opens, Create and Copye

procedure Refresh_Code_Segment (Handle : in out Open_Handle:
Status ¢ out Zrror.Condition):

-~ Kecall that Jpen will allow one to modify an existing code secment,
-- Recall that code pages will lay around in the cache until reclaimed
-= by the page replacement policye. Thus, in order to see the changes
== (that have been made in the heap segment) via the code sejment, one
== must first employ this operatione.

== Clearly this operation is a waste of time when applied to a new
-= version of the code otjecta

-=- Possible errors:
- fs_Bad_Version_Handle (Status)
- o Version (Handle) does not exist - probably a bad handle.

-= Contents of an Open_Handle =-

-= The functions in this section will return the closest thin3g to Nil when
-=- given bad parameters or other errors occur.

function Version (Handle : Open_Handle) return Om.Version_Handle:
~=- Jdentifies the object, version and universe in whicnh 11t was
-=- Create'd/upen’'a. If Create/Open created a new version, identifies the

-=- newly created versione.

function Fredecessor_Version (kandle : QOpen_Handle)
return Om.vVersion_handle;

YTDELTA _KKeREVI_O0_CoUNITS.NMLOSJECTV(1I?D) page 1%

== If the Create/Cgpen created a new version, then this function returns
== the identity of tne version from which the new version was createc,
== else Nil. Can be used to detect when the view is differentiated.

function Segment (dandle : Gpen_Handle) return Machine.Sejment _Name;

Identifies the memory addresses which will be used to manipulate the
contents of the open version. Can use the Pointer_To_First_User_Rit

function (in the segment operations, below) to get a typed pointer
== to the data in the segment.

function Prior_Jpdate_Id (Handle : Open_Handle) return Om.Unique_Id;

Returns the value of Last_Update_Id as it existed just prior to the

-- Opens, or Nil when the Open created a new version. This information can
be used to detect that the contents of an object have changed between
an Open for read (perhaps supersedeable) and later Jpen/Create. A
common application is to validate an editor image at first edit.

function Lock_Hancle (riandle : Open_Handle)
return Action.0Object_Lock_Handle;
function Version_Map_Pointer (Handle : Open_Handle)
return “achine.Address;

-- These operations are restricted to internal OM and other “registered"
== clients; specifically these are not available to user programs.

........................ P .

-~ Read only opject/version attributes ==

== The functions in this section will return the closest thing to Mil when
== given bad parameters or other errors occur. The procedures will be
== noops when given bad parameters or other errors occur.

== The procedures all take Open_Handle's, which must have Write_Object
== access to the desired version, else the operation is a noop.

-= Note that if one applies a Get_xxx operation to a version which happens

-= to be open for update, one will receive the values which are current
-- for the open generation.

function Exists (The_vVersion : Om.Version_Id) return 8solean;

== If The_Version.Number is {ils, returns true iff the specified object
existss, else returns true iff the specified version exists. This is

one of the few onerations which will take Version_Id*s for job
-= worlds and segments.

function Exists (The_Version : Om.Version_Handle) return 3oolean.

== meturns true 1ff the specitfied version is tne “current” version in the
-- specified universe., If the version number component of The_vVersion is
== Nil, this is eqguivalent to asking if the specified object is deleteo

== (from tnhe point o1 view of the given universe).

function Is_Frozen (The_version : Om.Version_dandle) return 3oolean;

TDELTA_KKREVI_O_0,unNITS.04.08JECT'V(1I73) page 14

== True iff the specified version exists and is either a frozen universe

== view, a frozen world view, or is referenced by one or more frozen world
== ViewsS.

function Version_Count (The_Object : Om.Object_Handle) return Positive;
== Returns the number of existing versions of the object.

function Version_Policy (The_Version : Om.Version_Handle)
return Omn.Version_Control_Policy;

function Predecessor_Update_Id (The_Version : Om.Version_Handle)
return Unique_Id.:

== Will return the Last_Update_Id of the previous version whose data bits
-= were copied into this version when it was created. very subtle note:
when a write creates a new version to carry out its portion of the

=~ Supersedeable_Feauv_Unject protocol, the new version keeps the same
-=- Predecessor_Jpdate_ld value.

== This information can be used by the configuration managemneat tools to
== detect 3 situation in which a sublibrary is being reintegrated into its
== parent library., and the parent®s unit has been recoapiled, uwhich might
== force the suclibraries's unit to be reintegrated in the source state.

function Creation_Id (version z Om.Version_Handle)
return Om.Net_Unique_Id:
#
== Returns the network wide creation timMestamd for the identified version.

== This i1s one of the few. operations which will take Version_Id's for job
== worlds and segments.

function Last_update_ld (Version g Om.Version_Handle) return Unique_ld:
function Last_uUndate_User (Handle : Open_Handle)
return Om_Definitions.User_Id:

function Last_Access_Time

(version : Um.Version_Handle) return Calendar.Time;
== RESTRICTION: not supported in 1st qtr impl.

function Creating_User (Version : Om.Version_d4andle)
return Om_vefinitions.User_Number:

function Dtsk Blocks_Consumed :
(VerS1on : Om. Vers1on Handle) return Integer.

== Number of 1K byte disk blocks actually consumed by the version itself?,
== This is one of the few operations which will take Version_Id's for jot
-= worlds and segrents.

function Virtual_Fage_Lengtn (Version : Om.Version_Handle) return Integer:
== Assumin3 no holes, indicates the number of pages which ctan can be

-=- addressed (without gettinyg honexistent_Page_Error). This 1s one of the
-=- few Operations which will take VYersion_ld's for job worlds and segments,

function User_Bit_Len3th (Version 2 Um.Versioan_Handle) return Integer:

TDELTA_KKaREVI_0_0.JNITS. 0% GBJIECT 'V (173) paae 17

== Numpber of user bits stored in the version. Does not include ucode/s0~
-= pverhead.

function Disk_Blocks_Reclaimable_By_Expunge
(Version : Om.Version_Handle) return Integer:;

== Number of 1K byte disk blocks which would be reclaimed if the

== version was expunjed. For normal objects, same result as the

-- Disk_Blocks_Consumed function. But for universe views, world views,
-=- and load images, includes the space that would be reclaimable as

== a result of fewer references. This is one of the few operations which
== will take Version_Id's for job worlds and segmentsa.

~= Read/Write version attributes ==

-- The functions in this section will return the closest thing to Nil when
-=- given bad parameters or other errors occur. The procedures will be
noops when given bad parameters or other errors OCCur.

-~ Most procedures take Upen_Handle's, which must have Write_Object
access to the desired version, else the operation is a noop.

== Note that if one applies a Get_xxx operation to a version which happens

== to be open for update, one will receive the values which are current
== for the open generation.

function Get_Subclass (version = Om.VerSion_ﬁandle)
return Or.Subclass_ANumber;
procedure Set_Subclass (Handle : in out Open_4anale;
New_Subclass 2 Om.Subclass_Numoer):

function Acl (version : Om.Version_Handle) return Om.Access_Control_List:
procedure Set_Acl (Handle : Om.Version_Handle:

New_Acl 3 Om.Access_Control_List:

Status : out Error.Condition);
== RESTRICTION: not supported in 1st qtr impl.

function Reserved (Version : Om.Version_Handle) return Boolean;
procedure Set_Reserved (Handle : in out Open_4andle:

New_Version : Boolean):
== Used by confijuration mgmt tools to control access to objects.

function Code_Name (Version : Om.Version_Handle) return Machine.Module_Nare;
procedure Set_Code_Name (Handle : in out Open_dandle;

New_Name : Machine.Module_Name;

Status : out Error.Condition):

== The proceuure can only be used for MV genersted code s2g3s and reaquires
-= update access to every load image which references the open version.

== Possivle errors:

- Illegal_Class

-- o Can only ve applied to objects with Class_Code.
-- Not _A_Cross_Cy_Segment

YDELTA_RKKLRZVI_0_C.UWITS.0%.0GJECT*V(173) page 1¥

-- o World (New_Name) must be in Machine.Cross_Cg_worlas.

- Not _TIn_Cross_Ca_fbject_world

- o The associated world (of the given object) must be that

- associatea with "tMachine"

- Not _A_New_Code_Segment

- o This must be a new version of the object not referenced by any
- load image.

function Last_Update_Time (Version : Om.VYersion_Handle)
return Calendar.Time,
procedure Set_Last_Update_Time (Handle : in out Open_Handle:
Update_Time : Calendar.Tine);

function Want_Backup (Version : Om.Version_Handle) return Boolean:
procedure Set_wWant_Backup (Handle 2 in out Open_Handle:
New_Value :prplean): ’

-- Versions are packed up i1ff the Want Backup flag is set. The default
-=- 15 Want_Backup =) true.

-- The functions in this section will return the closest thing to Nil when
-- given bad parameters are other errors occur. The functions do NOT

-=- get action locks, thus garbage results are theoretically possible.

-- The procedures will get a RKecord_write lock on the attribute.

function Unit_State (Version : Om.Object_Handle) return Om.Ada_Jnit_State.

generic
with procedure ‘‘ake_{nange (Unit_State : in out Om.Ada_Unit_State);
procedure Set_Unit_State (Version : Om.Object_Handle.
Status : out Error.Condition);

-- The function returns the current state of tne identifiea unit.

-~ The procedure can make arbitrary changes to the unit state, via the
-- supplied Make_Change operation, acquiring a Record_wnrite lock on

-~ the unit state of the identified unit.

function Depends_On (Object : Om.Object_ Handle)
return Um.Dependency_Vector:

generic :
with procedure “ake_Change (Depends_On : in out Om.Dependency_Vector):
procedure 5Set_Depends_On (Object : Om.Object_dandle:
Status : out Error.londition):

-- Tre function returns the current value of the identifizd rnw of the

-- [epenaency_vatrix. The procedure can make arbitrary chanjes to the row,
-- via the supolied “ake_Change operation, acquiring a Record_+rite lock on
-=- the row for the i1centified unit.

function Dependents (Jbject : Um.Object_hranale)
return Om.uependency_Vector:

TOCLTA _KKGRIVI_O0_CadNITS.OM UBIECTI'V(173) page
== The function returns the current value of the identified column of the
-- Dependency_™Matrix. There is no operation to change a c¢calumn of the
== matrix, without resorting to the change row operation (abnove).
-- Relations between objects =--
generic

with procedure Visit (The_Version : Om.Version_Handle):

procedure Traverse_Versions (0f_Object : Om.Object_Handle:

Status 2 out Error.Condition):

If Uf _Opject.Universe is non=Nil and it selects a world views, then this
operation calls Visit for every version Of_Object in the specified
universe. If the slot (in the world view) has non=Nil entries, Visit
will be called for trailing Nil®s. For example, if the retention Llist
is <nil, nil, vl, v4, v7, nil> (the versions are listed in the order
that they were pushed), Visit will be called 4 times, for vl, vé, v?
and nil, in that order.

Otherwise (.Universe is Nil, or doesn't select a world view), calls
Visit for every version Cf _Object, regardless of what views they
participate in. Visit is called in sort order, by Version_Number.

Possible errors:
Is_Bad_Version_Handle (Status)
o Somethiny wrong with 0f_Object

generic

with procedure Visit (ifleferencing_Version : Om.Version_Handle):
with procedure Hanale_frror (Status : Error.Condition);

procedure Locate_Expunge_Preventing_References

(The_Version : Om.Version_Handle:
Status : out Error.Condition):

The operation finds the expunge-preventing references to the specwf1°d
version of the object.

Calls Visit for every expunge=-preventing reference. Depending upon the
class of The_Object, Referencing_Version may refer to a universe view,
world view, or load image. It is possible that some of the information
may not be availanle due to locks hela by other actions: calls
Handle_trror in these cases. As usual, the caller is free to raise

arb1trary exceptions in the generic formal subprograms:; these terminate
the search.

This operation is useful for determining why a particular version fasils
to be expungyeaqa.

Possiule errors:
Is_Lsad_version_randle (Status)
Is_Lock_Error (3tatus);
Is_resource_Limit_“rror (Status)

!DELTA_KK.?EVI_O_O.UNITS.O{.OBJECT'V(173) page 29

generic
with procedure Visit (The_Object : Om.Object_Handle):

procedure Locate_(bjects_With_Given_Class
(In_world : Um.¥ersion_Handle:
Class : Um.Class_Number:
Status : out Error.Condition)s

== The world numper component of In_world is used to identify the
-- world to be searched. Calls Visit for every object (in the specified
-= world) which has the specified Class.

-- Possible errors:
- Is_Bad_Version_Handle (Status)
- Itlegal_Class

generic
with procedure Visit (The_Universe_View : Om.Version_dandle):

procedure Locate_referenciny_Universes
(The_world_view 2 Om.Version_Handle.
Status 2 out Error.Concgition):

-= Looks through all worlas (on this machine), calling Visit for every
-=- universe view which references the specified world view version.

== Possivle errors: d
- Is_3ad_version_tHandle (Stztus) '
- Ittegal_Class

-= Ltass ana Suoclass names, ana registration =--

- G G U P D T P Ch P Eh P L D SR D G S G D WD S G GRS T R P G D R AP W T S G WG e

function To_String (Class : Om.Class_Number) return String:

-= Serves as the 'Image function for Om.Class_Number. Returns "Cundefinedg>"
-- for pogus input.

function To_S5tring (Class : Om.Class_Number:
Subclass : OmeSubclass_Number) return String:

-= Serves as the 'Imaze function ¥for Om.Subclass-Number; ﬁote that subclass
== numbers are defined in the context of a particular class. Returns
-= “{undefined>” for bogus input.

package Directory_Subclass 1is
function kKorld return Om.Subclass_Number;
function ~ath return Om.Subclass_Number;
function Session return JUm.Subclass_humber.:

ena Directory_Supnclass,
-=-pragma Integrate (Uirectory_Subclass):

package File_Suuclass 1is
-= The following suthclasses are predefined:
function Finary return Jm.Subclass_Number;

'OCELTA_KKeREVI_0_0a0nITS.O4.03JECT'V(173)

page

function Text return Om.Subclass_Number:

function Message_Window return Ome.Subclass_Number;
function Text_lo_+Window return Om.Subclass_Number;
function Switches return On.Suoclass_Number:

function Ecitor_Macros return Om.Subclass_Number;
end File_Subclass;

-=pragma Integrate (File_Subclass):

package Ada_Attribute_Subclass is
== The following sutclasses are predefined:
function Compatibility_Database return Om.Subclass_Number;
function Ada_Image return Um.Subclass_Number;

function Cg_Attributes return Om.Subclass_Number;
end Ada_Attribute_Subclass;

=-pragma Integrate (Ada_Attribute_Subclass);

procedure Define_Subclass
(Class : Om.Class_Number:
Subclass : Om.Subclass_Number:
Name : String.;
Policy : Om.Version_Control_Policy 2= Jdmavil:
Status : out Error.Condition):

-- Used to detine s new subclass. If the specified Default_Version_Folicy

== is Nil, will implicitly use the value returned by the o
Default_Version_Policy function, below. The new subclass definition

-- is now permanent. Note that the assignment of subclasses is typically

done via o manual reuistration proceds, at Rational.

== Possible errors:
- Object_Class_Does_Not_Exist
-- Object_Sucllass_Already_Exists

- o Tne given Subclass and Name may not previously exist.
- Is_Version_Policy_frror (Status):
- o Undefined_Version_Policy

procedure Undefine_Subclass
(Class : Om.Class_Number:
Subclass : Om.Subclass_Number;
Name 2 String;
Status : out Error.Condition):

== Used to delete a previously defined subclass. Does not verify that
there are no objects which claim to have the now deleted subclass.

-=- Possivle errors:

- Ovject_Class_voes_Not_Exist
- Object_Subllass_Does_Not_Fxist
- Object _>ubllass_Is_Predefined

function Default_vVersion_Policy
(Cltass @ UmeClass_lumber:
Subclass : Um.Subclass_KNumber := Om.%il)
return Ume.version_Control_Folicys

-= =a2tarns Standard_bifterential_Version_Policy for all predefined
== subclasses, inclusing vil. Exceptions:

2l

IDELTA_KKSREVI_O_0.UNITS.OMLOBJIECT 'V (173) page 2?

== (1) The Compatipility_Database subclass of Ada_Attribute's, uses the
-- Sharei_versina_PolticCcye

== (2) DJDirectory class uses the Shared_Versioi_Policy.

== (3) Universe view class uses the Shared_Version_Policy.

== (4) Device classes use the Shared_Version_”olicye.

-=- Segment operations: -
- Restricted to Rational programs only =--

-=- The following operations assume that one odtained the Segment_Name
-=- argument by using the Segment function on a legitimate Open_Handle.

-- Segment operations fed bad Segment_Name parameters will raise the
-=- following exceptions: V :

- Iltegal_Reference

- o The Module_Name portion of the given Segment_Name is 0.

- Nonexistent_Page_Error

- o The Module_ivame portion of the given Segment_Name does not
- exist.

- Itlegal_Heap_Access

- 0o Attempt to aacdress outside the range of "user data bits".

function Corresponding_vVersion (The_Segment : Machine.S5egment_Name)
return Om.Version_Handle;
%
-- Returns a Version_rdandle with a fully resolve Version component, and
-= nil Universe component. May raise the standard bad Segment_Name
-=- exceptionss, 3s defined above.

function End_O0f_Segment (The_Segment : Machine.Segment_Nanme)
return Machine.Bit_Offset.

function End_0f_S5egment (The_Segment 3 Machine.Segment_Name)
return Om.Segment_Position,

== Returns the identity of the first unused "offset™ in the segment.

-= The first function returns the value in terms appropriate for comparison
-=- with the Git_Offset component of Machine.Ajdress?s. The second function
-= returns the value in terms of "user data bits". May raise the standard
-~ bad Segment_Name exceptionss, as defined above..

function Virtual_Length (0f_Segment : Machine.Segment_Name)
return Long_Integer:

function Logical_Length (Of_Segment : Machine.Segment_Name)
return Long_Integer;

-- The Virtual__ength of 3 segment is the numdoer of bits petw=2n the

-- tirst and last legal =i1t_Uffset's, inclusive. The _Logical_Lenoth of
-- 3 segment is the numner of pits petween the first and last legal

-~ Seyment_Fosition's, inclusive. By "legal" we mean that if one had
-- the segment open tor update, cne could “touch” the ajaoressed dit.

== may raise tne standard . J s>eyment_Name exceptions, as defined abtove.

POELTA_KKGREVI_0_uaJdinITS.0NJOBRJECTIV(ITS) cage 2
generic
type Etlement is limited private;
type Pointer is access Element:
pragma Seamented_Heay (Pointer);
function Get_Seament (P : Pointer) return Machine.Segment_Name:
== May raise the standard baa Segment_Name exceptions, as defined above.

generic
type Element is limited private:
type Pointer is access Element;
pragma Segmented_Heap (Pointer);
function Get_Position (P : Pointer) return Om.Segment_Posi tion;
== May raise the standard bad Segment_Name exceptions, as defined above.

-- Segment operations: -
- Extremely gangerous operations =-
- Xestricted to "trusted code® -
generic

type Element is privaete;
type Pcinter is access flement;
pragma Segmented_Heap (Pointer);
function Pointer_To_fFirst_User_Rit
(Into : Mathine.Secment_Name) retu:n Pointer:

Used to return a types pointer to the first “user bit” in the segment.

generic
type Element is Limited private:
type Pointer is access Element;
pragma Segmented_Heap (Pointer);
function Make_Pointer (Into : Machine.Seyment_Name;
?t_Position : Om.Segment_Position) return Sointer;

Can be used to construct pointers from their components. Since one

== can make pointers at arbitrary positions, the resultiny equivalencinn
== can be the source of severe damage to the system. One ctan make a null
== pointer by supplying ~il for At_Position. May raise the standard bad
-- Segment_NMane exceptions, as defined above.

generic
type Element is limited private;
type Pointer is access Element;
pragma Segmented_deap (Yointer):
function Convert_To_rointer (Into : Machine.Address) return Pointer;

Can ve used to construct pointers from its address. Since one can make
== pointers afr arbitrary positions, the resulting equivalencini can be

== the source of severe damage to the system. Will raise
Itlegal_%Yeap_Access if tne given address refers to an object with

== otrer tnan (lass_File, Class_Adar, Class_Ada_Attriputes, or Class_(Code.

generic

TDELTA_KKeREVI_0_CoUnNTIT3.024.0202CT*V(173)

type Element is Limited private.,
type Pointer is access tlement;
pragma Segmented_Heap (Pointer);
procedure Assign_Value (Value : Element:
‘ into : Pointer):

-- For scalars and records without discriminants, this operation is the
-- same as "Into.all := Value™. In particular, if the Zlement type is

-~ scalar, will raise Contraint_Error and Numeric_Error, as would be
-= expected from "Into.all := Value".

== In the cases where the Element type is an array or record with

-= discrimants, the semantics are completely different than “Into.all
-= Yatue”; in this case, the operation does not generate lonstraint_Error;
-= in particular, it simply copies the bits of the source (by looking
-=.inside the source object, to determine ®size) to the memory addressed
-- by the given pointer; but does not look inside the target (to check

-- array bounds, discriminants, constraints, etc): thus it simply assumes
-=- that 'size bits have already been allocated at the target address.

-= May raise the standard bad Seament_kame exceptions defined above.

procedure Adjust_End_Cf_Segment (0Of_Heap : Machine.Segwent_Name.

page

New_End_Of_Segment : Dm.Segment _Position):

-- Causes the tnd_0Of_Segment operation to return New_End_Jf_Segment. ¥hen
-=- New_ind_GCf_Segment is laryer than thé current End_0f_Segment, this

-=- operation "extends the heap”. When Néw_End_Of_Segment is smaller than
-= current £nd_0f_Segment, this operation “cuts back the heap”. HMay raise

-= the standard bad Segment_Name exceptions defined above.

private
type Open_nandle 1s

-=- For details, see the section containing functions on Open_Handle.

record
Version ¢ Om.Version_Handle:
Predecessor_version : Om.Version_Id:
Segment : Machine.Segment_Names,
Lock_Handle : Action.Object_Lock_Handle:

Version_Map_Pointer
end recoro.:

Machine.Address.

Nil_Open_Handle : constant Open_Handle 3=
(Version =) Om.Nil_Object_Handle.,
Fredecessor_Version =) Om.Nil_Version_Id,
Segment =)> Machine.Null_Segment_Name,
Lock_tandle => Action.Nil_Object_Lock_Handle,
Version_Map_Pointer =) Machine.Null_Address):

end Jbject:

G G P Y A

G P P A A

G GG PPPP AAAAA

G G P A A

G G P A A

GGGG P A A
User: GPA
Object: 'DELTA_KK.REV1_0_0.UNITS.KK.MACHINE
Version: V(14)
Request: 1273
Date: April 24, 1934
Gueued: 11:26:36 A4
Printed: 11:39:0¢ AW

YDELTA_KKAREVI_O_0.JNITS.KK.MACHINE'V(14) : page
with Sys:

package Machine 1is

== Gamma "Machine”™ package to die. This package is part of the
-=- standard OM export view and contains machine dependent definitions.,
-~ mostly addressing conventions.

-= pragma Subsystem (Kernel)
== pragma Module_Name (4, ?)

.
.
-
’

package System renames Sys;

-=- Pasic storage units =~--

Bits_Per_Byte : constant := §;
Bits_Per_Word : constant == 128«¢
Hits_rPer_Page : constant = 2 *%x 13;
Bits_Per_Page_Ils_Constant : Boolean := True:

== In the future, the first value may be a function and cnange fronr
== machine to machine, perhaps from boot to boot. Assumptions to the
-= contrary should assert the _Is_Constant invariant.

-- Taken together, World_Number, Segment_Number and Segment_Kind uniguely
-- identify a segment in the machine. A segment is the fundamental unit
-=- of storage in the virtual memory system. KXinds Illegal ani System are
-= not usede.

-- Note that in Jopb_worlds Control, Typ, Queue, and Data segments have the
-- same Lifetime, anu are collectively referred to as a module. Import and
-~ Code segments each have distinct Lifetimes and are typically referre“
- to as import spaces and code segments: ress>ectively.

~= World_Number --

type world_Numver is new Long_Integer range (..2 %% 10 - 1;
subtype Kernel_worlds is World_humber range Qeeé:

-= AlLL Kernel_Layer modules are elaborated in segments in worlds
== in this range.

Ipl_world : constant W“orld_lwmber = 43

subtype Environmnent_worlds is wWorld_Number rarge 4..57

-- The module and import spaces of the environment subsystewns are

-=- elaborated in these job worlds. #¢hen the virtual memory system is
== initializad, the above job worlds are automatically created.

'OELTA_

KKeREVI_0_04JNITSKNHALHINEV(14) page ¢

subtype tnv_oackup_worlds is world_Number range 6..7:

After a system crash, tne stuff in world 4 is “copied"” to world 6.,
and world 5 "copied" to world 7. This allows virtual memory to be
startec and the system to elaborate prior to dumping the state of
virtual memory associated with the Last crash.

subtype Job_worlds is world_Number range 8..255:

Jobs run in worlds in this range. Module amd import names may be
reclaimed when the job terminates and all traces of it have been wiped
from the face of the earth. Until we stop puilding environment systenrs

on the HMV's, we will not actually give out job numbers in the range
Cross_Cg_wortds.

subtype Cross_Cg_Worlds is dorld-Number range 8..25;:

It is still the case that mv generated code segments live on vps 5..25.

These pages are always read_only and clean. There is N0 correspondin
object worla.

subtype Iop_C(ross_(:_Worlds is Cross_Cg_worlds range 8..10;

These are the Cross_Cg_wWorlds that are loaded from the I0P.

== %¥%% These nunbers are not the real ones. They are yet to be decided on.

subtype Env_Cross_Cyg_wWorlds is Cross_Cg_wWorlds range 11..25;

£

These are tne Cross_Cj_worlds that are (oaaed into -EU3.
¥x%+ These numbers are not the real ones. They are yet to be decided aon.

subtype Task_worlds is World_Number range 0..255:

¥orlds in which the architecture/mts are willing to run tasks.

subtype Object_Worlds is World_Number range 256..1022;

Om_
Miscellaneous_wWorld

Segmented heaps (file spaces) live in worlds in this ranje. These may
be either permanent ana temporary.

World t constant Object_Worlas =
: constant World_Number := 190

Om_worlc contains ovject management state which is not accounted for ty
legitimate directory ovjects. There is a correspondiny disk world.
Current uses: (a) Action log blocks.

There is no corresponding disk world for Miscellaneous_World. It is
used for addresses of special gook in the memory cache. The following
things are glaced in the cache under these addresses: (1) The ucode
assist routines are trapped by deing field executes into tnis world.
(2) Tne kernel's page pool pages go in this world. (3) Some of the
Volume_*ansy2r state 3s mapped via this world.

teware of tne fact that the window of vulnerability mechanisw, actions,

and crash recovery all assert the following invariant:
DiskaAlL_Dirty_world_Intfo_Mapped_Under_Its_vp

Yoral of the story: be VERY careful witn permanent/reconstructed state

YDELTA_KKREVI_O_0.UNITS.KKaMACHINE'V(14) : page

-= which Llives in the cache under these world aumbers.

-= Segment_Number =--

type Segment_Number is new Long_Integer fange 0ce2 %% 22 = 1.

subtype Code_Segment_Numper is Segment_Numper
range O..Segment_Number (2 %% 16 - 1),

First_Allocatable_Segment : constant 2= 2 %% 6:

-= For all worlds (both job and file), the first 2%%6 segment numbers
-- are reserved for use as disk mapping pages by Object_Management.

type Segment_Kind is new Long_Integer range 0..7:

Itlegal_Segment : constant Segment_Kind == 0;
Control_Segment : constant Segment_Kind := 1,
Typ_Segment : constant Segment_Kind 2= 2.
Gueue_5egment : constant Segment_Kind := 3;
Data_Segment : constant Segment_Kind == 4,
Import_Segment : constant Segment_Kind := 5;
Code_Segment : constant Segment_Kind := 6,
System_Segment : constant Segment_Kind = 7.

type Module_Name is new Long_Inteaer range 0..2 *% 32 - 1;

-= The architecture often knows the Segment_Kind implicitly (from
-~ context) and therefore uses Module_Name to refer to sejments. The
-- following operations define the representation of a Module_Name.

function Extract_Segment (Name : Module_Name) return Segment_nNumbers
function Extract_World (Name : Module_Name) return korld_Number.
function Construct_Module_Name '

(Segment : Segment_Number:

world : sortld_nNumber) return Module_Name:

--mZTEREESZTIIZe -
-=- Addresses ==
type Bit_Offset is new Long_lntegerrrangeyo..Z‘#*'32 - 1:

== Physical bit offset within a particul ar segment: 0 identifies first
-=- physical bit in the segment.

subtype Address is System.Address.
Null_Address 2 constant Address := System.Null_Address;
== pudresses carried arouns by the machine are of this form:

-=- type Address 1is

- recora

- Seanent : Seament_Number;
- worlz : world_Number,
- Page : Paye_Number;

'DELTA_KKGREVI_0_0.JNITS.KKJMACHINE*V (L 4) page 4

- Byte 0 .. 1023
- 2it TN .. 7

- end record;

== or, ejuivalently:

- record

- Name 2 Module_Name;
- Offset : Bit_Offset:
- end record.

Warning: an Address does NOT contain the segment kind:; it must be

== known implicitly. The following operations define the representation
-= of addresses.

function "<" (L, K
function "=" (L, F

Address) return Boolean;
Address) return Boolean renames System."=";

function Extract_Segment (Aacr : Address) return Segment _Numoper;
function Extract_world (Addr : Address) return World_Number:
function Extract_Name (Addr : Address) return Module_Name:
function Extract_CUffset (Addr : Address) return 5it_Offset, |
function Construct_Aijdress (Seament : Seyment_Number;
diorld : World_Number,
Cffset : bit_Offset) return Address.
function Construct_Asdrass (Name < Modul e_Name; |
Offset : Bit_Offset) return Address:
|
|
|
|

type Page_Number is new Long_Integer range 0..2 *t 19 - 1;
tunction Extract_Page (Addr : Address) return Page_Numoer:
function Extract_Page (2ffset = Bit_Offset) return Page_Number;
function Extract_Fit_Dffset_within_Page (Addr : Address) return 2it_ODffset,
function Extract_Bit_Offset_Within_Page
(Cffset : Lit_Offset) return Bit_Offset:

function To_Long_Integer (Addr : Address) return Long_Integer;
function To_aAddress (Int : Long_Integer) return Address;
== These are inverses of each other, and preserve bit representation.

subtype Paye_Address is Address:

== Same as an Address, except: bits 51..60 are 0, and 5its 61..63 contain
== the Segment_<ind; ie, it looks like:

- record

- Segment : Segment_Number;

- ¥orlg : World_Number:

- Page : Page_Number;

- Eyte 0 .. 10237 == all zero

- Kind : Segment_Kindis == in lieu of Bit &
- end record;

subtype Space_Address is Address;
== Same as a “age_Address, except: bits 32..50 are 0; ie, it Looks like:

- recorg

-- Seament : Segment_.~umbers

-- worls : dorld_humtber;

- “age : Page_Numpber; =-- all zero

-- “yte T 0 .. 10237 == all zero

-- Yina : Segment_Kind: == in lieu of Bit #
- end recordg;

Jnlike the vamma system, each segment is considered to have its oun

YOELTA_KKerRZVI_O0_0.JINITS.KK.MACHINE*V (14) page

-=- space addresse.

function Construct_Space_Address
(Name : Module_Name:
Kind 2 Segment_Kind) return Space_Address;

function Construct_Page_Address
{Name : Module_Name;
Page : Page_Number;
Kind : Segment_Kind) return Page_Address.

function To_Data_Address (Addr : Address) return Page_Address:
function To_Address (Addr Address:

Kind Segment_Kind) return Page_Address:

function Extract_Kind (Addr : Space_Address) return Segment_Kind:

tunction Change_Rind (Uf_Addr : Space_Address.,
To_Xind : Segment_Kind) return Space_Address:

function Space (Of_Tage : Page_Address) return Space_Address.

function Cnange_Page_Number
(0f_Page : Page_Address.
To_Page_Number : Page_Number) return Page_Address.

type Address_Array is array (Natural range <)) of Address:
E]

=3

type Seament_kame is private,

-= Same information content as a Module_Name, but this form has the
-= bits of the Module_Name left justified, to be in the same position
-=- 3s in an Ajdress. Also, this type is runtime private in the sense
-=- that the machine will zero its contents when declared and will not
-=- permit aliasing. Thus, one will not find any functions which can
-= generate this type from integers (or other unprotected types).

Null_Segment_iName : constant Segment_Name,

function To_Long_Integer (Seg : Segment_Name) return Long_Integer:
function To_Module_HName (Seqg : Segment_Name) return Module_Name:s

- - - e e S e S e S - e ow me
Ll - > P J P T L A4

-= Basic Machine Operations =--

-S4 S S S T T T T T

subtyipe Task_1d is “odule_Name:

-- kefers to a module, which can be a package or Aga task.
function My_Task_Id return Task_1d:

-- "tast id" of the executing thread. Note that packajes also have
-= task i1ds.

function Get_*acnine_ld return Long_Integer:

wY

YURLTA_KK LRI

-- Retur
-=- excee

type Cpu
Best_Cpu
Next_Bes
Third_Be

Fourth_3
worst _Cp

-=- Note
-= algor
-=- Job p

function

-= If ca
== of th

function
-= Retur

function
-= Retur

package

func
func
func

type
type
type
type

func
func

func

proc

-- 1
-- e
~-p

func

VI_0_CeUNITS.KRK.wACHINT *V(14) page

ns the va for this particular R1003. This value is known to not
a3 10%%o.

-Priority_iLevel is new Long_Integer range 0..15:

-Priority : constant Cpu_Priority_Level == 0:
t_Cpu_Priority : constant Cpu_Priority_Level 2= 1;
st_Cpu_?riority : constant Cpu_Priority_Level := 2;
est_Cpu_Friority : constant Cpu_Priority_Level := 3;
u_Priority ¢ constant Cpu_Priority_Level := 15;

that these notions of priority reflect the internal scheduling
ithms of the macine. Task priority (per LRM) is defined elsewhere.
riority (per MTS) is defined elsewhere.

My _Priority return Cpu_Priority_Level;

Llec while in rendezvous, will return that of the rendezvous, not
e task c¢3llinag trhe function.

I_Am_wireu return soolean;
ns true if the executing task's TC3 is wired.

Is_Callable (Tne_Task : Task_Id) return Boolean;
ns the value of the *Callable attribute Cas per L3M).

Memory is -

tion Numper_0f_Sets return Natural;
tion Numper_Jf__Lines return Natural;
tion Numpber_J0f_Frames return Natural;

Cache_Set_Number is new Natural range 0..Number_O0f_Sets = 1;
Cache_.ine_vumber is new Natural range Oce.Numder_Of_Lines - 1.
Cache_Frame_Number is new Natural range O..Number_Of_Frames - 1;

Frame_%its is array (Cache_Frame_Numdoer) of Boolean:

tion Line (Frame : Cache_Frame_Number) return Cache_Line_Nurber;
tion Set (Frame : Cache_Frame_Number) return Cache_5et_Number;

tion Frame (_ine : (Cache_Line_nNumber;
et : Cache_Set_Number) return Cache_Frame_Numbter:

edure Get_Page_Address (In_Frame : Cache_Frame_Number,
Empty = out Eoolean:
Contains_Page : out Fage_Adiress);

t the specifiead cache frame contains 10 page, then return tmpty;
lse not Empty and Contains_Page gives the virtual aagdress of tne
age in the spiecified framea

tion Ixists (Page : Page_Address) return Boolean;

IDELTA_KKREVI_0_0.UNITS.KR.HMACHINE'V(14) page

" «= Returns true iff the specified page exists in the cache and is

end

== Returns true iff the specified page is currently in the cache.

function Is_In_Transit (Page : Page_Address) return Boolean:

-=- Returns true iff the specified page exists in the cache and is
-= in_transit.

function Is_birty (Page : Page_Address) return Boolean:

-~ Returns true iff the specified page exists in the cache and is
-=- markea as dirty. ‘

function Is_wired (Page : Page_Address) return Boolean:

-— wired.

Memory:

package Jperations is

type Value_Generator 1is
record
Yatue : Lony_Integer;
end recorg.

procedure Indivisibty_Increment (Generator : in out Value_Generator;
Value 2 out Long_Integer),;

-=- Performs the following:

- if Generator.VYalue < Long_Integer'Last then
-- Generator.Value := Generator.Value + 1;
- end if: '
- Vvalue = Generator.Value;

-= This operation is indivisible (atomic)"even with respect to page
-=- faults.

type Boolean_Lock 1is
record
Value : %oolean;
end record;:

procedure Test_And_Set (The_Lock ¢ in out 3001eén,hock:
Vvalue : out Boolean).:

-=- 2erforrs the following:

- value := The_Locke.Value:

- The_rLock.value := True.

-~ This operation is indivisible (atomic), even with respect to page
-= faults.

procedure wait_For_Transfer_To_Complete (P3ge : Page_Adiress).

'DELTA_KKaREVI_C_0.JNITS.KR.MACHINE 'V (14) page

== Used to wait for disk transfer completion: Caller shouli first‘
issue the appropriate request to the Disk_Driver. Then call this
routine with the page involved in that transfer. If the specified
2age does not exist or is not currently in transit, this call

== returns immediately:; otherwise places the calling task in the disk
wait queuesr in which case the call returns when the aporopriate
invocation of Roust has been made by Disk_Driver.

end Uperations,

private

type Segment_Name is access Boolean:
pragma Segmented_Heap (Segment _Nawme),

Null_Segment_Name : constant Segment_Name := null
enad Machine;

G G P £ A A

G P P A A

G GG PpPP AARAA
G G P A A

G a P A A

666G P A A
User: GPA
Object: SDELTA_KKaREVI_0_0.UNITS.OM.EXECUTION
Version: V(104)
Request: 1274
Date: " April 24, 1985
sueued: 11:25:50 A
Printed: 11:39:41 AM

YOELTA_KK.REVI_CG_GaJdITS. 04

with
with
with
with
with

Jobo.

crror.
Cbject
Machin
Om_Det

e XECUTION'V(104)

raae

.
e
initions;

pragma Private_Eyes_0Only;
with Execution_Layout:
with Load_Image_Layout:

package Execution is

== prag
prag

Enti
repr
cont
(bel

Subs
package

Ssubtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

subtype
subtype

package

ma Suosystem (Object_Management);
ma Module_Name (4, ?);

ties to be executed include main programs and subsystems., both are
esented by lLload image objects (produced by the "loader”). The

ents of a3 toad image object is defined by the Load_Image package
ow). There are various operations which cause the execution

(elahoration) of load images (representing main programs and

ystems). These are defined in the Operations package (below).

Um renanes Im_vefiniticns;

Compatability_vector is Cm.Compatabpility_Vector;
Code_Segment _Kkey is Natural range 0..2 *% 16 - 1;
Secondary_Number is Natural range 0..2 %% 16 - 1.
Imported_Unit_~umber is Natural range 0..2 *x 16 - 1;
Imbortecd_Subsvster_Number is Natural range (..2 %% 16 -
lmported_Froyram_'vumber is Natural range 0..2 %% 16 - 1:
Exported_Module_tosition is Natural range 0..2 %% 16 - 1;
Imported_Module_Position is Natural range 0..2 %% 16 - 1:
Elaboration_Crder_Array is Om.Simple_dbject_Id_Array;
ixception_Information is Om.ixception_Information:

1:

Koot_Cf_wWorld is OUm.Ubject_Hanale:
Some_Ouject_In_world is Om.Object_Handle;

images

Load_Image is

Recall the definition of "partial order defined by unit with
clauses” in section 10.3 of the LRM. we use the term “unit with
closure” to mean the LRM's partial order, treating the entire
directory system as one big Ada library.

Here we use the term "main program” to mean a library unit procedure
which is (to pve) loadea as a main program.

dere we use the terw "subsystem™ to mean a worla which

is (to be)
loadea as a suusystem (in the current view).

Jne joh of the

Loajer is to generate code to cause library unit
elacoraticn

accoraing to the semantics of section lU.5 of the L34,

The set of units (to be elaborated when the loaa image is

IDELTA_KKREVI_O_0JUNITS.0MaZ XECUTIGN'V(104) page

executed) is calculated as follows:

(1) For a main prouaram, include every unit in the main program®s
closure, stopping at (and not including) units which are (i)
worlds toaded as subsystems or (ii) other main projramse.

(2) For a subsystem, tor each "selected” library unit in the
subsystem, include its unit closure, stooping at (and not
including) units which are (i) in other worlds loaded as
subsystems or (ii) main programs. The "selected™ units coulc
be specified in a variety of ways: examples include: (a)
every unit in the world views (b) every unit in some export
list, (c) units specified by some wildcarded pathname: how
they are specified is immaterial to this package.

Note that, in both cases, this set of units may include units that
are in worlds other than the worlao containing tne Loaded main
program or suosystem.

The world reconstruction algorithms altlow load images to reference
only those code segments which live in the same world as the load
imaje. The purpose of the primary/secondary mechanism is to allow
the loaaing of & subsystem or main projram across worla boundaries,
in spite of this restriction.

Loau images contain the following information:

(1) Ignoring the primary/secondary issuess, a lpad image references
the set of code segments which contain the code for the set
of units elaborated by executing the load image.
Code seament names are NOT stored in code segments themselves,
for the following reasons: .

First, code segment names are lLocal to the machine on which
the segment was created. Therefore, keepiny code segment names
in just the load image object simplifies the process of moving
a loaded program/subsystem between machines.

Seconds, code segment names are treated as protected objects ty
O (for access control reasons): this would be considerably
more difficult if code segment names could be stored in code
segments (which would imply the ability to create them from
integers). - :

Third, expunge control for code segments follows these rules:
A code segment cannot be expunged if there is a Load image
which reterences the code segment. A lLoad image cannot be
expunged if it is Open. The execution mechanisms keep the
load image open as long as there is an elaborated copy of the
load 4mage. And the execution mechanisms prevent unelaboration
white importers still exist. Tnis acheives the invariant that
a code segment cannot be expunged while being executed.
Viclatini this invariant can cause executing orograms to get
stranae exceptions (like Non_Existant_Page_trror) and risks
crashins the machine,

(¢) The load image stores a map from ariginal Jbject_Index to
the Version_dandle of the corresponding Diana tree. Jenug
taoles use tnese object indexes to refer to ulits. Use of
Version_tiandle allows tools to use the universe component

CUELTA _KKeXEVI_U_CeINITS.OMLEXICUTION'V(104) rFage 2
-- to recorcd the identity of the view from which the unit
-- was Lloaged. An option is available to expunqge protect the
- referenced trees.

== (3) For suusystems, the load image stores export lompatability_Xeys
for all of the units exported by the subsystenm.

== (4) For subsystems, the {oéd image identifies the set of exportec
runtime modules (corresoonding in a perhaps package intergratea
fashion to the exported units)e.

== (5) The load image identifies the set of subsystems which are
imported by the given main progras or subsystem. And for each
- imported subsystem, stores the import Comdzatasrility_Keys for
- the imported units. At execution time, these import keys are
matched against the exporter's export keys.

== (6} The importing load image specifies where (in its import space)
it wants to find the module names of the imported runtime
- modules.

== (7) The load image identifies the set of main projrams which it
-- may call.

== (8) The elaboration order (chosen by the loader) is recorded in the

-- load image. This may be useful information for the user. But
- the major purpose is so the subsystem integrator (discussed

-- further velow) can produce & single outout load image from many
-- 1inuoJt load imayes, and preserve elaboration order.

In the event that a loaded main prograr or subsystem needs to
elaborate units in more than one world, the primary/secondary

== mechanism is usec. A primary load imaje is created in the worly
containing the main program or subsystem. Secondary load images
== are created in the other worlds. The primary references all of
== the secondaries. The secondaries name the primary. As lonc as
== the primary continues to exist, the secondaries will not (by

== default) be expunjyeu. Fach load image references the loadeod

== code segments in the same world.

Functions in this package return garbage (typically 9) when given
== garoaye parameters. Procedures which do not return status are
== noops when given garbage parameters.

== Tne functions require the handle to be open for either Xead_Object

== or wWwrite_Object. The modifying procedures require the handle to
== be open for Write_Object.

procedure Define_Shape (The_Load_Image : in out Object.dpen_Handle:
Is_Primary : BEoolean,
Coce_Segment _Count : Natural;
Secondary_Count : <atural:
txported_Unit_Count : iNatural:
txported_*odule_Count : Natural.,
Imported_Subsystem_Count = Natural.
Imported_Unit_Count : Natural;
Imported_Program_Count : Natural:
vebug_unit_Count : Natural.

YDELTA_KKSREVI_O0_O0LJINITS.OMJEXECUTION'V(104) page 4
Status : out Error.Condition);

-- This operation must be the first opreratino to be applied to a

-- newly created version of a load image. Other oderations are used
-= to "fill in the shape”.

== When Is_Primary is true, Number_Of_Secondaries indicates the

-=- exact number of secondary load images which will de referenced by
-- this primary. Recall that secondary load images 3are only used when
== the Load closure spans worldse.

-=- Note that the operations below which set string values will
-~ generate garsage (in the load image) if the strinjy value is set

-- more than once. The garbage cannot be reclaimed without expungina
== the version.

~-=- Possible errors:

- Is_Execution_Error (Status)

- o Not_A_Load_Image

-- o0 Load_Image_1s_Too_Big

- o Exported_Module_Count_Out_Of_Bounds

procedure Set_Code_Segment

(The_Load_Image : in out Object.Open_Handle;

key z Code_Segment_Key:

Code_Version : Om.Version_Handle;

Status : out Error.Condition)q

4

== The Onject.Coue_~vame function is-used (on Code_Version) to set both
-= tne Current_Segment and Original_Segment attributes. The

-- Code_Version attribute is assigned the value of the Code_Version
~=- parameter.

-=- Pogssible errors:

- Is_Execution_Error (Status)

- o Wot_A_Load_Image

- o Code_Segment_Key_Out_Of_oounds

- o Not_A_Code_version

- The Code_Version parameter does not refer to an existing
- version of an object of Class_Code.

- o0 Must_3e_ln_Load_Image_World ;

- Code_Version must be in the same world as the load

- image. '

procedure Set_QOriginal_Segment
(The_Load_Image : in out Object.Open_Handle:
Key : Code_Segment_Key: ,
Original_Segment : Machine.Module_Name);

-- Jseu by tool to move a load image between machines.

-- The Original_5Segment and Current_Segment attributes might be

-- gifferent (tor a given key value) because the load image and the
-~ corresponding code segments were moved from the praducing

== (orivinal) machine to the current machine. Retaining

-- Lriginal_Segments may be useful for dedugying.

-= Possible errors:

'OELTA_KKREVI_O_CaUNITS 0. EXECUTION'V(104) rage
- Is_Executiun_Error (Status)
-- o tot_A_Load_Image
-- o Code_Seyment_Key_Out_Of_Bounds

function Uriginal_Segment (The_Load_Image : Object.Open_Handle;
Key : Code_Segment_Key) :
return Machine.Module_Name:
function Current_Segment (The_Load_Image : Object.Open_dandle;
Key : Code_Segment_Key)
return Machine.Module_Name;
function Code_Version (The_Load_Image : Object.Open_Handle:
Key : Code_Segment_key)
return Om.Version_1d.;

The above functions are used to return the values of the attributes
set by the Set_Code_Segment operation. Note that there is no

== visible operation to retrieve the "protected form™ of the code
segment name. The elaboration operations use internal facilities

== which return the protected form and may generate access control
~= error conditionse.

tunction Protect_ldebug_uUnits (The_Load_Image = Ocject.Open_Handle)
return poolean,;
procedure Set_Protect_Debug_Units
(The_Load_Irage : in out Object.Open_Handle:
Value : Boolean:
Status : out Error.Condition);
¢

-=- Defaults to off. dhen turned on, the references to Diana trees
== (supplied by the operation below) will be expunge protected.

-- Possible errors:

== Is_Execution_Frror (Status)

- 0 Not_A_Load_Image

- ‘ o Cant_Protect_Debug_Units

Tnis operation cannot be asplied once a call to
Set_Debuo_Unit has been made.

function Deoug_Unit (The_Load_Image : Object.Open_dandle:
Original_Index : Om.0bject_Index)
return Om.Version_Handle.
procedure Set_Oebug_uUnit (The_Load_Image in out Object.Open_Handle:
Original_Index Om.Object_Index:
Debug_Unit : Om.Version_Handle:
Status : out Error.Condition);

== Map from original Object_Index to the Version_Handle of the
corresdonding Diana tree. Debug tables use these object indexes to
== refer to units. Use of Version_Handle aliows tools to use the

== universe component to record the identity of the view from whicn
== the unit was loagded.

-=- Possible errors:

== Is_[xecution_irror (Status)

-- o Not_A_Load_Image

- 0 Jebug_Unit_Index_Cut_Of_Bounds
- 0 Not_A_Debug_Unit

The referenced Debugyg_Unit does not refar to an

'DELTA_KRSRIVI_C_CaUNITS.01.c AECUTION'V(1C4) page

-- existing object of Class_Ada. Only occurs when
- Protect_Debug_Units is turned on.

-- The following operations only apoly to secondary load images ==

function Protecting_Primary

(The_Load_Image : Object.Open_Handle)
return Om.Version_dandle:

procedure Set_Protecting_FPrimary
(The_Load_Image : in out Object.Open_Handles
Protecting_Primary = Om.Version_Handle:
Status : out Error.Condition);
== Protecting_Primary refers to a primary toad image #hich will
-- eventually reference this secondary. Recall that such a reference
-- protects the secondary from expunge in the secondary®'s world.

-= Pgssit:le errors:

- Is_txecution_trror (Status)

- 0 not_A_Load_Image

- o Not_i_Secondary_Load_Image

-- o Primary_toad_Image_Does_Not_Exist

-= The followin: operations only apely to primary load images ==

......... - - . e P AR G TS D S S TS SR O W TS D Y G T G GRS W DD L R G WG R R W S eR e e

function Secondary_Count (The_Load_Image :‘Object.Open_Handle)
return Naturale.

function Secondary_Reference
(The_Load_Image 2 Object.Open_Handle;
Key : Secondary_Number)
return Um.Version_Handle.:

procedure Set_Secondary_Reference
(The_Load_Image 2 in out Object.Open_Handle:
Key : Secondary_Number;
Secondary : Om.Version_Handle:
Status : out Error.Condition):

-- Used to records, in a primary, the Version_Id of one of its
-=- secondaries.

-=- Possible errors:

- Is_Execution_trror (Status)

- 0 sot_A_Load_Image

-- o Not_A_Primary_Load_Image

-- 0 seconagary_Loac_Image_Does_ivot_txist

function Startinj_ic
(The_Load_Image ¢ Ubject.Op2n_Handle)
return ~achine.Address.

procedure Set_Starting_Pc

YOELTA _KKaRZVI_0_C o UNITS.OMJEXECUJTION'V(1C4) nage
(The_Load_Image = in out Object.Open_Handle;
Starting_Pc : Machine.Address:
Status : out Error.Condition);

== Jsed to rememter the starting pc.

-- Possible errors:

-- Is_Execution_Error (Status)

-- o Not_A_Load_Image

-- o Not_A_Primary_Load_Image
- o No_Code_Segment_For_Pc

function Is_Subsystem
(The_Load_Image : Object.Open_Handle) return Boolean:
procedure Set_Is_Subsystem
(The_Load_Image = in out Object.Open_Handle;
Value : Boolean:
Status : out Error.Condition);

== Defaults to off. Uetermines whether you get subsystem or main
== projram nehaviour during elaboratione.

-~ Possitle errors:

-- Is_ctxecution_crror (Status)

-- 0o Not_A_Load_Image

-- o Not_A_Primary_load_Image

function Is_Persistent K
(The_Load_Image : Object.Open_Handle) return »ootean:
procedure Let_Is_Persistent
(The_Load_Image : in out Object.Open_Handle:
Vatue : Boolean;
Status : out Error.Condition).

== Defaults to off. The elaboration of a persistent subsystem will
still exist after the command which caused its eladoration.

== Possitble errors:

- Is_Execution_Error (Status)

- o Not_A_Load_lmage

0 Not_A_Primary_Load_Image

0 Not_A_Subsystem_Load_lImage

function Exported_Unit_Count

(The_{Load_Image : Object.Cpen_Handle) return Natural:
function Exported_Module_Count

(The_Load_Image : Object.Open_Handle) raturn Natural:

function Exported_unit_1I4d
(The_Loac_Image : Object.Cpen_Handle:
init @ Umedbject_Index)
return Un.Object_Id;
function fxuourtes_Jdnit_wame
(The_Loau_Image : Object.Open_Handle;
Jnit : Jn.U0hject_Index)
return Strina.
tunction Exnorted_Module_ros
(The_Loaoc_Image : Object.Open_Handle;

YDELTA_KKeREVI_O_C.INITS.O0.EXECUTION'V(104)

Ynit : Om.Obtject_lIndex)

return Exported_Module_Position;

function Exported_vecls

(The_Load_Image = DObject.Open_Handle:

Unit 2 Um.Object_Index)
return Compatability_Vector:

procedure Set_txported_Unit_Information

(The_Load_Image = in out Object .Open_Handle.

Unit_Id 2 Om.Object_1d.
Unit_Name : String;

-Module_Pos : Exported_Module_Position:
Exported_Decls 2 Compatability_Vector:
Status : out Error.Condition)s

page

~ == The exported unit information is used (for a loaded subsystem)

-- describe the actual declarations that are exported (via the

-=- Compatability_Vector for each exported unit). This information

-- used for compatability checking during elaboration.

to

== Jnder library unit package integration, more than on2 exported unit
-- may specify the same Exported_Module_fosition. During elaboration,
-=- the module will call Operations.Set_Exported_Module with the Module

~= parameter equal to the value of Module_Pos supplied nere.

‘== Possible errors:

\ - Is_Execution_Error (Status)
- 0 “ot_A_Load_Image *
- 0 Wot_A_Primary_lLoad_Imagé
- o {ot_A_Subsystem_Load_Image
- o Exported_Module_Pos_Out_Of_Bounds
-- o Exported_Unit_In_Wrong_World
- The uUnit_Id of an exported unit must specify the
- same world_Number as that of the load image being
- constructed.
- o Load_Image_Is_Too_Big

function Imported_Subsysten_Count

(The_Load_Image : Object.Open_Handle) return Natural;

function Imported_Subsystem_Id

(The_Load_Image : Object.Op=zn_Handle:
Subsystem : Imported_Subsystem_Number)

return Root_Of_¥ortid:
function Importea_Subsystem_Name

(The_Load_Image : Object.Open_Handle.
Subsystem : Imported_Subsystem_Number)

return String:
function Importea_Subsystem_First_Unit

(The_ioad_lmage : Object.Npen_Handle;
Suttsystem : Imported_Supbsystem_HNumbper)

return Imported_Unit_HRumper:
function Imported_Subsystem_bLast_Unit

(Tne_lL oad_Image : Ubject.Cpan_Handle;
Subsystem ¢ Imported_Subsystem_Number)

return Imported_Unit_Number;

£

'DELTA_KRKaREVI_C_CuJINITS.OMLEXECUTION'V(104) page 9

procecdure Set_Imported_Subsystem_Information
(The_Load_Image = in out Ubject.Dpen_Handte:
Subsystem : Importea_Subsystem_Kumoer;
Subsystem_Id : Some_Ubject_In_worla:
Subsystem_Name : String:
First_Imported_Unit : Impaorted_Unit_Numper,
Last_Imported_Unit : Imported_Unit_Number;
Last_Imported_Module : Imdorted_uUnit_Number;
Status : out Error.Condition):

-- P?0ssivle errors:

- Is_Execution_Error (Status)

- o Not_A_Load_Image

- o Not_A_Primary_Load_Image

- 0 Not_A_Subsystem_Load_lImage

-- 5 Imported_Subsystem_Number_Out_Of_Bounids
-- o Imported_Subsystem_Does_Not_Exist

- 0 Imported_Unit_Number_Out_Of_bdounds

- 0 Load_Image_Is_Too_Big

function Imoorted_Unit_Count
(The_Load_Imaue : Object.Upen_Handle) return ~Natural;

function Imoorted_Unit_Id
(The_Load_Image : Object.Open_Handle:
Jnit : Imported_Unit_Number)
return Om.0bject_Handle:
function Imoorted_Jnit_Name ’
(The_Load_image : Objéct.Open_Handle;
Jnit : Imported_Unit_Number)
return String:
function Imported_Module_Pos
(The_iLoad_Image : DObject.Open_Kandle:
Jnit : Imported_Unit_Number)
return Imported_Module_Position;
function Imported_uvectls
(The_Load_Image : Object.Upen_Handle:
Unit : Imported_Unit_Number)
return Compatability_Vector:

procedure Set_Imported_Unit_Information
(The_Load_Image : in out Ubject.Open_Handle:
Jnit : Imported_Unit_Number:
Unit_1ld : Om.Object_1Id:
unit_Name : String.,
Viodule_Pos : Imported_Module_Position:
Imported_Decls : Compatability_Vector:
Status : out Error.Condition):

foth subsystens and main programs can import the facilities of

== other suZsystems. Since environment facilities 3are imoorted usinng
== tnis mechanisn, it is unlikely that any load image has U

== subsyster imports. for each imported suvsystem, there is a set of
-- imported units (as indicated by the First_Imported_Unit and
Last_Imported_uUnit values). For each imported unit, one specifies
== the aeclarations (vias the Comdatability_Vector) whicn are actually
== imported. This information is matched ajainst the unit export
information (in the loao image of the correspondiny imported

'DELTA_KKREVI_C_C.INITS.OM.EXECUTION'V(104) page

| ol

-= subsystem) during compatability checking during elavorationa.

~= During elaboration the names of the imported runtine modules apoear
== in the import space by Imported_Module_Position: tais value may be
-=- different from the txported_Module_Position of the corresponding

-= unit.

-=- Pogssible errors:

-- Is_Execution_Error (Status)

- o Not_A_Load_Image
Not_A_Frimary_Load_Image
WNot_A_Subsystem_Load_Image
Imported_Unit_Number_Out_Of_odunds
Imported_Module_Fos_Out_0f_Bounds
Imported_Unit_Does_Not_Exist
Load_Image_Is_Too_Big

]
]
0O o0ocCooo0

function Neeas_tJcode_Assist (The_Load_Image : OUbject.dpen_randle)
return 5oolean:
procedure Set_Needs_uJcode_Assist
(The_Load_Image ¢ in out Ohject.Npen_Handle:
value : Loolean:
Status : out Error.Condition):

-- Defaults to otf. This is a special kludie which is used to cause 2

-~ subsystem to import the ucode assist package. It is required by the
-=- "system call and command subsystems"™. A subsystem with this bit set
-- ¢tan only be elanporated by Privileged userse.

3

-=- Possible errors:

- Is_txecution_trror (Status)

- o Not_A_Load_Image

- o Not_A_Primary_lLoad_Image
- 0 NOt_A_Supsystem_Load_Image

subtype Load_Image_Id is Om.Version_Handle.

function Imported_Program_Count ‘
(The_Load_Image s Object.Open_Handle) return Natural.

function Imported_Program_Id
(The_Load_Image 2 Object.Open_Handle;
Program 2 Imported_Program_Number)
return Load_Image_Id.

function Imported_Program_Name
(Tne_Load_lmage : DObject.Open_Handle,
Program : Imported_Program_Number)
return String.

procedure Set_Iimuarted_Srozram_Information
(The_road_Image : in out (bject.dpen_Han:dles
Prog4ram : Imported_Program_Number:
Yrogram_Id : Load_Image_1d;
“rogram_ikame ° String;
Status @ out Error.Congition),

-- s0oth subhsystems and main programs can call other main proagrams.

'OELTA_KCREVI_0_CaUNITS.N4.EXECUTION'V (164) page 11
The identity of these programs is recorded as shown above.

-~ Possible errors:

-- ls_Execution_Error (Status)

-- o Not_A_Load_Image

- 0 Not_A_Primary_Load_Image

- o Imported_Program_Number_Out_0f_HBounds
-- o Importea_rProgram_Does_Not_FExist

-- o Losa_lmage_ls_Too_Big

function £lavoration_Oraer (The_Load_Image : Object.Upen_Handle)
return Elaboration_Order_Array.
procedure Set_tlaboration_Order
(The_Load_Image : in out OUbject.Open_Handle:
Urder : Elaboration_Order_Array:;
Status : out Error.Condition):

-=- The elavoration order is stored in the load image so that the
== subsyster intzgrator can produce an identical elaboration order
== in the target intearatead subsystem.

-- Possivle errors:

- Is_Cxecution_trror (Status)

-- o Vot_A_Load_Image

- 0 Not_A_Primary_Load_Image

-- o Elaboration_Order_Length_Mismatch

- The *length of the @rder parameter must be the same

as the Unit_Count parameter to Define_Shape.

function Snavle_loa2_Acl_Check
(The_Load_Image : Object.Open_Handle) return Zoolean:
procedure Set_Enable_Code_Acl_Check
(The_Load_Image : in out Object.Open_Handle,
Value : Boolean:
Status : out E€rror.Condition):

-~ Defaults to off. Wwhen enabled, a job must have Cxecute access to
the load image in order to elaborate a new copy.

-- Possible errors:

- Is_txecution_Error (Status)

- o Not_A_Load_Image

O Not_A_trimary_Load_Image

function tnable_vodule_Actl_Check
(The__oad_Image : Object.(ipen_Handle) return boolean;
procedure Set_gnable_™Module_Acl_Check
(The_Loao_Image ¢ in out Object.0pen_Handle;
value : Soolean:
status 2 out Errcr.Condition).

== Defeults to off. when enableds a job must have Zxecute access to
== tne load imsie in order to import modules from an already elaborated
-~ cersistent c¢npy of the subsystema

YDELTA_KKSREVI_C_CoUNITS.U%cXECUTION'V(104) page

-=- Possible errors:

- Is_txecution_Error (5tatus)
-- 0 0t_A_Load_Image
- o Not_A_Primary_Load_Image

function Original_Machine_Name
(The_Load_Image : Object.Open_Handle) return String:
procedure Set_0Original_Machine_Name
(The_Load_Image : in out Object.Open_Handle:
Name : String): ‘

-- The originating machine name is useful for error messages and
-=- debugging. :

-~ Possible errors:

- Is_Execution_Error (Status)

- o Not_A_Load_Image

- o Not_A_Primary_Load_Image
- o Loau_Ilmage_Ils_YToo_Big

function Loader_version
(The_Load_Image : Object.Open_Handle) return String;
procedure Set_Loader_Version
(The_Load_Image 3 in out Object.Open_Handle:
version : String):

-= The name and/for version ana/or gimestamp of the "loader™ is useful
-=- for error messages and debugging.

-- Possible errors:

- Is_fxecution_Zrror (Status)

-- o Mot_A_Load_Image

- o Not_A_Primary_Load_Image
- o Load_Image_Is_Too_Big

function Progran_Version
(The_Load_Image z Object.Open_Handle) return String.:
procedure Set_Progranm_Version .
(The_Load_Image = in out Object.Open_Handle:
Version : String):

-~ The program/subsystem might find this useful for its own
-=- diagnostic purposes. Can contain program name, andi/or version.,
-= and/or timestamp.

-~ Possible errors:

-- Is_Execution_Error (Status)

- o Not_A_Loaac_lmage

- o tot_A_"rimary_Load_Image
-- o Loau_Irage_Is_Too_Rig

end Load_Imaye;,
~-=pragma Integrate (Loaa_Image).

-=- Fxecution Operations ==

TOLLTA_KKeREVI_O_0.UNITS D% EXECUTION'V(104) page 1=

package uperations is

Overations to control elaboration state =-

The execution stack follows the same conventions as the various
job stacks, with some exceptions: (a) certain kinds of stack
entries cannot bhe copied (namely, direct entries),; (5) it is
not possiole to modify stack entries below top of stack.

Each stack element contains an entity which comes in 2 classes.
known as “"direct” and "indirect"” execution states. A indirect is
simply a reference to a direct. This capability can be used to
acheive "shared elaboration™. A direct execution state is a map

from persistent subsystem to physically elaboratea copy of the
persistent suosystem.

When we say “physically elaborate” we mean that the elaboratina
Job causes the execution of a new runtime copy of the subsystem.
This causes the top (direct) execution state of the job to get a
map entry which selects the new copy: this kind of map entry is
known as a local entry.

It is also possible to cause a direct execution state to contain

3 map entry which selects a copy which is physically elaoorated

by another jou. This capability ¢an be used to acheive "shared
elaporation”. This kind of map entry is known as a non-local entry.

when a agirect execution state contains a map entry for a subsysten
S, the subsystem S is said to be "elaborated” in the given
execution state (regardless of whether or not the entry is local).

Each direct execution state is “consistent™. In particular, the
followingy invariants hold (within the context of the particular
execution state):
(1) Consider subsystem A which is elaborated. Consider a
subsystem £ which is with'd by A.

{a) X is also etaborated.

(b) The map entry for X references (directly or
indirectly) the physically elaboratea copy of x
which is imported by A.

(c) The import Compatability_Vector's of A "match”™ the
corresponding export Compatability_vVector®s of the
physically elaborated copy of sudsystem X which is
imported by A.

(2) 3y induction, one can infer that if 2 elaborated subsysteas
and 3 with X, they imoort from the same physically
elaogorated cory of V.

Indirect execution state are by definition consistent, since they
simuly reference a2 consistent direct execution state.

"Staring” is acheived as follows: Job X elaborates sone subsystems,
and invokes a “ake_fxecution_State_Shareable operation on the
particular execution state. Job X may optionally provide a strina
name to ioentify the execution state. Job Y (the “importer™) can

YDELTA_KKREVI_O_O0.UNTTS,OM.EXECUTION®*V(104) page 14

-= push an indirect execution state by invoking the

-- Share_Execution_State operation, supplying the string name, or the

-- explicit joo ana stack location. At this point, Y can run programses
-- having them import from the shared subsystems (which Y imported

-- from X). If Y wishes to physically elaborate its own suosystems, it
-= can Push_Direct_State. [Claboration operations in job Y can then

-- create local map entries for Y's private subsystems, and can

-- create non-local map entries from the indirect execution state (at

== Top=1). This may become clearer after reading further.

-=- In order for persistently elaborated suosystems to last longer than
-- the command which caused their elaboration, we introduce the

-= concept of a "subsystem state” job in which persistently elaborated
-- subsystems lLive. There is at most one of these jobs per session.

== We will use the term "elaborated” to mean that an elaborated copy
-=- 0of the subsystem is selected by the execution state on top of the
-=- stack. The copy might be selected via an indirect execution state.
-=- or via a direct state with either a local or noa-local map entry.
-- Some consecuences of this definition: (a) Pushing an empty direct
-=- state results in no subsystem being “elaborated”. (n) A subsystem
-~ can be said to pe "not elaborated"”, even though loder stack
-- elements reference physically elaborated copies. (c) Thus, the
-= term "elaborated” is considerably different than the term
-=- "physically elaborated”.

type Elavoration_dptions is new Loné_Integer:

Create_Job_0Un_iemand : constant Flaboration_Options == 2 %% (;
Push_Direct_5tate_On_Dlemand : constant Elaboration_Options 2= 2 %% 1;
Force_#Private_Copy : constant Elaboration_Options == 2 %% 2,
Atlow_Private_Copy : constant Elaboration_Options = 2 %% X
Etaborate_Closure_Un_Diemand : constant Elaboration_0Options 2= 2 %% 43
Ignore_Compatability_Errors s constant Elaboration_Options := 2 *¥ 5;

Default_Elab_Options = constant Elaboration_Options
Create_Job_On_JDemand +
Push_Direct_State_On_Demand ¢+
Allow_Private_Copy +
Elaborate_Closure_On_Demand:

generic o
with procedure Visit (Subsystem : Root_Of_world:
Name : String:
Elaborated_Release : Om.Version_Handle:
Physically_Elaborated : Boolean:
Where_Elaborated : Om.Job_Id):

procedure (laborate_pPersistent_Subsysten
(Supsyster : Some_Opnject_In_VWorlid:
Status : out trror.Condition;
txcevtion_Info : out Exception_Information;
Gptions : tlaboration_Options 2= Default_Elao_CUotions,
In_Job 2 Cm.Jobu_Id = Job.Subsystem_>tate),

-- The purpose of this operation is to elavorate the Sudbsystem, if
== its not already elaborated.

'DELTA_KK.REVLI_C_CoJNITS.OMLEXLCUTION'V(104) page 15

It In_Jot is Nil, and Create_Jobt_On_Demand is enabled, the

operation will create a Subsystem_State job for the session of the
ctalling job.

1f Push_Direct_State_On_Demand is enabled, the operation will do
an implicit call to Push_Direct_State, if necessary.

It Force_Private_Copy is enabled, then this operation will
physically elaborate a new copy of every subsystem (in the given
Subsystem's with closure, as well as Subsystem itself), in the

identified subsystem job, for every suodsystem which is not
already elaborated.

If Allow_Private_Copy is not enabled, then this operation is limiteaq

to creating map entries to already physically elaborated copies of
subsystems.

If tlaborate_Closure_On_Demand is enabled, then this operation

will, if necessary, attemprt to elaborate "lLower level® subsysterTs
(ie, subsystems in the “with® closure).

This operation aoplies to the execution state stack of the
igentified joo.

In the course of elaborating the needed subsystems, consider the
situation in which the with closure of persistent subsystem S is
elaborated, but S itself is not yet elaborated (and is the current
goat). Note that if stack top is not direct and
Push_Lirect_Stat2_0On_Demand is enabled, an implicit call to

?ush_virect_State will be made. The followingy actions are taken to
elaborate S:

11 Force_Private_(opy is disabled, then Look for a shareable copy
by scanning the execution stack stopping at the first element which
contains a map entry for S. Note that when this scan encounters
indirect execution statess, it simply looks at the referenced
execution state. 1f a map entry is found, and the referenced
physically elaborated copy of S imports from the same physically
elaborated copies that are currently s=2lected by the top execution
state, then simply create a non-local map entry (in stack top)
referencing the located copy. Calls the supplied Visit procedure
prior to setting the map entry; the call would be made with
Physically_Elaborated =) False.

If Force_Private_Copy is enabled, or the search for a shareable
copy failed, then attempt to physically elaborate a new copy of
subsysten S, importing from the copies elaborated in stack top,
creating a local map entry in stack tod. This sted may fail with
?untime_(ompatability_Mismatch. Calls the supplied Visit crocedure
prior to physical elavoration; the call would be mide with
"hysically_clanorated => True. Note that enabling ootn
Force_"rivate_Copy and Include_Closure can result in the physical
elavoration of many subsystems.

wvhen nhysically elaborating a3 new copy, the toad imaje is
1dentified by the world view specified by the job's vies stacke.

IDELTA_KKREVI_

«JNTITS.ONGEXECUTIONMNV(104) page

when physically elaborating a new copyr, the runtime modules

execute

in the identified job.

The caller suspends until the physically elaborated conies have

finished
state of

elaboration of their tibrary uaits. Clearly, the runtime
these units survives the completion of this operation.

In the event of an error, the offending subsystem is unelaborated.,
but the other subsystems that were elaborated are left elaborated.

There are notes at the end of this package describing the context

in which

the code (in the load image) begins execution.

Note that since Visit is called prior to elaboration, many of the

_error coaditions are known to apply to the subsystem last Visit'd.

14

The Name parameter to Visit comes from the Program_Version attribute
of the elaborated load image.

Possible
Is_Job
o

errors:

_Error {(Ltatus)

Job_Joes_Not_Exist
Non=xil In_Job parameter refers to non-existant job.

Is_txecution_Error (Status)

(¢}

o

Missing_Subsystem_Job
Can onty happen when Create_Job_On_Demand is disabled.
Not_A_Subsystem_Job
The identified job muét be the subsystem joo for
SOmEe session.
¢xecution_Stack_Is_Empty
Can only happen when Push_Direct_State_Jn_oemand
is disabled.
txecution_State_Not_Direct
Can only hapopen when Push_Direct_State_J)n_vemand
is disabled.
Subsystem_Is_Already_Elaborated
The identified subsystem is already elanorated. In some
cases caller might consider this to pe ™success”
Private_Copy_Not_Allowed 4 '
Couldn®t find an import comd>atable atready physically

elaborate copy of a subsystem, and Allow_Private_~Copy 1is

disavled.
Cant_Find_Load_Image_To_Elaborate
Either the job's universe stack does not select a
world view for the subsystem, or the world view does
not identify an existing load image.
Cycltes_In_Subsystem_Closure
Suuvsystem with dependencies induce a cylic order.
Cycles_in_View_Indirection
Cycle detected determining the target universe view.
Supsystem_Not _Persistent
The 1identified Subsystem is not persistent.
Persistent_wWiths_Non_Fersistent
4 suusystem (in the closure) withs a noa=-persistent
subsystem.
Suntime_(Compatability_NMismatch
Subsystem A needs to be elanoratedc and it with's
subsystem D. A imports units and/or declarations which

'DELTA_KKWREVI_C_CoUNITS.NM.EXECUTION'V(104) page 17

- are not exported by B. This is detected by the fact
- “that an import Compatability_Vector in the load image
- for A does not "match™ the corresponging exoort

-~ Compatability_Vector in the load image for 3.

-- o vroken_Indirect_Execution_State

- The search for an elaborated copy ran across an

-- indirect execution state (in the job®s stack) which
-- has been broken (perhaps by termination of the

- referenced job).

0 Subsystem_Propagated_Exception
The elaboration of a library unit propagated an
exception. Note that it is a consequence of Ada
semantics that such exceptions cannot b2 propagated
once this operation returns. The Exception_Info
parameter contains aaditional information.

- Is_Access_Control_Error (Status)

o Couldn't load code segments or import modules or import
ucode assist due to an access control violation. See
Load_Image packages for details. Or doa't have required

- access to the identified job.

procedure “ake_Execution_State_Shareable
(5tatus : out Error.Condition;
Name : String == *";
In_Job : Om.Job_Id := Job.Subsystem_State):

The top stack location (of the given job) is marke3d as shareaole.
== If the ~Name Darameter is not null., then the name attribute of the
=~ top stack location is set to the given Name. If the resulting top
stack location ends up with a non-null Name attrivute, invocations
ot oharei_Execution_State will able to identify this state using
== 1its string nawe. WNames longer than about 128 characters are

== truncated on the left.

== Note that this job will not be able to terminate (or be Joh.Xill*d)
if other job's are currently sharing this job's subsystems. Some of
the motivation for this invariant is "politeness™; but more
importantly, the machine might crash if the rule were violated.

-=- Possible errors:

-- Is_Job_Error (Status)

- o Job_uoes_Not_Exist

-- Is_txecution_Lrror (Status)

-- o Not_A_Sutsystem_Job

- o bLxecution_Stack_Is_Empty

- o Execution_State_Not_Direct

-- o Execution_State_Is_Shareable

-- 0 Execution_State_Name_Not_Unique

vhen non=null, the string name of the execution state
Kust be unigue among all of the execution states (in the
entire system) which are marked as snarzanle.

procedure Make_Fxecution_State_Not_Shareable
(Status : out Error.Condition:
In_Jdol ¢ Uradob_I¢ == Job.Sunsysten_Gtate);

-~ The ton stack location (of the identified job) is made not shareable.

IDELTA_KKGREVI_O_0.JNHITS.0MEXECUTION'V(104) page 17

== #will break any referencing indirect execution states. Note that

-=- this operation does NUT unelaborate anything. And it does NOT

-=- break non-local map entries (of direct execution states) that have
-- been constructed by elaboration via previously unbrokea indirect
-=- execution states.

-=- Possible errors:

- Is_Job_Error (Status)

- o Job_Does_Not_Exist

- Is_Execution_Error (Status)

- o Not_A_Subsystem_Job

-- 0o Execution_Stack_Is_Empty

- o Execution_State_Not_Direct

- o Execution_State_Not_Shareable

procedure Share_Execution_State
(Source_State : Strings
Status = out Error.Condition;
Target_Stack : Job.Stack_Id =
proctedure Share_fxecution_State
(Source_State : Om.Job_Id:
Status 2 out Error.Condition,;
Source_Job : Om.Job_Id := Job.Subsystem_State;
Source_Location : Job.Stack_Location := Job.Top:
Target_Stack : Job.Stack_Id :=:= Job.Job_Stack):

= Job.Job_Stack):

== The first form i1dentifies the sodrce execution state by string

-~ name, whereas the second form identifies the source execution state
-=- by explicitly giving the job and stack Location. Clearly, the

-- presence of concurrency may make the s2cond fora subject to

-= misinteroretation of stack position.

-- In either case, an indirect elaboration state is pushed on the
-= identifiea target stack.

-=- Invocation of Make_Execution_State_uUnshareable (on the referenced
-~ elaboratioun state) will cause the pushed indirect elaboration state
-~ to become broken and cause Elaborate_Persistent_Subsystem to

-=- generate errors. This may happen automatically when a job

-= terminates. ‘

-=- Recall that tnis is what allows the Flanorate_Persisteat_Subsyster
-« operation to elaborate non-tocal :map entries and thereby allows one
~= job to physically elaborate subsystems against subsystems

-=- physically elaborated by another job. And it allows the

-~=- Flavorate_rrogram operation to directly import from the subsystem
-- physically elaborated by another job.

-=- Possitile errors:

-- Is_Joh_crror (Status):

- o Joo_loes_"NNot_LCxist

- Apulies to either source or target job.

- Is_ixecution_Error (Status):

-- o Execution_State_Does_Not_Exist

-- Tre given string (or given job & stack Location) do
- not identify a execution state,

- ¢ txecution_Stack_Ils_Empty

PUELTA_KNGREVI_O_CLUNTITS.OMLENICUTICON'YV (104) paage

Applies to source job.

- o txecution_State_Not_Direct
- Applies to source job.
- o txecution_State_Nhot_Shareable

Applies to source job. The identified execution state
has not been the subject of
Make_Execution_State_Shareaole operation.

- o Execution_State_Stack_Overflow

Apulies to target job.

procedure Un_Elaborate_Persistent_Supsystem
(Subsystem : Some_Object_In_world:
Status : out Error.Condition:
Jn_Elaborate_Clients : Boolean 2= True:
In_Job : Om.Job_Id 2= Job.Subsystemn_State).

== Jsea to unelacorate a persistent subsystem. When

== Un_claborate_Clients is enableds, will unelaborates all the with'ing
==~ subsystems as well. Unelaborate means: Deselect the subsystem and
physically unelaborate those subsystems which this jos physically
-=- elaborated. Can use this to kill a partial elaboration. Can be
invoked by the given subsystem itself, or one whose closure

== includes the given subsystem.

-~ Possible errors:

- Is_Job_Error (Status):

- o Job_Does_Not_Exist !

- Applies to either source or target job.
-- Is_Execution_Error (Status)

-- o txecution_Stack_Is_Empty

- 0o Execution_State_Is_Not_Direct

-- 0 kxecution_State_Is_Shareable

The identified execution state has been made shareahle
via the Share_Execution_State operation.

- 0o Subsystem_1ls_Not_Elaborated

-- 0o Subsystem_Still_kas_Clients

The identified subsystem has clients, but
Un_tlaporate_Clients is not enabled.s N>te that these
clients are in the same execution state.

procedure claborate_rProgram
(Program_Load_Image 2 Om.Version_Id.:
Status : out Error.Condition,
Exception_Info = out Excestion_Information:
Options : Elaboration_Options := Default_clab_Options:
In_Job : Om.Job_Id := Job.Subsystem_State).

Tne purpose of this operation is to execute (ie, elanorate) the
-=- identifiea program.

It the Program_iLvad_lmage references a persistent suosystem that is
not atready etavouratec and flaborate_Closure_Un_Demnana is enabted,
then this operation will invoke Elaborate_Persistent_Suosystem

== (with the civen ptions and Joh_Id) to get the suosystem elakborated

Elaborates copies (private to this program) of all the
non-persistent supbsystems in the program®s subsystem closure. Runs

<)

TDELTA_KKeREVI_O_04JUNITS.UM.EXECUTION'V(104) ; paje 20

-~ the projram. when the program returns., unelaborates the
-=- non-persistent copiess, but not the persistent copies.

-- The caller is suspended during the program's execution,

== If the task executing the program is aborted, tne non-persistent
-= copies are automatically unelaborated.

-=- Possiole errors:

- Is_Execution_Error (Status)

- o0 Subsystem_Is_Not_Elaborated

-- A with'd persistent subsystem is not elaborated, and
-- Etaborate_Closure_On_Demand is not enabled.

- o Plus all those that can be produced by

-- Elaborate_Persistent_Subsysten

procedure Create_Subsystem_State_Job
(S5tatus = out Error.Condition:
For_Session.: Om.Session_Id := Job.Session).

-~ Can be used to explicitly create the subsystem state job for a
-- session. Can be done implicitly by the elaboration operations.

-= Possivle errors:

-- Is_Job_Error (Status):

- o Session_Does_Not_Exist

-- all errors produced by Job.Ini{iate.

procedure Push_direct_State (Status : out crror.loaxdition:
Name 2 String == ",
In_Job : Om.Job_Id 2= Job.Subsystem_State):

-=- Pushes a fresh elaboration context in which nothing is elaborated.

-= Possible errors:

- Is_Job_Error (Status):

- o Job_Does_iNot_Exist

- Is_Execution_Error (Status): _

-- o Execution_State_Stack_Overflow

procedure Pop_State (Status : out Error.Condition;
Stack : Job.Stack_Id := Job.Job_Stack:
Location : Job.Stack_Location := Job.Top):

-- Will automatically invoke Un_Elaborate_Persistent_Subsystem, if

-~ necessary. Can be applied to shareable execution state, provided
-- there are no current importers. This operation is used by job

-=- termination (including Job.Kill), and may therefore be responsatle
-=- for tne inapility to xill a job.

== “0ssit.le errors:

-- Is_Joo_irror (5tatus):

- o Jou_Does_wvot_£xist

-- Is_tExecution_£trror (Status)

-- o cxecution_Stack_Is_Empty
-- o Suvsystem_Still_Referenced

- The identified execution state is direct and contains

PUELTA_KR@RIVI_0_0.UNITS.0M.EXECUTION 'V (104) nage

~
[y

a local entry for a physically elaborated copy which
is still referenced by the direct execution state of
- some other job.

== Information regquests ==

function Stack_Depth (Stack
return Natural
function State_Exists (Stack = Job.Stack_Id := Job.Job_Stack:

Location : Job.Stack_Location := Job.Top)
return Boolean:

Job.Stack_Id = Job.Job_Stack)

S 00

function Is_Persistently_Elaborated
(Subsystem : Some_Object_In_«World:;
In_Job : Om.Job_Id := Job.Current) return 3oolean:

== Returns true iff the identified job selects an persistent elaborated
== copy of tne Subsystem.

function Executing_telease
(Subsystem : Some_Object_In_wortd;

In_Job : Om.Job_Id 2= Job.lurrent)
return String,

Simoly returns Nil if the identified jouv has no persistent copy
selected and its view stack doesfnot s2lect an executasle release
== of the suosystem. ctlse, returns the Program_Version attribute of
the load image of the jou's selected persistent copy or of the load
== image that would be elaborated (from the view Stack).

generic
with procedure Visit (Job ¢ Om.Job_1d:
Load_Image : Om.Version_dandle;
Is_Subsystem : Boolean;
Name 2 String).

procedure Locate_Un_Elaborate_Preventing_References
(Subsystem : Some_Object_Iln_world;
In_Job : Ome.Jdoo_Id:
Status : out Zrror.Condition);

»ill simply produce an error condition if the identified subsysten
1s not elaborated. tElse calls Visit for every subsystem/program

== wnich must terminate before the identified subsystem can be
unelavorated. The Name string comes from the Program_Version
attribute of the visited load image. In some cases, the only valig
== informatior 4ill 5e the Job_Id:; in this casesr the Loaa_Iroge will

== bLe wil,

== Possicle errors:

-- Is_txecution_trror (>tatus)
-- 0 Subsysten_Ils_not_Elaborated
generic

with procedure visit (Subsystem : Root _Cf_worla;

IDELTA_KRKREVI_O_CaJiNITS. 04 XECUTION'V(104) page 27
Name = String);

procedure Locate_Job_Termination_Preventing_Subsystems
(In_Jot : Om.Joo_Id;:
Status : out Error.Condition):

-=- Will simply produce an error condition if the identified job does
== not exist. Else calls Visit for every persistent subsystem

-- physically elaborated by the identified job and currently shared
-= with other jobs and which therefore prevent the given job from

-=- terminating. The WName string comes from the Program_Version

-=- attrivute of the corresponding load image.

== Possible errors:
- Is_Execution_Error (Status)
- 0 Subsystem_Is_Not_Elaborated

-~ Operations used by the executing program/subsystem =-

tyve Elavoration_Handle i1s private:

procedure 5Set_gExported_Module (Subsystem : Elaboration_Handle;
' Module : Exported_Module_Position:
Status 2 out Error.Condition);

-- This operation is intended for ¥se by an elapboratinj persistent
-- subsystem. See code generation notes below.

-=- This operation is a noop if the subsystem is not sersistent. Tt
-- 45 used to record the name of an exported runtime moadule., for
-= Later importation by some subsystem/programe.

-=- Possibile errorss

- Is_txecution_tcrror (Status)
- o Hogus_flavoration_Handle
- o Exported_Module_Pos_Out_Of_Bounds

tfpe Load_Image_Handle is private;
== dancle on the Load image object of the running program.

procedure Elaborate_rrogram (Program_Load_Image : _oad_Image_Handle:
Program : Imoorted_Program_Number;
Number_Of_Arguments : Natural,;
Returns_Result : Boolean:
Status : out Error.Condition):

-=- Losically equivalent to the above form. Intended for use only by
-- "linkaae" code generated by the code generator/loader. The call
-- site is passing wumoper_Of_Arguments and expects to receive a

-- function result if “eturns_Fesult 1s true. See code generation
-- notes velow.

-- 0ssible errors:
- all those that can be produced by the previous form of the
-- operation.

TULLTA_KK.K

EVI_C_0.UNIT5.0%EXECUTION'V(104) page 2z

Is_FExecution_Srror (Status)
o hYocus_iLoad_lImsge_Handle
0 Program_Number_Out_0f_Ffounds

With respect to code generation, the following information is

important (if you're not a code generator writer, you probably
don't care).

The context for executing a subsystem load image is as follows: A
skin package (the root module) is elaborated whose import space
has things pushed in the following orier:

Elaboration_Handle (argument to pass to following op)

Proc ref for Operations.Set_Exported_Module
Load_Irmage_Handle (argument to pass to following op)

Proc ref for Uperations.Flaborate_Program (2nd form)

Code segment names are pushed, in their “protected form"”, in
the followina order: for each load image (starting with the
primary, and proceeding to the secondaries, in
Secondary_sumber order) push the code segment 7ames in
Code_sSegment _Key order.

o The imported package variables are pushed in the following
order: First push ucode assist (or Nil if not requested).
Then, for each imported subsystea (in
Imported_Subsystem_Number erder) push the package variable
for the root module (or nil if tne subsystem was not
elaborated by this job) followed by the packiage variables
tfor each imported module (in Imported_Module_Position order).

The declaration list of the skin package (root moijule) runs the
code specified by the Load image's start pc. This mechanism
assumes that the generated code is such that the skin package will
complete its elaboration as soon as all the Library units (in the
subsystem) have completed their elaboration.

00 00O

Note that the skin package is dependent upon some system package.,
and not the caller's frame. The module name of the skin package
(root module) is recorded for later use by Un_Elaporate_Subsyster,

The context for executing a program load image is as follows: &
subprogram variable is created (using the load image's start pc).
The subprogram is called with arguments pushed in the followinag
order:

o "Ada" arguments (Number_Of_Arguments)

0 Loai_Image_Handle

o Proc ref for Execution.Elaborate_Program (2nd form)

o Code segment names (in same order as for subsystems)

o Imported package variables (in same order as for suhsystens)
It is expected to consume all of its arguments, returning ¢ or 1
results (as specified by the Returns_Results paramneter). A
result returneac from & program executed via the first form of
claborate_wtrogram is simply ignored. For command execution, it
1s expected tnat the job's root thread will pe used to execute
the prograam.

TDELTA_KKLREVI_O_C.UNITS.OMJEXECUTION'V(1C04) page

-= Debugger ovperations ==

function To_Version_Handle (Program_Load_Image : Loaa_lmage_Handle)
return Om.version_Handle:

== Can be used by the debugger to convert the handle (in the
== "imports"” for the subsystem or program) to a Version_Handle.

== Observations on uveougging =--

-- How does one associate an executing program with a deougger, and
~- how does its debug state (namely, interface subprogram and break
== mask) get set properly? By default, the debug state is nil. If you
-= tell the code generator the right thing, it will import the

-- appropriate debugger, and generate code to call it to establisn

-~ debuggings it calls the debugger using the normal importing rules
-- (ie, noct with fixed mocdule names).

-- Suppose one nas elaborated a load imajer, and now 2ne wants to
-- deoug it, whicn implies finding the aiana trees associated witnh
== the various code segments in the load image. This is an

-- excellent gquestion. How does it work?

-= Amplification =-- .

+

-- OGne can get amplification in shared subsystems by doing the
-- initial elaboration in a job with the appropriate rights.
== Currently, there are no mechanisms for automatic amdlification.

private
type Loac_Image_Handle is new Load_Image_Layout.State_Record_Pointer;
type Elaboration_Hanale is
new Execution_Layout.Subsystem_State_Pointer;

== Both types must be “by value™ types so that we can stick them
== in import spaces without creating dangling references.

end Operations,
-=-pragma Integrate (Jperations):

end Execution,

GGG pPPPo Ant
G G P PooA A
G P P A A
G GG PpPpPp AAAAA
G G P A A
G G P A A

GGGGC P A A
User: GPA

Object: !DELTA_KK.REVl_O_O.UNITS.OM.OM_SERVICES_I
Version: V(1¢)
Reguest: 1275

Date: April 24, 198%
@ueued: 11:27:01 A~
Printed: 11:41:31 &

TDELTA_KK.RE

with Job:
with Disks
with Error.
with Naming.
with Object.

VI_0_0.JnNITS.O4.0n_SERVICES_1'v(18) ‘ page

with Machine;
with Calendars

with Om_Defi

nitions,

package Om_Services_1 1is

package

pack

subt

Link 1is
Pragma Subsystem (Object_Management):

A "link pack"™ is an object that defines a map from simple Ada
names to Ada library units. A "link™ is one element of this map.
Each world has exactly one link pack object. Eech world view
potentially has its own version of the link packe.

A Llink is Internal if its designated opject is in the world of the
Link pack: otherwise it is External.

As defined by the Cbject package, there is an internal link for
every Ada livrary unit: its Link name is the same as the simple
name of the desigynated object. External Llinks are another story.
They are maintained by higher level tools and allow the Link name
to be different than the simple name of the designated object.

4
ALL of these procedures are subject to a bad status resulting form
the inability to acquire appropriate lock(s) or insufficient disk
space on the unit. o

age Um renames Om_Definitions,

ype Context is Om.Naming_Context:

procedure (reate (In_world : Om.Version_Handle;

proc

Link_Name : Om.Simple_Rase_String.
Designated_Name : Om.Unique_Wildcard:

1d : Om.Action_1Id:

Status : out Error.Condition;

In_Context : Context := Job.Default_Context;
Max_wWait : Duration := Job.Default_wWait):

edure Create (In_World 2 Om.Version_Handle:
Link_Name : Om.Simple_Name_String,:
Designated_Object : Om.Jdbject_Handle;
1d ¢ Om.Action_1ld;
Status ¢ out Error.Condition;
Yax_Wait = Duration := Job.Default_vait),

Usual rules for haming.?esblvep and interpretation of the
Version_randle/Ouvject_Handle, as specified by the Opbject package.

Creates an external link.

'UELTA_KKeKZVI_0_0.UNITS.CY.0M_SERVICES_1'V(18%) page ?

== Acquires a Record_write_Object lock on the link pack., and one or
== more FRecord_vrite lock's within the Llink packs, with the given action

The In_world parameter may refer to any object/version in the
-=- world of interest.

== Possible errors:

-- Is_Link_Error (Status):

-- Juplicate_Link_Name

o The given Link_Name would duplicate that of an already
existing internal or external Ulink.

- txternal_Link_To_Local_Object

- o The Designated_Object is in the same world as the

- Link pack.

- Cant_Create_External_Link

-- o Insufficient internal data structures exist to create
- this link.

- Is_Bad_Version_Handle (Status)

procedure Delete (In_World : Om.Version_Handle:;
Link_Name : Om.Simple_Name_String;
I3 ¢ Um.Action_Id;
Status : out Error.Condition:
rfax_Wait ¢ Duration := Job.Default_vait),

== Deletes an existing link.

+
»

The In_vworld parameter may refer to any object/version in the
-= world of interest.

== Acquire a rnecord_Write_Object lock on the link pack, and one or
== more Record_drite lock's within the link pack, with the jiven
== action.

-= Possible errors:

- Is_Link_Error (Status):
- Link_liame_Does_Not_Exist
- Cant_Delete_lnternal_Link

- Is_Bad_Version_Handle (Status)
procedure Resolve (Link_Name : Om.Unique_wildcard:

Designated_Object : out Om.Object_Id;
Status : out Error.Condition);

-=- The Link_Kkare is actually a Simple_Wildcard which must resolve to
-= just 3 single link. If Status is suczessful, then the given

== Link_Name maps to Designated_Object.

== ‘jsec ty haming.resolve when it encounters a "*" c¢naracter.

-=- PYossible errors:
-- Is_7ad_Fathnawe (Status)

generic
with procedure visit (esult : Om.Object_I1d).

procedure «Wild_Resolve (Link_Name = Um.Simple_wildcard;

YUELTA_KKeREVI_C_CoUNITS.OMGOM_SERVICES_1°V(18) page

Status : out Error.Conditinon);

-- Similar to the esolve procedure. Is happy with 0 or more matches,
-- calling Visit for each match. Stops searching after first error.

~- Used by hNaming-.wild_Resolve when it encounters a "*” character.

procedure Get_Full_Pathname (Designated_Object 2 Om.Opject_I1d:
Full_Name : out Om.Pathname.
Status : out Error.Condition);

Typically used when Resolve returns an Object _Id which turns out
to be a dangling reference, and one wants to display a message
-- indicating what we thought the link was supposed to reference.

== Possible errors:.
- Is_Link_Error{(Status):
- Cant_ldentify_Link

- S e D T Eh G TS D D G R S CE R G S AP R G S D G G R G D GRS R T G AR P G Y G D OR SR G R AR A G G W E e

== Use of the following operations is restricted to Jdbject®*body ==

procedure Differentiate (Link_Pack : Machine.Segment_Name;
Status : out Error.Condition).

-~ Called by Object.Open when undifferentiating a link pack. The
-- given segment is open with mode:Write_Object. The operation
-- copies the map wnich accelerates resolution of link names.

procedure (reate_Internal_Link
(Link_Pack : Om.Version_Handle:
Link_Name : Om.Simple_Name_String;
Designated_Object : Om.Object_Id:
1d ¢ Om.Action_Id:
Status : out Error.Condition.
Max_wait : Duration := Job.Default_Wait);

-= Creates an internal link.

-- Acquires a Record_Write_Object lock on the link pack, with thé
-- given action (the same action as given to Object.Create).

-= Link_Name must be the simple name of Designatzd;O:jQCt.if* #

-= Acquires the Version_Map Muxtex during the deletion of the Llink:
== No Log record is written; assumes Client will call
-=- pelete_Internal_Object if abandoning the action.

-=- Possible errors:
-- Is_Link_Error{(Status):
-- Duplicate_Link_Name

procedure Delete_Internat_Link
(Link_Pack : OUm.Version_Handle;
Link_Name : Om.Simple_Name_String:
1d = Om.Action_Id:
Status 2 out Error.Condition.:

3

'DELTA_KKeREVI_0_0.JNITS.04.0_SERVICES_1°v(18) page
vax_wait I Duration := Job.Nefault_wWait);
-- Deletes the internal link, with the given Link_Nare.

== Acquires a Hecord_write_OUbject lock on the link pack, with the
given action (typically a private action of expunje).

Acquires the Version_Map Muxtex during the addition of the link;
== No Log record is written; assumes Client will call
-- Create_Internal_0Object if abandoning the action.

-- Possible errors:
- Is_Link_trror(Status):
Link_'iame_Does_Not_Exist

package User 1is
package Um renames Jdm_Jefinitions;

== Jsers are denoted by a directory (with subclass User_world) under
== "tUsers”. Various security related parameters are stored in
“tUsers._Frofiles_". Passwords are stored in “t)sers._Passwords_".
== Accounting information in storeg in the *“!Users.Accounting_Log".
Sessions are simply directories with subclass Session, typically in
== the users home directory. Groups’' are denoted by a directory {(with
== subclass Group) under "!'Groups”:; uses a link pac to construct the

== permanent representation of the set of users/groups in the group
-=- (denoted by the directory).

procedure Create (User_Name : Om.Pathname_String;
Password : String;
Home_Directory : out On.0Object_Handle:
Users_1d : out Om.User_1d:
Status : out Error.Condition):

Creates a new world for the user, returned in Home_Directory.

== Initially, User_Name must be a simple name. At some future point in
time, might allow User_MName to also specify intervening directories
== between "!Users” and the new user®'s home directory.

-- Possible errors:
- Is_Access_Control_Error (Status)

procedure Get_Id (N3ame : Om.Unique_Wildcard:
Jsers_Ubject_Id : out Um.Object_tandle:
Jsers_1d : out Om.User_Id:;
Stztus ¢ out Error.Condition).

procedure oset_Id (name : Cm.Object_Kandle:
Jsers_Id * out Oum.User_I1d:
Status : out Error.Condition);

r1tn the first procedure, User_Name is resolved to an Oobject_Handle

TDELTA_KKaReVI_C_NotINITS.0MoOM_SERVICES_1'Vv(18) page 5

== via Waming.resolve. A resolve error implies the user does not
-~ exist. Then, with either procedure, conputes the corresponding
== User_Id.

-=- Possible errors:

-- Includes atl those from Naming.Resolve

- Is_User_Error (Status)

- o Not_A_User_wWorld

- o The Object_Handle does not identify a user world.

tfunction Simple_Name (User : Om.Object_Handle)
return Om.Simple_Name_String.;

-= Assuming User actually identifies an existing user, returns the
-=- user'’s simple name, as defined by Naming.Get_Simple_Name.

function Home_Directory (User : Om.Object_Handle)
return Om.Pathname_String:

-=- Assuming Jser actually identifies an existing user, returns the
== full pathname of the user, as defined by Naming.Get_Full_Name.

procedure Uestroy (liser : Om.Object_tandles
Status : out Error.Condition:
Home_Directory_Must_Be_Empty : Boolean := False):

-- The identified user will no longer be able to login. The user’'s

-~ home world is destroyed (in the sense defined by World.Destroy.

-=- supplying not Home_virectory_~ust_Be_Empty for the

-- Destroy_Contained_UQpjects and Destroy_Contained_Wworlds parameters).

-=- Possiole errors:
- ALL those returned by ¥World.Destroy

function Last_Loyin_Time (User 2 Om,Object_Handle)'return Calendar.Time:
function Last_Logout_Time

(User : Om.Ubject_Handle) return Calendar.Time:

procedure Set_Password
(User : Om.User_Id;
ODld_Password 2 String:
New_rassword : String:
Status : out Error.Condition):

-=- Possible errors:
- Is_Access_Control_Error (Status)

procedure Validate_Password
(User ¢ Om.User_Id:?
“assword : String:
Status : out Error.Condition);

-- Po0ossible errors:

- Is_User_f{rror (Status)
- o Invalid_+rassword

packace Group 1s

YOELTA_KKaREVI_0_0.JNITS.0%.CM_SERVICES_1'V(18)

page £

procedure (reate (Name : Om.”athname_String:

New_Id ¢ Om.Group_14d.

Action : Om.Action_Id;

Status : out Error.Condition);
procedure Get_Id (Name : Om.Unique_wildcard;

Its_Id : out Om.Group_Id:

Status : out Error.londition).:
procedure Detete (Group : Om.Group_Id:

Action : Om.Action_I4d:

Status : out Error.Condition):

package Member is
procedure Add (Group
User
Action
Status
procedure Kemove (Group
User
Action
Status

Om.Group_1I1d:

Om.User_1Id.

Om.Action_Id.

out Error.Condition);

: Om.Group_1Id:
Om.User_Ia;
Om.Action_1ld.

out Error.Condition).;

ena Member,
enag Oroups
ena User,

package View is

package um renames Sm_vefinitions:
We assume reader is already familiar with the basic meanina and
function universe anc world views.

A universe view
world number.

is thought of as an array of elements,
Each element is called a "slot".

indexed by

There are 3 values stored in
Bound_World_vView
Bound_wv_Is_Protected Boolean;
Indirect_world_View Om.Object_Id:

and tney nhave tne following meaning:

a universe view sltot:
Om.Versionr_I1d.

1f Bounc_worla_view and Indirect_world_View are both Nil, then thris
slot is said to be Nil, and does not reference any world view.

It bound_world_vView is not Nil, this slot is said to be "bound” and
to reference the identified world view version. Note that the world

number (in the version id) is always the same as the index (of the sl
ot).

It Lound_worlu_view is MNil, this slot is said to be "indirect”. The
Indirect_acrlu_view references the corresponding element in the
identified universe view. In this case, one "resolves” an object
by following these indirect links until a bound slot is
encountered. Cycles in tne indirection are detected by having a
maximur depth (of 31, say).

1d

tDLLTA_KKaREVI_C_0.UNITS.CYLUM_SERVICES_1°V(13) page 7

1f both Aound_wWorld_vView and Indirect_wWworld_View are non Nil, tne
slot is said to e "“refreshable”, meaning that Bound_wWorld_View can
be updatea to reference to whatever Indirect_world_ View resolves.

Bound_¥v_Is_Protected can only be true when Bound_World_vView is not
Nile If 3ound_wWv_Is_Protected is true, then the bound world view 15

protected from being expunged, as long as the universe view still
exists.

procedure (reate (Target_Universe_View : Om.Unique_Wildcard:

Action : Om.Action_Id;:

New_Universe_View : out Om.Version_Handles
New_world_View ¢ out Om.Version_Handle,

Status : out Error.Condition:

Crippled : Boolean := False?; = - .
Indirect : Om.Version_Handle 2= Om.Nil_Version_Handle:

“ax_hda_Dbjects = Integer = = 1;

rax_Other_(Objects : Integer z= = 1.
Version_Retention : Om.Version_Retention_Count := 17
“wax_Wajit T Duration := Job.Default_wait):

This operation is typically used to initialize a new uorld¢ and
when creating a new path from scratch.

Max_Ada_Jdbjects is interpreted only when the Indirect parameter is
nil; similarly for Max_Other_Objects. In this case, if
Max_Ada_Upjects is negative, then it defaults to tne value returned
by Worla.Max_Ada_Objects (for the world in which the world view
version is created). Similarly for Max_Jther_Objects.

Creates a3 new universe views lnxtiallzed as follows: it

4] is unfrozen,

o all stots are nit, except the slot for the world in which the
universe view is created (note that a criopled universe view
has just this one slot).

It the Indirect parameter is not nils, then the slot is set to be
and indirect reference through the specified universe views. Note
that no check is made to verify that the identified universe view
actually exists. If the Indirect parameter is nil., then this slot
references a new version of the world views, which is initializes a5
follows: it

o 1is unfrazen

o 1is not protected

o can support the specified number of Ada and 2ther objects

o each slot can reference the specified numoer of versions

o all slots are nil except the slot for the liak pack, which
references a new version of the link pack, which is empty.

o all slots have the Reserved bit set

o all unit stutes are nil

0 the dgependency matrix is clear.

Note that the new universe view is NOT entered inta any world
ViewsS.

1f Taruet_Universe_View 15 "™, the simdole name of the new universe
view 1S computeud usinyg the same rules as for creatinj temporary

'OELTA_KKREVL_C_0.UNITS.0%.OM_SERVICES_1°'V(18) page g

ooject names in Jpbject.Create (with "“"); the universe view will be
a child of the world in which it is created.

The new universe and world view are both held with Arite_Object
locks. 3ut note that the Cbject operations and the universe view
slot operations (velow) still work on the view (even though upgrade
from w0 to RWJ) is normally not supported).

Destroy of a Universe_View/World_View can be acheived via
Ooject.txpunge.

Possiole errors:
Is_Bad_Pathname (Status)
Is_View_Error (Status)
o Cant_Recreate_View
The object named by Target_uUniverse_View already exists.
o 2ad_0bject_Index_Constraint
The value of Max_Ada_Objects or Max_Other_Jnjects is not
within the bounds prescribsd by the parameters of tne
containing world.
Is_5ad_Action (Status)
Is_Lock_Error (Status)
Is_Resource_Limit_Efrror (Status)

type Freeze_Option is new Long_Integer range 0..7:

Same_Frozenness_As_Source

constant Freezz_Option

: = 17
Freeze_Target : constant Freeze_Uption = 2;
: = 3,

Untreeze_Target
Default_res_iits

procedure (opy (Source_Universe_View

constant Freeze_Option

Om.Reservation_PBits (1..0):

2 Om.version_sdanile.
Target_Universe_View : Om.Jnique_wildcard:
Action : Om.Action_1d:
Status : out Error.Condition;
Varsion_Prune_Target : Boolean := False:
This_wWorld : Freeze_Option 2= Same_Frozenness_As_Source;

Other_Worlds : Freeze_Option := Same_Frozenness_As_Sourc

Ada_Res_bits : Om.Reservation_Bits == Default_Res_3its;
Uther_Kes_Fits 2 Om.Reservation_Bits := Default_res_iits

Max_Ada_Objects = Integer = - 1,
Max_Jther_Chbjects : Integer == - 1;
Max_wait : Duration := Jon.Default_Wait);

This operstion can oe used to imnlement higher lLevel operations

such as fork a3 Lath, spawn a suopaths, make a release, vanilla view
COftys €t C.

The target universe view is created, and initialized as follows:
its frozen'ness is as specified by This_World Freeze_0QOption,
paraneter., It has the same Crippled'ness as the sgurce. FOor empty
slots in the source universe view, the target universe view has
empty slots. For non-empty slots in the source, the corresponaing

TOELTA_KKeREVI_O0_0.JNITS.0%aOM_SERVICES_1'V(18) page

target slot is initialized as follows:

If the source slot is indirect, the target slot becomes identical
to the source slot. but note that this is no guarantee that the
indirection actually leads to someplace interesting!

If the source slot is bound (the only remaining case), the
following rules apply:

The target slot will reference the same world view (as the source)
only if the source world view is frozea and not pratected by the
source universe view.

In all other cases, a new world view version is created, which is
copy of the source world vieu, except as indicatea by the following:

I1f the target world view is in the same world as the target
universe viewr then the This_World parameter applies, else the
Other_worlds parameter applies. The target world view will be
frozen 11t
(a) The Freeze_Gption is Same_Frozenness_As_Sources, and the
source worlad is frozen, or
(2) The Freeze_QOptior is Freeze_Target.

The target world view will be version pruned if the target world
view is to be frozen, or the Version_Prune_Target parameter is
true. By "version pruned” we mean that the retention lists in the
new world view will be of length;l (may expunge deleted versions).
The target worlu view will be object pruned if the target world
view is to be frozen. £y "opbject pruned” we mean that the maximur
numper of Ada units and other objects will be reduced to cover just
the oujects tnat are actually selected py the world view (makes the
view smaller).

The target world view will be protected by the tarjet universe view
if the source world view is protected oy the source universe view.

If Max_Ada_Objects is negativer, then it defaults to the value
returned by World.Max_Ada_Objects (for the world in which the
target world view version is created). Similarly for
Vax_OUther_OCbjects.

1f the target world view is unfrozen, then the following apply: (1)
The target view can support the number of Ada and other objects
specified bty the Max_Ada_Cbjects and Max_Other_Objects parameters.
(2) 1f voth Ada_Ses_Gits and Other_Res_3its are null arrays, then
the reserved pits in the target world view are identical to those
of the source world view. Otherwise, the reserved sits (in the
target world view) are set as specified by the value of the
bda_es_*its anu uther_Res_Rits parameters; objects not snecifier
have their reservad uits True;, objects which appear in poth the
Aga_les_-1ts and Jther_KRes_Bits get an unspecified value for their
reserved pit; the operation ignores slices of Ada_Xes_oits or
Jther_Xes_fits which are out of the range of Object_Indexes defined
for tne view.

Thne new universe and world views are held with write_Ubject locks.

POELTA _KKoRIVI_0_0.J5T1T5.0%aUM_SERVICES_1'V(18) rage

3ut note that the Object operations and the universe view slot
operations (below) still work on the views (even thoujh ubngrace
from v0 to KU is normally not supporteal.

Note that Llink packs are differentiated on demand., just Llike
versions of other objects; therefore no special rules are required.

Possible errors:
Is_EBad_Version_Handle (Status)
o The Suvurce_Universe_View does not exist
Is_EBad_Pathname (Status)
Is_view_Error (status)
o Cant_Recreate_View

The object named by Target_uUniverse_View already exists.

0o Bad_Object_Ilndex_Constraint

The value of Max_Ada_Objects or Max_Cther_Objects is not

within the bounds prescribed by the parameters of the
containing world.

Is_Sad_Action (Status)

Is_Lock_Error (Status)

Is_resource_LiTit_Srror (Status)

procedure Get_Universe_view_Slot

(Universe_View : Om.Version_Handle:

Action : Om.Action_Id;

Bound_wWorld_View ¢ out Om.Version_Handle:;
sound_wv_Is_Protectea : out Boolean:
Indirect_wortd_View': out Om.Version_dandle;
Status : ocut Error.Condition;

Max_wait : Duration := Job.Default_Wait);

procezdurc set_universe_View_Slot

(Universe_View : Um.Version_Handle:
For_worta : Om.Object_Handle;

#ction : Um.Action_Id;

couna_world_View : Ome.Version_Handle:
Zzound_wv_Is_Protected : Baolean:
Indirect_world_View : Om.Version_Handle:
Status : out Error.Condition:

Max_wait : Duration := Job.Default_wWait);

These operations are typically used to change "imports”.

The get operation reads all 3 values from the identified slot. The
meaning of these values is defined at the beginning of this
Dackage. The set operation writes all 3 values into the identifien
slot. Client can combine the 2 operations to create operations
which change just a single value.

For_wortd idrntities sone object in tne world whose corresocniing
stot (in Jnivers=_view) is to Le read/written.

The get operation acquires a Record_KRead lock on the identified
stot. The set operation acguires a Record_write lock o1 the slot

(or & vrite_Yuject lock if the action alreaady holas a read/write
object lock).

TDELTA_KKLREVI_0_0.UNITS.04.0%_SERVICES_1'V(18) page

end

-=- Possible errors:

- Is_tac_version_Handle (Status)

- Is_view_Error (Status)

- o ¥Wortd_View_Not_Found

- Attempting to set Bound_wv_Is_Protected, but
- Jound_wWorld_View is Nile.

- Is_pad_Action (Status)

- Is_Lock_Error (Status)

- Is_esource_Limit_Error (Status)

procedure Expunyge (Universe_View : Om.Version_Handle:
NYumber_Expunged = out Natural:
Disk_Blocks_Freed = out Natural;
Status : out Error.Condition);

-="Calls Coject.Expunge on everyﬂobiect selected by the world view
-~ {(selected by Universe_View) in the same world as Universe_View.

-- On return, Number_Expunged and Disk_Blocks_Freed are returned egqual
-- to the suim of the values returned by the calls to JObject.Zxpunge.

-- Alsos, cleans up some internal OM garbage. Specifically: (1) Due to
-- outstanaing locks at expunge time, it is possible for versions to
-- exist and not be selected by any view: these versions are expunjed.
== (2) Also due to outstanding locks at exdunge time, it is possible
-= for exsungeable objects with no versiols to exist: these objects

-- 3are expunged. (3) If an object goes from having 0 versioas to 1 or
-- more versions, an empty Nil version is left around (invisible to

-- users), these versions are expunged. In future implementations,

~- these sources of garbage may be eliminated, and this paraoraph

-=- stricken.

-=- Dgssit.le errors:
-- Is_cad_version_dandle (Status)
- plus all those returned by Object.Expunge.

procedure Uestroy (View : Om.Version_Handle:
Number_Expunged : out Natural:
Pisk_Blocks_Freed : out Natural.
Status : out Error.Condition);

-- Class_world_view: For a world view which is no longer referencez,
-- this operation will destroy the identified version of the " _View_ "
-~ gbject and exounge any version (and possibly object) which is

~= no longer referenced as a result, '

-- (Except that the "“_View_" and "_Links_"

-~ objects are never expunged).

-= Class_Universe_View: This operation will destroy the igentified
-- universe view ann destroy any world view versions (as defined
-- apove) which are no longer referenced as a result.

-- Ffossivle errors:

- Version_ls_Still_keferenced
- o Attempt to destroy a worla view version which is still
- referenced by some universe vitwa.

YUDELTA_KKGXEVY _0_ 0. JNITS.O% .0t _

(4]

ERVICES_1'v(18) page iz

package World is
== pragma Subsystem (Object_Management)

package Om renames Jm_Definitions;
subtype Version_Ketention_Count is Om.Version_Retention_Count:

subtype (ontext is Um.Naming_Context;

== 3asic operations ==

tunction Default_Unit return Disk.Unit_Number;

== Returns a legal Unit_Number according to a policy that is currently
== unspecitfied. Probably a policy similar to "best/usable volume” in
-=- Gamma.

function Default_Cluster_Size return Disk.Block_Count:
=~ Currently 1.

function Default_wWarning_Threshold return Disk.Region_Count:
== Currently infinite. !

'

function Default_Allocation_Increment return Disk.3lock_Count;
== Currently 1 track.

procedure (reate (vame : Om.Unique_Wildcard:
max_Ada_Objects : Positive:
riax_Other_Objects : Positive.,
New_World : out Om.Object_Handle,;
Status : out Error.Conditions
In_Context : Context := Job.Default_Contexts:
Unit : Disk.Unit_Number := Default_Unit.
Cluster_Size : Disk.Block_Count == Default_Cluster_Si:

€.

warning_Threshold : Disk.Block_Count 2= Default_wWarnin
g_Threshold.

Allocation_Increment : Disk.block_Count := Default_AtLl
ocation_Increment);

== Name and In_Context are used to specify the name of the new world,
== in a fashion similar to Object.Create.

-= The followin: nojects are created (as children 2f the world

-- ovject): The object with simple name “_Views_" has

-- (lass_worlc_View: versions of this object are used to construct

== various "views"” of the world. The object with simdle nrame

== "_Links_" has Class_Link_Fack; versions of this object are selecter
== by versions of the world view in order to represent the Ada library
== unit name space.

'OELTA_KRXEVI_0_0.UnITS.OMJOM_SERVICES_1'V(18) page

Ye

The values of “ax_Ada_Objects and Max_JOther_Objects control the
size of a table (of object information) which is stored in the »
world ouvject. If one specifies maximal values you chew up something
Like 3 1/3 of a “Mbyte in the world object. These values constrain
the corresponding values when creating new views (via the
View.(reate and View.Copy).

Some additional objects are created (as children of the world
object): The object with simple name "_Initial_" has
Class_Universe_view and is created by calling View.Create with the
appropriate striny name and default parameters. Thz object with
simple name "_Default_" has Class_Universe_View ani is created by
calling View.(reate with the appropriate string name, Indirect to
the "_Initial_" views, Crippled, and remaining paraseters taking
defaults.

The creation takes permanent effect immediately = there is no
action involveda :

Note that the created world version is not put in any world view.,
anc tnere is no way to put it into one.

The System_View is updated to contain an inairect reference to the
" Default_" view created for this world.

Possicle errors:
Is_bad_Pathname (Status):
o Might ve because the last segment of the name contains
wildcaros. *
Illegat_Class

o The "*'(C" attribute specified something other‘than a director

Is_ikesource_Limit_tfrror (Status)
o Like ran out of world numberse.

procedure Cestroy (wame : Om.Unigque_wWildcard:

Status : out Error.Condition:

In_Context 2z Context := Job.Default_Context;
Destroy_Contained_Opjects : Boolean := False:
Destroy_Contained_Worlds : Boolean := False);

procedure vestroy (Ine_world : Om.Object_dandle:

Status = out Error.Condition:
Cestroy_Contained_Objects : Boolean := False:
Jestroy_Contained_Worlds : Boolean := False);

Name, and In_Context are used according to the rules of

Naming.rResolve to compute the Object_Id of the world to be destroye,

All of the regjions allocated to this world are made available to
the pool of freec regions. This operation takes permanent effect
immediately. This operation DJES NOT follow action semantics. So-
once the worlu is destroyed there is no way to get the objects pack.

wALNING: Supwlying True to either of the destroy options will cause
the otjects which live in the world to be destroyei.

This operation attempts to produce its errors orior to actually

'OELTA _KCaRTVI_C_0.UNITS. D%, GM_SERVICES_1'V(18) paje is

-=- destroying anything. However, the destroy operation is not atomic
== with resoect to concurrent operations (like Cbject.Create);

== consequently, it is possible to get errors after contained objects
-~ have been destroyed.

== The entry (for this world) in the System_View is removed.

-- Possiole errors:

- Is_bad_Object_Id (Status)

- Is_Bad_Object_Handle (Status)
- Is_Bad_Pathname (Status)

- Is_sad_Action (Status)

- Is_Lock_Error (Status)

- Version_Ils_Still_Referenced

-- o Destroy_Contained_Objects is true, but the (sub) world

contains at least one version which cannot be expunged.

- World_Stitl_Contains_OUbjects

o Destroy_Contained_Objects is false, put the worla contains
ovjects (with unexpunged versioas) other than the link pac

- and world viewe.
- World_Still_Contains_Subworlds)
- o Jestroy_Contained_0Nbjects is false, but the world contains

ovjects which are themselves worlas.
function System_View return Om.Version_Handle:

== Returns the 14 of the “system view™.
!

procedure txpunae (<orld : Or.Unicue_Wildcard:
Jumber_Expunged : out Natural:
Disk_Slocks_Freed : out Natural;
Status : out BError.Condition);

procedure Expunge (morld : Um.Object_Handle:
Numpber_Expunged : out Natural,
Disk_Blocks_Freed : out Natural:
Status : out Error.Condition):

== Calls View.Expunge (not Object.Expunge!) on every universe view in

== the identified world. Number_Expunged and Disk_Blocks_Freed are _
—= returned equal to the sum of the values returned by the calls tg view

-- Possiule errors:

- Iltegal_Class

-- o Can only be aoplied to an object with Class_Directory and
-- subclass world.

-- ALL those returned by View.Expunge.

procedure “ove (dame : Sm.Unique_wildcarao:
To_Unit : Diska.'Init_humber;
S5tatus : out Error.Condition;
In_Context : Context := Jooa.vefault_Context):

procedure iove (~o0rld : Om.Object_Handle.
To_unit 2 DiskeUnit_number,

1DELTA_KRaREVI_0_0.UHITS.0%a O _SERVICES_1°V(18) page

Status : out Error.Condition;
In_Context : Context == Job.Default_Context):

-=- Name and In_Context are used according to the rules of

-=- Naming.Resolve to compute the Object_Id of the world to be moved.
-~ Moves the specified worlid to the specified disk. Requires that

-- there be no locks of any kind on any object in the world. Ok if the
-- world is already on that disk. Atomic with respect to concurrent

-~ activity. Atomic with respect to crashes. Probably not available in
-= the 1st gtr implementatione.

-=- Possible errors:

- Illegal_Class
- o Can only be applied to an object with Class_Directory ancd
- subclass world.

- Is_Bad_Object_la (Status)
- Is_Bad_Pathname (Status)

- Is_3ad_Action (Status)
- Is_Lock_Error (Status)
- Is_~esource_Limit_trror (Status)

-= world parameters ==

-- These functions return garbage (typically 0) when given garpage

-= input parameters. Procedures which do not return status are noops
~- when the input parameters are garbage. The set operations take

-~ permanent effect immediately. These operations take a wWorld

-- parameter, which can identify any object in the world of interest.

function Cluster_Size
(dortd : Um.libject_Handle) return Disk.2lock_Count:

-- heturns the cluster size for this world. Currently, we only
-~ support a cluster size of 1. It is not possible to change the
-« cluster size once a world has been created.

function warning_Threshold (world : Om.Object_Handle)
return Disk.Block_Count; '
procedure Set_Warning_Threshold (World : Om.Object_Handle.
Threshold : Disk.Region_Count):

-= Uffendin; sessions get a warning message when the aumber of
-- allocated regions (in this world) goes above this value. Default:
-=- rxegion_Count' Last.

function ‘ax_Header_Allocation_Increment return Disk.3lock_Count;

function fivject_neaver_Ailocation_lncrement
(vorld @ Jdr.iuject_tianale) return uiskl.3lac<_Tount;
procedure Set_(Lject _heacer_tllocation_lncrement
(vorle ¢ Onaut-ject_iriandles
Increment ¢ Cisk.lock_Count):

-- 7o mininmize crasn recovery time, it is advantageous for object
-- headers to te allocated contiguously on tne disk. When 3 new object
-~ reader must be allocated, and the world does not contain any free

1°

!DELTA,KK.%EVI_O_C.JJITS.J%.uﬂ_SERVlCES_l'V(18) vaase 14

um

== object neaders, the system allocates W olocks for ise as object
headers, where N is the "allocation increment"” parameter controlle
== by these ¢ ooerations. Larger values of the allocation incrment
tend to increase contiguity, but also increases fragmentation
(since free ovject header blocks cannot be used for anything else).

The value must not exceed Max_Header_Allocation_Increment.

function Max_Ada_Objects (horld : Om.Object _Handle) return Positive:
procedure Set_Max_Ada_Objects (World : Om.Object_dandle:
Max_Ada_Objects : Positive:
Status : out Error.Condition);

function Max_Other_Objects (World = Om.Opject_Handle) return Positive:
procedure Set_Max_Uther_Objects (World : Om.Object_Handle;
' Max_Other_Objects : Positive;
Status : out Error.Condition):

As indicated under the Create operation, the value of these

parameters constrains the corresponding values in View.(reate and
== View.lOyy Operations.

-- Possivle errors:

- Is_View_Frror (5tatus)

o tad_Dbject_Index_Constraint
Can be returned for any of the following: The ociven
value of Max_Ada_Objects is smaller than the correspond

14
value for some version of the world view for this worlz

Similar situation for Max_Other_Opbjects. The sum of
Max_Ada_Objects and Max_DOther_Objects exceeds the maxir

nurver of object indices.

These operations return garbage when the supplied Wworld_Number
=~ refers to a world which does not exist. These operations take a

== World parameter, which can identify any ooject in the world of
-= interest.

function Unit (worti3d : Om.Object_Handle) return Disk.Jnit_Nunber;
tunction Is_a_Jou_world (world : Om.Object_Handle) return Boolean:

tunction Consumed_rejions (wWortd : Om.dbject_Handle)
return [isk.¥egion_Count:

== "e2turns tne nutuer of reiions which are currently allocated to
== voriz.

subtype Clock_Count is Uisk.flock_Count:
tunction “loct_“snscity (wortld : OmeObject_Hanacle) return 3lock_Count:

function Hesaer_lapacity (world : Om.0oject _Handle) return Block_Count;
functioun Cata_riock_lapacity

'OELTA_KKAREVI_Z_0.UNITS.0MOM_SERVICES_1'Vv(18) page 17

(World : Om.0bject_Handle) return 2lock_Count:
function Consumec_readers (world : Om.Ubject_Hancdle) return 2lock_Count.
function Consumea_vData_tlocks
(sorld 2 Om.Ubject_Handle) return Block_Count.:
tunction Structural_Map_Size
(korld : Om.0bject_Handle) return Block_Count:
function Version_Map_Size (world : Om.Object_Handle) return 3lock_Count:

-- Block_Capacity is simply Consumed_Regions times the number of

-- plocks in a rejion. Header_Capacity is the number of blocks

-- currently reserved for use as headers, and Data_Block_Capacity is
-=- the numper of blocks remaining for other uses. 5Slock_Capacity less
-- Header_Capacity and Data_Block_Capacity identifies the built in

-- overhead of a world. Consumed_Headers is the number of header

-- blocks currently in use. Similarly, Consumed_Data_3locks is the
-=-"numper of blocks currently in use for other things. Each of the

-=- following expressions represent different kinds of internal

-- fragmentation:

- (1) header_{apacity - Consumed_Headers

- (2) Data_Stock_Capacity = Consumed_Data_bBlocks
- (3) (Header_Capacity + Data_tlock_Capacity) -

- (Consumed_Headers + Consumed_Data_Blocks)

== Structural_vap_size ana Version_Map_Size represent the only other
-= forms of overhead in the world which is not accounted for by

-- Llooking at the amount of space consumed by individual versions of
-= 0odjects.

-=- These operaticns are noops when given invalid Worl3_iumber's.

function Is_vVulnerable (World : Machine.world_nNumber) return EBoolean:
procedure Make_Vulnerable (world : Machine.world_Number).
procedure Make_lnvulnerable (World : Machine.world_Number):

-~ A world enters its window of vulnerability when its contents are
- == modifiede Vulnerable worlds have to be examined, object by object,
-=- by crash recovery. Thus, causing a world to teave its window of
-~ vulnerability may reduce the cost of crash recovery. There is a
-~ daemon which attempts to use idle cycles to remove worlds from
-~ their window of vulnerability. ' .

end World:

packagje 4ccess_lontrol is
== praygma Suusystemn (Object_Management).:

-=- The followinz is a summary of proposea access control rules.

-= General rules ==

YOELTA_KK.REVI_0_0.UNIT5.04.0M_SEXVICES_1'v(12) page 1=

Conventional cefinition for user. Max 1023 users. Jser “George"
exists 1ff there is an object with name "!lUsers...5eorje™, where
"tUsers” is a precgefined world, "George” is a direct child world of
"tUsers”, and "..." can be an intervening chain of 0 or more
non-world directories. Fy default, only the Privileged group has
the ability to create/delete users. OM will not allos one to create
any other objects in the "'Users”™ world.

Conventional definition for group. Max 4095 groups. Group
"Software" exists iff there is an object with name
“'Groups.Software™, where "!Groups"” is a predefined world, and
"Software"” is a directory with Group_Subclass. 3eorge is a member
of Software iff there is a directory with the name
"'Groups.Software.George"”, with Member_Subclass. By default, only
the Privileged aroup has the ability to create/delete/modify
groups. OM will not allow one to create any other objects in the
"1Groups" world.

Every user is inplicitly a group. Implicitly defined group Public
incluves all users on the machine. Implicitly defined group
Networek _“ublic incluoes all users with account on remdote machines.

Predefined users Operator and Rational.

Predefined group Privileged includes users Operator and Rational.
Can use basic mecnanisms to inclede ardbitrary users in the
"rivileged group. The Privileged group is special in the sense that
the privileyes conferred by being a member of this group have to be
explicitly enabled. When Privileged capabilities are enaulec, there
are no access control restrictions in force.

As indicated by the Job package, each session/job has an associated
"owner" user id. In addition, there is an amolification List of up
to 3 user ids. The rights of the session/job are the union of the
rights of the owner and the users named in the amplification list.
Recall that jobs are initialized to have this state equal to that
of the creating session.

ACLs are defined in OM_Definitions, and should be fairly obvious.

AlLs are applied to individual versions. There is 10 object=level
ACL.

The following orivileges are defined:
Create
Delete
Pead
¥rite
Fxecute
Owner

Tne specific meaning of the privileges is defined selow:

Create Applies only to worlds and controls the anility to
create views and direct world descendents.

Pelete Azdlies only to worlds and views. For worlds,

YDELTA_KKREVI_0_0.UNITS 0440 _SERVICES_1'V(18) page

ACL:

Move:

Read

¥rite

Execute

Owner

Initialt ACLs:

The ACL of a new version of an object which is currently "deleted”
from the perspective of the view is set from the views's default
this also covers the case where the object is being created.
The ACL of a new version (of an object which already "exists®™ from
the persoective of the view) is5 identical to that of the
predecessor version.

Create:

controls the ability to destroy this world. For
viewss controls the ability to destroy the view
itself.

Applicable to all objects except directories f(and
therefore worlds), and Link packs. For world views,
controls the ability to open objects, via the view,.
For other objects, controls the ability to open the
specific version for reading.

Applicable to all objects except directories (and
therefore worlds). For world views, controls the
ability to modify the view; this includes
creation/deletion of objects/versions via the view.
For other objects, controls the ability to open the
specific version for modification.

Applicable only to load images and Ada units/images.

Further discussion below.

Applicable only to worlds. Controls the ability to

change ACLs on versions stored in the world, as well

as other miscellaneous thingsa.

Note that worlds have an associated "owner® which is used for
accounting. The world's owner need not have Owner 3access granted in
tne ACL of the world object (although this would certaialy be true
by default).

+

“orld views contain a default ACL for new objects/versions created
in this view. Recall that objects/versions (exceot for views and
worlds) tannot be created without doing it in a view. The world
ooject contains defaults for the ACL of views as well 3s for the
default ACL contained in the view.

s A e e W G e e -

world Operations ==

Kequires create access to the parent world.

destroys:

Reguires aestroy world access to the worlo pein3 destroyed.

kFequires owner access to the world being moved.

Read worlu attributes:

Vvoes not require any access.

1c

!DéLTA_KK.?EVl_O_O.JMITS.0w.¢v_3thv1cﬁs_1-v(15) page 2

== drite wortd attrioutes:
-- kegquires owner access to the world.

== Change ACL:
X€equires owner access to the worlae.

== Naming UOperations =--

== No access control is applied.

-=- Object Operations =-

== Create:

- (1) To create @ new object requires write aczess to the view.

- The new version will be writeable by the creator only if the
-- default ACL in the view so specifies.

-- (2) To create a new version of an odject requires write access to
- the view. The new version will be writeaole by the creator

only 11t the £lL of the predecessor version so specified.

== Jpen: OUpening 3an object for read via a view regquires read

- access to the view. Upening an object for update via a view
requires write access to the views, regardless of whether or
not differentiation is actually required. Note that when

-- differentiation is performed, the new version will be

-- Wwriteaule by the creator only if tne 2(L of the predecessor
- version so specified.s Recall that one can open a version

-- sithout going through a view by simply specifying the

- correct version numrber. Also rzcall that many interestin-

classes of objects (such as Ada units) have a version policy
which prohivits openina the version for update without qo1ng
throuan a view. The ACL of the version itself must grant the
desired access (read/write).

== Delete:
- Requires write access to the view.

== Jndelete:
Kequires write access to the viewe.

-= Expunge:
- Kequires write access to the view.

-= Copy: neguires write access to the target view. If the version i<
beiny copied by reference, no other acess is reguired.

UtherWise2, read access to the source view and/or version i
- also reauires,

[,

-~ rnead version attributes:
tegquires read access to the versione

== erite version attributes:
leguires write access to the version. This rute does not
aouly to cnanage of ACL.

YOCLTA _KReREVI_0O_CadnITSeOMaOM_ScRVICES_1'V(1%) page

-= Change ACL:

- Regquires owner privilege to the enclosing world. Does not
- require write access to the version itself.

-=- View Operations =--

-= Create:
- Requires create access to the containing world.

-- Copy: Requires read access to the source views, and create access
- to the containing world.

== Read/Write Univ view:
-- Hegquires read/write access to the universe view object.

-=- Expunge: .
- Kequires write access to the view.

-~ The ACL for a Link pack has no effect when creatinjy/deleting
-= internal links or resolving link names. The ACL for a link
-- pack only has etfect when creatidg/deleting external links.
-=- hote that A{Ls for link packs aré inherited according to the
-- same rules as for other objectse.

-- Jobs --

-=- Various operations., such as setting state and job.kitl require
-=- requestor to have a group map which includes the owner of the
-- job/session in guestion.

== Execution ==

-= Flavorate program/subsystem:

- (1) Importing code segments named by the load imnaje requires

- the executing job to have Execute access to the load image.
- (2) Importing module names from already elaborated subsystem

-- requires (a) load image for imported subsystem enables

- module access checks and (b) the executing joh has Execute
-- access tc the Llopad image. ~

- (1) Joo/session can zmolify its rights by suaplyiny the password
-- of the addeg user.
-- (2) The Privileged group does not normally give its members any

'OELTA_KKGRIVI_O_CuUNITS.04.G%_SERVICES_1'V(18) page

-- additional capabilities. A Job/Session can enable privileges
-- i1 user is a member of the Privileged group. '
-- (3) Amplify_nights bit in primary load image will aad rights of
-- user, i1dentified by the Load image, to the elaborating job:
- rigjhts go away when elaboration finished: preveants more than
- 1 main program or subsystem from being elaborated by the

-- jJob: setting the amplification rights requires the executing
- job to have the identified rights.

- (4) Can acheive amplification by elaborating subsystem in its

-- own job, and running called procedure®s on tasks of the

- elaborated subsystem.

== Strict partition:
-- No problem other than one can "see™ (in the Naming sense) the
- existence of controlled objects.

-=- Give read=-only access to subsystem importers:
- Mo problenm,

== Give Fred edit access to only a set of Ada units i1 a world:
we assume that the Create/Destroy/Owner privileges (for the
world) are not already given to Fred. Spawn a new view. Give

- Fred Z“ead/rrite access to the view. Set the vieuw's default
- AC_ to give Fred Pead/Write access to units he creates. For
-- all existiny versions (in Fred's view) set thne Kead/write
-- privileges in the version's ACL) appropriately. Only modify

versions whose ACLs actually need changing. Versions which
get their ACLs chanoed are automatically differentiated. Fred
can now eiit selected units in the world. Fred might be acle

to Iinstall/code (some issues with ACLs on ceatral databases
- keot by tools).

Give Fred write access to a file in an unmanaged world, but prevent
- Fred from deletiny the file. Can do it provided Fred is not
-- allowed to create new versions.

== ¥Miscellaneous ~otes =-

== Note that read/write privileges in the universe view are NOT

~- checked during Ubject operations, such as Create and Open. This is
== true even wh2n there i1s indirection in the views.

== Note that tink packs have no ACL.

end Access_Control.

enc Om_Services_1.

C G P 2 A A
€] F 2 A A
G GG FPPP AAARAA
G G P A A
G G P A A
6GGGG P A A
User: GPA

Object: YDELTA_KK.REV1_0_0.UNITS.KK.OM_DEFINITIONS
Version: V(117)

Request: 1276

Date: April 24, 1936
Queued: 11:27:1C awm
Printed: 11:43:09 AM

'DEL

with
with
with
with

pack

TA_KKaREVI_0_CLeUNITS YR INM_GEFINITIONS'V(117) page

Sys:
Filler:
Eounded;
Machine.

age Om_Definitions is
-= pragma Suosystem (Kernel);

== General guidelines for use of OM specs:

== (1) Unless explictly stated otherwise, no operation propagates
== exceptions.

package System renames Sys.,

Nil : constant == §;

== ALl visibly scalar types have 0 as their Nil value.

-= Machine 135 -~

type Machine_Id is new _ong_Integer range 0..2 *% 264 - 1;

== Guaranteed unique for all Rational machines. Stored in the NDVRAM.
4

type Loot_Number is new Long_Integer range 0..2 *% 16 - 1;

== The systen boot numuer is incremented each time the virtual memory

== system tries to boot itself. This value is storez in the lavel of the
== root oisk unit. It is initialized when that disk unit is

=-= formatted/renlaces. The value is allowed to "wrap". Under normal use,

this means that the system boot number is unique and monotonically
== increasing.

type Unique_bSeguence_~Numoer is new Long_Integer range 0..2 %% 32 = 1;

~= Starts at 1 eacn time the system boots. Incremented each time the
== function Get is invoked.

type Unique_Ild is new Long_Integer range C.o2 %% 45 - 1;
== record

- Boot : Foot_Number,:

-- Seguence : Uniwue_bequence_Number:

== end record.,

function Hoot return HZoot_Number,
function To_unique_Io
(oot : woout_Number:
Seouence : Jnigue_Seouence_Number) return Jniaue_ld;
function oot (1d : Unigue_Ild) return Boot_Kumber;
function Sequeace (la ¢ Unigue_Id) return Unigue_Sequence_Numnver;

bt

!UELTA_KK.REV1_0_0.0¥I1S.Rﬁ.OM_DEFINITIONS'V(117) page

function Get return Unigue_ld;

Wwithin this run of the system, guarantees that the returned value
will be ">" tnan all those returned by previous calls (even in the
face of concurrent calls to Get). With high probability,

this property is also true in the case of crashes and recovery
(from backup). Costs roughly 3-4 usec to call this function.
Concurrent caltls are ok. Calls by abortable threads are ok.
At a consumption rate of 1 id every msecs, will run out of Id's in
49 dayss, at which point the system crashes.

type Net_Unique_Id is private:

-=- record

- Machine : Machine_lId;

-- Boot : Boot_Number;

-- Sequence : Unique_Sequence_Number;

end records

Nil_Net_uniaoue_ld : constant {Net_Unigue_Id;
function To_uUnigue_lo (“achine : Machine_Id;
300t : Boot_Number:
Sequence : Unique_Sequence_Number)
return Net_Unique_I1d;
Extract_Machine (Id : Net_Unique_Id) return Machine_Id.
Boot (1d : ~Net_tUnique_Id) retuen Boot_Number;

Cequence (ld : ~et_Unique_Id) return Jnique_Sequence_nNumber,;

function
function
function
function Get return Net_Unique_Id:

-=- Get the same prorerties as the previous Get function. Plus the

-- adcitional property that with high probability., the returned value 1is
-= unique amony the values generated by all Rational machines.

-= Object_lao, version_1d and Object_Handle ==

type Class_Number is new Long_Integer range 0..31;

Uniquely identifies the "“type" of data contained in the
example, an object containing 3 Diana tree probably has
type than an object containing a text file.
have the same classe.

object. For
a2 different
All versions of an object

Class_Directory
Class_world_view
Class_Jdniverse_View

constant
constant
constant

Class_Number
Class_Number
Class_Nurber

Class_File constant Class_Number
Class_"ive constant Class_Number
Class__ink_“ack constant (lass_ANumper

Class_Ada
Class_Ada_Attributes
Class_<Coue
Class__oad_Image_Cpject

% 50 we 82 00 B¢ w2 ¥ SV 00 0

constant
constant
constant
constant
constant

Class_Number
Class_ANumber
Class_Number
Class_Number
Class_Number

9 80 60 B0 00 00 0 a0 N0 88 0

wononn

nowon i ann

bt i O 0NNV
[0 LEE TR TR FEE I PR VL YN X1

YORLTA_KKREVI_O_0.UnITS a0 _DeFINITIONS 'V (117)

page
- : constant Class_Number := 12;
- : constant Class_Numrper := 13;
Class_Taoe : constant Class_Number := 14;
Class_Terminal : constant Class_Number := 15;

The parent-child relationship makes most sense when the parent is
== a directory or Ada unit. However, any object, regardless of classs
== may take the role of parent in the directory system.

ALl classes of object may have multiple versions, exceot:
- worla, Directory, and Device_Classes.

type Subclass_Number is new Long_Integer range 0..2 *% 16 - 1:

Rational reserves the first 1024 and provides a service for assigning
== subclasses to independent software vendors. The Nil subclass indicates
== that there is no special interpretation for the object. Examples:

== Subclasses for Class_iirectory: World, Path ...
== Suvclasses for Class_trile: Texts, Switches, Zditor_Macross eee
== Subclasses for Ada: ceneric_Procedure_5Spec, Package_B03ys ..

type JUbject_lndex is. new Lony_Integer range 0..2 %% 16 - 1;

== Uniquely identifies a set of objects, within a particular world. All
== versions of the object have the same pathname, class, file subclass
== (if appropriate), and Opject_Index.

»

type Simple_Uouject_Tc is new Lonc_Integér range G..2 %% 32 = 1;

Uniquely identifies a set of objects, within this machine. Beware that
World_humher's and Object_Index's are subject to rease. Thus, there

== are danjliny reference issues. In some parts of the system (like
Diana) there is (hop>fully) sufficient obsolescence pratection that the
== system will never interpret a dangling Ubject_Index.

- recorg

- Class : Class_dumber;

- Fitler.Filler_1;

- korld : Machine.world_Kumber:
- Filler.Filler_2:

- Index ¢ Object_Index:

- end record

function Class (¢
function wortd (Id
function Index (lo

Sirple_Object_I1d) return Class_Nuaber:
Simple_Object_Id) return Machine.World_Numper;
Simple_Object_Id) return Jdbject_Index:

function To_Simple_Jcject_Id (Class Class_Number;

vorld : Machine.world_Numnber;
Index : Ubject_Index)
raturn Sispiz_Unject_Tld;

-- Field extraction an. agareyate operations.

type Simple_cvoject_Id_Array is array (iatural ranae <>) of
Simple_Goject_Ias

type Version_“umoer is new Long_Integer range (..2 %% 24 = 1;

SDELTA_KKRSRIVI_C_(aJwITSKKaUM_DEFINITIONS*V(117) page

-- Uniguely identifies a particular object, in the set of onjects which
-- have the same name. tach member of the set must have 3 unique version
-- number assigned. Version numbers are assigned seguentially, in time.,
-- and are never reused. Note, however, that objects can be updated

-- without changing the version number.,

type Version_Id is private:
subtype Object_Id.is Version_Id.:

- record

- : Filler.Filler_8;
- Machine =: Machine_la:s
- Instance : Unique_Id.;
- Object : Simple_Object_Ids
- Version : Version_Number,
-=_ end record; == 17 bytes

Nil_Version_]ld : constant Version_Id;
Nil_Ooject_Id : constant Object_1d;

-=- The “achine field is used to make the object/version i1 unique aCross
-= machines,

-= The Instance field is used to match against the Instance field in the
-= Segment_Descriptor of the referenced object and catches danaling
-- references caused by reuse of World_Number's and Object_Index's.

-= Note that a Version_I4d does not indi¢ate the generation of the version,
-- To do that, one neeas to drag along the Last_update_Id field from the
-= Segment_Tiescrirtor for the version in questione.

-- The folilowing conventions are used for the identification of job

-=- worlds: (~achine => {(the usuald,

- Instance => {(that of the job world>.,

- Object => (Class => Class_Directory.,

- . Wdorld => <job &>,

- Index =) {contant for world roots>)
- Version =) %Nil)

== The following conventions are used for the identification of job
-= segment: (Machine => {the usuald,

- Instance => <that of the segment),

- Object => (Class => Class_File,

- world => <job #>, E

- Index =>» {1 + segment kind))
- version => (segment #>)

function Instance (Id : Version_1d) return Unigue_Id:
function Extract_Machine (Id : Version_Id) return Machine_Id:
tunction Coject (lu ¢ Version_1d) return Simple_Ovject_Id:
function Version (Ir : Version_1d) return Version_ANumper;
function Class (iao : Version_Id) return Class_Number;
function wWorld (Ic : version_Id) return mMachine.world_~Numper,
function Index (Io : Version_Id) return Object_Index:

function To_version_ld (Instance : Unigue_Id;
Class : Class_Humber;
iorlag : Machine.World_~Number;

POELTA_KCaRIVI_C_0.JNITS K OM_CEFINITIONS'V (117) page

Index : Object_Index.:
Version : Version_Number) return Version_Id:

function Tou_Version_Id (Instance : Unique_1d.;

The_Machine : Machine_Id:

Class : Class_Number:

world : Machine.world_Number,

Index : Object_Index:

Version : Version_Number) return Version_I~x:
function To_vVersion_Id (lnstance = Unique_Id.

Object : Simple_Object_1Id:
Version : Version_Nhumber) return Version_Id:

function To_vVersion_Id (Instance = Unique_Id;
Machine : Machine_Id;
OLject : Simple_Object_Id:
Version : Version_Number) return Version_Id:

function To_version_Id (Ubject : Object_Id;
VYersion : Version_Numpber) return Version_Id;

function To_Jtject_Jjc (version : Version_Id) return Object_1ds
type Version_ld_Array is array (Natural range <>) of Version_Id:

type Version_Handle is private:
subtype Object_Handle is Version_Handle:

-=- record f
- Onject : Version_Ild;
- Universe : Version_Id;

== end record.

Nil_Version_Handle : constant Version_Handle:
Nil_Ubject_Handle : constant Object_Handle:

== It is presumed that Version.Machine and Universe.Machine are identical.

As the sourcs of an operation: If Object_Handle.Object.Version is not
Nil, then the specified version is used, and Object_Hardle.Universe

== is ignored. Otherwise, the Version_Number comes from the selected

== universe/world view; the “selected view” is specified by the .Universe
== component or job state when the .Universe component is Nil.

As the target of an operation which does not create a new version, the
== rules are identical to those above.

-= As the target of an operation which creates a new version.,
Gbject_Handle.Cbject.Version is ignored, and the news version is created

== in the selected universe/world view; the definition of “selected” is
== jdentical to that acove.

The subtype Suject_nandle is used in contexts which simoly ignore
Coject_Handle.Coject.version and Object_Handle.Univers2, or in contexts
which return vil for those components. The subtype Version_Handle is

== used in the remainin: contexts.

function Object (kandle

: Uhbject_Handle) return Version_Id3;
function Universe (Hanale :

S|
Object_Handle) return Version_Id.

YULLTA_KKeRZVI_C_CoUNITS KK UM_DEFINITIONS'V(117) page

function To_Object-Handle (The_Object : vVersion_Ilds:
In_Universe : Version_Id) return Jbject_Hancles

type Version_dandle_Array is
array (Natural range <>) of Version_Handle:

== Directory names =--

subtype Bounded_String is Bounded.Variable_String:

Max_Simple_Name_Length : constant := 63;

subtype Simple_Name is Bounded_String (Max_Simple_Name_Length);
subtype Simple_Name_String is String:

subtype Padded_Simple_Name_String is String (1..63):
Pad_Character : constant Character = ' ¢;

-~ Names in the directory system have a maximum length, and are

-- occasionally paddea with blanks. System objects often have a "'" at
-- the beginninj. For examples, the code segmeat for package "Foo”™ miaght
-=- Le called "'lode”™, ana ve a child of "Foo™.

-- Every object has a name, even temporary heads, system objects, etc.
-= ALl versions of the same object have the same value for Name.
Null_Name : constant Simple_Name_String = "";

+

== A simple name is legal iff

- (1) wWame'length <= max_simple_Name_Length,
- ana (2) every character in the string is in the range ' ' .. '7°',
- ana (3) Name ">* Null_Name (1 .. Name'lLength)

== Shoulo just stick tt¢ 3NF here.

Max_Pathname_Length : constant == 511;
subtype Pathname is vounded_5String (Max_Pathname_Length):
subtype Pathname_String is Strings

-- A futl pathname is a sequence of simple names separated by dots.
-= Shoutd stick the BNF here.

subtype Simple_wildcard is String;
-= A simple name plus wildcard characters.

-= Should stick the BNF here. Special characters restricted to just
":‘l' and .l»:.lt"

subtype Full_wildcard is String:
= L full wildcard name speces
-= Snould stick the LNF here.

subtype Unique_wildcerd 1s Full_wildcard:.
-- By convention, must resolve to a single object/version.

subtype Naming_Clontext is Object_Handles

-- Can be usecd as the startinj context for various operations which

(6)

'DELTA_KKREVI_C_0.UNITS.KK.OM_UEFINITIONSYV (117) page

== work on pathnames.

Max_Retained_Versions : constant == 15;

subtype Version_Retention_Count is Natural
range 0O..Max_Retained_Versions;

A World_View can keep track of up to Max_Retained_Versions of any
~= particular object.

type Version_Control_Policy is new Long_Integer range 0..2 %% 12 - 1;
== Applied to indivigual objects. See Object.lreate.

Non_Nil_Version_Control_Policy 2 constant Version_Control_Policy ¢
1;

== Kludgze bit to satisty the dil=0 convention.

Allow_=xplicit_Create_vVersion 2 constant Version_Control_Policy :
2.

== when false, Jbject.Create will refuse to create new versions.

Private_vVersion_On_First_Update

constant Version_Control_Policy

4
Private_Vversion_un_fvery_Update : constant Versioan_Control_Policy
8
Implicit_Versioas_Replace_Current : constant Versioa_Control_Policy
16,
== These 3 bits control when and how Object.Open (for update) creates
== implicit versions. See that spec for details.

Freeze_Versions : constant version_Control_Policy ==
32

Controls whether or not world.Freeze causes selected versions to be
-= frozen.

Prevent_uUpaate_without_View : constant Versioa_Control_Policy
64:
== When set, prevents Ubject.Open for update with noa=nil version #.

Shareid_Version_Policy : constant Version_Controt_Policy
Non_Nil_vVersion_Control _Policy:s

Standard_Differential_Version_Policy : constant Version_Control_Policy

‘ Non_Nil_version_Control_rolicy +

Allow_Explicit_Create_vVersion +
Frivate_version_On_First_uJpdate +
Implicit_versions_Reotace_Current +
Freeze_Versions +
Prevent_Jpdate_Without_view:

Y]
"

i

type reservation_['its i1s array (Cbject_Index range <>) of roolean:;

YDELTA_KK.REVI_O0_0.UNITS.KK.OM_DEFINITIONS®*V(117) page

== Info about Ade units =-=-

type Compilation_State 1is

(Uu.,
Unparsed, -= Not fully parsed ,
Parsed., -- Syntactically correcto not fully semanticized
Installed, == Fully semantized
Phase_1_Coded, -= Unit attributed by the code generator
Coded., == Code has been generated

U6, U7).;

type Ada_Unit_State is
record :
State : Compilation_State,

Potentially_Obsolete : Boolean: ,
-=- An imported unit may have changed its meaning in a way that
~= jnvalidates the current interpretation of the unit®s semantics.

sogified : Boolean,
-- lleclarations have been edited which may have changed the meaniny
-=- of one or more declarations exported by this unit.

end record.

type Dependency_"atrix 1is ‘
array (Guject_Index ranye <>, ¢
Object_Index range <>) of Boolean,;

== DM(J,K) is true iff unit J contains a semantic pointer to unit K.
== Adcitional information about the nature of the reference from J
-= to K is stored in unit J.

type Dependency_Vector is array (Cbject_Index range <>) of 3oolean:

-- Can contain either a row or column of the Dependency_Matrixe.

-~ Jobs and Logins ==

subtype Job_Number is dMachine.Job_Worlds,
function Number (7Tsk : Machrne Task_Id) return Job Numoer.

type Job_JId is new Long_Integer range (..2 %% 5% - 1;
-= record

- Instance : Unique_Id;

-- Joi s Jov_'iumber;

-~ end record;

-= Jon_“Numper uniguely joentifies a jov. Use of Joo_ld protects one from
-= the fact that Jooa_Number®s are reused.

function Instance (1d : Job_Id) return Unique_Id;
function humouer (lId : Joo_ld) return Job_Number:

function To_Joo_Id (Instance : Unique_Id:

YOLLTA_KKRGRLVI_0_6.UNITS.KKLOM_DEFINITIONS'V(117) page

Jou : Job_Number) return Job_1d:

type Job_King i

s new Long_Integer range 0..2 *% 4 - 1;
Terminated_Job : constant Job_Kind 2= 1:
Attached_Job : constant Job_Kind == 2;
Detached_Job : constant Job_Kind = 3;
Server_Job T constant Job_Xind = 4;
Ce_Job : constaent Job_¥ind := 5;
Oe_Job : constant Job_Kind = 6

type Joo_Priority is new Long_Integer range l..7;

== Priority 7 is “better™ than priority 1. These values are used by the
== medium term scheduler. Not the same as Machine.Cpu_2riority_Level,
== which is used by the short term scheduler.

type Job_State is new Long_Integer range 0..2 %% & - 1;

Idle_Job : constant Job_State := 1/ == no unhlocked tasks
Running_Jou : constant Job_State = 2; == has unblocked tasks
Waiting_Job : constant Job_State 2= 3; -=- withaeld by mts

Uisaule_Joo : constant Jub_State := 4; -- disabled by external agent
wueued_Joon : constant Job_State := S5; == detached and withheld by mts

type Session_Number is new Long_Integer range 0..2 &% B = 1;

type Session_ld is new Long_Integer range 0..2 *%x 56 - 1;
== record

-- Instance : Uniague_Id; ‘
-- >ession : Session_humber;

-= end record,

== The Session_Wumpver uriquely identifies each "session™. Jse of
Session_IJ protects one from the fact that Session_Number's are reused.

function Instance (Id : Session_Id) return Unique_1d;
function humcer (14 : Lession_1d) return Session_Number;

function To_Session_Id (Instance = Unique_Id;
>ession : Session_humber) return Session_Id;

-= Execution =--

type Compatability_Index is new Long_Integer range 0..2 %% 16 - 17
type Compatanility_vector is

array (Compatavility_Index range <>) of Boolean:;

type Compatability Key (Static_Length : Compatability_Index := 256) is
record
Vector : Compatabtility_Vector (l..Static__ength):
dynamic_Len3th : Compatatility_Indexs
end record,;

type Exception_Information is
record
taise_k¢c
Exception_nunner
Uther_Info

“achine.Address;
Long_Integer,
Lona_Integer.

S

YTDELTA_KKGREVI_0_0 UNITS.KKLOM_DEFINITIONS'V(117) page

end record;,
-=- Users, Groups and ACL's =--

type User_Number is new Long_Integer range 0..2 *% 10 - 1:

type Jser_1d is new _ong_Integer range 0..2 *%x 58 - 1.
== record

- Instance : Unique_ld:

- User ¢ User_Number,

-=-. end record.

-- The Instance and User_Number are computed from the directory object
== which corresponds to the user.

function Instance (1d : User_Id) return Unique_Id;:
function User (Iag : User_Id) return User_N\umber.

tfunction To_uUser_Id4 (Instance : Unique_Id.
User ¢ User_Number) return User_13:
type Group_Number is new Long_Integer range (..2 %% 12 - 1;

Public : constant Group_Number := 1¢

type Group_Id is new Long_Integer range 0..2 &% 60 - 1;

-- recordg '
- Instance : Unigue_id: :
- Group : Group_Number.

- end record,
-~ The Instance and Group_Number are computed from the directory object
== Wwhich corresponds to the groupre.

function Instance (ld : Group_Ild) return Unique_1I1d;
function Group (1d : Group_Jd) return Group_Number;

function To_Group_ld (Instance : Unique_I1d:
Group : Group_Number) return Group_Id:

type Group_Map is array (Group_Number) of Boolean:

type Acl_Entry_Kinds is new Long_Integer ranges 0..3:

Prohibit_Access : constant Acl_Entry_Kindgs = 0.
Grant _Access : constant Acl_Entry_Kinds = 1.
Perform_Audit : constant Acl_Entry_Kinds 2= 22

-=- code 3 reserved for future use
type Privileje_3its is new Long_Integer range 0..2 %% 5 = 1;

Create_"rivileye
Delete_2rivilece
head_Privilege
write_Privilege

constant Privilege_Bits
constant Privilege_Bits
constant Privilege_Rits
constant Privilege_0Bits
Execute_rrivilege constant Privilege_0Bits
Owner_Privilege constant Privilege_Bits
-= ¢codes 53 2 14 reserved for future use

s 00 88 se 09 e
wnunwnn

17

PDELTA_KKRIVI_C_0JNITS5uKKaUN_DEFIRITIONS?V(117) page 11

type Acl_Fntry 1is
record
Kind : Acl_Entry_Vinds,

Prohibit_Access causes the failure of an operation which
requires the rights listed below and is requested by the
identified Groun, even if there is an entry later in the Llist

== which grants the desired access. A user in th: Privileged group

with privileges enabled is never denied access, even if such an
== entry exists.

Grant_Access allows an operation which requires the rights

-=- listed pelow and is requested by the identified Group. There
== is an implicit entry giving the Privileged group all rights
== (this entry is not physically represented in the ACL). If n>
== entry grants the desired access, the operation fails.

Perform_Audit means that the system will audit any opreration
== which requires the rights listed below and which is attempted
== and/or pertormwed vy the identified Group:; the audit entry goes
== to tre syster log. The fact that an operation is audited does
== not effect whether the request meets the requirements specified
== by the remainder of the ACL. Auditing is performed even if the
== requester has Privileged access enabled.

It is recommended (for performance reasons) that one place the
-= entries which are most likely to match at the seginning of the
== list (subject to orcering by Kind, of course).

Group : Group_dumber,;

== Tne group governed by this entry. Nil terminates the list.
== Comiletely filling the array also terminates the list.

Rights z Privilegye_5its;:

-- See visible part of the Access_Control spec, and the various
== 0OM operations for details.

end record;

type Access_Control_List is array (Natural range 1l..6) of Acl_Entry:
pragma Assert (Access_Control_List*Size = 120):

Null_Acl_Entry : constant Acl_tntry z=

(Kkind =» Nil, Group => Nil, Rights =) Nit);
Null_Act ¢ constant Access_Control_List ==

(others => Null_Acl_Entry).

== An element containint a ~il Group is considered to terminate the
-= list.

== Note: moviny an osject from machine to machine or even to/from tape
makes for interestin, issues with respect to ACLs in the target copy.

-= Actions =--

YDELTA_KRAREVI_G_0.UNTTSKKLOM_DEFINITIONS'V(117) page 17
type Action_Number is new Long_Inteder range 0..2 %% 12 - 1,

-= Used as an index into the action manager®s internal taoles.
-=- OM subsystem reserves the right to change the *'size of this type.

type Action_Id is new Long_Integer;
-=- Handle for an open action.

- record

- Instance : Unique_Id: ,
- : Fitler.Filler_4;
- Index s Action_Number;

-=. end record

function Boot (Id : Action_Id) return Boot_Nusber;
function Instance (Id : Action_1d) return Unigque_Id;:
function Index (ld : Action_Id) return Action_Number:

function To_Action_Jld (Instance : Unique_Id:
Index : Action_Number) return Action_Ia,

type Lock_Mode is new Long_Integer range 0..2 ¥* 4 - 1.

Unsynchronized : constant Lock_Mode := 17
Read_Object : constant Lock_Mode == 2;
Write_Object : constant Lock_Mode := 3;
Record_Reac_Uhject : constant Lodk_Mode 2= 4;
Record_Write_Opject : constant Lock_Moae == 5;
Record_<Xeaaq : constant Lock_Mode 2= 6,
Record_write : constant Lock_Mode == 7.
Supersedeable_Read_Object : constant Lock_Mode == 8;

== Pocumented in Action spece.
subtype Xecord_<Key is Long_Integer range 0..2 &% 32 - 1;

-- When acquiring action lockss this value is used to identify a “record”.,
== within some object.

~= Miscellaneous =--

type Relational_Op is (Lt, Le, Eqr Ne, Ge, Gt):
type Format_Number is new Long_Integer range 0..2 ** 8 - 1.

-- Used to tag various representations to facilitate detecting disk
-= incorpatavle chanjes.

type Seagment_Position is new Long_Integer range (..2 %% 32 - 1.:

-~ Values of type iMachine.3it_(ffset are used in Machine.Addresses to
~-- denote the physical position within a segment. Values of type

-~ Segment_Position are used to denote the logical position within a
-=- segment. Tne two values differ by the amount of ucode 3 om overhead
== gresent at the wveyinning of the segment.

PORLTA_KKQRIVI_O_0.JNITS.KK.OM_DEFINITIONS'V(117) page

First_Valid_%egment_Position : constant Segmeat _Position == 1,

== The Segment_Position type follows the usual rule for interpretation of
== Nil. The first bit of "user data”™ in a segmented heap occurs at
== Seyment_Position®(1l).

type File_Urganization_Kinds is new Integer range 0..15;

== Identifies the internal organization of a file, as defined by the file
== system. Hypothetical example: a file might be organized as raw bits (sas
== in the Gamma system), or it might be organized as a sequence of records
== {(which retain lenygth information and support record level action

== semantics. In either case, one could imagine that a subclass of text
would make sense; in the first organization, one might have raw

== characters in the file, with special characters used to denote Line
bounjaries, etc; in the second organization, one might have lines

== stored in individual records.

D e T rea—

private

ena

type Net_Unique_Id is
record
Machine Machine_1d:

)

doot : Boot_Number: ‘ ’
Sequence : Unique_Seauence_Number;
end record.

Nil_Net_Unique_Id : constant Net _Unique_Id := (0, 0, 0);

type Version_Id is

record
Filt : Filler.Filler_8:
Machine : Machine_la:
Instance : Uniqgue_1d;
Object $ Simple_Object_1d.
Version : Version_Number;

end record;

Nil_Version_Id : constant Version_Id := (0, 0, 0, O, 0);
Nil_Object_Id : constant Object_Id == Nil_Version_Id:

type Yersion_Handle is
record
version
Universe
end record,

Yersion_Id:
Version_Id;

Hil_Version_randle =

constant Version_randle :
“il_version_1Id, Nil_version_Id):

Nil_Ubject_tanule : constant Opject_Handle :=
(xil_version_1d, Nil_vVersioa_14d);

IUm_lefinitions;

13

VUELTA_KKSREVI_O_D.UNITSKKLOM_DEFINITIONS'V(117) page 14

GGo PPPP ALE

G G P 2 A A
G P F oA A

G GG FPP2 AAAAA

G G P A A

G G P A A

LGGG P A A
User: GPA

Ovject: 'DELTA_KK.REV1_0_0.UNITS.KK.KERNEL_SERVICES_1
Version: V(4)
Request: 1277
Date: April 24, 1986
Queuea: 11:27:13 An
Printed: 11:44:04 Ax

CDELTA_KKRaRcVI_Q_0.JINITS.KK.KERNEL_SERVICES_1°'V(4) page

with Sys:
with Machine;

package Kernel_Services_1 is
== pragma Suvsystem (Kernel, Private_part => Closed);
-= pragma Module_Name (4, ?);

package Byte_String_Conversions is
package System renames Sys.

function To_String (8 : System.Byte_String) return String.
function To_Byte_String (S : String) return System.Byte_String;

end Byte_String_Conversions,

package Xait_Service is

type Wait_State is private:
N\L_ﬁawt_State : constant Wait_ State.

function register (Wait_State_Name = Strtng) return Wait_ State.

-= Defines a new wait state. If the given strtng is too lLong, or
-= already defined, or the database is full, returns Nil_wWait_State.

,

== The following are predefined: ’
- Port_Wait, Port_Input_wWait, and Port_Outout_wWait

function Get_Wait_State (Wait_State_Name : String) return Wait_State;
function Get_Wait_State_Name {State : Wait_State) return Strinc:

-= Converts from string name to Vait_State, and vice-versa.

procedure Roust (The_Client 2 Machine.Task_Id:
State : Wait_State).

procedure Un_Roust (State : Wait_State):
Forever : constant Curation = Duration®Last;

procedure Wait_For_koust (State : Wait_State:
Max_Wait : Duration 3= Forever):

-= Assume the existance of some service S. The clients of S, known as (i,
-=- ask S to do work, and wish to be able to wait for the work to get done
-- prior to proceedinj. twe use S.task to denote the "worker"” task of the
~=- service S. we use >.skin to denote the procedures in the body of ¢

== which run on Ci's task, which is denoted (i.task.

== Ci.task calls S, asking it to do some operation. S.skin should catt
-- Un_Poust: this serves the purpose of “throwing away"” a2 outstanding
-- roust that Ci.task did not see (these can happen because (a) the

-= "roustedness” of a task is not initializec when the task is created,
== and (b) the task mijht have exited the skin of some service via delay

!DELTA_KK.?iVl_ﬁ_O.JNITS.Kh.KERN&L-SERVICES_I'V(A) page l

== expiration). S.skin then calls S.task, which attempts the speration.
Setask then returns to S.skin a boolean indicating whether or not _
== Ci.task should suspvende. If Ciotask is supposed to suspend, then S.skin
== calls Wait_For_roust, on behalf of Ci.task: Ci.task becomes olocked

== inside wait_For_Roust. At some later points, the operation completes.,
== and Si.task invokes koust; tnis will in turn cause Ci's call to
Wait_For_Roust to return; S.skin may then want to call S.task to get

== the results of the operation. (Its also possible for the Roust to
happen prior to client invoking Wait_For_Roust.) It is also possible
that the wait_For_Roust will return due to delay exd2iration, in which

case S.skin will need to call S.task in order to get the results of the
-= operation.

== The wait service has, in effect, a boolean semaphore per client,
Therefore, when S.task plans to do a Roust on Cl.task, S.skin shouls
either guarantee that Ci.task has not left S.skin, or have some other
guarantee that (i.task is not attempting to wait on more than one event.

Roust is a noop when the specified client no longer exists.
== Roust may we invoked by non-tlocking tasks.

The wait state garameter to the Roust and Jn_Roust procedures is used
to ensure that services only roust clients that “are their skin". That

== is, try to roust someone that is not in the specified stater, and you
== will get constraint error.

Notes for noa=blocking (ie.., priority 0) tasks: If the tcb of the
rousted task is not in memory, the call to Roust will olace a ghost call
in the queue space of the roust server (a task internal to this

== package). When the roust server accepts the call, it will execute the
same roust, but at priority 1, thereby taking the necessary page fault.
== The roust server has a finite amount of qQueue space reserved. In other
words, up to N rousts of non-resident tcbs can be “outstanding”. PRousts
remain outstancding because (a) priority 0 tasks hog the cpu keeping the
roust server from running, or (b) the roust server is tied up in paae

== fault servicinc one of the rousts. The current value for N is about

== 128. Should the roust server's queue be full, the rousting priority ¢
task will attempt to create a new queue page:; if the page cannot bte
created without calling the space manager, the system will crash.

Currently, the only non=-blocking service is the Port_Manager. It s
believed that the orouvability of crashing in this scenario is very low.

private

type Wait_State is new Integer range 0..2 %% 7 - 1;
Nil_wait_State : constant Wait_State := 0.

end Wait_Service.

packdage Triggyer 3s
== tncapbusulates the wait service protocal. Suitable for fairly
== trivial wait service applications.
type Task_Count is new Natural range C..2 %% 16 - 1;

type Lescriptor (Count : Task_Count) is private:

n‘

IDELTA_KKLREVI_O_0.UNITS.KK.KERNEL_SERVICES_1°'V(4) page

procedure Initialize (Desc : in out Descriptor:
wait_State : wWait_Service.Wait_State).

-- Recommend COUNT to be prime. You must INITIALIZF your descriptors.
-=- All the waiting tasks are assumed to be in the same wait state.

procedure Pull (Desc : in out Descriptor):

-= RFpousts all the waiting taskse.

generic ,
with procedure Change (Tid : Machine.Task_Id: Is_waiting : Boolesan):

procedure Wait_In_Skin
(Wait_State : Wait_Service.Wait_State;
Max_Wait = Duration:
Non_blocking_Service : Boolean := False).

proceaure Change (vesc : in out Descriptor,
Tid : “achine.Task_Ids
Is_vaiting : Boolean);

-= Changes record of who is waiting for the trigger t> oe pulled.

-~ Feeu this to WAIT_IN_SKXIN generic. Note that after calling chanae,
-- you typically need to check if the “roust condition” holds, and if
-=- s0 pull the triggera. 3

function Somebody_Ils_Waiting (Desc : Descriptor) return Boolean;

private

type Waiter 1is
record
Tid : tHachine.Task_Id:
ena record;

type Waiter_Array is array (Task_Count range <>) of waiter;
type Descriptor (Count : Task_Count) is
record
wait_State : Wait_Service.Wait_State;
waiters : Waiter_Array (l..Count);
end records

end Trigger:

end Xernel_Services_1:

