The Epsilon System

Principles of Operation

Volume I

Ada Programs and Compilation

“Revision 11.1
February 25, 1986

Table of Contents

1. Overview

1.1

Features

1.2. Basic Principles

1.3.
1.4.
1.5.
1.6.
1.7.

1.8.

1.2.1. Exported Declarations

1.2.2. Compatibility Keys

1.2.3. Compatibility, Consistency, and Completeness
1.2.4. Dependency Database

Editing

Installation

Change Analysis

Coding

Loading

1.7.1. Basic Concepts

1.7.2. Code Data Base

1.7.3. Execution

1.7.4. Changing Units in the Program or Subsystem
1.7.5. Multi-world Programs

1.7.6. Saving Programs

Command Windows

2. Data Structures

2.1
2.2.

2.3.

24.
2.5.

2.6.

2.7.

Rational Proprietary Document

Unique Ids

Objects and Object Ids

2.2.1. Object Numbers

Worlds

2.3.1. Distributed Development
Universe Views

World Views

2.5.1. World State

2.5.2. World Object Table
2.5.3. Unit State Table

2.5.4. Dependency Matrix

Ada Objects

2.6.1. Diana Pointers

2.6.2. Diana Nodes

2.6.3. Structural Links

2.6.4. External References
2.6.5. Top Declaration Database
2.6.6. Garbage Control

Image Objects and Shape Data

O O 00 =3 ~F O U b b OB e

ADA MSS.217 25-FEB-86 11:31

2.8. Intersubsystem Visibility
2.8.1. Link Packs
2.8.2. Closed Private Parts
2.9. Ada Attribute Objects
2.10. Compatibility Object
2.10.1. Canonical Representation
2.10.2. Assigning Declaration Numbers
2.11. The Size of Things to Come
3. Operations
3.1. Opening Objects
3.2. Following a Diana Pointer
3.3. Setting a Diana Pointer
3.4. Obtaining an Attribute Value in an Attribute Space
3.5. Determining Dependencies
3.6. Archive and Restore
3.6.1. Cloning an Object
3.6.2. Cloning a World
3.6.3. Moving Active Development
3.6.4. Imperfect Recovery
3.7. Reclamation
3.7.1. Reclaiming Object Numbers
3.7.2. Reclaiming World Numbers
3.7.3. Reclaiming Declaration Numbers
Index

25
26
26
27
28
29
30
31
32
32
32

34
34
34
34
37
37

39
39

40
42

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Ada Programs and Compilation

Revision 11.1
February 25, 1986

This document describes how Ada programs are represented and manipulated in the
Epsilon environment. For background, it includes synopses of other parts of the Epsilon
object system. This document supersedes previous documents on Diana, Subsystem
Compatibility, and Compilation.

1. Overview

1.1. Features

Uniform Use of Views

As long as one’s universe view remains constant, one can ignore the existence of multiple
versions. Even very low-level operations (e.g., following Diana pointers) go through the
view mechanism.

No Hard Pointers Between Ada Units

All references between compilation units are indirect references that use the object table
of the enclosing world view and the declaration table of the referenced unit. New
versions of Ada objects can be created or existing versions can be modified without
invalidating references from other objects.

Transfers Are Efficient

Because there are no hard pointers and because information about the exact address of a
referenced node is not scattered through the referencing nodes, transferring Ada units
between machines does not require recompilation from source or traversal of Diana trees.
Transferred copies of Ada units use no more space than the originals.

When an object is moved, certain values in internal tables must be updated to reflect the
new context of the object. The original information in these tables and information to
validate other values in the Ada object must be converted to an archive form and saved
with the object to be transferred. This additional information is used only to reconstruct
the object at the destination and is not retained after the transfer.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

i,

Overview 2

Support for Compatible Changes

The system supports various kinds of approximately compatible changes such as addition
and deletion of declarations. Actual compatibility is determined on the basis of services
that are actually used. High level operations such as a compatible merge of two versions
are also supported.

The notion of compatibility is integrated into the basic configuration management,
version control, and execution mechanisms.

Compatibility Checking is Fast

Compatibility must be checked before execution begins, even for command execution.
This will be fast in common cases.

Graceful Recovery from Lost State

When the disk heads crash (or the state of the disk is lost in some other way), the state
of objects and unique number generators may be lost. This can create various kinds of
inconsistencies, which we must at least detect, and would like to recover from.

Editor Determines Granularity of Changes

For an arbitrary set of editing operations the editor is able to determine which
declarations have been structurally changed. If the editor is conservative (marking
unchanged trees as changed) performance will degrade, but correctness will not be
affected.

Debugging is Integrated with Compilation System

Debugging and editing of a program may transpire concurrently.

1.2. Basic Principles

The Epsilon system supports a more flexible model of compilation, obsolescence and
execution than that supported in Gamma. To a large extent, the system’s motion of
*state® is understood at the granularity of declarations and statements. Within an Ada
unit, Diana trees as small as declarations and statements may change state
independently. The recognized incremental states are unparsed (text), parsed,
semanticized, and phase-1 coded (code attributes assigned). (A unit still must be coded
as a whole.) Consequently, the operations of assigning coding attributes, editing,
semanticizing, and obsolescing can all be performed on individual declarations and
statements.

In contrast, the user deals with full Ada units. The smaller granularity understood by

Rational Proprietary Document ’ ADA MSS.217 25-FEB-86 11:31

Overview 3

the system is used only to enhance performance. The user edits an Ada unit, but the
editor determines which declarations and statements have actually changed. The user
promotes a unit, but the semanticist needs to look only at the trees that have changed
(and any trees in the scope of changed declarations). Change analysis determines how the
changes to declarations in the unit affect referencing statements and declarations outside
the unit.

The presentation state of a unit, the state of a unit presented to users, is a function of
the state of all of its components and the state of all units in its with-closure. For
example, a coded unit, Foo, will be demoted to source when the user changes a statement
or declaration of Foo (but not white space or a comment), or when one of the units that
Foo with’s is edited, or when a unit Foo withk’s is potentially obsolete because of changes
to units it with's. In the latter cases, the system may be able to re-install Foo simply by
re-installing its with’ed units and verifying that changes made to them have no impact
on Foo after all.

1.2.1. Exported Declarations

To support the finer granularity of consistency checking and the weaker notion of
compatibility (see below), a declaration number is assigned to each declaration that can
be referenced from another unit. In particular, compilation unit declarations,
declarations in package visible parts (including nested visible parts) and declarations in
bodies that are visible to subunits or visible to macro-expanded bodies (generics and
inlined subprograms) must be assigned declaration numbers. Declarations that are
assigned declaration numbers are said to be ezported by the unit that contains the
declaration. A library unit always exports its own declaration. Exported declarations
only reference other exported declarations. Exported declarations are also called ezternal
declarations.

Declaration numbers are assigned in such a way that two declarations in different
versions of a compilation unit have the same declaration number if and only if they
represent equivalent declarations. Generally speaking, equivalent declarations have the
same lexical and syntactical structure, semanticize the same, and are referenced by
identical code sequences.

Declaration numbers are allocated globally across all versions of a unit.
The Diana tree for each exported declaration carries its declaration number as a
semantic attribute. Furthermore, a declaration table in each Ada object maps

declaration numbers into the corresponding Diana declaration node in that object.

Declaration numbers are discussed in more detail in Section 2.10.

Rational Proprietary Document ADA .MSS.217 25-FEB-86 11:31

Overview , 4

1.2.2. Compatibility Keys

A compaiibility key contains the object id of an Ada unit, and a declaration set, which is
a Boolean array indexed by declaration numbers. An Ada unit Foo is said to ¢mport
another Ada unit Bar if Foo contains a reference to one of Bar's exported declarations. It
also imports the specific declarations that are referenced. For each Ada unit that Ada
unit Foo imports, Foo has a compatibility key called an import key. An entry in the
import key’s declaration set is true if and only if the corresponding declaration is
imported by Foo.

An Ada unit also has a compatibility key called an ezport key. An entry in the
declaration set is true if and only if the corresponding declaration is exported by the
unit.

1.2.3. Compatibility, Consistency, and Completeness

The term consistency refers to Ada naming consistency, and for emphasis is often
referred to a Ada-consistency. Thus, a set of units are consistent if compiling them
together would produce no semantic errors. Naming consistency is constantly enforced
within an Ada unit and between Ada units in the same world. A change in an Ada unit
that would affect name resolution in that unit or its importing units causes immediate
obsolescence and subsequent recompilation of the affected units.

The system enforces naming consistency between different worlds only during specific,
user-initiated operations: when a world is. first imported or when that import is
subsequently updated (See Section 2.4). Even though two worlds are inconsistent,
programs built from them may still be executed if the weaker notion of compatibility is
satisfied. Compatibility ignores name resolution conflicts that might have been
introduced during incremental changes to a unit.

Two worlds are compatible if all the units in the world are compatible. A unit, Client, is
compatible with a unit, Server, that it references if

o Client has been compiled against some version of Server, and

o Server provides all of the declarations (subprograms, tasks, constants,
variables, exceptions, and types) that Client needs from Server.

The declarations provided by Server are codified in its export key; the declarations
needed by Client are codified in its import keys. Client is compatible with Server if the
import key for Server in Client is compatible with the Server's export key. An import
key is compatible with a export key if the object id's in the two keys are identical, and
every declaration in the import declaration set is also in the export declaration set. A
unit can execute with a set of imported units if each of their export keys is compatible
with the corresponding import key of the unit.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Overview 5°

By definition, it's always possible to add declarations to compatible units without
affecting their compatibility. It's also frequently possible to delete declarations from
compatible units without affecting their compatibility. As long as those deleted
declarations are not used by the compatible units, the units remain compatible. Because
of Ada’s rules for the scope of declarations and the resolution of overloaded names, the
above declaration changes that did not affect compatibility might violate Ada
consistency because the declarations have the same names as some declarations that are
required for compatibility. That is, because of name conflicts, attempting to recompile a
set of compatible units may produce semantic errors or may change the meaning of the
program, even though the set of units executed without errors before the recompilation.
In this sense, compatible units are consistent ®upto renaming;® if declarations in the
compatible units always had unique names, they would remain consistent through all
compatible changes.

Adding or deleting declarations that are namesakes of declarations that are required for
compatibility could obviously lead to inconsistencies. Note, however, that any changed
declaration is a potential problem if

1. It appears in the visible part of a package that is use’ed by the client; the
new name could clash with a declaration in another package that is also
use’ed by the client,

2. It becomes a derivable subprogram of a visible type; the new name becomes
visible in any client that derives from the visible type.

For a unit to be a legal Ada unit (as specified by the LRM) it must be complete as well
as consistent. Completeness is required only at the time a program is to be loaded. To
make incremental compilation a more natural process, the system allows Ada units and
libraries to be incomplete. A procedure spec may appear in a package spec even though
there is no body for the procedure in the body of the package. There might not even be
a body for the package in the library.

1.2.4. Dependency Database

For greater efficiency, the information kept in Gamma's central dependency database is
distributed into three data structures.

A dependency matriz in each world records unit-to-unit dependencies within that world
in a Boolean matrix that is easily accessed and quickly manipulated. As outlined below,
The dependency matrix is used by a number of operations in addition to change analysis.
The structure of the dependency matrix is specified in Section 2.5.4.

Specifically for change analysis, each library unit's Ada object contains a top declaration

database, which keeps track of overloadable declarations in the library unit and its
secondary units. Finally, each Ada object ¢ontains a usage map, which describes how

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Overview 6

specific declarations are referenced in that unit. These data structures are defined in
Sections 2.6.5 and 2.6.

Section 3.5 discusses how these data structures are used in the computation of semantic
dependencies.

1.3. Editing

Editing a unit involves opening the unit for update, making changes to the unit, and
then committing those changes. Note that pieces of the unit are not selected for
incremental changes; separate windows are not created. Rather, the unit is edited *in
place.® All changes are made to the original tree and displayed in the same window as
the rest of the unit.

When an exported declaration is changed or deleted, the editor records that fact for the
semanticist, removes the declaration from the declaration table, and removes the
declaration number from the declaration node. Traversing a Diana reference to the

declaration will fail because of the missing declaration table entry. The editor also

records the addition of exported declarations!.

.

Changes to statements and local declarations are also recorded by the editor.

Changes to white space and comments that do not cause statements or declarations to be
reparsed need not be recorded by the editor since they have no impact on the semantics
or coding of the unit.

After declarations or statements in a unit have been edited, the unit is ®source® in the
sense that it must be re-installed before it can be coded. If the editing has changed or
introduced declarations, then units that import the unit (perhaps indirectly) are also
considered (and presented to users as) source units. The edited unit must be re-installed
before the importing units can be re-installed. The editor, the semanticist, and change
analysis (see below) determine what changes have actually occurred and use this
information to minimize the work needed to make the units consistent once again.

Changes to local declarations do not impact importers because no external declarations
reference a local declaration.

If only statements have been edited, the meaning of importing units is not affected,
although they may have to be re-coded because of the use of macro expansions in the

target implementation.

If a unit is committed with syntax errors, it cannot be installed until those errors are

lHow editing changes are to be recorded is yet to be determined.

Rational Proprietary Document ' ADA MSS.217 25-FEB-86 11:31

Overview 7

corrected. If the syntax errors occur only in statements or in declarations that cannot
affect exported declarations, importing units will not be affected; otherwise, importing
units wil be presented as source until the unit is re-installed.

1.4. Installation

Before a unit can be installed, it’s sufficient that all units in the closure of its imports be
installed. Actually, it's only necessary that each imported unit has been semanticized, is
not obsolete, and has no freshly parsed exported declarations that could affect importers.

If the context clause of the unit has not been edited since it was last semanticized, the
information in the dependency matrix is valid and can be used to compute the import
closure; otherwise the names in the unit’s with-clauses must be resolved to begin the
computation of the import closure. In the computation of the closure, the dependency
matrix can be used for any unit whose context clause has not been edited or made
obsolete since the last time it was semanticized.

When a unit is installed the system must semanticize the unit and set the compatibility
information. If the unit has not been previously semanticized then the semanticist runs
as it does in Gamma and computes the values of all semantic attributes. If the unit has
been previously installed then the semanticist runs in verification mode. In verification
mode, each time the semanticist is about to set an attribute, it compares the new value
with the old value. If the new value is different, the declaration number of the enclosing
declaration is cleared.?

After each exported declaration is semanticized, it must be assigned a declaration
number so that references to it in the same unit can be filled in correctly as they are
semanticized. If the declaration node has a declaration number attribute still then that
declaration number is used, otherwise the declaration number is computed as discussed
in Section 2.10. When the declaration number has been computed, the declaration table
entry for the declaration can be set up and the declaration can be put into the export
key for the unit.

Installation also computes the import keys and updates the dependency matrix to reflect
the new requirements of the installed unit.

1.5. Change Analysis

The next step of compilation is to compute which dependents of the newly-installed unit
may now have obsolete semantic attributes. If the newly-installed unit's export key is
the same as the export key it had before the installation, then all dependent unit

211' the new attribute is the same as the old one, the attribute is not changed; the page is not dirtied.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

o,

Overview , 8

semantic attributes are still valid. Otherwise, change analysis is performed on each of
the exported declarations that changed. The dependency matrix and information in the
referencing units is used by change analysis to determine which units might be affected
by the change in exported declarations. The affected units are marked as being
potentially obsolete.

Potentially obsolete units are presented to users as source units. Any units whose import
closure includes a potentially obsolete unit are also presented as source units. There is
enough information in the Dependency Matrix and state information maintained in the
world view to rapidly determine the presentation state of a unit without propagating
markers to the units themselves. In fact, it will frequently be the case that a unit
marked potentially obsolete will not propagate the obsolescence to its importers;
obsolescence would be propagated only if exported declarations are themselves affected
by the changes that have been made to imported declarations. Obsolescence is
propagated only after a unit has been installed and the semanticist has determined that
an exported declaration has indeed changed.

Change analysis does not propagate obsolescence across world boundaries. Change
analysis is performed on imported units only when they are imported into a world and
then only units in the importing world that are not consistent with the new imports will

be made obsolete.® If only frozen worlds are imported, the change analysis perfomed at
time of import is sufficient to guarantee full Ada consistency. If, however, unfrozen
worlds are imported, consistency cannot be guaranteed. Programs that once semanticized
and now run, may fail to re-semanticize because of changes made in the unfrozen,
imported world in the interim.

When a world is imported, the export keys of each unit are compared with the export
keys of the corresponding units that had previously been imported. Where the keys
differ, change analysis is performed on the changed declarations. The units in the
importing world that are impacted by the change (as determined by change analysis) are
obsolesced.

1.6. Coding

When a unit is to be coded, the system uses the dependency matrix to compute the order
in which to code units and to check that all dependencies can be satisfied. Certain target
code generators will introduce coding dependencies between units that are not recorded
in the dependency matrix. These coding dependencies require that the bodies of certain
units already in the import closure of a unit be coded before the unit is coded. A target
code generator that supports interunit inlining or uses the macro-expansion model for
implementing generics will require such coding dependencies.

3Two imported worlds could be inconsistent with each other, yet be consistent with the importing
world. Is this a problem?

Rational Proprietary Document ' ADA MSS.217 25-FEB-86 11:31

Overview 9

Coding dependencies are not recorded in the dependency matrix. The ordering
algorithm used by the code generator must rely on attributes in the visible part of those
units whose bodies might have coding dependencies to detect these dependencies and
incorporate them in the ordering of coding.

When code generation depends on the body of an imported unit, changes to that body
are potentially incompatible changes. Logically speaking, each inlined subprogram body
and each macro-expanded generic body should be treated as exported declarations
separate from the declarations for their specifications and assigned a declaration number.
When changes to the body are significant enough to cause a new declaration number to
be assigned, the units that referenced the original declaration number become
incompatible by the normal incompatibility mechanism. Using declarations numbers in
this fashion is actually impractical because almost any change to a body would probably
be viewed as a significant change, and consequently declarations numbers would be
consummed at an unacceptable rate.

The proposed mechanism is to assign a time stamp to a macro-expanded body each time
it is coded. The time stamp will be stored in each referencing unit. Runtime conformance
checking will require that the time stamps in the referencing units equal the time stamp

in the referenced unit.?

1.7. Loading

1.7.1. Basic Concepts

Loading is the process of creating an object for execution. There are two types of
objects that may be loaded: programs and subsystems.

Each program is associated with a main subprogram. The main program is identified by
a pragma Main that is in either the subprogram declaration or body. The program is
loaded when the main subprogram body is promoted to coded. A program is executed
by calling the main subprogram. This call elaborates all library units in the closure of
the main subprogram and then executes the body of the main subprogram.

Each subsystem is associated with a view of a world. The subsystem is loaded by
promoting the view to loaded. Some optional information may be provided that controls
the loading process: 1) the set of units to be elaborated may be specified, 2) the units
exported from the subsystem may be specified, and 3) the complete elaboration order
may be specified.

A particular world view may contain multiple loaded programs, but only one loaded
subsystem.

s similar mechanism might be used with macro-expanded generics, but further study is required on
this issue.

Rational Proprietary Document ADA MSS.217 24-FEB-86 10:46

Overview 10

When a program or subsystem is loaded several objects are created:

e The elaboration code segment contains the code to elaborate the program
units that are part of the program or subsystem.

o The load image is an object managed by KKOM. The load image contains
information concerning all the code segments necessary for execution as well
as import information on other programs and subsystems.

e The load view is a world view that selects all the Ada units and attribute
spaces of program units associated with the load image. The load view
maintains references to the information necessary for debugging.

1.7.2. Code Data Base

Associated with every world view is a code data base object, which contains all the

information necessary for a program or subsystem to be loaded within the world view.
The code data base contains information on every coded unit in the world view. For
example the code segment names for Ada units and their subunits, elaboration order
dependency information, and import information are all stored in the code data base.
Also stored in the code data base is dependency information that relates coded Ada units

to the loaded programs and subsystems that depend on them.® The code data base is
updated after every promote or demote of a unit in the world view.

1.7.3. Execution

When execution is to occur, the load image associated with the program or subsystem is
passed to KKOM for elaboration. The load view is then open (or otherwise locked) for
the duration of the execution, which prevents the Ada units associated with the
execution from being deleted. When execution is complete, the load view is closed (or
unlocked).

1.7.4. Changing Units in the Program or Subsystem

When changing units that are part of a loaded program or subsystem the environment
protects the actual versions of units from being deleted if these versions are needed for
debugging currently execution load images. Also, the environment causes the
appropriate obsolescence to occur in the current view. There are five activities that
affect the state of a previously loaded program or subsystem:

5Since some of the information in the code data base is target independent (e.g., context dependencies
and completeness) it would be better to put this in a target independent data structure in the view.

6Sim:e each load image contains information on all the code segments it references it may be possible to

compute dependencies on programs by looking up the code segment names in the load images of the
current world.

Rational Proprietary Document ADA.MSS.217 21-FEB-86 10:56

Overview 11

1. Editing a unit causes a new version to be created. The new version is created
because the current version is referenced by both the current world view and
the load view. If the user explicitly asked for a new version then the new
version is pushed onto the front of the retention list. If the user did not ask
for a new version then the newly created version replaces the current version
on the current view’s retention list.

2. Committing a unit causes the obsolescence of any dependent programs or
subsystems. This obsolescence has the effect of deleting the load view from
the current view. (For executing programs the load view is locked and thus is
not expunged). The load image of the program is not deleted at this time.
The unit state of the program is then loaded phase 1, which means a load
image exists but no load view. The load view is deleted as soon as possible so
that other changes to units in the current view will not force new versions to
be created simply because they are referenced by the load view.

3. Installing the changed unit involves the normal process of semantic analysis,
change analysis and compatibility computations.

4. Coding the unit has the effect of generating a new code segment if the old
code segment is no longer valid. The code segment would remain valid if the
unit was not semantically modified and if all inlined imported subprograms
and generic bodies have not been modified. If a new code segment is
generated then any dependent load images are deleted.

Promotion of the changed unit occurs after editing. If actual changes
occured in the unit that cause a new code segment to be generated for the
unit then the load image of dependent programs is now deleted and the
program is no longer in any coded state. If there were no actual changes to
the unit (e.g., only comments were added) then the load image is not deleted.

5. Loading the program again will create a new load image if one does not now
exist. The load view is then created and the program is promoted to loaded
phase 2, which means that it can be executed.

1.7.5. Multi-world Programs

Because programs can have units in multiple worlds KKOM supports the notion of
secondary load tmages. Each secondary load image contains all the information for the
code segments of units in the world of the secondary load image. Additionally, all
secondary load images are back linked to a governing primary load image that is
associated with the program. Each secondary load image has associated with it a
secondary load view that selects all the Ada units and attribute spaces for units in the
program that are in that world. Modifying units only causes the obsolescence of load
views and load images in the same world.

Rational Proprietary Document ADA MSS.217 21-FEB-86 10:56

By

Overview 12

It should be noted that when a multi-world program is loaded the program is bound to
the specific world views that were current when the load occured. This binding is not
changed by changing the universe view alone, it can only be changed by reloading the
program under a different universe view.

1.7.6. Saving Programs

There exists an operation to save a loaded program. Saving a program is useful to
prevent a loaded program from being obsolesced by changing the constituent units or for
having multiple versions of the same loaded program in the same world view. Saving a
program has the following effects:

o A new subprogram declaration object is created. This declaration has the
same parameter-result profile as that of the original main subprogram, the
name is that of the saved program.

e Copies of the original load image and all secondary load images are created
and associated with the new object. Copies of the original load view and all
secondary load views are created.

e There are no dependencies from the constituent units to the saved program.
Therefore, the saved program will not be obsolesced by any changes to the
constituent units. The new load images and load views will exist until the
saved program is explicitly deleted.

1.8. Command Windows

Command windows in Epsilon are essentially the same as in Gamma.

Command windows are Ada declare blocks. The Ada library units that are visible to the
block are determined by the search list defined for the session. As in Gamma, the search
list is an ordered list of libraries. The semanticist searches each library in order until an
Ada library unit is found whose simple name matches the symbol being resolved. Each
entry in the search list indicates whether the link pack usually associated with the
library is to be searched for the desired Ada unit.

All names in the command window must be Ada names, unless they are enclosed in
string quotes.

Rational Proprietary Document ADA MSS.217 21-FEB-86 10:56

Overview , 13 °
2. Data Structures

2.1. Unique Ids

Several aspects of the design rely on the generation of numbers that are unique across all
space and time. For example, each world has a creation stamp, which is a unique id that
can be used to precisely identify the world as it changes over time and as it moves from
machine to machine. Most numbers used for this purpose are called a stamp in this
document.

The unique id used for the default creation stamp for all objects consists of a machine
number, a boot number for the machine, and a sequence number that counts generated
ids since the last boot of the machine. Machine numbers are dispensed by Rational as
machines are built. Unique ids are rather large (see Section 2.11), so they should be used
only when necessary.

2.2. Objects and Object Ids

Every object on a machine has an object id, containing an object class, machine number,
world number, an object number, and a hash of its creation stamp. There may be
several versions of each object, which are objects with the same object id, distinguished
by different version numbers. An object id and a version number are enough
information to open one version of the object, ¢.e., for object management to find its
state stored on disk. While an object is open, it is assigned a memory address, which
includes enough information to find its state in virtual memory.

2.2.1. Object Numbers

Every object in a world is assigned a unique object number. All versions of an object
have the same object number.

To keep certain tables small, the object numbers of all Ada units in a world are allocated
contiguously at the beginning of the space of object numbers. The range of object
numbers allocated for Ada units (and therefore the maximum number of units that may
be created) is a parameter of each world.

2.3. Worlds

The Epsilon directory system is a heirarchy of objects. Worlds and directories are
objects whose sole purpose is to hold other objects. (In Epsilon, however, any object
may have other objects nested within it.) Worlds are distinguished containers in the
directory system, much as in Gamma. In Epsilon, however, any world may be a
subsystem.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 14

Each world on a machine is identified by a small unique number; its world number.
Each defined world is an object of class World. There may be only one version of each
world.

Each world contains a number of important nested objects:

link pack A map from a simple Ada name to an Ada library unit that may be
with'ed by an Ada unit in the world.

world view A map from object numbeis of the world to the version of the object
that is visible in the view,

universe view A map from a world number into a version of its world view. More
than one universe view may be in a world.

2.3.1. Distributed Development

The Epsilon system permits the development of software systems to be distributed over a
set of loosely connected machines. The world (subsystem) is the unit of distribution.
That is, each subsystem of a system can reside on a different machine, where it can be
edited, compiled and debugged by its developers.

At any given time, active development of a subsystem should occur on only one machine
in the entire universe, otherwise conflicts in the numberings used in the Ada
implementation can arise. These conflicts can be detected, but they cannot be resolved.
The development site can be moved from ‘machine to machine as needed, however.
Development of a world might be moved when the developers responsible for it start
working on a new machine, or when responsibility is transferred to a new group on a
new machine. Development is moved by freezing the current development world and
then creating an unfrozen copy of the world at the new development site.

A surrogate world is used in distributed development to represent on one machine a
subsystem that is actively being developed on another machine. A surrogate world has
all the data structures of a regular world. It can be a complete, Ada-consistent copy of
the world for which it is a surrogate. The surrogate world can be imported by other
worlds on the machine as if it were the original. Programs that import it can be loaded

and executed. All features of the debugger can operate normally on the surrogate world.”

The surrogate world arrives on the machine fully coded. It cannot be demoted or edited.
It can be updated by copying into it a set of coded modules from another instance of the
world, which is usually, but is not limited to, the active development world.

7There seem to be good reasons for supporting surrogate worlds that are imperfect copies of the
corresponding development world. One form of surrogate might have only exported library unit
specifications and a load image, for example. How much mutilation can be sustained and is useful is yet to
be determined.

Rational Proprietary Document ' ADA MSS.217 25-FEB-86 11:31

Data Structures 15

The copies of a world created by the above two copy operations are called generations of
the world. The special operation of copying an object between generations of its world is
called cloning. (By extension, cloning also denotes the operation that creates a nmew
generation of a world.) The cloning operation is careful to preserve complete Ada-
consistency without recompilation of the units in the world. It is this special care that
distinguishes clones from other copies of objects. Copying worlds or objects of a world
by other means, such as source archive or primitive directory operations will not
preserve consistency, and in fact, will actually create new library units unrelated to the
units from which they were copied. See Sections 3.6.1 and 3.6.3 for the details of cloning
worlds and their objects.

It will be impossible to enforce the rule that there can be only one active development
site for a world. Should two active development sites be created for a world they are
called sibling worlds. The numbering conflict detection mechanisms will work as long as

two siblings of a world cannot reside on the same machine.8 This is easily enforced.

2.4. Universe Views

Each view of the entire system is an object of class universe view. As an object, it has a
name, must be opened before it is accessed, has access control, and may be atomically
modified under an action. There may be only one version of each universe view.

A universe view contains a world table. The world table is an array indexed by world
number. Three types of entries are possible:

bound Contains the object id and version number of a world view. This identifies
the world view that is to be used for finding objects in the world.

refreshable Contains the object id of a universe view and the object id and version
number of a world view. The object id and version number of the world
view identifies the world view that is to be used for finding objects in the
world. The world view entry may be changed (refreshed) by the user by
copying world view information from the universe view specified in the
same entry. Consistency checking can be performed when a world view is
refreshed.

void This indicates that the world does not appear in this universe view.

8The generation stamp and parent stamp defined in earlier versions of this document, have been
dropped for a simpler scheme, which uses the machine number to disambiguate declaration numbers.
Hence the insistence on keeping sibling rivalry in check.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures ‘ 16

2.5. World Views

Each defined view of each world is a version of the world view object in the world. The
version to use at any time is determined by the universe view that has been established
by the referencing job. '

A world view contains the world state, an object table, a unit state table, and a
dependency matriz.

For fast access, the world state and object table are stored at a fixed offset in the world
view. Pointers to the other components of the world view are stored at fixed offsets.

2.5.1. World State
The world state is indicated by the following flags:

loaded The Ada units of the world have been loaded. Demoting any of them from
the coded state will cause the load modnle to be abandoned.

subsystem The world is a subsystem, subject to the more strict import regulations.
Worlds that are not subsystems are called casual worlds, which are
intended for casual uses such as users home directories.

persistent |TBD]

frozen The world cannot be changed when this flag is set.

2.5.2. World Object Table

The world object table is an array indexed by object pumber. Each entry is a variant
record that contains either :

e The version number of the version of the object that exists in this view of the
world, or

e a null value, which indicates that no version of the object is visible in this
view.

2.5.3. Unit State Table

The world unit state table is an array indexed by object number. The index range is
constrained to the range of object numbers that correspond to Ada units in the world.
Each entry summarizes information about the current state of the corresponding Ada
unit in the view.

Each entry contains the following fields:

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 17

state A summary of the compilation state of the unit, which may be one of the
following:
coded The unit has been successfully coded and is ready to be
loaded.

phase-1 coded The unit has been attributed by the code generator.

tnstalled The unit has been successfully semanticized and can be
coded.
parsed The unit is syntactically correct, but contains portions

that have not been semanticized.
unparsed Portions of the unit could not be parsed.

declasse A bit, which when set indicates that forces external to the unit have
conspired to cast doubt on the veracity of the current semantic
interpretation of the unit; an imported declaration, against which this unit
had been installed, has probably changed its meaning in a way that
invalidates the current interpretation of the unit’s semantics.

mods fied A bit, which when set indicates that since the last installation of this unit,
declarations have been edited that may have changed the meaning of one
or more declarations exported by this unit.

2.5.4. Dependency Matrix

The dependency matrix in a world view duplicates information in the Ada objects in the
view. It is stored in the world view to accelerate obsolescence propagation, the ordering

of unit promotions, and the computation of presentation state.”

The dependency matrix, DM, is a rectangular Boolean matrix that summarizes the
semantic dependencies between the Ada units of a world and its imports. DM(JK) is
true iff unit J contains a semantic pointer to unit K. (Additional information about the
nature of the reference from J to K is stored in the referencing Ada unit, J.)

Each row of DM corresponds to an Ada unit defined in the world. Each column of DM
corresponds to an Ada unit that is visible in the world. Some of the columns of DM will

9For certain operations the transitive closure of the dependency matrix, called DM?¥, is required. As an
optimization, DM* could also be stored in the world view.

Rational Proprietary Document . ADA MSS.217 25-FEB-86 11:31

Data Structures 18

correspond to units that are imported into the world from other worlds.10

The symmetric portion of DM, which records dependencies between local units, is a bit
matrix indexed directly by object numbers (one reason for insisting that the object
numbers for Ada objects be contiguous and near zero). It will be used for quickly
propagating obsolescence within the world view, quickly determining the proper order
for installing and coding these units, and quickly computing the presentation state of
units.

Note that the propagation and ordering algorithms access the DM along different axes.
Record-locking can be used to reduce serializing on access to the DM, but only along one
axis. Since record-locking is needed only for update access, each row of DM shall be a
record. The dependency matrix is updated by the semanticist.

The asymmetric portion of DM, recording references from local units to imported units,
is used only to propagate obsolescence to local units when refreshed imports are
inconsistent with their previous versions. (See Section 2.4.)

Because the importing world has no control over the object numbers of the objects that

it imports, 8 map must be used to implement the asymmetric portion of DM.1! The
domain of the map is the set of imported object ids.

The DM records only semantic dependencies. Additional coding dependencies may also
exist; for example, when generics are implemented with a macro-expansion model. This
information is target-specific and shall be recorded in the Ada unit or its attribute space.

10Note that references from imported units to local units are not recorded in the referenced world.
This information would be useful only if the referenced world is unfrozen; it could then be used to
obsolesce referencing units in the imported world when changes are made to declarations in the importing
world. A number of reasons are offered for not doing this:

o Issues regarding access control and resource accounting arise when structures in one world
must be changed because of development activity in another world.

o The locality properties of change analysis are considerably worse if several worlds must be
consulted during the analysis.

o Developing against unfrozen worlds is inconsistent with the Rational Subsyst«ems(tm) release
paradigm.

Developing against unfrozen worlds is allowed, monetheless, because this will facilitate sharing of
programs and macros between the mythical casual users on the system. Run-time compatibility checking
will keep such developers out of real harm, but there are sure to be surprises when programs once thought
to be working are recompiled against specifications that have changed because they were not frozen.

uBecause of the difficulty in implementing the map for the asymmetric portion of DM using the

record-locking facilities of KKOM, it will not be used in the first release of Epsilon. When imports are
refreshed, the asymmetric portion will be built as a temporary structure by scanning all units in the world.

Rational Proprietary Document ADA.MSS.217 25-FEB-86 11:31

Data Structures

2.6. Ada Objects

19

Each Ada compilation unit is an object of class Ada. As an object, it must be opened
before it is accessed, has access control, and may be atomically modified under an action.
There may be several versions of an Ada object.

Each version of an Ada object contains the following

Diana nodes

string table

A tree-structured representation of the syntax and semantics of
the Ada unit.

Contains symbol representations and comments that appear in the
tree.

source mods fication stamp

ezternal node table

declaration table

- offset array

unit table

A unique id, which is assigned a new value each time the source
of the unit is modified.!?

An array associated with each declaration that is referenced by
node numbers and contains the offset of the referenced node from
the root node of its declaration.

An array that is indexed by declaration numbers and contains
offsets to the external node table for the corresponding
declaration. An entry in the declaration table is null when no such
declaration exists in the Ada object.

An array that is indexed by special values in structural links and
external node tables and contains the oversized offset that should
be the value of that entry. See Section 2.6.3.

An array indexed by unit numbers. A unit number is a small
integer uniquely identifying (to the referencing unit) each
imported unit. Any unit referenced by a Diana pointer is
included in the imports. Each entry in the unit table includes

smport key A compatibility key that indicates which declaration
numbers of the imported unit are referenced. Also
includes the object id of the referenced unit.

usage map A map from each referenced declaration number of
the imported unit to a description of the ways the
declaration is referenced in the Ada unit.

12Who uses the source modification stamp?

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

@

i

Data Structures 20

ezport key A compatibility key indicating which declaration numbers are
defined in this unit.

top declaration database
A map from declarations to sets of declarations used by Change
Analysis. Not present in secondary Ada units. (See Section 2.6.5.)

2.6.1. Diana Pointers

A Diana.Tree value is a memory address, composed of a segment number, and segment
offset. A Diana.Tree value is an Ada access type and cannot be stored in permanent
data structures such as files.

A Diana.External Reference is a record composed of an object id, a declaration
number, and a node number. A Diana.External Reference can be stored in
permanent data structures; however, it includes object ids that are meaningful only with
respect to a single machine, and it can only reference selected nodes in exported
declarations.

Diana will export functions for translating between Diana.Tree values and
Diana.External Reference values. In addition, a select 'set of Diana selector functions
will be defined to return Diana.External Reference values. These selectors will be
more efficent for applications that need to compare the selector value with one in hand
rather than actually following the selector to the node it references.

A Diana.Version Reference is a record composed of an object id, a version number
and a segment offset. Values may be stored in permanent data structures, but may
access only one version of an Ada object. A value can reference any node in that version,
however. Editing an Ada object that is referenced by a Diana.Version Reference
pointer may invalidate that pointer.

Diana will export functions for translating between Diana.Tree values and
Diana.Version Reference values.

2.6.2. Diana Nodes

In addition to making it possible to copy Diana trees without recompilation, the Epsilon
design is also focusing on reducing the size of a Diana tree. Gamma trees are ten times
their source representation on the average. Epsilon trees should be no more than five
times their source representation.

As in Gamma, a Diana node is a variant record discriminated by the Diana.Kind of the
node. Each variant contains a set of attributes and structural links appropriate to the
kind of node. Only the common attributes are allocated in the variant portion of a node.
An auxiliary attribute list is used to attach the less-frequently appearing attributes to a

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 21

node when needed.!®

Unlike Gamma, Phase 1 code generator attributes will be implemented the same as
semantic attributes. The more common ones (across all targets) will be allocated in the
‘variant record that defines Diana nodes. The others will be attached to the node’s
attribute list.

Rational-specific Diana nodes will be defined to represent comments and constructs that
could not be parsed.

2.6.3. Structural Links

Within a Diana node, a structural link is an offset. The offset can be relative to the node
itself, or relative to the start of the segment. Node-relative offsets will use less space,
but would have to use an escape mechanism more often. The offset can be node-relative
in constructs that are always parsed as a unit, for example within simple declarations
and statements. Where subtrees can be parsed independently of the parent, the
structural offsets in the parent will have to be segment-relative. (When a component
subtree is edited, the new tree may be built an arbitrary distance from the original
parent node.)

One bit of each type of structural link field is reserved to signal an overflow. When this
bit is set, the rest of the link field is interpreted as an index into the unit’s offset array.
The indexed position in the offset array contains the actual (segment relative) offset. The
offset array is used only when the correct offset is too large to fit in the structural link
field of a node. The size of the structural link field is chosen to make the use of the offset
table a rare event.

Where possible, structural links will not take up space in a Diana node, at all. For
example, since the first child of a Dn_Var node is always a Dn_Id §, the Dn_Id § can be
incorporated into the Dn_Var variant and thus eliminate the need for a Diana.Child1
pointer. Many node kinds, like Dn _Var, have children that must be list headers of a
specific kind. The Diana.Tree value for an incorporated node will have to be ®cons’ed
up® from the Diana.Tree value for the parent node and the fixed offset to the start of
the child node.

So that computation of the parent of a Diana node is blazingly fast, most nodes will have
a structural link that references its immediate parent. The node kinds that are
incorporated into their parent would not have such a field, of course. Unlike the
Gamma implementation, even the nodes on structural lists will have an immediate
parent link. Structural lists (Diana.Seq Type) will therefore be the more conventional

laTarget code generators will have to be able to attach attributes of arbitrary type to this attribute
list.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

i

Data Structures 22

two-cell lisp node. Each cell will contain a segment-relative offset.14

2.6.4. External References

Within a Diana node, a Diana.Tree-valued attribute is stored (logically) as a variant
record. The boolean discriminant indicates whether the pointer is an internal reference
or an external reference to a node in an exported declaration. For an internal reference,
the rest of the pointer is a segment offset within the same object. For an external
reference, it is a triple composed of a unit number, a declaration number, and a8 node
pumber. Even within the defining unit, all references to exported declarations are
represented as external references.

The special requirements for maintaining consistent references to exported declarations
are accommodated by the Ada object design through the use of external node tables
within an Ada object and the use of node numbers in external references rather than
node offsets. After an exported declaration has been semanticized and its declaration
pumber has been assigned, an external node table is built for it. The declaration table
entry for the exported declaration points to the external node table.

Each entry in the external node table corresponds to a node of the declaration that can
be referenced from outside the Ada unit. Externally referenceable nodes of the
declaration are assigned to slots in the node table in the order in which they are visited
during a structural walk of the declaration. Thus, identical node numbers will be
assigned to corresponding external nodes for any two declarations that are assigned the
same declaration number. '

One bit of each external node table entry is reserved to signal an overflow. When this
bit is set, the rest of the entry is interpreted as an index into the unit’s offset array. The
indexed position in the offset array contains the actual offset. The offset array is used
only when the correct offset is too large to fit in the node table entry for a node. The
size of the node table entry is chosen to make the use of the offset array a rare event.

2.6.5. Top Declaration Database

A top declaration is a non-overloadable declaration that is hidden by at least one
overloadable namesake. A special top declaration, called a placeholder, is created when
there is no user-defined top declaration and a relation must be recorded.

The Subordinate To relation and the Sees_Used Namesake Via Use Clause (Sunvuc)
relation are recorded against top declarations. They must be implemented differently in

14Representatimm of Diana.Seq Type are being investigated that will make traversal of lists more
efficient. The current proposal is to cdr-code the structural lists and doubly link the blocks of the
encoding. The parent link of a list item would reference the list cell, which in turn would reference the
Diana list header node.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 23 7

Epsilon to solve the Gamma object management problems with placeholders. The
domain of these relations includes the set of placeholders. Furthermore, these are the
only relations registered against placeholders.

In Gamma, one placeholder is used for each unique symrep in the system that needs a
placeholder. All units that are related to the placeholder are contained in one set, but
Change Analysis (the only user of this dependency information) always and immediately
prunes the set of related units to just the units that can see the point of insertion or
withdrawal it is analizing. In the worst case, the set of dependents of interest to Change
Analysis would be a library unit and all of its secondary units.

Based on this last fact, the Subordinate To and Sunvuc relations will be stored in a top
declaration database contained in each Library unit's Ada object rather than in the
dependency matrix or usage map. The top declaration database is created when each
version of a library unit is created. The database continues to exist as long as the
version of the library unit exists. Relations may be added, deleted or modified whenever
the library unit or its secondary units are installed or incrementally modified. When the
library unit is demoted to source, the relations can be destroyed, along with the

database, if necessary.!®

Unlike the Gamma implementation, placeholder ids will be created as actual Diana
Def_Ids in the same space as the top declaration database. The placeholder id is created
in the top declaration database in the library unit of the referencing object. When a
Subordinate To or Sumvuc relation is entered into the dependency database against a
declaration, the dependency database manager uses either the dependent object or the
declaration (whichever is more convenient) to locate the top declaration relations
database into which the relation is to be stored.

2.6.6. Garbage Control

To reduce the amount of garbage generated while semanticizing a Diana.Tree, certain
nodes that are frequently transformed by the semanticist will be implemented such that
they can be transformed in place, by changing a kind field, for example. In addition, the
semanticist will be capable of semanticizing transformed trees the same as pristine parse
trees. This capability is needed for validation mode and also eliminates the need to keep
the discarded parser-generated nodes in the tree.

The change to the semanticist is to rely less on the node’s kind to direct its analysis. For
example, when it sees a Dn_Indexed node it can no longer automatically assume that the

lsBecause the top declaration database may be opened for update during the installation of the unit's
secondary units, the Diana tree for a library unit specification will not be accessible while its body or one
of its subunits is being installed. This will serialize installation and coding within the view, but npot
significantly. The editor will be able to display the unit because the pretty printed image of the tree is
stored in a separate object, which does not need to be accessed by the semanticist.

Rational Proprietary Document . ADA MSS.217 25-FEB-86 11:31

Data Structures ‘ 24

node is an array reference. It must treat it as an ®apply® node and perform overload
resolution; changes external to the node since it was last semanticized could easily have
converted the reference to be a function call, for example.

Because of the abundance and variety of dynamically growing objects in an Ada object,
some form of memory management within the object will be used. Compaction should
rarely be needed.

Using memory management the edit-in-place paradigm seems to generate no more
garbage than the current incremental compilation. Because no separate spaces are
created for insertions, maybe even less garbage is generated.

In the Gamma implementation, all incremental editing occurs in a separate space. When
the user promotes that separate space, the parent tree is opened for overwrite, the new
parse tree is copied to the end of the parent space, and there it is semanticized in place.
In the Epsilon model, the editor always builds new trees from discarded nodes or from
fresh space at the end of the (parent) segment and so there is no need to do the copy (or
build a separate space) before the additions are semanticized.

2.7. Image Objects and Shape Data

To facilitate the displaying of Ada objects, a separate ¢mage object, named
object-name’ Image, is associated with each Ada object. The image object contains a
pretty printed text image of the associated Ada unit organized as a tree of line images.
When the Ada unit is to be viewed or edited, the image object is opened and the stored
lines of the image are copied to the screen. The Ada object itself must be opened only if
the image is modified or if the user makes an object selection on the image. If both

objects are opened, they are opened under the same action.16

As the user edits the unit, changes are recorded in the image object. When the image is
formatted, the lines that have been changed are fed to the parser, which builds, in the
Ada object, a new Diana tree for the current content of those lines. If the parse is
successful, the new Diana tree is fed to the pretty printer, which generates a new set of
lines that contain the pretty printed image of the parse tree. These lines then replace the
original lines in the image object.

The editor never parses anything smaller than a statement or declaration. If the user
edits just a subcomponent of a declaration (or statement), the region around it is
enlarged line-by-line until it includes a full declaration and those lines are passed to the
parser.

l6The Ada object and its image object are redundant. If one should get damaged, the other can be
used to rebuild it.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 25

To facilitate associating an image selection with a Diana node, the Diana nodes that can
be the root of these incrementally parsed subtrees have a line count attribute, which

indicates how many lines the pretty printed image of the subtree consumes.!’ The
editor uses the line counts to quickly locate the statement that contains the selection and
then walks the subtree in image order, counting the (non-blank) characters of the image

consumed by each node, until the selection is found.!®

Comments will be attached to Diana nodes as in Gamma. In addition, in Epsilon there is
a Diana node kind reserved specifically for representing comments. Because of the
separation of the image and Ada objects, the comment images cannot be shared.

2.8. Intersubsystem Visibility

The visibility that one subsystem has to the units of another subsystem is determined by

the world import and ezport mechanisms of Epsilon.!? This mechanism is available in
both subsystems and casual worlds.

In Epsilon, all views of a subsystem are both Load Views and Spec Views in the Gamma
sense; a subsystem can be compiled against any view of another subsystem, and if it is
complete, any view can be loaded and executed. The limited intersubsystem visibility
provided by Gamma Spec Views is provided by ezport objects in Epsilon. Units from a
subsystem are made visible to a client subsystem by importing into the client an export
object defined in the subsystem. An export object specifies the library packages and
subprograms that are visible to the importer. A subsystem may have several export
objects, each of which may make visible to an importer a different subset of the world’s
library units.

When a world is created, a default export object is automatically established, which is
used when the importer doesn’t name an export object specifically. For subsystems, the
default export object is empty. For casual worlds, the default export object specifies all
library units. The export object to be used as the default can be changed by the user.

Each export object may have more than one version. The world view specified at the
time of the import determines which version is imported.

17About 10% of the nodes in a Diana tree will carry these line counts. The line count attribute must be
large enough to store the size (in number of lines) of the largest possible Ada unit.

18ln most cases the distance between statements or declarations will be one or two lines, so the time
spent computing the offset to the selection will be pegligible. However, attempting to make a selection in
a large aggregate or long parameter list might take a noticible amount of time. This is a price we are
willing to pay.

19Don’t confuse these subsystem-level notions with the importing and exporting of Ada declarations.

The latter notions are not presented to users whereas these are, so there is good reason to reuse the simple
terms, even at the risk of confusing readers of this document.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 26

The visibility to library units that is established by the import operation is solely for the
purpose of resolving the names that appear in with-clauses in the importing subsystem.
Once a with-clause has been resolved, the semanticist depends solely on the view
mechanism to locate Diana trees. Because the semanticist deals with the full with-closure
of any with’ed unit, Diana pointers to units in other subsystems can be established even
though the referenced unit has not been imported.

The import operation establishes a correspondence between simple Ada names and Ada
objects, not specific versions of Ada objects. The universe and world views established
for a compilation determine the versions that will be referenced when the with-clauses

are resolved.zo

A subsystem can import an export object in its entirety or just selected units from the
export object. Exported units can also be renamed during the import operation. Finally,
the import can either be binding or refreshable. If the import is binding, the set of units
made visible by the import is fixed as the set of units specified by the export object at
the time of the import operation. If the import is refreshable then each time a view of
the imported subsystem is included into the importing subsystem, the set of imported
units from that subsystem are updated to reflect the current version of the export object.

2.8.1. Link Packs

A unit that is to be with'ed by units in a world must be referenced by the world’s link
pack regardless of whether the referenced unit is in the world or imported into it. The
units are with'ed using the simple names in the link pack. The simple names in the link
pack must all be distinct. Aliasing or renaming local units is not permitted.

Users will not have direct access to the link pack as they do in Gamma. The principal
use of the link pack is to accelerate the resolution of names in a with clause. The world
import operation and the directory create and destroy operations manipulate the link
pack for the user.

A link pack may have several versions. Each world view identifies the version of the link
pack to use for its Ada units.

2.8.2. Closed Private Parts

With respect to closed private parts, the user interface will be basically as in Gamma,;
the default is closed private parts for exported packages, but the subsystem designer can
use the Open Private Part pragma if desired to override the default. In addition, each
importer will have the option of importing a unit with a closed private part, regardless of
the exporter’s designation.

20The configuration management operations of release and include build the universe and world views
used in this resolution.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 27

Unlike Gamma, whether a package’s private part is open or closed has little effect on the
compilation of that package. An attribute will be set on each private type to indicate
whether its completion is visible to code generation, but otherwise the tree will be
semanticized as a standard Ada unit. The attribute will affect the way that the
semanticist sets semantic pointers that reference the private type and the code that is
generated for references to the private type.

Each private type declaration defines two separate exported declarations; one for the
visible type and one for the full type. If the private part is open, most semantic pointers
will point to the full type declaration. If the private part is closed, all external semantic
pointers will reference the visible declaration only, contrary to the formal definition of
Diana.

Similarly, a deferred constant and its corresponding constant declaration have different
declaration numbers. If the private part is open, most semantic pointers will point to the
constant declaration. If the private part is closed, all external semantic pointers will
reference the deferred constant declaration only, contrary to the formal definition of
Diana.

Code generators can easily detect when a private type is closed since all type spec-valued
attributes will point to the Dn_Private node, not the full type as prescribed by Diana.?!

Since, closed private parts are really only ®closed® to the importer and not to the
exporter, creation of a view that may be frozen and exported before implementation
details have been resolved is a bit more contrived in Epsilon than in Gamma. Since the
private part is never ignored when the package spec is compiled, the developer must
provide a completion for every private type in the package. If the private part is closed,
how the type is completed is important only to the secondary units of the package; so, if
no body is present in the view, a new integer would work as well as any completion.
When the body is added to the view, however, or if the private part is open, then the
completion must be correct for the application.

2.9. Ada Attribute Objects

Several object classes will be defined for objects that contain additional attributes of Ada
units.?2 Each version of each attribute object is associated with one version of one Ada
object. The name of an attribute object is the name of it associated Ada unit, quahﬁed
with the object class name, e.g., object-name’Defunct Cg Attributes.

21At this time, it is not clear how the semanticist will detect that it has a reference to a closed private
type.

22No such spaces are defined by the current Epsilon design.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 28

An attribute object contains an attribute map and a heap of attribute values. The
attribute map is a map from segment offset to segment offset: it maps from the offset of
a Diana node in the associated Ada unit to the offset of an attribute value in the
attribute value heap. :

There are no pointers directly into an attribute space. Any attribute value may be
reached via its associated Ada unit only. A reference to an attribute in another unit is
stored as a Diana.External Referemce to the node corresponding to the desired
attribute.

An attribute object may reference the associated Ada unit (or any other Ada unit) using
the type Diana.External Reference.

New classes of Ada attributes will be defined, both by us and by customers writing new
tools. :

2.10. Compatibility Object

Associated with each Ada unit, Foo, is a8 compatibility object, named
Foo’Compatibility, which contains the information required to assign a unique
declaration number and declaration stamp to each unique exported declaration of the
Ada unit. The compatibility object includes a declaration allocator and a declaration
map. There is only one version of a compatibility object.

The declaration allocator consists of the high declaration number, an independent
declaration counter, and a free-list of previously allocated declaration numbers that may
be reused. When a declaration number must be assigned, the declaration counter is
incremented. If the list of reusable numbers is not empty, one of those is assigned to the
declaration and removed from the list. If the list is empty and the high declaration
pumber is less than the maximum allowed declaration number, it is incremented and
assigned to the declaration. If the high declaration number is at the maximum,
declaration numbers must be reclaimed and one of those is assigned to the declaration.
(See Section 3.7.)

At any given time on a single machine, an object’s assigned declaration numbers
correspond uniquely to the exported declarations of that object that exist in some extant
version of the object on the machine. The declaration stamp, together with the object’s
creation stamp, disambiguates declarations that have been assigned the same declaration
pumber because the declaration number was prematurely reused or because the
declarations were created along separate development paths. The declaration stamp
consists of the machine number, boot number, and declaration counter values at the time
and place the declaration was created. See Section 3.6.1 and Section 3.7 for a complete
discussion of the use of the declaration stamp.

The declaration map maps a declaration (Diana.Tree) to its assigned declaration

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 29

number and stamp. The declaration map is structured as a hash table on the declaration
name (or some other simple hash function). Each hash chain is a list of candidate
declaration information records. Each record contains the declaration number, its
declaration stamp and a canonical representation of the declaration (including lexical,
structural, and semantic information (as Diana.External Reference values)).

In order to introduce a new declaration into a compatibility object, a job must obtain a
write lock on the compatibility object. This provides useful synchronization properties.

2.10.1. Canonical Representation

The following nodes may be the root of an exported declaration:

constant

var (except as a record component)
number

type (except as a generic parameter)
subtype

subprogram decl (except as a generic parameter)
subprogram body (with no separate subprogram decl)
package decl

task decl

generic

exception

deferred constant

Exported declarations may not be contained in a Dn_Generic Param §, a Dn Param §, a
Dn Dscrmt Var §, an Dn Enum Literal §, a Dn | Record or an Dn | Innor Record thus
addmg, deletmg or modxfymg a generic " formal declaration changes the entire generic
declaration. Adding, deleting, or modifying a subprogram parameter declaration changes
the entire subprogram declaration. Adding, deleting, or modifying the declaration of a
descriminant or component of a record changes the entire record type. Adding, deleting,

or modifying an enumeration identifier changes the entire enumeration type.23

For declarations of variables the canonical representation includes all nodes of the Diana
tree except the optional object def. For declarations of packages, and tasks, only the
defining id node is included. (The declarations nested within a package, generic packge
or task are recognized as separate declarations.) For subprogram bodies without
separate subprogram specifications, all nodes of the header and designator are included,
but the Dn_Block and Dn_Stub nodes are excluded. For generic declarations the id, all
nodes of the Dn_Generic | Param S, and the Dn_Generic Header node are included. For
all other declarations, all nodes of the declaration are included in the information record.

2315 this too restrictive? We will probably have an escape mechanism, which allows the user to assign
his own declaration numbers in such a way that obsolescence propagation still works.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures 30

The canonical ordering of nodes within an information record is the same as the textual
ordering of those nodes according to the syntax of Ada. The representation for a node
includes only its Diana.Lx Symrep (if any) and Diana.Sm Defn attribute (if any). If a
node has neither of these attributes, only its Diana.Kind is included. '

The information record also includes the canonical representation of any pragmas or
representation clauses that apply to the declaration.

For two records to match, the represented nodes must match according to the rules for
header-body conformance defined by the LRM.

e A numeric literal can be replaced by a different numeric literal if and only if
both have the same value.

e A simple name can be replaced by an expanded name in which this simple
pame is the selector, if and only if at both places the meaning of the simple
pame is given by the same declaration.

e A string literal given as an operator symbol can be replaced by a different
string literal if and only if they both represent the same operator.

Thus two declarations match if they appear in the same context and, apart from
comments and the above allowed variations, both declarations are formed by the same
sequence of lexical elements and corresponding lexical elements are given the same
meaning by the visibility and overloading rules.

2.10.2. Assigning Declaration Numbers

When a declaration number needs to be assigned to a freshly-semanticized declaration,
the declaration is hashed and then the hash chain is searched. A declaration information
record is formed for the candidate new declaration and is compared to the information
records on the hash chain. (Additional hashings or heuristics can be employed in the
search to avoid wasting too much effort building unnecessary information records.) If a
match occurs then the new declaration uses the old declaration number. If no match -
occurs then a new declaration number is assigned.

For library units, at installation all declarations are assigned declaration numbers and
entered into the declaration table. For library secondary units, declaration numbers are
only assigned where there are subunit stubs or macro-expanded bodies that- could
possibly introduce external references.

If subunit stubs or macro-expanded bodies are later introduced into a secondary unit,
declaration numbers will be assigned to the declarations that are visible at these
insertion points. Local references must be converted at this time as well to use these new
declaration numbers.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Data Structures

31 -

The semanticist assigns all declaration numbers.

2.11. The Size of Things to Come

The sizes of the various components of the Epsilon are summarized here.

OBJECT

World Number

Object Number

Version Number

Class

Machine Number

Boot Number

Unique Id

Object 1d

Creation Stamp

Diana.Tree

Unit Number

Declaration Number

Node Number

Declaration Counter
Declaration Stamp
Diana.External Reference
Diana.Version Reference
Semantic Reference
Node-Relative Structural Link
Segment-Relative Structural Link
Line Count

Modification Stamp

Rational Proprietary Document

Bits (Range)

14 (0..2**14-1)

ADA MSS.217 25-FEB-86 11:31

Data Structures ‘ 32

3. Operations

A number of common Epsilon operations are discussed in this section.

3.1. Opening Objectsr

In the same way that Diana currently maintains a map from a task to a heap in which to
allocate Diana objects for that task, in Epsilon, Diana will also maintain a map from
client tasks to action ids. This action id will be used to implicitly open objects used in
the decoding of Diana.External Reference values and Diana.Tree-valued attributes.

Following an interunit pointer may require opening the referenced unit. Following an
interworld pointer may require opening 8 world view of the referenced world. Each
object that Diana opens under a given action id is remembered in an open object cache
associated with that action id. Before decoding the object id, the open object cache is
consulted to see if it is already open, in which case, the segment number of the open Ada
object is retrieved from the cache.

Thus, if the desired object has already been opened under the current action, decoding
will be fast: it is only neccessary to look up its memory address in the current open
object cache. If, however, the object is not open, then it must be opened using the
normal KKOM supported open mechanism (relative to the job universe view).

Any object that is opened as a side effect of following a pointer is opened for read access
only. Any attempt to modify such an object will fail. In those cases where modifying an
object is required (e.g., when promoting an Ada unit), the tools (e.g., the front end)
explicitly open the appropriate objects for write access before modifying them.

3.2. Following a Diana Pointer

A Diana.Tree is a full memory address (segment number, and segment offset). The
value to which it points can be retrieved with minimal effort.

Selecting a lexical, structural or embedded attribute of a Diana node requires adding a
field offset to the node address, and reading the field value at that address. Constraint
checking is performed to determine that the desired attribute is appropriate for the given
node kind.

Selecting an auxiliary attribute of a Diana node requires searching the node's attribute
list for a key value associated with the attribute. Associated with the key on the list is
the value of the attribute.

For many structural attributes, the field value evaluates to an absolute or relative offset

(depending on the node and the attribute) within the same unit. The offset can simply
be added to the node or segment address to form the attribute value. An extra level of

Rational Proprietary Document ' ADA MSS.217 25-FEB-86 11:31

Operations 33

indirection is added when the desired offset exceeds the capacity of the field in which it
is supposed to be stored. The field actually contains an index into the unit’s offset array,
which in turn contains the desired segment offset.

Following a Diana.Tree-valued attribute when it points to a node in another Ada object
is a complex operation that requires microcode assistance for acceptable performance. In
this variant, an external reference is composed of a unit number, a declaration number,
and a node number. The unit number is used to extract the object id of the referenced
unit from the unit table of the referencing object. This object id is decoded using the
view mechanism, and the corresponding unit is opened to obtain the segment number for
the referenced Ada object. '

The declaration number is used to index into the declaration table of the referenced unit,
obtaining the segment offset to the node table for the declaration. The node table is
indexed by the node number to obtain the segment offset to the desired node. Combining
this offset with the segment number completes construction of the Diana.Tree value to
be returned as the value of the attribute.

Diana.External Reference values are converted to Diana.Tree values in a similar
fashion. Since the Diana.External Reference value contains an object id, a unit table
is not consulted in the first step. From then on decoding is the same.

3.3. Setting a Diana Pointer

Setting a Diana.Tree-valued attribute basicélly involves reversing the above operation,
converting a Diana.Tree value into the permanent representation for storing in the
Diana node.

If the referenced node is in the same unit and is not an external node, an absolute offset
is stored in the referencing node.

If the referenced node is an external node (in the same unit or in another), a (unit
number, declaration number, node number) triple is stored in the referencing node.

The unit number is computed by extracting the object id from the root of the referenced
unit, and converting the object id to a unit number. The conversion uses a unit map,
which is the inversion of the unit table. The unit map is constructed during semantic
analysis (by Diana) as part of assigning unit numbers. The unit table must also be kept
current during semantic analysis so that semantic references can be decoded properly for
the semanticist.

For incremental compilation the unit map must be initialized from the unit table.24

24Should the unit map be a permanent component of the Ada object?

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Operations 34

The unit map is temporary Diana state that is initialized (empty) when setting the
current Diana unit (for all allocators and updates).

The declaration number is computed by using Diana.As Parent to reach the enclosing
declaration node, which stores the declaration number.

The node number is computed by searching the declaration’s node table for an offset
equal to the offset in the Diana.Tree value.

3.4. Obtaining an Attribute Value in an Attribute Space
The value of ap attribute associated with a Diana node is obtained as follows:

1. The associated attribute object is found by resolving its name
(um’t-name’attr-z'l>ute-clas.s).25

2. If the attribute object is not currently open, it is opened.

3. The segment offset of the referencing Diana node is fed into the attribute
map (stored in the attribute object), which yields the segment offset of the
attribute value.

4. The segment offset of the attribute value is combined with the world number
and segment number of the attribute object, to yield the desired memory
address referencing the attribute value. '

3.5. Determining Dependencies

To be documented.

3.6. Archive and Restore

3.68.1. Cloning an Object

Any object may be cloned from one machine to another via any available media such as
a magnetic tape, deck of cards, or sophisticated network communication protocol.
Worlds may be cloned to any machine, but other kinds of objects may be cloned only to
machines that contain a generation of the object’s world. That is, objects that are not
worlds are cloned to a generation of their world, not to a machine.

The cloning process consists of two major steps: archive and restore. The archive

25An attribute space list is not mainatained in Epsilon.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Operations 35

operation moves the object and associated data off a machine to the exchange media.
The restore operation moves the object from the exchange media onto a machine.
Although the machine from which an object is archived is usually different from the
machine to which it is restored, this is not a requirement. Furthermore, the time an
object remains archived on the exchange media is immaterial to the restore operation.

From machine to machine, no attempt is made to synchronize the assignment of world
numbers, but across generations of a world, components of the world are numbered
consistently except possibly where numbers have been prematurely recycled or
development of the world has occurred concurrently on different machines. Thus, when
an object is restored to a new environment, each world number in the object must be
converted to the world number for the corresponding world in the new environment.
Other components of object references, such as object numbers and declaration numbers,
do not have to be converted, but because these numbers may have been recycled it must
be verified that in the new environment the numbers in the object still refer to the same

components they did when the object was archived.?®

The following data must be archived to clone an object:

e The cloned object.

o The world number and world creation stamp for the world that contains the
cloned object and for each world referenced by the cloned object.

e The world number, object number, and object creation stamp for the cloned
object and for each object referenced by the cloned object.

e The world number, object number, declaration number, and declaration
stamp for each exported declaration defined or referenced by the cloned
object.

¢ The unit state table entry for the object (if any).
@ The row of the dependency matrix that corresponds to the object (if any).

If several objects are being archived at the same time, the above information about
referenced worlds, objects and declarations can be pooled into one structure for all the
objects. For an Ada object, the worlds, objects, and declarations referenced by the
object are recorded together in the unit table of the object. To archive other objects,
the location of this information must be made known to the archiver. The creation
stamp for any object is available from KKOM. The declaration stamps are obtained
from the compatibility objects for each declaration. The compatibility objects do not
have to be copied; they will be reconstructed as the objects are restored.

26we are also considering providing the ability to reassign object numbers during the recovery process.

Rational Proprietary Document : ADA MSS.217 25-FEB-86 11:31

Operations 36

Restoring archived objects onto a machine involves the following steps, all of which are
performed under one action:

1. Using the archived world creation stamps and the world creation stamps for
worlds on the target machine, a world number map is constructed that maps
world numbers in the archived objects to the corresponding world numbers

for the target machine.?’

9. Locate an unforzen view for each world that will be modfied. One always has
the option of restoring objects into an existing view on the target machine or
creating a new one to restore into. If an existing view is used or if only some
of the view's objects are restored, the import and export keys of the restored
objects must match the corresponding export and imports keys in objects in
the view that were not restored. The keys must match exactly, not just be
compatible.

3. Using the world number map, locate on the target machine each object
referenced by the archived objects and compare creation stamps. They should
be the same.

4. Using the world number map, locate on the machine the declaration
information record for each declaration defined by the archived objects and
compare declaration stamps. They should be the same. If no corresponding
declaration exists on the target machine, add it to the appropriate
compatibility object. '

5. Again, using the world number map, locate on the machine the declaration
information record for each declaration referenced by the archived objects
and compare declaration stamps. They should be the same.

6. Copy each archived object onto the target machine as a new version of its
corresponding object. Create a new object is there is no corresponding object

on the target machine. Update the world view to reflect this new version.

7. For each Ada object, copy the archived unit state table entry and
dependency matrix row into the updated view.

8. Convert the world numbers in each cloned object according to the world
number map. ‘

9. If the new host world is a surrogate world, the objects are frozen.

27Tbe target machine may maintain a map from creation stamp to world number, or it may be
necessary to search all worlds for matching creation stamps.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Operations 37

If there is no world on the target machine to hold an archived object, then the transfer

fails: a world must be created before the object can be transferred into it.28 If there is
no world on the target machine that is referenced by an archived object, then a dangling
reference is noted for possible future resolution (after the desired world is transferred to
this machine).

3.6.2. Cloning a World

A world is cloned to another site by creating a new generation of the world at the new
site and then cloning the objects of the world to the new generation.

to be continued...

3.6.3. Moving Active Development
Moving a world involves the following steps:

1. The old world (on the old machine) is frozen.

2. The entire state of the world is cloned to the new machine. New objects, and
new versions of existing objects, may be created in the world. Existing
objects, however, may not be modified. .

Freezing the parent world is important: if development continues in this world, then its
numbers will collide with those of its descendants. The tools must enforce the invariant
that only frozen worlds may be moved, and that a parent world may not be unfrozen. A
tape carrying a moved world should contain some special mark indicating this fact. If a
tape is lost (destroyed), it is OK to make a new tape from the frozen parent world,
and/or to create a child world on the same machine as the parent, but it is not OK to
unfreeze the parent.

Moving worlds may give rise to various inconsistencies, which are detected and corrected
as follows:

e Sibling worlds are created, e.g., the tape containing the world state is moved
onto two machines. If this happens, and development is done in both siblings,
then the numbers allocated in the two siblings may collide. If, at some later
date, someone tries to merge objects from both siblings into a single surrogate
world, the collision will be detected, and the merge will fail. Detection uses
declaration stamps:

Creating sibling worlds is discouraged: development in a world should be done on one

28Alteruatively, a new generation of the containing world could be created. By searching the machine
for old clients of the world, a world number to use might be determined. If that world number has been
reused, all old clients would have to be revised.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

T

Operations 38

machine at a time. If siblings are created, then there is a hight probability that the two

C developments in them cannot be merged: objects or declarations created in different

(siblings might not merge into a single surrogate world because of numbering conflicts.
The move algorithm described above does not create siblings.

Moving a world is a good opportunity to throw out garbage, i.e., old versions, old
objects, and old views which are no longer needed. Some judgement is required to decide
what is garbage and what is not: the mover of the world should keep in mind that there
may be other software somewhere which depends on the objects.

3.6.4. Imperfect Recovery

The state of one or more objects may be stored on tape, e.g., by the system backup
utility, and later recovered onto the same or a different machine. The special cases of
releasing objects to surrogate worlds, and moving a world from one machine to another,
are treated above. Here we consider the case of recovering objects which have not been
used in a long time.

An entire world may be archived, or a view (with all the objects in it), or a single object.
The information which must be stored on an archive tape is the same as the information
required to copy objects between machines. See Section 3.6.1.

Archived objects are recovered as follows:

(, 1. If the world from which the objects were archived still exists, or a generation
of that world exists, then it may be possible to recover the objects into that
world. First, the object numbers and declaration numbers of the objects on
the tape must be examined to see if any of them have been reclaimed. If
there are no reclaimed numbers on the archive tape, then the objects can
simply be recovered, using the algorithm described in Section 3.6.1.

2. If an archived object has a reclaimed number, e.g., it has the same object
number but a different creation stamp than an existing object, then that
object cannot simply be recovered. There are several alternatives, each of
which makes sense in a different situation. The user of the recovery tool will
have a choice:

e Create a sibling world to contain the archived object. This world will
have the same creation stamp as the current world, but a different
generation stamp. This alternative preserves the assignment of numbers
to objects, which may be useful if there are dependencies thereon (e.g.,
debugger tables).

e Assign the recovered object mew (currently unused) numbers. Any

recovered tables (e.g., view object tables, compatibility keys, etc.)
which depend on the numbering system can be permuted to use the

Rational Proprietary Document ' ADA MSS.217 25-FEB-86 11:31

Operations 39

new numbers. This alternative allows archived objects to be merged
with current objects.

e Destroy existing objects which use the new numbers, and replace them
with archived objects. This is useful for restoring a copy to a surrogate
world.

e Don't recover the archived object.

3.If the world from which the objects were archived doesn’t exist, and no
identifiable descendant of that world exists, then a world must be created to
contain the recovered objects. The world is assigned some convenient world
number, perhaps chosen because a client already refernces that number. The
world and any objects in it may be recovered using the algorithms described
in Section 3.6.1. The resulting world is a surrogate world, i.e., before it may
be modified it must be assigned a new generation stamp.

3.7. Reclamation

It is desirable to be able to reuse world numbers, object numbers, and declaration
numbers. In each case, once the range of numbers has been used, no new entities of the
type designated by the number can be created unless values that designate defunct
entities can be reclaimed. It is not practical to make the number space arbitrarily large,
since there are tables whose size is linear in the size of the number space.

If it were possible to determine unquestionably that a number designates a defunct entity
and that no other objects have dangling pointers to that defunct entity, reclaiming the
number would be no problem. But, in fact, we cannot reasonably expect to keep track of
all copies of an entity and its referencers as they are archived to musty vaults and/or
restored to arbitary machines throughout the known universe. Consequently, we will
implement reclamation algorithms that will have a low probability of recycling numbers
prematurely and we will implement mechanisms to detect when a number has been
recycled prematurely.

In all cases, the mechanism associates a unique id with each of the assigned numbers.
The unique id is much larger than the assigned number so that its uniqueness can be
quaranteed, but it is only stored in a few places, including the object to which the
number refers. The numbers are validated at approprate times by comparing these
stored unique ids.

3.7.1. Reclaiming Object Numbers

Each object is assigned a creation stamp (unique id) when it is created. The creation
stamp is stored in the object. Object creation stamps are unique across all space and
time. All versions of an object have the same creation stamp. All clones of the object
have the same creation stamp.

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Operations 40

Each object id contains a hash of its creation stamp. Whenever an object id is resolved,
the referencing creation stamp is compared with the referenced creation stamp for
equality. If they are not equal, the reference fails.

An object number may be reclaimed if no object is currently stored at that number. This
can be determined by examining the view-independent object table maintained by
KKOM for each world. There may be dangling references to the object number in other
worlds, or on other machines, or on archive tapes, but they will (probably) be caught
when the new object’s creation stamp does not match the hash in the referencing object
id.

It may be possible to fix a broken reference, if the object with the desired creation stamp
exists at some other object number. This situation may arise if an object is destroyed
and later (after its original object number has been reclaimed) recreated, either by
intermachine transfer or by restoration from archive. The object can be found by
searching all object numbers, or by checking a map from creation stamp to object
number.

8.7.2. Reclaiming World Numbers

Each world is an object and is thus assigned a creation stamp (unique id) when it is
created. The creation stamp is stored in all generations of the world object. World
creation stamps are unique across all space and time.

A world number can be reclaimed if no world is currently stored at that number. This
can be determined by examining the KKOM world table. There may be dangling
references to the world number, in object ids that referenced objects of the world, but
these obsolete object ids will be detected when they are resolved as discussed above.

It may be possible to fix a broken reference, if the world with the desired creation stamp
exists at some other world number. This situation may arise if a world is destroyed and
later (after its original world number has been reclaimed) recreated, either by inter-
machine transfer or by restoration from archive. The world can be found by searching all
world numbers, or by checking a map from creation stamp to world number.

3.7.3. Reclaiming Declaration Numbers

For declaration numbers, storing a unique id (or even a hash of it) with each occurrence
of these numbers isn't practical, since there are too many occurrences. Every
compatibility key would have to contain the unique id of every decl in its declaration set.
Every interunit Diana pointer would have to contain the unique id of the node it pointed
to.

Consequently, when an object is copied onto the machine, either from an archive tape or
from another machine on the network, the declaration numbers it uses must be

Rational Proprietary Document ADA MSS.217 25-FEB-86 11:31

Operations 41

validated. The declaration stamp for each declaration number in the copied object is
copied with the object. If this declaration stamp doesn’t match the declaration stamp
associated with the corresponding declaration number on the target machine, the copy

will fail.? If the object is an Ada unit, the conflict can be resolved by recompiling the
unit from source.

The system supports a local expunge operation, which reclaims all declaration numbers

for an object that are not referenced by any object on the machine3® Given a
methodology which retains every important spec view online, this will provide reliable
and efficient operation. Note this does require higher-level procedures not enforced by
the environment.

29Tbe detection scheme assumes that a generation of a world (at least its compatibility objects) will be
maintained on a mchine as long as there are referencers of the world on the machine. Declaration stamps
are stored with the definition, not with each referencer. If the target machine has no existing generation of
the world, the restoration will not fail, but the compatibility keys in existing referencers on the machine
might be bogus.

30We should also provide a means to preserve declaration numbers even though there are no apparent
referencers of the number. In this way, moldy specs do not have to be kept online all the time.

Rational Proprietary Document ‘ ADA MSS.217 25-FEB-86 11:31

42

Index

Diana.External Reference 20

Dians.Tree 20

Diana.Version Reference 20

Diana.As Parent 34

Diana.Childl 21

Diana.External Reference 20, 28, 29, 31, 32,33
Diana.Kind 20, 30

Diana.Lx Symrep 30

Diana.Seq Type 21,22

Diana.Sm Defn 30

Diana.Tree 20, 21, 22, 23, 28, 31, 32, 33, 34
Diana.Version Reference 20, 31

Ada-consistency 4
Archive 34

Binding 26
Boot number 13
Bound 15

Casual 16

Cloning 15, 34

Code data base 10
Coded 2,17

Coding dependencies 8
Compatibility 4
Compatibility key 4
Compatibility object 28
Completeness 5
Consistency 4

Declaration allocator 28
Declaration counter 28
Declaration information records 29
Declaration map 28
Declaration number 3, 33
Declaration set 4
Declaration stamp 28
Declaration table 3, 19, 22
Declasse 17

Dependency matrix 5, 16
Diana nodes 19, 20
Directories 13

DM* 17

Elaboration code segment 10

Export 25
Export key 4, 20

Rational Proprietary Document ADA .MSS.217 25-FEB-86 11:31

Export objects 25
Exported 3 ;
External declarations 3
External node table 19, 22

Frozen 16

Generation stamp 15
Generations 15

High declaration pumber 28

Image 23

Image object 24
Import 4, 25
Import key 4,19
Importing 25
Include 26
Installed 17

Line count 25
Link pack 14
Load image 10
Load view 10
Loaded 16

Loaded phase 1 11
Loaded phase 2 11

Machine number 13

Macro expansion model 3, 6, 8, 18, 30
Main subprogram 9

Modified 17

Node number 20, 22, 33

Object class 13

Object id 13

Object number 13
Object table 16

Offset array 19, 21, 22
Open object cache 32

Parent stamp 15
Parsed 2,17
Persistent 16
Phase-1 coded 2, 17
Placeholder 22
Presentation state 3

Refreshable 15, 26
Release 26

Rational Proprietary Document ADA .MSS.217 25-FEB-86 11:31

Restore 34

Save 12

Search list 12
Secondary load images 11
Semanticized 2
Sequence number 13
Sibling 15

Source modification stamp 19
Stamp 13

State 17

String table 19
Subsystem 16
Surrogate world 14

Top declaration 22
Top declaration database 5, 20, 23

Unit map 33

Unit number 33
Unit state table 16
Unit table 19, 33
Universe view 14
Unparsed 2, 17
Usage map 5, 19

Verification mode 7
Version numbers 13

Versions 13
Void 15

World number 13
World number map 36
World state 16

World table 15

World view 14

Worlds 13

Rational Proprietary Document

ADA MSS.217 25-FEB-86 11:31

