7 '3l

11:

1@

FEOM RARTIONAL

Epsilon Product Specit cation

Revision 0.3

January 10, 1991
Draft

PAGE . BBz

FEE 7 *31 11:18@ FROM RATIONAL FARGE . B8B83

' EPSILON FRODUCT SPECIFICATION i
Table Of Conteats

Table Of Contents

1. Overview of Object Characteristics
1.1. Basic Concepts
1.2, Parert/Child Relationghips
1.3. Object Names
14, Directory System Structure
1.S. Object Classes
15.1. Structure
152. File
153, Ada
154, Configuration
1.3.5. Diana
1.5.6. Code
1.5.7. Link_Pack
1.5.8. Pipe
1.59. Tape
13.10. Terminal
1.5.11, Null_Device
1.6. Object Subclasses
1.6.1. Structure Subclasses
1.6.1.1. Directory
1.6.1.2. Library
1.6.1.3, Subsystem
1.6.14. Project
16.1.5. Library_Implementation
1.6.1.6. Strucwre_Implementation
1.62. File Subclasses
1.6.3. Ada Subclasses
1.64. Configuration Subclasses
1.6.5. Diana Subclasses
1.6.6. Code Subclasses
1.6.7. Link_Pack Subclasses
1.6.8. Pipe Subclasses
1.69. Tape Subclasses
1.6.10, Terminal Subclasses
1.6.11. Null_Device Subclasses
1.7. Control Points
1.8, Object Attributes
1.9. Summary of Object Class Hierarchy
2. Libraries, Subsystems, and Configurations
2.1, Libraries and Compilation
22. Library Compatibility
2.2.1, Declararion Signatures
2.2.2. Compatibility
2.3. Library Importing
2.3.1. Explict and Implicit Imports
232, Computing Implicit Imports
2.33. Control Over Visibility
2.3.4. Compiler Key
23.5. Additional Checks
2.3.6. Obsolescence Propagation

D S O e S 0 C oAU A AR NN NN NAAR AU S DD DU NN

POy
[

[) P ek ot ek el el
BRROTIARRGRG G

Draft . Rational Proprietary January 10, 1991

FEE

T o9l 11:1@8 FROM RATIONAL

2.3.7. Diagnostic Information
238,

Refreshing
23.9. Example
23.10. Summary

'23.10.1. Impon Inputs
23.102. Import Outputs
23.103. Import Process

24. Library Execution
- 24.1, Library Execution Context
242, Explicit Execution Imports
24.3. Derived Execution Imports
244, 1mplicit Execution Imports
2435, Execution Checks
2.4.6. Disgnostic Information
24.7. Default Execution Bebaviour
2.5. Library Structure
2.6. Subsystems
2.6.1, Spec Releases
2.6.2. Support for Multi-User Development
2.6.3, Support for Multi-Target Development
2.7, Configurations
2.7.1. Configuration Entrics
2.1.1.1. Direct Entries
2.7.1.2. Indirect Entries
2.7.2. Compatibility and Completeness Checking
2.7.3. Configuration Example - Representing a Sysiem Release
2.7.4. System Configuration
2.7.5. Session Configuration
3. Access Control
3.1, Users and Groups
3.2. Access Control and Control Points
3.3, Access Permissions
3.4, Write Permissions
3.5. Combined Permissions
3.6. Explicit and Default Permissions
3.7. Access Control Lists
3.8. Access Control in Independent Directories
39. Access Control in Independent Libraries
3.10. Access Control in Subsystems
3.11. Creating New Control Points
3.12. Operator Capability
3.13. Network Access Control
3.14, Implementation Considerations

PAGE . BB4

EPSILON PRODUCT SFPECTFICATION
Table Of Contents

BESEEEENINNRRRRERBNRRES

W W W L W W
SEEsREBVEYEguaER

FEE

To'91 11:11 FROM RATIONAL PAGE . BB5

EPSILON PRODUCT SPECTFICA’ ‘ 1
Overview of Object Charncieristics

1. Overview of Object Characteristics

This section presents an overview of the objects in the epsilon environment and their gencral characteristics,
including object structuring, classification, and naming. Following sections will consider particular kinds of objects
and their operstions in more detil,

Readers intsrested in 8 user-oriented introduction to the Epsilon system may wish o read Programming in the
Rational Environment from the Concepts and Facilities book. .

L1. Basic Concepts

Objects are the entitics stored by the file systsm. Each object has & simple name which identifies it, and a class and
subclass which determine the operations that may be applied to it. Each object may be related to other objects
through parent-child relationships,

The most fundamental kinds of objects in the system are files and directories, Files are used for the storage of
arbitrary user-data. Directories are used to provide hierarchical structure for the objects in the sysiem. Because
dmmmovidemmwwmonmmumﬂmdobjecuinﬂnﬁwmumwmmysymm.

Corpilation in the system is accomplished through the use of Adz units and libraries. Ada ynits contain the text of
Ada source code in an underlying repressntation distinet from files. Libraries are dircciory-like structares which
provide a compilation context for the Ada units in the Library. Directories may be used to provide internal structure
to the contents of a Libeary.

szencopiesofalibmry.canedulem.v,mbecmdwbenmmmwnapmmemofmmmua
backup or when the library is to be made available to clients to compile against,

The Environment also has additional directory-like structuring mechaniems called subsystemts and projects which
are used to manage the development of large software systems, Subsystems are useful in developing components of
large systems when multiple developers and/or multiple targets sre involved. Projects provide methods for
managing the architecture, release, and integration of & number of subsystems.

1.2, Parent/Child Relationships

The most basic relationships between objects in the system are parent/child relationships. Parent/child relationships
provide the basis for naming of objects as well as traversal among objects. Each object, be it a file, directory, Ada
unit, ibrary, or subsystem has a single parens object. The sole exception is the directary system root object called
'i'mmmmy.wmummmdmmmhmmmm Each object may
also be the parent of any number of child objects !,

mm«mmummmmmmmwmmmm
directories and other objects. mm—mobjwmmhumaﬁesmmmwmmng
mmmﬁmﬁmdmpnmmmemmmofhgem&vdmmmﬁvdy. We will
nythatanobjectis"in"inadhmy(udirmuy—ﬁkeobjecoifuobjmhacﬁldofme&wuxywﬂnchﬂdof
some other object “in" the directory.

his differs from Dela in thas evea objects hike files can have children.

Draft Rational Proprietary January 10, 1991

7o'31 11:1E FROM RATIONAL FRGE . 8BE

2 ' EPSILON PRODUCT SPECIFICATION
Overview of Object Characteristics

1.3. Object Names

Naming is described in detail in another document, below we will describe the basic principles of names that are
used in this document.

Each object has & simple aame which uniquely identifies it with respect to its parent object. Each object also has a
Jull path name which miquely identifies the object within the directory system. The full path name of an object is
the full path name of the object’s parent followed by the separator symbol */” snd the object’s sitple name, ‘The full
path name of the directory system root is just the root simple name, namely *1".

For example, the the directory Usexs which is a child of "1" has the full path name " !Users*, and the directory
Tom pested in !Users has the name *1Users/Tom™. A text file with the simple name "Memo™ which is in
{Users/Tom would then have the full path name " Users/Tom/Memo™.

In order to support Ada-like naming for objects in the directory system, the. period (.") symbol may be used
synonymously with *f, ‘

Certain objects are designated to be system objects. These objects are managed by the system and are usually not
displayed automatically in the editor. System objects are known by the form of their simple names which always
begin with the period (*.") symbol. Rational reserves all system object names in which an underscore preceeds all
alphabetic characters. The oumber of periods at the beginning of 2 name will be used by editors to control display
of objects at different levels of ellision. For example, ._Switchesand Tree arc the names of two system
objects which would be displayed at different kevels of ellision,

1.4, Directory System Structure

As we mentioned befare, the root of the directory systers is the directory called ™" and all other objects have "!" as
their ultimate parent. There are other directories built by the gysiem for the storage of system objects, the most
dotable of which is the directory !Machine.

Amchudwi&mhmbginhndimmuﬂedmmﬁumquﬂmm. Al home directaries are
children of the system directory !Users.

For example, the home directory of user Tom is shown below. Each line of the display contains an object in the
home directory and the subclass of the object.

!Users/Tom : Directory

Mailbox : Directory

Mamo ! Text
Teasts : Library
Tools : Library

The home directory displayed above contains & snbdirectory called Mailbox and a text file calied Memo. The
bome directory also contains two library objects named "Tests™ and ™Tools™ which the user has created o
store and campile different ada objects, The conteats of the library Tools are ghown in the display below. In the
MymhMEMwmmmwﬁswmmnmmmmmdmm

Janyary 10, 1991 Rational Proprietary Draft

FEE 7 "91 11:12 FROM RATIONAL FAGE . Q87

EPSILON PRODUCT SPECIFICATION 3
Overview of Object Characteristics

!Users/Tom/Tools : Library

Utilities : Pack_Spec
Utilities : Pack Body

Subsystems are useful in the development large system components because of a8 subsystems ability to manage
multiple libraries, In the example, below the subsystem Kernel mmages two libraries called Pathl and
Path22which represent alternative imsplementations of the subsystem.

!Environment /Kernel : Subsystem

Pathl : Library
-Pathl_Releases : Directory
Path2 3 Library

In addition to the two librarics Pathl and Path2 the subsystem also contains two frozen copies of Pathl which
are stored in the Pathl_Releases directory shown below.

!Environment /Kernel/Pathl_Releases : Directory

Rev_0_1 : Library
Rev_0_2 : Library

Sinoeamleaseisafrozmcopyofaﬁhwy,thctﬂmmnﬁuaﬂofunobjemmatwmhmenbmy. Thus, the
contents of a release above might have the display shown below which would be the same as the if the original
library were displayed.

!Bnvironment /Kernel/Pathl_Releases/Rev_0 2 : Library

Object Management : Package Spec
Object_Management : Package Body

LS. Object Classes

mmsﬁmowm:mmmmcmmmofmopm Each object has a particular class which
may not be changed during the lifetime of the object. In addition to its class, each object also has & subclass and,
optionally, & subclass extension. The subclass and the subclass extension establish the detailed characieristics of the
object. The subclass and cxtension may be expressed by the notation Subclass.Extension 3, Similarly, full class
information Mybmmducmmmmmnmdmchssmebdmmbeexmmdas
Class Subclass.

hmewngncdmsWMeMﬁm:mangmMMMMmﬁm,mm.m.
and subsystems. !nmﬁty:hesymiumposedofarhhermofobjom.mofwﬁahhuaclass.mbchss,md
an optional subclass extension, which sogether detemine the properties of the object. Files, directories, ada units,
m.mmmmmmdmmmmmmymmmmmm.

3%&&%“““%”.“&“?“&1udhthz.
Botation mxy be uped in Clans snrilates.

Draft Rational Proprietsry January 10, 1991

FEE

o S s e
To'91 11:13 FROM RATIONAL PAGE . B8B83

4 EPSILON FRODUCT SPECTFICATI
Overview of Object Characteristics

Below are listed the complete set of objects classes and an overall description of the class. Objects that are used
primarily for implementation purposes are listed for complsteness. A later section will list the subclasses and
subclass extensions associated with each class.

15.1, Structure

Structure class objects (also known as structwral objects or directory-like objects) are nsed to:

¢ Organize the objects in s hismarchical manner,

* Provide a compilation context and siarage for program units.

* Manage and coardinate large scale development.

This class includes direciwories, bibraries, subsystems, snd projects. Structural objects have no user-data in the sense
that files contain user-data, rather structural objects are important becanse of their ability to organize other objects.

© Structyral objects may only be ereated as children of other structural objects (subject to constraints outlined later),

Structural objects may not be children of non-structural objects.

Some structural objects objects are designated as control points which allows disk space and access control
characteristics to be controlled at these nodes in the directory hierarchy. The characteristics of control point will be
discussed later in more detail.

1.5.2. File

Files are used to store arbitrary user-data. The format of the data and the access methods to the data gre dependent
on the particular subclass of the file object. For example, files may contain ascii text or may contain data in

153, Ada

Adz objects are used for the storage and compilation of ada program text and comespond to compilation units as
defined by the Ada Language Reference Manual (LRM). Each ada object is nested (perhaps indirectly) in some
library which provides the compilation context for the ada pnit. The status of an ada object in its compilation
context is defined by the compilation urit state of the object which keeps track of the current level of compilation
the object in its Library.

1.5.4. Configuration

Configuration objects are used to group together related libraries 4. Configurations play a key role in compilation,
execation, and the management of large systems. Configurations are also used to establish system-wide and
acssion-wide defanlts for command execution and name resolution. Later sections will describe in detail how
configurations are psed and manipnlaed,

“Coufigunations ar similar 1o Activites in Delta

Januxry 10, 1991 Rationsl Proprietary, Draft

FEE 7 "91 11:13 FROM RATIOMAL PRAGE . 8B4

EPSILON PRODUCT SPECTFICATION 5
Overview of Object Characteristics

15.8. Diuna
Dimobjectsmusedbylhuymmmmﬂummwmaﬁmmmchmalmpmmﬁonof

programs, Users neither create nor modify Diana objects explicitly, rather these objects are created and modified by
the system when compilation occurs.

15.6, Code

Code objects are used 1 store the executable form of programs. As with Diana objects, Code objects are creatad as
& side effect of compilation operations.

15.7. Llpk_Plck _
Link_Pack objects are used by the compilation system o manage the visibility of names in Iibraries,

1.5.8. Pipe
To be described.

159, Tape
Tape objects are used to represent physical tape devices.

15.10. Terminal

Terminal objects are used to represent physical terminal devices and the windows of users sessions.

1.5.11. Null Device
mmssisusedmmpmmmmmwmhkmdmﬁmyuamﬁmwmm

1.6. Object Subclasses

Thesubchssofmobjmmbﬁm«tbe&uﬂedchwmisﬁcsot:mwm Each subclass is associated with a
particular class. Each subclass may also have 8 set of subclass extengions,

146.1. Structure Subclasses

Below are presentad the stracture subclasses and a brief description of their characteristics.

1.6.1.1. Directory

Qhecm?objxsmmemmmunﬂobjminmesym. Directories are used to produce srbitrary
hierarchical structuring in the system. There are two kinds of directories with extensions independent and
m"mﬂ‘o

Draft Rational Proprietary January 10, 1991

FEE

R T RN . gl

7o'31 11:14 FROM RATIOMAL PRGE . .&A1E

6 EPSILON PRODUCT SPECIFICATION
Overview of Object Characteristics

* Independent

A directory is independent if is & control point as defined above. Independent directories, ke other control
points, can be used to control disk space utilization and access conwrol characteristics. Examples of
independent directories are the file system root directory *!* and all home directories,

Independent directories are not allowed in libraries, subsystems or projects.

* Dependent
Dependant directories are directories which are not control points and thus are dependent on their enclosing

control point for disk space Limits and access control restrictions. Dependent directories are allowed in
Jibraries, subsystems, and projects, °

uhwyob}ectsmmdfmthemgemdmpﬂaﬁonofadammmit& Eachlibmydﬁﬁneueompnaﬁon
context in the sense of the Ada LRM. All program units must be stored in a library or in a release of a libmary as
shown below.

Libraries may not be nested, even indirectly, within other libraries. However, librarics may be arbitrarily nested
within directoties as long as this does not violate the prohibition of libraries pested within Libraries,

* Independent
An independent library is & non-frozen library that is not nested in a subsystem. An independent library is a
control point.

* Working
A working library is & non-frozen Library that is nested within a subsystem.

* Release

A release is a frozen copy of a library. A release may be nsed by clients to compile against or to execute
against. Thus, a release captures the state of library for internal backup purposes or for external distribution,
The use of releases in multi-fibrary compilation will be discussed later,

Releases follow the same rules as libraries for nesting within other structaral objects.

* Spec_Release

A spec_release ix a release which only contains Ada spec umits, Spec_releases may be used for compilation
but not for execution. Spec_releases are particularly useful for emphasizing the distinction between
specification and implementation in software development.

¢ Code_Relense

Aeode__mleaseisneleascwhkbcmmimmadamisbntdnesnmmtﬁnumlemdcngmems.
Codeﬂmmuwfﬂwbmkkmmwumm&whikwmﬁngmymmthem.

1613, Sobsystem
Amymh-mmmnhmdwmagcmm&nbpmmhamﬁmmﬁcs.
Subsystems tnay be nested within other structural objects other than libraries, In particular, 8 subsystem may nested

within another subsystem s long as it is not nested within & library of the enclosin subsystem. Subsystems are
described in detail in a later section. ¢ e

Janusary 10, 1991 Rational Proprietary Draft

FEE

7o'l 11:14 FROM RATIOMAL PQGE.EI}

EPSILON PRODUCT SPECTFICATION 7
Overview of Object Characteristics

L6.14. Project
A project is a structure that is used o manage and coordinate development i a set of related subsystems.

14.18. Library_Implementation

wmmwmﬁm&mwjmdmmubrmjmmmdmwmchismedby;he
systam to implement the independent library. A library_implementation object is created smomatically whenever an
independent library is created. '

For example, consider an unmanged library Tools in & users home directory. The Iibrary would have an
implementation directory associated with it as shown below. The implementation directory is a system cbject and
20 would not normally be displayed by the editor.

!Psers/Tom : Directory

Tools : Library
eve. Tools Implementation : Directory

The implementation directory for the library would then contain the library_implementation object for the library as
shown below. '

!Users/Tom/...._Tools Implamentation : Directory

Tools : Library Implementation

1.6.1.6. Structure_Implementation

Objects of subclass structwre_implementation are used for the implementation of other structural objects.
Structare_Implementation objects are always system objects. In particular each independent directory, subsysiem
and project contains a subobject called ., , . ._State of subclass Structure_Implementation,

|Users/Tom : Directory

--.._State : Structure Implementation
Mailhox t Directory;

Memo : Text

Tests : Library

Tools t Libravy

1.6.2. File Subclasses

th&hmuudfwvmyofm&mmemdmofmmﬁbamwofwm

* Binary
nmmumum»mmmmmymmmm
* Text

Text files are used to contain structured text information. In perticular the images associated with Ada gnits
are represented by Text files,

Draft Rational Proprietary January 10, 1991

FEE 7 '31 11:13 FROM RERTIOMAL FRGE.BI1Z

EPSILON PRODUCT SPECIFICATION

Ovaview of Object Characteristics
Ascli
Ascii files are used to contain sequences of ascii characters,
$witch_Definition , _
Switch_Definition files are used w contain the machine-wide definitions of available switches,
Directory_Switch

Directory_Switch files contain the switch values associated with a perticular directory or direstory-like
structure guch as 8 library.

Session_Switch

Session_Switch files contain the switch values associated with a particular user session.
Uuri_Proﬂles , .
User_Profile files contain the profiles associated with user accouats,

World_Database

World_Database files are used by the operating system for implementation purposes.
Search_List

Search_List files contain the search lists associated with user sessions.
Cmve_Database '

Cmve_Database files contain the historical information associate with development activities,
Object_Set

Object_Set files contain sets of objects.

Dictionary

Dictionary files contain dictionary information used by text processing tools.
Postscript

Postscript files contain document formatter output in postscript notarion.
Temp_Heap

-Tm_ﬂeapﬁhamnndforhplemmﬁmmw vatious parts of the environment.

Import_Database
Wﬂumﬁﬁmﬁm&mkmﬁwmhwnﬁhm@mpﬂaﬁm These objects are
described in desail in a later section,

Domain_Ervors

Domain_Error files contain information for the generation of system ITOr Messages.

Master_Errors

mmmsmmwmmmmﬁmmm

January 10, 1991 Rational Proprietary Draft

FEE

7 '3l 11:15 FROM RATIONAL FPRGE.B13

EPSILON PRODUCT SPECIFICATION 9
Overview of Object Characteristics

* Document Datsbase

Document_Database files are used by the Rational Design Facility.

* Element_Cache
Element_Cache files are used by the Rational Design Facility.

. Markup
Markup files contain text formatter markup input.
* Menn

1.6.3. Ada Subclasses

Ada subclasses generslly correspond to the different types of ada compilation umits, Familiar examples, of Ada
subclasses are Package_Spec and Package Body. Additiona) subclasses exist for use by the compilation syster to
handle objects that are not yet fully formed such as the Compilation_Unit subclass.

164, Configuration Subclasses

A configuration is a get of related libruriss, A configuration is restricted to contain at most one library or release
from a given subsystem, and at most one release from a given independent library, The different configuration
mbclassesnmssdiﬁmtmmhwmmemhﬁmsmmbuwmmeﬁmmsmdwlmmmemﬁmﬁm

¢ General

A Genersl configuration may contain arbitrary libraries. There are no constraints on the libraries that may
appear in such a configuration,

* Compatible A
In a compaible configuration all libraries must be compatible in the sense defined in the next section of this
document,

* Complete
Inacomlmeouﬁgtnﬁonallﬁharieammbemmpaﬁblemdmplﬂcindwmofmammn
libraries.

1.6.5. Diana Subclagses

mmwmnmmm.mm&mmmmmmbymempm
whenﬂl'eAdaobjectwasmpned. mdiﬁetentmbchsmofbiamwpmemdiﬂmtﬁndsofmpﬂer

* Tree
- Objects of this subclass contain the abstract syntax tree (AST) associated with a particular compilation unit.
* Top_Decl Database .
Objects of the subclass contain symbo} wble information used by the compiler during name resolution.

Draft Rational Proprietary January 10, 1991

s

To'31 11:15 FROM RATIOMNAL PRGE.G14

10 EPSILON PRODUCT SPECTFICATION
Overview of Object Charactaristics

o Cg Attr
Objects of the subclass contain code generation information for the associated ads unit.
1.6.6. Code Subclagses

* Relocatable
Objects of this subclass contain relocatable code.

* Execotable _
Objects of this subclass contain execuiable code,

16.7. Link_Pack Subclasses

* Visible_Names
Objects in this subclass contain the aet of program unimwhichmvisiblehmememmmpﬁaﬁon context.

1.6.8. Pipe Subclasses
There is a single Pipe subclass named Nil. Al Pipe class objects are of this subclass,

1.6.9. Tape Subclasses
There is a single Tape subclass named Nil. All Tape class objects are of this subclass,

- 1.6.10, Terminal Subclasses

* Physical
Objects of this subclass represent physical terminals,

* Message_Window
Objecmofﬂ:issubchssmemﬁemewhdoﬂnanmmmsim

*» Jo_Window
- Objects of this subclass represent i/o windows in environment sessions.

16.11. Null_Device Subclasses

There is a single Noll_Device subclass called NiL All Null_Device class objects are of this subclass.

1.7, Control Points

Cmainsummmbjminthesymmdeﬁgmwdmbewmlpaim. Control points are nsed to control certain
wmchwmﬁﬁmmhammﬂhfmmﬁmmdh%paﬁﬁﬁmmwﬁcbhmmlmimis

January 10, 1991 Rational Proprictary Draft

o9l 11:16 FROM RRTIONAL PRGE.BAL1S

EPSILON PRODUCT $PECIFICATI 11

Overview of Objeci C} oti

mounted. Control points include:

* All subsysiem and project objects,

* All independent libraries.

* Al independent directexics,

Bmmtmm&mthﬁm.mmmwhmmwmmmmn If an object isin a

subsystem or project then the associated control point is the enclosing subsystem or project. ¥ the object is in an

wmuam«mmmxwmmmmmxmumw

Library. cheobjeahmthambsyueh.miwgubdependemﬁmry(ummmﬂmmemimd

eantrol point is the enclosing control point directory.

Ommmmﬂnfmfmmemmdmmﬁesimmﬁw

* Control points are associated with particular Unix disk partitions.

* Control points are the focus for access control,

. Cmmlwhumyhmﬁﬁﬁnmdbxmwmmmtmmmmofmeobjem
within the contro} point.

L8. Object Attributes

Assoﬁatedwit.heachotgiectinth:symu:anumberofmibm:whichmpmemiouscmmﬁsﬁcsabmtme

current state of the object, Amibmhcludeﬂﬁngsﬁkemelaswpdawmeofmeobjen.sizcofﬂnobjeﬂ.wm

last release that was created from a library.

Antributes are cither scalar valued or object valued. Scduvalnedobjects,mhasmehstmﬁmeofmobjmt.

can be displayed by the editor, or can be be used to filter objects in naming expressions ¥, Object valued attributes

mbeusedinmmingexpressionsnalmmvewayswmemenbhamnmevﬂnedmeamibm.

L9. Summary of Object Class Hierarchy

Bdmmmmammmyofheobjmchmﬁmmhytwchmmdmbdmhmmdb&ﬂymipﬂmd
by the user. Ominedmchsaesmdsubchssesﬂmusedjmfmimplmuﬁmmpom.

mm,mmmmmmmkmdmngm.

%0 georal this is done via the *Tf earibute,

Draft Rations] Proprietary January 10, 1991

E)

FEE 7 391 11:1E

12

FROM RATIONAL

FRGE.@1E

EPSILON PRODUCT SPECTFICATION
Overview of Object Characteristics

Figwe 1.1 - Object Class Hierarchy

Class
Stroctre

File

Subclass

Direciory

]

Subsystem

Library_Implementation
Structure_Implementation

Extension

Independeat

Independent

Working

Spec_Release

1Code_Release

Comments

control point

{control point

jcontrol point
control point

January 10, 1991

Rational Proprietary

7o' 11017

FROM RATIONAL

EPSILON PRODUCT SPECIFICATION
Overview of Object Characieristics

Figure 1.1 . Object Class Hierarchy (continved)

| TCSSEERRERRRRRRRRSSTU

FAGE.A17

13

Class

Configuration

g%’%%

Null_Device

Subclags

Markup
Mehu

mepihﬁm_Unit
Package_Spec
Package Body

General
Compatible
Complete

Top_Decl_Datahase

Cg_Anr

Relocatable
Exccutable

Vigible_Names
Nil

Nil

Physical
Message Window

1o Window

Nil

Extension

Comments

January 10, 1991

FEE 7 31 11:17 FROM RATIOMAL PRGE.B148

14 EPFSILON PRODUCT SPECTFICATION

Libearies, Subsystems, and Configurations

January 10, 1991 Rational Proprietary Draft

FEE

7o'al 11017 FROM RATIONAL PAGE.B13

EPSILON PRODUCT SPECIFICATION 15
Libraries, Subsystems, and Configurations

2. Libraries, Subsystems, and Configurations

Libraries, subsystems, and configurations are key objects in the Epsilon Environment and are the building blocks for
veer development methodologies. In this section we'll examine these objects in detail. We will pay particular
atention to the integration between theae objects and other fundamental building blocks of the environment such as
the compilation systet. The integration between kibraries, subsystems, and the compilation system is particular)
important because the level of integration in Epsilon will make it possible to support development methodologies
that were prohibitively expensive in Delta.

2.1. Libraries and Compilation .

All compilation occurs in the context of some library. Libraries provide both & location for the storage of program
units in the directory system hicrarchy, and a context for the compilation of those units 5, Each brary manages the
visibility between local program gnits and units in other Libraries, A library also manages all compilation
dependencies between units and all intemal compiler state. A frozen copy of a library, called g release, can be
ercaied from any libvary. A release captures both the contents of the program units in the library and the
compilation state of those units.

The model for compilation within a8 single library is described in the Epsilon Compilation Document, In there
following sections we will be concerned with the inter-library relationships that support compilation involving

2.2. Library Compatibility

Compatibility is a central notion of inter-library compilation. Compatibility information is used 1o determine which
Libraries and releases are mitable o be nsed wgether, Compatibility information is also used to limit obsolescence
and recompilation when inter-library relationships change.

22.1. Declaration Signatures

An Ada object is composed of a set of declarations the form of which is specifed by the LRM. Declarations may
reference other declarations either in the same object or in different Ada objects in accordance with Ada visibility
rules,

Esch declaration in a compiled Ada object has a enique declaration signature that is based on the symiax of the

declaration and the signatures of all referenced declarations 7. ‘The declaration signature includes the simple name of

the control point containing the Ada object, however the declsration signature does not contain the name of the

enclosing library. Thus, equivalent declarations in different libraries of the same control point have identical
lpration signatures. Inwitively, declarations in different libraries have the same declaration signature if they
y are the “same” in the sense that they have the same meaning.

A declaration is exported if thas declaration may be referenced by mother Ada object based on Ada visibility rules.
EachmpﬂadAdnobjmhsmmﬂﬁgmcwhkhhhmdﬂ&:mﬁmdmm
declarations. Each compiled Ada object also has an import signature which is the set of declaration signarmres of all
of the declarations that are referenced by code in the Ada object,

SFor Ada units, the Hbeary is & program lbrary in e sense defined by the Ade LRM.
ke dectarasion signatare is actpally compunss) via & ash function ou the Fyntas 4d the referenced declarions.

Draft - Rational Proprietary January 10, 1991

FEE 7 '31 11:18 FROM RATIONAL FAGE.AZ&

16 EPSILON PRODUCT SPECIFICATION
Libraries, Subsystems, and Configurations

In an intitive sense the export signature of unit is just the set of declarstions that are exported by the unit,
Conversaly, the import signature of & unit is just the set of declarations from other units which the unit depends
upon.

mMﬁmd:mﬂhm&emﬁmmewmmmmcﬁmmmﬂnm
signanwe of a library is the set of the import signatures for all of the units in the library,

222, Compatibility

Compatibility is a condition that holds betweea supplier and clien: Libraries. A supplier library provides the
declarsions that gre required by a client library. If the export gignatare of 8 supplier Library includes all the
declarations specified in the impont signature of the client Library (for the control point of the supplicr) then the
client is compatible with respect 1o the supplier, otherwise the client and supplier are incompatible, We call the
compatibility relasionship between a single supplier and a single client pair-wise comparibility.

Compatibility for an entire configuration of Libraries Scan be based on the pair-wise compatibility of the Library in
the configuration, A configuration is compatible if all the librasies in the configuration are pair-wise compatible,
and if no library has an import signatare that contains a reference $0 a control point that is not represenied in the
configuration.
Tbempaﬁbiﬁtyohoonﬁgmﬁonmmsthatmymfermcemamﬂmisminalibm'ymybe
resolved 0 some declaration in some Hbrary of the configuration. Not all configurations are compatible. The
construction of compatible configurations is one of the chief tasks of the importing operations described below,
2.3, Library Importing
hmhmﬁmw&mnmmgmwmbmmmmmminmelih-arymheoompﬂedmst
ogram units in another Library, The importing process involves a client library (called the the imporier or
impardngﬂl?wy)mdamofsumlierﬁbmies(mnndthei»mom).

The import process has a several goals:

. -mem:mm%hmﬁgmmmmemnpﬂadonwwgmuwmchm&mewy imported
hibrary, No other libraries will participate in compilation in the importing litrary

. mmmnnmwwwmmehmmmmmummmmm.

) Wobwmﬂhwmehmk'bmybmdmmemmudmmm%mim

* Construct & configuration, called the execution configuration, that references the Yibraries which will be used
whmammthﬁeMngﬁ&ary.Thmmdmeumnmﬁmﬁmmaymw
mudiffumﬂnntbemmoﬁhemﬂaﬁmmﬁgmaﬁm

Almonghwusq:hmeimmubehgmhu'h‘hmiﬁ'.hmmmmdmﬂwysmmm

spec_releases of kibraries, wmmmmm.mammm

Anhn.pm‘ingMmﬁmmdmﬂowﬁeimpwﬁngmhmnuﬂindinmemndambaseofahm.
anmmedfammﬂndaﬁngmmmmmqmyhgdhgmmmfamﬁmwommummm

¥Recal) that s configuration is & ses of brasies.
January 10, 1991 Rational Proprietary Dnaft

T o'91 11:183 FROM RATIONAL FPRGE . BEZ!

EPSILON PRODUCT SPECIFICATION | 17
Litearies, Subsystems, and Configurations '

of the database. Exampies in later sections will present the form of the import database,

23.1, Explict and Implicit Imports

Imported Libearies may be either explicit of implicit. Explicit impoxts are specified directly by the user. Implicit
imports, oo the other hand, are not directly specified, rather they are computed based on the implicit imports ©
mticly the requirements of the imparting process,

‘The importer library may have visibility to any wnits in the explicit imports (subject to user policies described later).
Hwem.meﬁnmhumviﬁbﬂitym_mymhsinﬂuimplmﬂyimpwwdﬂm

The complete set of explicit and implicit imports make up the compllation configuration of the importer. The
reason for including implicit imports is ther the compilation configuration must be compatible which may not be
true of the explicit imports alone, :

The compilation configuration and the visible names make up the complete context for compilation in the importer
library. This means that compilation in the importer will rely on the program unirs in the imports, but not any other
characteristics of the imponed libraries (and in particular not on their imports), This self-sufficiency of litraries
allows more flexibility in the import process than was possible in earlier environment releases, This self-sufficiency
is also the basis for the compatibility condition on the compilation configuration, since all declarations in the
imported libraries must be resolvable within the libraries of the configuration,

2.3.2. Computing Implicit Imports

We noted above that along with the explicit impors, implicit imports are required in order to satisfy the
compatibility of the compilarion configuration. Implicit imports are not specified directly by the user, but mther are
computed by the importing process.

The user does have control over bow the implicit imports will be computed. The implicit imports may be computed
from the compilation configurations of the explicit imparts alone, Alternatively, the implicit imports may computed
ﬁomﬂaeexpﬁcitimpoﬂsmdﬁmamﬁgxnﬁmﬁumwhi:hﬁeimpﬁcithnmmaybeuken. In particular, the
hnpoﬁngmhsﬂmsmmmwlkhsfmwmwmﬁmdhnpﬁmmm
s COMPUTE_FROM_IMPORTS
When this policy is applicd, the implicit imports are computed from the compilation configurations of the
explicitly imported libraries. In effect, the compilation configurations of all explicit imports are merged
together to form a new compilation configuration. Whenever there are multiple libraries for the control point,
the latest library is chosen to go into the final configuration, The resulting configuration is required to be
compatible,

This policy is the default,

» COMPUTE_FROM_CONFIGURATION
When this policy is applied, the implicit imports are taken from 2 amed configuration. The control points
Mmmhwﬁhhmﬁmmmqe.mdwmmgwmmm

memﬁgmﬁmhmklpeciﬁdmaybemexpﬁmmmuﬁmﬁmumayhememmﬁm
configuration. Details of the session configuraton will be described Iater.

Dnaft Rational Propristary Janpary 10, 1991

FEE

To'91 11:13 FROM RATIOMAL FARGE . B2:

1 EPSILON PRODUCT SPECTFICATY
Libraries, Subsystems, and Configurations

23.3. Control Over Visibility

All of the objects in the explicitly imparted libraries are potentially visible. Users have control over which objects
sre actually visible, Visibility is controlled by a filter, which is & set of naming expressions. The naming
expressions are composed of wildcard names which describe the units to include or exclude, as well as other
expressions that describe units to rename, A wildcard name in the set may include the symbols '#' and '@’. In
perticular the filter will contain entries of the form: .
s <wildcard Rame>
Specifies that all units in the imported liteary whose simple name matches <wildcard name> are to be
o =<wildcard name>
Specifies that all unitc in the imported library whose simple name maiches <wildcard name> are o be
excluded.
* <simple name> n> <simple rename>
' Specifies that the unit whose name matches <simple name> is to be included and will be referred to by the
name <simple rename>,

For example, the filter [8, ~foo, abew>xyz) would specify that all units except Foo are o be included, and
the unit Abc is to be renamed as Xyz.

23.4. Compiler Key
The compiler key of a library specifies the characteristics of the compiler that will be used in the library. The

‘compiler key specifies the front end, back end, and policy checking that will be used to compile units in the library.

A library and all of its imports (explicit and implicit) must have keys that agree with respect i the front end and
back end components of the compiler key,
235, Additional Checks

Generally, only releases may be imported. When it is necessary w import non-release librarics (ie, with subclase
Library) additiona! conditions must be satisfied. In particular if a library L, needs to import library L, thea:

1. The importing must be explicit, L, must be an explicit import of L,.
2. Theimporting mnst be mutual. L, mnst also import L,

3, The compilation configurations must be identical, The compilation configurations of L, and L, must have the
same contents.

4. Releases in the compilation configuration may not depend on suppliers in the configuration that are not
releases. IthueleminﬁempﬂaﬁmmﬁgmﬁmofhﬂmRmumhawnmpihﬁon
configuration that includes a Litwary from the control point of L.

23.6, Obsolescence Propagation .
mmm«.mmmmmawwmhmmmmwmw

January 10, 1991 Rational Proprietary Draft

ol
=

FEE 7 ’91 11:28 FROM RATIONAL PAGE.BA23

EPSILON PRODUCT SPRCIFICATION | 19
Libraries, Subsystems, and Configurations

2.3.7. Diagnostic Information

The import datshase, which manages the import process, keeps diagnostic information in & permanent form, This

information is available for the users to review at their convenience. Below &re listed various problems for which

diagnostic infarmation is kept:

* Problems encountering in resolving the names of libraries.

* Problems doe the deletion or inaccesibility (eg, due to network failures) of libraries that smre cuwrrently
imported.

* Problems in computing the implicit imports,

* Problems due to incompatibilities between the imports. When incompatibilities occur, the libraries involved
and information about the missing declarations are available.

238. Refreshing Imports

Each explicit import may have associated with it an additional configuration through which the import is refreshed,
When import refreshing is requestad, the Library which the configuration references is used 10 update the explicit
import.

For example, each working library has associated with it & configuration in the release directory which references
the latest release. This configuration is called Latest and provides an easy way to keep imports up-to-gate,

239, Example

In this section we present an example of the importing process. Typical screen images from the import database of
library !Env.Kernel . Alpha will be used to illustrate the process. We gtart with figure 2.1 which displays the
initial imports of the kbrary. Those imports include Libtaries from the ! Inplementation, !Io, and {Lrm
subsystems.

!Implementation Alpha Releases.Rev_0_0 1 Alpha’Latest

'Io Alpha_Releases.Rev_0_0_1 Alpha’latest

!Lem Alpha_Releases,Rev_0_0_2 Alpha’latest
Figure 2.1 - Initial lmports

The goal of the import process is 1o add an additional import from the !Env.Utilities subsystem. This import
is entered and the resultant display is shown in figure 2.2.

4 !Env.Utilities Alpha Releases.Rev 0 0 4 Alpha'’Latest

— ki h—

|Implementation Alpha Releases.Rev_0_0_1 Alpha’latest

!Io Alpha Releases.Rev 0 0 1 Alpha’latest
!Lym Alpha_Relesses.Rev_0_0_2 Alpha’lLatest
Figure 2.2 - New Import Entered

The line for the new impost is preceeded by the character *#* to denote thar the new import has been entered, but has
Dot yet been promoted, komoﬁngﬂ:eimmisuquﬁedinuduwmmnychangetbempihﬁonmﬁwaﬁon
and establish visibility to objects in the imported libraries,

Draft Rational Proprietary Janoary 10, 1991

reno

ral 1l gl FEOM RATIOWAL FAGE.BZ4

20 EPSILON PRODUCT SPECIFICATION
Libraries, Subsystems, and Configumations

Mom,thcmtmpiswmuimmn. However, this results in a compatibility problem because the new
import !Eav.Utilities.Alpha.Rev_0_0_4 depends on a declaration defined in the subsystem
!Implementation which does mot exist in library Implementation.Alpha.Rev_0_0_1. Figwe 2.3

¥ 1Bnv.Utilities Alpha Releases.Rev_0_0_4 Alpha’Latest
lImplementation Alpha_Releases +Rev_0_0_1 Alpha'Latest
'Io Alpha_Releases.Rev_0 _0_1 Alpha’lLatest
'Lrm Alpha Releases.Rev_0_0_2 Alpha’Latest
Diagnosis =>
%% The compilation configuration of 1Env.Kernel .Alpha
is not compatible.

L)

Attempted Imports =>

!Implementation.Alpha_Releases +Rev_0_0_1
!Io.Alpha_Releases +Rev_0_0 1
'Lrm.Alpha_Releases.Rev_0_0 1

Figure 2.3 - Compatibility Diagnosis

mdiagnosisonhcmpaﬁbilityproblemﬂmincludesaﬁuofmemmmmmdmdwﬁnwmimpon
whoscreqtﬁrmwtswerenmnminthemﬁlaﬁonmﬁm Visiting this library from the import editor will
nndnlinuspeciﬁcdeclaraﬁonnmgedmhhmpaﬁble.

‘lbepmblemisthenﬁxedbyreﬁ'eshingtheimpmﬁm !Implementation o be the latest relanse from from
Alpha library. Figmz.4iuusumsmehnpmdmbmhmgeaﬂcrmchpomlmvebemupchwdmd
successfully promoted,

!Env.Utilities Alpha_Releases.Rev_0 0 4 Alpha’Latest

!Implementation Alpha Releases Rev_0_0_1 Alpha’lLatest
1Io Alpha Releases.Rev_0_0_1 Alpha’lLatest
!Lrm Alpha Releases.Rev_0_0 2 Alpha’latest

Diagnoais =»
+++ Import operation mucceeded

Figure 2.4 - Import Succeeded
Because !Env.m;ilities.upha_neleases.hv_o_o_i imports & release from another subsystem,

nmmely !Eav.Abstract_Types. Alpha Releases.Rev_0_0_2 therc it an implicit import added. This
implicitimmnmbedisplayedbymdingﬂleimpmdmbmdiaphyasshowninﬁgmz.s.

Janusry 10, 1991 Rational Proprietary Draft

51 11:21 FROM RATIONAL PAGE .E@E5

FEE 7
EPSILON PRODUCT §FECIFICATION 21
Libraries, Subsystems, and Configurations

!Env.Utilities Alpha_Releases.Rev_0_0_4 Alpha’Latest
!Implementation Alpha Releases.Rev_0_0_4 Alpha'latest
110 Alpha Releases.Rev_0_0_1 Alpha’Latest
{Lrm Alpha Releases.Rev_0 0_2 Alpha’Latest

Implicit Imports =>
{Env.Abstzact_Types.Alphs_Releases.Rev 0 0 2

Diagnosis =>
+++ Import operation succeeded

Figure 2.5 - Implicit Import

23.10. Summary

Below we summarize the import process:

23.10.1. Import Inputs

Below are listed the inputs to import process,

Explicit Imports
Specifies the librarics that are to be explicitly imported and which contain the objects that may be visible in

the importer library.

Compiler Key

Specifies the compiler to be used in the ibrary.

Implicit Import Policy

Specifies how the implicit imports are o be computed.

Visibility Filters

Specifies which units in the explicit imports should be visible and what their kocal names should be.

23.30.2 Import Outputs

Below are lizted the state objects that are affected by changes o the imports.

Visible Names
Names of mnits which may be compiled against.

Compilation Configuration .
The configuration which, along with the visible names, forms the complete context for compilation in the

Compllation State of Units
The compilation state of the units in the imporier is changed t0 be consistent with the new imports.

Rational Proprietary January 10, 1991

FEB 7 '31 11:21 FROM RATIOMNAL PARAGE . BE26

2 EPSILON PRODUCT SPECIFICATI
Libraties, Subsystems, and Configurations
2310.3. Import Process
Below are listed the major steps in the import process:
1. Validate Explicit Imports
Vezify that all objects exist,
2. Compute Implicit Imports
Compute the implicit imports based on the explicit imports and the chosen policy.
3. Check Compatibility '
Check the compatibility of all explicit and implicit imports,
4. Perform Additional Checks

Check that compiler key components match and make any additional checks that are required if unfrozen
library arc being imported.

5. Establish Compilation Context
Set new values for the visible names and the compilation context

6. Propagate Obsolescence
Propagate obsolescence in the library based on the new imports.

2.4. Library Execution

Up w this point we have considered the import mechanisms from the standpoint of establishing the compilation
context. However, the import mechanisms are also used to establish the execution comtext of a library, The
Ionowhgsmimswinalibmry’smnﬁonmnmdmmn’smnammismbgmmdwmmt
of the compilation context.

24.1. Library Execution Context

- The execation context of a library is the act of libraries that will be included in any programs that are linked in the
importing lbrary, The execution context may inciude litwaries from the following sources:

* Libraries that have been explicitly designated to be part of the execution context.

. mﬁsmmnbmwwnhmdmempﬂaﬁmmnmwhhmm
exscutable,

. lﬂuuieswhichmpmd‘adaﬁmdemﬁgmﬁm.possibly&m’smﬁmﬁm
The following sections will descxibe bow libraries from these sources are inclnded in the execution context.

:Ibenecution context of a library is represented by the execution configuration of the Bbrary. The goal of the
mﬁngmwhaﬁmwmmmumﬁmhmemumwtheexmﬁmwnﬁgmﬁm

Beddesu?ﬁcit!hﬁngofpmminmﬁhnry,lheexecuﬁoncmmﬂsophysamhintheimpucitﬁnhngm
mmdmgcmdmmﬁonwhenmmwmmm’yminwkdumohm In a later gection

January 10, 1991 Rational Proprietary Draft

FEB

7o'gl 1122 FROM RATIONAL PAGE.BZ27

EPSILON PRODUCT SPECIFICATION . , 23

we will discuss how these mechangizms sre used 10 compile and execute commands,

24&2.lbqﬂﬁﬂtihncuﬂonlnqxn1s

Libraries that are designated by name to be part of the execution context are called explicit execution imports.
Explicit execution imports may be specified in addition to the explicit imports that are specified for compilation,
When an explicit execution import is specified it follows the explicit import entry in the import editor display.

For example, in the import editor display fragment below a spec_release is specified for compilation and a full
telease named {Env,Utilities . Alpha Releases.Rev_0_0_1 isspecified for execution.

IEnv.Utilicies Alpha Releases.Spec_0_0_4 Alpha‘latest_Spec
Execution => Alpha Releases.Rev 0 0 1

Figure 2.6 - Explicitly Specified Library for Execution

By specifying an explicit executable impont for a subsystem the user can guarantee that a particular release will be
linked into any programs.

24.3. Derived Execution Imports

When an exccutable release is specified as an explicit import for compilation parposes, that release will also be
included in the execution context unless there is an explicit execution import that overrides it. Such an import is
called a derived execution import because in such a case the entry in the execution context is derived from the
compilation context.

For example, consider the import editor fragment below in which the full release is imported for compilation
purposes. Because there is no explicit execution import specified (ie, the value is <nil>), the import will be used
in both the compilation context and the execution context.

IEnv.Utilities Alpha Releases.Rev_0_0_1 Alpha’latest
Execution => <nil>

Figure 2.7 - Library for Execution Derived from Compilation Context

The handling of derived execation impats in Epsilon is similar to the handling of combined view imports in Delta,
In Delta 2 combined view impont is compiled against and executed regardiess of the contents of the current activity.

2.4.4. Implicit Execution Imports

So far sll entries int the execution context have been explicitly named by the user either as explicit execation
imports or as explicit compilation imports which may be executed. However, the execution context may need to
cootain many other libraries which arc not named but are rather computed. ‘

There are two cases in which entries in the execution context may need to be computed. First, an explicit import
may be 8 spec_release and there is no explicidy specified executsble import for that subsystem. In this case, the
gystem tiust compute the library w execute. Second, a library in the execution context may reference units in other
mbsys:msforwhachmemmmspaciﬁedemmbleimpms. In this case also the system must computs the
libraries which need 1o be included in the execution context. The librarics that are included in the exscution context
for either of these reasons are called implicit execution imports. :

Draft Rational Propristary January 10, 1991

FEE

7o'a1 1122 FROM RATIOMAL FAGE . 828

24 EPSILON PRODUCT SPECTFICATION
Libraries, Subsyztems, and Configurmations

Users are provided with a means of controlling the computation of the implicit execution imports by specify the
execution policy for the Library, There ave three policies avai :

¢ USE_CONFIGURATION

This policy specifies that & configuration will be supplied which references all necessary implicit execution
imparts. The configuration may be either explicity named or may be the neer's current session configuration.

This policy also specifies that the implicit execution imports are pot computad at the time the imports are
changed but rather are computed when link operation occurs. Therfore, the contents of the configuration
may change causing different libraries to be included in the linkad program.

"This policy is the defsult and by defans the specified configuration is the user's current session configuration.
These defaults lead to behavior that is very similar 1 Delta behavior in that the program closure is based on
current session information (ie, the current activity in the case of Delta),

+ COMPUTE FROM_IMPORTS
This policy specifies thar additional libraries for the implicit execution imparts will be computed from the
explict imports. More precisely, the implicit execution imports will be computed from the implicit execution
fmports of the explicit execution imports and any derived execution imports.

The computation occurs at the tme of the impont operation. This policy is analagons to the
COMPUTE_FROM_IMPORTS policy for the compiiation context.

I effect this policy causes the execution contexts of all explicit execution imports to be merged together,
Conflict are resolved in favor of the Inest library, '

+ COMPUTE_FROM_CONFIGURATION

‘This policy specifies that the implicit execution imports are o be computed from 8 configuration which may
be either named or be the user's current sessions configuration. Unlike the USE_CONFIG policy this cavses
the execution context to be computed at the time of the import operation. The exscution context is not
affected by any later changes to other configurations.

By selecting different policies users have control over how the execution context is constracted and the binding time
of the execution context, The default behavior has been sef up to resemble Delta behavior,

24.5. Execution Checks

- When the execution comtext is computed at “import time"™ (ie, the execution policy s

COMPUTE_FROM_IMPORTS or COMPUTE_FROM_CONFIG) the user may request additional checks to be
made on the resulting execution configuration. When a check is requested the import operation will fail if the check
docs not pass, The use of checks also restricts the Libraries that may be in an execution context to be releases which
are frozen, The types of checks are Histed below:

* NONE
Specifies that no checks are made on execution context. "This is the default,
d COMPATIBLE

Specifies that the execntion context and thus the resulting exscution configuration must be compatible, This is
the same level of checking that is always made for compilation configurations,

January 10, 1991 Rational Proprietary Draft

FEE

7 '91 11:23 FROM RATIONAL PAGE .@29
EPSILON FPRODUCT SPECIFICATION 25
Libraries, Subsystems, and Configurations

. COMPLETE

Specifies that the execution context must be compatible and in addition all required bodies must be present
and all ynits must be coded. Linking in a library with a complete execution coufiguration will slways succeed,

Using the checks allows users to check for posgible "link time" errors at “import time”. In particular, the
COMPLETE check guarantees that po link time exors will occur. However, it is not the case that errors will
inevitably oceur in an execution context that is not COMPLETE and or even COMPATIBLE since a given linksd
program may not run into any of these problems.

2.4.6. Diagnostic Information

The import database maintains diagnostic information for execution imports that that is identical to that maintained
for compilation imports.

24.7. Default Execution Behaviour

Below we present an image of and import editor showing a sumber of explicit imparts and all policy information at
their default setings. In addition there have been no explicit execution imports set.

Most of the explicit imports are spec_releases and therefore executable libraries for these subsystems must be
computed implicitly, A single import (i, !Lrm,Alphs_Releases.Rev_0_0_2 is 2 full release and thus will
be included in the execution context as & derived execution import.

!Env.Utilities Alpha Raleases.Spec_0_0_4 Alpha’latest_Spec
{Implementation Alpha Releases.Spec_0_0_1 Alpha’Latest_Spec
1Io Alpha_Releazes.Spec_0 _0_1 Alpha’lateat Spec
!Lem Alpha Releases.Rev 0 _0 2 Alpha’lLatest_Spec

~ Compilation_Policy => COMPUTE FROM_IMPORTS
Execution Policy => USE_CONFIGURATION

Execution Config => <SESSION_CONTIGURATION>
Execution_Checks => NONE

Figure 2.8 - Defauli Import Behavior

nepompihﬁmmﬁqmeﬁﬁummwmmmwnwmhmmdmmmpihﬁmmmofm
explicit imports.

mmmmﬁcyhfmﬁmmmmemwmmﬁmﬁmwmuwmmpmmﬂmpﬁch
execution imports that will be pert of the execution context and no checking will be performed on this context,
M&Mmﬁmyﬁmhﬂvﬁaﬁmﬂmﬂbﬂmmmmhfmﬁmhwmmmumﬁm
closares at "link time®, Fumammnhmm.ﬁﬂmmmmmdﬁwmmﬁbiﬁm«m
required bodies are ot present or becsuse units are not coded, ‘

2.5. Library Structure

Mwﬂh&emmﬁuhat&myﬁmmmﬁhwﬁeﬁnﬁwx&mﬁj&u&mmmmmﬂu
mmport and compilation processes,

Draft Rational Proprietary January 10, 1991

FEE 7 ’91 11:24 FROM RATIOMNAL PRGE.B28

26 | EPSILON PRODUCT SPECIFICATION
Libraries, Subsystems, and Configurations
Mwismeduphyfmawpicdnhuywhhhmmmmmﬂsmdanumbﬂofsystem objects.

!Users/Tom/Tools : Library

[rap———

._Imports : Import_Database
. Compilation : Compatible
‘Execution : General
veve_Brrors : Binary

. Names ¢ Visible_Names

. Release_Names : Text

._Switches t Dizectory Switch

Utilities 3 Pack_Spec

Utilities : Pack Body

The tystem objects in the Library have the following megning:

. . Irmports
The import database object for the containing library. This object contains all of the information involving the
import process. Changes to the imparts are accomplished by editting this object.

J ._Imports/._Compilation
The compilation configuration for the containing library. These are the Libraries and rcleases involved in
compilation, Thismnﬁgmnﬁmismmagedbyﬁeimpmdmbasamdhsmﬂmmyhcexmimdoﬂy
through the impon database. '

* , Tmports/. Execution
The execution configuration for the containing library. ‘This configuration references all libraries and releasss
involved in linking programs in the context of the containing library. ‘This configuration is managed by the
import database and may be examined only through the import database.

* L Imports/...._Errora | _
Ameofmmmmmmmmmmmﬁmemm.
This file is in a binary format, The efror messages are displayed through the import object editor.

. ._NIEBS 4
Ahhpackobjectmhiningﬁnm&ﬂmﬁﬁhhh&cmpﬁaﬂmmmofﬁeﬁbmy. This
inchdesd:emuoﬁomlobjeﬂsmdthenﬂmwofhm!objec&hthﬂvebwnimpmi This object is not
ediabie, all modifications are a side-¢fiect of operations on the import database,

. ._Release Names '

This file is used for the antomatic generation of release names.

. ._Switcheas
Mﬂhmumummummhmmmdmﬁhmmmmmmﬁ.
2.6. Subsystems

Snbsymsplayacmna!mleinmeEuv&mmmt’swfwhrgesymd:vdopmm Large systems may be
demmposedhwanmdmmmhdwhichmumwmwwmﬂy.

January 10, 1991 Rational Proprictary Draft

FEE

7o'g1l 11:24 FROM RATICONAL FRGE.B31

BPSILON PRODUCT SPECIFICATION o
Libraries, Subsystams, snd Configurations

Interfaces between the component subsystems may be strictly tontrolled 10 conform to the overall gystem
architecture.

Actual development of a subsysiem proceeds in the libraries of the subsystem. Multiple libraries in a subsystem can
be ussd w0 support both multi-nser and multi-target development. Different releases of libraries in the subsystem are
wsed © keep track of alternative implementations of the subsystem, and in the case of multi-target development
these aliernative implementations capture the variations required for each target. Different spec releases can be used
®© track aliermative exported interfaces of the subsystem,

26.1. Spec Releases _

Spec releases are frozen copies of libraries with all units other than the exported specs removed ®, Spec releases
serve as the "visible" part of subsystems and are analagous to Ada spec units. Spec releases reenforce the distinction
between specification and implementation by providing distinct objects to encapsulate the exported interfaces of the
subsystem. .

2.4.2. Support for Multi-User Development

As we said above, development in 2 subsystem occurs in the Iibraties of the subsystem. When multiple developers
need to work in a subsystem simultaneously each developer may have a personal subsystem Iibrary in which to
work. Personal libraries provide stable areas in which a developer can work free of interference from other

developers. Finally, when the work of individual developers needs to be integrated together, source control tools
can be used to perform the integration. The sowrce control tools will be described in & Iater section.

2.6.3. Support for Multi-Target Development

The maltiple librarics of a subsystem also support multi-target development. Multi-target development typically
requires that some source code differ from target to target while most source code stays the same.

2.7. Configurations

Configurations group together related libraries. For example, & set of libraries in a configuration may represent:

* The act of Libraries that together make up elther the compilation or execution context of a library,

¢ Apctof subsystem releases that together make up a system release and which must be used together because
of various functional dependencies,

. A et of defanht libwrarias for g user's sesgion,

A configuration can also be thought of as & mapping from a centrol peint w & library of the control point.

- Considered 25 & mapping, a configuration provides a way of sslecting of librarv for any control point represented in

the configuration.

For example, consider the naming expression ! Environment .Abst ract_Types’Library.Map_Generic
where !Envizonment .Abstract_Types is a subsysiem and Map Generic is an ada unit that is present in
all libraries of the subsystem. The pse of the sttribute ' Library specifies that the user's session configuration will

’MMMNMWmh'mﬂm‘hhmmmwmdnmwdwmm&w

. Draft | Rational Proprietary January 10, 1991

FEB 7 391 11:25 FROM RATIONAL PRAGE.BA32

28 EPSILON PRODUCT SPECIFICATION

Libraries, Subsystems, and Configurations

be used to select the library of !Environment .Abatract_Types in which to find the ads unit Thus, the
sezion configuration provides a mapping from a subsystemn to a particular library of the subsystem.

mhuu&hgmﬁomwinmtdmmdchw&matmﬁmﬁmsmdmtmemdﬁc
configurations that are particularly prominent in the fnctioning of the system.

2.7.1. Configuration Entries

A configuration is composed of 8 set of configuration entries. Each entry is associated with & specific control point
#nd contains information that is used to select a library for that control point. The information in the entry is
determined by the kind of the entry. :

2.2.L1. Direct Entries

A&mmwmmmamfumﬁamﬁcﬁbmfmmemdmmlpdm ‘When the containing
ccnﬁgmﬁoaisuaedtosdmaﬁbmyfordnusocimdconuolpoinwaedhewymfmmedﬁbmyissdum

A direct entry may also contain a refresh reference to another configuration (called the refresh configuration) which
can be used to update the library that is referenced by the entry, When the entry is refreshed the library is changed
to whatever library is currently selected by the refresh configuration.

2.7.1.2. Indirect Entries

Anindimctcnwyconnmuefmmmmﬁgmﬁmmnedﬂwenﬁeshdirmcmﬁgumﬁan. When the
myhnﬂmthah'mmmmmmmm;mmywwtheiudﬂectmnﬁgmﬁonis
used.

'Ihmmaybeasiugleindimclennyﬂmisusedforallconmlpohtsdmhvemspeciﬁcwtﬁes. Such an entry is
called the default entry, When a configuration is used to select a library for a control point and there is no direct or
inditectennymiawdwimmeompdngmmemnﬁgmﬁmmfmmdbymedzfmhmism

2,72, Compatibility and Completeness Checking

Itknsﬁdhme&vﬁopmmmmmwmmmmmnﬁgmﬁmmwmdbkmdm
complete, Aoompadbleoonﬂgmaﬁmhmeinﬁchaﬂlihzﬁesinkmﬁmmﬁmmyhewdﬁogﬂmer(iﬁtﬂ
supplicrs provide what is required by their clients), Futhermore, a complete configuration is one that is compatibie
mmumxemmmmnmmmmmwmmmm Compatibility and
completeness conditions have already been described for compilation and execution configurations. In general, &
user ¢an request that any configuration be constrained to be compatible ar complete.

2.73. Configuration Example - Representing a System Relense

entries of this configuration are direct and refreshable. In other words each entry refers to a specific library (actually
anlmhﬁisme)ﬂmyhuﬁ&ﬁmmcmmofmmmhbmywhmmm

January 10, 1991 Rational Proprietary Draft

o

T o'81 11:25 FROM RATIOMAL FREE.B33
EPSR.ON FRODUCT SPECTFICATION 29
Libraries, Subsystams, and Configurations

!Env.Utilities Alpha Releases.Rev_0_0_4 Alpha’Latest
!Env.Abstract_Types Alpha_Releases.Rev_0 0 1 Alpha’Latest
lEnv.Kernel Alpha_Releases.Rev_0_0_1 Alpha'’lLatest

Checks => COMPLETE

Figure 2.9 - Configuration for a System Release

The configuration also specifics that & completencss check is also o be made each time the configuration is
chsnmmscbwkmmmmerdmhmecmﬁgmﬁmmdmhuxmdhmemm

2.7.4, System Configuration

Each file system has a predefined configuration named !Machine.System Configuration. This
configuration contains defaults that arc 1o be system-wide. Authorized users are free 1o change the contents of this
configuration.

2.7.5, Session Configuration

Each session has a session configuration that establishes the defaults for the session. The user is fres (o sat the
session configuration to any values that are nesded,

The session configuration resides in the users session library and has the name Session_Configuration.
Whenausﬁonmnﬂgmﬁmismedmedeﬁukhdirmwvyisalwayssetmmfmmtbesymmxﬁmﬁm
Hmexsﬁmhummmmﬁmﬁmmmemmﬁmnﬁmhmdmﬁnmmemﬁm
configuration.
The figure below presents a typical session configuration, The nser has established two direct entries that refer to o
specific working libraries in which be develops program units. Futhermore, there is an indirect engry to &
n ﬁmmuaﬁngasymmmhueﬂmwﬁes&esymuhmwﬂlbewedwulmaﬁbmyfmm
specified subsystem, My.hmyoﬂmmﬂpdmhmmomﬁgmﬁmﬁubem

!Env.Abstract_Types Alpha
1Env.Rernel Alpha

Indirect =>
!{Env.Utilities !Env.System Release 0_1 3
Others !Machine.System Configuration

Checks => NONE

Figyre 2.9 - Session Configuration

Draft ' Rational Proprietary January 10, 1991

FEB 7+ *91 11:2B FROM RATIONAL PRGE.@324

30 BPSILON PRODUCT SPECTFICATION

January 10, 1991 Rational Proprietary Draft

FEE

7o'9tl 11:268 FROM RATIONAL PRGE . B35

EPSILON PRODUCT SPECTFICATION 31
Access Control

3. Access Control

Access control provides a means of specifying which users have the capability to perform cenain classes of
operations on the objects in the system.

3.1. Users and Groups

Access control in Epeilon is defined in terms of groups of users. Both users and groups are created and managed by
the Unix host system. We will say no more here about the creation or management of users by Unix,

When a user s running an environment session the user will run under his Unix user identity. The Unix groups that
mﬁnﬂﬂsuwwmmyﬁnuuudmmnﬂmmuobjemhtbemvﬁmmmem.

3.2, Access Control and Control Points

Environment control points are the focus of access control. Control points include independent directories,
independent Libraries, subsystems, and projects (note that independent libwaries are libraries that are not contained in
uubsystsmwmiwumdmdspendemdhmmhsmmw@hmmwmﬂmdhaﬁm.mbsymm
project). All access contro} information for a controt point and the objects in it are centralized in the control point
and manipulated through the contro} point. In particular, each control point has an access control database which
describes the acoess control characteristics of the control point and the objects within it.

3.3, Access Permissions

'IheacmspmnissionsofamunlpoimdominemesmupsMmayxcessmemnmlpoimmdiwmbobjects
in various ways. Mp«misﬁmmaybemmdmmemofmmwmmbynﬁngme
psuedo-group "All_Users", The number of different groups that may be granted a particular permission for an
object is a property of the host Unix system.

There are three basic types of parmissions available:

. Ommhﬁmdemhewhhhmmychmge:bemmlhmrmMMmemmm
deleic the control point, or move the control point. In particular, each control point has a
conmmyom_ownnmmmmmnmummwmcbmmymm
- permissions, delete the control point, or move it

. Rammﬁﬁmmmwmmmmmmmwmammmma&wm)m
read the cotents of an object (ke a file), For example, an independent dircctory has a
MOL_NMMMMWMWMMWW&&&W.
mmmmmmm&mmoam_nsmmmmmmmmmmm
cm read the contents of the subobyj

. ngmmmwm“mmm&mmm:mwmﬂmy
modify the contents of s object. For exampie, an independent directory has CONTROL_POINT_WRITER
mmmummmmmmmmmm&wm.mme
mmmmmmmt&wmmwonm_wmmmmmmmmmm
may modify the contents of the subobjects.

:;:mpkﬁmmmmmpmﬁwaMemm!Mom. The permissions for this directory
t

Dnaft Rational Proprietary January 10, 1991

FEE

7o'9l 11:E87 FEOM FARTIOMAL PRGE . EZE

2 EPSILON PRODUCT SPECIFICATION
Azscess Control

CONTROL_POINT_OWNER => Tom
CONTROL_POINT_READER => All Users
CONTROL_POINT WRITER => Tom

which allows the group containing the user “Tom" to change permissions and modify the contents of the direciory,
and allows all users (specified by the dafault setting "All_Users”) to read the contents of the directory.

lrmdwmahovemtdmaﬁheme;! {Usera/Tom/Maeno this file might have the permissions

OBJECT_READER => All Users
OBJECT_WRITER => Tom

which would allow only Torn to modify the file,, but would allow all other users to write it.

The sctaal permissions available within a control point depend on the type of control point, however, all are derived
from the basic kinds of permissions Hsted above,

3.4, Write Permissions

Unlike, Delta and Unix, any modification of objects requires both Read and Write permissions for the user

pexforming the modification. However, this need not be provided by the same group in both cases. For instance, in
the examples above the user Tom has OBJECT,_ WRITER access to the file and since OBJECT_READER acoess is

- specified for All_Users, Tom is also allowed to read the file. Thus modifications of the file by Tom will succeed

because be has both read and write permission.

3.5. Combined Permissions

mumplmﬂmmﬁmm.hwmmmmmmdmdmmmmu
scparate permissions for controfling access W directory structre (eg, CONTROL_POINT_READER and
MOLJOM_WRHER)mfmmmnmmmh&meobjeminthos:dirmm(eg.
OBJECT_READER and OBJECT_WRITER), However, becanse of the complex operations in same structures it is
not possible to have separate permissions in the way that they are available in independent directories. In particular,
within litvaries there arc only two permissions, called LIBRARY_READER and LIBRARY WRITER, which
control access 10 both the structare of the library and the objects within it, Library permissions are organized this
way in order to support the compilation capabilities that are central to library management, For example, providing
LIBRARY_READERmtanbmywﬂlanownameswberenolvedhthelibrary.tbemnwmofobjeminme
Library to be read, and ada units in the Lbrary to be compiled against. LIBRARY_WRITER permission allows
program units 1o be create, modified, deleted and also compiled.

3.6. Explicit and Default Permissions

hmﬁm.mbuﬂmhb%mdﬂmﬁ(ﬁkzamhmedhtamy)mmmhm
'eaq)lb-&'w'detmm‘. Explicit parmisxions describe the file by name and give the groups that are allowed 1o read
and write that file, Default parmissions apply to all files that sre not named.

Janury 10, 1991 Rational Proprietary Draft

FEE

7o'91 11:E27 FROM RATIONAL FRGE.@A37

EPSILON PRODUCT SPECIFICATION 33
Access Control

For example, a fragment of the access control information for a home directory might look like
Default permissions for control point subebjects:
OBJECT_READER => All Users
OBJECT WRITER => Tom

Individual permissions for eontrol point subebijects:
Foo, Bar
OBJECT_READER > Tom
OBJECT_WRITER => Tom
Secret
OBJECT_READER => Tom, Jim
OBJECT_WRITER =5 <None>
In the description, the files "Foo™ and Bar have explicit permissions that allow reading and writing only by “Tom",
file "Secret” can only be read by users "Tom" and "Jim" and cannot be written by anyone, other files in the game
control point can be read by anyone and writen by "Tom".

3.7. Access Control Lists

The access control information associated with 2 control point is composed of a list of access control entries. Where
each entry contains a permission, whether the permission is a default or applies t a specific object, and the groups

N

that are granted that permission.
mmesscmtmllist(ACL)fuaommlpointisaﬁstofaﬂmemssmuﬂemiesfuthcm:rdpoim.
In the next sections we will ook at the ACLs associated with different kinds of control points.

3.8. Access Control in Independent Directories

In an independent directory, the directory has permissions that are similar, but not identical to those of umix
directories or delta worlds and the objects within them. ‘

The permissions are Listed below:
* CONTROL_POINT OWNER
- mmmwmmmmmmfummmmjmmmm.
= Allows the listed groups 1o deleie or move the directory.
« CONTROL_POINT READER
= Allows the listed groups 1o resolve names within the divectory.
* CONTROL_POINT WRITER '
= Allows the listed groups 1o crests and delete objects within the directory.

m?bj.epmwizhin.ammlpoim(ag,ﬁles)aﬂhavehﬁmpmisﬁonsmumﬁmﬂummhmdma
permissions. The object permissions are listed below:

Draft Rational Proprietary January 10, 1991

FEE

7 o'9l 11:28 FROM RATIONAL FRGE.B38

34 : EPSILON PRODUCT SPECIFICATION
Access Control

* OBJECT_READER

= Allows the listed groups to read the contents of the object.
* OBJECT_WRITER

~ Allows the listed groups o modify the contents of the object.
The fils access permissions can be set up to apply to all files by defanlt and can be customized for individual files.
Unlike delta the default settings apply to all objects that have not been customized are not simply used to establich
fnitial values. This allows users to easily modify acls in 8 global way by changing the defanlt.

As an example, consider the access control settings for the home directory below:

!Users/Tom : Directory
Status : Text
Review : Text

The bome directary contains a single file "Review" that is to be completely protected, while other files can be
examined by anyone but only changed by the owner. The control point acls be displayed as shown below:

Pirectory !Users/Tom
CONTROL_POINT OWNER w=> Tom
CONTROL_POINT READER => All Usecs
CONTROL_POINT_ WRITER => Tom

Default permissions for control point subocbjects:

OBJECT_READER => All Users
OBJECT_WRITER => Tom
Individual permissions for contzol point subobjects:
Review
OBJECT_READER »> Tom
OBJECT_WRITER => Tom

In particular, note that the file "status” is covered by the file default acls because there is no explicit ac for it, but the
file “review" is covered by its own permissions,

3.9. Access Control in Independent Libraries

Because of the requirements of the compilation system access control in independent libraries is treated @ little
differently, There is no explicit access control for the objects in independent libearies (or releases creatad from

them), rather the access control is coordinated completely at the hibmary level The permissions for independent

¢ CONTROL_POINT_OWNER

— Allows the listed groups © change the permissions for the lbrary.

= Allows the lisied groups to delete or move the Hbrary and its associated releases,
* LIBRARY_READER

January 10, 1991 Rationsl Proprietary Draft

FEB 7 *'391 11:2B FROM RATIONAL PAGE . @33

EPSILON PRODUCT SPECIFICATION 35
Access Control

~ Allows the listed groups to resolve hames in library.

~ Allows the listed groups 1o read the contents of objects in the Iibeary and releases,

= Allows the listed groups to compile against the program units in the Library.
¢ LIBRARY_WRITER

= Aliows the listed groups i creats/and delets objects in the Library.

=~ Allows the listed groups 1o modify objects in the library.

= Allows the listed groups to compile the program units in the Libeary.

There it no access control associated with specific objects within an independent Library of its relegses, rather all
access is centralized in the libeary.
Consider as an example the access control information for an independent Library in & nsers home world:
Library !Users/Tom/Tocls

CONTROL_PQINT OWNER => Tom

LIBRARY_READER > All Usars

LIBRARY_WRITER => Tom
The owner of the library has the ability to create, delete, and edit objects in the Library. All other users have
permission to browss through the library and examine objects,

3.10. Access Control in Subsystems
A gubsystem contains libraries which are treated similar to independent libraries, and objects outside of libraries
which are treated similarly to objects in indendent directories. In particur, the permissions associated with a
subsystem are:
» CONTROL_POINT OWNER
=~ Allows the listed groups to change the permissions for the subsystem,
= Allows the listed groups to delete or move the subsystem,
» CONTROL_POINT READER
~ Allows the listad groups to resolve names within the subsystem,
» CONTROL_POINT_WRITER
= Allows the listad groups to creatr or delete objects within the subsystem.
» LIBRARY_READER
= Allows the listed groups to resolve names in any library of release in the subsystem.
~ Allows the listed groups to read the contents of any objects in the listed libraries.

Draft Rational Proprietary Jangary 10, 1991

FEB 7 '31 11:23 FROM RATIONAL FAGE.B40
36 . EPSILON PRODUCT SPECIFICATION
Access Control
- Allows the listed groups to compile against the listed librarics.
¢ LIBRARY_WRITER
= Allows the listed groups to create or delets objects within a Library,
~ Allows the listed groups to modify objects within a libeary,
«~ Allows the program units in the listad libraries to be compiled.

As in an independent directory, objects which are not in & library have their own permissions which ¢an by apply to
all files by defauk or can be customized for individual objects,

* OBJECT_READER

- The listed groups are allowed to read the conteats of the object
« OBJECT_WRITER

= The listed groups are allowed to change the contents of the object.

January 10, 1991 Rationa) Proprietary Draft

FEE 7 ’31 11:23 FROM RATIOMNAL F‘FJGE.EMlV

EPSILON PRODUCT SFECIFICATION 37

Access Control

Consider as an example the subsystem below:

1Env/Reznel : Subsystem

Alpha : Library
Alpha_Releases : Directory
Alpha Tom ¢ Library
Beta : Library
Beta_Releases : Directory
Mamo : Text
Release_Information : Directory

The subsystem might have the following sccess control display:

Subsysten !Env/Kernel
CONTROL_POINT_OWNER => Gpa
CONTROL_POINT READER => Env_Group
CONTROL_POINT WRITER »> Kernel Group

Default permissions for subsystem libraries:

LIBRARY_READER => Env_Group
LIBRARY_WRITER => Kernel Group
Individual permissions for subsystem working libraries:
Alpha
LIBRARY WRITER > Gpa
Alpha Tom
LIBRARY_WRITER => Tom
Beta
LIBRARY_WRITER => Marlin
Default permissions for subsystem subojects:
OBJECT READER => Kernel Group
OBJECT _WRITER => Kernel Group

Individual permissiona for subsystem subobjects:
<None>

and the groups are defined as
* Gpa, Marlin, 8nd Tom are groups containing the users with that name.
* Kemel_Group is a group containing Gpa, Marlin and Tom

. &v_mh.mmmmmm.wmmm@m«mm.upm those
that might need to import releases from the Kerne! subsystem, d

Note the following things:
. Mymhhvmmmdﬁhphmhmmwm&ﬁenwym,
. Onlymekml,mmmoﬁfynyobjmhmmbsym
. ‘MmhﬁmmemlymﬁfymdmobmmaMﬁm.
v Hhc!&eﬁeMmoﬂemymeyﬁedﬁauhﬁhpﬂMmhhmbsym.
| Dumaft Rational Propristary January 10, 1991

FEEBE 7 '91 11:29 FROM RATICONAL PRGE . @42

38 EPSILON PRODUCT SPECTFICATION
Access Control

3.11. Creating New Control Points

Creation of a new control point requires CONTROL_POINT_WRITER and CONTROL_POINT_READER
permistion to the encloging control point.

Permissions for 8 new control point are inherited from the permissions of the perent ¢ontrol point.

3.12. Operator Capability

If the host Unix system has defined a group called *Rational_Operstor” then the members of this group are said to
have operator capability, Operator capability gives a user the ability to change the access permissions of a control
point without CONTROL_POINT_OWNER access to the control point.

Any users with Unix super-user privileges are glso granted operator capebility.

3.13. Network Access Control

hammkenvmmmmmcbnmlﬁvﬂemm&umimdbyurmmidmﬁzy. One goal is this proposal
is to be compatible with remote access protocols and procadures available on the Unix host. Therefore, as in NFS,
we consider three possible mode establishing remote identity,

1. In this first mode, the user has no specific identity on the remote machine, Access is provided only through
the All_Users psusdo-group.

2. In the second mode, we assume that Unix wser and group ids are managed in a coordinated way on all unix
hosts. Thus, the remote identity is based on the remote use of the original nser id on the originating machine.

3. In the final mode, users specify, 8 remote user name and password (in a suitably eacrypted form) for remote
access. Access restrictions are then applied to the remote identity,

3.14, Implementation Considerations

The access control design is heavily influenced by the mechanisms available in unix and by the way kkom (the
epsilon environment object management system) is built on top of unix.

The environment file system is implemented in terms of onix directories and files. Environment control points are
represented by unix directories. All the other objects in a control point including libraries, ada mnits, and text files
are represenied by unix files. To be even mare precise, each version of an environment object is represented by a
unix file.

In the gser model, corresponding objects in different libraries of the same subsystem are different objects. In the
kkom implementation, those objects may actually be implemented by references o the same unix file. This allows
wpace to be shared by the libraries and releases of a given subsystem, and makes it possible to create releases very
quickly. Methodologies for epsilon will rely heavily on these characteristics,

WMWMmmmwmﬁh&hhdwmmkhmmmMth
environment file system and manipulate the onix files directly, Thus the eavironment access control mechanisms
toust protect the files from fllegal access through the environment and through unix, At the same time during crash
recovery (and in a few other instances) special environment processes musi be able o access the unix files in
mu'aryways.‘maﬂywaywmpﬁshanoftbismwhtomakeunixacismeha.ﬁsfwenvironmmmcls
wmmﬂmmmm‘ﬂumﬁwlsht!aemwayﬁmmvcms_mmlindeua

January 10, 1091 Rational Proprictary Draft

FEB

7 '91 11:38 FROM RATIONAL FRAGE . 843

'EPSILON PRODUCT SPECIFICATION 39

Access Control '

coordinates the Jow level acls,

Basic unix acls have read, write, and execute access for the owner, one group, and others. ALX (luckily) supports
additional groups. In order to accomplish these goals we will have one special user identity which is called "Tippy”
(the name has an obscure history) to repsesent the environment, Tippy 18 the owner of all unix files and directories
that are used to implement the environment file system. Crash recovery, for instance, runs with the Tippy ideatity
and thus is able to freely reconstruct the file system.

User access control is implemented by the group and defaylt fields of the unix acls. Access by users either through
the environment or through unix will need to pass checks based on the unix acls.

Ins deltn, there are distinct crmve_sccess_control settings for each view of & subsystem, however in epsilon this is not
pmﬂemmmemdulyhsmixﬂks(upbnwmmmmumhwd)mmmmeﬁﬁm

Aibraries and releases of a subsystem. Thus, Read access to the objects in subsystem libraries must be the same for

all Kbrazies. However, for write access things are 8 linle differcnt. When an object is written by kkom, a new unix
file is created to contain the changes, since this file has only a single usage (while the writes are going on) it is
possible for it to have a special st of permissions. Therefore, we allow each library to have its own set of write
permissions that determine the settings when the new file is being written, After the writes are committed the
permissions are st back to the subsystem-wide read permissions.

Note that the steady state unix permissions do not allow writing by any vsers other than tippy. This should actually
help preserve the environment file system from accidental or malicious destruction by unix programs.

Draft Rational Proprietary January 10, 1991

