The Delta Delta

Revision 1.01
April 21, 1986

This document discusses the new features of the Delta release of the
Rational Environment.

Rational Proprietary Document

DELTA.MSS.165 April 21, 1986 17:53

Table of Contents

1. Delta Requirements and Goals

1.1. Editor

1.2. Access Control

1.3. Code Generation

1.4. Code Archive

1.5. Subsystems Tools

1.5.1. Configuration Management and Version Control

2. Access Control

2.1. Access Control
2.1.1. Resolution of Recent Issues
2.1.2. Subjects To Be Restricted
2.1.3. Access Control Lists
2.1.4. Objects
2.1.5. Access Types
2.1.5.1. Read Access
2.1.5.2. Write Access
2.1.5.3. Create Access
2.1.5.4. Delete Access
2.1.5.5. Owner Access
2.1.5.6. Cross Reference of Access Types
2.1.5.7. Access That Isn't Controlled
2.1.6. Operations and the Access They Require
2.1.6.1. I/O Operations
2.1.6.2. Special Access Controls
2.1.6.3. Subsystem Tools
2.1.6.4. Other Special Case Access Checks
2.1.7. Editing Access Lists
2.1.8. Archive and Reloading of Access Control Information
2.1.9. Network Remote Accessors
2.1.10. Machine.Initialize
2.1.11. Implementation
2.1.11.1. Representation and Storage of Access Lists
2.1.11.2. Checking of Access Restrictions
2.1.12. Restrictions, Limitations, and Risks
8. Front End Changes
3.1. Editing
3.1.1. Line Count Attribute
3.1.2. Pseudo-Pretty-Printing
3.1.3. Underlining

Rational Proprietary Document

[S
O O © © 00 00 =1 =1 T U ED b=t bt pt b

DO 0O bt i et et et et et et et ek e e ket et
O D000 T b O~ OOOO

[I I)
- W W

1 Table of Contents

3.1.4. Image Objects 25
3.1.5. Issues 25

3.2. Diana Changes 26
3.2.1. Predefined Operators ' 26
3.2.2. Derived Subprograms 26
3.2.3. Line Count 27
3.2.4. Image Object 27
3.2.5. Quick List Membership Test 27
3.2.6. Attribute Spaces ‘ 28
3.2.7. Etceteras 28

3.3. Distributed Dependency Database 29
4. Code Generation and Archive 31
4.1. Code Generation 31
4.1.1. Incremental Operations on Coded Units 31
4.1.2. Maintaining Compatibility Among Views 32
4.1.2.1. Compatibility Database 32

4.1.2.2. Offset Allocation ‘ 32

4.1.3. Checking Compatibility of Spec and Load Views 33
4.1.4. Code Database 33
4.1.5. Relocation of Attribute Spaces 34

4.2. Code Archive 34
4.2.1. Features 34
4.2.2. Implementation Approach 35
4.2.3. Interchange Form 36
4.2.3.1. Libraries and Files 36

4.2.3.2. Ada Units 36

4.2.3.3. Loader Information 37

4.2.3.4. Code Segments 37

4.2.4. Conversion Algorithms 37
4.2.4.1. Save 37

4.2.4.2. Restore 37

5. Subsystems, Configurations, and Version Control 390
5.1. The CMVC-WART Spec 39
5.2. Check Out And In 52
5.2.1. Checking Out To A Place 52
5.2.2. Checking Out To A Person 53
5.2.3. Comments 53

5.3. Commands 54
5.3.1. Starting Up 54
5.3.2. Continuing Development 54

5.4. Issues 55

DELTA.MSS.165 April 21, 1986 17:53

5.5. Improved View Mechanisms

5.5.1. Relocating Ada Units

5.5.2. Compatible Spec View Changes

5.5.3. Incompatible Spec View Changes
5.5.3.1. Synchronized Subsystem Development
5.5.3.2. Unsynchronized Development

5.5.4. Activity Stacks

5.5.5. Moving Views Between Machines

5.5.6. Subsystem Operations

6. Summary of Changes for Delta
Index

Rational Proprietary Document

iii

55
55
59
59

61
62
62
85
73

iv List of Figures

DELTA .MSS.165 ~ April 21, 1986 17:53

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-6:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 5-1:
Figure 5-2:

List of Figures

Access List Tools Package - Types
Access List Tools Package - Subprograms
Access List Package - Types

Access List Package - Subprograms
Access List Utilities Package

Group Package

Group Tools Package

Access Lists

Preliminary Relocation Package - Part 1
Preliminary Relocation Package - Part 2

Rational Proprietary Document

15
16
17
18
19
20
21
22
57
58

vi List of Tables

DELTA.MSS.165 April 21, 1986 17:53

List of Tables

Table 3-1: Nodes Having Diana.Lx Line Count Attribute

Rational Proprietary Document

vii

27

1. Delta Requirements and Goals

The Delta release is a disk-iczompatible revision of the Rational Environment whose user
interface is consistent with the existing Gamma release. Its intent is to provide
significant enhancements in system performance, particularly in the editor and in the
subsystem tools, and to provide access control, configuration management, and version
control facilities for the first time in a Rational product. The release must be ready for
production in late 1986 and must not divert development resources from the design and
implementation of the Epsilon Release.

1.1. Editor

The design goal for the Delta Ada object editor is, as much as possible, to keep the
functionality of the Gamma editor, but with increased performance. In particular the
time needed to open an Ada unit should be bounded by the time it takes to create a new
window and fill it with text. We believe we can meet this performance goal with only
minor reductions in functionality; the only major feature that will be dropped is elision.

In the Delta system, the Rational Editor should perform as efficiently as a traditional
text editor. The goal for Delta is to improve editor performance by at least a factor of
two.

1.2. Access Control

The Delta system will provide rudimentary access control for all directory objects, based -
on user names and access lists. An object editor will be provided for access lists.

1.3. Code Generation

In the Delta system, the R1000 Code Generator will support incremental insertions into
coded specs. This capability will prevent clients from being obsolesced when certain
kinds of upward compatible changes are made.

The code generator will support compatibility between different views with respect to
incremental changes.

The code generator will also have significantly increased loader speed.

1.4. Code Archive

The goal of Code Archive is to support the following operations, without the
performance cost of recompilation from source.

e Copy a subsystem (Spec and Load Views) to another machine. Once the

Rational Proprietary Document

2 Delta Requirements and Goals

subsystem is copied, it is possible to compile and run other programs that
depend on it. The copied subsystem cannot be debugged.

e Copy a Load View of a subsystem to another machine. The copied Load
View can be used with compatible Spec Views on that machine.

¢ Copy a main program (whether it's in a subsystem or not), its load
information (elaboration code segment), and the closure of units it depends
on, to another machine. The copied program can be executed but not
debugged.

1.5. Subsystems Tools

In the Delta system, Rational Subsystems(tm) should be comparable in features and
performance to the Vax(*®) Ada development capabilities. Specifically, the following
operations should be efficient enough for common use in developing software on an
R1000 by teams of developers:

CHANGING BODIES
Spawn a new Load View and make changes that do not affect the
corresponding Spec View. Code the changes and test the full system with
the changes. Release the changes for other developers to use.

CHANGING SPECS
In a Load View, make changes to a spec that has coded dependents. Test
and release the changes to other developers.

EXPORTING COMPATIBLE CHANGES
Propagate compatible spec changes from a Load View to a Spec View that
has coded dependent Views. Build a version of the system that uses the
changed specs. Test and release it.

EXPORTING INCOMPATIBLE CHANGES
Propagate incompatible spec changes from a Load View to a Spec View,
creating a new Spec View if needed. Recompile clients that are affected by
the spec changes, creating new Views as needed. Build a version of the
system with the new modules. Test and release it.

DISTRIBUTING RELEASES
Move a View to another machine with enough information to allow
compilation and debugging of programs that import the View. Debugging
of the moved View is not necessary.

These scenarios reflect those that our existing and potential customers are believed to be
most sensitive to. To quote from [BLB.PDT.ENV]Vax Comparison.txt:

DELTA MSS.165 April 21, 1986 17:53

Subsystems Tools 3

* .. Historically we have done very well in the single developer areas. Thus
the focus is in the large project area. ... Currently there are some situations
where customers may not be able to use Rational subsystems to decompose
their systems. [For example, mutual dependencies across subsystem interfaces.]

*The team development scenarios assume that there is an existing system (a
frozen baseline) that must be modified. Thus, the first activity in all cases is
to spawn a "workspace® where the changes can be made, without impacting
the ability to execute the baseline. The single developer scenarios assume that
the developer is working alone and does not have to worry about impacting
the work of others.

*The scenarios are based on the assumption that the systems that customers
build consist of multiple program libraries. These program libraries are not
necessarily hierarchically decomposed. These libraries do, however, export a
set of abstract interfaces represented as package or subprogram specs. These
abstract interfaces will be referred to as layer interfaces [analogs of our Spec
Views]. The implementations of these libraries will be referred to as layer
implementations [analogs of our Load Views]. Note that most of our early
customers will not be using abstraction or private types to any great extent.®

On the Vax, each ®layer® would be compiled into a program library. Within the
program library, the layer interface units are indistinguishable from the layer
implementation units. Imports from layer to layer are accomplished by entering in a
program library links from the importing library to each of the imported units. The links
are similar to a Rational Link Pack, except that all units of the ezecution closure of the
imported unit must have a link. When the target of a link is recompiled, the referencing
library becomes obsolete; the link must be reentered by the importer and then the
program library must be recompiled.

A *"workspace® is called a sublibrary and is the analog of a View of a Rational
Subsystem. A significant difference is that sublibraries are differentials from the main
program library.

On the Vax, the scenarios are performed as follows:

CHANGING BODIES
Create a (differential) sublibrary; check out the source from CMS (the Vax
configuration management system); edit the source file for the body;
compile into the sublibrary; link the entire system. Test by recompiling
the main program into the sublibrary, or check the body back into CMS,
merge the body changes back into the main library and then test. Merging
changes back to the program library can be done automatically even in the
face of several developers all making concurrent changes in different
sublibraries. Only in the worst cases is any recompilation required.

Rational Proprietary Document ‘

4 Delta Requirements and Goals

CHANGING SPECS
Basically the same as CHANGING BODIES. In this case, the changed spec is
compiled into the sublibrary and the transitive compilation closure of units
that are obsolesced are also compiled into the sublibrary.

EXPORTING COMPATIBLE CHANGES and EXPORTING INCOMPATIBLE CHANGES
Implementation of the changes proceeds basically as in CHANGING SPECS.
When the changes are reintegrated, all links from the client are obsolesced.
They have to be re-established in each client manually (one reenter
operation per client).

For review, in the Gamma System these operations are performed as follows:

CHANGING BODIES
Spawn a new Load View for the subsystem; edit the body; compile all units
in the new Load View; link the entire system. Reintegration is not
required if the new Load View is on a primary development path (unlikely
in most customer situations). Tedious manual reintegration steps are
necessary if several developers are making changes in the subsystem
simultaneously.

CHANGING SPECS

Spawn a new Load View and make the spec change; recompile everything
in the view.

Unlike the Vax, you have to copy all the units in the view and recompile
them, not just those obsolesced. Because the spec is in the implementation
of the subsystem, as in the Vax case with the same design, the spec change
will not obsolesce any unit outside of the library containing the changed
spec. Reintegration problems exist as in CHANGING BODIES.

EXPORTING COMPATIBLE CHANGES and EXPORTING INCOMPATIBLE CHANGES
First a new Load View needs to be spawned as in CHANGING BODIES. The
spec is then changed and then a new Spec View is spawned. Finally, all of
the views that import the Spec View that was changed need to be spawned
now importing the new Spec View with the change in it. All of this stuff
must be recompiled and relinked. The net effect is that a copy and
recompile are performed for all of the units in the subsystem, the Spec
View for the subsystem, and the transitive closure of the views (spec and
load) that import the subsystem changed.

Recoding cannot be done automatically over the *activity®; the developer
must supply the correct wildcards.

In summary, the following problems with the Gamma subsystem tools must be overcome
in the Delta release of the Rational Environment:

DELTA.MSS.165 April 21, 1986 17:53

Subsystems Tools) 5

o Ezcessive space and time are required to copy all units to ¢ new view and
then recompile them.

o Tedious manual reintegration steps are necessary if several developers are
making changes in the subsystem simultaneously.

o Another tedious manual process is necessary to spawn and tmport the
transitive closure of views that import the changed Spec View.

1.5.1. Configuration Management and Version Control

|
Con figuration Management is the process used to construct, release, and maintain
multiple consistent views of a subsystem. Delta provides a mechanism to control the
various transformations that occur with different projects at different stages in the
lifecycle.

Version control is the process of controlling and tracking changes that occur within a
single unit throughout its life. This includes control over which versions can be changed,
who can change them, and the recording of what and why the versions were changed.

Rational Proprietary Document

6 Delta Requirements and Goals

DELTA.MSS.165 April 21, 1986 17:53

2. Access Control

2.1. Access Control

Access control restricts the operations that can be performed on objects. The entities

that are to be restricted are jobs and users directly executing operations.

Delta access control is intended to be a subset of Epsilon access control.

The specification of access control consists of definitions of

1. The subjects users that are to be restricted, and their executing agents (jobs).

2. The objects to which access is to be controlled.

3. The types of access that are allowed and their semantics.

4. The mechanics of access checks, and the implementation details of access

5.

control.

The exceptions to the access rules taken advantage of by Rational tools.

2.1.1. Resolution of Recent Issues

1.

Make consistent with Epsilon revisions. Added Create access and changed
definitions of Write, Owner, and Delete access.

. Eliminate possibility of creation of dependents locking up objects because the

user has access to the original object but can't demote the dependent.
Changed implementation strategy to remove access controls to trees.

. Operator capability for operations in packages Job, Queue, Scheduler.

Added operations to list of controlled operations.

. Restrictions on Ada units independent of compilation closure of unit (and

execution closure of unit). Change for locking solves this.

. Restrictions on link pack changes, switch association changes, and

freeze/Unfreeze changes. Added explicit tests in these cases to implement
restrictions.

. Access control on pipes, terminals, etc. Consider implementing if time

permits. No major issues.

Rational Proprietary Document

8 Access Control

2.1.2. Subjects To Be Restricted

The entity in Delta that executes operations that are subject to control is called a job.
In some cases, users at terminals execute operations that are not thought of as being in a
specific "job®; for purposes of access control, these are considered to be executed by an
implicit job started by the user.

An executing job has associated with it the identity of the user that started it. This user
identity is used in determining the allowed access.

Each user has a user name and is a member of one or more groups (each user is at least
in a singleton group that has the same name as the user). An access list associated with
each object grants specific kinds of access to specific groups. For a job to be granted
access to an object, its user identity must be a member of a group that is listed on the
object’s access list.

There are several distinguished groups that are predefined:

1. Public. All users on a machine are members of the group Public.

2. Network Public. All users on the Rational Internet are members of this
group. This is not really used in Delta.

3.Privileged. Members of this group are not restricted by any access
controls. All operations and objects can be accessed. The users Operator
and Rational are, by default, members of this group.

2.1.3. Access Control Lists

An Access Control List (or ACL for short) is associated with each object. There is an
access control list for each version of each object.

When new versions are created, they inherit the ACL of the previous version. When
new objects are created, their ACL is set to a default ACL associated with the containing
world. The ACL can also be explicitly set.

The ACL lists group names and the classes of access that each listed group is allowed. If
not explicitly listed, a group is granted no access.

A job (based on its user identity) is granted access to an object if there is an entry on the

ACL for the object that lists a group that the user is a member of and access of the type
required by the job.

DELTA.MSS.165 April 9, 1986 23:27

Access Control 9

2.1.4. Objects

Each directory, file, and Ada unit has associated with it an access control list, which
lists group names and the type of access they are allowed. Only these directory objects
can have access controlled. There are a few exceptions to this: certain environment
operations are also controlled via access control lists. These operations are controlled by
the access control list on some defined set of objects stored in the universe. Thus, all
controls are based on access controls to directory objects.

Link packs have their access controlled based on special rules noted below.

Access to the code database object of a world is similarly controlled.! Devices, users,
sessions, groups, pipes, and code segments do not have any access control. Devices and

* pipes will be considered as time permits. Read and Write access would control the read

and write operations for pipes and for terminals. Proabaly, a job must have read or
write access to a terminal in order to open it.

An access control list entry with the special group name Public describes the access
allowed to all users (all users are members of this group).

Each world has a special kind of access called *Owner® access. A user who has Owner
access to a world is allowed to change the ACLs of objects within the world. When a
world is created, the creating user is given Owner access to the world.

When an Ada or file object is created, it is assigned an access list based on a default
ACL associated with the containing world. Note that this applies to new objects that
are created; new versions of objects inherit the ACL from the previous version.

When a world is created, the creating user is given Owner access and the access control
list is set to be the same as the access list of the containing world (not the default ACL
for new objects used in the non-world cases).

2.1.5. Access Types

There are 5 different types of access in Delta:

2.1.5.1. Read Access

Intuitively, Read access is required when a user (or program) is to inspect the current
state of an object. This includes things like executing Definition, opening for mode In,
and executing Display or Definition in the debugger.

1Tlxe exact details here are pending.

Rational Proprietary Document

10 Access Control

2.1.5.2. Write Access

Write access covers operations that change the value of an object. This includes things
like Edit and Promote/Demote.?

Write access to an object also controls the ability to delete it. This is done in operations
such as Object-D and Compilation.Destroy.

2.1.5.3. Create Access

For worlds, Create access controls the ability to create new objects in the world. A job
must have Create access to a world to create objects anywhere in it.

Create access applies only to worlds and is represented by the Write access type for the
world.

2.1.5.4. Delete Access

Delete access is required to delete a world. It applies only to worlds.

2.1.5.5. Owner Access

Owner access is used only for Worlds and does not apply to other objects.

Owner access to a world is required to change the access list of an object in that world.
Owner access also controls the ability to change the links in a world, the compiler switch
file associations in a world, and the ability to freeze and unfreeze objects in the world.

Informally, we say a user has Owner access to an object if the user is an owner of the
~ object’s containing world.

Owner access is represented by the Read access type for a world.

2.1.5.6. Cross Reference of Access Types

Non-library objects (other than devices, pipes, and code segments) have access types
Read and Write.

Worlds have access types Create (represented by Write), Delete, and Owner (represented
by Read).

Directories have no access restrictions of their own. All of their restrictions are based on
restrictions indicated by the containing world.

%It is unclear whether Write implies Read.

DELTA MSS.165 April 9, 1986 23:27

Access Control 11

2.1.5.7. Access That Isn't Controlled

*Execute® access is not controlled in Delta. Any user that can access a coded Ada unit
for Read can execute the unit.

In Delta, the diana tree of an object is not access protected. This means that a user with
knowledge of and access to Diana tools would be able to read almost any Ada unit in the
systems. This is a characteristic of Delta only and does not carryover into Epsilon.

Part of the reason for the non-protection of trees is to allow Environment tools the
ability to access and modify trees in the course of operations that are otherwise valid for
a user from an access control point of view. Such operations include demoting
dependents of a unit that the job executing the demote may not have access to, and
executing a program whose closure is not accessible to the job that initiates the
execution.

The compiler and other parts of the environment must be modified to explicitly check
access in order to prevent promotion or demotion of units that a user could not
otherwise access. This approach will tend to reduce the security and reliability of the
access control system.3

The effect of this is that jobs cannot wontonly demote or promote units to which they do
not have Write access, however, a side effect of promoting or demoting a unit to which a
job does have access is the change in the state of a unit to which it does not have access.

2.1.6. Operations and the Access They Require

When an operation is attempted by a job that does not have sufficient access to the
object, the operation fails. The failure may be indicated by a status parameter or by the
raising of the exception System.Access Error is raised if there is no status parameter.
System.Access Error is a flavor of I0 Exceptions.Use Error. This means that a
handler clause listing System.Access Error or IO_ Exceptions.Use_Error will be
executed for this exception. The image value for the exception is
*JO_ Exceptions.Use _Error (Access error)®.

Generally speaking, Read access is required for any operation that examines or displays a
object; Write access is required for an operation the modifies a object; Delete access is
required for any operation that will destroy an object; Owner access (to the containing
world) is required for operations that change access lists associated with an object. For
access control purposes, a world is said to contain itself, so owner access to the world is
sufficient to change its ACL and default ACL for containing objects.

3Thi8 is done to solve problems such as an inaccessible dependent making it impossible to demote or
delete a given unit.

Rational Proprietary Document

12 Access Control

Write (create) access to the containing world is required to create a new object or a new
version of an existing object.*

2.1.6.1. I/0 Operations

I/O Operations make access control tests as follows. In File opens require only Read
access. Inout File and Out File opens require Write access.

10 Exceptions.Use Error is raised for access failures from Text Io and related I/O
packages.

2.1.6.2. Special Access Controls

There is a special file in {machine whose ACLs control availability of certain operations.
The file is:

!Machine.Operator Capability

Successful execution of some of the operator and system maintenance commands requires
Write access to Operator Capability. The following tables summarize these
requirements.

!Commands . Daemon .
- Schedule
- Quiesce
- Cancel
= Run
- Set Log Threshold
- Set Disk Threshold
- Collect
- Set Priority
- Snapshot Warning Message
- Spapshot Start Message
- Snapshot Finish Message

!Commands . Operator

- Create User
Delete User
Enable Terminal
Disable Terminal
Force Logoff
Shutdown
Set System Time

4This means that you can’t expect to use environment editing features with Write access to the object
but not to the containing world.

DELTA MSS.165 April 9, 1986 23:27

Access Control

Internal System Diagnosis
Shutdown Warning
Archive on Shutdown
Cancel Shutdown

Limit Login

Limit Background

!Commands . System Backup
- all operations need Write access

{Commands . Terminal
- all operations need Write access

!Commands . Group
- Creating and changing groups

{Commands . Job
- Kill (on session for a different user)
- Disable (on session for a different user)
- Enable (on session for a different user)

!Commands . Queue
- Create
- Destroy
- Default
- Enable
- Disable
- Register
- Unregister
- Remove
- Kill Print Spooler
- Restart Print Spooler

!Commands . Scheduler

- Disable
Enable
Set Cpu Priority
Enable Scheduling
Disable Scheduling
Set
Set Parameter
Set Job Class

Rational Proprietary Document

13

14 Access Control

2.1.6.3. Subsystem Tools

Subsystem tools are governed by the same access control rules applying to other jobs.
This means that if an object is accessed by a job running the subsystem tools, that access
is governed by the normal access control rules for that job.

Setting access lists on objects in a subsystem and then executing subsystem tool
operations may cause those operations to fail in strange ways. This statement is true of
any operation, of course, but customers may think of the subsystem tools as part of the
system rather than as some random program.

Subsystem tools will probably have to modified to recover from access control errors
gracefully.
2.1.6.4. Other Special Case Access Checks

Adding or deleting links in a world requires Owner access to the world. This is checked
by an explicit check in the Links commands.

Switch file associations also require Owner access to the world in which the associations
are being made. This is implemented by an explicitly coded check in the switch
commands.

The Freeze and Unfreeze operations are also specially controlled. Owner access to the
world containing the objects to be frozen or unfrozen is required to successfully execute
the operation. The check is explicitly implemented in the freeze and unfreeze
commands.

2.1.7. Editing Access Lists
The Library Object Editor provides interactive display and editing of access lists.®
When a particular explanation level is specified, access lists are displayed. To edit an

access list, the display of the access list is selected and the edit key is pressed. This
creates a command window of the form:

Set Acl (ACL => ®<current access list>", Object => ®<selection>");
The user can then edit the string parameter and commit the command.

Alternatively, an in-place editing operation could be provided. Other issues include the
ability to display the access list of a single object versus all in the directory.

5This feature is expendable.

DELTA .MSS.165 April 9, 1986 23:27

Access Control 15

package Access_List Tools is
-- This package provides program level access control operations.

subtype Access Class is string; -- of only the following characters:
Read : constant character := 'R’; --'objects only

Write : constant character 'W’; -- objects only

Delete : constant character 'D*; -- worlds only

Create : constant character 'C'; -- worlds only

Owner : comstant character '0’; -- worlds only

e es e an
nou owon

subtype User_ Name is string;
subtype Group Name is string;
-- A user names is the simple string name of the user.

subtype Object Directory Name is string;
-- An object string name is as defined by the directory
-- package

subtype Access List Rep is string;
-- A string representation an access list has the following syntax:

== Acl = Acl_Entry [’,* Acl Entry]s
-- Acl_Entry ::= Group ’=>" Access

-= Group = Identifier

-~ Access := Acc_Type+

-- Acc Type ::= 'R’ | 'W | 'D* | ’C" | 0" |
— |r» ' "i I sdo l oc! ' :ov

-- Examples: °®Phil => R, TRW:RW®, °“Public=>COD"

Access_Tools Error : exception; =-- Raised by functions

Figure 2-1: Access List Tools Package - Types

2.1.8. Archive and Reloading of Access Control Information

The string form or each object’s ACL is saved with the object. The Restore operation
has an option of trying to restore the object’s original ACL or substituting a new ACL
specified as a parameter to the restore operation.

If the original ACL is to be restored, any entries that reference nonexistent groups are
removed. The restoring user is always given owner access to a restored world (the right-
most ACL entry is deleted if the ACL would be too long after adding Owner access for
the restoring user).

If the restore tape is from gamma and contains no ACLs, then the ACL

Rational Proprietary Document

16) Access Control

function Get (For Object : Object Directory Name)
return Access List Rep;
procedure Get (For Object : Object Directory Name;

List : out Bounded.Variable String;

Status : in out Simple Status.Condition);
procedure Set (For Object : Object Directory Name;

To_List : Access_List Rep;

Status : in out Simple_Status.Condition);
procedure Set (For Object : Object Id;

Act : Action.Id;

To_List : Access_List Rep;

Status : in out Simple_Status.Condition);

-- Get or set the access list for the specified object.

-~ Setting the access list requires ®"Owner® access.

-- function Get raises Access Tools Error if an error occurs.

-- The procedure version should be called in that case to get the
-- actual error information.

== ACL for world must be contain only C, 0, or D access. Others
-- must be only R or W access.

function Check (Ident : User Name := utilities.Current User;
Object : Object Id;
Desired : Access_Class) return boolean;
function Check (Ident : User Name := utilities.Current User;
Object : Object Id;
Act ¢ Action.Id;
Desired : Access Class) return boolean;
function Check (Ident : User_ Name := utilities.Current User;
Object : Object Directory Name;
Desired : Access Class) return boolean;
-- Check of the specified user has the indicated access to the
-- specified object. Only meaningful for Ada objects, files,
-- and Directories.

function Get Default ACL
(For_World : Object Directory Name) return Access List Rep;
procedure Get Default ACL
(For_World : Object Directory Name;
List : out Bounded.Variable String;
Status : in out Simple Status.Condition);
procedure Set Default ACL
(For_World : Object Directory Name;
To List : Access List Rep;
Status : in out Simple Status.Condition);
-- Get or set the default ACL for new objects created in the specified
-- world. Function raises exception if error occurs.
end Access List_Tools;

Figure 2-2: Access List Tools Package - Subprograms

*Public=>RW" is used as the value to be restored with a non-world object, and

Public => COD is used d worlds.
DELTAMSS. 165 = used for restored worlds April 9, 1986 23:27

Access Control 17

package Access List is
-- Commands package
subtype Access Class is string;
Read : constant character := 'R’; -- objects only
¥rite : constant character := 'W’; -- objects only
Delete : constant character := 'D'; -- worlds only
Create : constant character 'C'; -- worlds only
Owner : constant character := '0°’; -- worlds only

e o
o owon

subtype User Name is string;

subtype Group Name is string;

subtype Object Directory Name is string;
subtype Access_List Rep is string;

Figure 2-3: Access List Package - Types

2.1.9. Network Remote Accessors

FTP requires the user to provide a remote login and password. This user identity is used
for access control purposes on remote machines.

If an RPC server is established on a machine, its identity is used for access control
purposes.6 RPC servers are started by users and run with the user’s identity for access
control purposes.

Applications that require general access to objects on a machine must run as Privileged
(unless there is a system-wide convention to set ACLs appropriately). This means that
using systems the way they are typically used at Rational will require all users to be
members of Privileged, or all ACLs to allow all access to all users, as we do now on the
2060 and MVs.

2.1.10. Machine.Initializse

Machine.Initialize runs as user Operator, which should be a member of the Privileged
group. Jobs started form it also run with Operator identity.

Probably should be a Program.Run Job (prog, user) to solve this problem. This
operation would only be executable from a job with identity of a user that is a member
of the Privileged group.7

6This raises interesting questions about Source_Archive.Transfer.

7This feature is probably expendable.

Rational Proprietary Document

18 Access Control

procedure Display (For Object : Object Directory Name
1= ¥<cursor>®);
-- Display the access list of the specified object on
-~ Current_Output. Error message to Current Error if the
-- operation fails.

procedure Set (For Object : Object Directory Name
1= "<selection>®;
To List : Access List_Rep);

-- Get or set the access list for the specified object.
-- Setting the access list requires "Owner® access.
-~ Any error message is sent to Current Error.

procedure Display Default ACL

(For_World : Object Directory Name := ®<cursor>");
-- Display the list of owners of the specified world in an output
-- windowv. Error message to Current Error if the operation fails.

procedure Set Default ACL
(To_List : Access List Rep;
For_World : Object Directory Name := ®<gelection>');

-- Set the default ACL for the specified world. OCOwner access
-- to the world is required. The default ACL is given to newly
-- created objects.

-- A message is displayed to Current Error indicating any errors.

end Access List;

Figure 2-4: Access List Package - Subprograms

2.1.11. Implementation
2.1.11.1. Representation and Storage of Access Lists
*** This section not updated consistent with the last pass.

The access list will be stored in the object header.®

The segmented heap object manager generic probably needs to include space for the
access list. The structure of the list is shown in Figure 2-8. Note that these
representations limit an R1000 Delta system to 1024 groups and 7 entries per access list.

8Thirs section to be expanded.

DELTA.MSS.165 April 9, 1986 23:27

Access Control 19

with Access List Tools;
package ACL Utilities is

subtype Access List Rep is Access List _Tools.Access List Rep;
subtype Group Name is string;

function Remove Access (From Acl : Access List Rep;
By_Group : Group Name)
return Access List Rep;
function Add_Access (To_Acl : Access_List Rep;
For_Group : Group Name;
Access_Type : Access_List.Access_Class)
return Access List Rep;
-- These operations manipulate the string representation of
-- access lists. Remove Access modifies the ACL to eliminate
-- any access the By Group may have. Add Access adds Access Type
-- for For Group (unless it’s already there).

-- Examples: Remove Access ("Phil=>RW, Jim=>RW®, °Phil®)

-- returns *Jim=>RW"

-- Add_Access ("Public=>R, TRW=>D", °®phil®, *RW®)
-- returns "Public=>R, TRW=>D, Phil=>RW"

-- Other such ACL utilities may be added. These are just
-- string manipulation routines and could easily be shipped native
-- (and source).

end ACL Utilities;
Figure 2-6: Access List Utilities Package

2.1.11.2. Checking of Access Restrictions

The access restrictions are tested when the object to be accessed is opened (or
equivalently resolved to a Diana pointer at the directory level). This is done at the
object management level in the system.

In addition, a number of additional restrictions must be tested in various places in the
system. The tests are explicit for the specific operations and not part of an overall

mechanism.

The specific places include:

e Link pac operations

e Switch association operations

Rational Proprietary Document

20 Access Control

package Group is
subtype Name is string;
subtype User Name is string;

procedure Add_To Group (User : User Name;
Group : Name);
-- Add the specified user to the specified group. Operator
-- privilege is required to execute this operation.
-~ Errors are written to Current_Error.

procedure Remove From Group (User : User Name;
Group : Name);
-~ Remove the specified user to the specified group. Operator
-- privilege is required to execute this operation.
-- Errors are written to Current_Error.

procedure Display (Group : Name);
-- Display the names of users in the specified group on
-- Current_Output.

end Group;

Figure 2-8: Group Package

¢ Freeze/Unfreeze operations

e Compilation promote and demote operations (check for explicit access to
units that are explicitly referenced; no check for implicitly referenced objects)

2.1.12. Restrictions, Limitations, and Risks

There are a number of restrictions and limitations with the Delta implementation of
access control.

L. If editing operations create new versions, Write(Owner) access to the
containing world may be required to successfully edit something, not just
write access to the object. A related implementation problem may require
Write access to the containing library.

2. Since following diana pointers involves opening no objects, once read access is
granted to a unit, it is possible to read all units in it closure, independent of

their ACLs, using Diana operations.

3. Body to Visible part transitions may also skip ACLs, but visible part to body
transitions probably won't.

DELTA.MSS.165 April 9, 1986 23:27

Access Control

package Group_Tools is
-- Tool interface to group operations.

function Is Member (User : User_Name;

Group : Name) return boolean;
function Is Member (User : Object.Id;

Group : Short_Id) return boolean;

procedure Add To Group (User : User_ Name;

Group : Name;

Status : out Simple Status.Condition);
-- Add the specified user to the specified group. Operator
-- privilege is required to execute this operation.

procedure Remove From Group (User : User_Kame;

Group : Name;

Status : out Simple Status.Condition);
-- Remove the specified user to the specified group. Operator
-- privilege is required to execute this operation.

function Contents (Group : Name) return string;

-- return the names of users in the specified group.

-- The list consists of names separated by a single blank.
-- The null string is returned if the group is empty or
-- nonexistent or its name is malformed.

end Group_Tools;

Figure 2-7: Group Tools Package

4. Because of the low level on the access check, the user level behavior is not
very predictable. This can be fixed given enough resources but may require
pervasive changes in the system. For example, Write access to directories
may be necessary to create and delete objects.

5. Do directories remain Ada units in Delta? If not, ACL for directory needs to
be stored somewhere. Answer: yes. so what?

6. Not very secure against penetration efforts.
7. There are several features whose implementation depends on assumptions
about how things in the current system work. If these assumptions prove

false, then implementation of these features would likely have to be
abandoned. :

Rational Proprietary Document

22 Access Control

subtype Access Classes is Access Class range 0..15
-~ 3 bits. A bit vector for RWD access.

Read . constant := 1;
Write : constant := 2;
Delete : constant := 4;

subtype Short Group Id is long integer range 0..1023;
-- 10 bits. Limits machine to 1024 controllable groups.
-- These short ids must be managed and collected.

type ACL Entry is record -- 13 bits total
Group : Short_Group Id;
Allowed : Access Classes;

end record;

type ACL is array (0..6) of ACL Entry; -- 91 bits.
-- Total of 7 ACL entries allows.

Figure 2-8: Access Lists

DELTA .MSS.165 April 21, 1986 17:53

23

3. Front End Changes

3.1. Editing
The reasons it takes so long for the Gamma editor to open a unit is that it must

1. pretty-print the Diana tree to get the image the user sees, and

2. build a data structure (the notorious ®object tree®) that lets it quickly map
points on the image to corresponding points on the Diana tree.

We do not see any way to make pretty-printing and tree-building fast enough to be
acceptable. Our approach, then, is to fix the editor so that the computation is
unnecessary. In Delta, what the user thinks of as an "Ada object* will, in fact, be
maintained by the Ada object manager as a pair of objects: a Diana tree and a pretty-
printed image. The Diana tree will be augmented with enough information so that the
editor can quickly find the point in the Diana tree that corresponds to any given point in
the image. The principal challenge in getting all of this to work is that the Gamma
image and object tree data structures are too large to make permanent with a clear
conscience. Most of the work involves changing the editor to do without most of the
information in the object tree.

3.1.1. Line Count Attribute

The Ada grammar is factored into two parts that we call the "outer® grammar and the
*inner® grammar. The terminals of the outer grammar are start symbols of the inner
grammar. Every construct generated by the inner grammar is pretty-printed using an
integral number of lines. We call the constructs of the inner grammar "statements®
even though they don’t correspond exactly to the Ada LRM's notion of statements. By
this definition, in the following example:

if A > 0 then

B :=1,;

C :=2;
else

D :=6;
end if;

every line is a statement, but the conditional construct taken as a whole is not a
statement.

Delta Diana has a new attribute, Diana.Lx Line Count. Every node in the tree that
corresponds to a construct of the outer grammar has an Diana.Lx Line Count
attribute. The value of the attribute is the number of lines in the pretty-printed image
of the construct. Based on HJL'’s statistics on the distribution of Diana Node _Kinds,
roughly 10% of the nodes in a Diana tree will have an Diana.Lx Line Count attribute.
If we assume that the Diana.Lx Line Count attribute increases the size of a node by
about 1093, the total increase in the size of the tree is about 1%.

Rational Proprietary Document

24 Front End Changes

Suppose the cursor is sitting on an id in a program. Let’s see how the editor will locate
the corresponding Diana node from the line and column of the cursor. We initialize a
variable N to the line number. We then start at the root and work our way down into
the tree. As we encounter each subtree, if its Diana.Lx Line Count is smaller than N,
we subtract the attribute from N and skip over the subtree. Otherwise we enter the
subtree. We continue this process until we reach a terminal of the outer grammar. At
this point, N and the column number will tell us the coordinates of the cursor relative
the pretty-printed image of the statement it is in.

3.1.2. Pseudo-Pretty-Printing

Once it has located the statement that contains the cursor, the editor will locate the
proper node within the statement using a process we call pseudo-pretty-printing. Most
of the complexity of the pretty-printer involves deciding where to put the line breaks.
The pseudo-pretty-printer is a much simpler program, which, given a Diana tree, figures
out the series of tokens in the corresponding Ada text. For each token in the Ada
program, the pseudo-pretty-printer outputs the number of characters in the token.

To find the Diana tree corresponding to a cursor position within a statement, the editor
starts a pointer at the beginning of the image of the statement and pseudo-pretty-prints
the Diana tree for the statement. Each time the pseudo-pretty-printer outputs a token,
the editor moves its image pointer ahead by the width of the token, and then it moves it
ahead past any white space in the image. When the pointer reaches the cursor, the
pseudo-pretty-printer will be at the proper Diana node.

Pseudo-pretty-printing also works in the other direction. Given a Diana node within a
statement, we can find the corresponding image on the screen by pseudo-pretty-printing
the statement as above, and remembering where the image pointer was just before and
after the Diana node was pseudo-pretty-printed. The *grow selection® operation will be
implemented with this technique.

3.1.3. Underlining

There are tools (such as Semantics and Show Usage) that hand the object editor a node
in a Diana tree, and expect the object editor to underline the corresponding place in the
image of the tree. This is easy to do with the pseudo-pretty-printer as long as we know
what statement the node is in and on what line of the image that statement begins. We
can find both of these as long as we know the path from the root of the tree to the node
we are supposed to be underlining.

There are two ways of obtaining this path. The first is to start at the node and do
Diana.As Parent until we reach the root. We know this can take time proportional to
the size of the entire tree. In the case of Semantics and Show Usage, the editor is given
a list of nodes to underline. Because the list is sorted in traversal order, we can make a

DELTA MSS.165 March 14, 1986 16:12

Editing 25

single pass through the tree and find all the nodes not be underlined, and know the path
to the root as we encounter each one. This entire list can be processed in a time
proportional to the size of the tree. Since the program that produced the list also grinds
through the entire tree, maybe nobody will notice how slow the editor is.

3.1.4. Image Objects

The pretty-printed image will be stored in an image object, separate from the Ada object
that it renders. The data structure is similar to the one used by the Gamma editor to
represent editor buffers; a binary tree data structure that implements a “string®
abstraction in which *find the N’th element®, *insert N items in the middle®, and
*delete N items from the middle® can all be done in logarithmic time.

The image is stored as a string of lines. Each line has two parts: the text information,
and the font information. The text information is stored as count of leading blanks and
a bounded string. The bounded strings are obtained from a storage allocator. When a
character insertion would exceed the bounds of the string, the old one is given back and
a new one with a larger bound is obtained from the manager. The font information is
stored as a linked list of places on the line where the font changes, sorted by column
number. Since the font implicitly begins in the plain font, the vast majority of the font
lists will be empty.

The Image subsystem will be modified so that it uses this data structure directly. Thus,
the only work required to open an Ada unit for editing, is to open the Diana tree, open
the image object, and pass a pointer to the image object to the core editor.

3.1.5. Issues

There are some issues associated with keeping the image as a part of the Ada object.
The notion of "your view of an Ada object is a function of what your pretty-printer
options are® goes out the window. All users see the same image of the Ada object.9
That image cannot be changed unless the object is opened for writing. This also means
that our current implementation of elision will not work. The Delta editor will not
support elision.

There is one form of "different users have different images® that cannot be casually
brushed aside: the Show Usage command. We cannot require that a user get write
access in order to invoke Show Usage on a unit. Moreover, the underlining done by
Show Usage should not be left around as part of the permanent state. The solution to
this problem is that the core editor will have two places where it keeps font information:
temporary and permanent, and will display the union of these fonts. The permanent

9Where the pretty-printer gets its options and what it means to change the options for a given Ada unit
are still unresolved.

- Rational Proprietary Document

26 Front End Changes

font information is part of the permanent data structure, and can only be changed if the
object is open for update. However, when an editor opens an object (for read or update)
it also allocates an (initially empty) object in which temporary font information is stored.
The Show Usage command will update this temporary structure.

3.2. Diana Changes

A number of changes to the Diana implementation are planned for Delta. The goal of
these changes is to improve performance of the system by reducing the size of Diana
trees and to correct the minor errors in the Diana implementation before making the
massive revisions planned for Epsilon. The changes will also allow a more complete
implementation of change analysis. The limited scope of these changes should not
destabilize the Diana implementation.

3.2.1. Predefined Operators

In Delta, skeletal operator definitions will not be built for the predefined operators of a
type, except for the predefined types in Standard. The Gamma implementation, which
builds these skeletal declarations, is not compatible with the formal definition of Diana.
Removing these skeletal declarations will make Diana trees smaller and will also reduce
the size of the dependency database because no entries will be made for them anymore.
To eliminate these skeletal subprogram declarations, the semantic attribute
Diana.Sm Operator must be defined for each target, and the semanticist must set it on
each reference to a predefined operator.

The proposed set of enumeration identifiers for the values of the Diana.Sm Operator
attribute is defined in Appendix I. When a target must use an Other ... value, its code
generator will have to look at the operands of the operator to determine the correct
operator to use.

Each operator in the Standard tree for a target will have an attribute that provides, for
that specific target, the Diana.Sm Operator value that the semanticist is to use when
setting the Diana.Sm Operator attribute for references to that predefined operator.

3.2.2. Derived Subprograms

The skeletal declarations generated by Gamma for derived subprograms will not be
generated in Delta, in accordance with the Diana specification. All references to derived
subprograms will designate the subprogram from which the referenced subprogram was
ultimately derived. Tools can detect that a derived subprogram is involved by
comparing parameter and/or result types of the declaration and reference; they will be
different only when an derived subprogram is involved.

DELTA .MSS.165 March 14, 1986 16:12

Diana Changes 27

3.2.3. Line Count

Table 3-1 lists the kinds of Diana nodes that need a new integer attribute called
Diana.Lx Line Count, which is how many lines are taken up by the pretty-printed
image of the subtree rooted at the node. For efficiency, this attribute will be part of the

variant record that defines Diana.Node. See also Section 3.1.1.

DN_ABORT DN_EXIT DN_RETURN
DN_ACCEPT DN_GENERIC DN_SELECT
DN_ADDRESS DN_GOTO DN_SELECT CLAUSE
DN_ALTERNATIVE DN_IF DN_SELECT CLAUSE §
DN_ALTERNATIVE § DN_ITEM § DN_SIMPLE REP

' DN_ASSIGN DN_LABELED DN STM §

DN_BLOCK DN_LOOP DN_SUBPROGRAM_BODY
DN_CASE DN_NAMED STM DN_SUBPROGRAM DECL
DN CODE DN_NONTERMINAL DN_SUBTYPE
DN_COMPILATION DN_NULL STM DN_SUBUNIT
DN_COMP UNIT DN_NUMBER DN_TASK BODY
DN_COND ENTRY DN_PACKAGE BODY DN_TASK DECL
DN_CONSTANT DN_PACKAGE DECL DN_TASK SPEC
DN_CONTEXT DN_PACKAGE SPEC DN_TERMINATE
DN_DECL § DN_PRAGMA DN_TIMED ENTRY

DN _DEFERRED CONSTANT DN PRAGMA § DN_TYPE

DN_DELAY DN_PROCEDURE CALL DN_USE

DN_ENTRY CALL DN_RAISE DN_VAR
DN_EXCEPTION DN_RECORD REP DN _WITH

Table 3-1: Nodes Having Diana.Lx Line Count Attribute

3.2.4. Image Object

To save pretty-printing time, the pretty-printed image of an Ada object will be kept as a
permanent object in the system. The image object contains no Diana pointers and is an
attribute space of the associated Ada object. It will be destroyed by the Ada manager
when the Ada unit is destroyed. The image object must be opened and closed separately
from the associated Ada object. Neither Diana nor the Ada Manager will do this
automatically. See also Section 3.1.4.

3.2.5. Quick List Membership Test

Diana.Is In List is a new predicate that given a Diana.Tree value quickly determines
whether or not the designated node is in a structural list.

Rational Proprietary Document

28 Front End Changes

3.2.6. Attribute Spaces

Ada attribute spaces will be changed to make them smaller and more efficiently
relocated by using only the offset portion of the Diana.Tree values for the domain of the
maps. Iterators over the attribute maps will also be added.

3.2.7. Etceteras

A number of errors and omissions in the Rational Diana implementation will be
corrected for Delta:

e Diana.Sm Value shall return Diana.No Value when applied to
Dn_Allocator and Dn Null Access nodes.

e Dn Used Name Id nodes shall be used to represent all references to record
component names and to parameter names appearing to the left in a named
association.

e References to the functional attributes ’Suce, ’Pred, ’Val, ’Value, ’Pos,
and ’Image shall be represented by a Dn Function Call node whose
Diana.As Name is a Dn Attribute node. Dn_Attribute Call nodes shall be
used exclusively for *First(n), *Last(n), ’Length(n), and ’Range(n).

e The compilation unit id node for the body of a generic package or
subprogram shall be a Dn_Generic Id as required by the DIANA Reference
Manual.

¢ A Dn Used Bltn Op node shall be used for the reference to a predefined
operator in a subprogram rename and in the declaration of a generic formal
subprogram.

e Within the body of a task or task type, a reference to the task shall be
denoted by a Dn Used Object Id since such references are references to the
task object.

e The Diana.Sm 1 Base_Type for a range in a choice of an array aggregate shall
denote the base type of the index type of the array when such a base type
node normally exists; otherwise the base type will be represented by the
subtype indication in the declaration of the applicable index type.

e The Diana.Sm Constraint on a slice shall denote either the range of the
slice itself or, if only a type mark is given, it shall denote the range of the

corresponding subtype if it exists.

A number of other attribute values were questioned by Systeam, but will not be changed

DELTA .MSS.165 April 21, 1986 17:53

Diana Changes 29

because they all require construction of unrooted Diana trees to represent various base
types and constraints. The Rational Diana will continue to designate nodes in the
structural tree that will ®*do® for capturing the correct semantic interpretation.

Time permitting, a number of space and time optimizations will also be implemented:

o The size of structural pointers will be reduced to a size more appropriate for
the average-sized Diana tree. An escape mechanism will be provided for
extraordinarily long references.

o The Dn Used Name Id and Dn Used Object Id nodes will be made the same
size so that the transformation between them can be done in place.
Diana.Sm Original Node will be eliminated as well and will be replaced by
a Boolean that will indicate if the node has been transformed or not.

e To improve the performance of Diana.As Parent, the structural link of
every node will point to it's parent. In the case of a node on a list, the parent
is the list cell. Each list cell, in turn, will have a structural link to the list
header node. To reduce the space impact of this change, the list cells for
longer lists (Dn_Decl §, Dn_Item § and Dn Stm §) will be allocated in short
blocks of 4-8 cells per r block. Each block will have a parent pointer, not each
cell.

3.3. Distributed Dependency Database

To reduce the working set for most compilations, the Delta dependency database will be
distributed throughout the worlds of the universe. A central dependency database is
retained, but it records only unit-to-unit dependencies. The detailed, declaration-level
dependencies are stored in the referencing units themselves. In addition, a top
declaration database is created for each library unit specification. The top declaration
database is an attribute space associated with the library unit. It records certain
dependencies that relate declarations within the library unit and its secondary units.

The central dependency database has the same structure and synchronization
characteristics as the Gamma dependency database. It contains entries for unit ids only.

Within each unit, a map is maintained from the Diana.Tree value for a referenced
symbol to a short Boolean array. Each array index corresponds to one of the
dependency database relations. The value at a given index is true if the corresponding
relation holds between the referenced id and the referencing unit.

The top declaration database is a map from the Diana.Tree value for a top declaration
(possibly a placeholder) to a pair of sets of object ids. One set contains the units that
have the Subordinate To relation to the top declaration, and the other set contains the
units that have Sees | Used Namesake Via Use Clause relation to the top declaration.

Rational Proprietary Document

30 Front End Changes

The top declaration database will be open for update while any secondary unit of the
library unit is being compiled. Thus semanticization and coding will be serialized a bit
more in Delta than in Gamma because of contention for this database. There should be
no user-noticeable impact, unless hoades of programmers regularly work in one unit with
many subprograms.

The top declaration database also becomes the site for defining placeholders. With

placeholders in the top declaration database, we will be able to recover space when they
are no longer needed. Placeholders are not garbage-collected in the Gamma system.

DELTA MSS.165 April 21, 1986 17:53

31

4. Code Generation and Archive
4.1. Code Generation

4.1.1. Incremental Operations on Coded Units

A goal of Delta is to allow incremental insertions and deletions in coded units without
causing obsolesence of dependent units. This means that, unlike Gamma, offsets for
declarations are allocated independent of the textual position of the declaration.

Every program unit is composed of a set of declarative regions. A package may have
three such regions, namely, the visible part, the private part, and the body. A
subprogram has one region.

Offsets for declarations are assigned relative to some runtime frame. A runtime frame is
either a module (package or task) or a subprogram frame. Each runtime frame contains
declarations from some set of declarative regions. Normally, a frame contains the
declarations in the declarative regions of a single program unit. Optimizations, such as
package integration, may cause additional declarative regions to be mapped into the
same runtime frame.

In order to perform an incremental insertion into a declarative region it is necessary to
know how offsets are allocated in the runtime frame that contains that declarative
region. This can be done by associating with every declarative region an o ffeet usage
vector that records which offsets of the enclosing runtime frame are used by that
particular declarative region. Then the overall runtime frame can be characterized by
the union of the usage vectors for all the declarative regions in the frame. When a new
offset needs to be allocated it can be an offset that is not currently used in the frame,
and the usage vector for the containing declarative region is updated.

Incremental assignment of offsets has the following obsolesence characteristics:

o The code segment associated with the declarative region is obsolesced.

o The permanent cg attributes of the declarative region are NOT obsolete.
For example, if an incremental insertion is made into a package visible part, the code
segment associated with package is made obsolete but clients of the visible part are not

affected. Main programs, however, are affected because they have a direct dependency
on the code segments.

Rational Proprietary Document

32 Code Generation and Archive

4.1.2. Maintaining Compatibility Among Views

In order to maintain compatibility between different views of the same subsystem,
consistency must be maintained in the assignment of offsets to equivalent declarations in
different views. This requires a mechanism to identify equivalent declarations, assign
them offsets, and to maintain these offsets independent of any of the individual units in
the subsystem.

4.1.2.1. Compatibility Database

In order to identify declarations as equivalent a Compatibility Database is created for
each library unit visible part in a subsystem. The data base contains a declaration map,
a child map, and a set of target maps. The declaration map is a map from a declaration
signature to a unique declaration number. The declaration signature is composed of the
fully qualified image of the declaration!® and the declaration number of the parent
package. This signature uniquely identifies the declaration across all views containing
the library unit.

The declaration number for each declaration is stored on the Diana.tree of the
declaration as a permanent attribute. Declaration numbers are computed immediately
after the declaration has been installed.

The data base also contains a child map that maps each declaration to declarations
nested within it. For example, the child map is used to get from each nested package to
declarations that are within that package in any view of the subsystem.

Target dependent information in the data base is represented by a set of target maps.
Each target map is a map from declaration number to target specific information about
the declaration.

Because the compatibility database is necessary to maintain runtime compatibility with
archived code, the database must be archivable by source archive.

The compatibility database is also required in order to support other targets. For other
targets the database will typically maintain the compatibility of assembler labels between
spec views and load views.

4.1.2.2. Offset Allocation

When a new declaration is inserted into a visible part the compilation coupler is called to
assign the target dependent information that goes into the target map. For the R1000
this target information is the runtime offset of declaration. The coupler call invokes the

10The declaration image is fully qualified in the sense that all used names in the declaration are fully
qualifed Ada names.

DELTA.MSS.165 April 21, 1986 17:09

Code Generation 33

R1000 Code Generator. The code generator is passed the Diana.tree for the
declaration that was inserted. The code generator is able to determine the declarative
region that this declaration is part of and which runtime frame that region will be in.
The target map is then queried to build up a composite usage vector that is essentially
the union of the usage vectors for all the units in different views of the subsystem. A
free offset can then be assigned to the new declaration.

For some views the offset that was assigned may conflict with offsets used by the private
part or the body. This conflict would be determined by looking at the usage vectors of
those regions. If an offset conflict occurs then the declarations for the private part and
the body must be allocated new offsets. This new offset allocation causes the demotion
of the body to the installed state. In order to make offset conflicts infrequent a buffer
zone can be created between the offsets in the visible part and those in the private part
" or body.

4.1.3. Checking Compatibility of Spec and Load Views

Compatibility between spec and load views can be determined through a comparison of
the offset usage vectors for the visible parts of the different views. The compatibility
data base and the offset allocation scheme guarantee that offsets can be used to uniquely
identify declarations for the R1000 target. Thus, the usage vectors can simply be
compared to determine compatibility.

4.1.4. Code Database

The Code Database is used to accelerate loading. The code database exists in every
world and captures all the information needed to load a unit that resides in the world.
In addition the code database contains all of the information needed to archive the code
in the world.

For a normal world the code database will be distributed among the attribute spaces of
the library visible parts. Each such attribute space will contain all the coding
information for that unit and all of its children. For a code archived world the database
will exist as a single object that contains all of the coding information every unit in the
world. '

The code database is updated after every promote or demote operation that involves the
coded state. This produces a small amount of serialization at the end of every such
promote or demote. Because the code database caches the information needed for
loading, there is no need to open or traverse Diana trees as in the Gamma system.

The actual contents of the code database will be the following for each Ada unit in the
world:

e The simple name of the unit.

Rational Proprietary Document

34 Code Generation and Archive

e The current state of the unit.

o The code segment name (if the unit is coded).

® The context dependencies that are used to determine elaboration order.
e The imports that are required (if the unit is coded).

e The subunits of the unit. This is needed in order to determine
completeness.ll

The code database contains all of the information needed to archive a world, and is in
fact the object that is archived when code archive is run.

4.1.5. Relocation of Attribute Spaces

In order to support the relocation of Ada units, operations must be provided to relocate
the attribute spaces produced by the code generator. Iterators will be provided over
each attribute map to allow all Diana pointers, which require relocation, to be fixed.

4.2. Code Archive
This section was previously published as part of RM: [SYSTEM. SPECCODEARCHIVE .LPT].

4.2.1. Features

Here are the code archive features available in Delta. They are chosen to be simple to
implement, while still providing useful functions.

Only subsystem Load Views can be copied using Code Archive. Other kinds of objects,
including subsystem Spec Views, can be copied using Source Archive, but not
Code Archive (for convenience, Code Archive may provide a way to put
Source) Archive’d objects onto the same tape with Code) Archive'd objects). Any Ada
library “unit in a copied view can be executed in the same way as the original. Main
programs in a copied view are still main programs, although they may be bound to
versions of units imported from outside the subsystem.

When saving a Load View, the user can specify which library units in that view will be
'exported’, that is, will be visible once the view has been restored. If a unit is exported,

uThis information is not available directly in the directory system. The directory system contains
information on subunits when the subunit object has been created, but not when only the stub exists.

DELTA MSS.165 April 21, 1986 17:09

Code Archive 35

then its Code_Archive copy can be compatibility-checked12 and compiled against in the
same way as the original unit. If a unit is not exported, then its Code_Archive copy
cannot be compatibility-checked or compiled against (it is still possible to compile
against a compatible Spec View, but not against the Load View). By default, no units
are exported. The user can also choose to export the units named in the view’s EXPORT
file, or to export all library units in the view.

Copied objects are different from the original objects in the following ways:
e Copied objects cannot be modified (they can be deleted).

e Copied Ada units have no bodies or separately compiled subunits. Although
the code generated from these compilation units is copied and can be
executed, the source is not copied. There are no objects which contain the
source, and it cannot be examined.

e Copied Ada units cannot be debugged. Definitions in the visible part of an
exported spec are visible and can be read by the debugger, but definitions in
bodies or non-exported units are not.

Units which were coded with a pre-Code Archive code generator cannot be copied.
Such units must be recoded before they can be copied. This recoding is upward
compatible, that is, the recoded units can coexist and run with old units.

4.2.2. Implementation Approach

For each Load View, all objects except for Ada units are copied using Source Archive.
The visible part of each exported Ada unit is copied as source text. Loader information
is copied using algorithms to be provided by SWB. Code segments are copied verbatim
(except for their debug tables, which are removed).

The implementation depends on the following changes in the native code format and the
loader:

e Code segment addresses and exception names will be passed at runtime via
module import spaces, rather than being wired into the code (as is now done).

e Loader information for a subsystem will be kept in a single loader data base.
This object will be a child of the subsystem world. For each Ada library unit
in the subsystem, the loader database will contain the following information:

o The code segment, and the code segments for its subunits. Code
segment ids will be recorded in the database, and code segment objects
will be children of the database object.

12Using the batch compatibility checker or the Delta CG compatibility mechanism

Rational Proprietary Document

36 Code Generation and Archive

o All dependencies on other units. This includes with dependencies,
dependencies introduced by subunits, and elaboration order
dependencies.

o If the unit is a main program, the id of its elaboration code segment
will be recorded in the database, and the elaboration code segment will
be a child of the database.

This information is sufficient to load or execute any unit in the view, without
touchmg the Ada object for the unit. This will have performance advantages
in the non-Code_Archive case, and it makes it possible for Code Archive to
prune Ada objects out of the view without affecting execution semantics.

4.2.3. Interchange Form

Here is a breakdown of the components of an interchange set, that is, the items of
information that are produced by Code Archive.Save and consumed by
Code_Archive.Restore.

The interchange form is designed to be generated (by Save) and consumed (by Restore)
sequentially, in the order given below. The medium used to transfer an interchange set
must provide sequential, transparent byte transfer, and a way to mark the end of the
interchange set (e.g., end-of-file). Two interchange sets may be catenated, to form a
larger but still correct interchange set.

Object ids may appear anywhere in the interchange set, for example in the loader
information. The interchange form of an object id includes the object class, an object
instance number, and whether the object is part of the same interchange set. Object
instance numbers are arbitrarily assigned by Code Archive.Save, and are unique only
within an interchange set. The first occurrence in the interchange set of each object id
includes the pathname of the object.

4.2.3.1. Libraries and Files

All libraries and files (excluding loader information) are interchanged in Source Archive
form.

4.2.3.2. Ada Units

The interchange form of an Ada unit is its object id and, if the object is exported, the
source for its visible part. The source for each unit is interchanged as ASCII text
(possibly in Source Archive form). Since each unit is appearing for the first time in the
interchange set, its object id includes its path name.

DELTA.MSS.165 | April 21, 1986 17:53

Code Archive 37

4.2.3.3. Loader Information

Loader information is interchanged in a canonical form to be defined by SWB. Within
the loader information, object ids (of Ada units and code segments) are represented in
the interchange form described above.

4.2.3.4. Code Segments

The interchange form is an object id, followed by a code segment, consisting mainly of
R1000 macro-instructions. The interchange form of the code segment has a truncated
debug table.

4.2.4. Conversion Algorithms

The Save algorithm converts from the native representation of Ada units to their
interchange form, and the Restore algorithm does the reverse.

4.2.4.1. Save
Save requires the following steps:

1. Libraries and files are Source_Archive.Save’d.

2. The object ids of all library units are saved.

3. The source of exported library units is saved.

4. Loader information is saved.

5. All code segments which were referenced by the loader information (that is,

whose object ids appeared in its interchange form) are saved. The debug
tables are removed before saving them. ‘

4.2.4.2. Restore

Each subsystem view is Restore’d either entirely or not at all. If one tries to restore a
view, and a view of that name already exists on the target machine, then nothing in the
view will be restored. Restore will not merge selected units from the restored view into
the target view.

Rational Proprietary Document

38 Code Generation and Archive

DELTA.MSS.165 April 21, 1986 17:53

5. %ubsys ems, Configurations, and Version
ontro

CMVC-WART is in two pieces. The first is the low level reservation and history
database. The second is the commands that use this database. It is anticipated that the
marketing organization will take a leading role in developing the command interface,
both in specification and implementation. This interface will be tested using the Gamma
system, and then refined (or reimplemented) for Delta. The database will be built by
Development.

This chapter is in two parts. The first section is the Ada spec for the CMVC-WART
database manager. Sections 5.2 through 5.3 discuss some issues concerning the command
- interface and presents, through example, a possible interface.

5.1. The CMVC-WART Spec

with Action;
with Calendar;
with Directory_Implementation;

package Cavc_Implementation is
package Directory renames Directory_Implementation;

-- CMVC is based on the notion of elements. An element is a logical

-- entity that encapsulates changes within objects over time. Any

-- object class that has a text representation and conversion functions
-- can be managed by CMVC. Elements have an internal name, supplied

-- when the element is created. This is the name used for all CMVC

-- operations. There is an external name associated vith each version
-- get, which is used for all copy in and out operations.

-- Each version of an element is a snapshot of that element. It

-- represents a physical realization of that element at some point in
-- its history. A Gamma version has this property. Each successive
-- version is a new generation of the element.

-- A viev is defined to mean a snapshot of a collection of elements; it
-- calls out specific versions of specific elements. This isn’t

-- necessarily a physical representation. In other words, this isn’t a
-- world but a more abstract concept.

-- A version set is a time ordered set of versions for one element.

-- There is a straight line of descent; each version was created from
-- its parent by changing the parent. There is no skipping; every

-- generation of the element is represented. Each version set for an

-- element represents a different time line, and each can be reserved
-- independently. Only one version in a version set can be checked

-- out, and this is the newest version. The version set is optionally
-- named, which is useful for iterating over the sets. The version set

Rational Proprietary Document

40 Subsystems, Configurations, and Version Control

-- also maintains the external name for this set of versions of the
-- element.

-- A configuration is a realization of a view. A configuration can have
-- & directory name, vhich means there is some representation on the

-- disk for it. There are two types of configurations, release

-- configurations and working configurations. A vorking configuration
-- is one in which versions can be changed. - A release configuration

-- specifies a set of versions vhich are frozen; neither the release

-- configuration nor the versions specified can be changed.

-- Configurations sare named by the user.

-- Many operations want a library to work in. To simplify the
-- specification of this library, CMVC maintains a map of user/session
-= pairs to a default library. Commands would use this map to simplify
-- the user interface. Operations exist to get and set the map.

-- The database maintains a map between user/session pairs and a
-- configuration. This configuration can be used by commands as a
-- default configuration. There are operations to get and set this
-- configuration.

-- In many cases software must run on various targets. It is often the
-- case that most of the elements are the same, but a fev may be

-- different to account for the differences in the targets. It is

-- desirable to capture this information in order to allow simultaneous
-- independent changes to the elements that are different, while

-- controlling access to the elements that are the same. Another

-- common scenario is the need to have twvo people work on one element
-- in parallel for some time, then merge the changes together. The

-~ process of splitting elements and operating on them is called

-- maintaining varying lines of descent. These variants branch out from
-- some line, and may rejoin later. Branching out is done using create;
-~ bringing two alternate lines together is done using merge. In CMVC,
-- alternate lines of descent is accomplished by using version sets and
-~ configurations. Each version set is a line of descent for some

-- element. Each configuration selects at most one version set for an
-~ element. Configurations that refer to the same version set are

-- linked; the element has one reservation across all such

-- configurations, and can only be changed serially. If the

~- configurations refer to different version sets for an element, the
-- element can be reserved independently.

-- There is a database for each set of related configurations. The

-- database must be provided to each operation discussed below. There
-- is a small machine vide map that maps user/session pairs to s

-- default database. The commands can use this to make talking to the
-- database easier.

No_Such Version : exception;
No_Such Version Set : exception;
No Such Element : exception;
Bogus Parameters : exception;

DELTA.MSS.165 April 21, 1986 18:06

The CMVC-WART Spec

Unknown_Error : exception;

-- The above are the only exceptions propagated out of this package.

-- Unknown_error is raised for internal errors and unexpected errors

-- propagated out of other packages. Bogus Parameters is raised vhen
-- the parameters make no sense, such as vhen configurations from one
-- database are mixed wvith elements from another.

subtype Library Name is String;
subtype History File is String;

type Error_Status is private;

subtype Error Msg is String;

function Nil return Error_ Status;

function Is Nil (Status : Error_Status) return Boolean;
function Is Bad (Status : Error_Status) return Boolean;

function Get Error Msg (Status : Error_Status) return Error Msg;

-- There is a database for each set of related configurations.

type Database is private;

function Nil return Database;

function Is Nil (Db : Database) return Boolean;
function Name 0f (Db : Database) return String;

procedure Open Database (Db_Name : String;
Db : out Database;
Status : out Error_Status);

procedure Create Database (Db Name : String;
Db : out Database;
Status : out Error_Status;
Dont_Keep_Source : Boolean := False);

-- If dont_keep_source is true, no source differentials are kept in the
-- database. This means versions cannot be retrieved from the

-- database, and that the merge command depends on external objects

-- yversus internal information. It is set to true to save disk space
-- and to speed up check in.

procedure Expunge Database (Db : Database; Status : Error_Status);

-- Removes all elements and version sets not referenced by a
-- configuration.

procedure Set Default Database (Db : Database;
User : String := "°;
Session : String := *°);

function Default_Database (User : Strimg := "%;

Rational Proprietary Document

41

42 Subsystems, Configurations, and Version Control

Session : String := "®) return Database;

type Configuration is private;

function Nil return Configuration;

function Is Nil (Config : Configuration) return Boolean;
function Name 0f (Config : Configuration) return String;
function Database 0f (Config : Configuration) return Database;

subtype Configuration Object is Directory.Object;
function Is_Configuration Object (Obj : Configuration Object)
return Boolean;

procedure Open Configuration (Config Name : String;
Config : out Configuration;
Error : out Error_Status;
Db : Database := Default Database);

procedure Open_Configuration (Obj : Configuration Object;
Config : out Configuration;
Error : out Error_Status);

-- Return a handle to a configuration. The configuration must exist.
-- This handle is used for most interesting element operations.

procedure Create Configuration (Config Name : String;
' Status : out Error_Status;

Golden Config : Configuration := Nil;
Default Library : String := **;
Version Set Name : String := **;
Initial : Configuration := Nil;
Make Copies : Boolean := False;
Is Release : Boolean := False;
Db : Database := Default Database);

== Create a newv configuration. It can optionally be initialized. If
-- make copies is true, new version sets are made in each of the

-- elements selected by the initial configuration, which are then

-~ initialized with the version selected by the initial configuration.
-- These version sets are given the name provided. If no name is

== provided, the version sets are given the configuration name. If the
-= name to be given clashes with an existing name, ® N°® for some value
== of N is appended to make it a unique name. If make copies is false,
-- the new configuration references all the same version sets and

== versions as the initial configuration, and the version_set name

-- parameter is ignored. In other words, it is linked. If is release is
-- true, the new configuration is frozen (is a release).

-- Golden Config is the name of a configuration that is to be copied
-- into automatically vhenever an element is checked in. The intent is

DELTA.MSS.165 April 21, 1986 18:06

The CMVC-WART Spec

-- to allow the user to keep a current copy of everything. This
-- package doesn’'t actually do the copying, but makes svailable the
-- information to the command packages.

-- Default Library is the name of the library to be used by default
-- for this configuration. It is used in all commands that require a
-- library, but are given the null string.

function Golden Config (Config : Configuration) return Configuration;
function Default Library (Config : Configuration) return String:

procedure Create Config Object (Name : String;
Config : Configuration;
Status : out Error_Status);

-- Create a configuration object with name ’'name’. This object can be
-- used to get a configuration handle. If a configuration object
-- editor is ever provided, it would accept one of these.

procedure Delete Configuration (Config : Configuration;
Status : out Error_Status;
Delete Release : Boolean := False);

-- Delete a configuration. The elements and version sets are not
-- deleted. Delete release must be true to delete a release
-- configuration.

function Is Release (Config : Configuration) return Boolean;
-- Returns true if the argument is a release configuration.
procedure Set Default Configuration (Config : Configuration;
Uger : String := **;
Session : String := "%);
function Default Configuration (User : String := *%;

Session : String := %)
return Configuration;

procedure Set Default Library (Library : Library Name;
User : String := **;
Session : String := *");
function Default Library (User : String := "%;
Session : String := "®) return Library_Name;

type Element is private;
function Nil return Element;
function Is Nil (Elem : Element) return Boolean;

Rational Proprietary Document

43

Subsystems, Configurations, and Version Control

function Name 0f (Elem : Element) return String;

type Element, Class is private;
function Nil return Element Class;

function Is Nil (Class : Element Class) return Boolean;
function Image (Class : Element Class) return String;
function Value (Class Name : String) return Element _Class;
return Element Class;

function Class 0f (Elem : Element)

Ada_Class Name : constant String :
Text_Class Name : constant String :

"Ada Class"®;
"Text, Class"®;

procedure Define Class (User Class Name : String;
Class : out Element _Class;
Already Exists : out Boolean;
Status : out Error Status;
Db : Database

:= Default Database);

-~ Define 2 user class. The class name is passed in. An element class
-- is returned. If an identical user class has already been defined,
These classes are only valid within
-~ the database given. Classes defined in more than one database

-= cannot be compared by comparing the element _class, but must be

== compared by getting and then comparing the string name.

-- already exists is set to true.

type Version Set is private;
function Nil return Version Set;

function Is Nil (Set : Version Set) return Boolean;
function Name 0f (Set : Version_Set) return String;

subtype Generation is Natural;
Last_Version : constant Generation

Nil Version : constant Generation :

type Version is private;
function Nil return Version;

Natural 'Last;
0;

function Is Nil (Vers : Version) return Boolean;

procedure Open Element (Element, Name :

String;

Elem : out Element;
Status : out Error_Status;
Db : Database

:= Database 0f (Default Configuration));

-- Gets a handle for an element. This handle is used to look at the
-- various version sets for the element.

procedure Create Element (Element Name : String;
Config : Configuration;
Class : Element Class;
External Name : String;
Elem : out Element;

Status :

out Error Status;

Initial Value : Version := Nil;

DELTA MSS.165

April 21, 1988 18:06

The CMVC-WART Spec

Version Set, Name : String := *%;
Dont_Keep_Source : Boolean := False);

procedure Create_Element (Element Name : String;
Db : Database;
Class : Element Class;
External Name : String;
Version Set, Name : String;
Elem : out Element;
Status : out Error_Status;
Initial Value : Version := Nil;
Dont,_Keep_Source : Boolean := False);

procedure Create Element (Element Name : String;
Config : Configuration;
Class : Element Class;
External Name : String;
Elea : out Element;
Status : out Error_Status;
Initial Value Object : String := *%;
Version_Set Name : String := *%;
Dont_Keep Source : Boolean := False);

procedure Create Element (Element Name : String;
Db : Database;
Class : Element Class;
External Name : String;
Version Set Name : String;
Elem : out Element;
Status : out Error Status;
Initial_Value Object : String := *%;
Dont_Keep_Source : Boolean := False);

-- Create a new element. The new element can be inserted into a

-- configuration (using the first procedure). An empty version set is
-- created for the element. In the case that a configuration is

-- supplied, the version set name defaults to the configuration name.
-- In the database case, the version set name must be supplied. The

-- version set is optionally initialized by copying the contents of 2
-~ version into it (as generation 1). The configuration must be a

-- working configuration. Path from library specifies a string that is
-- to be prepended to the element name and appended to the library name
-- when the element is copied out of the database. Initial value object
-- ig the name of some directory object that is to be used as an

-- initial value.

procedure Delete Element (Eler : Element;
Status : out Error_Status;
Config : Configuration := Default_Configuration);

-- Delete the element from the configuration. The element is not

-- deleted from the database. The configuration must be a wvorking
-- configuration.

Rational Proprietary Document

46

Subsystems, Configurations, and Version Controi

procedure Delete Element (Elem : Element;
Db : Database;
Status : out Error_Status);

-- Delete the element from all working configurations in the database.
-- This operation ignores release configurations.

procedure Add Element (Elem : Element;
Status : out Error_Status;
Config : Configuration := Default_Configuration);

-- This operation adds an element (and a version set) to a vorking
-- configuration. There must be only one version set associated with
-- the element to use this operation.

function Is In Configuration (Elem : Element;
Config : Configuration := Default Configuration)
return Boolean;

procedure Open Version Set (Set Name : String;
Eler : Element;
Set : out Element;
Status : out Error Status);

-- Get a handle on a version set. This handle is used to traverse
-- across the versions contained in the set.

procedure Open Version Set (Elem : Element;
Set : out Version Set;
Status : out Error Status;
Config : Configuration := Default Configuration);

-~ Get a handle on a version set determined by an element/configuration
== pair.

procedure Create Version Set (Set Name : String;
Elem : Element;
External Name : String;
Set : out Version Set;
Status : out Error_Status;
Initial Value : Version := Nil);

procedure Create Version Set (Set Name : String;
Elem : Element;
External Name : String;
Set : out Version Set;
Status : out Error_Status;
Initial Value Object : String := ®*%);

-- Create a nev version set in some element. The new version set can

DELTA.MSS.165 April 21, 1986 18:06

The CMVC-WART Spec 47

-- be initialized.

procedure Add Version Set (Set : Version Set;
Config : Configuration;
Status : out Error_Status;
Replace Ok : Boolean := True);

-- Add (or replace) a version set to a configuration. This operation
-- implies the adding of an element as well, as & version set is

-- contained within an element. The configuration must be a working
-- one. The configuration is set to refer to the newest version in the
-= get.

procedure Prune Version Set (Set : Version Set;
Up_To_Generation : Generation;
Status : out Error_Status);

-- Throw away the first up to the up_to generation versions from the

-- version set. This operation fails if any configuration references a
-- version to be discarded. An iterator exists to help find these

-- blocking configuration(s).

procedure Change External Name (Set : Version Set;
External Name : String;
Status : out Error_Status);
-- Modify the name used for the version set. This name is appended to the
-- library name to build a complete external name.
-- Note that this affects all configurations using the version set.
procedure Change Name (Set : Version Set;
New_Name : String;
Status : out Error_Status);
-- Change the name of the version set.
function External Name (Set : Version Set) return String;

-- Return the path specified when the version set was made.

function Element 0f (Set : Version Set) return Element;

function Get Version (Set : Version Set;
Gen : Generation := Last_Version) return Version;

function Get Version (Elem : Element;
Config : Configuration := Default_ Configuration)

return Version;

-- Get a handle on a particular version. The second form returns the
-- version selected by a configuration. This handle is used to get

Rational Proprietary Document

48 Subsystems, Configurations, and Version Control

-~ the version’s history and contents.
function First Generation (Set : Version Set) return Generation;

-~ Return the generation of the first version for the set. This is
-- something other than one after a prune version set

function Last _Generation (Set : Version Set) return Generation;
function Generation 0f (Vers : Version) return Generation;
function Version Set 0f (Vers : Version) return Version Set;

function Element 0f (Vers : Version) return Element;

procedure Create From Db (Vers : Version;
Where : String;
Status : out Error_Status);

procedure Check Out (Set : Version Set;
Vers : out Version;
Status : out Error_Status;
Config : Configuration := Default Tonfiguration;
Action Id : Action.Id := Action.Null Id;
User : String := *%);

procedure Check In (Set : Version Set;
Current_Source : Directory.Object;
Vers : out Version;
Status : out Error_Status;
Config : Configuration := Default Configuration;
Action Id : Action.Id := Action.Null_Id;
User : String := *®);

-- Check out (or in) some element. Since the element is specified

-- by the version set, the element need not be provided. Check out
~= creates a nev version. The configuration is changed to reflect

-- the use of the new version. Check in verifies the same

-- configuration is being used. The command package can check to see
== if the user doing the check in is the same one that did the

-- check out.

-- The action parameter is provided so the command package can do

== preprocessing, and back out if the check in or out fails. The action
-- does not allow backing out of the database operation itself. There
-- is no mechanism provided to back out of a database operation.

== Check out returns the version for the new copy. The version can be
-- used to locate a copy of the element on the disk somewhere by using
-- the last_known object history item. The application must copy this

-~ object to the destination. If the last known object is Nil, the

DELTA.MSS.165 April 21, 1986 18:06

The CMVC-WART Spec

-- application should request a copy to built out of the database,
-- supplying the destination location.

-- Check in vants the directory.object of the item being checked in. It
-- uses this to compute the differentials, and also saves it in the -
-- database (for passing to the mext check out). It returns the

-- version for any later processing that might be needed (like

-- compiling).

-- The command package check in might also want to check for the

-- existence of a golden configuration, and copy the object tlare. The
-- resulting object would be given to check in. If & golden

-- configuration is desired, the returned version should be accepted

-- into that golden configuration to bring that configuration up to

-- date. Remember to do all of the work required before check in under
-- one action, so the operations can be backed out if the check in

-- fails. The most common failure is 'wrong configuration’, so the

-- command package might want to check that itself first.

-- The user string is used to mark vho did the operation. 1t ** is
-- supplied, the login name is used.

procedure Accept Changes (Set : Version Set;
Vers : out Version;
Status : out Error_Status;
Gen : Generation := Last Version;
Config : Configuration := Default_Configuration);

-- The requested version is located and its version is returned. The
-- configuration is changed to refer to the version. This operation
-- can be reversed by accepting the previous version.

procedure Merge Changes (Elem : Element;
From Config : Configuration;
Conflicts Detected : out Boolean;
Vers : out Version;
Status : out Error Status;
To_Config : Configuration := Default Configuration;
List_File : String := "*;
Make Parsable : Boolean := False;
Effort Only : Boolean := False;
Join Configs : Boolean := True;
User : String := *%);

-- The versions in the two version sets selected by elem are merged
-- together, vith the result being left in the to_config. This

-- operation alvays creates a nev version. The to_config is marked
-- to refer to the new version. An error occurs if the two

-- configurations don’t refer to the last versions in the version
-- sets.

-- This command requires that the tvo version sets be related,
-- which means that one of the sets must have been created from the

Rational Proprietary Document

50 Subsystems, Configurations, and Version Control

-- other. If the split point cannot be located, or never existed,
-- the merge fails.

-- If conflicting changes are found, the out parameter
-- conflicts detected is set to true. This by itself is not an error

-- List file specifies a text file where the merged result can be

-- placed. The merge points in the file are marked in the same fashion
-- as file utilities.merge, unless make parsable is true, in which case
-- no marks are put in at all. If conflicts are detected, these are
-- marked regardless of the setting of make parsable.

-- Effort only will do the merge without actually updating the database.
-- Join_configs, if true, will change from config to refer to the

-- same version set as to config. In other words, the two
-- configurations are relinked.

type Basic History is

record

Ever_Checked Out : Boolean;

When Checked Out : Calendar.Time;
Checked Out To Config : Configuration;
Ever_Checked In : Boolean;

When Checked In : Calendar.Time;
Edit Time Stamp : Calendar.Time;
Last_Known Object : Directory.Object;
Split_From Version : Version;
Merged From Version : Version;

end record;

-- Split refers to the source version when the set was created. merged
-- refers to a version that vas merged into this one.
-- Checked out to config is nil if the config has been deleted.

procedure Get Basic History (Set : Version Set;
History : out Basic History;
Status : out Error_Status;
Gen : Generation := Last Version);
-- Return the history for some generation in the set.
function Who_Checked Out (Set : Version Set;
Gen : Generation := Last Version) return String;
function Who Checked In (Set : Version Set;
Gen : Generation := Last Version) return String;

-- Return the string history items

function Is Checked Out (Set : Version Set) return Boolean;

DELTA MSS.165 April 21, 1986 18:06

The CMVC-WART Spec

-- simple way to see if the version is currently checked out

procedure Set History (From File : History File;
Set : Version Set);

-- Copy the text file named 'from file' to the history database, and
-- associate it with the last version in the version set. The version
-- must be checked out and not checked in.

procedure Append History (From File : History_ File;
Set : Version Set);

-- Same as above, only the file is appended instead of replacing.

procedure Get History (To File : History File;
Set : Version Set);

procedure Get History (To File : History_ File;
Vers : Version);

-- Copy the history file from the database into a text file named

-~ 'to _file'. If the ’set’ form is used, the file of the last version
-- in the set is copied. Othervise the file for the selected version
-~ is copied.

type Configuration Iterator is private;
procedure Initialize (Db : Database; Iter : out Configuration Iterator);
procedure Initialize (Elem : Element; Iter : out Configuration Iterator);

procedure Initislize (Set : Version Set; Iter : out Configuration Iterator);

procedure Initialize (Set : Version Set; Up_To Version : Generation;
Iter : out Configuration Iterator);

procedure Next (Iter : in out Configuration Iterator);

function Done (Iter : Configuration Iterator) return Boolean;

function Value (Iter : Configuration Iterator) return Configuration;

-- Iterate over configurations. The iterator can be built to iterate
-- over all configurations, all configurations that reference some

-- element, all configurations that reference some version set, or

-- all configurations that reference the first up to n’th version of
-- 8 version set.

type Element Iterator is private;

procedure Initialize (Config : Configuration; Iter : out Element_Iterator);
procedure Initialize (Db : Database; Iter : out Element Iterator);
procedure Next (Iter : in out Element Iterator);

function Done (Iter : Element Iterator) return Boolean;

function Value (Iter : Element Iterator) return Element;

-- Iterate over elements. The options are to iterate over all elements
-- in the database, or to iterate over all elements in a configuration.

Rational Proprietary Document

51

52 Subsystems, Configurations, and Version Control

type Version Set Iterator is private;
procedure Initialize (Db : Database; Iter : out Version_Set Iterator);
procedure Initialize (Config : Configuration;
Iter : out Version Set Iterator);
procedure Initialize (Elem : Element;
Iter : out Version Set_Iterator);
procedure Next (Iter : in out Version Set,_Iterator);
function Done (Iter : Version Set,_Iterator) return Boolean;
function Value (Iter : Version Set_Iterator) return Version Set;

-- Iterate over the version sets specified by a configuration, over the
-- version sets associated with an element, or over all version sets in
-- the database. Iterating over version sets is useful for finding an

-= external name and matching it against the name of some object, in

-- order to find an element name. This would be done by stripping off

== the library and then comparing what is left to the external names

-- for the version sets.

type Version Iterator is private;

procedure Initialize (Set : Version Set; Iter : out Version_ Iterator);
procedure Initialize (Config : Configuration; Iter : out Version Iterator);
procedure Next (Iter : in out Version Iterator);

function Done (Iter : Version Iterator) return Boolean;

function Value (Iter : Version Iterator) return Version;

-- Iterate over the versions in a version set or the versions selected
-- by a configuration.

end Cavc_Implementation;

5.2. Check Out And In

A major question facing the design of a command package is ®Are elements checked out
to a person or a place?® This section discusses this issue.

5.2.1. Checking Out To A Place

In this scenario, elements are checked out to a library or world. Anybody can check out
the element, work with it in the library, and check it back in. The element can be
copied fg some other library and changed, but cannot be checked in from that other
library.

The principle advantage of this method is that elements can be easily found. They are
changeable only in one location, which means it is easy to find the latest version. A
second advantage is that the process is independent of a user’s session attributes. Since
rights come from location, moving to a new library automatically tells the system
everything it needs to know to check in and out elements.

13‘Uncler some enforcement schemes, the copy becomes unchangeable.

DELTA MSS.165 April 21, 1986 18:08

Check Out And In 53

The principle disadvantage is the lack of personal control over where the element is
placed, manipulated, and tested. Since copies are discouraged (or even prevented), the
user cannot make a sublibrary to play in. The element must be manipulated in it’s final
resting spot.

5.2.2. Checking Out To A Person.

In this scenario, elements are checked out to a person. The user decides where the
element is put. The user is free to copy it where ever she wants to. If enforcement is
used, only that person would be allowed to edit the element, no matter where it is
located.

The principle advantage of this scheme is control and accountability. Only one person
can make changes, so that person can know everything that happened to the element.
That person can be help accountable for testing and documentation.

A disadvantage is the necessity for the user to provide information about what the user
is doing. For example, the user must tell the system what database and configuration is
being used. Moving to a new directory doesn’t automatically cause this information to
change.

5.2.3. Comments

It isn’t clear which of the two schemes is better. Each has its good and bad points.
Enforcement is equally difficult for each scheme. It is possible that we will have to
provide both.

Enforcement for the place method would be done by marking the object in the directory
corresponding to the element as checked out or not. If the object is checked out, the
object can be modified. If it isn’t checked out, it can’t. Copy of the object always clears
the checked out indication. The object cannot be moved.

Enforcement of the person method is similar. The object would be marked as checked
out by a person when it is created (or checked out into). When an attempt is made to
modify the object, a check is made that the user who checked it out is the one making
the attempt. If not, the operation fails. Copying the object clears the user information;
moving the object does not.

The next section assumes a check out to user paradigm.

Rational Proprietary Document

54 Subsystems, Configurations, and Version Control

5.3. Commands

This section proposes a command level interface. It is recognized that there are many
possibilities and variants of this one. This section should be viewed as an example of
how to use the database.

The examples below make use of a hypothetical software organization. The project
makes use of two separate worlds (or subsystems), Command and Low Level; Command
makes use of Low Level. The group in question is working on Low Levol The group
manager is Shirley. Two programmers, Fred and Gail, work for Slurley

Shirley wants to set up an environment where Fred and Gail can work independently,
without stepping on each others toes, but ensuring serialization of changes (reservations).
She also wants a world that collects all of the changed elements for release purposes.

Low_Level contains four packages A, B, C, D.

5.3.1. Starting Up

Shirley first creates a database for Low Level. This is done using the command
Cevc_Cmd.Create Database(Name => "Low_Level Db*®);

Since she wants to use this database for the rest of the session, she executes
Cavc_Cmd.Set Default Database(*Low_Level Db*);

She then creates a configuration for the world for collecting the releases using
Cavc_Cmd.Create configuration("Golden®");

Also, she creates a world to hold the elements, named *!Low Level.Golden". She sets

her default library to that world. The elements for the four_packages are then created

using
Cavc_Crd.Create Element("A");

and so on. Lastly, she creates the worlds for Fred and Gail, named Fred and Gail, in

*!Low Level®, and makes prlvate copies of the Golden configuration for them using the
command

Cmvc_Cmd.Copy Configuration(®"Golden®, "Fred®, Linked=>True);
and so on.

Shirley can, as a convenience to Gail and Fred, change their login procedures to select
the appropriate database, configuration, and library. For the remainder of this
discussion, assume she has done this.

5.3.2. Continuing Development

Whenever Fred and Gail log in, their login automatically sets up an appropriate default
conflguratxon and database. Thus, when Gail wants to change (or create) package A, she
issues the command

DELTA.MSS.165 ' April 21, 1986 18:06

Commands 55

Cavc_Cmd.Check Out(Element => A", To Library => Default));
The package is copied to the specified library. Gail works on the package for a while.

While Gail is working on A, Fred fixes a major bug in B. He does so by checking the
package using the Cmvc Cmd.Check Out command, modifying it, then checking it back
in using

Cavc_Cmd.Check In(Element => ®B®);

Gail wants this change, as the bug is causing problems for her. She gets the change
without checking out B by using the command

Cavc_Cmd.Accept,_Changes(Element => "B");
Package B is copied to her default library, since she didn’t specify one to the command.

Every night, Shirley rebuilds the save directory (Golden) in order to gather together all
the changed elements. She does this by executing the commands
Cevc_Cmd.Accept_Changes(Element => ®0", Deferred => True);
Cavc_Cmd.Build;
The first command brings her configuration up to date. The second causes the changed
elements to be copied to her default library, then compiled.

5.4. Issues
5.5. Improved View Mechanisms

5.5.1. Relocating Ada Units

The process of copying an installed or coded Ada unit to a new location without
changing its compilation state is called relocation. Minor changes to the Gamma Diana
implementation will make relocation more efficient, but these changes are not required
to make relocation possible. Relocating an Ada unit should be 3 to 5 times faster than
copying the unit as source and recompiling it. The goal is to relocate Ada objects
without creating any garbage spaces in the process.

Relocation involves two major operations. In the first operation, a set of units, 4, is
copied from one location to another, forming the set A’, and the dependency database is
changed to reflect the fact that the units of A’ are new referencers of the same objects
that were referenced by the units in A. In the second operation, a set of units, B, is
modified to look as if they were compiled against the units of A’, even though they were
actually compiled against the units of A, and the dependency database is modified to
reflect these changes in referencing patterns.

In detail, relocation consists of the following operations:

COPY Copy a set of coded units, A, to a new site and update the dependency
database.

Rational Proprietary Document

56 Subsystems, Configurations, and Version Control

Cl. Each Ada unit a in A, its associated image object, Cg__Attribute
spaceld, code segment, and top declaration database are block-copied to
the new site, forming a corresponding unit a’ in the set of relocated
units A’. Units a and a’ have the same edit time stamps.

C2. When a library unit, u in A, is relocated, its associated top declaration
database is also relocated. As the top declaration database is relocated,
a Diana pointer to a unit a in A is modified to reference the
corresponding unit a’in A’ Relations involving references to units not
in the same world as u are not copied.

C3 If a range set in a map of the central dependency database contains a
reference to unit a in A, it is augmented by adding a reference to the
corresponding unit a’in A".

MODIFY Simulate recompiling a set of units, B, once compiled against unit set A,
against COPY’ed units A’.

M1. Each object in the universe of interest, B, that mlght reference a unit in
A is traversed to find embedded Diana pointers.!® Each pointer that
points to an Ada unit in A is changed to point to the corresponding
unit in A’. Pointers to units outside of the set A are left unchanged.

M2 When a pointer in unit b is changed to point to unit a’ rather than unit
a, b is deleted from each dependency database range set whose domain
is @ and is added to each corresponding dependency database range set
whose domain is a’.

The set of modified units B must include A’ if the system is to be left in a consistent
state. Thus, the COPYing of A is always followed by the MODIFYing of A’ At a later
time, the set B can be expanded to include other units as long as the relation between A
and A’ can be re-established. As long as a in A and a’in A’ have the same edit time
stamp, they are interchangeable with respect to the MODIFY operation.

Unless otherwise noted, the phrase "relocate A® means "*COPY A and then MODIFY A™.
A preliminary spec for the Relocation package is shown in Figure 5-1.

The Ada units of a Load View have no referencers outside the Load View (as far as
Diana is concerned). Thus, a new Load View can be spawned from an existing Load
View quite efficiently by relocating the Ada units within it and copying or rebuilding the

14Reorganized for Delta for more efficient access.

15Iteratom must be added for all attribute maps that are used to implement code generator attributes.
Other iterators already exist.

DELTA.MSS.165 April 21, 1986 17:53

Improved View Mechanisms 57

package Relocation is
-- The relocation package changes the compilation context of Ada units
-- trying to minimize the recompilation needed to change that context.
-- The newv context can be established by copying the units into the new
-- context or by changing the imports for the existing context.

-- As far as this package is concerned, a <<subsystem>> is a vorld that
-- contains worlds that have identical structure. The nested worlds are
-- called <<views>>. Units can be relocated only between views of the
~- same subsystem.

-- Two units are <<equivalent>> if they each belong to a viev of the

-- same subsystem, have the same name vith respect to the view, and have
-- the same modification time stamps. Immediately after a unit has been
-- relocated, it is equivalent to the original unit. It will remain

-- equivalent until it or the original is demoted to source.

-- A unit foo is a <<client>> of another unit bar if the unit foo withs
-- bar or is a secondary unit of bar. A unit foo is a <<supplier>> of
-- another unit bar if bar is a client of foo.

-- A new context is <<consistent>> with the present context of a
-- (compiled) unit if for every supplier of the unit in the present
-- context there exists an equivalent unit in the new context.

type Successfulness is
(Ubiquitous Other Error, -- don't know what happened,
-- but it ain’t good

Successless, -- some units could not be copied,
-- but for good reason.
Left_Some_As Source, -- but all were copied
Recompiled Some, -- but none failed to recompile
Relocated Some, -- but none were demoted to source
No_Action Needed); -- all units at destination are equivalent

procedure Copy (Units : String;
Destination : String;
Relocatable Clients : String;
Fixed Clients : String;
New_Suppliers : String;
Allow_Demotion : Boolean := True;
Recompile : Boolean := True;
Action Id : Action.Id := Action.Null Id;
Status : out Successfulness);

-- Intelligently copies the designated units and the specified clients
-- to the indicated destination, optionally substituting new suppliers.

Figure 6-1: Preliminary Relocation Package - Part 1

other data structures of the view, including the link pack, activities, and object sets (as
in the current implementation of View.Spawn).

Rational Proprietary Document

58 Subsystems, Configurations, and Version Control

-- (description of Copy continued)

-- Destination specifies a set of views (wvorlds) using wildcards or an
-~ activity. Each unit that is copied is copied to the destination view
-- that belongs to the same subsystem as the unit to be copied.

-- The relocatable clients are the units that should be co-relocated if
-- they reference the primary set of units. The destination parameter
-- must specify containers for these relocated clients. The fixed

== clients are any additional units that are to be modified to

-- reference the relocated units (if necessary). These clients are not
-- copied but are modified in place.

-- The new suppliers are units that are to replace the current
-- suppliers of the units to be relocated.

-~ If an object specified by a client or supplier parameter is a vorld
-- or directory it implies that all nested units are to be considered

-- for the category. An activity may be used to specify the worlds. The
-~ specified client and supplier sets may be larger than needed. Only

-- the actual clients and suppliers will participate in the relocation.

-- If the source unit is equivalent to the corresponding unit in the
-- destination vorld, no copy takes place. If the destination context
-- is consistent with the present context of a unit, it is copied and
-- modified preserving its present compilation state. If the

-- destination context is not consistent with present state of a unit,
-- it is copied as source (if allowed) and recompiled (if requested)

procedure Modify (Units : String;
New_Suppliers : String;
Allow Demotion : Boolean := True;
Recompile : Boolean := True;
Action Id : Action.Id := Action.Null Id;
Status : out Successfulness);

-- Modifies the specified units to look as if they were compiled against
-~ the units in the designated set of nev suppliers. If the suppliers
-- are not equivalent to the present suppliers of a unit, the unit is

-- demoted (if allowed) to source and recompiled (if requested).

-- If a non-null action id is passed, the copy/modify is performed as
-- an stomic operation, which fails unless all units can be copied/modified
-- (and recompiled if requested).

end Relocation;

Figure 5-2: Preliminary Relocation Package - Part 2

The MODIFY portion of relocation can be used when updating the imports of a view. One

DELTA.MSS.165 April 21, 1986 17:53

Improved View Mechanisms 59

can assume that a good number of the units in the new Spec View are relocated copies of
the units in the old Spec View. These units are easily identified because they have the
same edit time stamp. The units in the new Spec View that have been edited since they
were relocated are called di fferentiated units. The Spec View was probably spawned to
build these differentiated units.

When View.Import imports a new Spec View into a view, any unit that references a
differentiated unit (and its clients) must be demoted to source and recompiled. Other
units need only be MODIFY'ed to reference the newly imported Spec View.

5.5.2. Compatible Spec View Changes

A Spec View change is consistent if it can be blessed by Change Analysis. A change is
compatible if each client that was compiled against the Spec View before the change will,
without being recompiled, still execute correctly when loaded with an associated Load
View. The Subsystem Tools allow only compatible changes to a Spec View. When an
incompatible change must be made, a new Spec View must be spawned.16 In Delta,
more kinds of changes are compatible compared to Gamma, so a Spec View it can be
used longer without the need for a time and space consuming spawn.

Because of the hard pointers in Diana and the coding strategy of the Delta system, a
change to a declaration in a Spec View is a compatible change if

o The change is the addition or deletion of a library unit or it is an incremental
change to the specification of a library package, and

o The change is consistent with all un frozen clients of the library unit, and
o The declaration has no installed direct referencers, frozen or not.

A change to a source unit or to a unit that has no clients is always a compatible change.

5.5.3. Incompatible Spec View Changes

Incompatible changes cannot be made to Spec Views that have installed clients. The
clients must be demoted or a new Spec View must be spawned in which to make the
changes.

When a new Spec View is spawned to make an incompatible change, new views of its
clients usually must also be spawned where they can be changed to match the new spec.
On the other hand, some clients do not need to be spawned because they are in a View

16Sim:e the spawned view has no installed clients initially, by the precise definition of compatibility, any
changes to the newly spawned Spec View are now compatible.

Rational Proprietary Document

60 Subsystems, Configurations, and Version Control

that can be modified.17 It may also be the case that a developer does not want all clients
to be affected immediately.

5.5.3.1. Synchronized Subsystem Development

In Gamma, the task of spawning client views to accommodate incompatible changes is
entirely manual. In Delta, activities will be used to identify the subsystems that are to
participate in synchronized subsystem development, calling out both the Spec and Load
Views to use for each subsystem. Activities will be accepted by View.Spawn, View.Make,
and others; these commands will apply to all the views designated by the activity.

If the supplied activity identifies a released or frozen view, a copy of that view will be
spawned automatically before being changed. The supplied activity will be updated to
reference the spawned view. The State directory of each view will contain a file that
maps an activity file name into a pattern for naming views automatically spawned from
the view.

5.5.3.2. Unsynchronized Development

In synchronized subsystem development, the developer is willing to state a priorf what
dependent subsystems are to be affected by the changes he is about to make, and he is
willing to wait for views to be spawned in his clients before proceeding with his changes.
By doing this, he is able to take advantage of the incremental compilation facilities of
the system as he makes his incompatible changes.

Many developers will not want to go to all of this trouble just to get started on a change.
They may go through many private revisions before they get one that is worth
exporting.

The Delta system will also support this style of unsynchronized subsystem development.
At the time an incompatible spec change is to be made, just the view to be changed (and

17Suppose I have a system composed of three subsystems A, B, and C. The Spec and Load Views of A
and B are all clients of C, while only the Load Views of A are clients of B. I need to make an
incompatible change to subsystem B, so I spawn a new Load View for B in which to make the changes,
and I spawn a new Spec View for B to export the changes. Because the Load View for A is a client of B,
I must also spawn a new Load View for it and recompile the units affected by the changes made to B. At
this point, the modified version of the system shares subsystem C and the Spec View of subsystem A with
the original version of the system since these are not affected by the changes made so far.

I now discover that I must make an incompatible change to subsystem C to complete the task I started.
I spawn a new Spec View and a new Load View for C, and because it is a client of C, I spawn a new Spec
View for A. Since I already have new Views for subsystem B and a new Load View for subsystem A, I do
not have to create more copies to complete the task. All I have to do is change the Diana pointers in
those Views to point to the new Spec View for subsystem C instead of the old one (i.e., perform only the
MODIFY half of relocation).

DELTA.MSS.165 ' April 21, 1986 17:53

P

Improved View Mechanisms 61

maybe a test world) is spawned. The spawned view has no clients, so changes can be
made freely until it is tested and ready for release.

After the incompatible Spec View has been released, each client can import it when it’s
convenient. In Gamma, importing a new Spec View meant spawning a new view, but in
Delta, imports to an unreleased, unfrozen view can be changed using View. Import.

In unsynchronized development, the only units that are recompiled are those dictated by
conventional obsolescence rules. The incremental compilation capability is
unadvantageous.

5.5.4. Activity Stacks

Based on suggestions from current users of Gamma and because of the wider use of
activities in Delta, extensions to Gamma activities are planned for Delta. The notion of a
job activity is replaced by the notion of a job activity stack. Tools that need to *look
through® an activity search the activities on the job activity stack from top to bottom
until they find one that has an entry for the subsystem that they need.

The stack is at most five deep and is stored in the job profile. The deepest entry in the
stack is logically the system default activity, which is actually always stored under the
name !Machine.System Default Activity. On top of that are one or two activities
associated with the session, which are defined by session attribute switches. During
execution of the job, entries may be added to or removed from either the session or the
job portion of the stack. Changes to the session portion persist after the job terminates.
The job portion is rebuilt each time a job starts.

When a job is initiated, an activity associated with the window that initiated the job is
pushed on top of the session entries. The activity associated with a window is the
activity that was used to find the object displayed in the window. Many windows will
have no associated aci:ivit;y.18 The user can also associate an activity with a window
explicitly.

Directory.Naming also supports some new abbreviations for naming views of a
subsystem via an activity. They look something like this.

e To name the Load View specified by an activity, use the form
subsystem-name’L (activily) .

e To name the Spec View specified by an activity, use the form
subsystem-name’8 (activity).

lsAt this writing, nothing in the system is known to form such an association or depend on its being
there, but differential worlds would have to when and if they are implemented.

Rational Proprietary Document

62 Subsystems, Configurations, and Version Control

¢ To name the Load View specified by the current job activity, use the form
subsystem-name’L.

e To name the Spec View specified by the current job activity, use the form
subsystem-name’8.

5.5.5. Moving Views Between Machines

The code archive package provides substantial performance improvements for
distributing coded subsystems between machines.

Ada units cannot be relocated to a different machine.

If only compatible changes are being made, then the View.Merge command could be
used to make the incremental view changes after the new units have beei: moved to the
target machine.

5.5.8. Subsystem Operations

Here are the scenarios presented in Section 1.5 as they would be executed in Delta.

For synchronized development, creating a ®workspace® involves creating a new activity
that names the subsystems on the machine that constitute the system. The activity
points initially to a frozen release of each subsystem in the system. It can be created in
most cases by making a copy of the activity used to develop the baseline version.

For unsynchronized development, creating a "workspace® involves spawning one view.
The activity contains only the subsystem being changed.

CHANGING BODIES
Spawn a view if a mutable one is unavailable; update the workspace
activity. Edit and recompile the body in the mutable view. Load the
system under the workspace activity. Relocate the changed body back to
the main view when done.

CHANGING SPECS
Same as CHANGING BODIES. Reintegration will be more expensive since
clients will be obsolesced when the changes are relocated back to the main
view.

EXPORTING COMPATIBLE CHANGES
Make and test changes in a Load View. View.Merge the spec release into
the associated spec view, which propagates obsolescence to unfrozen
dependents. View.Make all obsolesced units using the workspace activity.
Then load and execute the system using the same activity.

DELTA.MSS.165 April 21, 1986 17:53

Improved View Mechanisms 63

EXPORTING INCOMPATIBLE CHANGES
View.Spawn a copy of the Spec View to be changed using the workspace
activity (Spec View slot). The units in the dependent closure of the spec
are relocated to their respective views. Client views are spawned as
specified by the workspace activity. Make the change to the spec and
propagate obsolescence to the dependents who are affected. View.Make the
spec, its body and the obsolesced units. Reload and execute using the
workspace activity. ‘

DISTRIBUTING RELEASES

Code Archive.Save the view. Code Archive.Restore on the new
machine.

Rational Proprietary Document

64 Subsystems, Configurations, and Version Control

DELTA.MSS.165 April 21, 1986 17:53

6. Summary of Changes for Delta

e Ada Base

1. Add Diana.Sm Operator values to operators defined in the System
package. (DIANA)

e Machine Interface

1. Add I/O exception numbers and family values {o Exception Names
package. (ACCESS CONTROL)

o Kernel Debugger

1. Add image functions for new exception representation for I/O and
access exceptions to Current Exception.Name and equivalent.
(ACCESS CONTROL)

e Environment Debugger

1. Add image functions for new exception representation for I/O and
access exceptions to Current Exception.Name and equivalent.
(ACCESS CONTROL)

e Om Mechanisms/Basic Managers

1. Add storage of ACLs to segmented heap object manager. (ACCESS
CONTROL)

2. Add parameter to generic to indicate whether access checks should be
done or not. (ACCESS CONTROL)

3. Add code to do check and return bad status if access fails. (Alternative
implementation places check in Directory.) (ACCESS CONTROL)

4. Look at other manager operations (manager.operate) to see if they need
access checking. (ACCESS CONTROL)

5. Job Manager: Store user id for access control purposes. Provide
operations to set and get it. (ACCESS CONTROL)

8. Add Access Implementation package(s). Include cache of world
default ACLs for creation and owner lists. (ACCESS CONTROL)

7. Add Group Implementation package for storing and managing short
group numbers. (ACCESS CONTROL)

Rational Proprietary Document

65

66 Summary of Changes for Delta

8. Change DDB manager to build and use the distributed dependency
database. (DDB)

9. Add entries to DDB manager to make changes in relations after
relocations. (RELOCATION)

e Ada Management

1. Add instantiation parameter indicating desire to perform access check
for segmented heap OM generic. (ACCESS CONTROL)

2. Make appropriate changes so attribute spaces get the right ACLs and
no access restrictions. (ACCESS CONTROL)

3. Creation operation needs to be able to find the correct enclosing world
default ACL, and check owner access. (ACCESS CONTROL)

4. Add top-declaration database (DDB) and image attribute spaces
(EDITOR)

5. Add COPY and MODIFY procedures for relocation. (RELOCATION)
6. Export iterators for maps within attribute spaces (RELOCATION)
7. Add Diana.Sm Operator enumeration and attribute. (DIANA)

8. Add attribute Diana.Lx Line Count. Change Dirty Tree package to
do the *"right thing® with it. (EDITOR)

9. Add Diana.Is In List predicate. (EDITOR)
10. Redefine nodes to reduce the size of Diana spaces (PERFORMANCE)

e Directory
1. Add procedures for releasing Ada objects. (COMPATIBILITY)

2. Add procedures for reserving and freeing Ada objects (CMVC)

3. Probably some other changes, but don't know exactly what. (ACCESS
CONTROL)

4. Add subclasses and efficient recognition of subsystems, views and
differential views. (SUBSYSTEMS)

5. Change naming to recognize the ’L and ’S attributes. (SUBSYSTEMS)

DELTA.MSS.165 April 21, 1986 17:53

6. Change Promote and Demote to call CG coupler to update Code
Database after each promotion to coded or demotion from coded.
(CODE DATABASE)

7. Add subprograms for getting/setting target dependent information into
Compatibility Database Target Map Compilation Coupler package.
(COMPATIBILITY)

e Code_Generator

1. Change code generation for exception handlers for Io__ Exceptions to
handle flavored exceptions. (ACCESS CONTROL)

2. Add calls to Compatibility Database (COMPATIBILITY)
3. Add calls to Code Database. (CODING)

e Semantics

1. Build local reference map within Diana space and save it through
compaction (DDB).

2. Determine and set proper value for Diana.Sm Operator attribute on
calls to predefined operators. (DIANA)

3. Attribute calls to derived subprograms according to Diana manual.
(DIANA)

4. Add calls to get declaration number for a declaration from the
Compatibility Database. (COMPATIBILITY)

e Input Output

1. Probably some changes relating to getting opens and access checks done
in the right place. (ACCESS CONTROL)

2. Probably some changes returning gracefully from operations after an
access error status is returned. Need to raise Access Error at some
point. (ACCESS CONTROL)

3. Need to check owner access to world on create. Also need to find
enclosing world default ACL on create. (ACCESS CONTROL)

4. Change raises of Io_ Exceptions to raise appropriate flavors at various
points in the code. (ACCESS CONTROL)

Rational Proprietary Document

67

68 Summary of Changes for Delta

5. Change Profile to export fields for an Activity stack. (ACTIVITIES)

6. Change Activity and Profile to export the appropriate operations on
activity stacks. (ACTIVITIES)

e Tools

1. Add Access List and Access List Tools package. (ACCESS
CONTROL)

2. Add ACL Utilities package (unless native). (ACCESS CONTROL)
3. Addition of Group and Group Tools packages. (ACCESS CONTROL)

e Object Editor

1. Library Object Editor implementation of display and set operations
for access lists. (ACCESS CONTROL)

2. Library Object Editor addition of interfaces to allow call to set
access list. (ACCESS CONTROL)

3. Library Object Editor addition of elision level (or equivalent) to
control display of access lists. (ACCESS CONTROL)

e Ftp Interface/Network

1. Add FTP server code to set job identity for remote file operations.
(ACCESS CONTROL)

2. Add FTP code to restore files properly relative to access control unless
this is done via standard I/O calls. (ACCESS CONTROL)

o Archive

1. Change Source Archive to include ACLs in the save. (ACCESS
CONTROL)

2. Change Source__Archive to add options for replacement of ACL on
restore. (ACCESS CONTROL)

3. Change Source Archive to set ACL after restoration of object.
(ACCESS CONTROL)

e Native Debugger

1. Have Memory Dump check for System Maintenance access.
(ACCESS CONTROL)

DELTA MSS.165 April 21, 1986 17:53

2. Worry about calls to code that constructs Diana pointers. (ACCESS
CONTROL)

e Subsystem Tools
1. View.Spawn will also take an activity and spawn the views designated
by it.
2. View.Spawn will use relocation to be more efficient.

3. Add View.Merge and View.Compare.

4. View.Import can be used to refresh the imports for an uncontrolled
view. Differentiated units in the new view to be imported cause
obsolescence in the importing view.

5. View.Import also takes an activity and will update imports for all
views in the activity.

6. View.Make can take an activity, which will cause it to make all of the
views specified therein.

7. View.Make will also attempt to make obsolete aliases consistent with
their view by copying and recompiling them into the view.

e Compilation Commands

1. All commands accept an activity, which specifies a set of worlds to
operate on.

Others

1. Any place a system task (VP=4) does an open, create, etc., explicit
access checks need to be added because the access control for the
system task will be based on Operator identity. (ACCESS CONTROL)

2. Program.Run_Job needs to be extended to allow setting the identity of
the new job. (ACCESS CONTROL)

o Changes relating to determination of user identity. There may be places in
the system where the current session is used to determine the user identity.
These would need to be changed or an additional identity for a job for access
control purposes would need to be added.

Rational Proprietary Document

69

70

DELTA MSS.165

Appendix I. Sm_ Operator

April 21, 1986 17:53

Appendix I. Sm__Operator

BOOLEAN eq FLOAT add
BOOLEAN ne FLOAT sub
BOOLEAN 1t FLOAT mul
BOOLEAN 1le FLOAT div
BOOLEAN gt
BOOLEAN ge FLOAT exp
BOOLEAN and Universal Integer Real Mul
BOOLEAN or Universal Real Integer Mul
BOOLEAN xor Universal Real Integer Div
BOOLEAN not
Universal Fixed Mul
INTEGER eq Universal Fixed Div
INTEGER ne
INTEGER 1t FIXED eq
INTEGER le FIXED ne
INTEGER gt ' FIXED 1t
INTEGER ge FIXED 1le
FIXED gt
INTEGER plus FIXED ge
INTEGER neg
INTEGER abs ' FIXED plus
FIXED neg
INTEGER add FIXED abs
INTEGER sub
INTEGER mul FIXED add
INTEGER div FIXED sudb
INTEGER mod FIXED Integer Mul
INTEGER rem Integer FIXED Mul
FIXED Integer Div
INTEGER exp
DISCRETE eq
FLOAT eq DISCRETE ne
FLOAT ne DISCRETE 1t
FLOAT 1t DISCRETE le
FLOAT le DISCRETE gt
FLOAT gt ' DISCRETE ge
FLOAT ge
String eq
FLOAT plus String ne
FLOAT neg String 1t
FLOAT abs " String le

Rational Proprietary Document

72 Appendix I. Sm_ Operator

String gt One DIM Array Array cat

String ge One_DIM Array Element cat
One DIM Element Array cat

String String cat One DIM Element Element cat

String Character cat

Character String cat Multi DIM Array eq

Character Character cat Multi DIM Array ne

One_DIM Array eq Record eq

One DIM Array ne Record ne

One_DIM Discrete Array 1t

One_DIM Discrete Array le Access eq

One DIM Discrete Array gt Access_ne

One DIM Discrete Array ge
Formal Access _eq

One_DIM Boolean Array mot Formal Access ne
One DIM Boolean Array and

One_DIM Boolean Array or Private eq

One DIM Boolean Array xor Private ne

Formal Private eq
Formal Private ne

Where

BOOLEAN = Boolean | Other Boolean

INTEGER = Integer | Short . , Integer | Short Short Integer |
Long Integer | Long_Long_Intogcr | Formal Integer |
Universal Integer | Other Integer

FLOAT = Float | Short Float | Short Short Float |
Long Float | Long Long Float | Formal Float |
Universal Real | Other Float

FIXED = Duration | Formal __ Fixed | Other Fixed

DISCRETE = Character | Enumeration | Formal . Discrete

DIM = Dim | Dim Formal

DELTA.MSS.165 March 14, 1986 18:41

Index

!machine 12

!Machine.System _ Default __ Activity 61

*!Low_Level® 54
*!Low__Level.Golden® 54

'First(28
'Image 28
'L 62, 66
L(61
Last(28
'Length(28
'Pos 28
'Pred 28
'Range(28
'S 62, 66
S(61
'Suce 28
'Val 28
'Value 28

) 28,61

Cmvc_Cmd.Check _Out 55
Operator 17

Program Run__Job 17
Public 9
Source _ Archive.Transfer 17

A,B,C,D 54

Access Control List 8, 9
Access __Error 67
Access__Implementation 65
Access__List 68
Access__List__Tools 68
ACL 8

ACL_ Utilities 68
Activity 68
Ada__Base 65
Ada__Management 66
Archive 68

Changing Bodies 2, 3, 4, 62
Changing Specs 2, 4, 62

Code database 9, 33, 34
Code _ Archive 1, 34, 35, 36
Code__ Archive Restore 36, 63
Code _ Archive.Save 36, 63

Code _ Generator 67
Command 54

Compatibility Database 32
Compatible 59
Compilation__ Commands 69
Compilation_ Coupler 67
Configuration Management 5
Consistent 59

Current_ Exception.Name 65

Delete access 10
Demote 67

73

Dependency database 26, 29, 55, 56, 66

Diana 25
Diana.As__Name 28
Diana.As_Parent 24, 29
Diana.ls_In_ List 27, 66

Diana.Lx__Line_ Count 23, 24, 27, 66

Diana.No__ Value 28
Diana.Node 27
Diana.Sm__Base_ Type 28
Diana.Sm__Constraint 28

Diana.Sm__Operator 26, 65, 66, 67
Diana.Sm__ Original _Node 29

Diana.Sm__Value 28
Diana.Tree 27, 28, 29, 32, 33
Differentiated units 59
Directory 66
Directory.Naming 61

Dirty _Tree 66
Distributing Releases 2, 63
Dn__ Allocator 28
Dn__Attribute 28

Dn__ Attribute _ Call 28
Dn_Decl_S 29

Dn_ Function__Call 28
Dn_ Generic_Id 28
Dn_Item_S 29
Dn__Null_Access 28
Dn_Stm_S 29
Dn_Used_Bltn_Op 28
Dn__Used__Name_Id 28,29
Dn_Used _ Object _Id 28, 29

Entering 3

Environment _Debugger 65
Exception _Names 65
EXPORT 35

Rational Proprietary Document

74 : Index

Exporting Compatible Changes 2, 4, 62 Relocation 55, 56
Exporting Incompatible Changes 2, 4, 63 Restore 36, 37
RM:[SYSTEM.SPEC 34
Fred 54
Ftp__Interface/Network 68 Save 36, 37
Sees __Used__Namesake_ Via__Use__Clause 29
Gail 54 Semantics 24, 67
Group 68 Show__Usage 24, 25, 26
Group__Implementation 65 Source __ Archive 34, 35, 36
Group__Tools 68 Source__ Archive.Save 37
Source _ Archive.Transfer 17
Image 25 State 60
Image object 25, 27 Sublibrary 3
In_File 12 Subordinate_ To 29
Inout _File 12 Subsystem _ Tools 69
Input__Output 67 Synchronized subsystem development 60
10 _Exceptions 12 System 65
Job__Manager 65 Tools 68

Top declaration database 29, 30, 56
Kernel _Debugger 65

Unsynchronized subsystem development 60
Library Object Editor 14

Library _ Object__Editor 68 Version control 5

Link packs 9 View.Compare 69

Low_Level 54 View.Import 59, 61, 69
View.Make 60, 62, 63, 69

Machine.Initialize 17 View.Merge 62, 69

Machine__Interface 65 View.Spawn 57, 60, 63, 69

Native__Debugger 68 With 36

Network _Public 8 Write access 10

Object _Editor 68

Om _ Mechanisms/Basic_Managers 65
Operator 17

Operator__ Capability 12

Other_ ... 26

Out_File 12

Owner access 10

Privileged 8

Profile 68

Program library 3
Program.Run__Job 17, 69
Promote 67
Pseudo-pretty-printing 24
Public 8,9

Read access 9
Reentered 3

DELTA.MSS.165 April 21, 1986 17:53

