TTTTT EEEEE RRRR M M I1I N N 000 L 000 GGG Y Y
T E R R MM MM I N N O 0O L 8] 0 & Y Y
T E R R MMM 1 NN N O 0 v ) 0 ¢ Y Y
T EEEE RRRR M M I NNN O 0 u ) 0 ¢ Y
T E R R M M I N NN O 0 L 0 0 G GGG Y
T E R R M M b N N O 0o L 0 0 6 G Y
T EEEEE R R M M I11 N N 000 LLLLE 000 GGG Y

DDDD 000 CCce 1

D D O g C 11

D D O g C 1

D D O 0 C i

D D O 0 ¢ 1

D D O 0 C .. 1

DppD 0o0o CcCcCce . 111

#*START# Job TERMIN Req #80& for EGB Date 25-Aug-82 12:09:31 Monitor: Rational
File RM: <SIM. DOC. PATENT>TERMINOLOGY. DOC. 1, created: 16-Jun—-82 12:47:21

printed: 25-Aug-82 12:09:32
Job parameters: Request created: 25-Aug—-82 12:08:11 Page limit: 18 Forms: NORMAL
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode: AS



In an attempt to clarify and standardize the usage of certain frequent, often
overloaded, often abused terms, the following suggested uses and definitions
are proposed. It is hoped that by using terminology in a consistent manner
in all written and oral discussions of the R1000 architecture and environment,
we may minimize the confusion both among ourselves and among our customers.

1. OBJECT

An OBJECT is an entity together with some means for identification and for
interpretation of the entity. The means of interpretation may provide
attributes of the entity, such as value, text representation, etc.., may
provide transformations into other objects, or may provide the mechanism
for interpreting other objects.

In the architecture, there are three (N?) principal categories of objects,
instruction objects, control stack objects, and type stack objects, each such
object consisting of a specified number of bits in memory. Instruction

objects are identified by their presence in program memory and may be decoded
to cause particular operations to occur in the machine. Control stack objects
are identified by their presence in control memory and contain a further means
for their interpretation in the form of unique patterns of bits in a particular
position (a tag). Type stack objects are identified by their presence in type
memory and are interpreted only (generally) by a means (type link) contained

in associated control stack objects.

The notion of instructions as obgjects in the R1000 is of secondary importance,
s0 it is suggested that explicit qualification as ‘instruction object’ be used
whenever it is intended. Furthermore, since type stack objects are not
manipulated directly as a result of the execution of instructions and are
interpreted only (generally) by means of control stack objects. the common
usage of ‘object’ should be in reference to control stack objects, and the term
‘type descriptor’ should be used to describe type stack objects.

In ADA, an object is introduced in a declaration which includes an identifier
for the object and a type indication for the object. The type defines the
means for interpretation of the object within the semantics of the language.

In the programming environment, the use of the term object generally means an
object as defined in ADA, however certain notions such as a ‘program’ are not
objects in ADA, but may be manipulated in the environment. The means for

the interpretation of environment objects which do not lie within the semantics
of ADA may be either explicit or implicit.

2. CLASS

The term CLASS refers to membership in a relatively small set of categories

of data which are recognized and manipulated by the R1000. The tag of a
control stack object indicates membership in one or more classes. The class

of an object determines its representation in memory of the machine and, hence:
specifies the primitive means for interpreting the object. Many instruction
objects are represented in such a way that the specification of a class of
applicability is extracted during decoding. From the perspective of the
(architecture) (microcode), conversion among objects of different classes is
not possible.

correct usage:
“plus is applicable to discrete class objects"
"“if the operand is of array class"



3. KIND

The term KIND has (at least) two accepted usages in the architecture: to
distinguish the distinct varieties of memory (ie. Program, Control, Type.
Data, Import, and Queue); and to distinguish a particular representation
for a word in memory. In the latter usage, KIND is similar to CLASS except
that it does not necessarily refer to (explicit or implicit) objects., but
may be used more abstractly to indicate the means of interpretation of the
all objects of a category.

correct usage:
"generates a reference to memory of program kind"
"if the kind of control word is a discrete var"

4. TYPE

The term TYPE should always be used in a context relating to the declaration
of (keyword) types in a source program, and hence, as described in the LRM
should characterize "a set of values and a set of operations applicable to
those values". One may speak of the type of an object on a control stack.,
because such objects include a reference to a type descriptor which contains
sufficient information to specify the values for the type. The operations for
a type are specified implicitly by the class of the type and explicitly by
source language subprograms within the scope of declaration of the type.

correct usage:
“certain conversions among types are permitted by the machine"

incorrect usage:
“"the tag indicates the type of the object”

9. REFERENCE

REFERENCE may be used to indicate an R1000 address either in the form of
lex level/delta in an instruction (usually termed an "object reference",
since given any frame, it addresses either some object, or is illegal) or
in the form of a machine logical address (consisting of memory kind, name,
offset, eg. "control reference").

6. SPACE

The term SPACE may be used either to describe the total logically addressed
memory of the machine or that portion of the total logically addressed memory
which may be reference using a specific logical name.

7. SEGMENT

SEGMENT should be used to indicate a portion of the full logical address space
of the machine which be referenced using a specific memory kind and specific
name. The term STACK is synonymous with SEGMENT in the case of control, type,
and data memory kinds.

correct usage:
"Ycode segment 4732"
"control stack 16"



8. MODULE

The term MODULE is to be used to indicate the logical group of segments which
are associated with the value of a task, package, or collection object, and
which share the same name. A given module will always have a control segment

physically allocated, but may or may not have type, data, or queue segments
allocated.

9. POINTER

The usage of the term POINTER should be restricted to access types and
access variables.

Incorrect usage:
"the type link contains a pointer to the type stack"



