____“__“_____“__"_________j
|
|

>y RN . g

TTTTT EEEEE RRRR FFFFF AAA CCCC EEEEE

III N N
I N N T E R R F A A C E
I NN N T E R R F A a C E
I N NN T EEEE RRRR FFFF A a4 C EEEE
I N NN T E R R F AAAAA C E
I N N T E R R F A A C E
ITI N N T EEEEE R R F A A CCCC EEEEE
L PPPP TTTTT 1
L P P T i1
L P P T 1
L PPPP T i
L P T 1
L P T i
LLLLL P T 111
#START# Job INTERF Req #92 for EGB Date 23-Jul-82 14:45: 55 Monitor: Rational

File RM:<RPE. DOC>INTERFACE.LPT. 1, created: 11-Jul-B82 17:51:18

printed: 23-Jul-82 14:45:55
Job parameters: Request created:23-Jul-82 14:45:53 Page limit: 126 Forms: NORMA
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode: &

e

Rational Machines Incorporated
A Rational Interactive Ada Development and Nurturing Environment

User Interface
DRAFT B

Ariadne. In Greek mythology. she gave Theseus thread to guide
him ovt of the labyrinth.

Rational Machines proprietary document.

Ariadne User Interface

Table of
1. Goals
2. Concep

2. 1.
2. 2.

2.4,
2.9

3. Packag

WEW NEWW
N ERAN N

E
ou b

5. Ada as

Rational

Contents
and Objectives
ts and Paradigm

Ada Orientation

Extensions to Ada

2.2.1. Directory Packages
2.2.2. Commands

ditor—-Based User Interaction
1. Selection and Action

2. Structure of 0Object Images
3. Display Control

4. Undo

5. User program interaction
redefined Objects

Predefined Types

Edi
2. 3.
2. 3.
2. 3.
2. 3.
2. 3.
P

e Control

Introduction

User View

Selective Visibility

Views

3.4.1. Implementation

Dynamic Access Control
Modification Control

Linear Time-Order Elaboration

Basic Characteristics

4.1.1. Objects and Presentation
Cursors

4.2. 1. Cursor Location

4.2.2. Aggregate Positions
Display Characteristics

4.3.1. Prompting

4.3. 2. Following Object Nesting
Window Management

Ob ject Completion

Undo

a Command Language
Command Interpretation

Naming and Access Control
Context Definition

Machines praprietary document

Table of Contents

fars

furs

oo N USSR LODOMORN

DRAFT 8 July 11, 1982

Ariadne User Interface Table of Contents

4. Interactive Program Input/Output

Structure of User Interact1ons

Standard Input

Standard Output

Script Management

Controlling Interaction Characteristics

o000
O ANV

7. Help
7. 1. ilable Systems

.1. What does X [do to Y17

.2. How do I do X?

.3. What does X mean?

. 4. What state am I in?

. 5. What about that statement isn’‘t legal?

grating Help into Ariadne

.1. Wishlist

3
md'l-ﬁl-'-HHHm

e

\IH\J\J\I\J‘JD

Rational Machines proprietary document DRAFT 8

July 11,

ii

1982

T W T TR R e T T T R T R T TR TR TR R T R T T T T T T T T T T T e T T T T T T T T T T T T T T e

Ariadne User Interface Goals and 0Objectives i

Chapter 1
Goals and Objectives

The goal of the environment is to provide a set of facilities that enhances
the productivity of users the R1000 system. The following
characteristics have been identified as important:

Simple %,W& Zﬂ“{ﬁl 977%%

Easy to learn and use
Easy to do simple things; possible to do complex things

Consistent

Basic principles apply uniformly ' g
Compatible with rules and operations of Ada 'Aﬁﬁf?>
Predictable in terms of a relatively simple 6?559

- Friendly

Small amount of typing to get things done

Assistance with syntax and semantics >
On—line documentation and help

User retains control interaction sequence

Hard to accidently lose data

Sk,
- Powerful Svo
C \
All of Ada available directly to the user wﬂw?

System functions directly visible and available
No distinction between system and user functions

In general, the user interface is a state—of-the—art facility with respect
to ease of use, functionality, and user friendliness. It strives to meet

all of these goals, resolving any conflicts so as to favor the oaperations
commonly performed during software development tasks.

/
/Q‘“éﬁiéglfffl Chapter 2

Concepts and Paradigm
P IMeoths s ok olgy
Ariadne is an (object—oriented environment p6larized by Ada. Information is

organized into-. a number of Ada b jectdy program units, types, variables,
etc. Each object a number of attributes, including a type and name.
The +type of the object determines what functions can be applied to the
object, following the rules of Ada where appropriate. The user manipulates
the environment by applying operations (procedures to objects, and by
creating and deleting objects. Users apply perations to objects to
display and change their contents, display and change their properties, and

perform related alterations of an object’s state. .
<

Users can structure their objects into @ hierarchy based on containment

Rational Machines proprietary document DRAFT 8 July 11, 1982

n

Ariadne User Interface Concepts and Paradigm

directly analagous to the way Ada programs are organized by using directory
packages. Directory packages have the static characteristics of elaborated
Ada packages. Each directory package can contain type declarations,
procedures, variables or tasks.—— all of the objects that can be contained
in any Ada package. ‘

efbedy " Gﬁﬁo{rf'wf o prvhe ?PM(?
2.1. Ada Orientation Ol Peckor©

One of the basic tenets of Ariadne is the usefulness of Ada as a form of
communication between the wuser and the system. Ada‘’s role in this
communication is multi~faceted:

1. Ada is the system command language.

User commands are expressed in Ada. Syntactic/semantic
completion may be used to assist in reducing the user memory and
typing requirements, but the command that is actually executed
will have an Ada form and Ada semantics.

2. Ada defines system semantics.

Since all of the objects in the system are defined according to
Ada rules, command syntax is pre—defined and command parameters
can be deduced from Ada definition of the command.

3. Ada provides the system structure.

The view the wuser sees of the system is an Ada package nested
inside other Ada packages that provide basic system Function5>y

e :
4. Ada tasks provide traditional operating system facilities. V“',Qh“'

A task provides the natural correspondent of a conventional file
—-=— a variable-length collection of (typed) data values
accessible through a set of well-defined operations. Similarly,
most built-in operating system facilities can be structured as
tasks, softening the distinction between system— and user-
defined facilities.

2.2. Extensions to Ada

Ada was designed as a programming language, and though most of the
constructs map well into environment constructs, some of the compiler-—
oriented constraints cannot be enforced within the Ariadne uses of those
constructs. That is, Ada rules have been extended in exactly those places
where there exists no direct Ada equivalency:

= Dynamic modification of directory packages.

~ Execution of user commands.

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Concepts and Paradigm 3

These problems derive from inserting the user into the middle of the edit-—
compile—execute cycle, a fundamental advantage of an integrated
environment.

2.2.1. Directory Packages

Standard Ada packages do not change form after they are instantiated. Ada
semantics, quite appropriately:. include no notion of dynamic changes to
programs during execution. For directory purposes, however, it must be
possible to add new objects to the package without losing the state of the
pre~existing nested objects (as would be done if the entire package were
re~compiled).

This limitation is overcome by a process called rTe-elaboration. Re~-
elaboration allows dynamic changes to the package instantiation to be
effected as if the package had originally been compiled in its altered

form. Although normal Ada packages do not share the ability to be re-—
elaborated with their directory counterparts, directory packages retain all
Ada-related capabilities —— user procedures can call directory procedures.

modify directory variables and use directory types.
2.2. 2. Cammands

Ada defines a semantics for statement execution. This semantics does not
Tecognize the possibility of compiling and executing an Ada statement from
within an Ada program. As a result, user commands, even though they take
the form of Ada statements, do not fit. . A
W _efeulindl oo [l

This can be solved by introducing a "magic" procedure.kgx}l. that takes a
string representing a valid Ada statement and executes it. This function,
or & similar one, has to exist somewhere if Ada is to be the Ariadne

command language. Confirming its existence merely reinforces the user’s
view of the system as a set of Ada objects. Ada statements cannot execute
in a vacuum -—- a context for this execution must be defined.

Eval causes commands to be executed within a task. A package can only
support a single thread of execution at any given time. Having commands
execute as if they were inserted directly into an existing package
transmits this limitation +¢to wuser interactions, placing unacceptable
restrictions on both inter—user and intra-user concurrency.

The context of the eval—-generated task is easiest to explain if it
corresponds to the end of the body of the current directory package. Ease
of access will greatly encourage the user to include all objects in the
visible part of his package and it is possible to provide sufficient
facilities that the user can still have a reasonahble degree of protection.
The majority of these decisions are isolated in the eval procedure and
establishing its context, making it possible to experiment before choosing.

There are also facilities to aid in the entry and processing of commands.

These include syntactic and semantic completion of command names, object
names, and other parameters. Facilities for the easy re—-execution of

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Concepts and Paradigm 4

previous commands or commands similar to previous commands are provided.
All of these features derive from the editor-based organization of the
Ariadne interface.

2.3. Editor—Based User Interaction

Users can manipulate objects by issuing specific commands that request a
change, or by making the change directly by editing the object. The two
processes are closely intertwined, since commands are entered for execution
using the facilities of the editor. ,

The editor allows the user to display information about an object. This
information describes the object’s name, state, contents, and/or other
attributes of the object. The specific form of this display is called an
object view. The specific contents of the display is called an object
image.

The basic editor paradigm is that the user changes the object image using
editor operations and, periodically, the actual object is made consistent
with its edited image. This may, depending on the circumstances, be done
at the request of the user or automatically by the system. In any case,
the user can think of the process as editing the object itself.

In the case of Ada, the underlying object is the Diana representation and

the image a pretty-printed program "source". For the debugger. the
underlying object 1is an executing program instance (some of whose
characteristics are interpreted by reference to the Diana tree). It is

possible for either the image to change (due to user action) or for the
underlying object to change (due to program execution).

Changes to the image are subject to syntactic and semantic constraints
before being reflected in the underlying object.

2.3 1. Selection and Action

To make changes to the environment. the user must specify the object to be
affected, and the action to be performed on it. This may result in a
change to the object itself, to the image of the object, to the view of the
image of the object, or to the editor’s state.

The general method for changing something is to first point at it with the
editor’s cursor and then to specify the action to be performed. The object
to be affected is called the selected object and the process of the user
specifying the object is called selection. The action is then specified by
the user by pressing an appropriate key sequence.

2.3. 2. Structure of Object Images

Images displayed on the screen are structured so that the user can deal
with an object image in units appropriate for that object.

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Concepts and Paradigm 3

An Ada program, for example, consists of a tree of objects consisting at
the lowest level of identifiers, keywords, operators, etc., and at higher
levels of expressions and statements, etc.

This nested object structure is reflected in the corresponding image in
terms of gbject cursors: positions in the image that include the entire
extent of a chosen object, not just a point in its text. An object cursor
represents a region in the image to which the user c¢an apply operations.
More general regions can be created, but the object—oriented region retains
an important role in the use of the system because of the knowledge built
into the editor that facilitates ob ject selection, movement and
manipulation. ’

A wuniform mechanism, prompting, is used to show places in the image where
additional information is required to complete the object. In addition,
information about the next permissible entry at any point can be obtained
through syntactic or semantic completion facilities.

2.3.3. Display Control

It is the rule, rather than the exception, that top—level objects are too
large to be entirely displayed at any one time. A typical response to this
problem is windowing: clipping the image at the edge of the display region.
This works because proximity is a good indicator of interest. Detail
control makes it possible to select a level of abstraction (based on object
nesting) for viewing. Explicit ellision facilities make it possible to
directly control the viewing 1level for specific objects. The ability to
follow logical links between items, e.g. show the declaration of an object,
makes it possible to go beyond even hierarchical contiguity in showzng the
user what he needs to see.

2.3. 4. Undo

A general Undo facility will be provided to allow the user to back out of
actions that he has taken to change objects. The granularity of this
mechanism and the relation between image and object undoing operations is
not clear.

2.3.5. User program interaction

Programs that require user input read it from an abstract stream that is
generated either by the user using the editor, or by another program {(under
contraol of the user).

When the wuser wishes to type input for a program that requests it, the
input is entered into a log file that is read as the program executes.
This file is editable using the normal editor operations. The user program
reads this data as if it were typed sequentially.

Thus, the editor is always present and available to the user for handling
entry of user—supplied data.

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Concepts and Paradigm &

2. 4. Predefined 0Objects

The R1000 system provides objects of a number of types and operations that
apply to them as part of the initial system. Users can create new object
types and new operations at any time and add them to the system. These
types and operations are then available.

2.5. Predefined Types

The basic types defined by the Ada language are built into the environment.
These include scalar types (integer, enumeration), structured types
(arrays, records), and types themselve Program components such as
packages and tasks are also included.
A)ot&

In addition, the R1000 environment provide eral other types. Included
are file, documents of various kinds, and Ada program-related types. The
Ada-related types include package source and runnable versions. The
standard object—-image correspondance supplied makes it possible to edit any
object in the system. This implies the ability to obtain the text image
for display, printing, etc. In addition, it is possible to perform each of
the following:

Create/delete/rename an object
— Move/copy an object to a new locatiyn

— Display/alter access rights for an object

~ Change password or other access contnol mechanism
—- Grant capability to user identity

Specific characteristics of predefined

Type Operations
,/;;;;;; ——————— ;xecute as a command
tqpe Find instance§
i:;:eggigazzzéggte ! L pOenwfﬂ. fe Qvey L?‘

package Kill

Control of pretty—-printing format
Syntax/semantic search

Control of optimization within compiler
Control user views

D i b fod o et

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Intertace Concepts and Paradigm 7

task Show state/resource usage of running tasks
Suspend/resume/abort a task
Kill module instantiation
Edit task priority
Edit task resource limits
Show program state & context

window Set currently active
Move) a @fmJWF{
Set size —
List dfrsffgﬁ%aaf windows P ard
Change visibility — A

Create/edit keg—command'ﬁindings
Enter/edit a keyboard macro
Execute a keyboard macro

Session Attach to existing session
Create/suspend/destroy new session
List sessions
Change access rights of current session

mail Send mail
Show incoming mail
Display and edit aliases
Display end edit distribution lists
Display messages
Delete message
Forward message
Reply to message

user Force logoff
Show global accounting information
Set resource limits

agg/;;\}ct with
version control

Show revision history
Make a new version
Merge versions

Al el 4, v Make parallel changes in several versions
4 3 3 3)
AQMQ(/O P Add history information (comment
¢ i Install revision
S Fro/? Show differences between versions
Chapter 3

Package Control

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Package Control ' 8

3.1. Introduction

Packages are separated into two groups: those that are elaborated once and
regmain static for their entire lifetime and those that are elaborated and

KIZ]‘”/ ~elaborated (possibly) several times. The former are referred to as

irectory packages"; the later are characteristic of packages that are
part of normal Ada programs.

A hierarchical nesting of packages accomplishes +the same purpose as
directory trees do in conventional systems. There are, however, a number
of crucial differences, both in how the user views these packages and on
the ramifications for how the system seems to work.

3.2. User View]

At the beginning of a session, the user starts out in his "home package",
looking at a highly ellided display of its contents. Although the home
package has both a visible part and a body, screen space limitations make
it desirable to limit redundancy.

The following is an ellided: but otherwise source-oriented view of a
typical home directory on TOPS-20.

package Jim is

Keys f Text_File; e Thic (e Lo 0%?%

Meeting : Document:

package Apse is ... end Apse; B S e

package Red 1is ... end Red: ’//TKZ:T
end Jim;

o,

package body Jim is

Editor_Options : Editor.Options;
Mail_Box : Mail. User;
package Misc is ... end Misc;
package body Apse is ... end Apse;
package body Red 1is ... end Red:
package body Misc is ... end Misc;
begin ..
end Jim; el be J&JR/
Neither the body nor the visible part is a comple representation of the
user "directory". The body is necessary to hold/ procedure bodies, but

cannot hold variables that need to be seen b s. On the other hand,
there is a large amount of redundancy in the two parts that the user need
not see every time he views the package.

A more useful view of this package, for directory purposes, might be:

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Package Control Q

package Jim is

Keys : Text_File:; Y ,
Meeting : Document; . 7 0N f*wJ thir v
package Apse is ... end Apse; » /
package Red is ... end Red; 8_’&32L_LQQ1L
package body Jim is
Editor_DOptions : Editor.Options;
Mail_Box : Mail. Use;
package Misc is ... end Misc;
end Jim;

The information content is the same as for the original. To maintain Ada
ordering on the package may require a large number of ellipsis marks at the
ends of lines. Visibility and elaboration order characteristics are
preserved, though the placement of the bodies is ignored.

A potential problem with this arrangement is that the source distance
between the two portions of this display can be very large. According to
strict Ada rtules (see 3.7), the visible parts of all users would probably
precede all of the corresponding bodies, considerably separating the two
parts of the display. As long as Ariadne provides an easy way to juxtapose
the two pieces, the user seems unlikely to bridle at (or even notice) the
difference between appearance and "reality".

v \2'/% A /y’k‘f/%j Yelgl
3.3. Selective Visibility et o) Mo (/M@

Each Ada package is represented in the system as a Diana tree and presented
to the wuser as an Ada source program. What appears in the source
representation of the package determines its visible objects and their
characteristics. By providing the ability to/specify different views to
different users, the owner of the package can//éontrol the access other

users have to the package and its contents. Hew’?

.

The visible part/body paradigm provides a reasonable mechanism for
controlling access in programs, but is not sufficient for all environment
purposes. The goal is to extend this facility to provide more flexibility
without introducing new Ada constructs or compromising the security of
those that already exist.

This 1is accomplished by providing the user facilities for specifying how a
package should be presented to a particular wuser. Specifically, this
visibility can be changed in two ways:

1. Obgject wvisibility. Remove object(s) #rom the visibility of
other object(s).

2. Available operations. Do not allow operation(s) to be used on a
particular ob ject.

Among the reasons for using multiple views is that they allow each of the

Rational Machines proprietary document | DRAFT 8 July 11, 1982

Ariadne User Interface Package Control . 9 10
oo ¥ orhen §7 Proe -

users who can see the package to see/it as if it were a complete and
correct Ada obgject. The elaborated package’ instance is created to conform
to the owner’‘s view. Nothing in the view—generation process can grant
access that would not be available to the package owner wunder Ada rules.
Specifically:

.

1. Objects in the body for the owner cannot be promoted to the
vigsible part of other views.

2. User views can add constraints to owner objects, but cannot
remove them.

3. Each subordinate view must be a legal Ada package in its ouwn
right.

Such limitations do not extend the set of legal programs, so any program
developed under the more restrictive regime can also be constructed without
the restraints.

3. 4. Views

Using this method, the example package from above might look like:

package Jim is

Keys : Read_Only_Text_File;

Meeting : constant Document:;

package Apse is ... end Apse;
end Jim;

This is a consistent Ada view of the package, although more limited than
the owner’s:

1. Package Red is no longer visible, so cannot be referenced.

2. Keys is now a Read_Only_Text_File, derived from Text_File
without modification operations. An alternative form would be
to retain the same type, Text_File, and 1limit the visible
operations.

3. Meeting is now a constant and cannot be changed. Making the
object constant is logically an operation limitation, but Ada
doesn’t allow explicit assignment procedures.

4. No package body is visible because this user is not authorized
to see the body of the package (see 3. &).

This is a form of compile—-time access control. Access to an object from a
program is established at compile—~time (re—elaboration time for directory
packages). Revocation is possible using the re—-compilation rules, i.e. if

[“‘\ oV do —t (/ V()y(.~ {'Le»f J /\W\, OL) }‘./by /ooL [(;o‘\ OV,‘J,QO, N

Rational Machines proprietary document DRAFT 8 July 11, 1982
A\O&/ dy L fedl whe Co~n we Vv/«yf?

Ariadne User Interface Package Control 11

the object is made non-visible, packages that depend on it must be re-
compiled. Once an elaborated program has access to an object, that access
cannot be revoked until the program becomes de—elaborated.

The architecture also provides run—time support for these access
constraints, though there is some debate about how to provide operation
limitation in the general case.

Access to an object can be granted selectively to specific directory
packages. I# access to an object is granted to a directory package, ¢then
all objects within that package have the same access rights to the object
as granted to the directory.

3.4.1. Implementation

The logical place to implement multiple views is in Diana. This allows
Diana to enforce the visibility for the compiler and other tools. On the
other hand, it introduces the possibility of doing access control checking
on a large number of objects during each compilation. A possible
compromise would be to only allow access control at the package level. but
this removes a fair amount of flexibility.

The wuser needs a natural interface with which to specify how others will
view the package without confusion. Possible methods (not necessarily
mutually exclusive):

1. Edit the context for each group of users.
2. Place pragmas to indicate visibility.
3. Specify defaults for particular users for new objects.

3. 5. Dynamic Access Control

For any object with a proceduralized access pattern, it is possible to
implement access control by means of a programmed checks of the wuser
against some sort of access list. The implementor can enforce opening
before use (checking the initial access and handing out a value to be wused
in future communication) or a can check with each access. Checking with
each access makes it impossible to pass the right ¢to perform operations
onto another user’s task, where an open object descriptor can be passed as
a parameter. '

Dynamic checking is somewhat more expensive than static checking, but
provides the owner with an easier way of changing access vrights.
Unfortunately, dynamic access controls don‘t display as naturally in the

ser’s view of the system unless files are treated as special objects known
to the system. This form of dynamic checking is exactly analogous to that
provided by conventional systems.

50 o Os r d};}o\aﬁf?

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Package Control 12

3.6, Modification Control

A\
Some mechanism must be @ to regulate the modification of package and
view contents and the abilityg to execute programs within the a particular
context.

Conceptually, access to a package can be controlled in exactly the same way
access to any other object can be: reduce the apparent rights of other
users to the operations on the object. In the case of packages, the ¢type
is Diana-derived and includes operations to view the object, view its body,
re—elaborate it., etc.

Another possibility is to use a dynamic access control mechanism similar to
that used for +files. The static method would probably work as well, but
the user’s view is unchanged by the choice and there is less complexity
introduced to support the types of operations that are anticipated.
Further, environment interactions with the source-views of different
packages are not frequent enough to justify concern for efficiency.

3.7. Linear Time~0Order Elaboration

Ada visibility rules are based on the notion of linear elaboration. The
concept of linearity used is one that is appropriate to a compiler, i.e.
appearance order in the program text. Ariadne will need to use a time-
order tule of linear elaboration. That is, any item that is included in a
directory package must already be elaborated. Since directory packages go
through many generations of rte-elaboration, this makes it possible ¢to
create mutually referential visible parts for directory packages. This is
desirable for the directory functions, removing the need to order wusers,
but not desirable for static packages that are being used as library units
in an implementation. There may need to be an explicit pragma that relaxes
the elaboration rules to prevent mutual references in library packages.

Chapter 4
Roget

The RMI Object Generating and Editing Tool is +the editor-based front-end
for Ariadne. As such, it fulfills the combined purposes of the system
editor and virtual terminal, appearing to the user to be the single point
of interaction with all parts of the system. Roget is the focus for
providing the user with the same interface throughout his terminal session:
somewhat independent of <the characteristics of the particular system
facilities he uses.

4.1. Basic Characteristics
Roget is essentially a multi-window screen editor that has been inserted

between the user and the rest of Ariadne. I#f done properly, most wusers
will be unable to make the distinction between the editor interface and the

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Roget 13

functions it provides access to. A key to this transparency is the ability
to deal with text representations as if they were the underlying object,
not merely a print representation of it.

4.1.1. Objects and Presentation

Each object has some representation in the system that is convenient for
its implementor, e.g. Diana for Ada programs. Each object also has a user-
readable representation that is used for communication between the user and
the system. This representation is called the image of the object. For
each object, there is exactly one image. To provide flexibility in
formatting the image for a particular purpose, an image may have more than
one view.

Views are presentations of an image in a form tailored to the wuser’s
specific needs.

4. 2. Cursors

One of the problems with discussing cursors is that there are really a
large number of position-specifiers that are called "cursors". This is
generally confusing, but particularly when discussing the distinctions
between the various types. To minimize confusion, the following terms will
be used to specify which cursor is being discussed.

1. Physical cursor. The blinking block/underline that the wuser
actually sees on the screen; of interest only when the screen is
not -being redrawn, i.e. when it 1is resting on a particular
screen position.

2. Point c&rsor. A logical position between two characters in the
human-readable image of an object. The physical cursor appears
over the character to the tight of the point cursor.

3. Input cursor. The point cursor where new wuser input will be
placed.

4., QOutput cursor. The point cursor where a new output item will be
placed.

5. Viewing cursor. The point cursor representing the current focus
of user interest; often identical to the position represented by
the input and/or output cursors.

6. Obgect CUTSOT. A region surrounding a point cursor
corresponding to a logical object. Since objects are nested,
more than one object cursor is possible for most point cursors.

7. Selected region. A region of the human—-readable image used by

the user for text manipulation. May correspond to an object
cursor, but need not.

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Roget 14

4 2. 1. Cursor Location

Consider the problem of specifying where the physical cursor should be
after the user enters a change of some sort. Leaving aside cases in which
there is an active effort to move the cursor to the next reasonable
location, there remains the problem of how to re-place the physical cursor
where the user expects it. Remember that the user can have entered
arbitrarily complicated program changes prior to hitting <ENTER>. The case
against a few of the obvious candidates:

1. Absolute line-column position. New lines <could have been
introduced and/or indentation may have changed.

2. Specific line, relative column from line indentation. Breaking
up the current line can cause one input 1line to be part of
several output lines.

3. Position within an object. MWorks best if finest-grain objects
are small and do not overlap more than one line, but the object
may have disappeared in the change.

The 1last alternative seems the most promising, assuming that the situation
in which the object disappears can be handled. Independent of
implementation, the wuser must be able to reasonably predict where the
cursor will end up. Otherwise, he will be forced to wait and see what

happened before he can make his next keystroke decision. In some
applications, it is expected that the ability to locate the cursor may
change the semantics of the operations performed. For instance, command

completion can depend on the current cursor position.
4.2.2. Aggregate Positions

Objects are structured hierarchically by each object editor to provide
natural groupings based on the semantics of the object type. For each
point cursor, there is a smallest containing object. Ob ject cursor
operations allow the scope of an object cursor to be expanded (contracted)
to each level of containing (contained) object. There are also operations
to move to the next (previous}) object at the same level.

In addition ¢o providing movement, object cursors provide a quick way of
selecting sections of the image that correspond to natural wunits for the
object being edited. The user is able to take advantage of this to move,
copy, etc. logically connected blocks of text. In addition to object
cursors, it is also possible for the user to directly select a region
between two points or to extend an object cursor by appending other objects
or character positions.

4.3. Display Characteristics

Although the representation that the user sees consists of characters that
are meant to convey the contents of objects, not all of the characters that

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Roget 15

appear in the image directly correspond to themselves in the underlying
object. In particular, two kinds of meta-text appear in images, prompts

and ellipsis.

An ellipsis, commonly displayed as "...", is a visual indication that more
information is contained in the image (and the object) than 1is currently
displayed %to the wuser. This serves ¢to allow the user more flexible

management of available screen space than merely selecting rectangular
subareas of the detailed image.

Ellipsis is used in two related coﬁtexts:

1. Global detail filtering and initial view selection, where the
system chooses (with user assistance) a particular presentation
of the object that is expected to provide the best compromise
between detail and available space.

2. Specific user control over detail. Presented with a particular
view, the wuser c¢can tailer it by expanding an ellipsis that
appears on the screen or by requesting that an existing oabject
be ellided, increasing the range of objects visible.

Ellided areas are not directly editable. It makes no sense to change the
number of dots in the ellipsis or insert text in the middle. Deletion of
the entire ellipsis, though possible quite drastic, is well defined,
however.

4.3.1. Prompting

A prompt is a visuval reminder of an incomplete object. The prompt occupies
the position where an entry is needed to complete the underlying object and
takes the form of a (somehow) highlighted reminder as to the nature of the
required entry.

Prompts automatically disappear when anything is typed over them (or
deleted from them), the assumption being that the new entry will replace
the prompt. For any other text-related operations, each character of the
prompt is just like any other on the screen, and the prompt is a complete
ob ject.

4.3.2. Following Object Nesting

Due to the nested nature of objects, it is possible to move down the
directory package tree by expanding the detail of each contained object. At
some point, each new level should become a distinct window so0o that the
operation becomes one of selecting a new window to handle the indicated
obgject in more detail. This leads to the problem of creating and managing
windows.

Rational Machines proprietary document DRAFT B July 11, 1982

Ariadne User Interface Roget 16

4.4, Window Management
Describe how windows are created, managed, and destroyed.

Will want a way to find out what windows there are, how they were created
and what their "status" is.

Will want to have a status display that makes it «clear when exceptional
events occur, e.g. mail, program waiting for input, etc. Possibilities are
blinking notices and rotating banners.

4.5. Dbject Completion

Describe the mechanism for the various forms of creating complete objects

from incomplete user entries. Similar mechanisms should be available for
commands, keywords, data names, etc.

4. 6. Undo
Describe the object/text undo facilities.
Chapter 5
Ada as a Command Language
S0 we‘re going to use Ada as the command language, how do we make it work.

There 1is the problem of declaration that is solved by nested directory
packages from which is inherited objects and operations.

There is the notion of Eval to take what the user types and convert it into
Ada tasks.
5.1. Command Interpretation

Explain how Eval works.

9. 2. Naming and Access Control

Is this different from the access control chapter, other than how do you
make the commonly-—-desired names more accessible to the user. :

9.3. Context Definition
How does the user define the context in which execution takes place.

How does the user determine what sort of context {(source, compiled, code—

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Ada as a Command Language 17

generated, instantiated, rtunning) in which he is currently editing. Does
he have an independent context for each of these types of source
situations.

Chapter &
Interactive Program Input/Output

Programs need one or more places to write output. Saome of that output may
be "intended" for the user and some of it may be the result of the
computation to be saved. Users are relatively used to the notion of an
interactive session in which the user input is interspersed in the output
In program terms, this usually manifests itself as calls (such as TTY_IO)
that assume a source of input and a destination for output.

Each program is invoked from a program segment that the wuser enters (or
otherwise selects) and asks ¢to have executed. Managing the process of
accepting user input and presenting user output is important to the wuser
view of the system.

6.1, Structure of User Interactions

Each wuser command interaction potentially involves many different entities
(independent of specific command characteristics):

Standard ocutput.

Error output.

Standard input.

Command input: the text of the command itself..

Interaction script: the time—interleaved record of the above.

bl SR

Each of these entities is managed as a text +file, while retaining the
appearance of normal interactive terminal operation where desirable. In
the normal case, the user command window reports the current state of the
interaction script. Thus, the Ada statements forming the command sequence
appear, followed by the input and program output, just as in a traditional
terminal session.

6. 2. Standard Input

The appearance of interaction in a +file-oriented input system is
accomplished by providing two different control cursors into the file, one

for program input and one for user editing. In the "normal" interactive
case, the user cursor is at the end of the file and the program cursor is
not far behind. The most immediately apparent advantage being that the

user has the facilities of the editor with which to modify the input.
Optional 1line (or other granularity} interlocks will be provided to make
sure that the user is pleased with what has been typed before the program
reads it.

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Interactive Program Input/Output 18

One characteristic of this approach is the assumption that user input will
be subject to interpretation for the detection of editing command
sequences. This places some constraints on wunderlying application
programs, but these are normally only exercised by editor—paradigm programs
that we would expect to use the provided facilities. It is also true that
the wuser can avail himself of the key—mapping facilities to obtain the
effect of direct access to user keystrokes, including the wusurpation of
system control function keys.

The input system shares the characteristic of traditional systems that
typeahead is consumed by successive input requests, so the user can type
Ada statements while the statements in the previous command are still

running, but without the Ada completion facilities, etc. Alternatively,
the wuser can request a new command window and enter commands in it
completely asynchronous of already running tasks. In ¢this circumstance,

the complete Ada program development assistance is available.

When a task "runs out" of input data, it will simply wait for input until
the user provides input to that window. If multiple user tasks try to read
from the same window, the input task will serialize them, but the
interleaving of input characters is likely to be as unsatisfactory as it is
on other systems. When data is requested from the terminal, the user can
be notified of the need for input, and potentially its type. by the
standard highlighted prompting mechanism.

4. 3. Standard Output

Normal program output is written to the standard output file and to the
interaction script. Normally, the interaction script is mapped onto an
active window, but it is possible to focus directly on the output and not
have the interaction script visible (though this has implications for the
ability to provide input). In fact, the user can direct that any file be
similarly followed on the screen or not be visible —— the standard options
are in no way special.

Since wuser programs do not write to the terminal, but to a managed window,
random text should never appear in the middle of a window (except for
terminal glitches, etc.).)

The default output characteristics will make it easy to segregate output
from independently initiated tasks. Multiple user tasks addressing the same
window will have their output serialized by the output task, but beyond
that the user must still handle the problem of unsynchronized output.

6.4, Script Management
Immediate feedback of typed characters is very useful in reassuring the
user that he has typed what he thinks he has. GSeeing the characters in the

context in which they are actually accepted is also wuseful in confirming
the appropriateness of what was typed. To accomplish both of these

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Interactive Program Input/Output i9

objectives, ¢the interaction script is created by appending user input and
inserting program output. As the input is consumed, the output cursor
moves past, accomplishing the appearance of inserting the input data where
it is used.

Similar provision can be made for characters that are not to be echoed. To
a first approximation, this can be handled by setting status information in

the input package. Unless the echo characteristic is altered before a
character entered, it will initially (not) appear when it shouldn‘t
(should). The editing paradigm is particularly useful here, since it is

possible to have the appearance correct by the time a particular section of
the display stabilizes; for example. a password entered before echoing is
turned off will go ahead and print, but will be erased as it is accepted.

6.5. Controlling Interaction Characteristics

Because input, output, etc. are all files, they can be redirected by
substituting user filenames. '

Output can be stopped when the available window space is full for ~Q/"5-
like functionality.

Would like to have a visual signal as to the progress of program sequential
input relative to what has been entered. As a minimum, there must be a way
of determining when the available input has been exhausted (read them bits
too much and they get tired). .
%C\

\A«C) l‘Q f}\l/‘o,,\ 0\-62 Q‘/éé“’t‘ #JCof

] Chapter 7 fhuagh >
Help

The purpose of a help system is to provide the wuser with whatever
information will make it possible for hi continue to be productive.
Levy’‘s Law of the Lost Layman [Byte, August (983} gives the following five
types of questions the user is likely to have T Ariadne.

What does X [do to Y1?
How do I do X? AL T
What does X mean?

What state am I in?

What exactly did I do wrong?

arL0-

A number of problems face any system that attempts to answer these
questions.

1. How does the user ask for help?

2. How does the system detect which +form of help the wuser is
requesting?

3. How does the wuser control the amount of help and its
presentation?

4. How is the help facility made available <througout the system

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Help 20

without requiring each command to be planned around the help
facility?
9. How is help text provided, encouraged and/or kept up~to-date?

It would be nice if there were something here that provided criteria for
Judging facilities.

Before proceeding to the hard part, designing a help interface, we will
start by taking cheap shots at what has been done.

7.1. Available Systems

There are a large number of systems that provide some sort of help to the
user, I will draw examples primarily from Tops—20 and Unix because they
are widely known and typical of what is available. More comprehensive
facilities (for instance, Info in Tops—20 Emacs) are available, but are
more difficult to characterise in short form.

7.1.1. What does X [do to Y17

This facility is provided by Tops—20 in the form of the Help command and in
Unix by the "print manual entry" command. Both system simply print a pre-
prepared description of the command at whatever level of detail the author
thought appropriate. Tops—20 favors a brief description, one the order of
a single screen, that references the complete documentation. The Unix
manual entry is the complete documentation.

Neither system provides much in the way of detail control or guidance 1in
how to +¢find out what is wanted without reading a large quantity of
documentation. Note that this is the natural form of help from the
implementor‘s point of view since the question and answer are organized
along the same lines as +the program. This should not lead to the
conclusion that this level of help is uniformly well-done.

7.1.2. How do I do X?

This question is addressed by apropos commands. The user thinks of a word
or a set of words that seems to him to be related to what he wants to do.
Typically, the system looks in a particular place for the word and reports
what it finds. Step 1 is then wused to +find out how ¢to wuse X. Users
frequently prove inadequate to the task of choosing words that the system
understands and are sufficiently specific to keep the list of possibilities
short enough to read. This seems to be related to the tendency to search
for keywords only in command titles (greatly reducing the number of terms
related to a particular command) and the lack of feedback mechanisms as to
the words the user chooses when searching for something.

7.1.3. What does X mean?

Not well addressed by most systems. The apropos command may be of some use
in explaining terms or messages, but is vusuvally oriented toward commands

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Help 21

rather than status. It would seem reasonable to require that all major
terms in system messages have some help associated with them.

7.1.4, What state am I in?

Probably the most heartfelt of the questions asked by the 1lost wuser
(frequently to a person since the system can‘t help). A trivial version of
this is embodied in the 7 facility of Tops—20. The ? doesn’t tell the user
much about his global state, but does provide considerable information
about what options are available if he wants to continue entering the
current command. Note that ? seldom gives any information about what the
various options do, just what the various arguments can be. This is a weak
form of what is available using strong typing —— most of the information
provided is the parameter type and its possible wvalues if it 1is an
enumeration type.

7.1. 5. What about that statement isn’t legal?

This isn’t all that much of a problem on conventional systems and it still
isn‘t handled very well. The typical response is to print error messages
and assume that the wuser will understand them or have a manual to read.
Given the admitted complexity of Ada semantics, it is imperative that we
have good ways of explicating errors and providing help understanding the
underlying concepts. Help with understanding how Ada works is crucial to
the user getting help with most of the rest of the system.

b// Qo eooL | {
7.2. Integrating Help into Ariadne «” proe R Enehion T

A number of the Ariadne features directly support <the wuser in ways
approximating a help feature.

1. Syntactic/semantic completion provides most of the ? facility.

2. Show the definitioﬁ of X answers some of the questions about X
and its role.

3. Editor-supported détail control provides a uniform mechanism for
varying the detail depending on the particular purpose.

4, The ability to move from one window to another without loss of
state makes it possible to ask questions without disturbing the
entry that prompted the question.

Together, these features are the beginning of a Tops—-20-level help
facility, but more is needed.

7.2.1. Wishlist

To be wuseful, help information should ideally have the following
characteristics:

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Help

]
P

1. Convenience.

To the extent that help is easily obtained and reliable, the
user will be encouraged to use it. To the extent that it is
hard to use and of inconsistent quality, the user will only try
to use it if truly lost.

We should be able to bind help to a single key and maintain that
link at all times. We should probably choose a sequence on a
function key instead of a single character.

2. Self-explanatory.

There is nothing worse than a help system that is entered
easily, hard to understand and hard to leave.

The conventions of our help system should be the same as those
for the rest of the system, which will make it easier for the
user to use help once he masters the basic editor interactions.
On the other hand, it is not possible to assume knowledge when
the user is asking for help.

3. Ability to extract context.

Whatever information about the user’s state and probable needs
the help system can use to tailor the initial advice is likely
to be well received by the user. For instance, a common time to
ask for help is when an error message is incomprehensible. The
help system should be able to detect this and answer
accordingly.

4. Appropriate level of detail under user control.

Users of widely variant ability and experience will end wup
asking for help from the same source. The novice should be able
to find out what is needed for simple uses quickly and the the
expert should be able to find out the details required for his
particular purpose without having to read a primer on the
particular topic.

This can be assisted by structured presentation and detail
control, but care must still be exercised in writing and
organizing the text. It would be useful if the user could set
default, and/or the system could remember some of the salient
characteristics of previous encounters. 0On the other hand, the
goal is to help the user, not do research in AI.

5. Currency.
Comments in programs quite frequently get out of date because
the program will run even if the comments are wrong. Any

documentation that seems to be separated from the program is
even more likely to get out of date.

Rational Machines proprietary document DRAFT 8 July 11, 1982

Ariadne User Interface Help

The apparent path from the defining occurrence to the help text
must be made short. It will also be important <to capture as
much information as possible about what questions the user asks
and doesn’t get answers to along with what entry he finally
settled on. It would be useful to know the difference between
typos and misunderstandings, and the difference between help
sessions that provide the desired assistance and those that end
with the user punching out the terminal.

S ELp - e cvees il @uen QQ‘G‘”L
O upolrly

£
fﬁp« o /;Lﬂ ~P¢(}fqp

Rational Machines proprietary document DRAFT 8 July 11,

23

1982

