PPPP H H Il L 369 SS3S°S C00 pPPP H H Y Y
P . H I L 0 o S 0 5 P P H H Y Y
P P H A I L c 0 5 D s P P H H Y Y
PPPP AHHHAY I L C 2 SS55 0 S PPPP HHHHH Y
P H H I L C 0 S 0 o P H H Y
P H H I L G 2 5 C oD 7 H H Y
p H A II1 LLLLL 2C0 S$SS53 0CO P H H Y

333

3 3

3

3

3

- w -3 3

.o 333

START Job PHILOS Req #2155 for EGR Data 28-S5Sep=2%2 22:04:53 Monitor: Rational
File RM:<RPE.DOC>PHILCUSOPHY..3, cZreated: 24—-Aug-82 14:06:40

printed: 22-Sep-32 22:74:53
Job paramaters: Reguaest created:?2l~Sep=-27 22:03:03 Page limit:3é6 Forms: NORMAI
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCII Print modes:

-

Introduction

This document discusses the basic concepts and philosophy of the R1000 operating
system and programming environment. ‘

Traditionasl architecturas and programming 2nvironments are incompatible with
modern programming methodonlogies and Ada. Conventional Operating Systems deal
witn the wrong preblems on the wrong level of abstraction; they are inadeguate
to support zcur environment design goals. It is doubtful that someone can build
an effective programming environment on top of a standard 0S.

Any programming 2nvircnment will {(hopefully) do more than a standard 0S5, this
@#ill add guite 2 bit of overhead to the host system. The fact that the R-1000
is designed to support 4da and precgramming environment function will offer a
tremendous performance advantage to our customers.

A) Goals and D2Objectives

The R1302 design was guided by the recognition of the importance of program
reliability and maintenance; central soals were:

-- mitigate the softuare crisi
== reduce software 1lifz cycle
== 1improve softuare/system reli

[SIS UT
[s]
8]
r+

-

The keys to successfully =2chieving these goal are

== concern for programming a3 a human activity

~= user friendly

~-= improve productivity

-= consistent use of Ada ocn all levels of interaction
==~ Breadth of scope =nd pplicability

-= tight inteagration of capabilities

-=- efficiency

== efficient real time execution of Ada

== portability to upgraded systanms

Keys to achieving these objectives are:
- to fully utilize facilities provided by the advanced R10D000 architecture
- to use Ada concepts and semantics where 2ver possible.

Proper use of the R1000 architecture 2llows great simplicity and flexibility of
the R1000 software. For example, the distinction of data stored in memory and
data stored on disk files disappears on the R120D. This uniformity has numerous
significant advantagess, ec.3. d2ta can be accessed randomly, no I0 programming is
requireds, arbitrary pointer structures can be stored easilyr and protection is
provided by normal Ada scope rules.

The use of Ada concepts throughout the design resulted in an environment that is
understandable and can be explained in *e2rms of Ada semantics. Only very few
additional concepts are reguired.

The R1G00 is not the sum of programming environment, Compiler, Architecture,

Hardware. Rather, the R120D is an integrated system. The synergism possible
through the integration of Ada and the R-1200 system results in a system not

conceivable on conventional architectures.

The programming environment desizn must takz into 2ccount the R-1000
architectures our reliance on Ada as the definer of our market niche, and the
needs/desires of the potential programming environment user community. The
design must be sufficiently ahezd of *the "state of the art” to provide product
differentiation yet it must bes, in its minimal form, implementable by the late
fall of 1932. We must looks, explicitly, at the designs offered or likely to be
offered by competitors offering systems that will be alternatives to or compete
with the Company®s systeam. The extensibility of the environment both for adding
tools developed at RMI and our ability to integrate tools developed elsewhere is
an important consideration. For efficient use of the programming environments
in particular by novice users it is necessary to not simply adding tools but to
add knowliedge about tools as well. The programming environment should be
capeble of helping the user access its component tools in an effective and
productive manner,

The prograaming environment will ease the transition from one phase to another
of tne design, development, and maintenance of software.

The programming environment design must be responsive to the needs of all
individuals involved in the software design and development over the life cycle.
de must be sensitive to the needs of managers and provide for tools that will
gnable managers to benefit from out programming environment.

-
\
\
|

3) User view of the System

We recognizz2 the fact that the programming environment may be advanced to a
point where the user may not understand or feel familiar with its operation,

The gap 1in knowledge respensible for this attitude is bridged from two
directions. Cur oun user interface and design must be sensitive to the user”s
perspective. S2conds uwe must educate the user, through documentation, articles
in the popular journals, endorsements by industry leaders and respected computer
scientists, aerticles published documenting initial customers favorable
experiences with the system, to zspprecizte the system.

One important point is that the complete system is written in Ada. The user vieuw
of the system is Ada =-—- Ada seman%tics explains the operation of all features and
tools of the system.

Since everything is5 written in Ada us2rs will be able to easily customize the
whole system. The guestion seems to be to what extend we should allow
modification of the RMI code. What are legal changes; what changes void our
software maintenance; what part of the source of the programming environment is
released to the customer. These are important gquestionss, recently articles have
appeared demanding companies warrant software. The fact that the programming
environment will be capable of leading *he user to learn more about Ada through
use of its facilities is a strons selling point—-—to management as well as the
software anginger. No time is lost learning the system, everything (almost)
learned for the sake cf the system is consistent with things the person would
have to lzarn to becom2 more familiar with Adz. We can rely on people within
the Company for some user foeodback but we must also attempt, at the appropriate
times, to 2xpose select members of the "industry ™ to the programming environment
and ensur2 tha market acceptance of the environment. One idea is to implement
some type of ETEAZH routine to serve 2as system documentation (?) at the
executive level, and to allow the ussr %o get some quick REWARDING experience
the first time logging on.

The following system structure will guarantee the above goals:

A R1200 machinz runs only one programs, the package R1000. This package contains
the package SYSTEZM and packages for individual users. The SYSTEM in turn
provides other program units, such as packages of utility routines, accounting
taskss, device controllers, and components of the programming environment. Each
user of the system is represented by 2 package. A user may himself create users
within his own packager corresponding to subaccounts on other systems. The
overall system view is illustrated in figure 1.

A1l obJjects listed in the visible part of 2 user package are visible to other
users declared in the enclosing scope; user packages and the system conform to
Ada semantics in all respectsz. Ada scopz2 rules provide 2 powerful means for
protection.

All program objects crected by v user are subunits of his user package. In
particular, there 1:i no need %42 store programs as data objects == programs are
part of the overall system. A programmer may store data in local variables of
his package (or sub units), thus, the notion of file in a conventional system is
replaced by variables in Ada.

Cf courses, variables provide only 2 primitive way of storing data. Ada allows us
to define more sophisticated file structures. For exampler a data set could be
encapsulated in a task. The task will provide entries for reading and writing of
its data. In this ways, sharing of da*ta does not create timing problems, alsos
special access rights may be checked in this way. Also, 2 particular
installation may elect to create "dummy" users whose sole purpose is to provide
shared data (corresponding to <subsys> on TOPS-20).

The user communicates with the machine via a uniform INTZRFACEZ. All programming

environment facilities are accessed through this interface.

Details of the operations provided by the INTERFALE are described in subsequent
sections.

I
|
I
l
|
l
}
7
\
i
l
l
l
\

C) Interfaces Dasic Operation

The sophisticated user should be able to access the full power of the
programming environment and architecture but this facility should not defer the
novice from performing meaningful work on the environment shortly after first
exposure. The INTIRFACE should help the user develop more sophistication.

INTERFACEZ command languager, if the terminology is appropriater, must be user
friendlys, and not intimidating. The consistency between the programming
environment and Ada should make this possible within the framework of our
design.

Ideally we would want to provide one system moder, teachs, use, novice and
experienced user. Ftzach, you us2 it once and than can forget what you
learned,{it is boring to use Eteach a second time) the entire INTERFACE should
be & teaching tosl of sorts that reinforces learning and leads the user to new
plateaus of understanding and functionality.

The INTERFALEZ must appeal to the customers manajgement, to sophisticated users
and to "novice" users. Many of the customers software people will have little
Ada experiencer, 2s such they will be apprehensive about Ada. The INTERFACE
should be user friendly but should 2nable the sophisticated user to access the
full power available with the R-1222. The programming environment”’s
contribution to reducincgc the Life Lycle {ost of software and improving
productivity, as well as the provision of some tools to support the management
of large software development projects will appeal to managerse.

The R1000 INTERFACE is the only way for the user to communicate with the
systems 1t 2cts &5 a window in the system. The basic component of the Interface
is a structure oriented display editor. Every piece of data is displayed
according to its type. For some common types the system provides suitable
display routines, for example, Ada text will always be displayed in a properly
indented form, while for type TEXT normal sequential display applies.

The user may provide his own data types with suitable display routines. For
exampler & two dimensional array may be displayed in table form with suitable
column h2adings being automaticaelly inserted.

Analogouslys, special input routines may be associated with a data type. In the
case of Ada programs this is a incremental parser. It allows for programs to
contain syntactic stubs but otherwise onforces syntactic validity of all
programs input to the system.

The most important aspect of this scheme is that a running program {e.g. and

elaborated package) is considered a data types it can be edited like any other

data object. This feature in effect make the editor a debugger’; not special

language has to be learned -- to dabug a orozram simply means to edit it.

Clearlys, the "edit operation'" available for running programs differ

from those for static program text. The operation available are:

-- while editing 2 running programs the display shows the
corresponding program taxt.

== normal cursor movement commands are allowed

-~ any Ada statement or expression which is semantically valid in the
scope determined by the current cursor position may be typed by the
user and will bHe executed.

-~ a declaration may be deleted from the program if it is not
referenced

-=- a new declaration may be elaborated if this would not cause a name
conflicte.

Noter that thesz are mata oparations that manipulate a running Ada programs, they
are thus outside the semantics of Ada. These are the only additional concepts

used in the R1022 INTERFACEZ. The programmer should consider these meta operation
to occur "outside" time; they transform one legal Ada program into a differen
legal Ada program.

Except for the metas operations mentioned above all functions of the INTERFACE
can be explained in Ada semantics. Interface functions may be overloaded and
redefined according to Ada rules.

After login, the Interface will display the visible part of the user package on
the screen. Commands allow to switch back and forth between the body and the
visible part of the user package. Using basic cursor movement commands the user
may inspect any part »of his package. The Interface will only display obJjects
visible in tha scope o0f the user package. Only objects within the scope of the
user package can be alterad. Thus, Ada visibility rules are enforced by the
Interface and zuarantee system integrity.

All operations available on conventionzl operating systems can easily be
exprassed as edit operations in the above sense.

D) Programming ZTnvironment Tools

The choice of an initizl tool set and the additional tools we announce and
provide as updates ts the programming environment must be coupled to user
demands neadsr and expectations. We must not try to provide too much and cause
sursalves undue prebhlems., The RI12DD will be well z2head of its time, the key is
to get & sounds reliables responsive implementation on the market in 1983. We
cans from theresr using feedback fraom our initial customers, by reviewing the
applications where the RI100D is most populars, and the customers mest interested
in volume buyings embellish the capabilities of the programming environment.
This is a cost effective, low risks, high probability of success implementation
philosopnysr 1t will work well for a product as advanced, with respect to the
alternativess, as the R120C. R and T "bang for the buck”™ will be maximized as we
will know more about our customers utility and demand curves.

Zxtensibility, add tools and add knowledze sbout tools and how they interact
with each other and with the user, In this manner the unsophisticated user may
have less information about certain %tools *han the sophisticated user, this
pravents the unsophisticated user from improperly and harmfully invoking a tool.

An interesting market will the host-target where *the R-10030 is initially the
host and any number of micros or minis the targets. The programming environment
must support this type cf development, as specified or discussed in the Stoneman
(?). This dozs not appear, %to me, %0 cause any unusual problems; it requires
that cross compiler for certain target machines be provided.

Invocation of tools and user programs is completely done with the facilities
provided by the Interface.

The facility of the editor to execute any Ada statement or expression in the
scope pointed to by the cursor is the basic means for invoking tools.

In addition to the basic method of program invocation other methods exist.
Certain tools may be invoked automatically by individual editor commands. For
exampler whenever an Adz program is being edited, semantic =nalysis will happen
automatically without the users knowledge. This feature has two main
advantages. Large parts of the compilation time will be distributed evenly
during the user”s think time. MWhenever the user asks for semantic analysis of
his programs, tha list of currant semantics errors is readily available. The
conventional edit-compile-edit cycle of conventional systems does not exist on
an R1CC0.

OCbviously, the facility to custemize and redefine Interface commands allows the
user to invsokz arbitrary seguences of tocls with 2 single keystroke.

£) Teaching and Documentation

The R1000 will offer an excellent facility for teaching Ada, using Ada for
documentations, an excellent Ada compilers, & good Ada editor, it will offer
simple to use yet pouwerful on-line interactive tools, and will Price performance
wise be extremely eofficient. A customer may initially want an R1000 as the only
cost effective system capable of teaching a large body of people Ada. From the
teaching sub=market as & starting point we will generate repeat sales.

The environment should 2llow users to recognize the advantages of the R-1000
aimost from their first exposure to *hz system. The user should become an
advocate of the system to his/her management.

We will have sophisticsted online documentation and teaching facilities. These

too should appeal to a wide range of users; the novice should be able to learn

to use the systam with only 2 minimum of off-line instruction. At the same time
the online features should be useful for the experienced user. I imagine that

the programming environment will on request display comments and documentation,
reading the Ada code itszself should do the rest.

I expect thzat inexperienced programmers (e.3. managers who used to program) can
writz and execute Ada programs after & short (say 1 hour) time at a terminal.
This time inciudes learnins the system and learning ada.

