(%]
(%]
(V]
(73]

[ESNN 9]

[%4]

(%]

[V}
(PRI V]

[#3]
(%]
[72]
(%]

O
(W)
lw)
L)

Qoo wLwo
CGoOoLwou

*START* Job 35
File RM:<RP:Z.
printe
Job parameters: R
File parameters:

0060

OO GO

[RARR R AN VRN S R A NN R £}

e

S S SR

Oy O O

b (v I ¥ I e B ]
D 40

AT YOYOY

T M
[T
O 3 -
loBie BRET IR <IN o8

—

-4 0
0 rd o4

w T O -

- ©

[ ]

P bd bt b b

(22}

]
-l ed e ed e oD [

v Z0
3

b}

Qo
e = O

e O M

+y

-

s

[ ]

T w0

£ 2 2 e e 3 B £ O 1 B 1

c

T
-

il

i
Ril
i)

= II1I CCCC AAA TTTTT TII
I C A A T I
I c A A T I
I C A A T I
I C AAAAA T I
I C A A T 1
III gcce A A T 111
Date <8-Sep-232 22:07:43 Monitor: Rational
reateds: 2%-Jul-22 12:12:57
ep=R2 22:05:03 Page limit:72 Forms :NOCRMA
GLE File format:ASCII Print mode:



1« Introduction

This document contains an outline of the Rational Machines Programming
Invironment. It is intended as = development aid to help locate
unresoived details and 23 an osverview of the structure of the
environment,

3

2e System Structure

2.7« Packazes of osbjects

The system consists of & number of objects. fach object has a type
and czn D2 manipulated in certain ways. For the most part, objects
behave as objects in an Ada program.

ed into packages which are themselves objects. Given
ecific packager the names of obiects that are visible
2 scep2 rules.

Objects ar2 3rou
a context of & 3
are defined by A&

Z2ele Prototypical structure

The prototype organization of packages on the system is outlined on
<rpe.scurce>system.draft

2«34 Cpen Itens

* Are users in projects? Arz oro

[

2c%t3 in users?

* What default structure do w2 provide tec customers?

Js User Interface

2ele Windows

The user interacts with the system by manipulating objects from a user
terminal. The terminal must be 2 display terminal. The screen is
divided into a3 number of rectangular regions called windows. Windows
can be independently manipulated and each window has a3 context. Thus»,
one window might be used to edit an Ada package and another might be
usad to interact with the mail szystem,



Rational Machines Programming Environment 2

3e2e Screen Management

The user has control over windows osn the screen. The following
operation can oe applied to windows (and, indirectly, the screen):

Zxpand: Increzase *the size of the window

Shrink: Decreasse the size of the window

Jelete: 3e2lete the windouw

Move: Move the window to another screen location

* ox X % % A %

Top: Make the window fully visible
S5croll: Change the area of the displayed object
Select: Choose a window %to interaz2ct with

In addition, depending on the object{s) bazing displayed in the window
and the context of the display, many other operations are available.
Many of these are described below.

The user interacts with the system via the editer. There is no
separate command interpreter or commnand lanjuage subsystem.

343« Open Items
* What are the specific kesy seauences to control screen management?

* Can cne window reguest transparent moder thereby disabling the
normal kays tc move to other windouws?

4« Access and Protection
Summary:

* Password or other verification at log on.
Session state saved between lcz off and next log on.

* User may change context during & session provided access
capabilities permit.

* Capebilities may b2 increased during a session by providing
additicnal pesswords or other verification information.

* Capabilities may be decreased during 2 session by giving a
command.

* During a session, the object names given in a particular context
are resolved using Ada visibility and protection rules.

* Users must write abstractions {or use a supplied generic package)
to achiave additicnal protection or more selective access.

* The system provides functions that give unigue, unforgeable
identification and password checkinga

Rational Machines proprietary document DRAFT 11 July 29, 1982



Rational Machines Programming Environment 3

In order to wuse the systems, the user must identify him or herself to
the cystem. This process is called lojging on. Identity is
suthenticated by use of 2 password or other user—defined mechanism.

Oefault information asscciated with the user includes the following:

* Last Stste: *the state of the user session when the user last
logged off. {(This is null if the user has never logged on
beforzs, or 1f th2 state has been discarded by the system for some
r2a590n.)

* Context: The package in which the user will be placed after log
on 1s complete.

* Access: A list of all packages to which the user may legally
g co

4ela Current context 2 visibility

After log-ons, & window i3 created with the context of the user®s
default package environmen*t. Names in commands issued there are
resolved in that contex*. Normal qualification can be used to
reference objects in packaged not directly visible, but it is not
possible to access an object ocut of the scope of the particular user
package.

4«34 Changing context

The context may be changed by issuing some command. The change is
restricted based on the capabilities of the user issuing the change.
The context of a window can be changed or a new window created with a
different context. There is no &4da analogue for changing the scope of
an aexecuting package. Thuss, this change operation can be effected at
*he command level only.

baboa Open Items

* What is the specific mechanizm for establishing a window 1in a
certzin context?

* How are passwords stored? (encryntion)

* Architectural facilities for encryption or other increased
security material?

* Do we RZALLY believe that Ada visibility rules are ok for the
user a2nvironment?

Rational Machines proprietary document DRAFT 11 July 2%, 1982



Raticonal Machines Programming Environment 4

* Wdhat other protection types or mechanisms should be provided.
(If we say everything is in Ada, then what Ada abstractions or
models should we provide?)

5« Online Assistance

Summary:

cility: Short topics and ansuwers
ctive Tutorial: Lessens in using the system

(S

5«1« Genzral Help Facility

The user can recuest informaticn on & variety of topics including, but
not iimited to,r each of the commands a2nd operations, and procedures.
This information is a short description of the topic and a reference
to additional information (no* all of which may be on—=line).

The heip information will be kept in 2 data base that will grow as
gquestions are raised by users. ITn this ways, the help will be more
informative than a conventiocnal simple decscription of each command.

It is possible for *h2 user to =2dd information to the data base both
to customice system information for local users and to describe
locally produced facilities.

Sede 5elf Teoach

The self-tecaching facility i3 an interactive dialogue that tutors the
usar in the use of many of the system functions. This tutorial is
inte2nded for a user who has somes, but minimal, background in the
concepts of the Restional system,

Help information will appear both in the user window or on separate
dedicated "help windows". For exampler, a form of help is to prompt the
user with & template contzining ramed parameter notations. Other help
requests may point the user to more complete information that can be
perused on a separate text windouw.

5. Basic Iditing

Rational Machines proprietary document DRAFT 11 July 29, 1982



Ratienal Machines Programming Environment 5

(¥4

5.1e Selecting an object to odit
An editing session begins with the selection by the user of an object
to 2dit. The following steps then cccur:

* The system determines if the object is editable. If nots, then an
2rror messaje 1s displayed.

* An editing window is set up and connected to the object editor
for the type of cobject that was %o be edited. If there is no
sbject aditor for that type of object, it is not editable and an
error message is displayed.

* Some part of the object is displayed in the window and the user
begins tha interactive edit session.

Hel2e Basic editor operations

gditing is accomglished by crz2ating = window that displays the object
that 1s to be edited. The user can then alter the object through a
series of editing commands.

The a2diting process is handled by tus system components: the editor,
and the object editor for the object that was selected for editing.
The editor handles the basic user interface and text and screen
manipulation and thz object editor handles all object-knowledge based
operations. Thus, the object editor is responsible for deciding the
storage and display formats of the object, and the legality of
specific 2diting operations.

The editing window is brcecken into 2t lease two "panes” or sub-windows.
The display pane is used to display thz obhject. A cursor in the
display pane shows the part of the object selected for alteration.

The resulit of 2diting operations are displayed immediately in the
display pane.

Zditing commands are either single keystrokes which cause specific
editing operations to be invoked, or Ada procedure calls to editor or
object editor procedures.

The command pane is 2 part of the window used to enter, edit, and
issue procedure-call sditing commands. The commands themselves may be
adited in this pane. The Ada object editor is "connected™ to this
area of the window so that the Ada commands can be entered and
manipulated with the full power of the Ada program editor.

There are a number of =sditing operations that are common to all
editing windows. Thes2 arz summarized belouw:

* Insert: Neuw text (or structured text) is inserted into the
object.

Rational Machines proprietary document DRAFY 11 July 29, 1932



Rational Machinez Programming Snvironment 6

* View Contrcl: Control the part and amount of the object that is
displayed.

* Select: A part of the object is sezlected; then, one of the
following actions can be performed on the selected part of the
object.

* Copy: The se}ected part of the object is duplicated and the copy
inserted at a specified location {which may be in another
windouw) .

* Move: Similar tc copys, but the s2lected part of the object is
removed from its original location,

* Jelete: The selected part of the object is deleted.

Information can be moved from one uwindow to another. This mechanism
i5 used to copy objacts and to convert the storage format of objects.
If & fragment of Ada program is moved from an Ada editing window to a
text editing windows the program code ic considered text in the new
environment and is stocred as text. 1%t may not be possible to paste
ardpitrary text in an arbiitrary window. The object editor for objects
in the window muct decide thz legality of any insertion.

5«3« Open Items

* Ahat 1is the specific user interface for commands?

7T« Ada

7«1« Zditing

The editor supports syntax-directed editing of Ada programs. The edit
provides structure completion, selections based on Ada objects, and
other language-scsriented features.

(Need so0me more acetails herz.)

Searches for structures and text patterns is done by the editor. The
result of the searches zan form a collection that can be operated on
in various ways. (For example: change all occurrences of "A+1" to
"A+2", or form a list of all procedures containing a call to procedure
P.)

Rational Machines proprietary documant DRAFT 11 July 29, 1982



Rational Machines Programming Environment 7

Tale Zxecution

Executable Adz entities ares procedures, functionss, or entries.
Procedures and functions can exist by themselves or can be contained
within packagesa. Entries are always contained within tasks. Users
can declarz proceduress packagess, and tasks. (For the remainder of
this discussion, "procedures'" referes to "procedures” or "functions”.)

To execute a procedures the user issues & command to call the
procedure. The procadure is then elahorated, creating any enclosed
packages cr taskss and then executed. When the procedure terminates,
any encloszsed created obiects are deallocateds Thuss, the procedure is
the baest way to package an executable entity. Except for objects
accessed that are outside the procedures, there are no exclusion
problems if the procedure is executed concurrently by different tasks.

In order to execute a procedure contained in a packager, the package
must first be instantisted. We don”t know exactly the procedure for
doing this as the lifatime of the elaborated package must be defined.
At some point, the user will wish to edit the package. It must be
gither deallocated at this points, or modified as the user makes
changes. The later can be accomplished through re—elaboration, but
this 1is not necessarily what %the user wishes.

We may provide an explicit command to kill the instantiation.

Ada programs are invoked by issuing 2 procedure call to the procedures
or an entry call to the task. The program then executes. The window
from which the program i3s3 invoked is “tied up” until the program
terminztesz, although intaractive I/0 with the program may occur in the
dindow. The usa2r can move *o another window and perform other tasks
which the program is executing.

While the program is exescuting, it may be interrupted or aborted by
giving a zommand either in the window where the program was invoked,
or in the task status window. Some programs may not be interruptable
or abortable. This property depends on the program itself {(some may
be designad so as to be uninterruptable) and the "ouwner™ of the
program. (The debugger may not b2 invoked after an interruption if the
user is not the "owner”™ of the progranm.)

7«3« Debugging
Summary:

Variable examine/modify in any activation.
Interasztive execution pause/continue.

3reakpoints.

Variable trace.

Statement execution %race.

Execution time profile/statement execution counts,.

* % R o % *

Rational Machines proprietary document DRAFT 11 July 2%, 1982



Rational Machines Programming Invironment 2

The debugger provides a sst of operations that manipulate running
Progransa. These operations are available when a program is
interruptaed or may be reguested prior to a program®s execution.

The simplest debugging facility allows the user to interactively
interrupt and contftinue a task”s execution. When interrupted, the
debugger will display the area of the program that is executing and
aliow the user to access and alter values of variables instantiated at
that point.

The breakpoint facility provides a means for a user %0 select points
in the program at which the debugger is invoked. The user can then
perform examinations as described above. Placement of breakpoints
involves making a new version of the program that only that user will
usee. Thuss, if another user executed the same programs, the breakpoints
would not be encountered.

The tracing and performance monitor facility similarly involves
alteration of the program and creation of a new version. In this way»
statements to accomplish the trace tazk are placed in a8 new version of
the program.

An alternative to the modificaticn of the program source is to support
some of these functions in *he architecture.

It is not clear how time-related information can be gathered. Perhaps
another task can be given access to the program counter of the task to
D2 examined, theresby periodically sampling its state to produce an
execution profile.

The machine will provide information about cpu and memory usage. The
Jser may intrrogate these parameters for 3ll of his tasks

When the system makes spource transformations for debugging the changes
in the source are not visible to the programmer. A function or
porcedure may be marked as being "traced"” (a2 comment); special command
insert and remove tracing.

7«4a Configuration control
Summary:

* Multiple revisions accesse2d by name and revision qualifier.

* Linear derivation operation to create new revision.

* 3plit operaticn to create parallel development derivation
stringse.

* Merge operation to bring 92a3rzllel revisions back together.

* Parallel derivation operation tc make a change to multiple
revisions.

* History/change summary.

* Ability to execute or edit multiple revisions of the same
programe.

Rational Machines proprietary document ORAFT 11 July 2%, 1982



R

Rational Machines Programming Environment

The confiliguration control facility i3 designed to support the
development and maintenance of programs. Both simple linear
develospment where revisions only of the most recent revision are
created and more complex tree and graph development where several
revision strings exist sre supported.

Revisions are created as follows. A user decides that a new revision
is desired. The base revision from which the new one will be created
1s identified. Then, a series of edit sessions is performed to create
the new version. At some point, that revision is "released™. This
means that it can no lengesr be modified. Further changes require the
crzation of 2 new revision.

<z

isions of a program may be created based on any existing

Ne In this wayr, arbitrary tree structures can be created. It
ible for users to creats "parzllel"” revisions based on the same
ne As this may mean that 2 merger of the changes will be
d
n

5
w0 U o e
< &

< 0 <

laters, the system provides warnings whenever parallel
5 are crected.

(SN > ST« SN

U oMt Oy
L T SV I R
O ® O VW O L

9O e

The configuration control system provides automated assistance to the
user when revisions are to bz merged. This werks as follows. The
dominant revizion is identified by the user. This is revision that
will serve as the base case intc which octher revisions will be merged.

The system than locates differences between the revisions being
merged, displays similar contexts of both indicating the differences
and provides the usar thz coption of including the changes ignoring the
changes markins the change to be examined later, or selecting one of
the above options followed by additionzal editing. A log of the
decisicns made in the merge ic kept for the user to review.

W

A parallel derivation function is also provided. This allows the user
to make a3 change simultaneously to several versions, producing neuw
versions of each one. This would be used, for example, when a bug is
to be corrected that exists in several versions of a program.

)

Parallel derivaticn works similarly to the merge. The user chooses a
dominant versicn to modify. For each change made to the dominant
revisions corresponcding locations in each of the other revisions are
displayed and the user is given the options similar to those of the
merge. If there is no corresponding location in a revision, this fact
is noted and the user is allowed to skip the changesr, or choose another
place to make it. Again, a lo3s is kept of all changes made {or not
made) to =311 affected revisions.

7«5« Open Items = Adsz

* Implementation of "deltas" toc store differences between
revisions.

Rational Machines proprietary document DRAFT 11 July 29, 1982



Rational Machines Programming Environment 10
* How are logs and other information of that sort stored and
assoclated with revisions?

* User interface for editing, debuszsing, and configuration
operations.

* How does support for other processors fit in? {(This is major open
item as we are selling a software development system.)

83« Program lontrol

341« Task Status
A window can be created that displays the status of a set of tasks
that are related to the user or 2 particular subprogram invocation.
The statesr priority, and resource utilization of the tasks are
displayed.
Be2e Task Control
zditing the task status display causes changes in the status and
operation of tasks. The following operations can be performed on
tasks:

* Change the priority of 2 taosk.

* Change a resource limit for a task. {What resource limits?)

* Abort a task {and its children).

* Delete a taska {This is done only by deleting its declaration.

When and how we actually 3et rid of it are open issues.)

33 Open Items

* How do you rafer to anonymous tasks (egr, 2llocated in a
collection)?

* How do you know when t5 reclaim the task? (ier no more
references to 1it)

* What architecture support is needed {if any) to allow a program
to locate and keep track of tasks?

Rational Machines proprietary doccument DRAFT 11 July 2%, 1982



Rational Machines Programming Environment 11

-~

7« UObJject Management
Summary:

ns references avoided by retaining phantom “0ld” version.
tiated objects remain consistent at 2all times.

[ -]

a
n

[}
+

* 11
* an

9.7+ Changing Instantiated Objects

Instantiated objects are changed through use of the re—elaboration
mechanism. This involves getting z package to accept a special entry
cail that causes some new code to be executed as part of the package.
The new code msy a2dd new objects to the packagesr or delete or change
existing obJjects. The prcgram segment for the package may also be
raplaced or altezred.

Thase changes may affect the consistency of related modules. A change
of a type definition would =2ffect declared objects of that type.
Renaming or deleting 2 named object would affect any module that
referrad to the chject. Introduction of a new object may create name
ccilisions where none 2xisted before.

3ecause uwe are dezling with instantiated environments, these
consistency groblems must be dealt with without loss of existing
information.

Y«l« Versions of User Snvironments

When a change is made to an ins*antiated package creating a
consistency problem with another instantiated packager a new "version”
of the altered package is created zutomatically. References in the
"socurce" that represents an instantiated package is automatically
changed to refer to the older version of the altered package. In this
wayr active references *s5 altered types of objects will maintain their
state and operate as though the change was not made.

This implies that, when an instantiated package is changed, only new
ohbjects can be createdsr and the old one must be maintained as long as
there ara references to it in other instantiated packages. Once there
are no more references, the old objesct can be deleted.

A change %to a module containing an un—-instantiated package does not
require a change to the package. Consistency must be established at
package instantiation time, howevaer. The normal Ada compilation rules
raquire that z2ll modules contained in on2 that is changed be
recompiled anyway.

Rational Machines proprietary document DRAFT 11 July 2%, 1982



Rational Machines Programming Snvironmant 12
=

9«3« Open Items

* How do you determine when there are no references to an old
object so that it may be deleted?

* How do you re-elaborate tasks?

* What implementstion mechanism can be used to update the
referencing packages when consistency-maintaining version changes
are nacessary?

* What is the user interface to say when to instantiate or un—
instantiate 2 pazckage? (This is necessary or else all package

would have instantiations.)

* Do we recompile all of & user®s programs whenever a "file” or
similar object is created or deletod?

10. Archiving

10e1. Summary

* DObJjects can be symbolica2lly saved and reloaded.
Symbolic dump for transportation between systems.
* 3ulk/incremental dump for system backup/recovery.

»* .

102+ Saving and reloading selected objects

individual objects or groups of obiects can be saved and reloaded.

The information saved includes the obhject®s namer, type and "value”

where the value is converted to some externally representation that
can ba placed back into thz object when it is reloaded.

The type can be saved either symbolically or structurally. If saved
symbaslically, there must be an equivalently named and structurally
compatible type defined in the context in which the object is
reloaded. If saved structurally, the symbolic definition of the type
13 saved with the object. This may cr2ate compatibility problems when
the cbject is reloaded, but zuarantezs that the object can always be
reloaded regardless of context.

Normally, objects are saved only in the "external” form. In some
cases it is desirable to save the object in an "internal"” form. This
involves saving the actual memory image of the segments that represent
the obJject. This i3 useful, for exampler in releasing an execute~only
version of a program without the source.

Wdhen segments are savad in this ways, an environment definition is

Rational Machines preoprietary document DRAFT 11 July 29, 1982



Rational Mazhines Programming Environment 13

saved with them that supplies the information necessary to "reconnect”
the external segment linkages when the object is reloaded. If the
reload context is not sufficiently compatible %o re-establish the
linkagess, the object may not be able to be loaded.

103+ 3ulk backup

It is also possible tc make bulk backups of the system. This is
useful primarily for crash recovery and major archiving. It is not
generally possible to relsad individual objects from a bulk backupe.
The backup can be reloaded %o create a "fresh™ system,

3ulk backups can be done incrementally so that only segments changed
since the last backup need be saved.

10+44e Open Items

* Is it =acceptable not to be able to selectively load objects from
a bulk backup?

* What information is required to splice a saved segment back into
a different system?

* What architecturs support is required to splice type links and
imports for loading and dumping objects?

11 Documents

Text files are supported at least to the extent of producing
documesntation for software developmed on the system. Some additional
support for general text processing is provided.

11.7. £diting

There is a facility for raw text 2diting. This facility allows the
entry, editing, and display of sequences of ASCII characters.
Arbitrary manipulations are alloued.

11«2« Structured Zocuments

Some support is provided for structured documents. This facility
supports the easy creation of structured documents such as letters,
memos, reportss manuals, and so cn. The editor has knowledge of
document structure concepts such 2s paragraphss pagess chapters,
headers, footnotes, etc.

Rational Machines proprietary document DRAFT 11 July 29, 1982



Rational Mzchines Programming Znvircnment 14

113« Tpen Items

* What specific feastures are to be supported?

12. Communicating with Other Users
Summary:

* Terminal—terminal messages.
* Session monitoring/assistance betueen terminals.
* Mail system.

12.7. Mail System

We will initially provide a basic mail system. Ideallyr, it would be
implementad as 2n object editor for the editor. This provides an
edit-like user interface similar to those of other functions.

The mail system cllows the entry, editings, and sending of messages to
one or more recipients, and the logging of all outgoing mail.

A directory of incoming messages is kept and displayed for the user as
a package containing objects of type message. Individual messages can
then be examinad, replied tor, forwarded, moved to another packager or

deletad.

12.2. Terminal Communication

The terminal communication facility allows windows on different
terminals to be linked so that both dispglay the same thing. This lets
one user monitor transactions that occur in another user®s window. It
alsoc provides a mechanism for two users to communicate by each
monitoring a window that the other is typing into.

The communication mechani
terminals other activitie
windows.

sm occupies only & single window on the user
s can be carried out concurrently in other

123« Open Items

* 1¥ we make it look like messages are objects in a2 package, will
they really Le that? (iz, programs could access them)

* Implementation: Make 2n abstract type "Message" and define
operations on 1it.

* Should there be a way to have one terminal screen monitor another
complate screen?

Rational Machines proprietary document DRAFT 11 July 29, 1982



Rational Machires Programming Environment 1%

* What are the restrictions on user terminal communications? How
does a user refuse communications?

* How doas 2 user find out that anocther wants to communicate? (Is
there a status window sf some sort?)

13« Peripheral control

There are facilities that z2llow users %o manipulate peripherals in
various ways. These facilities are provides by calls to visible
packages or tasks. Some packages direct 2ccess to peripheralss; others
provide spooled accessa.

13.1. Printer

The printer is normally accessed via 2 spooler. Objects to be printed
are copied in text form by the spooler. The spooler may understand
several types of objects such as programs, structured text, and
unstructured text. Others ma2y have to be converted to text by system
or user supplied conversion functions.

The customer can specify several configuration options to the printer
spooler including banner pages/formats, pagenation, carriage control
conventicns, etc.

Users can inguire ahout the status of requests to print objects. They
can also cancel print regquests or (if thazy have appropriate
capabiiities?) change the order in which objects are printed.

13-20 Tape

Tape 15 normally accessed directly. There is a package that provides
raw tape manipulation functions. The raw access can be combined with
other packages to provide storage and retrieval of structured objects.
Some basic functions to "flatten” an object into 2 binary string, and
"raise" 1t, recreating it from such a string are available for system
defined objects. Users can alsc impiement such functions for their
own objects.

13a3a T2rminals

Terminal access is normally performed by the system. Most terminals
communicate to editor %22s3ks that provide the user interface for the

system.

It is a2lsc possible to designate a terminal line as "rauw”, allowing

Rational Machines proprietary document DRAFT 11 July 2%, 1982



Rational Machines Programming Environment

use of the line for charactar-oriented serial communications.

that provides direct I/0 functions on the terminal line.

13.4. Cpen Items
* How do you go from object to bit string and back?
* I0P implications of user defined terminal handlers?

Other devices to support?

14. Utilities

14.7. Generic file package

(Wolf has this someuwhere.)

14.2. Open Items
* What other packages should be provided?

* To what extent should we encourage the use of files, if at

Rational Machines proprietary document DRAFT 11 July

This is
done by s2tting the terminal configuration package which defines the
Way in whnich terminal lines are controlled. A package is available

all?

29, 1982



Table of Contents

e

)

Table of Contents

[

1« Intreduction

2. System Structure
2«1 Packages of objects
2«2« Prototypical structure
2.3. Open Items

le User Interface

Windouws

Screen Management

Open Items

and Protection

4.7 Log on

4.2. Current context % visibility
4«%s Changing context
bob. Jdpen Items

S« Cnline Assistance

5«1« Ganeral Help Facility
S5«2« Self Teach

5. 3asic fditing
5«71+ Selecting an object to edit

«2e Basic editor operations

6.3. Tpen Items

[ JER V2 X WE I8 92
.

U W N -
L]

W .

]

*
.
I
O

7«1« Editing

7a2s Cxecution

7.3« Debugging

7«.4e Configuration control
7«%a Open Items = Ada

— e b and
OOOO VXA NOGRO VIV ST HWRNIN R - - 3 a e

Ze Program Control
Bele Task Status
Zece Task Control
2e3. Cpen Items

9. DObject Management 11
3.1« Changing Instantiatad Objects 11
9«2« Verszions of Usar Snvironments 11
3.3« DOpen Items 12

10« Archiving 12
1071« Summary 12
10«.2. Saving and reoloading selected objects 12
103 Bulk backup 13
104« S%pen Items 13

11. Documents 13
11«1« Zditing 13
11«2« 3tructured Documents 13
11«3« Tpen Items 14

12. Communicating with Other Users 14
127« Mail System 14
122« Terminal Communication 14
12.3« Dpen Items 14

13. Peripheral control 13
13417. Printer 15

Rational Machines proprietary document DRAFT 11 July 29, 1982



Tabie of

Contents

13.2. Tape

13.3.

Terminals

13.4. Cpen Items
14. Utilities

14.1.

Generic filz package

14.2. Open Items

Rational

Machines

proprietary document

DRAFT 11

15

14
16
16
16

July 29, 1982



