TT777

e

*START* Job SYS_ST Reg

P

(%)
(%2}
7]

(73]
(%)
(73]
(%]
W

IRRRE)

A A

555585

SSS

#156 for

File RM:<RPZ.DOC>SYS_STRUCTURE.

printed:
Job parameters:
rile parameters:

{opy:

1 of 1

28=5Sep=82 22:0%5:
Request created:Z2B-5Sep-232 22:03:20
Spacing:SINGLE

63
Tn118’
07

R VL P R

-_— et ) D el D D
0
[69]
[$¥]

crzated:

Sl o

cocacacac

aNaNeNeNel

ccce

CCccCC

TTITTY

I e e

Page limitz36
File format:ASCII

cccCcacaocacca
cCcccococcoa

uuu

Dzte 23-Sep=-8%2 22:06:06 Monitor: Rational
14=Sep—-82 22:25:51

Forms: NORMA]
Print moder=,



1« INTRODUCTION
1«1 Purpose

This note outlines the design s*ructure and major components of the
Rational Programming Znvironment.

The initial release of the Rationazal Programming Environment does not
attempt to provide an exhaustive set of functions. Rather, it
provides basic functions and a foundation for extension. Thus we are
concerned with 2stablishing the structuring principles, basic
mechanisms and informaticn resresentation techniques which can be used
throughout the system. In addition, we are interested in decomposing
the system into work units and defining interfaces to facilitate
near—tarm development efforts.

1.2 Design Goals (optional reading)

The primary goal 1is to gprovide an efficient and reliable
implementation of the functions defined for the Rational Programming
Environment. Functional reguirements and user interface
considerations which determine the design are documented elsewhere
{(RM, etcalda

5iven the scope of the environment, 23 major design goal has been to
structure the design arocund 2 sect of basic ideas which allow one to
reason about the behavior of the system. The best softuware
enginecering practices are applied to manage the complexity of
developings testing and integrating the Rational Programming
Environment and to assure a reliable and robust product.

The long expected life of components of the environment and the fact
that we are providing a n2w and immature technology imply that
maintainability, modifiability and testability are a major design
goals. Major changes can be expected throughout the product life
cyclie and the system structure must accommodate incremental changes
graca2fullye.

Maximizing technical and marketing flexibility reguires that the
system be as modular as possible. It may be desirable to bundle
software in different configurations, move portions of the software to
distributed system components (intelligent terminals, etc.) and
reconfigure specific installations reapidlye.

Extensibility is a major design goal driven both by marketing and
technical considerations. The product life cycle is viewed as
beginning with an initisl core environment which is then continually
extended to provide increasing function and improved user
procuctivity.



1«3 System Structure

This section briefly outlines *the overall structure of the system.
Later sections will provide rationale and additional detail. Figure 1
provides a simplified view of the static structure of the system. The
systam consists of a set of extended abstract typesr, a set of common
system facilities, and an editor subsystem.

Each extended abstract type provides facilities for the constructions
manipulation, access and storage of a class of objects or set of
related classes of objects. The extended abstract type embodies
considerabie knowledge &bout the kinds of objects it manages and the
tools available for manipulating those objiects.

The common facilities provide mechanisms for easily and uniformly
impiementing certain operations which are found in all of the extended
abstract types. These facilities make it easier to construct extended
abstract types and encourage a consistent approach to providing
version control, access conirol, etc. It may turn out that {as the
design evolves) many of these common system facilities will end up as
{lower-level) extended abstract types.

The editor subsystem provides a corz editor, a generic object editor,
a generic command obJject editor (which 1is very similar to the generic
object editor), 2an image data structure for core editor to object
editor communications, and the sassion command object editor. The core
editor provides the direct user interface and is responsible for
terminal and window management, keyboard mappings, basic text editing
operations, detail control, and overall session management. Fach
extended abstract type instantiztes the object editor package for
structured manipulation of objects of the type. Thus an object editor
is defined in terms of exaclty one extended abstract types; although,
an extended abstract type may itself involve the composition of
several types. The object editor in *urn may instantiate a command
object editor for axecuting a2xtendad commands on objects of the type.
The session command object editor instantianted in the core editor
provides an environment for 2xecuting session—level commands.

Figure 2 illustrates a slightly different view of the system, which
reflects some of the dynamic structure of the system. We see that at
runtime the system consists of the szt of eaxtended abstract types and
a number of sessions concurrently manipulating the system state
represented by the various extended abstract typese. fFach session
consists of a single core 2ditor tasks, one or more session command
object editor taskss, and a number of object editor tasks (at most one
per typel. Zach object editor may in turn have spawned 2 number of
command abject editors (at most one per window of that typel), each of
which may have spawned another command objrct oditor {(and so on
recursively for command object editors).



While the system structure encourages extensisn by adding extended
abstract types and object editorss, thers are a number of basic types
and editors which will be included in the initial product. These are
illustrated in Figure 3, which can be considered a refinement of
Figure 1. Thera zre seven extended abstract types in Figure 3 (R1000-
users texts, mail, diana, elaborated context and Ads data structure).,
2ach providing an object and command editor for the corresponding
typee.

Te4 Scope

Section 2 describes the structure and operation of the editing
subsystem. Section I discusses the basic set of extended abstract
types and the object and command editors which go along with each
typea Section & discusses a number of system facilities which are
shared by the various extanded abstract types.



2« ZDITING SUBSYSTEM

2.1 Visible Structure

The visible {(stotic) structure of the sditor can be seen in Figure 4
(<rpe.doc>zditor.ada) which shows the Adz interface between the editor
and the rest of the system. This interface is designed to encapsulate
all core editecr to object editor vrotocols and specify the operations
which an extended abstract type must provide when instantiating an
object editor.

2aleale 1Image. The image packaze in the eoditor interface describes
all of the data structures usad for communication between the object
editors and the core editor. Basically, image.pointer provides a
displayable representation for structured objects of any type. This
representation is used for passing input from the core editor to the
obJject editor, and for passing display information from the obJject
editor to the core 2ditor. Iimage.Data consists of two parts a
template and = list of object_references which provide the actual
parameters for the template. The template is basically a two
dimensional text structure with stubs indicating where parameters are
to be inserted. The actual parameters are either displayable images
{re2presented by and Image.Pointer) or object ids (Image.Object_Id).
Ubject 1ds provide @& handle for associating display information with
underlying osbjects. The protocsosl for naming objects is discussed
below.

£e1e2 Lore Zditor. While th2 core editor is a large programs,
implementing alil of the direct user interfacer, it presents 2
relatively simple interface to *the rest of the system. The
Core_Editor package exports only two typess, name and port. Creating 2
core editor returns a Core_£tditor.Name which is the handle for the
editor instance. The only operations on nam2s {besides the create
operation) are *he deletz operation (to delete a core editor) and the
open operation which returns & Core_=Zditor.Port. A port is the
communication link between an object 2ditor and the core editor.
Given a port, there are operations for zn object editor to get a
command, re2ad back changes made by the user, and update the display.
411 of thesz are with respact to an object id.e The object ids are
assigned by the object editor. The object editcr is responsible for
maintainins the mapping batueen batween object ids and the underlying
abjects. The core editor mainains the mapping between object ids and
display related data structures.



2e1.3 Object Editors.

0

The object editor generic is instantiated once per extended abstract
typee Tha generic implements (and encapsulates) a specific protocol
for object ecditor interaction with the core a2ditor. The get_command.,
readback and replace cperztions on command_editor ports are used only
by the body of the object a2ditor generic (and the command object
editor g3enericl)s, so0 the core 2ditor "knows™ that all of its users
follow the expected discipline. For example, after doing a get
ceommand and getting 2 readback_object command, the object editor will
read back the object and then replace it.

The generic also specifies (in the l1ist of generic formals) the set of
tools which must be provided by the extended abstract type to support
structured 2diting. Besides the object type {(and an associated list
type and operations), the extended abstract type must provide tools
for unparsings, parsing, editing and accessing objects. In addition.,
the extended 3bstract type may provide a short circuit command table.,
which identifies extended commands that can be invoked directly
(rather than being evaluated by tools in the elzborated context
abstract typas as discussed belsw). The short circuit command
information is also used for command completion.

~J

(A%

Internal Structure

In addition to bodies for the core eoditor, object editor generic.,
and the image package, the body of the editor {(fig 5 --
<rpe.doc>editor_body.ade) contains 2 command object editor generic and
an instantiation

r+
[

ion

[
N

243 Runtime Organiza
253 Core Zditor Design
Zak Object Zditor Design

2.5 Command Object Editor Design



3. EXTENDES ABSTRACT TYPES
Concepts

The notion of an extended abstract type is intrcduced to provide a
framawork for organizing system objescts and for reasoning about the
behavior of system components. Figure &4 provides a pictoral
representation of an extended abstrzct type. A4n extended abstract
type consists of one or more relataed abstract types, an extensible set
of *tools built upon the abstract types, and storage facilities
{objects of an extended abstract types are by nature long-lived).

The abstract types thcot make up an extended abstract type are
fairiy conventional. An abstract type is gzenerslly designed such that
the set of operastions satisfy some completeness criteria (that is, the
operations are sufficient to perform all interesting manipulations of
objects of the abstract typed), while 2lso reflecting the relevant
abstract properties of tha %type being defined. The set of operations
1s generally desianed %o provide a3 consistent level of abstractions,
rather than mixing primitive operations and very high level
operations. While necessarily minimal, the set of operations is
usually kept reasonably small so that the abstraction can be easily
maintain and unde2rstoode.

A tool is any package or subprogram built on top of a2 set of
abstract types to provide some higher level function. For
exampler, the diana extended abstract data type includes the parsers
simplifiers, pratty printer, semantic znalyzer, data flow analyzerss
code generators, and many other tools. Tools may also be much smaller
and simpiers for instancer smnall subroutines which evaluate some
simpie predicatz on a diana tree.

While the tools associzted with an extended abstract type are
primarily concerned with the types contained in the extended abstract
typesr th2 tools may use types from other extended abstract types. For
exampler there may be a varsion cof the pretty printer as part of the
diana extended abstract type which uses a text type from the text
extended abstract typee. Thus axtended abstract types can reference
each others, in the same way that a pair of simple abstract types may
contain mutual references.

There arg certain operations that must be provided for every
long=lived system entity. The extended abstract type paradigm
provides a template, specifying the minimal interfaces and defining
conventions which allow consistent interaction between different
systam components. The standard interface includes tools for editing
and for controlling {and synchronizing) access to objects. Figure 5
outlines the interface to th2 prototypical extended abstract typee.



R10C3 extended abstract type

The interface between the environment and the machine is provided
by the R1002 extended abstract typer which encapsulates the
architecture and operating system. The R1000C extended abstract type
provides interfaces for code 3z2neration, elaboration, resource
manajement, debugging, and system performance monitoring and control.

Oiana extended abstract type

The Diana extended abstract type plays a central role in the
Rational Programming Environment. All objects in the system a have a
spurce representation in Ada, and Diana provides the internal
representation for all 2Ada. The Ciana extended abstract type consists
of tne Diana abstract type, facilities for 2fficient storage and
manipulation of 3Jianar, protocols for synchronizing access to portions
of *he Diana tree, mechanisms for automatically invoking tools when
changes arge made to the Diana tree, and tools for parsings pretty
printing, semanticizing, and modifying diana trees. The compiler
itself is part of the Diana extended abstract type.



Zlaborated context extended abstract type

The elaborated context extended abstract type 1is built upon the
diana and R1000 extended abstract types. This type provides the
facilities for actually manipulating the runtime representations,
including all elaborated asbj2cts. Using diana and the R1000, the
elaborated context extended abstract type provides facilities for
instaliing and withdrawing objects, executing Ada in context, and
performing the "eval" function.

Data Siructure 2xtended abstract type

The data siructure extaended abstract type is largely a restricted
form of the 2laborated context extended abstract type. It provides
symbolic (dianal) access to the runtime representation of data
structures. It provides tools and editor support for creatings,
manipulating and displcsying Ada data structures.

User extended abstract type
The user extended abstract type manages basic user account

information including passwords and any other user authentication
information.

Text extended abstract tyge

The text z2xtended abstract type provides operations for structured
text editing and tools for manipulation and storage of text. (RM 7.1)

Mail extended abstract type

The mail extended abstract type is built upon the text extended
abstract type and provides facilities for cr2ating, sending and
recieving mail. (RM 7.3)



General

Aelp

Access Control
Automatic Tool

Version Zontrol

4. COMMON SYSTEM

Invocation

FACILITIES



