- DCDDDODD ITIITI RRRRRRRR

DODDDDED ITTIIII RRRRRRRR

DD DD 11 RR RR

DD 0D II RR RR

Do oD I RR RR

0D DD I RR RR

DD DD 11 RRRRRRRR

LD DD I | RRRRRRRR

oD DD I RR RR

DD DD Il RR RR

DD DD 11 RR RR

bb bo I1 RR RR

pDDDDDODD IITIII RR RR

pbobpboe ITIIII RR RR

TYITTTITTITY XX XX TTITTITTTTITY 11

TTTITTIYITITY XX XX TITTITITTY 11
17 XX XX T 1111
TT XX XX 17 1111
17 XX XX T7 11
17 XX XX T7 11
TT XX 1T 11
TT XX 17 11
17 XX XX 17 11
17 XX XX 17 11
17 XX XX 17 eess 11
17 XX XX T7 sans 11
17 XX XX T7 sens 111111
17 XX XX 17 ense 111111

#START* Job DIR Req #3332 for EGSB)ate 15-Feb—-84 15:43:15 Monitor: //s TOPS-20
File RM:<KMTD.IMPLODIR.TXT.1ly created: 26-Sep-83 22:12:57

printed: 15-Feb-84 15:43:15
Job parameters: Request created:15-Feb-84 15:36:18 Page limit:225
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCII

FormssNORMAL
Print mode:ASC]

PACKAGE DIRECTORY SYSTEM

1. INTRCDUCTION

PURPOSE

The purpose of this note is to describe the design and
inplementation of the R1000 package directory systeme. The
package directory system is a central component of the
programming environment both from the point of view of the user
visible model of the environment and from the point of view of
system design and implementation,

BACKGROUND

On the R1000y the universe {that is the set of typess objects
and operations available to users (interactively or
programmatically)) is represented as a hierarchy of nested Ada
packages. Ada declarations in this Ypackage directory" are used
to represent all existing entities.,

Declarations in this universe may be source, installed,
or elaborated. Source means that the declaration exists in
“text" form only and can not be referenced by other parts of the
system. Installed declarations are an active part of the package
environment, are semantically consistenty and may be referenced
by other installed entities. An elaborated declaration is
installed and elaborated {(in the Ada sense) with a actual
{runtime) vatue which may be accessed and manipulated.

The set of installed declarations forms a subtree rooted at
the root of the universe and covering everything out to the
source subirees. Sinmilarly the set of elaborated packages
is 3 subtree of the installed universe rooted at the root of the
universe.

There are a number of important invariants which a3pply to the
installed universey the most important being that the installed
universe is semantically consistent (in accordance with Ada
semantics)s The system is designed to be understood and
manipulated in terms of Ada semantics. Ada provides the semantic
framework for understanding name resolutions objects and values,
typess operationssy and structuring (packages)y as well as
pragmatic and operational issues such as parameter passings
exception handlingsy and concurrency.

-
}
|
|
|

While Ada provides much of the semantic frameworksy it is
essentaily a staticy compilation-oriented language. In an
interactive programming environment, many of the operations which
manipulate the environment itself (adding new declarations,
deleting declarationsy executing a command in some contexty etc.)
must be viewed as meta-operations that occur outside of Ada
semantics. These meta-operations transition the environment from
one semantically consistent state to another; buts the resulting
state may be one which could not have been reached through
elaborating and executing a pure Ada program. For example,
declarations in the environment are elaborated in a time-orderad,
incremental fashiony rather than using strict linear efaboration
order.,

In addition to meta-operations which manipulate the
environment itselfy, we must go beyond Ada semantics to address
certain essential aspects of programming and software
engineering. Ada semantics does not address issues such as
project management (costing, schedulings etce.)sy configuration
management and version control. These aspects of software
development must be integrated with Ada in a manner consistent
with the programming methodologies which underly the effective
use of Adae.

The package directory system is the central component in
supporting the Ada—-based semantic frameworks in providing the set
of meta-operations consistent with the needs of an interactive
programring environments and in addressing higher-tevel software
engineering issues.

SCOPE

This document will provide some motivation and ratiorale for
the design of the package directory systems but will primarily
focus on the actual design structure and inplementation strategy.

Section 2 describes the overall system structure and
summarizes the major components. The description is given
bottom-up soc that higher levels can be introduced in terms of
fower levels.

Section 3 describes the cdesign and implementation of the
central directory operations in terms of the facilities provided
by lower levels. This section covers actions and queing,
error conditionssy intalling declarationss elaborating
decltarationsy deleting declarationssy withdrawing declarationsy
and the treatment of source declarations.

Section 4 describes the intaractions between the editor
system and the directory system,

Section 5 describes the file directory system and the
implementation of file abstractions on the R1000.

Section 6 describes the design and impiementation of the
initial dependency data base.

Section 7 gives an overview of the design and implementation
of incremental semantic analysiss including a description of the
incremental symbol table facilities and a summary of the
interface Lo the dependency data base.,

Section 8 describes the design and implementation of change
analysiss including interactions with the dependency data base
and with the Ada manager.

Section 9 summarizes those aspects of Diana and the Ada
manager relevant to understanding the package directory sytem.

Section 1C describes the incremental code generation
facilities required by the package directory system.

Section 11 describes the runtime object manager facilities
required by the package directory system.

The organization of this document is such that a single pass
by the reader unfamiliar with the material will be somewhat
frustrating. Little or no effort is made to define terms or
explain concepts that are assumed to be generally known (at least
within the software grouple The primary purpose of this document
is to capture informationy not necessarily organize it in any
particular way.

The chosen organization gives a bottom—up overview of the
system in Section 2y followed by a inside-out description of the
design and implementation. Section 3 describes the central
directory operations and in some sense provides an overview of
the implementation. Sections 4 and 5 focus on usage by higher
levels of the systemy in particular by the editor system and by
programs written in terms of files. The remaining sections focus
on lower—level components of the package directory system.

2. SYSTEM STRUCTURE

GENERAL

In this section we will describe the overall sysenm
structure and summarize each of the major component and its
relation to the rest of the system. Later sections describe
major components in more detail. The portions of the system
dealing with code generation and the runtime environment are
considerably less well-defined at this point,

Figure 1. Basic Directory Systenm Structure,

6 User_Programs Ada Object Editor

Ada_I8 (LRM Ch.14)
1]

5 Polymorphic_I

1
]

File_Directory

-
B W Be (P A Be Be BN GBS GG BN R R B ew

E]
]
H
t]
3
1
3
s
1]
4 H Directory_DOperations
H H H A\
——— : H i \
H H : A\
: Semantic Change Code \
3 H Analysis Analysis Gen \
] 1] 3 d]]
L] 1 1 L}]
H i Dependency_D8 : H
*] ¥] 4
3 1 L]]]
——— H \ H i i
H \ H H H
2 File_Manager Diana_and_the_Aca_Manager Runt ime_manager

- -'
- ww -
- . w

]
1 Object_Management_System/R1000_Kernel /R1000_Architecture

The basic system structure can be seen in Figure l. The
system is basically structured into six layers —— the mechanism
layery the manager layers the compilation layersy the directory
layery the file layery, and the user fayer.

MECHANISM LAYER

The first layer includes the object management systemsy the
R1000 kernely 2and the R1000 architecture., This layer provides
the fundamental low-level mechanisms and is not addressed in this
document.

MANAGER LAYER

The second layer consists of the file object managery Diana
and the Ada managers and the runtime manager, This {ayer builds
on the previous to provide specific facilities for storing and
managing Ada objects and file objectsy and for easily
manipulating the facilities of the architecture.

The file manager provides a low-level file abstraction
integrated with all of the object management mechanisms. This
file mechanism is built upon segmented heaps. The file type
provided here is a polymorphic file type which allows elements to
be of different typess The visible part of the file manager is
available on the 2060 in <rr.managers>v_file.ada.

The package directory system is basically represented as a
set of Diana trees managed by the Ada manager. Diana and the Ada
manager are implemented in terms of segmented heaps. Semantic
attributes representing semantic dependencies are implemented
directly as cross—segment pointers. This constrains directory
operations in that the validity of these cross—segment pointers
must be maintained by all update operations. In addition to
providing storage for the Diana treey the Ada manager provides
storage for auxilary informationy including the state of the
Diana unit (sources installeds elaborated). The operations
provided by the Ada manager were selected specifically to support
the kinds of "semantics preserving" operations that the directory
system must performs. The Diana Reference Manual (2/28/783)
describes Dianas The visible part of Diana and the Ada manager
can be found on the 2060 in <diana.sim>v_diana.ada and
<diana.sim>v_ada_manager,ada.

The runtime object manager is responsible for managing
information about the runtime environment and performing the
actual updates to elaborated packages. On the R1000 the
directory system actually stores objects in elaborated packages.
This allows objects to be addressed using the basic architectural
addressing mechanisms and allows the use of Ada semantics for
parameter passingy command and program execulion, etc.

COMPILATION LAYER

The compilation layer consists of a set of large building
blocks for constructing the directory layer., Semantic analysis
and change analysis are primarily concerned with checking and
maintaining consistency and supporting Ada semantics. The code
generator and a variety of Diana utilities are used to actually
affect changes after it has been determined that a change is
legal.

Semantic analysis is responsible for determining when a
declaration is semantically consistenty for attributing the Diana
treey, and for reporting any errors. Semantic analysis also
updates the dependency data base used by change analysis and
other tools. A set of incremental interfaces have been added to
semantic analysisy supplementing the traditionaly batch~oriented
interfaces, Semantic analysis is stuctured as a utility
procedures. The client must interface properly with Diana and the
Ada manager to set the proper defaults and get proper access to
the tree being analyzed. The visible part of the semantic
analysis package can be found in <semantics>v_semanticse.ada.

Change analysis is concerned with determining the impact of
incremental changes in the installed or elaborated universe., The
system will not allow changes which would invalidate the
invariants defined for the installed (and the elaborated)
universe. Mkhenever 3 new declaration is installeds elaborated,
or withdrawnsy change analysis is invoked to determine whether
such a change would obsolesce other entitiess An entity is
obsolete when it no longer satisfies the invariants which apply
to that entity. Change analysis must retrieve information from
the dependency data base to determine the set of units possibly
affected by a change,

The code generator is invoked by the directory system in
order to construct the code segments required to interface with
the runtime manager in actually performing directory operations,
Code generaticn provides interfaces for compilation of entire
unitsy, and a set of incremental interfaces which allow the
creation of code fragments for individual declarations and
statements (including code necessary to perform re—-elaboration
operations)., 1In addition, code generation must cooperate wWith
the runtime manager in terms of the assignment of offsets and
other code generator attributes and in terms of managing runtime
dependencies.

DIRECTORY LAYER

As Figure 1 indicatesy the focal point of the directory
system is a set of directory operations which provide the only
means for modifying installed or elaborated declarations. There
are operations to open insertion points (used by the editor),
install individual declarationsy install sets of declarations,
install subunits,s delete declarationss elaborate declarations,
withdraw declarationsy and get/set the value associated with a
declaration. The visible part containing these operations can be
found on the 2060 in <package_directory>v_dir_ops.ada.

FILE LAYER

The file layer provides file abstractions that can be used by
system and user programs. The two primary components of this
layer are the file directory and the actual file abstractions.

The file directory is an abstract directory built upon the
primitive directory operations to provide basic directory
functionality while hiding all knowledge of Diana and the Ada
manager. This provides a fairly conventional view of directories
and is used for implementing all file abstractions, The visible
part of the file directory is in <package_directory>v_file_dir.ada.

The R1000 file abstractions are built on top of the file
cbject manager and the file directory interface. The basic file
I/0 package on the R1000 is Polymorphic_I0 which supports input
and output of objects of any "safe" type to any given file. The
visible part can pe found in <package_directorydvy_poly.ada. This
package is the basis for the implementation of all of the Ada IO
packages (Ada LRMy Ch., 14).

USER LAYER

The user layer is essentially everything above the directory
and file layerss This includes the editor system and any user
programs which perform I0.

The Ada object editor interfaces directly to the directory
operations to allow interactive operations that modify the
installed universe. The editor system must keep its data
structures consistent with the directory data structuress must
communicate problems to the user (semantic errorss obsolescencey
etce)y and concern itself with properly synchronizing multiple
users trying to interact with the package directory system. The

editor follows a set of fairly rigid protocols which are designed
to ensure reliable operation.

User programs will typically use the facilities described in
Chapter 14 of the LRMy but Polymorphic_I0 will also be available.
Polymorphic_I0 provides a more general file mechanism with very
flexible operationss In some sensey Polymorphic_ID will be used
on the R100C like Common_IO0 is used on the MVs.

3. DIRECTORY OPERATIONS

GENERAL

The package Directory_QOperations encapsulates all access to
the underlying directory system and provides the primitives for
implementing all of the meta-operations which change the state of
the directory system. All modifications to installed and
elaborated packages are performed by this package. The current
set of operations is defined in <package_directory>v_dir_ops.ada.
In this section we will review all of the major operations
provided by Directory_Cperations. The goal is both to describe
the operations and to give some insight into the interactions
between the various system components.

ACTIONS AND QUEUEING

All of the operations in Directory_Operations have an
Action.ld parameter., If no Action.Id is provided by the caller,
the operation will be performed as a single atomic actions and
all locks will have been released when the operation completes,
This does require that the caller have no locks on the unit being
modified.

When the directory operation is part of a larger action
{which may involve no more than acquiring a read lock on the unit
sometime before invoking the directory operation) the caller
provides the Action.Ide. When the directory operation acquires an
overwrite lock on the unit being modifieds any locks held by the
current action may be up-—graded. Any errors {semantic errorss
errors from change analysiss etce) cause the unit being modified
to be closed without saving its This allows the caller to retain
control over when the action is committed or abandonedy while
guaranteeing that the actual overwrite only occurs if there are
No €rrors.

All operations also have a Queue_Reguest parameters which
allows the caller to indicate whether the request should be
queued if some other action has a lock on needed objects. If
queuing is indicated (the default)y then all attempts to open
objects will be queued. If queueing is suppressedy then the
operation will fail immediately if some object is locked by
another action.

ERROR CONDITIOCNS

The primary types of errors which may prevent a directory
operation from succeeding are object management errorss semantic
errorss depencency errorss and operational errors.

Cbject management errors include all of the usual lockingy
queuing and access centrol errors. Typically the execution of a
directory operation will involve acquiring overwrite access to
one Ada unity acquiring read access to several Ada units, and
potentially acquiring elaborate access to an elaborated package,
Any of these may fail for any number of reasons.

Semantic errors result from any attempt to install
declarations which are not semantically consistent with the state
of the universe., These errors are normal Ada compile time errors
and are reported using the data structures described in
<semantics>v_errors.ada. The directory operations are
responsible for insuring that errors are reported in terms of the
input treesy rather than in terms of any temporary address
spaces.

~ Dependency errors are detected and reported by change
analysis. Change analysis can provide a list of all dependencies
that woulc be jeaopardized by a proposed modification to the
universe li.c.y deleting a type declaration upon which several
object declarations depend or some such).

Operational errors result from incorrect usage of the
specific directory operations. Examples include tryina to open
an insertion point anywhere except within a DECL_S or ITEM_S (or
STM_S)s or trying to install three declarations into two
insertion points.

INSTALLING CECLARATIGNS

A declaration may be installed if the unit containing it is
installedy and everything it references is also installeds The
basic mechanism for installing declarations involves first
opening a set of insertion pointsy and then installing unrooted
declarations at those pointse.

The Open_Insertion_Point operation takes a Diana tree
representing a declarative part {(either a DN_DECL_S or a
DN_ITEM_S) and a3 position within the declarative part {(a position
of zero indicates the beginning of the declarative part). The
unit where the insertion is to be made is opened for overwrite,
the validity of the insertion is checkedy a DN_NONTERMINAL is
inserted into the Diana tree in the appropriate places and the
unit is closed.

The Install operation takes a list of insertion_points and a
list of trees to be inserted.s The unit being modified is opened
for overwritey the unrooted insertions are copied into the unit,
replacing the insertion pointsy semantic analysis is performed on
each insertion in turns and {(if there were no semantic errors)
change anailysis is performed on each insertion. If there were
any errors the unit will be closed without saving changes.,

The Insert_and_Install cperation combines the previous two
operations for simple cases involving only a single declaration.
Using this form of install in simple cases is more efficient,
since the unit being modified is only overwritten once.

The Install_Subunit operation differs from the previous forms
in that the subunit is not copied into the parents but associated
as a subunits The id or designator of the stub declaration for
the subunit must be provideds. The subunit is attributed by
semantic analysisy including attributing the AS_NAME of the
DN_SUBUNIT and setting the SM_SPEC and SM_STUB on the subunit
designator using the information in the STUB_ID.

ELABORATING DECLARATIONS

A declaration (and its subunits) must be installed before it
can be elaborateds and everything it references during
elaboration must already be elaborated {basically Ada eleboration
rules).,

Elaboration involves generating any necessary code {code for
targe program units will probably have already been generated)y
including the code segments necessary for performing elaboration
operations. These code segments and necessary context
information {including the Diana trees for the declaration being
elaborated) are passed to the runtime manager which actual
invokes the elaboration operations at the machine level.

WITHDRAWING ELABORATED DECLARATICNS

Kithdrawing an elaborated declaration (leaving it as an
installed declaration) involves providing the runtime manager
with the information it needs to remove the declaration from the
runtime envircnment, freeing resources as appropriate., A
declaration may not be withdrawn in this fashion if any
elaborated declarations depend upon it.

WITHDRAWING INSTALLED DECLARATIONS

Withdrawing an installed dectaration first involves running
change analysis to determine whether such a change would
obsolesce any other declarations. If not, the declaration is
removed from the Diana trees and replaced by a DN_NONTERMINAL,
The nonterminal has an associated_object attribute linking it to
3 new object where the declaration is then stored as a source
ob ject.

DELETING DECLARATIONS

Deleting a declaration basically involves withdrawing the
declaration Wwithout making an insertion point and saving the
source form of the declaratione.

SOURCE OBJECTS

Source objects are represented by an insertion point with an
associated_object attribute linking the insertion point to a
separate object containing the source declaration. These source
objects may in turn have nonterminals with links to other source
objects, Source objects are less well-controllied than installed
or elaborated declarationss and care must be taken not to lose
soure subunits of source ob jects. When creating an insertion
point it is possible to identify an associated source object, or
the association may be established later using the
Associated_0Object operations.

OBJECT VALUES

The values ccntained by objects are stored in the runtime
environment representing the package directory system,
Directory_Cperations provides a generic package for retrieving
values from the runtime environment. Initially we will restrict
usage to managed ob jects.

4. EDITOR INTERFACES

EXAMINING THE PACKAGE DIRECTORY SYSTEM

The user examines the universe using the editor system. The
user will typically see a package in scme contexts with subunits
elided to allow most of the package to fit conveniently on the
screen. The user can examine elided subtrees by expanding the
elisionsy getting a new window with the contents of the subunit,

Examining installed or elaborated packages raises certain
synchronization issues. MWhen the editor needs to first examine
an Ada unit, the editor must open the unit with a read lock while
it is building the object tree (the editor's internal data
structure for representing pretty printing and elision
information)s so that there are no modifications to the unit
while the object tree is being constructed. Howevers if the
editor holds the read lock as long as that image existss then no
one may make any changes to that unit. The analogous situation
on Tops—-20 would be if doing VDirectory on <JIM> were to prevent
JIM from adding or deleting anything in his directory. This is
particularly nasty if the unit under consideration is relatively
high in the hierarchy (:pdd on the MV's for example) where it is
more likely that someone else would have a read lock when one is
trying to make a change,

The solution to this problem is that the editor will try to
minimize the holding of read locks. For the many windows in
which the user is only reading or browsings the editor can often
get away with releasing the read lock as soon as the object tree
has been constructed. Many of the editor operations used in
browsing or simple reading only use the object tree,

There is the problem that the image may not correspond to the
current value of the object. This can be addressed by
periodically (at some fixed time interval or based on some notion
of where the user's attention is currently focused) checking the
time of modification of the underlying object. Only if the
object has been modified (hopefully a rare occurrence if many
people are Jooking at it) must the editor do anything. The
obvious alternatives are to ask the user if he even caress or to
acquire another read locksy reconstruct the object trees and the
release the locks Reconstructing the object tree need not imply
rebuilding the entire object tree. The editor may determine
which declarations have been removed and inserted and make only
those changes to the tree., WP has hypothesized that running the
pretty printer will have this effecte.

There are variety of operations which do regquire a current
Diana tree. Clearly any modifications to the contents of the
window would require consistency between the object tree and the
Diana treey but in those cases the editor must have some kind of
write lock and can update the object tree in a manner consistent
with any changes to the Diana tree. 0Operations like Yshow
defining occurrence”™ do not require an update locks but do require
that the object tree be consistent with the Diana tree.

Actuallys show defining occurrence and many similar operations
probably will work correctlys since nodes are not reused.

In generaly if the editor is doing something that requires a
consistent Diana treey then it must have 3 read lock. If the
editor records the time when it creates the object tree, then it
can use the time of modification of the unit to determine whether
it is necessary to reconstruct the object tree after acquiring
the read lock. In some cases it may be more efficient for the
editor to hold the read lock while the user is performing several
operations on the same unit; buts in general the editor should
release read locks as soon as possible, Obviouslys if the editor
is intentionally providing exclusive access {at user request),
then the editor must hold the read lock; howevery the
editor—writer should be aware of the consequences of holding read
locks and should make the user aware if appropriate.

In some situations the editor may want to acquire a copy of
the unit being edited (which is relatively inexpensive)s but the
standard mode should be to share permanent (read-only) trees.
This maximizes sharing and minimizes the calls to the space
manager to spawn phantoms (calling the space manager is not quite
free).,

INSTALLING AND ELABGRATING DECLARATIONS

The interface for installing declarations involves two
discrete steps. First the editor establishes insertion points in
the installied packagesy using the Open_Insertion_Point procedure
in Directory_Operations. Adding insertion points does require
overwrite accessy and will be serialized with respect to other
readers and writers. A sequence containing the set of insertion
points must be constructed for use by the install procedure. All
of the insertion points must be in a single unit.

Next a sequence of declarations to be installed must be
constructed. Declarations to be inserted must be source
declarations. The Install gprocedure takes the list of insertion
points and a list of declarations to be inserted at those pointsy
returning a list of inserted declarations and status and error
informations. The installation of declarations changes the Diana
treey replacing insertion points by the inserted declarations,
The editor must update the cobject tree correctly to reflect these
changes.

This praotocol for instaliation is designed to supported
arbitrarily complicated muiti-part declarations., There is a
simpler interface for inserting a single declarations, but the
editor does not currently use that interface.

Installing a subunit requires both the subunit and its
corresponding stub_ide The editor must locate both of these
Diana treess get an Action.Id if appropriates and then call
Directory_Cperations. The installed tree becomes a committed,
permanent tree that is no ftonger consistent with the editor’s
object tree and reflects any transformations performed by
semantic analysis. The editor must reconstruct the object tree
if the user wishes to view the installed tree.

Elaborating declarations is straightforward. The editor must
call Directory_Cperations.Elaborate with an installied Def_Id.
Status is returned to allow the editor to determine whether the
elaboration was successfuls The Diana tree is not modified in
any way which would make it inconsistent with the Editor's object
tree.

WITHDRAWING AND DELETING DECLARATIONS

Kithdrawing an elaborated declaration involves passing the
Def_Id to Withdraw_Elaborated_Declarationy along with an
indication of whether the declaration is to become installed or
sources Withdrawing installed {but not elaborated)
declarations is similars except the result is always 3
source declaration,

In the case where a delaration becomes sources the Diana
tree for the containing unit will have been modified to remove
that declaration. In this case the editor may have to
reconstruct the object treey or at least reflect that the
withdrawn declaration is no longer in piace.

Deleting a declaration first withdraws it and then actually
deletes the declaration. The object tree must be updated
accordingly.

SOURCE DECLARATIONS

Source declarations require sormewhat special treatment.
8y definitionsy a source declaration will not be semantically
consistent. Howevery the user would still like the directory
system to keep track of source declarationss particularly
source subunits. Since there is no instalied declaration to
represent these declartionss they will be represented as an
insertion point in the parent with an associated but seperate Ada
object for the source declaration. The editor displays this
declaration in a separate windowy with a prompt at the insertion
point.

For the moment,
<package_directory>.
V_POLY_I10.ADA.

5« FILE DIRECTORY

Just loock at the visible parts on

In particular,

see V_FILE_DIR.ADA and

6. DEPENDENCY DATA BASE

SYSTEM SYNCHRONIZATION REQUIREMENTS

It js possible to compute all cdependency information directly
from Diana trees; howevery performance considerationsy
synchronization issues and inplementation complexity all argue
for keeping a central data base which augments the Diana tree.
The dependency data base described here is designed to provide
all the information required by change analysis to efficiently
compute obsolescence information. This data base can be used by
other tools for efficiently determining dependencies between
units {(for examples this data base allows a very inexpensive
implementation of the gueury "what are the installed using
occurrences of F{0?7%).

The primary consideration here is the synchronization of
updates to the package directory system. At any given time there
are likely to be several invocations of semantic analysis.
Semantic analysis potentially needs access to a large part of the
universesy since programsy commands and declarations all view the
package directory as the context for compilation and execution.
In order for semantic analysis to operate correctly there can be
no (apparent) changes to the environment. This places very
severe serialization restrictions on all operations in the
environnent, Strategies based on having semantic analysis
determine 3 minimal context and acquire read locks on that
environment appear to introduce considerable complexity and not
really solve the problem.

To minimize the serialization of operationsy the system is
structured so that semantic analysis need acquire no locks and
may always proceed concurrently with other operationss. The only
serialization that impacts semantic analysis is that updates to
the dependency data base are serjalized. Semantic analysis is
responsible for updating the data base every time a new
dependency is introduced.

Thuss key points in semantic analysis are serialized wWith
respect to changes in the universe, because updating and querying
the dependency data base are serialized. Change analysis queries
the dependency data base to determine which units and actions
would be obsolesced by a given change. All the gueries to
analyze a given change are performed atomically. Change analysis
guarantees that no change will be made which would obsolesce
currently installed units or which would interfere with
in-progress actions,

Since semantic analysis and change analysis are serialized by
their competion for access to the central dependency data base,
they need perform no other synchronization, FEach can proceed
without acquiring read locks on any part of the universe. This
allows efficient traversal of the Diana treess without the
overhead of calling the object management system to open every
unit visited.s This is particularly nice in light of the fact
that it turns out to be rather difficult (impossible?) to
efficiently determine which units would need to be opened.

OBJECT VERSUS ACTION DEPENDENCIES

Dependencies may be object dependencies or action
dependencies. Object dependencies are dependencies between a
defining occurrence and an object which would be obsolesced if
the defining occurrence is changed. Object dependencies are only
in force as long as the object is installed or elaborated or is
open for overwrite or update.,

Action dependencies are dependencies between a defining
occurrence and an Action.Id representing an action which would be
invalidated if the defining occurrence changes. Action
dependencies 3are no longer in force once the action has been
committed or abandoned. The permanent effect of any action is
reflected in object dependencies that were established during the
course of the action.

It would be possible to keep dependencies of finer
granularity than simply from defining occurrence to entire Ada
objects., However the resulting data base would be unmanageable,
both from the point of view of raw size and from the point of
view of the amount of work involved in keeping the data base
consistent with a changing universe, Change analysis can use
this information along with the information in the Diana tree to
compute finer grained dependencies. This design is based on the
assumption that searching all the units in some subtree of the
system is prohibitively expensive {(poor localitys massive I0 and
CPU cost)y but only traversing exactly the units involved is
acceptable.

There are two object dependencies (Definition and Namesake)
and one action dependency (Visibility) introduced by semantic
analysis and maintained by the dependency data base. Initially,
only semantic dependencies need be iwmplemented.

DEFINITION DEPENDENCY

The Definition dependency is simply a dependency between a
defining occurrence of an entity and any unit containing a using
occurrence of that entity. Conceptually, this dependency is the
inverse of the Diana SM_DEFN attribute., Since the dependency
information only goes to the granularity of entire unitsy full
irplementation of REVERSE_SM_DEFN (or NFED_MS) would involve
making a pass over all the units in the Definition dependency to
find the actual using occurrences.

Semantic analysis records this information whenever it sets
an SM_DEFN. Because of the cost of seriatizing updates to the
data basey eventually some optimization will be required. [t can
be expected that any single object will quite likely have several
references to the same defining occurrence {(particularly defining
occurrences for packagesy typess and operators). Either the
operation to update the data base should be able to (cheaply)
determine that a dependency already exists and return
immediatelys or semantic analysis should encache the set of
dependencies it has establishedy and only call the data base to
reflect new dependenciess The former approach seems nicers since
it requires no additional data structuressy and it is likely that
{at least at some level) it is possible to allow such benign
readers to proceed concurrently with "real"™ operations,

Change analysis uses this information to determine which
units would be otsolesced by deleting or changing some defining
occurrence., This is described in Section B below.

NAMESAKE CEPENDENCY

The Namesake dependency is used to analyze dependencies
involving overloadings and is less straightforward than the
Definition degendency. With every overloadable entityy Oy we can
identify its initial namesakey Ne The initial namesakes Ny is
the first non—-overioadable entity with the same identifier
encountered when moving back {(through ail declarations in all
enclosing scopes) from 0O to the root of the universe. If there
is no such N between 0 and the roots we manufacture an a special
Root_Namesake to serve as the {implicit) inital namesake for O
and its namesakes, The Namesake dependency is a dependency from
every N {explicit or inplicit) to all units containing some D,
such that N is the initial namesake for 0.

Semantic analysis records this dependency everytime it
encounters a defining occurrence for an overloadable entity. It
would appear that determining the initial namesake and recording
the dependency needs to be implemented as an atomic action;
however, the atomic nature of the Get_All_Ids operation
{discussed in Section 7) elirinates the need to make this atomic.

Some optimization may be in orders but it is unlikely to be
as important as in the case of the Definition dependencys since
there are many more repeated using occurrences than there are
repeated definitions of overloadable entities.

Change analysis uses this information to analyze the
interaction of changes with overloading. See Section 8.

VISIBILITY CEFENDENCY

The Visibility dependency is an action dependency rather
than an object dependencys and is used to ensure that the context
for compilation does not change (too much) during the course of a
single action,

Compltete understanding of this dependency requires an
understanding of the incremental symbol table described in
Section 7. Basicallys the first time semantic analysis must
identify some symbols it must determine the set of all visible
{(defining) occurrences of this symbol. This operation must be
atomicy and is viewed as an operation on the dependency data base
to lock out all modifications to the universe while this set is
being computed. Since the occurrences in this set determine the
context for the rest of the analysiss the Action on whose behaif
semantic analysis is being performed is now dependent on the
continued existence of all of these {and noc more) visible
OCCUrrences.,

The Visibility dependency is represented as a dependency
between a context (declarative region) and an <identifier,
action> pair. Installing or withdrawing a declaration with the
indicated identifier in the specified context will obsolesce the
action if it is still in progress. Change analysis uses this
dependency when changing visible occurrences or introducing new
visible occurrences to know which (in progress) actions would be
affectd.

DATA BASE IMPLEMENTATICN

The visible part of Dependency_Data_Base can be found in
[semanticsldependency_db.ada. The visible part has two major
subpackagess Establish_Dependency and Query_Dependencys used by
semantic analysis and change analysiss respectively. Initially,
both of these subunits should be separate architectural packages
visible only to their single special client. Eventually some of
the queries should be packaged for use by higher tevel toolse.
The use of these two visible subpackages is described in detail
in Sections 7 and 8. Here we will concern ourselves with the
related issues of synchronizationy permanence and storage
managemenet,

7. INCREMENTAL SEMANTIC ANALYSIS

INTERFACE AND CONTEXT

The incremental interfaces to semantic analysis can be found
in [semanticslv_semantics.ada and [semanticslv_errors.ada. The
incremental semantics can be viewed as a set of utility procedurea
which attribute a tree and return error messages, The client
must acquire some form of write access to the unit containing the
tree being attributeds and must set the Diana Current_Default
unit to that unit. The client must also provide a heap (not
currently implemented) for semantic analysis to use for storage.
Semantic analysis generates a considerable amount of garbage of
global types besides Diana.

A primary issue in interfacing to semantic analysis is that
of providing enough information to allow straightforward
computation of the compilation envircnment. Each visible
interface addresses this prcblem in a slightly different way.

The first interface solves the context problem by taking a
rooted tree. Semantic analysis can compute the context by
following backpointers and traversing the structural tree back to
a COMP_UNIT and then using semantic attributes on the designator
to find parent units. This form is used for installing
declarations in place,

The second interface analyzes an unrooted trees, but requires
and insertion point representing the context for compilation,
The unrooted tree will be processed as if it were in the position
of the insertion point. This interface is used for checking
semantic consistency without actually acquiring an overwrite lock
and copying the tree into its context.

The third entry is for semanticizing subunits. The
designator for the stub declaration corresponding to the subunit
provides the necessary context. The entire subunit is analyzeds,
and appropriate attributes set to refer tc the parent units,

The Resolve_Name entry analyzes an unrooted tree representing
a name in the context of some dectarative part. A DECL_S or
ITEM_S provides the contexts and the name is interpreted as if it
appeared somewhere after the end of that declaritive part. This
entry is typically used for name resolutions taking advantage of
the semantic attributes to determine the object denoted by a
name .,

DEPENDENCY DATA

All entries to semantic analysis include an object id and an
action id to be used in establishing dependencies. For casual or
Mapproximate” semantics it is not necessary to maintain the
dependenciesy in which case a null object id and null action id
can be used. Only when semantics is used in preparation for
installing 3 declaration should dependencies be maintained.

The three dependencies discussed in Section 7 are fairly easy
for semantic analysis to maintain. The interface between
semantic analysis and the package Dependency_Data_Base is defined
in the Establish_Dependency visible subpackage.

The Definition dependency is maintained simply by calling the
Definition procedure with the Def_Id and the dependent object id
every time an SM_DEFN is set.

The Namesake dependency is maintained when processing the
defining occurrence for an overloadable entity. Semantic
analysis first computes the initial namesake (which may bhe
Ciana.Empty if there is no initial namesake) and then calls the
Namesake procedure with the object id (for the unit containing
the overloadable entity) and the initial namesake.

The first time semantic analysis must identify some symbols
it must determine the set of all visible defining occurrences of
that symbol. While it is dcing thiss there can be no changes in
the environment., Once completedy the action is dependent on
there being no changes in visibility which would invalidate the
results of that determinatione The interface for establishing
the Visibility dependency is designed to address these
synchronization needss while allowing the knowledge of Ada
visibility to remain in the semanticists rather than in the
dependency data base.,

Essentially an open/close protocol is used in the Yisibility
dependency interface., Semantic analysis must first perform the
Open_Visibility operations This locks out other calls to the
dependency data bases ensuring that the environment will not be
modifieds Then the set of visible occurrences can be computed.
As semantic analysis is doing this computation it should call
Establish_Dependency.Visibility (with the correct Action.Id) for
each context (scope) that it visitsy introducing a Visibility
dependency. When dones semantic analysis must perform the
Close_Visitility operation. An Open_Visibility which is never
closed will time outy and the dependent action will be abandoned.

INCREMENTAL SYMBOL TABLE

INCREMENTAL ANALYSIS ALGORITHMS

8. CHANGE ANALYSIS

REQUIREFENTS

At 3ll times the committed (permanent) form of the installed
universe will be consistent according to Ada semantics. From the
point of view of change analysiss there are two ways to change
the universe -- a new declaration may be installed,
or a declaration may be withdrawn, In the case of installation
change analysis is invoked with the new (fully attributed)
declaration in place in the installed parent tree. For
withdrawals change analysis is called with the victim before the
declaration has been removed from the instalied parent tree.

Clearly a sinple and very conservative implementation of
change analysis would be to apply the straightforward set of
obsolescence rules defined by Chapter 10 of the Ada manual. Then
every change to a compilation unit would obsolesce that entire
units all subunits of that units and any unit which had
visibility to the unit. This is suboptimal but acceptable in a
conventional batch system. On the R1000 this would be
disasterouss since the directory system on the R1000 is based on
a set of installed and elaborated packages. The analogous
situation on a conventional file system would be that adding a
new object (file) would remove everything else in that directory
and all subdirectories.

Both to reduce the amount of recompilation and to make the
directory system works we require that change analysis be much
less conservative. Tdeallys change analysis would only obsolesce
exactly those declarations that are inconsistent with the
proposed change, To simplify implementation we do not strive for
the idealsy but for a compromise which allows most of the freedom
of a conventional directory system and prevents program
recompilation in many cases.

Initially change analysis will examine changes down to the
granularity of inividual declarationss but will obsolesce entire
units. The set of obsolescence rules given here is known to be
conservativey and should be improved over time to allow more
changes without obsolescing other units. In particulars it
should be possible to reduce the granularity of obsolescence to
single declarations.

VISIBLE INTERFACE TO CHANGE ANALYSIS

There are basically two operations provided by change
analysisy checking an instalilation and checking a withdrawal or
deletion. All operations require that an action id be provided.

There are two forms to the entries in the visible part of
change analysis. One form simply returns status indicating that
at least one unit would be obsoleted by the proposed change. 1In
the case where there are dependency ervrorsy this form is more
efficient since it abandons processing as soon as the first
dependency error occurs.

The second form actually returns the set of potentially
obsolete units. In this forms change analysis must guarantee
that the set it returns covers every unit that would actually be
obsolete; howevery, it need not {and probably can not) guarantee
that this set is minimat. Basicallys change analysis must
guarantee that wWwithdrawing the units in the set of potentially
obsolesced units and then performing the proposed change results
in 3 universe which is semantically consistent {(assuming that
there are no other intervening changes).

DEPENDENCY CATA

The interface to the information maintained by the package
Dependency_Data_Base is defined by the Query_Dependency visible
subpackage. All of the processing associated with a single
change must be atomic {at teast for me to understand it)y s0 an
open/close protocol is useds The "actor®” performing the change
is identified by an action.ids Once an actor has called open to
initiate a changesy no updates may be made to the data base and
only that actcer may query the data base. The open should be done
before calling change analysiss and the close after the change
has been saved or it has been decided that the change is illegal.

There is a single entry to query the Definition dependency.
The function Definition_Dependents takes a Def_id and returns the
set of dependent objects,

There are two entries for guerying Namesake dependency
information. The first one takes an explicit initial namesake
and returns the set of overlopadable entities with that initial
namesake., The second form is used when there is no explicit
initial namesake, The symbolic form of the name
(Diana.Symbol __Rep) is passed and used to find the Root_Namesake
and return the correct Namesake_Set,.

The entry VYisibility_Dependents returns the set of actions
that would be impacted by inserting or deleting a declaration
in some context,

WITHDRAWING DECLARATIONS

Withdrawing a declaration should only obsolesce those units
which depend on that declarations not everything that depends on
anything in the same declarative part, The impact of withdrawing
a declaration may be defined in terms of withdrawing other
declarations,

By passing the symbol_rep of the identifier or designator for
the declaration and the enclosing context {decliarative part) to
Visibility_Dependents, the set of actions dependent on the entity
being withdrawn can be determined.

For a non-overloadable entity all Definition dependent units
must be withdrawn before that entity can be withdrawn. A
non-overloadable entity may also serve as an initial namesake and
if the set of namesakes is non—-emptys all of the definition
dependents of the namesakes must also be withdrawn,.

For an overloadable entitys change analysis must find the
initial namesake or determine that there is no initial namesakey
and then call the appropriate Namesake function. The set of
namesakes returned {which will include the original entity) must
be withdrawn,

If the withdrawn declaration is a packages withdrawing the
package has the effect of withdrawing all of the declarations of
the package. Thus change analysis must be applied recursively.
HWithdrawing a prograr unit always requires withdrawing all
subunits.

INSTALLING DECLARATIONS

When a declaration is installed it obsolesces any actions
that are returnec by calling Visibility dependents with the
symbol for the declaration and the enclosing context.

When a declaration is installed it can obsolesce other
declarations by either hiding declarations that were previously
visiblesy or by changing the results of overload resolution in
sSOome wWay.

A non-overloadable entity may hide other declarations. Change
analysis must first compute the set of hidden dectarations. From
the point of view of all units “below”™ the hiding declarationy
inserting a hiding declaration is equivalent to withdrawing the
hidden declarations. For each hidden declarations change
analysis must compute the intersection of the set of units
“below" the declaration being installed and the set of units
which would be otsolesced by wWwithdrawing the hidden declaration.

Implementation note: The poor focality and computational
expense of propogating obsolescence prohibits the straightforward
approach of actualily computing sets and intersecting them. The
"below-ness” property shoulcd be used toc prune the search early,
rather than actually computing the full effect of withdrawing the
hidden declarations, ,

There are several ways that an installation can impact
overload resolution. The installed entity can itseif be
overloadables in which case anything dependent on any of its
namesakes is cobsolete. As discussed aboves, change analysis must
compute the namesake sets and then take the union of the
definition dependents for each member of the namesake set. The
resulting set is the set of obsolete unitse.

If the instatlled entity is not overloadabley then the only
issue is whether the installed entity divides up a previously
contiguous namesake region. This can be determined by finding
the initial namesake {(even though this is not an overloadable
entityls getting the namesake sety and then determining which
members of that set are "before" the new declarations and which
are "after"™., For all that are aftery take the union of their
definition dependents to get the obsolete unitse.

