00C v v ZTEZE RRRR v v II1 CCECE W W
O C ' v £ R R v v I E W W
D 0 Vv Y z R R V v I z W W
0 o v v gZEZE XRRR v v I ZEEE W W
0 0 Y v z R R v Vv be z W W W
0 0 Vv Vv = R R v Vv I z WW WW
co0 v cZEEZ R R v IT: ZEZET W W

1
1M
1
1
1

.u 1

.e 111
*START* Job OVZIRVI Reqg #1355 for EG3 Date 22-Sep—-82 22:05:35 Monitor: Rational

Fiile RM:<RPT.DOL>DVERVIZW.a1sr created: 11-Mar-32 14:25:17

printed: Z23-Sep=-82 22:05:35
Job parameters: Regquest created:28-Sep—-32 22:05:00 Page limit:138 Forms : NORMAI
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCII Print mode s



viey describes the Aspe design on four different levels

A manager is interested in those aspects of the Apse that potentially

influence his buy decisicn. Impor*tant issues are sophistication of the
environment, the effect ocn productivity, 3ob satisfaction, switchover

zo05ts.

User’s_viegy

The user needs a simple, understandable model of the structure and
operation of the system. The model should be capable of explaining and
guiding the users routine opzrations.

Advanged_programmer’s_view

An advanced user will have a more detailed model of the apse. In particular
(s)he wilil be knouwledgeable about backup and crash recovery and knouw
about intasgration of new tools.

2ystem_progranrec-s_yiswy

The system programmer will have an intimate knowledge of the working of the
Apse toc allow sophisticeted modifications toc the system,



Manager’s vieuw

is & state of the art program development system
tigate the scftware crisis, reduce software life cycle
rove scftware/system reliability.

The R13530 APS:E
designed to mi
costss, and imp

The environmaent consistent uses Ada 2n all levels of interaction.

This use of Ada concepts throughout the design results in an APSE that
is understandable and can be explained in terms of Ada semantics.

Only very feuw additionzl concepts are reguired.

Apse provides & mechanizsm for ticht but expandable integration of
srogramming tools and knowledge about tha use of these tools. This
knowiedge allows zutomatic apeglication of tools and automatic
enforcement of procgramming standards.

The numan interface of the Apse 1is designed %o support a wide spectrum
of users ranging from novica *0 experts.



A user in the system may b2 a real person or a project. Each user has
an I0s, unigue across the whole system. For each user there is a
default packsse in the system (the user packagel). User packages are
associated with accountings, passwords and resource constraints. There
may be user packages without 2n associated user. A user may access
several user packages 1f the appropriate password is provided.

The whole R1002 prograaming system i35 one big package in which user
packagess project packzgess, utility packages are nested. Ada
visibility rules provide the bzsic mechanism for protection. The
position 2f the user package within the system determines the which
obJjects are accessible to the user.

A user 1033 onto the system by specifying his name (known to the
system) together with the password of his default user package. The
user will get "access" to his user packasge. A& user may acquire and
release access to additional user packasges.

Having access to a user package means that the system editor provides
a window into this and =11 enclosed packages. The user may inspect and
modify all objects within the user package as detziled below. The user
has read only access to all entities visible inside the user package.

Qperations

All user data are stored as values of variables inside the user
package. All user programs ar2 subunits of the user package; they are
positioned in the appropriate environment.

Subseguently we distingulish the "grogram text” from a "program
instance". {Not2 that program text is not stored in text but rather in
tree form.) & program instance refers to the collection of all stacks
associated with a package and task. The us2r may perform the following
operations on prosram text and instances.

1) A semantically consistent (in itself 2and with its context) program text
may be elaborateds i.2. @ corresponding program instance will be created
in the appropriate context and is accessible tc other users.

2) A program instance which is not staticzlly named can be deleted, i.e.
it 15 recduced to program text.

3J) Program text without associated precgram instance may be changed
arbitraryly {syntax directed editor enforces correct syntactic structure).

+) Ada statements and expressions can be typed by the user; they are
executea/evaluated in the innermcst e#nclosing program instance.

A user program may call the debugzer. A user may "accept" a debug
reguest of on of his rrograms. Accepting such a request will have the
same effect 35 azccessing the scope in which the debug call originated.
411 normal editing functions =sre available for debugging purposes.



Advanced programmer®s view

2ystem_Dackup

The entities of program and data saved on backup storage are Ada
program units and collecticns. For *hese zsntities the system provides
the operatiosns "ocpen" and "clos2". An entity iz opened automatically
as soon as 3 component of this entity i1s changed. Whenever a page of
an cpen entity is written onto disk it will not overwrite the old copy
(successive writes of the same page will overwrite e2ach other).

A sysop '"close" i3 provided to close an open entity. The close
operation will suspend execution of the entity {(temporarylyl,; it will
write all changed pages associated with the entity on disk; after
successful write, the 0ld versions of the all new pages are deleted.
The close operation leaves an entity in a consistent state.

If a system failura2 occurs a saved ontity may be restarted/recovered
from the consistzant (old) data sn disk.

Tool_integration

Tools area Ada programs,;, they have to conform to the organization of
the data o which they apply. A tool-building tools will allow to add
new tools and knowledge to the systam,

Invocation of tools can be 2ffected in various ways. Tools may simply
be called explicitely by the user. More importantly, tools may be
invoked automatically besed on some knouledge the system has on the
use of this tsol.

Knowledge about tools is embedded with the data manipulated by tools.
Applilication of 2 tools in a particular situation can be enforced or
suggested; this may be controlled on different levels: system—wides
within a projects for an individual user, for an individual data
object. For example, a text document may be defined to be "spelling
corrected”. The 2bject will know that for each altered part the
spelling correction tocol has to be invoked.



System programmer®s vigcuw

Representation_of _program_ztext

lm

The diana tree representing all programs on the R1000 is broken up
intc small pieces uwhizh arz stored {(and recovered) separately. The
program tre2e for a compilation unit is stored with a task of type
unit., cach instance of task typ2 unit will store the tree for a unit
irnternally 1n whatever form it wants. Tools that want to operated on
the stored unit will make an entry call and ochbtain a private copy of a
diana tree. After completion the tool can update the stored version
with another 2ntry call.

The task unit incorporates 211 knowledge 2bout tools that have to be
appiied automatically to altered units. T.g. task unit will call the
compiler whenever necessary (similarly version control tools etc).

If unit calls a compiler (or any other *ool if required) it will pass
- a diana representation of the unit and
- a diana represzentation of all visible declarations (the context).

the latter is a "readenly" version of diana, i.e. we are guaranteed
that the compiler (tool) cannot chansze the context.

Making the context read cnly allows us to share context among all

unit tasks. The diana fcorm 0¢ the context is strictly redundant
information which can be reconstructed by the unit tasks a2t any time.
The system will age the diana representation of the context and delete
infreguently used parts of it.

Unit will abort certain running tools (compiler) if the storad program
unit is being updated.

Representation_of pragram_insitances

The representation of running programs is defined by the architecture.
For the syctems progzrammer this represzntation is accessible via the
predefined system package "program_interface”. This package provides
the following operations for 2 control stack {(program entity).

- elavorate and add 2 new declaration »n this stack

=~ execute a statement on this stack

- evaluate an 2xpreszsion on this stack {(need to pass back the result)
- extend the 1imports list of this package

- determine the stack name of the dynamic predecessor

- modification of code segments

systenm_Informatiion

System programmers have access to miscellaneous system information. A
"User dzta base" provides information about valid user namess, their
associated (defauit) user packagess, passuwsrds for sach user package as
well as reszource limitation for each package and usage of resources.



