5$53555S5S

cccccccec

PPPPPPPP EEEEEEEEEE

55555555 PPPPPPPP EEEEEEEEEE CCCCCLCC

SS PP PP EE cC

B PP PP EE cc
SS PP PP EE cC

BT PP PP EE cC

| $555SS PPPPPPPP EEEEEEEE cC

| 5555SS PPPPPPPP EEEEEEEE cc

| SS PP EE cc

’ SS PP EE cC

SS PP EE cC

| SS PP EE cc

| $5555S5S pp EEEEEEEEEE gceeeeece

| SSSSSSSS PP EEEEEEEEEE cceeecce

|

|

|

LL PPPPPPPP TITTITITTT 11

L PPPPPPPP TTTTTITITIT 11

LL PP PP T 1111

LL PP PP 1T 1111
LL PP PP TT 11
LL PP PP T 11
LL PPPPPPPP TT 11
LL PPPPPPPP T 11
LL PP T 11
LL PP TT 11
LL PP T ceas 11
LL PP 1T cess 11
LLLLLLLLLL PP TT caese 111111
LLLLLLLLLL PP T cens 111111

START Job SPEC Req #29%5 for EGB Date 15-Feb-84 12:20:C01 Monitor: //+ TOPS-2
File RMIKMTDLENYDSPEC.LPT.12y created: 30-Jan-84 11:20:16

printed: 15-Feb-84 12320202
Job parameters: Request created:15-Feb-84 11:12:37 Page limit:1l44
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:aASCII

Forms:NORMAL
Print mode:ASC.

fa.ee" Spec Introduction and COverview 1

Chapter 1
Introduction and Overview

lele Purpose !

The purpose of this document is to specify the overall! design of the
Rational Programming Environment. The primary audience is the
software implementation team. The secondary audience is the
documentation and technical consulting teamsy who may wish to use this
material in developing user documentations training aidss etc.

l.2. Scope

Cnly the basic environment modely top-level functionality and overatl
design structure are addressed in this document., Supporting material
provides more detail for specific portions of the environment.

le3. Background

See the overview book for background information.

le%o Goals Summary

The primary goal of the Rational Programming Enviraonment is to support
medium—to-iarge—scale software development and wmaintenance in Aday
with improved productivity and improved quality (reliability,
maintainabilityy etc.) of developed software. The basic approach to
this goal is to provide a production system which encourages and
supports the use of the modern programming techniques (modularity,
abstractiony etc.) that underiie the design of Aday and provides the
best characteristics of highly interactive environments such as
Smalitatk and Interlisp.

The environment is designed to be a foundation for bringing additional
software engineering technology (requirements analysissy project
managementy documentations verification and testings etc,) into
production use over time. In the short terms just making Ada and
related programming techniques successful in the wmarket place will
have a tremendous impact on the industry.

{Should add more specific technical goalss such as those in previous
revisions of env spec.)

1.5+ Design Principles

Here we review several basic environment design principles which
underly the Rational environment. {(Comments indicate that this section

Rational proprietary document DRAFT 5 January 30s 1984

"eeo” Spec Introduction and Cverview 2

needs to be expanded slightiy to define terms better and show wmore
togical progression of desigrn principles).

1.5.1¢ lntegrated

The Rational environment is designed to be a highly integrated
environrent, Rather than being a collection of loosely-coupled tools,
the environment is integrated around a3 small number of basic concepts
applied uniformly. The basic facilities of the envircnment are
intended to be wused together and composed to perform higher-level
cperations. Much of the integrated nature of the environment is the
direct result of basing the environment on Ada semantics and providing
a completely editor-based user interface {(see following).

le542¢ Ada-based Semantic Framework

A consistent semantic framework is essential in an integrated
programming environment. In general, it is not possible to hide basic
mechanisms from the user. Developing a consistent semantic framework
provides a basis for the implementation of the system and provides a
foundation for the user. The semantic framework makes it easier to
understand the system operations to compose tools in new wayss and to
extend the use of the system to new applications.

The Rational environment is based upon the the semantics of the Ada
janguages. This approach aflows the system to be explained jargely in
terms of Ada concepts and provides 3 unified notation for system
operations regardless of whether they occur in programs or as user
commands.,

le5e3. Editor—-Based User Interface

From a human engineer ing point of views an editor-based user interface
is much easier to use than command-oriented alternativese. It is
simpler for +the wuser to pecint than to describe a location., Using
editor operations to interact with the system provides a very uniform
user interface based on easily understood and very efficient {for the
user) operations., The full power of the editor is always available
for viewing and manipulating user input and system output.

A problem with basing the environment on Ada is that the verbosity of
Adas while appropriate for documenting a program, is inappropriate for
many kinds of user interaction. This is overcome by supporting an
editor-based wuser interface embodying considerable knowledge of Ada
syntax and semantics. Such a user interface can exploit its knowledge
tc allow the wuser tc perform tasks with the wminimum number of
keystrokes.

le5e¢4. Knowledge—-Based

Having an integrated environment allows the system to "know" more
about what the user is doing. The Rational environment is designed to

Rational proprietary document DRAFT 5 January 30, 1984

fa.ee" Spec Introduction and Overview 3

provide a framework for building into the system as much knowledge
about the software development process as possible. This allows the
system to automatically handle many of the clerical and administrative
tasks irvolved in a large development effort.

One example of building knowledge into the system is reflected in the
user interface design. The editor system is designed to allow the
incorporation of object specific knowledge. 1In particulars the Ada
editor knows Ada syntax and semantics.

Another example is the compilation managers which (2long with other
facilities in the environment) embodies extensive knowledge of Ada
separate compilationy allowing it to compute compilation orderings and
determine minimal incremental recompilation strategies which would be
impossitlie to reliably determine manually. There are many such
examples throughout the environment. '

l¢5¢5. Interactive

The Rational environment is designed to be interactive in all phases
of development (not just editing). The system is designed to provide
interactive assistance and irmediate feedbacks like that usually found
only in interpretive systems, The goal is to replace the edit-
compile-load-debug cycle with a much more interactive enviranment,
where users can write swall fragments of programsy get rapid feedback
on syntactic and semantic errorss and execute those fragments
interactively.

Much of the knowledge normally buried in the compiler has been moved
into the editor, where it can provide a more interactive environment
for syntactic and semantic analysis. 7The system alsoc supports very
incremental program creation and modifications down to the level of
individual declarations and statementse. Debugging facilities are
integrated wWwith {and in many cases indistinguishable from) basic
interactive system operations. These facilities are the first steps
toward making the entire development cycle more interactive.

leS5e6e Extensible

The Rational Environment is viewed as an extensible foundation both
for expanding existing facilities and adding new facilities. All
programs in the system are Ada taskss with little or no distinction
between user programs and system programss allowing easy expansion.
Major facilities have been constructed using generic components which
make it easy to add additional subsystem which deal with new types
provided by users. New systems can easily be constructed by composing
various existing facilities.

l1e5¢7. Maintainable and Modifiable

Given the advanced and somewhat experimental nature of the
environmenty, it has been important to structure the system and its

Rational proprietary document DRAFT 5 January 3Cy 1984

Maee' Spec Introduction and Overview

components to allow for modification and maintenance. During
course of developments, many extensive changes have been made. Use
modularity and abstraction in the construction of the system
controlled the impact of changes and allowed the system to evolve

the
of
has
as

it has been developed. This evolution will continue over the next
several yearsy and the maintainability of the system will be even more

irportant as the system is used in the field.

Rational proprietary document DRAFT 5 January 30, 1984

"eea'™ Spec Ada Framework 5

Chapter 2
Ada Framework

Ada provides most of the structure and the basic semantic framework in
the Rational Oevelopment Environment. This chapter describes the
foundations of the Rational Development Environment that derive
directly from Ada or from extensions to Ada semantics. Section 2.1
defines basic concepts that come largely from pure Ada semantics.
Section 2.2 discusses declarations in the environmenty including meta-
operations that allow declarations to be added to and removed from the

environment. Section 2.3 describes the package structure of the
environment in terms of the concepts introduced in 2.2. The
compilation processy which is closely retated to the declaration meta-
operationsy is addressed in section 2.%. Section 2.5 introduces

compand and program execution within the environment,

2.1. Basic Concepts

Most of the very basic concepts in the environment come directly from
the Ada language definition.

2e1.1. Lexical And Syntactic Considerations

Throughout the environment, notation is based upon the use of Ada
syntax. Correct input is always lexically and syntacticalily valid
Ada. The editor system provides extensive support for construct
correct input with the minimum effort on the part of the user. There
are minor extensions to the basic language in the form of special
attributes and notation used in name resolution and for separate
visible parts, These largely fall within Ada syntaxy and are covered
later.

2ele2. Environment Structure

The environment is structured as a hierarchy of Ada packages {LRM 7).
A package specifies a group of logically related entities. The root
of the package hierarchy is named Universe. Among other thingss the
package hierarchy serves as a directory systemy providing a mechanism
{based on Ada semantics) for declaring and naming entities. The
package structure is described in more detail in section 5.3.

2e1e3. Entities

Ada defines several kinds of entities (LRM 13,1). 0f primary
importance in the environment are entities such as typess objects, and
program units.

2.1.4, Declarations

Ada entities may be declared {explicitly or implicitly) by
declarations (LRM 3.1}, Declared entities in the environment are

Rational proprietary document DRAFT 5 January 30y 1984

Yeas" Spec Ada Framework 6

represented by Ada declarations within the hierarchy of package
declarations.

2¢le5¢. Types

A type {(LRM 3.3) is an entity characterized by a set of values and a

set of operations, All Ada types are supported by the envircnment.,
Users may define additional typess extending the set of types in the
environment, Most of the types of interest in the environment are

abtstract data typess inplemented as Ada private types,
2eleboe Objects

An object {(LRM 3.2) is an entity that has a value of a particular
type. Objects are created by elaborating an object deciaration or by
evaluating an allocater. The set of legal values for a3 objecty, and
the set of operations available on the object are determined bty the
type of the object.

2.1.7. Managed Types and Objects

A type is by default an unmanaged type., Certain types are managed
typesa. A managed type is registered in the environmenty and operates
according to a set of <conventionsy particularly with respect to
storagesy permanences and access control. Many of the most important
types in the programming environment are managed types. Objects of
these types are knouwn to the environment and are treated with special
cares See Section By System and Managed Types.

2¢1le8. Program Units

In Ada there are four kinds of program units =— subprograms (LRM 6),
packages (LRM 7))y tasks units {LRM 9)y and generic units {(LRM 12},

2¢1e8.1. Subprogranms

Subprograms include functions and proceduress and are the primary
mechanism for defining operations on objects. Ada defines the
semantics for declaring subprogramses calling subprogramss passing
parametersy handling and propagating exceptionss visibilitys etc.
These same semantics apply in the programring environmenty where
subprograms replace the more traditional notions of commands and
programs.,

2.1.8.2. Packages

As mentioned earliery a package specifies a grouping of retated
entitiesy and packages are the main structuring mechanism in Ada and
the environment. Packages are the foundation for modularity and
abstraction in Aday and are wused in that way throughout the
environment.

Rational proprietary document DRAFT 5 January 30s 1984

Maes® Spec Ada Framework 7

2¢1e8.3. Tasks

Task units allow the specification of concurrency and synchronization.
Ada Tasking is the only mechanism for concurrency and synchronization
in the programming environment.

2eleBe4s Generics

Generic units allow the specification of parameterized templates that
can be wused to instantiate packages or subprograms. Much of the
environment is constructed out of generic unitssy many of which are
available for wuse in extending the programming environment and
constructing user programse.

2e1.9. Operations

The operations available on a given type include all of the functions,
procedures and entries that take parameters {or return results) cf the
types including any derived {LRM 3.4) operations.

2.1.10, Namesy Expressions and Statements

Namessy Expressions and Statements (LRM 4,5) follow Ada semantics
exactly within program units and in most other situations within the
environrent. In the environment there are some issues of context and
dynamic binding that do not arise in Ada. These issues are addressed
in section 5.5,

201011, Visibility and Scope

Hithin the environments the rules defining the scope of declarations
and the rules defining which identifiers are visible at various points
in the environment follow those of Ada (see LRM B)., The Ada rules
impose some gordering restrictions not normally encountered in
directory systems. In practices these restrictions are no more severe
than those found in conventional directory systems, except in certain
cases involving user defined data types in local scopes {which are not
even supported on conventional systems).

2e1lel2. Insertion Points

An insertion point may be placed within any Ada unit. The insertion
point must appear in a declaration list of a statement fist. H®hen
displaying the unity, the insertion point appears as a syntactic
nonterminal in a special font. The insertion point unambiguously
designates a precise {location in the package hierarchys and is
required for several of the meta—-operations discussed below.

Rational proprietary document DRAFT 5 January 3Cs 1984

"eeaes® Spec Ada Framework 8

2.2+ Declaration Meta-Operations

Since the form and content of the environment is described by Ada
declarations, changing the form and content of the environment
involves dynamically manipulating declarations., 1In particuiars new
deciarations must be addeds and existing decltarations must be modified
or deleteds These kinds of operations fall ocutside of Ada semantics,
yet are essential to the operation of the systems The environment
provides a set of decltaration meta-operations for performing these
functions, Each of these meta-operations can be viewed as taking the
environment from one semantically consistent state to another
semantically consistent state {(in accordance with Ada semanticsl}.

2¢2¢1le Declaration States

In Ada a declaration is elaborated at runtime. Because of the dynamic
nature of the programming environmenty, it is necessary to distinguish
three states for declarations —-- sources installeds and elaborated.

2e2¢lel. Source Declarations

A source declaration is in "text" form onlys need not be semantically
correcty is not elaborateds and can not be referenced semantically.

2¢2¢1le2¢ Installed Declarations

An installed dectaration is semantically consistent, is known to the
environment {(which will insure that it remains semantically consistent
untess explicitly withdrawn)s and may be referenced (statically) by
other installed declarationse.

2¢2¢1e3¢ Elaborated Declarations

An installed declaration may be elaborated (LRM 3,.1)y in which case it
has achieved its runtime effect and may be referenced (dynamically) by
executing code,

2e¢201e4, States and Ada Semantics

In the most pure view of the environment as an Ada programs only
elaborated declarations are "real"™, since only they are part of the
environment as an executing Ada program. From the point of view of
static semantic analysisy all installed declarations (which includes
altl elaborated declarations) are "real" and can be referenced
semantically. From a textual point of viewsy even source declarations
are "real"™, and the user would prefer that the environment treat thenm
as uniformly as possible,.

2e2¢2+ Primitive Declaration Meta—-Operations

The declaratiorn meta—-coperations are basically concerned with moving
declarations between the three states described above. The primitive

Rational proprietary document DRAFT 5 January 30, 1984

?.ee®™ Spec Ada Framework 1 9

operations are described here to provide insight intoc the basic
mechanisms involved., Higher—-level (and more <convenient) composite
operations are built upon these primitives.

2e2e2¢1e Manipulating Source Declarations

Source declarations are not carefully controlled by the envircnment
{from the point of view of maintaining global consistency)s and may be
manipulated directly once access has been acquired. Interactively the
user may use the full power of the editor system to perform arbitrary
transformations on the source. Programaticallys any valid operation
on the program representation may be used.

2¢2e2+2. Installing Declarations

A source declaration may be installied by selecting a pesition within
an installed declarative part and then attempting to instail the
source declaration at that point.

The first precondition for successful installation is that the
declaration to be instalfed must be semanticalily correct. The system
will perform static semantic analysis in the context of the
installation to check this condition, In the event that the
installation fails because of semantic errorss those errors are
reported.

The second precondition for successful installation is that installing
a declaration wnust obsolesce no other installed declaration. The
system performs change analysis to check this second precondition. In
the event that the installation fails because it would obsolesce other
declarationss the set of affected units is reported. The rules for
recompilation are described in 2.4.2.

Installing a declaration installs all of its subcomponents, but does
not install separate subunits {only the stubs). A source subunit may
be installed separately by associating it with the corresponding stub
declaration (rather than an insertion point) and attempting to install
it.

Cnce a declaration has been installedy it is controlled by the system
and cannot be manipulated in an unrestricted manner. In facts an
installed declaration may only be wmodified by use of the meta-
operations described here,

2¢2¢2¢3. Mithdrawing Installed Declarations

An installed declaration may be withdrawn if the act of withdrawing it

would obsolesce no other declarations. For examples a type
declaration may not be withdrawn if there are installed c¢bject
declarations using that type. The source form of the withdrawn

declaration is still avaitlable in the environment.

Rational proprietary document DRAFT 5 January 30, 1984

Waeo Spec Ada Framework 10

20620204+ Deleting Installed Declarations

Deteting an installed declaration is identical to withdrawing ity
except that the source form is no longer available.

2e2¢2¢5. Elaborating a Declaration

In order for the declaration to be elaboratedy the declaration and all
of its subcomponents must be installed and the parent declarative part
must be elaborateds. During the elaboration of the declarations any
references to other entities that are not yet elaborated will result
in a program_error exception.

Initiallys only declarations for program units and managed objects may
be elaborated wusing the environment meta-operations. Elaborated
program units may contain other declarationss resulting in elaborated
declarations of any kind. Howevers the environment meta-coperations
for incremental elaboration and withdrawal only apply to program units
and managed objects.

Unhandlied exceptions that are propagated out of the elaboration of a
declaration will be treated as errors. The elaboration will be
abandoned and the declaration will be left installeds but neot
elaborateds Any side effects from execution during the abandoned
elaboration will not be undone. Exceptions that are handled bty the
elaboration code itself are ignored by {(and wunknown to) the
environrent.

2e2e2¢6¢ Hithdrawing Elaborated Declarations

Wwithdrawing an elaborated declaration changes its state {(and that of
alt its componentsy including separate subunits) from elaborated to
simply installed, removing any entities created during the elaberation
of the declaration. Any attempts to (dynamically) reference those
entities will result in a program_error exception.,.

2¢2¢2¢7« A Note on Statements

The facilities for installings withdrawings and deleting {but not
elaborating) declarations apply to statements in installed (tut not

elaborated) program units., These facilities for manipulating
statements provide an incremental compilation facilitys but are less
fundamental to the environment model. Fventuallyy there wWwill be

support for statement-level operations on elaborated program units.
2¢2+3. Composite Declaration Meta-Operations

The oprimitive meta-operations can be composed to provide higher-level
functions., For exampley deleting an etaborated declaration can be

achieved by withdrawing it (leaving it as an installed declaration)
and then deleting it.

Rational proprietary document DRAFT 5 January 30y 1984

".ea™ Spec Ada Framework 11

The most important composite operations involve situations where a
proposed operaticn would fail because the operation depends on other
declarations that are not yet installed or because the operation would
obsolesce installed decfarations. In these situations the user may
specify that the system is to perform any necessary intermediate
operations (withdrawing obsolesced declarationss installing source
declarationsy etc.) to achieve the desired effect.

All declaration meta-operations implicitly involve compilation,s, and
these composite operations depend heavily upon the facilities of the
compilation manager to determine the impact of changess compute
minimal recompilation setsy determine compilation ordery and schedule
the actual compilation. Compilation management is discussed further
in 2.4,

2¢2¢3.1. Composite Installation
The system provides the following composite instaliation operaticons.

l. Predict the impact of performing the instatlations but do not
perform the installatione.

2. Only perform the instaffation if no other declarations need be
installed first and the installation would obsolesce nothing
else (this is the primitive install).

3. Same as aboves except that installed {(but not elaborated)
declarations may be withdrawn in order to achieve instatlation,

4. Same as abovesy except that elaborated declarations may be
withdrawn if necessary.

5« For any of the aboves optionaliy specify that the instaltation
applies to 3all subunits of the designated decliaration.

6« For any of the aboves perform the installation, installing any
other declarations required to make this declaration
senantically consistent.

7. For any of the abovey optionally specify that the installation
applies to all declarations that would need to be elaborated to
elaborate this unit.

2¢2¢3.2. Composite Elaboration
In generaly elaborating a declaration may require instaliations so all
of the various forms of installation are available as composite

elaboration commandss with necessary generalizations to deal with
elaboration as well as instaiflation.

Rational proprietary document DRAFT 5 January 30, 1984

"ees" Spec Ada Framework 12

2¢2¢3+3. Composite Hithdrawal
The system provides the following composite withdrawal operations.
1. Determine the impact of the withdrawals but do not perform it.

2« Perform the withdrawal only if no declarations would be
obsolesced (the primitive withdraw).

3. Perform the withdrawalsy withdrawing any other instatled (but
not elaborated) decliarations that are obsolesced by the change
{includes subunits of the current unit).

4, Same as abovey, except that even elaborated declarations may be
withdrawn if necessary to complete the operation.

22434, Composite Delete

Since deletion generally involves withdrawal, the forms available for
withdraw apply to delete,

2¢2<.4. Synchronization Considerations

The declaration meta-operationssy by their very natures modify the
environments thus potentially modifying the compilation context for
other operations in progress. Compilation is a high=freguency
operation in a software development environments and is even more so
in the Rational environment where aill command execution, name
resolutiony program initiation, and other declaration meta-cperations
involve compilation. Therefores it is unacceptable to serialize
updates to a declarative region with all compilation that involves
that region as part of the compilation context.

The system is able to impose wminimal serialization ©because of the
incremental nature of compilation in the environment, The system
already maintains information down to the granularity of individual
defining occurrencesy thus it is able to serialize at that level, A
declaration meta-operation in progress will block compilation that
would be dependent wupon the exact change in progressy but does not
block compilation that only depends upon other dectarations in the
same declarative part.

23« Package Structure

A package is an entity and a package declaration is a declaration like

any other. Thussy applying the meta—operations to package entities
allows the wenvironment to grow and change shape. Adding new
declarations adds new entities. Adding new package declarations

allows new groups of entities. These groups of entities can be viewed
as corresponding to directories on conventional systems; however, a
package is much more general than a traditional directory lin large

Rational proprietary document DRAFT 5 January 30, 1984

M"esas” Spec Ada Framework 13

part because the notion of an entity in Ada is much more generail than
the traditional notion of a file).

The declarations in the envircnment are structured as a tree of
packages with the root being an elaborated package. This set of
declarations defines the set of objectss typesy and operations
available to the wusers interactively and programmatically. In that
sensey this set of declarations is the envirconment. All of the
programming environment software itself appears in this tree of
declarations,

Given the rules described abovey, the full set of elaborated
declarations forms a subtree rooted at the root of the environment,
Similarlys the set of installed declarations forms a subtree rooted at
the root of the environment and covering the subtree of elaborated
declarations,

Declarations within an elaborated package mrust be installed or
elaborated. 1Installed program unit stubs within an elaborated package
may have source subunits associated with thems 1In additions there may
be insertion points with associated source. Howevers no uninstalled
source declarations may appear directly in an elaborated package.

Declarations within an instatied (but not elaborated) package must be
installeds but cannot be elaborated., As With elaborated packages,
there may be source subunits and source associated with insertion
points,

Nothing within uninstalled source may be installed or elaborated.
Insertion points within uninstalfed source may have additicral socurce
associated with themy and stubs may have corresponding sgurce
subunits.

Usuallys each package will be a separate unit {or Ada Unit) in the
sense of Ada separate compilation units and in the sense of separate
files in a traditioral system, As in Adas packagess subprograws and
task bodies may be separate unitss with the slight extension that
nested visible parts may be separate subunits. An uninstalled
{source) unit may contain arbitrary code that need not correspond to
an Ada compilation unit. Each Ada Unit is a separate managed object,
and is accessedy modified and stored accordingly (see section 8).

The environment is structured as a single package with many nested
subunitsy rather than as library units. Using only subunits allows a
simpler and more wuniform environment model and encourages proper
grouping of packages. The major problem with using subunits is the
lack of visibility controls In particutary the names space in a
deeply nested unit becomes somewhat poliuted. Eventuallys the
environment wWill support mechanisms for better specifying and
controlling visibility. Most likely this will take the form of
pragmas that indicated that a package defines a closed scope except
for specifically imported entitiese. Warnings would be provided if
those stricter visibility restrictions are violated.,

Rational proprietary document DRAFT 5 January 30y 1984

".es" Spec Ada Framework 14

The environment provides facilities for traversing the package
structurey including facilities to get from a package visible part to
its body {and vice versa)y, to visit every declaration within a
packagey to visit the parent package of some declarations and to visit

separate subunits. There are facilities for retrieving various
attributes associated with each package and each declaration of a
managed object in the package structure. These attributes include

time of creationy time of last modificationy sizesy etc. These
attributes are described in Section 8 (System and Managed Types).

2+4+ Compilation Considerations

The complexity of managing compilation of large programss the
computational expense of Ada compilations the importance of semantic
consistency in the environments, and the goal of providing an
interactive environment all jead to the need for an automaticy
incremental and reliable <compilation management system, In
constructing large programs the user will require some control over
the compilation process and the system must carefully allocate
rescurces. The compilation management facilities tc accomplish these
goals are covered in this section,

2+%.1. Libraries

Libraries and library units are not obviousty consistent with the
simplified model! of the environment as a single Ada program. The
library facilities described here are designed to provide complete
compatibility with the language requirementssy while integrating
libraries and "main programs"” into the overail environment model.

2e%e¢lel. Library Objects
Libraries are objects of the managed type Librarys and are represented

as object declarations in the package hierarchy. (nce a variable of
type library has been elaborateds A user may view the value of the

librarys which appears very similar to an Ada package body
{substituting the word tibrary for packagel)l. The contents of the
jibrary will appear as a restricted subset of Ada declarations, The

legal declarations in a (tibrary are program unit stubss renaming
declarations that denote installed program unitsy use <clauses that
denote either installed packages or librariesy and pragmas. Only
directiy within a2 library may use clauses denote library variables,

2e%ele2s Library Units

The separate Ada Units contained in the 1library will have any
necessary WITH clauses and are treated as library units in accordance
with Ada semantics. The library units may in turn have subunits,
Library units may be installeds but can not be elaborated in place.

Units within the library may be named as if the library formed a

Rational proprietary document DRAFT 5 January 30, 1984

N"esas" Spec Ada Framework 15

package shelly i.es package P within {library X within the the
elaborated package D is named D.X.P. This form of name is of scmewhat
timited usey, since by definition it denotes an unelaborated entity.
But it is useful in certain applications.

2¢%4e1+3. Library Context

By nature a library unit is a closed scope with the context limited to
other wunits specifically named in WITH <clauses. The envircnment
resolves the simple names in the WITH clauses to entities visible at
the end of the library (viewing the library itself as a declarative
regions nested at the point of the Jibrary variable declaration).
This means that WITH clauses may denote any other unit in the library,
any unit introduced by 3 renaming declaration in the libraryy any unit
introduced by 3 wuse clause in the librarys or any unit directly
visible in the environment of the library dectaration,

Elaborated packages in the package hierarchy that are visible to
library wunits (either directlyy through a renames or through a use
clause) provide finkage between library units and the elaborated
environment, This is particularly important in that all system
facilities (including TInput/Output) are only avaitable through
elaborated packages.,.

Units in other libraries may be made visible toc library units through
use clauses or renaming declarations. This allows the use of multiple
libraries in constructing large systems.

2eftele4s Installing Library Units

The program units in the library may be installedy and all of the
operations available for instalting and withdrawing declarations apply
within the library. Howevers no declaration within the library may be
elaborated in place. Within librariesy the declaration meta-
operations serve as very efficient facilities for minimal
recompilationy but they are not as fundamentally important as they are
in the elaborated package hierarchy. The declaration meta-operations
would allow declarations to te added to a low-level visible part
without <causing massive recompilations but are not essential to
properly constructing the library.

2¢%4¢1.5. Main Programs on the R1000

The Ada language definition introduces the concept of wain programs as
well as librarieses In the elaborated package hierarchy there is no
need for a notion of main programy since any procedure or entry can be
called once it is elaborated. Howevery for constructing programs
using library units the environment does support a concept of main
program,.

The system provides a 1oad operation that takes as parameters 2
location in an elaborated packages the name of the main program to be

Ratioral proprietary document DRAFT 5 January 30, 1984

Ye.ae™ Spec Ada Framework 16

constructedy and a subprogram \library unite. The load operation
constructs an elaborated subprogram at the designated locations with a
specification that matches that of the library unit {(substituting the
user specified name for the new main subprogram), The load operations

computes the transitive closure of all wunits required by the
designated main unitsy performs any necessary completeness checking,
and comrputes the proper elaboration order. In <¢ases involving

multiple librariesy the toad operation will provide warnings in the
event that the transitive closure includes two units with the same
NamMe.

The main subprogram library unit may have parameters; howevery the
types of the parameters must be types whose declarations are
elaborated and visible at the location where the main subprogram is to
be elaborated. Once elaboratedy the main subprogram may be called
like any other subprogram declaration.

The elaborated main subprogram declaration has no body declaration,
but the system inserts the pragma LIBRARY_PROGRAM {Library_namey
unit_name) immediately after the ejaborated declaration,
Conceptuallys the body of the main program is an invisible system
constructed subprogram that elaborates all necessary library unitss
elaborates the main subprograms and then <calls the main program
passing aiong any parameters. This correctly follows Ada semantics,
where all the library units are elabtorated on each invocation of the
main program.

Once a main program has been installed and elaborated, changes to
Jibrary units used to construct the main program do not obsolesce the
main program. Howevery debugging facilities may be somewhat
restricted in cases where Jibrary units have been changed after the
main program was replaced. This implies that the system must retain
code segments for fibrary units until there are no elaborated main
programs which depend upon those code segments,

{issues remain with substituting body only and priority pragma)
2ehele6. Target Considerations

While program wunits in the elaborated package hierarchy necessarily
execute on the R1000, library programs may be constructed for
execution on other machines, A library may include a TARGET pragnma
before the first dectaration in the library. The TARGET pragma has a
single parameters which is an object of the managed type TARGET. The
object of type TARGEYT provides information used by the <compilation
system to construct programs for a foreign target machine.

The TARGET specifies an object of type ADA_MANAGER.ID that will be
used to obtain the standard package for compilation of all wunits in
the library. Other Janguage required packages (machine codes system,
etcs) may be included directly as units in the librarys or may be
irported by means of a renaming declarations use clausesy or direct
visibitlity.

Rational proprietary document DRAFT 5 January 30, 1984

M"eae™ Spec Ada Framework 17

The cowpitation system provides a set of couplers for dynamically
adding support for different target machines. The TARGET specifies
keys that are wused for invoking machine dependent processing during
semantic analysiss for invoking code generations and for performing
any link/load operations,

2¢4¢2+ Incremental Compitation

The declaratiorn meta-operations {including application to statements)

provide the user visible incremental compilation facilities,
Essentiallyy the system supports incremental compilation of individual
declarations and statements. Here we <cover rules governing when

incremental compitation may be applied and the impact (in terms of
obsolescing other declarations) of performing incremental compitation,

2¢4¢2¢1. Impact of Instaliation

When a new declaration is installeds, it may hide existing declarations

defined in outer scopes. Any units that reference these hidden
declarations within the scope of the new declaration will be
obsolesced, In additiony the new declaration may overload existing

declarations appearing in the same scope as the new declaration or in
scopes closely containing the new declaration or closely contained by
the scope of the new declaration. References to these overtoaded
declarations could become ambiguous after the introduction of the new
declaration. Units containing such ambiguous references will be
obsolesced.

2e8e2e2. Impact of Withdrawal

When a declaration is withdrawny all units that reference that
declaration will be obsolesced. In additions ambiguous references may
be introduced if the withdrawn declaration had previously hidden
overjoaded declarations. Agains units containing such ambiguous
references will be obsclesced.

2e4e2e¢3¢ Scope of Impact

For both installation and withdrawaly the scope of a declaraticon can
be extended through the use of expanded {qualified) references and
through the use of USE clauses. When determining the set of units to
be obsoleseds this extend scope must be fully considered.

2¢%4.3. Computing Compifation Requirements

In order to support the composite declaration meta-operations defined
abovesy the system must provide support for computing the set of
declarations that must be installed before a declaration or subunit
can be installed. In addition the system must be able to compute the
compilation order required to install a set of obsolete units (and
everything they depend on)l. In general this will require cognizance
of source declarations in the environment that must be installed to
allow other installiations to proceed.

Rational proprietary document DRAFT 5 January 30y 1984

Maeee" Spec Ada Framework 18

In the most general casey where there are large numbers of uninstalled
source unitsy it is difficult for the system to determine whether a
particufar unit has semantic errors or is dependent on installation of
other source units. To constrain the problem somewhats and to provide
more user controlsy the system distinguishes between 3 source unit that
is M"complacent” and one that is *"eager".

Essentiallys an eager unit is a syntactically correct compilation unit
that is ready to be installedy while a complacent unit is one that is
incomplete or requires changes before consideration for installation.
A source unit is initially complacent. The wuser may explicitly
indicate that a source unit (or all source units within some unit)
should be considered eager {or complacent)s An unsuccessful attempt
to install a complacent unit will make it eager {if it is
syntactically valid). An installed unit that is explicitly withdrawn,
but not changeds becomes complacent. Indirectly obsolesced units
remain eager. Modi fying a unit doesn't change its eagernesss, except
in the case where an eager wunit is made syntactically invalid,
becoming complacent.

When computing compilation requirements as the result of a declaration
meta-operations the system will only consider eager source units,
Eager units are also candidates for automatic anticigpatory
compilationsy as described in the next section,

2¢%4e4s Scheduling and Controlling Compilation

Compilation must be scheduled efficiently to optimize use of machine
resources and to balance system load. Scheduling must account for all
pending activitiess nmust recognize when recent updates change
compilation regquirementsy and must prevent redundant compilations,

Some compilation is closely tied to user interactions. For example,
the user will typically view installing an object decliaration as an
interactive operation. In this case compilation occurs immediately on
demand.

The wuser may request that compilation occur asynchronously. The
system provides facilities for the user to monitor the progress of
such ‘compilationss including the ability to change prioritiesy delay
compilationy and cancel compilation. The system will then schedule
compilation in accordance with wuser directions system foads and
competing requestse.

There is <considerable opportunity to perform compilation {both
semantic analysis and code generation) in the backgrourd in
anticipation of user reguests. Howeversy Jlack of experience with
system operations limited heuristics for initiating compilations and
uncertainty abgut system performance constraints, preclude
construction of such mechanisms at this point. Initially, atl
compilation will be the direct result of user actions.

Rational proprietary document DRAFT 5 January 30, 1984

"a.se" Spec Ada Framework 19

2¢4¢5¢ R1000 Code Generation

R1000 «code generation must support incremental compilation to the
granularity of individual statements and declarations.

Code generation must be coordinated with activities involved in
performing environment meta-operations. In gparticulary the code
generator must cooperate in maintaining consistency between the
runtime representation of entities and the various permanent data
bases maintained in the environment,

Invocation of the code generator provides control over code generation
and optimization parameters, including support for debugging.

Semantic analysis will always occur as the direct result of installing
or elaborating some declarations and is easily controliled by the user;
howevers code generation is more problematic, In order to provide
rapid feedback on semantic errors {and to conserve resources)
installation does not result in immediate code generation,

Code generation must occur before elaborations and part of the
elaboration operation involves completing any necessary code
generation, However, deferring all code generation until elaboration
makes elaboration very expensive. Because code generation can only be
applied to installed wunitsy and because it is easier to construct
heuristics for invoking code generations code generation is much more
amenable to fully—-automatic mechanisms. Howevery as discussed abovey
initially all compilation will be the result of explicit user action.

The system provides an operation for explicitly invoking code
generation on a set of units. Optionallys the code generation
operation may be applied to all subunits of any of the named unitss or
to all units required to elaborate a particular unit.

2e%.6. Importing Source

The system includes facilities for parsing a text objects or a set of
text objectsy and inserting the resulting units into a specified
librarye.

25« Execution

Within the programming environment, all activity is viewed as the
execution of Ada code by some task. 1In particular, command execution
is simply the execution of some statement by a task acting on behalf
of a user session (see section xxxxx). Program execution is the same
as command executions where the statement is a procedure call to the
desired subprograme. Once execution is initiatedy the semantics of
execution are essentially those specified by Ada semantics.

Rational proprietary document DRAFT 5 January 30, 1984

Yeeas" Spec Ada Framework 20

2e5¢1le Context

Execution in Ada is only meaningful in terms of some particular
context,

2¢9%¢1.1. Static Context

Ada requires a static context that is wused <during compilation to
perform static semantic analysis. 1In particulary, the static context
provides the environment for resolving names and determining the
meaning of expressions.s The static context can be viewed as a point
within the installed environment. A position within the installed
environment determines what entities are visibley, and how the meaning
of any Ada expression will be resolved.

2e¢5e¢le2¢ Dynamic Context

The dynamic context corresponds to the actual runtime environment
where execution occurs. In simple <casesy there is a one-to—one
correspondence between the static and dynamic environment, and the
dynamic environment can be thought of as a point within the elabcrated
environment, In general {particularly when debugging) full
specification of the dynamic environment must deal wWwith all the
complexities of nested recursive callsy dynamically allocated task
gbjectssy etce.

In the general cases the dynamic context must specify the runtinme
environment down to the 1level of a specific subprogram activation
records A task performing the execution has its runtime envircnment
set up so that execution occurs as if the task {or at least the
procedure frame running on the task) is nested in the <correct
environment, The runtime manager provides these execution facilities,
exploiting special facilities in the architecture (isCas
Establish_Frame). {(Subcontract additional detail to Phitl),

2e¢9ele3. Session Context

{This whole section should perhaps move to Chapter 4). Each session
has a context defined for command execution. The {dynamic and static)
context for a session defaults to the end of the body of the users
package {associated with the session}. The wuser wmay <change his
context on a session-wide basis. A job executing on the behalf of a
session inherits its context from the session context at the time of
Job invgocation.

Frequently used commands and other freguently referenced entities will
have vrenames directly in the outer package of the environment sc that
they will be visible in every environment (except when there are
intervening hiding declarations).

Support for session-wide abbreviations that are visible regardless of
the current setting of the session context s provided through a

Rational proprietary document DRAFT 5 January 30, 1984

" ,ee" Spec Ada Framework 21

command context declare block, When the session context s
establishedy it is as if this declare block is nested at that gpoint.
Then commands are interpreted as if they occur where the statement
list would appear in the declare block. The only declarations allowed
Wwithin the declare block are renaming declarations and use clauses.
The declarations are further restricted to fully qualified names for
the renamed or used entitiesy since these declarations wmust wmaintain
their meaning when the context is moved. The session context declare
block is part of session states and may be edited by the user. {this
facility may not be inplemented for some time)

2¢5¢2¢ Naming Entities

Entities can be named {from the proper contexts in accordance with Ada
visibility and scope rules) by using Ada names {LRM 4.1).

In addition to simple Ada namingy the environment supports special

atiributes that extend Ada naming. In particulars there are
attributes for denoting the declaration rather than declared entity,
and there are attributes for designating versions. {specify

attributes)

String names are also supported by the environment. String names are
treated as extended Ada namess which are more flexible with respect to
visibility and allow more precise designation of runtime environments.
{more precisely <o)

The environment also supports a variety of mechanisas for implicit
namings the most notablie being selecting an object with the editor.

253« Command Execution

Commands are statements that are executed in the context of a
particular session. The command may dynarmically reference any entity
visible in the specified context. In additions commands often take
implicit parameters {(currently selected objectsy current windows etcl.
These implicit parameters are computed by the called comrand based on
the session and job {(see <s2)e {restrictions etc.)

2¢5+4¢ Program Execution
There is no real distinction between command execution and program
execution, Any elaborated subprogram or entry in the environment may

be invoked.

{communications invoking others, compositions process issues)

Ratioral proprietary document DRAFT 5 January 30, 1984

Veses" Spec

System

There are a number of types
irplementation and use of the
unmanaged types that are
mechanisms.
the object management system.
This the

section describes

management facilities and concepts,

Managed Cbjects
permanencey

and Object

Files Jobs

Rational proprietary document

System and Managed Types

Others are managed types,

synchy access control.
managers Address Spacesy Volumes, Segmented Heapss and
Ada Units and Diana Directories {(Dependency Data Base Buried

22

Chapter 3
and Managed Types

that that are fundamental to the design,
systems Some of these are primitive,
used to ©build the basic environment
built upon the facilities of

primitive system typess the basic object
and certain key managed types.,

Ids Actions 0Object Managers storages
Userss Groups and Sessions Cevice
Heap Managers

in here?)

DRAFT 5 January 3Cy 1984

".as" Spec User Interface 23

Chapter 4
User Interface

Rational proprietary document DRAFT 5 January 30, 1984

"a.ee" Spec Implementation Architecture

Chapter 5

Implementation Architecture

Ratioral proprietary document

DRAFT 5

24

January 3Cs 1984

".ee" Spec Table of Contents i

Table of Contents

[aad

l. Introduction and Overview

l.1.
1.2'
1.3.
l.4.
1.5,

Purpose

Scope

Background

Goals Summary

Design Principles

l1.5.1« Integrated

l1e5+2+ Ada-based Semantic Framework
l145e3¢. Editor-Based User Interface
1e5+4. Knowledge—-Based

1.545. Interactive

l.5.6. Extensibile

le5e7+ Maintainable and Modifiable

W IV I NI et et i ot el

Ut

2. Ada Framework
2.1, Basic Concepts
2s1els Lexical And Syntactic Considerations
2ele2e Environment Structure
2e1e3. Entities
2+1l.4. Declarations
2eleba Types
2+1le€. 0Objects
2e147+ Managed Types and (b jects
2«18, Program Units
204148s1s Subprograms
21842« Packages
2elaBa3e Tasks
2+1l.8.4. Generics
2e1.9. (Operations
241410+, Namess Expressions and Statements
2a1e11, Visibility and Scope
2+:1s12. Insertion Points
Ceclaration Meta-0Operations
24241 Declaration States

2"2-’

2.2'1'1.
2’2’1.2.
2‘2.1.3‘

Source Declarations
Instatled Declarations
Elaborated Declarations

2s2elea4. States and Ada Semantics
2e242« Primitive Declaration Meta-Operations

2s2s2else Manipulating Source Declarations
Installing Ceclarations
Withdrawing Instalied Declarations
Deleting Installied Declarations 10
Elaborating a Declaration 10
Withdrawing Elaborated Declarations 10
A Note on Statements 10
mposite Deciaration Meta-Operations 10
3.1. Composite Instatiation 11

VDODVDEBBOEORXNNANN AN O N WM

Rational proprietary document DRAFT 5 January 30, 1984

".se" Spec Table of Contents

222s3.2. Composite Elaboration
2e2¢343s Composite Withdraual
2¢2+3.44 Composite Delete
2+2+44%s Synchronization Considerations
2e3. Package Structure
2.4, Compilaticn Considerations
2eftele Libraries
2e4elels Library (b jects
2242142 Library Units
4123+ Library Context
elad4s INnstalling Library Units
«1ls5+ Main Programs on the R1000
«lsts Target Considerations
ncremental Compilation
s4ea241le Impact of Instaliation
wnd4s2e2« Impact of Hithdrawal
e4ela3e Scope of Impact
Computing Compitation Requirements
Scheduling and Controlling Compilation
Se R100C Code Generation
2e4e6e Importing Source
2+5. Execution
2+s5¢1s Context
2e541sle Static Context
2e95s1le2es Dynamic Context
225+143. Session Context
2e542+ Naming Entities
2¢543« Command Execution
2¢5¢4s Program Execution

3. System and Managed Types
4, User Interface

5 Implementation Architecture

11
12
12
12
12
14
14
14
14
15
15
15
16
17
17
17
17
17
18
19
19
19
20
20
20
20
21
21
21

22

23

24

Rational proprietary document DRAFT 5 January 3C. 1984

