II1 N N TTTTT EEEEE RRRR FFFFF AAA CCCC EEEEE
I N N T E R R F A A C E

I NN N T E R R F A A C E

1 N NN T EEEE RRRR FFFF A A C EEEE
I N NN T E R R F AAAAA C E

I N N T E R R F A A C E

II1 N N T EEEEE R R F A A CCCC EEEEE

M M 5$S55S 555§ 333

MM MM S 5 3 3

MMM S S 3

M M 5SS S$SS 3

M M) S 3

M M S S o 3 3

M M SSSS 5$S5SS os 333

¥START%* Job INTERF Req #297 for EGB Date 15-Feb—84 12218208 Monitor: //s TOPS

File RM3KJINJENYVDINTERFACEL.MSS5.35 created: 30-Nov-83 21:53:10

printed: 15~Feb-84 12:18:08
Job parameters: Reguest created:l15-Febdb-84 11:15:58 Page limit:63 Forms:NCORMAL
File parameters: Copy: 1 of 1 Spacing:SINGLE File formatzASCII Print mode:ASC

aSection{Editor-Based User Interface)

2Begin({Itemize)
Editor based.

Object oriented.
Type knowledge.
Simple, yet complex.
Mechani sms
2Begin{SItemize)
Windows.

Complietion,

Prompts.

EFlision,
dEnd(SItemize)

Objects.
aBegin{Slitemize)
Characterse.
Words.

Objects.

Selections.

Cursors,
dEnd{(SItemize)

dEndi{Itemize)

0oao y V EEEEE RRRR \J v IIl EEEEE W W
8] cC v vV E R R ¥ v 1 E | i
g g v vV E R R v v I E W W
g o v ¥ EEEE RRRR v v I EEEE W W
G c v v E R R v v 1 E W WK
0 g vy E R R vy v I E WH Wi

0aqa y EEEEE R R v IT1 EEEEE W W
M M 53535 535S 4 4
MM MM S S 4 4
MMM S 5 4 4
M M SSS SSS 44444
M M S S 4
M M S S s 4
M M S5SSS $5SS .o 4
#START* Job INTERF Req #297 for EGB Date 15-Feb-84 12:18:08 Monitor: //» TOPS

File RMIKJIMLENYDOVERVIEW .MSSe4y created: 30-Nov-83 20332312

printed: 15-Feb-84 12:18:11
Job parameters: Request created:15-Febd~-84 11:15:58 Page limit:63 Forms :NORMAL
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCII Print mode:ASC

2Makel{Article)

aModify (Verbatims, above 1, below 1)

dModify {(Senumerates above 0)

#Modify (Descriptions LeftMargin +8y Indent -8)
aString(DocumentTitle=<{",.." Overview >)
#String(Draft=<DRAFT 1>)

25et(Page=1)

dincliudelada.nss)

dIncludelprocess.mss)

alncludelinterface.mss)

alncludeltypes.mss)

PPPP RRRR G0o CCCC EEEEE S$5SS $S855

P P R R @ o C E 5 S

P P R R O 0 C E S S
PPPP RRRR 0 g C EEEE S$SS 5SS
P R R o 0 C E 5 S
P R R 8] 0 C E 5)
P R R 000 CCCC EEEEE S5SS $555S
M M SS5SS 5555 1 55555

PM oMM S S 11 5

MMM S S 1 555

M M 5SS S$SS 1 5

M M S S 1 5

™ M S S .o 1 5 5

M # SSSS 5$555S .o 111 555

¥START* Job INTERF Reqg #297 for EGSB Date 15-Feb-84 12:18:08 Monitor: //y TOPS

File RMI<KJIM.ENVOPRUOCESS.MSS.15, created: 9-Jan-84 18234312

printed: 15~-Feb=-84 12:18:16
Job parameters: Request created:15-Feb—84 11:15:58 Page limit:63 FormssNORMAL
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCII Print mode:AS(

a5ection{Userssy Groupss Sessionss and Jobs)

Usersy Groupssy Sessions and Jobs are very simple representations for notions
of interest to users of the environment. They all serve to identify tasks and
objects on the basis of who created them.

a5ubSection{Users)

A user is an obJject that represents the human user in the system, Its primary
purpose is Lo provide a3 domain for system access authentication and object
access control.

The environment associates information with the user that wakes it possible
for him to tailor the user interface and resume sessions in a desired state,
Specificallys each user is associated with:

aBegini{SEnumerate)

The set of objects and packages that he has created. This includes sessions,
filesy programss etc. The user is said to "own"™ such objects and packages.

A home package in the package directory system. This is the current context
for any new sessions (see below) that the user establishes.

A default context clause in which to interpret commandss including specific
use and rename clauses to select objects and programs frequently usede.
dEnd(SEnumerate)

aSubSection{Groups)

A group is a set of users, A user may belong to any number of different
groupse. Groups are used to provide aggregate access controls i.e. access can
be granted to a group instead of to each of the individua!l members of the
group.

sSubSection({Session)

Session is a term that is used broadly to represent the contents c¢f an
interaction between a user and the environment. While 3actives the session
acts for the usery providing the tasks necessary for user execution. Each
session has a unigque namesy its session_idy that is attached to the base of
each of the stacks of all of the tasks making up the session. This common
identification is used to provide provide dyanamic inheritance of state
between the tasks of the session. The inheritance is inplementec by mapping
session_id to interesting characteristics of the session {e.g9. editory,
terminaly usery groups current context}, When neededs this information is
extracted from the map using the session_id implicit in the task of the
requestor. A number of commonly useful pieces of state are kept in these maps
by the evironrent; others can be added by new subsystems or users.,

Sessions provide continuity from one period of interaction to another. MWhen a
session is inactivatedy the environment saves characteristic information
associated with the session_ids When the user resumes the sessiony this
retained information provides continuity with the state prior to suspension.

s2SubSection{Jobs)

A job is a logical thread of control as seen by 3 user. Atthough the job can
contain an arbitrary number of tasks, it represents an autonomous entity
started by the user to accomplish a purpose., Jobs form a subdivision of the
session name space. This division makes it possible for different logical
threads of control to have a common dynamic inheritance that is different from
that provided for other jobs in the same session. Information associated with
Jjob_id {current source/destination of input/outputy, storage heaps fitle naming
contexty selectiony etcs) is more execution-specific than that associated uwith
session_idy but there is no hard distinction.

2SubSection({login)
Login is how the user acquires a session. For all of the traditional reasonsy
login validates the user's right to use the system by requesting a password,

After validationy the user must establish which session is to be used (either
by creating 2 new one or resuming an old one) and the type of terminal that
is being used. Either or both of these could be chosen by apprpriate default.

; TITITTITITT YY YY PPPPPPPP EEEEEEEEEE $55555SS
TTTITITIT YY YY PPPPPPPP EEEEEEEEEE $$5SSSSS
1T YY YY PP PP EE S
| 17 YY YY PP PP EE S
| 1T YY YY PP PP EE SS
| T YY oYY PP pp E£E $S
, 7 YY PPPPPPPP EEEEEEEE $SS55S
! 7 Yy PPPPPPPP EEEEEEEE $5555S
T Yy PP EE ss
} 1 YY PP EE 5s
| 1T YY PP EE $S
| 7 YY PP EE Ss
8 YY PP EEEEEEEEEE $SSSSSSS
17 YY PP EEEEEEEEEE $SS555SS
MM MM SSSSSSSS $SSS5555S 11
MM MM $55555SS $SSSSSSS 11
MEMM MMMM $S S 1111
MMMM MMMM $S SS 1111
MM MM MPM $S SS 11
MM MM MM $S s 11
MM MM $SSSSS $SS5SSS 11
MM MM $5S5SSS 555555 11
MM MM ss 5s 11
MM MM SS S 11
MM MM SS SS coen 11
MM MM 5SS ss veee 11
MM MM $SSS5SSS $SSSSSSS cens 111111
My MM $$S555SS $SSSSSSS cene 111111

START Job INTERF Reqg #297 for EGB Date 15-Feb—-84 12:18:08 Monitor: //s TOPS
File RM:<KJIMLENYDTYPES.MSS.1ly created: 30-Nov=-83 20:31:05

printed: 15-Feb-84 12:18:23
Job parameters: Request created:l15-Feb-84 11:15:58
File parameters: Copy: 1 of 1 Spacing:SINGLE

Forms:NORMAL ¢
Print mode:ASC!

Page limit:63
File format:ASCII

sSection(System and Managed Types)

uu uuy

uy uu
uuy uu
uu uu
uu uu
Uy Uu
uu uu
uu uu
uu uu
uu uu
uu uu
uu uu
uuyuuuuuuu
Uuuuuuuuuy
MM MM
MM MM
MMMM MMMM
MMMM MMMPM
MM MM MM
MM MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM

$S5S5535SSS
S55S55SSS
SS
55
SS
53
S5SSSS
555555
SS
SS
SS
5SS
555555558
$5S55S555S

S$S5S55SS
SSSSSSSS
SS
55
35
55
S$555SS
$5555SS
53
SS
SS
SS
S355555S5S
555553555

EEEEEEEEEE
EEEEEEEEEE
EE

EE

EE

EE
EEEEEEEE
EEEEEEEE
EE

EE

EE

EE
EEEEEEEEEE
EEEEEEEEEE

$SS555SS
$553555S5S
S5
55
SS
S5
$55SSS
S$S5S5SS
5SS
55
SS
35
$555S55S
55555555

¥*START* Job INTERF Req #297 for EGB
File RMIKJIMJENVOUSERLMSS5.49y created:

printed:
Job parameters:
File parameters: Copy:

1 of 1

15-Feb~-84 12:18:27
Request created:15-Feb~-84 11:15:58
Spacing:SINGLE

RRRRRRRR
RRRRRRRR
RR RR
RR RE
RR RR
RR RR
RRRRRRRR
RRRRRRRR
RR RR

RR RR

RR RR
RR RR
RR RR
RR RR

LI B 2N J
LR R J
> 480

.88 8

Page
File format:ASCII

44 44
44 44
44 44
44 44
44 44
44 44
4444444444
4444444444
44
44
44
44
44
44

limit:63

Date 15-Feb-84 12:18:08 Monitor: //s TOPS
10-Feb-84 23:35:20

FormssNORMAL
Print mode:ASC.

aPart{UserInterfaces root "[mtd.envlispec™)

aChapter{User Interface)

User interaction with the system and his own programs is through the editor,
The users' investment in learning these facilities is repaid in increased
functionality and more unifcrm interfacee.

The user is primarily interested in manipulating the entities that make up the
environrment. The user interface is concerned with providing an

orderly and convenient method of expressing these manipulations,

The user communicates by typing characters f(or function keys or moving a
mousel)s Though system entities are often presentable in a readable tform,

the objects themselves are not made up of the characters used to present them.
As 3 resulty the user interface is constructed to interact with the user
through character editor and with the entities themselves in terms of their own
representation. To accomplish thise the editor is separated into two layers:

eBegin{Enumerate)

The visible interface is a nmulti-window editor that provides a core set of
facilities for handling user inputs editing and screen management., This is
called the alI{Core Editor).,

The type-specificy object-knowledgeable portion of the editor is called the
#1(0bject Editor). HKhich object editor is used depends on the type of the
object (entity)s. Although specific object types may require specific
operationss there is a common set of operations requiring type knowledge that
is provided by all {or most) object editors. These are referred to as object
operations.

sEnd{Enumerate)

aSection{Core Editor Concepts)
The Core Editor provides character editing facilities. This section is an
attempt to define and briefly describe these.

aSubSection{Screen Structure)

A 9l{Screen) is the entire contents of the display at a particular time.
Screens are made up of opague rectangular areasy called al{Windows)y arranged
in a2 possibly overlapping pattern, More than one screen can be maintained by
a session to facilitate changing from one multi-window activity to ancther
{though not initially).

Windows are composed of all(character positions) andy optionaliy, dl(borders).
Borders are used to visually delineate windows. The character positions
represent a bounded rectangular region of the quarter-plane of an aI(Image).

An image is an array {(Natural) of linesy each consisting of an array (Natural)
or characters. At any times each image has a specific number of linesy each
of which consists of a specific number of characters. Lines beyond the end of
the image and characters beyond the end of lines are treated 3as blanks on the
windows A dI(word) is a portion of a line delimited ty separator characters,
Word boundaries are completely syntactic and are handled by the Core Editor.

An image is the user-readable representation of an entity in the syster,
Gne of the functions of the Core Editor-0Object Editor combination is to
provide mechanisms to reflect changes from the readable to the internal
representation and back within the editing paradigm. The image is the Core
Editor representation of the ob ject.

dI{Superwindows) are collections of windows that are logically linked and
maintained to be physically contiguous. Because of this logical connection,
superwindows are commnonly referred to as windows composed of windows. The
most common example of a superwindow configuration has the following
characteristics:

aBegin{SEnumerate)

o

A window containing the image of an object to be edited. This is called an
al{object window), It normally has top and side borders.

A al(banner window) that explains the purpose and status of the object
windows. Normally presented in a different font than its associated cbject
windows with side borders., Although banners are implemented as windowss no
editor operations will be provided initially for their manipulation.

A al{command window) that is used for entering Ada statements to be compiled
and executed to perform actions on the user's behalf, Normally has bottom and
side borders. '

The appearance of the whole is of a single boxs surrounded by borders, with
the command window separated from the object window by the banner.

The command window is an object window in its own right.
dEnd{SEnumerate)

There is a2 system—managed output window that serves as the destination for
general error messages and system outpute. Its associated banner is used to
depict the state of the session.

2S5ubSection{Cursors)

The physical screen has an apparent 2I(cursor)s marking the current position
of the user®s focus of attention (from the editor's point of view)s This is
called the dI(screen cursor).

If the cursor is within a windowy it represents the:

aBegin{SEnumerate)

2I{Image cursor): {lines column) in the image on the window.

al(dindow cursor): {lines column) on the window.

2End{SEnumerate)

If the cursor is not within a windows the image and window cursorss and
operations that depend on themy are undefined.,

For each type of cursors there are a variety of operations to specify its
position. Changing on the position of one type of cursor often, but not
alwayss changes the position of otherse.

The window and image cursors are closely linked. When they move in concert,
the screen cursor moves across the window; when they move separatelys the
image scrolls on the window (in addition to possibie screen cursor motion),
The rest of this section deals with image and screen cursors and their
relation to each othery ignoring window cursors to simplify the discussione.

Moving the image cursor causes the screen cursor to move., Moving the image
cursor to a position that is currently not on the window causes the window to
be scrolledes The screen cursor will not leave the current window because of
an image cursor moticn.,

Moving the screen cursor causes the physical cursor tc move without changing
the image cursor. Having moved the screen cursor to a position within a
windows any operation involving either the image cursor or the underlying
image causes the image curscr for this window to be moved to the screen
CuUrsor.

Each window has a current image cursor position. Operations that change the
focus to a previously visited image {(and do not specify a particular position
in that image) will place the cursor at the previous image cursor position.
Thusy moving away from a window using screen cursors leaves the image cursor
at the point of last interest rather than at the exit position.

A 2Ilmark) is a saved image position. Marks are stored in terms of absolute

image positions and do not change to adjust for inserted/deleted
fines/characters.

aSubSection{Fonts and Designations)

Each character that appears in a window is displayed in some 2I{font). The
appearance characteristics of fonts vary from terminal device to terminal
devicey but different fonts on the same device commonly differ in boldnesss
brightnessy video presentation {(reverse or normal)y underlining and blinking.,
More advanced devices allow traditional font distinctions such as italicse.
Specific choices are terminal-specificy but banners are typically represented
in reverse-videoy keywords are underlined or emboldeneds etc.

Fonts are used to convey the usage of the characters displayed. In some
cases the distinction is for user emphasis (e.g. keywords). More commonly,
fonts are used impart a different meaning to the characters displayed.

Each window has a default font. Characters that represent themselves and not
otherwise special appear in this default font. There arey, at least
potentiallys, more different uses for fonts than a particular terminal
supports. When this occurss the same font will be used for more than cne
meaningy hopefully in a way that is not confusing,

sParagraph{Non-printing Characters)

Each non-printing ASCII character can be represented

by its traditional position in the Control- sequence. FEach of these is
printed as a font-changed version of its base character., For exanmpley
ASCII.SCH (aka Control-A) might be represented as a reverse-video A.

@ParagraphiSelections)

Many editor operations require one or more implicit operands to accomplish the
desired goale The current cursor is one such implied ogerand; the current
selection is another. Two kinds of selection are available: text and object.
Text selections are formed by marking the first and last character positions
to be selectedy thereby selecting the text in between. Object selections are
accomplished ty various Object Editor operations. These operations select a
region of the image that corresponds to a meaningful gportion of the underlying
objecta.

For either form of selectiony the region of the image corresponding to the
selection is presented in a3 font tc provide visual feedtack as to the extent
of the selection. It is possible to convert object selections to text
selectionsy so either type is acceptable to text operations. Text selections
need not have any relation to object boundaries and are not appropriate for
object operations. Even sos the font used for the two types of selection is
typically the sameys relying on the user to remember how the selection was
formed.

aParagraph{Designations)

A 21{designation) is one of three forms of meta-text that object editors can
insert into an image to convey special meaning and support structured text
Wwithin the editor paradigm. Designations are presented in non-standarc¢ fonts.

aI{Elision) is the process of removing detail from an image. The editor
supports this by allowing a section of the object to be elided and represented
by an dI(Ellipsis) mark {typically "..."s but more meaningful phrases are
possible). The ellipsis mark is presented in a special font and is treated
specially in Core Editor operations. The ellipsis is a placeholder for the
elided section of the image. As suchs the Core Editor treats the entire
ellipsis as a objecty rather than as a collection of characters.

Specificallys it is not possible to change individual characters. Moving or
copying the ellipsis only moves or copies the underlying object if done by
obJject operations.

A 2I(Prompt) is 2 placeholder for an empty place in the object that the user

may want or need to fill, The prompt is an extension of the traditional
notion of prompt as one or more characters printed at the beginning of a
command line to signify readiness and remind the user of the program to which
the command will be routed. Prompts are placed wherever the Object Editor
expects the user to provide content. The prompt is printed in a distinguished
font and disappears when any attempt is made to type over it. As a result,
the prompt serves as a reminder and placeholdery but requires no effort to
delete.

The contents of a prompt depends on the item to be entered and the amount of
information that the underlying Object Editor has about reasonable values.
The simplest form of prompt contains the name of the class of object that
needs to be provided., For Adas this would likely be a nonterminal in the
abstract grammars e.9. expression. In more semantically defined situationsy,
the prompt might contain a reasonable initial value. The default value of

a parameter or the default initialization of for a field in an aggregate are
examples of prompts that, left aloney, become the values provided. An
operation is provided to convert the prompt text to plain text, allowing
normal edit operations without losing the entire text of the prompt.

An allerror) is a section of text marked by the object editor to indicate

a problem of some sort. An error is treated as a prowmpt for editing purposes.
Correcting the problem detected will cause the error to go away when the

ob ject editor re-formats the presentation of the object,

aSubSection{Mechanisms)
The following mechanisms are provided to support editing operations that are
not primarily dependent on the apparent objects on the screen.,

A al{lkeymap) is a mechanism for binding a key or key—-seguence to a specific
action. Every key that the user hits is bound by this mechanism to sonre
command. For exampley the most common commands are character insertions that
are mapped to the key labelled with the characterys but by changing the keymaps
it would be possible to iasplement a Dvorak keyboard without modifying the
terminal.

A 2Itmacro) is a sequence of saved editor commands that can be invoked
together. Macros are appropriate for recording a set of actions for re-use
later. It is expected that complicated operationss including those reqguiring
parameter passingy will be done with Ada programs. Facilities are provided
for saving macros with a session and for binding them to keys in the same
manner as built—-in commands are bound to keyse.

A 2I{Yank Buffer) is a piece of an image that has been saved for later uses
typically by 3 deletion operation.

An 2I(Extended Command) is any Ada fragment that is compiled and executed
outside of the Core Editor. The Core Editor has no information about what
each of these commands doess but saves the image corresponding to each in case
the user wWwishes to repeat the same or similar operation.

A @I{Stack) is a structure for saving a set of objects based on usage
patterns. Stacks are used to store marksy windowss imagess selectionss yank
buffer, and extended commands. The operations described below make it
possible to cycle through the previous instances of each type in an orderly
manner. The primitive operations are:

@Begin(SEnumerate)

Push., Add/move an item at the top of the stack.

Next. Examine the next item down the stack.

Previous. Exarmine the previous item up the stack.

Tops Examine the item at the top of the stack.
aEnd{SEnumerate)

Next {(previous) "Wwraps™ to the top (bottom) when applied to the bottom (top).

@Section{0b ject Editor)

The object editor provides the transformations between the object and its
image. This is done by incremental parsing and pretty-printing operations.
Four basic operations are supported for viewing and changing objects.
aBegin{Enumerate)

Display. Create the image of an object.

Format. Parse text changes made to the image into the object and update the
image to reflect the changess. This provides an opportunity for incremental
syntax checking and correction and pretty-printing,

Commite The object is in a user—desired state. Take the appropriate actions
to reflect this intent., For most object typesy this means saving the cbject.
For commandss it causes the command to be executed.

Revert. Bring the image back to the state it had following the last commit,
This provides a coarse-grain undo facility.
eEnd{(Enumerate)

The object editor provides tree-structured selection operations that
understand the structure of the object being edited. These operations provide
the abitity to select objectss their parents (the containing object)s next and
previous brotherss and children. These selected objects serve as cperands to
moves copysy deletes elide and expand operationss as well as to type-specific
tools outside of the editor.

aSubSection(Pgointing)

One of the basic notions of the environment is that objects are interconnected
and that it is easier for the user to point at an object of interest and
request information than it is to formulate a specific procedural request
naming the object and the desired information. Having selected an object of
interest (either explicitly or by simple cursor placenment)s at least the
following broad categories of information can be requested:
aBegini{Description)

Definitiona\Show the definition of this object. For a reference to an Ada
objecty this move the cursor to the declaration of the object. From the
defining occurrencey it moves the cursor to the definition in the body or
private part.,

Completiona\Provide information about the possible correct completions for the
object of interest, Fill out all or part of a name on the basis of a prefix
or pattern. Fill out the remainder of a syntactic structure. Provide pronmpts
and/or values based on the type of the object that will make it possible for
the user to complete the object. An example of all of these would be entry of
the prefix of a procedure name and having it complete to a procedure call with
full named-parameter notation for the call prompt-designated presentations of
the defaults and nonterminal prompts for parameters withocut default values.

Helpa\Explain the object. As distinguished from definitions show a
description of the object and its use. For an errors show an explanation of
what was wrongs associated rulesy etce.

Attributesa\Display attributes of the object that are not part of its image.
Instances of this sort of information would be modification date, creatcry and
installation/elaboration status.

2End(Description)

s#Section(Ada Editor)
While it possible to conceive of object editors for many typess the first and

most important is the one for Ada. Because of its interaction with system
structure and semanticsy the Ada object editor provides operations andy in
some casess imposes restrictions that have no parallel in other objects.

dS5SubSection{Insertion Pointss Installation and Efaboration)

There is a difference between sources instalied and elaborated. You can edit
sourcey you can create places to put sources called insertion pointss so that
it can be installeds You can elaborate installed things. There is help for
determining which of these states an object is in.

aSubSection{Directory Yiew and Attributes)

Traditional directory services provide access to a variety of information to
help remind the user of what is contained in the directorys when it was
created or changedy how large it isy etcs The principat support for this

is 2 procedurey List_Directoryy that will print a tist of objects in a

directory accompanied by the appropriate attributes. The list will appear on

\
\
|
|
|
|
|

|
|
!
|
z

the screen as an output windows. In the absence of protection informations the
name of the object is about the only thing that can be changed, This is done
by explicit command. Support for a restricted directory object editor would
only require the ability to delete objectss and change their namess protection
and resource limits, Creating objects or changing their Ada characteristics
{type of program unit or Ada types parameterss etc.) would still require using
the Ada 0Object editor.

a@Section{Program Execution)
aSubSection{Ccommands)
Programs and editor commands and Ada.

eSubSection{Jobs and Sessions)
What are Jjobs and sessions.

aS5ubSection{Caontext)
What is contexts how is it used and set.

a@Section{Keys and Command Factoring)
The command set of the editor that is bound to keys has teen factored into a
sets of operations and sets of objects. Each group of operations can be
applied to 3 group of types by using the key that specifies the object type
followed by the key for the operation. Default object types have been chosen
to reduce the frequency of two-key sequencess and since the factoring doesn’t
occupy all possible keys (especially for terminals with function keyssy etca.)o
is possible to place commonly used sequences on single keys,

aParagraph{Types)
The set of object types is:
aBeqgin{SEnumerate)

- Character cursor. Character insertions, image position and marks,

Command. Command window anc history.
Designation. Elisionss error and prompts,
Macro.

Line.

Screen cursor. Moticn on the screen.
Selection., Both object and text selection.
Window.

Yank buffer.

sEnd{SEnumerate)

dParagraph((Uperations)

The following is a brief description of each of the classes of operations and
the types that each applies to.

aBegin(Enurerate)

Planar movement {ups downs lefty right)

dBegin{SEnumerate)

Cursor. Move user cursor on the image

Screen cursor. Move user Curscr on screen.
Selection. Select parenty child or brothers.

Windows. Scroll the window over the image.
dEnd{SEnumerate)

Relative positioning (nextes previouss beginning_ofy end_of)
aBegin{SEnumerate)
Designation,

Line.

Word.,
edEnd{(SEnumerate)

Modification. (copys deletey inserty moves transpose; capitalizes lower—case,
upper—case)

aBegin(SEnumerate)

Character.

Line.
Selection.

Word.
2End{SEnumerate)

Stacks. {(nextsy previouss pushs top)
adBegin{SEnumerate)
Command, Manipulate history. Push is implied by execution.

Mark.
Selection.

Yank buffer,
dEnd{SEnumerate)

dtnd{Enumerate)

More detaily including an initial key assignment for CWERTY-only keyboards is
available in [BLS.CE.DOCIR1000_Commrands.MSS.

a#Section{Package Directory Cperations)

Directory packages serve 3 number of functions. Initial support for directory
viewing and manipulation centers on support for semantic-preserving
meta-operations that allow the user to build up Ada structures and traverse
thems These cperations are described in below. Following thats there is a
discussion of more traditional directory operationss how they fit iny and
their eventual transition to full editor functionalitye.

