uu uu

uu uu
uu uu
Uy Uu
uu uu
uu Uy
uu Uy
uu uu
uu uu
uu uu
uu Uy
uu uu
UUuUuuuyuuy
uuluyuuuuy
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LLLLLLLLLL
RERRRRRREE

#*START* Job USER Req #296 for EGB

S555555S5S
SSS5555SSS
53
SS
SS
5§
$SSSSS
5$5555SS
SS
5S
55
S5
$5S55555S5S
55555555

PPPPPPPP
PPPPPPPP
PP PP
PP PP
pp PP
PP PP
PPPPPPPP
PPPPPPPP
PP

PP

PP

PP

PP

PP

EEEEEEEEEE
EEEEEEEEEE
EE
EE
EE
EE
EEEEEEEE
EEEEEEEE
EE
EE
EE
EE
EEEEEEEEEE
EEEEEEEEEE
TITTITTITTT
TTTITTTITTY

7

17

17

1T

17

17

7

17

TT

17

17

TT

File RMIKJIMLENVOUSERLLPT.2y created:

printeg:
Job parameters:
File parameters: Copy: 1 of 1

15-Feb-84 12:17:28
Request created:15-Feb-84 11214:50
Spacing:SINGLE

RRRRRRRR
RRRRRRRR
RR RR
RR RR
RR RR
RR RR
RRRRRRRR
RRRRRRRR
RR RR

RR RR

RR RR
RR RR
RR RR
RR RR

» 98 9
LI B I 2
. 99 9

LI B

222222
222222
22 22
22 22

22
22
22
22
22
22
22
22
2222222222
2222222222

Date 15-Feb-84 12:17:27 Monitor:
29=-Jan—-84 21:21:43

Page limitz245
File format:zASCII

Forms:NCRMAL
Print mode:ASC]

"e.es" Spec User Interface 1

Chapter 1
User Interface

User interaction with the system and his owWwn programs is through the
editor. As a resulty understanding the basic concepts of the editor
is necessary to the use of the remainder of the environment., The
users' investment in learning these facilities is repaid in increased
functionality and more uniform interface.

The user is primarily interested in manipulating the entities that

make up the environment., The wuser interface is <concerned with
providing an orderly and convenient method of expressing these
manipulationse. The wuser ccmmunicates by typing characters (or

function keys or moving a mouse). Though system entities are often
presentable in a readable forms the objects themselves are not made up
of the characters used to present them. As a results the user
interface is <constructed to interact with the user through character
editor and with the entities themselves in terws of their oun
representation. To accomplish thissy the editor is separated into two
layers:

l. The visible interface is a multi-window editcr that provides a
core set of facilities for handling user inputs editing and
screen management. This is called the Core Editor.

2« The type—-specificy object-knowledgeable portion of the editor
is called the (bject Editor., Which ob ject editor is used
depends on the type of the object {(entity). Although specific
object types may require specific operationss there is a common
set of operations requiring type knowledge that is provided by
all {or most) object editors. These are referred to as object
operations.

lel. Core Editor Concepts

The Core Editor provides character editing facilities.s This section
is an attempt to define and briefly describe these,

lelels Screen Structure

A Screen is the entire contents of the display at a particular time.
Screens are made up of opaque rectangular areasy called Yindowsy
arranged in a possibly overlapping pattern. More than one screen can
be maintained by a session to facilitate changing from one multi-

Wwindow activity to another {though not initially).

Windows are composed of character pgsitions ands optionallys borderse.
Borders are used to visually delineate wWindowse. The <character

positions represent a bounded rectangular region of the quarter-plane
of an Jpage.

Ratiornal proprietary document DRAFT 5 January 29, 1984

Maaa" Spec User Interface 2

An image is an array {(Natural) of liness each consisting of an array
{Natural}) or characters. At any times each image has a specific
number of Jinesy each of which consists of a specific number of
characterss, Lines beyond the end of the image and characters beyond
the end of lines are treated as blanks on the windows. A pord is a
portion of a ltine delimited by separator characters., Word boundaries
are corpletely syntactic and are handlied by the Core Editors though
word boundaries may correspond to finest—-grain c¢b ject boundaries.

An image is the user—-readable representation of an entity in the
system. One of the functions of the Core Editor-0bject Editor
combination is toc provide mechanisms to reflect changes from the
readable to the internal representation and back within the editing
paradigms. The image is the Core Editor representation of the object.
The underlying entity or object is always referred to as an object
{independent of the distinctions in ENTITIES).

Superwindows are collections of windows that are logically linked and

maintained to be physically contiguous. Because of this logical
connectiony superwindows are ccmronly referred to as windows composed
of wWindows. The most common example of a superwindow configuration
has the following characteristics:

1l A window containing the image of an object to be edited. This
is called an gb,ject #Hindow. It normally has top and side
borders.

2+ A tanner Mindow that explains the purpose and status of the
object windows. Normally presented in a different font than

its associated object windows with side borders.

3. A gomrmand window that is used for entering Ada statements to be
compiled and executed to perform actions on the user's behalf.
Normally has bottom and side borders.

4. The appearance of the whole is of a sinagle boxs surrounded by
bordersy with the command window separated from the object
Wwindow by the banner.

5+ The command window is an object window in its own right.

There is a system-managed output window that serves as the destination
for general error messages and system ocutput. Its associated tanner
is used to depict the state of the sessione.

lele2. Cursors

The physical screen has an apparent cursors mwarking the current
position of the user's focus of attention {(from the editor's point of
view)ls This cursor represents the following:

l. Screen position, The line and column of the cursor on the

screen,

2. Window positione. If the cursor is within the bounds of a
defined windowy it represents a line and column positicn in the
wWindowe

3. Image position. If the cursor is within a windowsy it

represents a line and column position within the irage
associated with the window.

Rational proprietary document DRAFT 5 January 2Gs 1984

Me.ee" Spec User Interface 3

The editor defines operations that change the screeny window and image
position of the cursor. E£ach window has a current window and image
positions corresponding to the last cursor positicn on that window and
image., UOperations that change the current window directly (i.e.
without moving the cursor) place the cursor at these saved window and
image positions. Moving the cursor on an image or window causes the
window to be scrolted to assure that the cursor is visible at its
current image position. Moving the cursor on the screen allows nmotion
that ignores the boundaries of the window. Moving the cursor o¢n the
screen doesn't change the window or image positions that are saved
with a window until an operation depending on the cursor is performed,
even though the cursor seems to have passed over the window. This s
really quite intuitive when written well ...

A magk is a saved image position corresponding to the position of the
cursor on the image when it was saved. Marks are stored in terms of
absojute image positions and do not change to adjust for
inserted/deleted lines/characters.

lele3. Fonts and Designations

Each character that appears in a window is displayed in some foni.
The appearance characteristics of fonts vary from terminal device to
terminal device, but different fonts on the same device comronly
differ in boldnessy brightnessy video presentation (reverse or
normal)y underlining and blinking. More advanced devices allow
itraditional font distinctions such as italics. Specific choices are
terminal-specifics but banners are typically represented in reverse-
videos keywords are underlined or emboldened.

On each windowsy the characters that represent themselves presented in
the font that is the default for the windowe. Other fonts are used to
represent wusages that are considered important by either the Core
Editor or the specific Object Editor. The Ada 0Object Editor presents
Ada keywords in a different font from the remainder of the program.

Regardless of object types fonts are used Lo represent the foliowing
notions:

l. Non-printing characters. Each non-printing ASCII character can
be represented by its traditional positicon in the Control-
sequence. Each of these is printed as a font-changed version
of its base character., For examples ASCIIL.SCH {aka Contrcli-A)
might be represented as a reverse-video A.

2. Elisions, In order to suppress detail and improve screen
usagesy it is possiblie to elide the presentation of an objecte.
The elisior is commonly represented by the ellipsis synbol
{("ssee")s but can be represented by a phrase that provides more
information. In either <casesy the <characters used for the
elision are presented in a distinguished font, All of the
characters in the elision mark represent the entire elisiony so

Rationral proprietary document DRAFT 5 January 294 1984

Mees™ Spec User Interface 4

it is not meaningful to edit the elision mark with the intent
of changing the underlying cb ject. The Core Editor supports
this notion by Jlimiting the edit operations allowed on
elisions.

3. Prompts.s Prompts are used to represent places that the wuser
may want or need to insert content. Traditional prompts
consist of one or more characters at the beginning of the Iline
to indicate the readiness of the system {or one of its
programs) to accept input. The editor’s use of prompts is an
expansion of this notion to two dimensions and a more general
editing paradigme. Rather than be limited to a specific leading
characters prompts are strings print in place whose text
suggests what might be typed to replace them. Because the
contents of the prompt is typically a reminders it disapgpears
when any change is made to ity allowing the user to simply type
the replacerent without explicitly deleting the contents of the
prompte.

4, Selections, Selection is a basic notion of the editor whereby
the user can designate part of an object as the implicit
operand by selecting it, Selections are displayed in a font
that makes the bounds of the selection clear., It is possible
to select the region of an image between two points using Core
Editor operations or a logical sub-object using Object Editor
cperations. An object selection can always be used as a text
selectiony but the arbitrary boundaries of a text selection can
make it inappropriate for object operations,

5. Errorse. An error is a section of text marked by the object
editor to indicate a problem of some sort. Except for their
appearancey errors are edited as if they were normal text.

Elisions and prompts are treated specially and are exclusive of each
other; other font wuses are for user information and can appear in
concert., The term desigpatjon is used to indicate a section of text
marked as an elisiony prompts or Error.

leleéd. Mechanisas

The following mechanisms are provided to support editing operations
that are not primarily dependent on the apparent objects on the
screens

A keymap is a2 mechanise for ©binding a key or key-sequence to a
specific action, Every key that the wuser hits is bound by this
mechanism to some command. For examples the most common commands are
character insertions that are mapped to the key labelled with the
characters but by changing the keymap, it would be possible to
inplement 3 Dvorak keyboard without modifying the terminal.,

A macro is a3 sequence of saved editor commands that <can be inrvoked

Rational proprietary document DRAFT 5 January 29, 1984

"ees" Spec User Interface 5

together., Macros are appropriate for recording a set of actions for
re—use later. It is expected that complicated operationss including
those requiring parameter passings will be done with Ada programse.
Facilities are provided for saving macros with a sessjon and for
binding them to keys in the same manner as built-in commands are bound
to keys.

A Yank Buffer is a piece of an image that has been saved for later
usey typically by a deletion operation,

An Extepded Command is any Ada fragment that is compiled and executed
outside of the {ore Editor. The Core Editor has no information about
what each of these commands doess but saves the image corresponding to
each in case the user wishes to repeat the same or similar operation,

A Stack is a structure for saving a set of objects based on wusage
patterns., The primitive operations are:
1. Push. Add/move an item at the top of the stack.
2. Next. Examine the next item down the stacke.
3. Previous. Examine the previous item up the stack.
4. Tope Examine the item at the tcp of the stack.

¢

Next (previous) "wraps" to the top {(bottom) when applied to the bottom
{top). Stacks are used to store markss windowss imagess selectionsy
yank buffery and extended commands,

le2«. Object Editor

The object editor provides the transformations between the otject and
its image and vice versa, This is done by incremental parsing and
pretty-printing operationrs. The object editor provides operations to
commit the <changes that have been made, reflecting them in the
permanent version of the object., The changes that have been made can
also be abandonedy reverting to the form of the cbject at the last
commit,

The object editor provides tree-structured selection operations that
understand the structure of the object being edited., These operations
provide the ability to select objectsy their parents {the containing
object)s next and previous brothers, and children, These selected
objects serve as operands toc moves copys deletey elide and expand
operationsy as well as to type-specific tools outside of the editor.,

le2.1. Pointing

1.3, Ada Editor
While it possible to conceive of object editors for many typessy the

first and most important is the one for Ada. Because ¢f its
interaction with system structure and semanticss the Ada object editor

Rational proprietary document DRAFT 5 January 29y 1984

"eeeo' Spec User Interface 6

provides operations ands in some casesy imposes restrictions that have
no parallel in other objects.

le3.1. Commands
Commands are Ada objects with some additional requirements,

What is contexty, how is it used and set.

le.4. Program Execution

Jobs and Sessionse.

le5e Keys and Command Factoring

The <command set cf the editor that is bound to keys has been factored
into a3 sets of operations and sets of objects. Each group of
operations can be applied to a group of types by using the key that
specifies the object type followed by the key for the operation.
Default object types have been chosen to reduce the frequency of two-
key sequencess and since the factoring doesn't occupy all possible
keys (especially for terminals with function keyss etc.)s it is
possible to place ccmmonly used sequences on single keys.

1e5.0.1. Types

The set of object types is:

l. Character cursor. Character insertions image position and
markse.

2. Commands, Command window and history.

3. Designation. Elisionsy error and prompts.

44 Macroe.

5. Line,

6« Screen cursor, Motion on the screen,

7. Selection. Both object and text selection.

Be Windowe

9. Yank buffer.

1e5.0.2. Operations

The following is a brief description of each of the classes of
operations and the types that each applies to.

le Planar movement (ups downy lefty right)
l. Cursor. Move user cursor on the image
2« Screen cursor. Move user cursor on screen,
3. Selection. Select parentsy child or brothers.
4, Windows Scrcll the window over the image.

2. Relative positioning {nexts previouss beginning_ofs end_of)

Rational proprietary document DRAFT 5 January 29s 1984

"eaas" Spec User Interface 7

1. Cesignation,
2. Line.
3. Kord.

3. Modification,. (copys deletey inserty movey transpose)
capitalizes lower—casey upper—case)
l. Character.
2+ Line.
3., Selection,
4, Word.

4., Stack. ({(next, previouss pushs top)
l. Command. Manipulate history. Push is implied by
execution,
2. Mark.
3+ Selection.,
4. Yank buffer.

More details including an initial key assignment for QWERTY-only
keyboards is available in [BLS.CE.DGCIR1000_Commands.MS5S.

le6. Package Directory Operations

Directory packages serve a number of functions. Initial support for
directory viewing and wmanipulation centers on support for semantic-
preserving meta-operations that allow the wuser to build up Ada
structures and traverse thenm, These operations are described in
bejows Following thaty there is a discussion of more traditional
directory operationss how they fit ins and their eventual transition
to full editor functiorality.

lebele Insertion Pointss Installation and Elaboration

There is a difference between source,y, installed and elaborated. You
can edit sources you can create places to put source, called insertion
pointsy, sg that it can be installed. You can elaborate instatlled
thingse There is help for determining which of these states an cbject
is in,

le6e2e Directory View and Attributes

Traditional directory services provide access to a variety of
information to help remind the wuser of what is contained in the
directorys when it was creatéd or changedy how large it isy etce. The

principal support for this is a procedures List_Directory, that will
print a list of objects in a directory accompanied by the appropriate
attributes. The tist will appear on the screen as an output window.
In the absence of protection information, the name of the object is
about the only thing that can be changed. This is done by explicit
ccemmands. Support for a restricted directory object editor would only
require the ability to delete objectss and change their namess

Ratioral proprietary document DRAFT 5 January 29+ 1984

M"eeo" Spec User Interface 8

protection and resource limits. Creating objects or changing their
Ada characteristics (type of program unit or Ada type, parameters,
etcs) would still require using the Ada Object editor.

Rational proprietary document DRAFT 5 January 29y 1984

"eee" Spec Table of Contents i

Table of Contents

o

l. User Interface

l1,1. Core Editor Concepts
lelels Screen Structure
lele2. Cursors
lel1.3. Fonts and Desigrations
loelo4s Mechanisms
1.2. Object Editor
le2ele POintinQ
l.3. Ada Editor
l1.3.1. Commands
ls4. Program Execution
l.5. Keys and Command Factoring
1454041. Types
1.5.0.2. Operations
l.6. Package Directory Operations
le6el. Insertion Points, Installation and Elaboration
leb6e2s Directory View and Attributes

NN RS W N

Rational proprietary document DRAFT 5 January 2Ss 1984

