Mese” Spec User Interface 1
Chapter 1
User Interface
User interaction with the system and his own programs is through the
editor, The users! investment in learning these facitities is repaid

in increased functionality and more uniform inter face,

The wuser is primarily interested in manipulating the entities that

make up the environment. The wuser interface is concerned with
providing an orderify and convenient method of expressing these
manipulations. The user ccmrmunicates by typing characters {or

function keys or moving a mouse). Though system entities are often
presentable in a readable forms the cbjects thenmselves are ngt made up
of the characters used to present them. As a8 resulty the wuser
interface is <constructed to interact with the user through character
editor and with the entities themselves in terms of their own
representations. To accomplish thisy the editor is separated into two
fayers:

l. The visible interface is a multi-window editor that provides a
core set of facilities for handling user inputs editing and
screen management, This is called the Core Edjtor.

2+ The type-specifice object-knowledgeable portion of the editor
is called the (Object Editor. which ob ject editor is used
depends on the type of the object (entity)e. Although specific
object types may require specific operationsy there is a common
set of operations requiring type knowledge that is provided by
all {or most) object editors. These are referred to as object
operations,.

lel. Core Editor Concepts

The Core Editor provides character editing facilities. This section
is an attempt to define and briefly describe these,

lelele Screen Structure

A Screen is the entire contents of the disptay at a particular time.
Screens are made wup of opaque rectangular areass called Hindouss
arranged in a possibly overlapping pattern. More than one screen can
be maintained by a session to facilitate changing from one multi-

window activity to another {though not initially).

Windows are composed of character pgsitions ands optionally, borders.
Borders are used to visually delineate windows. The character
positions represent a bounded rectangular region of the quarter-plane

of an lmage.

An image is an array {Naturail) of linesy each consisting of an array
{Natural) or characters. At any time, each image has a specific

gfatioral proprietary document DRAFT 5 April 12, 1984

Y.ea" Spec User Interface 2

number of 1liness each of which <consists of a specific number of
characterss Lines beyond the end of the image and characters bteyond
the end of lines are treated as blanks on the windows A word is a
portion of a line delimited by separator characters. Word boundaries
are completely syntactic and are handled by the Core Editor.

An image is the wuser—readable representation of an entity in the
systeme One of the functions of the Core Editor-0Object Editor
combination is to provide mechanisms to reflect changes from the
readable to the internal representation and back within the editing
paradiagms, The image is the Core EFditor representation of the object.

Superwindows =are collections of windows that are logically linked and
maintained to be physically contiguous. Because of this lcgical
connectiony superwindows are commoniy referred to as windows composed
of windows. The most ccommon example of a superwindow configuration
has the following characteristics:

1. A window containing the image of an object to be edited. This
is called an gbject wWindosu. It normally has top and side
borders.,

2« A banner window that explains the purpose and status of the
object windows. Normally presented in a different font than
its associated object windows with side borders. Althcugh
tanners are implemented as windowss no editor operations will
be provided initially for their manipufation.

3. A command windgw that is used for entering Ada statements to be
corpiled and executed to perform actions on the user's behalf,
Normally has bottor and side borders.

4, The appearance of the whole is of a single boxs surrounded by
bordersy with the command window separated from the object
window by the banner.

5« The command window is an object window in its own right.

There is a system-managed output windew that serves as the destination
for general ervror messages and system output. Its associated banner
is used to depict the state of the session.

lele2s Cursors

The physical screen has an apparent cuyrsors marking the current
position of the user's focus of attention (from the editor’s point of
view), This is called the sgreen cursor. If the cursor is within a
windows it represents the:

l. Jmage cursgor: {liney column) in the image on the window.

2. ¥indow cursor: {liney column) on the window.

If the cursor is not within a windows the image and window <cCursors,
and operations that depend on themy, are undefined.

For each type of cursor, there are a variety of operations to specify

its positions Changing on the position of one type of cursor ofteny
but not alwayss changes the position of others.

Rational proprietary document DRAFT 5 April 12+ 1984

Maae Spec User Interface 3

The window and image cursors are closely linked.s When they move in
concerty the screen cursor moves across the windows; when they move
separatelyy the image scrolls on the window {in addition to possible
screen cursor motion)e The rest of this section deals with image and
screen cursors and their relation to each other, ignoring window
cursors to simplify the discussion.,

Moving the image cursor causes the screen cursor to move, Moving the
image cursor to a position that is currently not on the window causes
the window to be scrolled. The screen cursor will not leave the
current window because of an image cursor motion.

Moving the screen cursor causes the physical cursor to move without
changing the image cursor. Having moved the screen cursor te a
position within a windows any operation involving either the image
cursor or the underlying image causes the image cursor for this window
to be moved to the screen cursor.

tach window has a current image cursor position. Operations that
change the focus to a previously visited image {(and do not specify a
particular position in that image) will place the cursor at the
previous image cursor position. Thussy moving away from a window using
screen cursors leaves the image cursor at the point of Jast interest
rather than at the exit position.

A mark is a saved image position. Marks are stored in terms of
absolute image positions and do not change to adjust for
inserted/deleted fines/characters.

lele3. Fonts and Designations

tach character that appears in a window is displayed in some fgnte.
The appearance characteristics of fonts vary from terminal device to
terminal devicey but different fonts on the same device ccmronly
differ in boldnesssy brightnessy video presentation (reverse or
normall)y underlining and blinking. More advanced devices allow
traditional font distinctions such as italics. 3Specific choices are
terminal-specificsy but banners are typically represented in reverse-
videos keywords are underiined or enboldened, etc.

Fonts are wused to convey the usage of the characters displayed. In
some cases the distinction is for user emphasis {e.g. keywords). More
commonlys fonts are used impart a different meaning to the characters
displayed. Each window has a default font. Characters that represent
themselves and not otherwise special appear in this default font,
There arey at least potentiallyy more different uses for fonts than a
particular terwinal supports. HWhen this occursy the same font will be
used for more than one meaningy hopefully in a way that is not
confusing.

Each non-printing ASCII <character can be represented by its
traditional position in the Controi- seguence. Each of these is

Rational proprietary document DRAFT 5 April 12+ 1984

".ees? Spec User Interface 4

printed as a font-changed version of its base character. For example,
ASCII.SOH (aka Control-A) might be represented as a reverse-videoc A,

Many editor operations require one or more implicit operands to
accomplish the desired goal. The current cursor is one such implied
operand; the current selection is another. Two kinds of selection are
available: text and object. Text selections are formed by marking the
first and last character positions to be selecteds thereby selecting
the text in between, Object selections are accomplished by various
Object Editor operations. These operations select 3 region ¢f the
image that corresponds to a meaningful portion of the underlying
Object‘

For either form of selectiony the region of the image corresponding to
the selection is presented in a font to provide visual feedback as to
the extent of the selection. It is »possible tc <convert object
selections to text selectionsse so either type is acceptable to text
operations. Text selections need not have any relation to object
boundaries ‘and are not appropriate for object operationss Even soy
the font used for the two types of selection is typically the sames
relying on the user to remember how the selection was formed.

A desigpnatior is one of three formes of meta—text that object editors
can insert into an image to <convey special meaning and support
structured text within the editor paradigm. Designations are
presented in non-standard fonts,

Elisiogn is the process of removing detail from an image. The editor
supports this by allowing a section of the object to be elided and
represented by an EJllipsis mark {(typically "..."y but more wmeaningful
phrases are possible), The ellipsis mark is presented in a special
font and is treated specially in Core Editor operationse The ellipsis
is a placeholder for the elided section of the image. As suchs the
Core Editor treats the entire ellipsis as a objecty rather than as a
collection of characterss Specificallysy it is not possible to change
individual characters. Moving or copying the ellipsis only moves or
copies the underlying object if done by object operations.

A Prompt is a placeholder for an empty place in the object that the
user may want or need to fill. The prompt is an extension cf the
traditional notion of prompt as one or more characters printed at the
beginning of a command line to signify readiness and remind the user
of the program to which the command will be routed. Prompts are
placed wherever the 0Object Editor expects the user to provide content.
The prompt is printed in a distinguished font and disappears when any
attempt is made Lo type over it. As 3 results, the prompt serves as a
reminder and placeholdery but requires no effort toc delete,

The contents of a prompt depends on the item to be entered and the
amount of information that the underlying 0Object Editor has about
reasonatle values. The simplest form of prompt contains the name of
the class c¢f object that needs to be provideds For Adas this would

Rational proprietary document DRAFT 5 April 12, 1984

Meas" Spec User Interface 5

likely be a nonterminal in the abstract grammar, e.ge. expressior. 1In
more semantically defined situationsy the prompt wmight contain a
reasonable initial value. The default value of a parameter or the
default initiatization of for a field in an aggregate are examples of
prompts thaty left alones become the values provided. An operation is
provided to convert the prompt text to plain texty allowing normal
edit operations without losing the entire text of the prompt,

An error is a section of text marked by the object editor to indicate
a problem of some sort. An error is treated as a prompt for editing
purposess. Correcting the problem detected will cause the error tc go
away when the object editor re-formats the presentation of the object.

lele4e Mechanisms

The following mechanisms are provided to support editing operations
that are not primarity dependent on the apparent objects on the
screen,

A keymap is Aa mechanism for binding a key or key-sequence to a
specific action. Every key that the wuser hits is bound by this
mechanism to some command, For exampliey the moest common commands are
character insertions that are mapped to the key {abelled with the
character. By changing the keymap, it would be possible to implement
a Dvorak keyboard without modifying the terminal. Keys can be mapped
to any statement 1lists but the most common mappings are to specific
procedure invocations, Mechanisms are provided to accelerate
functions that are mapped to known editor proceduress elabtorated
procedures that can be invoked independent of <context and statement
lists that are repeatedly executed in a context that has remained
constant., Regardless of the level of acceleration provideds the
semantics of a key are defined by the semantics of the Ada statements
it maps to.

A macro is a seqguence of saved editor commands that «can be invoked
together, Macros are appropriate for recording a set of actions for
re-use later. It is expected that complicated operationsy inciluding
those requiring parameter passings will be done with Ada programs.
Facilities are provided for saving macros with a session and for
binding them to keyss. Macros act like parameterless procedures with
no local deciarations and no control structures {except those internal
to individual ccmmands in the macro)e. There willy eventually, be a
facility to convert macros into equivalent Ada gprocedures.

A Yank Buffer is a piece of an image that has been saved for later
uses typically by a deletion operation.

A Conmpand Image is any Ada fragment that is prepared to be compiled
and executed on the user's behalf, The Core Editor has no inforpation
about what each of these commands doess but saves the image in case
the user wishes to regeat the same or similar operation. Command
images can reference any of the builtin commands by their Ada names.

Ratiornal proprietary document DRAFT 5 April 12+ 1984

Meae® Spec User Interface 6

A 3Stack is a structure for saving a set of objects based on usage
patterns., Stacks are used to store markss windowsy imagesy
selectionss yank buffery and cocmmand images. The operations described
below make it possible to cycle through the previous instances of each
type in an orderily manner. The primitive operations are:

le Push. Add/move an item at the top of the stack.

2e Nexts Examine the next item down the stack.

3. Previous., Examine the previous item up the stack.

4. Top. Examine the item at the top of the stack.

Next {(previous) "wraps™ to the top {(bottom) when applied to the bottom
‘t{)p,o

l.2. Object Editor

The object editor provides the transformations between the object and
its images This is done by incremental parsing and pretty-printing
operations. Four basic operations are supported for viewing and
changing objectsa

ls Display. Create the image of an object.

2« Format. Parse text changes made to the image into the object
anc¢ update the image to reflect the changes. This provides an
opportunity for incremental syntax checking and correction and
pretty-printing.

3. Commit. The object is in a user—-desired state. Take the
appropriate actions to reflect this intent. For most object
typess this wmeans saving the ocobject, For commandss it causes
the command to be executed.

4, Revert., 8ring the image back to the state it had following the
last commit. This provides a coarse-grain undo facilitye.

The object editor provides selection operations that understand the
structure of the otject being editeds These operations provide the
ability to select objectss their parents {(the containing object)s next
and previous brotherss and children. These selectad objects serve as
operands to movey copys deletes elide and expancd operationss as well
as to type-specific tools outside of the editor.

le261e Pointing

One of the basic notions of the environment is that objects are
interconnected and that it is easier for the user to point at an
object of interest and request information than it is to forrulate a
specific procedural request naming the object and the desired
information. Having selected an object of interest {either explicitiy
or by simple cursor placement)s at least the following broad
categories of inforwmation can be requested:

Rational proprietary cocument DRAFT 5 April 12, 1984

".ee" Spec User Interface 7

Definition
Show the definition of this objects For a reference to an Ada
objectsy this move the cursor to the declaration of the object.
From the defining occurvrencey it moves the cursor to the
definition in the body or private part.

Completion

Provide infcrmation about the possible correct completions for
the object of interest. Fill out all or part of a name on the
basis of a prefix or pattern. Fitll out the remainder of a
syntactic structure. Provide prompts and/or values based on
the type of the object that will make it possibie for the user
to complete the object. An example of all of these would be
entry of the prefix of a procedure name and having it complete
to a procedure catl with full named-parameter notation for the
call prompt—designated presentations of the defaults and
nonterminal prorpts for parameters without default values. An
advanced form cf completion is to provide prompt values that
are the results of evaluating default value functions. The
result of the function will cocften mean more to the wuser than
the process for determining it. There is an associated
abiltity to cycle through <choices be repeatedly evaluating
these functions.

Help Explain the object. As distinguished from definitions show a
description of the object and its use. For an errory shoew an
explanation of what was uwrong, associated ruless etc.

Attributes
Display attributes of the object that are not part of its

image., Instances of this sort of information would be
modification dates creatory and instatlation/elaboration
statusa.

le2.2. COperations

Object Editors provide a number of comwmon operations that depend on
the form and content of the objects presented. The basic ability is
to read and format the object ands in many casessy take the modified
image and convert it back into its object egquivalent. In addition,
object editors provide movement/selection operations that depend on
the structure of the objecte The assumption is that the object can be
viewed as a tree-structure in which each object has a parent (the
object containing it)s siblings {(objects with a common direct parent),
and children {objects that it contains). For Ada programss these
operations follow the 1ogical nesting structure of the Jlanguage; for
texty the <correspondance might be sentencesy paragraphsy sectionss
chaptersy etc.

Ratioral proprietary document DRAFT 5 April 12, 1984

"..s" Spec User Interface 8

l.3¢ Ada Editor

Wwhile it possible to conceive of object editors for many types,y the
first and most important is the one for Ada. Because of its
interaction with system structure and semantics, the Ada object editor
provides operations ands in some casesy, imposes restrictions that have
no parallel in other objects.

Editing Aca source objects follows the Core Editor-0Object Editor
paradigm. Changes are made to the source as text. The Ada (Object
Editor provides syntactic comrpletiony, structural motion (parent,
childy sibling)sy etc. based on its knowledge of Ada, Though the
object-specific operations differs there is no conceptual difference
between these Ada source objects and text objects. The meaning and
variety of operations differ because of the intrinsic differences in
the two types of objectssy the fundamental reason for the existence of
type-specific object editors.

le3.1le Insertion Pointsy, Installation and Elaboration

Eltaborated ands tc a lesser degreeay installed objects are
fundamentally different from source objects and the editing operations
that are appropriate are correspondingly different. Elaborated

packages contain Ada declarations that are referenced by other
installed or elaborated units affecting both their compilation state
and any active threads executing in the corresponding code.

To control the changes and make it clear what was intended, operations
are provided to explictly withdraw the elaborated version and
install/elaborate its replacement, By limiting the scope of what s
withdrawn or replaceds it is possible to restrict the impact of the
change to the specific objects that were changed. Object deletion
provides an unambiguous way of removing a precisely specified set of
objects. Insertion pginis provide a similarly explicit way of
specifying vwhere new objects are to be created. An insertion peint is
represented to the wuser as an ellipsissy that when inspected is
represented in a source Ada windowa. The user <can then enter the
declaration for the <c¢bject (using Ada source editing). Hhen the
source object is installedy it assumes its position at the insertion
points either as an object itself or as a "separate"™ reference to the
newly created separate object.

le3e2s Directory View and Attributes

Traditional directory services provide access to a3 variety of
information to help remind the wuser of what is contained in the
directorys when it was created or changeds how large it iss etc. The
principal support for this is a procedure that will print a list of
objects in a directory accompanied by the appropriate attributes. The
list will appear on the screen as an output window; changing the
output has no effect on the underlying directorye. This will
eventually be supplanted by a read-only object editor that provides

Rational proprietary document DRAFT 5 April 12y 1984

",.e" Spec User Interface 9

the same information along with additional <control and display
facilities. A limited form of writeable object editor <could be
provided to allow object deletions <changing namess and changing
attributes that are user-changeable.

le4e Program Execution

User actions are performed by executing Ada statements, These
statements can be executed by creating a command windows entering the
desired Ada codey and commiting the command window. This causes the
statement to be compiled and executed. It is also possible to bind
statements to keys in ways that shortcut the compilation without
changing the semantics {(l.l.4). The sections below describe the
context in which statements are executeds the forms of binding and how
they interact with executiony and the runtime environment provided for
statements.,

le4ele. Context

Ada statements are semanticized and executed from a particular
context. For user commandssy the envircnment constructs a context that
provides convenient access to usery system and object-type-specific
objects ancd procedures.

The context is a declare bplock at the end of the body of the
elaborated package corresponding the current object windowe. For a
command window attached to an elaborated packages this is simply the
end of the package body. All other objects are considered to be
rooted where they are declareds. Dynamically created objects have the
context of their creatory e.9. 3 Text_I0 window for an object with no
underlying file has the context that was active when the command that
created it was started. The initial (and any other for which no
predictable dynamic predecessor exists) context for a session is set
to the home package of the user. Subsequent session continuations
resume the context saved at shutdown,.

The declare block that is generated as the default for a particular
command window has the following forms

declare
{global declarations]
begin
declare
[object editor-specific declarations]
begin
[statements]
end;
end;

The global declarations are typically use clauses and renames that
make system and core-editor commands wore accessiblie; the object

Rationa!l proprietary document DRAFT 5 April 12, 1984

",ee" Spec User Interface 10

ecditor-specific declarations provide the same facility based on the
type of the object bLeing editted. The user can change the
declarations for a particular execution simply by editing these
declarations. Changing the declarations persists with the particular
command windows but does not change the underlying defaults. Any
tegal Ada declaration is possibley but the declaration is elaborated
once for each executiony so it is not possible to retain state frow
one execution to anothery only between the statements of the tbtlock.
The nested declarations are required to allow object-specific
operations to hide global operations. The declarations to be used in
each context are defined by declarations in the definitions package of
the wuser's home package. Appropriate default values from the system
definitions package are used if no user definitions are provided.

le4s2. Command Hindous

Each object window has {or can have) a command window associated with
ity from which it is possible to type Ada statements to be executed.
The termy commang is used to mean the set of statements in a command
Wwindowe. For the case where 3 single statement has been entereds, this
coincides with the traditional command paradigm; for more complicated
command windowss it can be very different. The full facilities of the
Ada 0Object Editor are avaijlable to edit commands. The command image
initially contains of the context described abovea The cursor is
positioned on the statement prompt in recognition of the relative
frequency of simple statement entry, but it is possible change the
declarative part of the block with normal editing. Commands are
executed by commiting the current command window. After the ccmmand
has terminateds the declarative portion of the command image will
remains The statement portion of the window will be converted to a
prompt in preparation for new statements.

The standard arrangement for ccmmand windows is to have one under each
object window {or set of object windows). #When a command window is
treated as an object window {i.e. the user enters commands to rmodify

it)y a new <ccmmand wWwindow is <created. This new command window
operates on the command window as an objects not on the original
object. Its context is rooted in the same place as the base object
Windows

Command windows are automatically placed at the bottom of the gobject
window they deal with and are not generally separadble from their
object windows. Comrand windows persisty disappearing only when
explicitly requested or when their object window is removed or
replaced.

A history of command window entries is kept to allow the wuser to
examine and re-use previous commands. The history is retained as a
stack of entries that were actually executed from a command window;
commangs that are directly bound to keys doc not appear in this
history. ©CUne history is kept for all command windows. Consecutive
repetitions of commands are reduced to a single instance. The history

RKational proprietary document DRAFT 5 April 12+ 1984

Yese™ Spec User Interface | 11

stack has a fixed {though possibly very large) depth. Later versions
will provide facilities for history commands that deal with the
history of a particular command window.

le4.3. Execution and Concurrency

Khen the contents of a command window are executeds the editor buffers
input until one of following happen:

l1. The ccmmand finishes. This is the segquential command execution
case. The buffering provides traditional command type-ahead.
While the command is executing in this formy, the user is said
to be conpected to the command.

2. The command requests input. Input requests from commands are
hardlec by editing into an input window attached to the
executing commanc. If the user is connected tc the command, a
request for input causes the cursor to be moved in this input
Wwindow. At this pointy the <command is waiting {thcugh
associated tasks are certainly not stopped) for inpute. The
user c¢an provide that input or perform any other editing
operations. When input is provided and commitedy the wuser is
again in the connected state with input buffered,

3. The wuser disconnects from the <command execution. In many
casesy the user wilt not want to wait for the command to
conmplete before going on to do something else. In these casesy
it is possible to disconnect from the commands causing it to
run asynchronously. Disconnection can occur either before or
after the command has started execution. Prior discennection
is possible by issuing the disconnect in conjuction with
commiting the command window. This removes any chance of race
conditions between the user and the program as to where the
cursor ends up or other state ¢transitionse. Note that
disconnection doesn't inhibit the program from either writing
cutput to a window or requesting input. Input requests no
longer automatically move the cursor into the input window. See
PROGRAMID for more details.

4. The user cancels the command. This causes execution of the
command to be terminated. Buffered input is also lost,

le4e4e Binding and Builtin Commands

Two different methods for causing statements to be executed have been
discussed? commands bound to keys and execution of the contents of a
command window. With the exception of side-effects on various
components of editor states either method resuits in the same
executicon. The effect is that of executing the designated Ada code in
the proper environment. This does not imply that all execution uses
the most general mechanisme. Rathery the acceleration mechanisnms
provided to make builtin commands execute guickly are the result of

Ratioral proprietary document DRAFT 5 April 12, 1984

" eee” Spec User Interface 12

careful binding of the fixed command set to externally visible
procedure instances.,

Ada names are bound to internal commands by means of keymaps
{KEYMAPS). When a key is indexeds the bound command is executed. The
process used to determine what to execute depends on the Ada name, the
type of the bindings and the ability of the command object editor to
detect equivalence to a previously used command.

Builtin commands are Ada procedures that have a fixed location in the
envrionment, Binding keys to these procedures involves the selection
of a fixed functionality, independent of the executing context. As a
resuitsy once the correspondence has been establ isheds it is possibie
to shortcut the key tc execution process wWithout even caltling the
indicated procedure. OCbviouslys if it were possible to change the
bodies of the fixed proceduresy without <changing the internal
operation of the procedures, an inconsistency would arise. Similariys
it is always possible to introduce hiding into any Ada scope such that
a "fixed" name references a new procedure., Since there is no chance
that this would cccur inadvertently, no steps are currently envisioned
to protect against such a confusion.

Even if a procedure is nct one of those implemented inside the ecitory
it is possible to bind a3 key to its execution in a way that is context
independent. This simply requires that the binding be to a fully—
qualified name in a context that is very unlikely toc be hidden. This
form of binding is treated just like builtin commandss except that a
more sophisticated invocation method is requireds 1t suffers from the
same unlikely inconsistencies in the face of concerted attempts hide
the intial definition.

8y binding keys to simple (or not fully qualified) names,y it is
possibie to provide keys that execute different functions depending on
the context in which they are invoked. This form of binding is very
likely to require semantic analysis and possibly code generation to be
successful., Some acceleratior is available by recognition of knowuwn
names from the semanticized name in context or by recognition of
previous use of the same procedure in the same context.

Cne last form of binding alliows keys to be bound to commands with the
purpose of prompting for the command {placing it in context in the
command window)s rather than to execute its This aliows keys that
provide the command and prompts for the parameterss saving command
entryy but still atlowing complete parameter flexibility. This
mechanism is invoked whenever the Ada that was bound to the keys was
incorrect and/or incompletes allowing the user to see the problem and
correct it.,

le4e5. Jobs

Ada execution takes place within tasks., A single user commands even
one that is apparently sequentialy may be implemented by more than one

Rational proprietary document DRAFT 5 April 12y 1984

M"eaa" Spec User Interface 13

task. Jobs (JOBS) make it possible to treat the command execution as
a single entitys without worrying abtout the precise implementation.

Jobs provide 3 basic level of execution control. The tasks of the job
can be scheduled together or terminated together, The Jjob serves as
an identifiable entity for these purposesy where for individual tasks,
there is no guarantee that an Ada name exist for the task throughout
its execution. The environment also wuses Jjobs as the basis for
determining the current wuser focus® the user is either waiting for
the completion of a job {command) or not. The execution priority of
the command and the course of the user's interaction with it can be
different in the two cases,

Each job has associated state corresponding to traditional grograr or
process state. Although some o¢f this state is system control
informations salient pieces are of interest to the wuser. A good
example of this is the stancard input and ocutput files defined by
Text_T0. The location and status of the wmindows allocated to these
files is part of job state,

A series of user commands executed serially will share (serially) the
Job and its state. Continuing with the Text_I3J exampley, a series of
commands executed will share input and output windowss creating a
singlie script of the various ccmmand executions.,

Disconnecting from a job creates a new job with its own state. In the
Text_I0 window examplesy two asynchronous Jjobs would update different
windows. Once a ccommand is startedy its Jjob number doesn't change
{though it may create other subordinate jobs). As a resultsy a job
that is startedy then disconnected will act upon the inherited state
and any new commands that are entered start over from scratch {in the
Text_I0 examples the disconnected job uses existing windows and new
commands get new windows)s, Disconnecting a job before it is started
causes the newly started job to create its own state and Jleaves the
user attached to the samrme job as before the command was started.

le4+s6. Naming Objects

Naming cobjects in the package directory system follows the naming and
visibility structure defined in Ada. The following factors are
involved in extending these simple names:

1. Yersions and configurations. Because there are multiple
versions of most objectsy Ada naming is interpreted within the
context of the current configurations Procedures and functions
that provide access to specific versions will do so by explicit
version parameters,

2. Ada progranm objectss Ada {(quite reasonably) provides no way
for programs to name their source components. To provide self-
referencey attributes have been provided for each program
object that allow designation of the principal parts of the

Ratioral proprietary document DRAFT 5 April 125 1984

"aee" Spec User Interface 14

object. Names consisting of an Ada name attributed to indicate
the part are called sgyrce names.

3. Nascent objects., If the object doesn’t exist yets it can't be
nameds., Strings are used to provide the name the object will
take on. Strings are also used as in traditional systems to
provice deferred naming within programs.

4, Convenient aggregation. Users often perform operations on
groups of objects whose names are textually relatede This is
done by providing wildcard characters to be used in conjuction
with string names,

leftie7s Source Names

Conceptuallys each program object has a visible part and a body. For
a objecty Ada_Namey the visible part is Ada_Name'Spec and the body is
Ada_Name'Body.,. If the object has only a visible part or only a bodyy
the attributes are interchangeablie, For a type <completed in the
private parts 'Body refers to the completion of the type and '"Spec
refers to the incomplete declaration.

Overlocading makes procedure and function names without parameter
specifications insufficient. For each overlcading of a names a
nickname is provided.s The nickname is used to index the 'Spec and
"Body attributes. The system assigns numeric values as the nicknames
on the basis of their order of occurrence in the visible part and
bodye. The same nickname value is assigned for both the body and
visible part of a single objects A faciltity will be added to allow
users to designate nicknames using pragma Nickname (Mumble)d.

User nicknames define an enumeration types, package_name'Nicknames., As
suchy the nicknames for the subprograms of a package are unicue for
the packages not just for the subprogram name that is overioaded.

le4.8. Strings as Names

Strings can be resolved as Ada names., Whatever could be provided as
an Ada or source name can be placed in a string and resolved as a
names, PYost procedures and functions for direct user use will ©provide
string names in addition to direct object references. The spirit of
the environment is for names to be Ada namesy so though it is not
possible to keep string names from being interpreted differentlys
there is considerable advantage to uniformitye.

Strings are used to provide the name for new objects. All names are
Ada namess so the string must contain a name that will be legal after
its introduction into context.

The restrictions on naming Ada objects are not as severe for strings
as for direct Ada names. Specificallys program objects need not have
*Spec or '"Body unless the operation requires it; the unattributed name
refers to both the visible part and the body if both exist.

Rational proprietary document DRAFT 5 April 12, 1984

Y.se" Spec User Interface 15

A string referring to an cverloaded set of objects refers toc all of
the objects. If the context requires a unique object referencey this
isS an error.

le4¢9. Context

As describe in the section on command windowss name resciution depends
on Lhe context of the current object. The assumption in that section
was that current object is part of the package directory system. This
assumption works well until the object under study is the execution
instance of a running program. Assume that the user is stopped at an
invocation of function Fy initially executed from package P. Different
contexts are of possitle interest:

1. The initial package context, Cbjects in this context are
available from a command window on the same object as the one
from which execution was initiated.

2« The local execution context. This is the context of the
current command window. References to objects or procedures
local to the current invocation of F are available by the same
nares as they would be within Fs though other procedures or
functions in the same package may be available even though
their declarations are not visitle to F,.

3. The giobal execution context. If F is part of the execution of
program created from a librarys these are references to objects
in other packages in the closure of the packages necessary for
the program to execute. For units that are with'ed in the
context of Fy direct references are available.

4. Dynamic execution context. This is the same as the local
execution context above, except it refers to a context other
than the <current one. Examples would be previous invocations
of F {or other wunits) in the dynamic call history or
invocations in a cifferent task thread,

All but the last two of these contexts are available without extension
of Ada naminge All of them are available by establishing context at
the appropriate context. To do thisy there must be a naming
convention for contexts. The current debugger uses a preceding "." to
indicate globai names to be accessed independent o¢f with list and "an"
to indicate relative stack frames, There are alsoc explicit names for
execution contextsy e.4g. specific tasks instances. The current
debugger notation for these is Ada=-like. To carry ther forward into
the environment, it might actually be better if the notation were
explicitly non-Ada.

le4.10. Contexty Creation and Deletion

Ada makes names more available than typical directory systemsy
partially because names are only referenceds not created or deleted.

Ratioral proprietary document DRAFT 5 April 12y 1984

"e.ss" Spec User Interface 16

All Ada references are alsc from fixed lexical positions in the
program.

Consider the following characteristics of names:
ls Simplesy qualified.
2. Localy contextualy absolute,

Notes on all of the combinations of these name characteristics.
l. Sinple local names are those available in a2 closed scope,

2» There is only one simple absolute names, Universe; all absolute
qualified names start with Universe, There is a standard
abbreviationy Us introduced by the declaration "package U
renames Universe”™ immediately inside Universe,

3. Gualified local names start with simple local names.

4. Contextual nawes denote objects that are available through Ada
visibitity that are neither focal nor absolute. Examples
incluce names in containing scopes or in library units that are
referenced in use clauses.

5. Cbject deletion and creation are unsurprising for local or
absolute names.

6. Creation or deletion of objects referenced bDy contextual
introcuces the problem of "capturing®” unintended objects. This
is solved by expanding the name and allowing the user to
proceed if that is the intent. Create and Delete will have
parameters controlliing how automatic capture should be.,

le4elle Advanced Topics

A potential problem is the number of different types of names the user
can specifyy requiring common operations to be heavily overjioaded and
potentially leading to user—access inconsistency because not all
functions are overloaded on all of the common methods. Note that the
concern here is on the form of the name the user enterss not the
resclution of the name. The types of naming the user has access to:

1. Birect object, The name directly specifies a particutlar
object.s This is the case where the most Ada type context s
available to aid in resglution,

2+ Yector aggregate. The Ada answer to procedures that want
multiple objects as arguments. Potential inconveniences are
introduced by the difficulties inherent in resolving {Ay By C)
to be Array_cf_File_of_Integer'{Ay By C) as required by the
program, (21

3. Strings.

Rational proprietary document DRAFT 5 April 124 1984

".eas" Spec User Interface 17

4, Wildcard. The user provides a3 string with wildcard characters
that resolves to a selection or a vector. Except for user
conveniences string names could be replaced by a function that
takes a string and returns a vector of objects. Ncte that it
ts not feasible to have an array aggregate whose elements are
each stringse.

5« Pattern. The user provides a syntax/semantic pattern for an
Ada ot ject with terminalss non-terminals and wildcards. The is
the object editor extension of regular expression matching and
is very powerful for editing Ada programs. [3)

Immediacy of interpretation is an issue. Simpie completion is done by
resolving 2 wildcard to a single name with user interaction to iterate
over nmultiple possibilities, Hildcards will also resolve to vector
aggregates in appropriate circumstances [21]. This corresponds to
expanding the wildcard for the user prior to executing the commands
rather than during command execution.

l1e5. Keys and Command Factoring

The builtin command set of the editor has been factored into a sets of
operations and sets of objectse. Each group of operations can be
applied to a group of types by using the key that specifies the object
type follovwed by the key for the operation. Default object types have
been chosen to reduce the frequency of two-key sequencesy and since
the factoring doesn't occupy all possible keys {especially for
terminals with function keyssy etcs)y it is possible to place ccrmmonly
used sesguences on single keys.

le5¢01. Types

The set of object types is:

1. Character cursor. Character insertion, image position and
marks.

2. Commands Command window and history.

3. LDesignation. Elisionsy error and prompts.

4. ?‘iaCfO.

5 Line,

e SCreen cursor,. Motion on the screen,

7. Selection. Both object and text selectiona

Bse Windows

9. Yark buffer.

l1e5.2. Operations

The following is a brief description of =each of the <classes of
operations and the types that each applies to.

1. Planar movement {ups downs lefty right)
1. Cursor. Move user cursor on the image

Rational proprietary document DRAFT 5 April 124 1984

Mens" Spec User Interface 18

2+ Screen cursor. Move user cursor on Screen,
3. Selection. Select parenty child or brothers.
4. Windowe Scroll the window over the image.

2+ Refative positioning (next, previouss beginning_ofy end_of)
1. Designation.,
2. Line,
3. Word,

3. Modificatione. {(copys delete, insert, moves transposes
capitalizes lower—-casey upper~case)
1. Character.
2. Line.
3. Selection.
4, Word,

4. Stacks. (nexty previouss pushs top)
1. Command. Manipulate history. Push is implied &by
execution,
2+ Mark.
3. Selection.
4, Yank buffer.

More detail, including an initial key assignsent for CWERTY-only
keyboards is available in [BLS.CE.COCIR1000_Commands.M55,

Raticonal proprietary document DRAFT 5 April 12+ 1984

Veoal Spec

Table of Contents

le User Interface

l.1.

1.2.

1.3.

1.5,

Rational

Table of Contents

Core Editor Concepts

1.101'
1'1.02.
l1ele3.
1.1.".
Object
loZoln
1.2'2.
Ada Edi
1.3.1.
1.3.2.

Screen Structure

Cursors

Fonts and Designations

Mechanismrs

Editor

Pointing

Operations

tor

Insertion Pointsy Instattation and Elaboration
Directory View and Attributes

Program Execution

la4els
lede2e
le4a.3.
l.i’.[‘.
1.4‘5’
letat,
].‘40.7.
le6.8.
lo4.5.
104‘100
leb4ella

Context

Command Windows

Execution and Concurrency
Binding and Builtin Commands
Jobs

Naming Objects

Source Names

Strings as Names

Context

Contextsy Lreation and Deletion
Advanced Topics

Keys and Comrmand Factoring

l1+5.1»
1sa542»

Types
Operations

-

oot

OO NN e

proprietary document DRAFT 5 April 12, 1984

