5555555% Uy vy BRRHUBAREE $55555SS Yy YY
55555555 U Uy BRERBERY $SSSSSSS YY YY
5SS LU LU e B3 5S YY YY
$S uu uu e 38 $S YY YY
55 uu vy B g BR SS YY Yy
$S L uu B2 85 55 YY YV
$555SS LU vy BREABEAE $S5555S Yy
555555 U uu BRHAERIE $SSSSS YY
$S Cu Uy B R L SS Yy
$S U uu B8 63 55 YY
S5 uu Ly B8 B3 $S YY
55 L L £R B3 5S Yy
$SS55555S GULUBULULUY BR5HARBRE 55555555 Yy
55555555 LULULLLULY ERROEBAR $S5555SS Yy
TITTTTIT7T XX XX TITTITITIT 333333
TITTTTITITT X X XX TITTTTTTITT 333333
TT X X XX TT 33 33
7 XX X X TT 33 33
17 XX XX 17 33
TT XX XX TT 33
T1 X X T 33
17 XX T
7 XX XX 17 33
TT XX XX T 33
T X X XX TT cees 33 33
7 XX XX TT cons 33 33
TT X X XX T vess 333333
TT XX XX TT cess 333333

¥START* Jou DESIGHN Fea #9764 for EGE Date 29=Apr—-85 G:3732S Monitor: //y TOPS

File RMIKSYSTEMLSPECOSUASYS.IXT .3y created: 26—-Feb—85 13:12:10
printegs: 29-Apr—-8% 6:37:48

Job parameterst Keqguest created:229=Apr=-85% §:37327 Page limit:2€l

File parameters: Copys: 1 of 1 Spacing:iSINGLE File formatiASCII

FormsINORPAL
Print mode:ASC]

DRAFT 1

2s4s Subsystem Levelorment Paradigm.

2eliala Generale.

While Acda and the Rational Prouyramming Environment can support a
wide ranage of preouraaming methodologies anc project management
strategiess the language anc the envircnment are particularly
suited to thosz nethodologies based upgon techniques such as
hierarchical ceccmpositiony object-oriented desion, levels of
abstractiony informaticon hidirgs data abstractions etc. In this
section {2.4) we introduce the =%atiorail Subsystem Paradigms which
is representative of a family of retated methodolougies that have
peen developecd over the past cecades. The methocolocgy described
here is tailored to Ada and the R1000y and provides a framework
that can be acapted or =2xtended to address the requirements of a
particular preoject.

2 will Introcuce both the methodeclosy and associated programming
envirenwent suvppert by considering key activities in various
phases c¢cf the development tife cycle. For purposes of
ciscussionsy we present 3 very simple view of the develogment
cycliee In practicey development will te very iteratives, and at
differant levels the same software will be in ali of the phases
descrihed here. Thuss develcprment activities overlap and the
facilities discussed find use in every phase of development. He
will consider the follcwing phases:

d4s Preliminary desinn.

he Uetzil desiagn and implementation,

cs Test and integration.

de Maintenznce anc or-ggcing development,

Note that we co not address reguirements analysissy but begin with
desiun taskss. After consigering these phases we Wwill briefly
consioer developrent ir a distributed envircnment and support for
multiple targetss two topics which will be addressed more fully
fater.

Laltaloe Preliminary Uestan,

Zetaldels Deconrpcsing 2 System into Subsystems.

in the subsysten methodologys 2 iarge system is decomposed into a
hierzrchy of subsystems, For the moments we will view each
subsystemr simply as a2 collection of cne or more Ada packages
which inglem=nrt some portion cf the system. The system should be
decomposed in accordance with good design practices and software
engine=zring principles., Far cecomposirg large Ada systems into
subsysiemwmsy it is particularty important te recognize two
dimensions of decomposition. In the "vartical” dimensiony it is
important Lo cecempose the systems orf any portion of the systems
into tevels of abtstractionsy with separate subsystems for major
iayers. This {ayering results in 3 more manageable and
maintainzeble system, In the *"horizontal™ dimensions the system
{at any particular level of abstractior) shcould tbe modularized
into Yogical entitiess preferrably in an object~oriented manner.

i
1

essentialilyy the deccmpositior of 2 large system into subsystems
is an extenrsicr of the process of decomposing a large Ada program
into packages.

In adcition tc reflecting good design practicess the decompcestion
of a system into subsystems must reflact organizational and
project managsement consicerations. For many prcjectss 3
subsystem will correspond tc¢ the amount of work that can be
reasonatbtly 21locatec to a single persory or to a smalil team.
Cistritution cf activities tetween different development groups
with differing expertise (and perhaps cifferent geographic
locations) way aiso influence the decomposition. If the system
is toc be bunuled and unbundled in different product
configuraticnss that separaticn should be reflected in the
subsystem structure, Generally, a subsyster will serve as the
field replacatle unit fcr purpeses of software repairs release
ang distritution. dther orcanizational constraints on system
decomposition will vary according the to particular project and
gevalopeent team,.

The decowposition into subsystems must identify the subsystems,
define (at Yeast at s hiuvh level) the contents of sach subsystem
and specify the interfaces betwzen subsystems, Then the design
effort can focus on the individual subsystemsy, although there
will continue to he some evclution of the system structure as the
design natures.,

2eftelsle Subsystem Interfaces,

& subset of the gackag=s in a subsyster will be exporteds. The
visitlie parts of 311 the exported peackages form the abstract
interface which tne subsystem presents to higher—leavel
subsystems, This abstract interface should hide impiementation
details from htigher—level subsystemsy, while completeily capturing
the tacilities to be provided by the subsystems Agains good
desian pracltices based on infarmation tidings abstractions etcay
should be appliec in d2signing subsystem interfaces.

A subsysterm will import tower-layel subsystems to use in its
irsplementatiors This "using"™ relationships where one suhbsystem
uses another in its implementation or specifications nmust form a
strict hierarchy {no cycles). {Support for mutually referencing
subsystems at the same tevel of abstraclions where the
isplerentatiors reter to each othery is plannedy but introduces
elaboration anc loacding complexities which will be iagnored for
the moment).,

Lebalale Suisystem Lesiun.

Cnce the interfaces have defineds it is pessible to design the
subsystem i1tself, The design of the irdivicual subsystem should
conform to gocd software engineering practicess bhut is largely
griven by the specific application and the system desigr goals.
tach subsystens shoulc be desicnad to be indepently tested and
maintainecd to the areatest extent possibie,

Precisely specitying the abstract interface for a subsystem and
then constructing the subsystem on top of other subsystemss
prinus us to the next phase of develcpment.

Z2x4e3s Letziled Jesicr and Implermentation,

Zs8e3ala Subsystems as Librariese.

In the envircocnaents each subsystem is represented as a single
library. The litrary contains the specs which make up the
abstract interface for the subsystems contains the bodies for all
those scecsy contains other library units required to inplement
the subsystemy 3nd contains a number of managed objects which
store information relating to the subsystem.

Section 2.2 1ntroduced the concept of a policy being associated
with a3 library. Litraries used to inpiement the subsystem
paradign are created (iaplicitly or explicitliy) %ith the
configuraticn poticy and are control pcints. The configuration
policy initializes a set of state cbjects associated with the
lidrarys includirg 2 subsystes configuraticny compilation switch
filesy elaboration informations, and history informaticn,

Zeftaldecs Subsystem Configurationss

Althouuh not explicitly declared, creation of the tibhrary creates
a conficuraticn chject Aassociated witn the library {(see 2e¢2¢3+3),
kncwn as the subsystem cenfiguration.

Configuraticns are thensselves ohjectsy which have versions.,
Recall that 3 configuration is a mapging from objects to versions
of the objectss The R100C provides support for two impertant
kinds of configurations,y subsystem configurations and system
configuraticns..

4 {version of a3} subsystem configuraticn cefines a consistent
view {relezsa) of 2 singles subsystem and can be viewed as a
mapoping frow the cbjects in the subsystem to the version of those
objects varticipating in this view of the subsystem. A release
of 3 subsysten mgy not have been "retl=ased"” in any formal sense,
but rather regpresants a4 us2y visible version of the subsystem.

The subsystem configuratiocon informatior feor a library may be
retrieved using coerations provided on the library itself. The
subsystem configuration object is not declared explicitlys so
that enly the conficuration policy {anc nc user program)
manipulates tte configuraticne. The vatidity of the configuration
infermation is vital to the integrity ¢f the librarye.

2ateadaia System and Sessior Configurations.

A systes configuration is nct associated Wwith a particular
subsystems tut rather with a universe of suybsystems. A {(version
of 3) system conficsuration cdefines a consistent universe of
subsystems 3nc¢ can he viewsed as a3 mapring from the subsystems in
the universe to the releases of those subsystems which are
participating in this view of the universe. A system
configuraticr is required for all cperaticrs involving mrore that
one subsystemsy and 2all command or program execution.

Each active session ¢n the system has 2 session conficguraticn,
which is a syster confiquration specifying the users view of the
universe. This cetermines the default version of all objects the

user manipulatess Thuss a sessicn supports 2 single consistent
view of the urniverse including only litraries that are consistent
with each other. In particular, the libraries in the session
confiaguraticn must have been compiled agsinst compatible versions
ot each other. (ther versions can be accessed by explicitly
specifyine versicn names {pessioly through the use of other
configuraticns).

For a yiven subsystem it is possible to specify a default
releases 1f such 3 default is specifiedy then referencing this
subsystem with a3 systen configuration which does not designate
any release nof this subnsystem attempts to add the default version
to the system confiouraticn,. [f the default is compatible with
Lhe configurations and the configuraticn is open for upcates the
operaticn succeeds and all references zre directed tn the default
versione. Ctherwisey the operation failss no release of the
subsystem particigates in that system configurations ancd all
references will f2il. Note that this is a temporary binding,
since only the opsn {temporary) copy of the configquraticn is
updated, Fer 3 session configurations that binding may be
explicitly conmitted and made permanents or may be explicitly
upoated to reflect 2 newer release. Usuallyy the binding will be
temporary and last until lgcoff, In this way the user will tend
to get the latest release of 3 subsystem at tha time of first
referencey ancd will keep a consistent view of that subsystenm
throughcut the session,

In this exzapley we have created a new litrarys creating an
initial {(fairly empty) release, In creating the control point wue
had the optior of specifying the name of the first release, Let
Us assunmre we ramed it KK_{s representing the first major release
of a subsysten named ¥ernelo. This release is sutomatically
established as the release for our sessiony since we created the
library. For existing tibrariesy we must explicitly establish
the release for cur session {which is preserved as session
state). Cperations on the library are with respect to the
specified release. For exanmpley the first cperation on the newly
created library wioht te to create several new Ada units., This
would update the current subtsystem configuration to refiect the
new cbjects (and the current versions of those phjects).

Z2eta3dsbte Compilation 2nd Semantic Consistency.

A component cof the subsystem state automatically created with the
fiprary is a set of switches. These switches are primarily to
control compiiation optiunss 3and are gassed to any compilation
that occurs in the library. Switches can be set on a per release
basis. Consistent with the directory nrodel (2.2.4)s we can
compiles elaborate and execute units in the subsystem. The
cenfiguration policy altlows the system to view the library as a
single set ot unitss and iarore version issues. The compilation
facilities {(poth interctive and batch) use the session
conficuraticn to extract the release configurationy and then use
the refease configuration for compilation. Thus the release
configuration must irclude 2all units (including imported units)
required to establish the full compilaticn context,

The confiocuration policy maintains one extremely important
invariart wWith respect to compiled linstalled) units. This
invariant is the bhasic property of a consistent subsystem
configuration. All of the installed units in any given release
are guaranteec tc be semantically consistent. That isy for any

two units A and & in the releasey for any semantic attribute in A
referencing somme other unit Cy semantic attributes in B must
reference the same version of C {and so on recursively through
the entire transitive closure)., Furthermcres referenced version
of € must be the versign that appears in the release containing
the versicrs of 2 ancg £ under consicderatione.

Zelia3e5e txperting Subsystem Interfaces.

“we nNave assumed thzt the example library did not import units
from other litrariess Further assume that al!l we have donesy SO
fary is write the visible parts for this subsystem and compiled
those specse Then the release we have defined can be viewed as
an exgort relesse which others could compile againsty even though
no implementation of this subsystem existss For any spec which
is intendecd to be exported from a subsystem to another subsystem,
the user must incicate that it is to te exported by including a
praoma Subsystam_Interface {note that for this purposey units
containing bocies of inlined procedures and macro-axpanded
genericss 2s well as cempletions of incomplete types frem open
privats parts,s wouid have tc be sxported ancg include the pragra
subsystem_interface),

Cesda3ets Freezing &z Subsystem Release.,

In order for tnis release tc bte imported ty another subsystem, it
must te frozen, Freezing 3 release puts it in a state where none
of the versions of objects which belong to the release may be
mogiftiecs At this pcinty the library Kernel might appear as
followse.

fibrary Xernel is
pgackage A is separate;
packace B is separate;
ends;

In this example,y, the packages A anc 3 {or Kernel.A and Kernel.8)
form the apstract interface, and we have constructed a minimal
frozen conftiguration fcor use by the clients of Kernets Clients
of the kernel could use this configuration for all compilatinn,
but would nct bhe 2aple to execut2 until we had constructed a
complete inplerentation release for the Kernel which client could
use to conrstruct a system configurstion for execution.

Zs%s3e7. Ccocnstructing a Subsystem Inmplementation,

To do any new work in Kernely we must first spawn a new release,
we can create a new release called KK_C_0y indicating that it is
the first nmincr reiease of the KK_0 major release (the notions of
majory minor snd mirco releases are not part of the subsystem
paradigr per sey but are used here as an explanatory device given
that the aucdience is familiar with Kational release mechanisms).
This coperation will create a new versicn cf the subsystem
configuraticny and establish that as the default for our session.
initiallyy this new configuration references the same versions of
the same objects as the configuration (KK_C) constructec earlier.

Assume that in addition to adding bocdies to A and B we plan to
add a package C that is not to be exported. Adding these
declarations creates a new {logical) version of the library

itself so that the stubs can be sddedsy since the previous version
was frozen. The impltementation configuration is updated to
refiect the new version of the library and the addition of new
units (A'bocys 8'bodys anc C)e. Further assume that the
irplementatior must te written in terms of the lower—level
suosystem Machine_Interface. e can update the context clause
for the Kerrel library tc reference Machine_Interface. HWe now
hayz in place the structural elaments for the implementation of a
first versicn of the Kernel subsystem, This results in the
followine view of the Kernel library.

use Machire_Interface;

Licrary Kernel is
package A 1s separate;
package # is separate;
packace bLody A is ssparate;
packace body R is separate;
package is separate;
packace pody £ is segparate;

end;

Wote that asnother usersy relying on the release for Kernel which
we createc esavlier (K¥X_0), would still see the view of the
litrary presentec 22rlier, not this new view of the library that
w2 are develoring.

Zehs3eba Iaporting.

Compilation of the new units would procuce semantic errors at
this point {assuming the new units in Kernel reference units in
“machine_Interfacel)s because the Kernel configuration we are using
goes not incicate which version of the units from
Machine_Interface should be used. Reca2lil that the retezase
configuraticn must irclude the complete context for compilation
in the litrary.

Wwe can perfora an import operation which augments the current
releasa of Kernel with a release of Macnine_Interface. If our
session conficurztion alreacy includes a release of
Machine_Interface, that release will bDe used to augment the
current Kernet releasey unless we explicitiy name some other
release of Machines_Interface,

Tre system wili first check that the designated release of
Machine_Interface is frozens Then ail of the units in the
Machine _Interface release which contain the Subsystem_Interface
pragma are auced to the Kernel releasey Ry copying a nodified
form of the inmpcrted specs into 2 sublibrary and then updating
the subsystem configuration to include those sgecs. Copying the
specs into the Subsystens_Imgorts refativizes semantic references
{with respcect to the current libraryls and witlt fail if the specs
are not consistent with other imported specs. Copying the specs
also may prune the context clause and the private part for those
targets which allow closed private parts {(see 2.4e5)
iptionallys we coulo have specified that the specs were to be
copied in on cemends rather than all at onces.

Having auamrented the Kernel subsystem configurations compilation
of the rew units Iwhich igpcrt units from Machine_Interface) will
proceed progarlys, At this point the Xernel library and the
Subsysten_Imports libtrary look like the following,

use Machine_Interface;
Library Kernel is

packace A is separate;

packags I is separate;

package body A is separate;

packace tody # is separate;

package C is separate)

packace body C is separate;

Livrary Subsystem_Inports is separate;
eng Kerrnelj

Library Sucsysten_Imports is -=- Kernel,5ubsystem_Imports
Litrary Machine_Interface is separate;
end Subsysten_lmports;

2e4e3e9s Leccal and Gichbal Ciana toolsa.

There are two classes of tools that use Diana on the systema
local tools and clotal tocls. The first class relies only upon
the subsysiem conficuration and refererces c¢cnly units within the
litrary {incfuding the nesteg spec libraries). The compiler is
probably the aost important member of this first classs The
second class uses a2 system configuration te loock through
references to specs to reach the "real"™ version of the particular
gnit. The editor and debugger are members of the seccnd classe.
{Some discussion remains on whather the ecitor is in the second
class or is in the tirst class with cperations that explicitly
lock throuch to the Mreat™ version).

In this wmocels coempilation is more efficienty but relies aonily
upon jocal inforamaticne. Cebtugoing and editing make less freguent
use of semantic attributes, but provide a complete and consistent
view of & wore global universe, For examspley, using DEFINITION in
the editor will take the user to the real specy so that he may
than use CTHER_PART to see the bodye. The user would only see the
{truncatea) specs in the sovec sublibraries in the case where his
session configuration does not include a real version of the
referenced subtsystem,

Cne can proceed in this mannery designing angd implementing the
subsystem 2s a consistent set of Ada units. As soon as a first
{possitly incomplete) release of the subsystem has been compileds
one will want to test and debug that relzase before proceeding to
add functionatity or otherwise change the subsystem. The issues
of axecutions testing anc debugging are addressed in the
following section.

Z2abisha Test and Inteagration.

we will continue the example cf the previous section to
illustrate the modail for test and integraticns Lal us assume
that the Kernel subsystam we have constructed is to be 2a

SEAREL _CNLY subsystemy, and that the Machine_Interface subsystem
is a SHARFC_UNLY subsystem which the owner has already elaborated
{is2es our sussion configuration references an elaborated release
of Machine_Interface), Let us further assume that our initial
test plan invelves the foliowing steps:

Step 1. Construct a Xernel Test tibrary which will hoid test
grograms as «¢ write them,

Step 2. Execute saveral simple cermands which exercise
facililites from Machipe_Interface that the Xernel needs.

Step 3. In the Kernel Test library, construct 2 mora
comprehensive test which excercises key Nachine_Inter face
facilities in a wmanrer similar to actuzs! kernel operatione

Step 4. Etlaborate the Kernesl subsystems using the debucger
as needer to analyze problenms,

Step 5. Favina successfully alaborated ths Kernely execute
several sinple commards which provide 2 preliminary indication
that tne kernel tas initialized itself properiy.,

Step 6. In the Kernel Test librarys, construct a more
comprehensive test which verifies proper kernel initialization
checks correct operztion cf simple facilities.

Step 7. The owner of Machine_Interface has produced a new
release anc would tike to test his subsystem using the Kernel and
Kernel Tests produced earlier,

These steocs are onily 2 few of the many requiredy but they
illustrate key characteristics of the subsystem paradigms Even
before discussing the individual steps, it is clear that the
¥100C supports an interactive and incremental approach to test
and integraticn,

2eftetals Constructineg a Test Liorarve

First we construct nsur test tibrary nested within the kernel
fibrary. This test Jinrary will consists of test programs which
execute on top of the exported Kernel specss Thus the Kernedl
Liprary now lcoks like the foliowing,

use Machine_Iinterface;
Library Kernel is
package 2 is separate;
package € s separate;
package hody A is separate;
package tody § is separate;
Litrary Subsystem_Imports is separate;
{icrary Test is separate;
gnd Kernel;

Zeftsbdels Esteblishing the Test Configuration,.

Step 2 in our pltan involves executing & few simple commands to
exercise facilities in Machine_Interface that the Kernel would
rely upons. Al execution reguires a system configurationy and in
this case our s=ssion configuration is adequate since it should
include an etaborated Machine_Interface, The key issue here is
that we must have properly established nur session confiauration
sc that it incluges an 2laborated release of Machine_Interface
which supports the facilities we need for testing the Kernel,

This may be an unn=cessary (Yold granny”) steps but much time is
wasted in test and integration because of improperly established
test conficurations. when tringing up new and untested codes one
wants toe remove all cther sources of errors in order to guickly
track gown reai problens anc not chase ghosts. While the

supsystem paradigm is desigred to help eliminate many of these
problemss cross subsystem goordination recuires manual
intervention ancd is subject tc some error., Tharefores the system
facilitates guicksy interactive verification at key stepss so that
errors which do occur can be detected earily in the process, Cnce
the user is cenfident that tis session configuration is being
estaplished properliys this step may be eliminated.

fecall that fcr SHARED_LKNLY libraries the library is elaborated
As A2 whale, If we visit one of the spnecs ir Machine_Interface,
it should be in the =2laboratec state at this point. If it is
noty we must (possibly in ccoperation with the owner cf
tachine_Interface) either update our configuration to reflect an
already elacorated release of Machine_Interfacesy or create an
elaboratec release for our Cwn uUse.

We can then write short commands which call specs exported by
machine interface. Even if these test ccamands do not exercise
the mecst interesting facilitiess they give us guick feedback that
dachine_Interface is properly elatborateda. If there are new
facilities that nave just been 3c¢ded fer cur uses we micht try to
exercise those tc make sure they at least existe If any errors
are uncovereds we can construct minimal test cases which produce
the preblems and then work with the owner of Machine_Interface to
resnive the preoblems,

Zatste3s Constructing a -Test Program,.

Step 2 is a continuation of Step 2. While Machine_Interface
presumably has 2 sel of test grooramsy we way want 2 test program
that further verifies specific properties that we depend upone.

We 30C this toc the Kernel Test tibrary and compile against the
specs importec from Machine_Interface, The test library is not a3
shared litrarys and we can call the test progranm as soon as it
11as Deen colCeCa The library KerneleTest would look like the
following at this point.

use Machine_Interface;
Library Test is

prececure Test _KMI js separate;
end;

From & commanc window we can execute Test_KMI and review the
results., If the test produces a log file we can save a “golden®
copy of the file in the test librarys and have each execution
compare its results to the colden results. We can Jater add test
drivers in the test library which invoke this test along %ith
others anc preduce z summary of the results.

Zehstahe Elaborztion of a2 new Subsystem,

Step 4 actuaily involves executing the new code we have written
in the Kernel litrary. We can =slaborate the current release of
the Kernely or we can produce 2 new release of the Kernel which
giffers from the previcus only in that we will promote it to
elaborated. Flatoration information s retained as part of the
reiease autonmatically. When elaborating a2 SHARED_ONLY subsystem
we have the feollowing three cptions with respect to the
persistence of the elaboration,

A

ia The sunsyster remains elaborated from the time it is

explicitily elatoratec until it is demwoted c¢r until the system
goes downs whichever comes first.

ds The subsystem remains elaborated until it is demotedy and
it is automaltically elahorated after a crash at the time the
system is brouaht up,

3. The subsystem remains 2laborated until it is demotedy and
it is automaticatly elaborated after a crash at the time of the
first reference to the subsystem that requires it to be
elaborated.

while we are first cdebuguing the subsysteny option 1 is most
appropriatey since we cdo not expect anyone else to be using the
subsystem. Unce we have released a version of the Kernel for
widespread uses w2 must chose batween cption 2 and opticn 3. The
system elabocrates the new subsystem with respect to a particular
system configuration, in this case our session configuration.
Since the censtructions of any system confiouration verifies
subsystem compatibilitys we are certain that we are elaborating
against compatible versions of the iower level subsystems.

This consistercy checking is addressed further in 2.4.5.5 since

the main issues ceal with upward compatible changes.

If any protlens sre encounter=sd with the elaboration of the
Kernel (ouite likely if there is much new codelsy we can use the
interactive detugainc facitities to investigate the problems,
Interactive depugaing is further discussec in secticn xxxx. Gnce
we have successfully elaborated the sutsystemy we can move on to
the next phase of testing,

2edeteHs Test and Felease of a new Sutsystem.

Step 5 in our test plan involves executing 2 few commands to
check that the newly elaborated Kernel is properly etaborated and
that bpasic facilities work properly. This gives us auick
feedeack anc lets us interact with the subystem directly to
getermine i1ts heslth, If the Kerne! exports operations which
perforp internal consistency checksy those are probably the first
operations w2 inrvoke. From a command winCows we can invoke any
operaticn exported hy any package in the subsystems including
exportecd packages (Kernel.A and Kernat.5) and internal packages
{Kernel+(C)a Favinag executed some of the visible operatiaonss
perhaps with the debuggers we move on to the next stegp.

Step 6 involves uddino to the Karnet Test ltibrary 2 more
comprehensive test of the initiatization of the Kernel, The test
library would now took tike the followinge.

use Machine_Irterface;
use Kernel)
Library Test is
procecure Test_KM] is separate;
procecure Test_Initialization is separates;
end;

ince this test prouaram has bteen codedsy we can execute it and
determine the results, Again this test c¢c3an be structured so that
the results ore reproduciply verifiable, &e can continue in this
vainy executing simple commands that excercise the Kernel
cirectlyy writing more test groarams, and building up our test
librarys anc then cycling back to design anc implementation of

additional Kernel facitities,

In preparatior for moving on to step 7+ let us assume that these
first twe test proarams work correctiy abcé we and freeze an
elaborated release of the Kernel and an urelaborated release of
Kernel,Test, e can esteblist these retezses as the defaults,
which other users will see if they do not specify particular
releases, In a very minimal sense, the subsystem has been
releasecs A nore forrmal release process can be supporteds
including more comprehensive test and cocuwentation procedures.
For the moments sssume we are constructing an informals internal
relessce.

2ehebdebia keccmbinant test and integration.

Now assume that while we were ceveloping the Kernetsy the cwner of
Machine_Interface has Jjust frozen 2 new release of his subsystem.
In addition tc running his cwn regression testsy he now has a
customer {the Kernel) who has code which executes on top of
Machine_Interface. He may wish to run the Kernel testss since
they way actuaily exercise Pzchine_Interface in more or different
WaYSa

The subsystem paradigm atiows the combination of different
versions of subsysters that have compatible interfacess Thus the
owner of Machine_Interface shoulg he atie run his new subsystem
with the previously released Kernely which is known to execute
properiy with the previous release of Machine_interfaces. This
property will hoid for the R1IGCG0O as an execution vehicle in the
face of a fairly wide range of upward compatible changes in the
cifferent versicns of the subsystem specs (including different
private partsse adding new functionss eicC.s S22 Z2e4e5s)e
Mon-R10CO tarcets which follow fairly simple conventions for
linking &nd¢ lcading may also be able tc support this asgpect of
the subsystem paradigms althousch 2 smatler (possibly empty) set
of upward cempatible changes will be suppcecrted {(see 2.5.).

In our examples the session configuration for the owner of
¥achine_Interface currently includes the new refease of
Machine_Interface. #e have releasec Kernel and Kernel,Test
librariess so he can get those releases automatically. Hosever,
in this case he canncl add the =2laborated release to his sessiony
pecaus=2 1t is elaborated against a3 different Machine_Interface.
Howevers if he designates the Kernel subsystem and demotes it to
codedsy be inplicitly scawns a new relesse {which is added to his
session configurationl)lsy which can be elborated on top of his new
Machine_Interface, Than he can execute the Kernel tests and
ensur=s that Lthe rew release of Machine_Interface supports the
current rejease of the Kernel., H=2 may even include this as part
of the stancarc regression testing procedure for new releases of
Machine_Inter face,

Note that relatively little interactior is required between the
developers cof different subsystems. There may be many releases
of Machine_Interface or many releases ¢f the Kernels but they
need not bhe cecordinated as long as they are spac compatible. In
practices interface issues cor subtle Zugs may arises reqguiring
Joint devugcing and coordinated fixes.

So far we have fgocused on testing an individual subsystem in the
context of othar subsystems. System testing can simply be viewed
as testing the "top" subsystem in terms of all the lower

subsystems. For system testings, and even subsystem testing, one
can create configuration objects which capture meaningful
configuraticns of subsystemss The systen will enforce
consistency anc ensure that the systems are configured properly.

More non regressicn testings system testy test toolsy etc. Somedaye.

2et.5s Maintenance 2ang¢ (n=-Going Developrent,

50 far we have bean considering very simple scenarios involving
new subsystems with very few versions, Puch more complex issues
arise during maintempance and on—-going development of a subsystenm
which has cne or more released version which must be supported.
In particutars support for incremental and upward-compatible
changes becomes essential {since one is “fixing™ existirag code
rather than wWriting new code)y source managment becomes a major
issues and tracking of history and other infcrmation becomes more
toportant, Let us continue with the example of previous sections
to illustrate these issues.

ZrfieSala Incremental and Upward Compatible Changes.

recall that at the end of step six in the previous saction we
froze a versicn cf the Kernel. MNow assume that based on our
first round of incremental testing we wish to fix several
probiems and add several facilities in the package Kernel.l, e
spawn 3 new releases K¥X_0_1. Al of the urits 2are initially
shared with the previous release (KK_Q_0). 1If we make changes i
packags (s only that package will have a new version which is in
the new Kernel release and not in the old releases The Kernsl
subsystem configuration we are using is updated to reflect these
new versiocns cf package C. When we have made our changesy
probably using the incremental compilation facilitiess we can
test thewm immediztely by elaborating this new release and
repeatirg a form of the test cycle described in the previous
section,

n

L]

Changing exportec specs provides a more interesting example.
Assume that severzl clients are now using the frozen version of
Kernel releaseqg earlier {(KK_O0_0)y and we wish to change exported
Kernel specs to produce 2 new reliease (KK_0_1) that is compatibie
wwith the coce the cliarts have producecs but which includes new
fagitlities that support future client cevelopment, In
particulary we wish to be able to have the clients run against
KK_C_1 fwhen we release it) without the clients having to
recompi le any of there sutsystems, In facts old frozen versions
of the clients which ran against KK_C_C should run against

KK _O0_1s while new versions of client code wmay be developed using
the new facilities of KK_0C_1,

The systen actually coes furthers in that clients can import the
new specs into their subsystems without causing any
recompilation. The only cowmpitation involved is that associated
with changes tne client might make to use the new facilities
providec by the new kernel specs.

Wwe cannot cemote the specs to source and make arbitrary changes
and have Lhe channoes he upward compatitie. Howeversy if we make
incremental chiangess the system will produce a new version

{refliected in the KK_0_1 subsystem configuration) and properly

maintain the version sgc that it is upwerd compatible, In
particulars it Wwill not allow incremental deletions without
informina us that such a change would not be upward compatible.
Incremental additinns would be supportedy and the system would
properly maintain semantic and code agaenerateor attributes such
that the change is upwardg cowpatible.

For the R1080s most adgitions are upward compatibles and if we
have specitiec that the spec ha2s a closed private part, then no
clienl was allowad to rety upon the informstion in the private
part anc 21! changes which affect only the private part are then
upward compaticle, {The conplete set ¢f rules for upward
compatibility for 2ach target (including the R1060) will
specifien separately.)

The systerm implements upward compatibility by restricting the set
of changes allowed in the specy and managing specific compiler
attributess FProper managsement of compiler attributes requires
that ail cenrpatible versions ¢f a spec be maintained {especially
modifiec) on 53 sinole wachine which maintains the set of related
versicns of th2 specss Fach compatibie version of a spec is
ratated to the origiral and shtares a compativility key which is
used for cross—-subsystenm compatibililty checking., Anytiwe a
system configuration is constructeds 2xported specs are checked
against isvorted specs (for aill subsystems in the configuraticn)
to ensure that they bave the same compatibility keya

In our examples we could add changes tc Kernel.A and Kernel .8
{exported packages) using the incremental facilities of the
environmenis anc then test thcse changes as described abovees
Once we are satisfied that the changes have Deen made properiys
we can freeze anc release KK_C_l. If we mzke that release the
new cefaulty and¢ encouraae clients update their systen
configurations properiys then users will be using KK_C_1ly which
should suprort 21l old facilitiesy, plus tte new facilities we
have provided,

ZeBeD el Source *"anagement.

The facilities discusses so far are adequate for supporting a
single development path, where there is a sequence of releasas,
each release superceding the previocus release. Given that the
syster has been cecomposed into smali subsystems where a very
small tear is werking on each subsystemy and given that only a
single development path need be supportedy no additional source
manageirent support would be reguired. Howevers in the face of
maintaining orne or more released versions while supporting one or
more active new cevelorment paths involving mor= pecople and possibly
multiple target machiness the user will required more substantial
soufce manzgewent support.

pasic mecdel i5s tc know which devel paths are relatedy inform user
when he is aaking a chanue that it will impact other paths,
support policies that restrict changes which impact other paths,
anc support mergine anc (semridautomatic propogation of changes to
other paths,

scurce nonmt ~-- serial releasesy divercence and paratlel devel,
multi {lower—level) specs and multi targets.

Zets543. Hi‘StOr}‘o

keep all relevant info at chbjecty releasey subsystems and project
levels 3sugpport construction of tools that operate on this info.

