URAFT 240 == not readye.

3s Supsysten Develcopment Paradiama

3.1 General.

white acs &nd the HRational Pregramming Environment can support a
wide rancge of proeramming methodolocies and project management
strategiesy the fanauage anc the envirenment are particularly
suited to those methodologies based upon technigues such as
hisrarchical cecompositions object-oriented designy levels of
abstractiony information hidings data abstractions etc. 1In this
section we introcuce the Rational Subisystem Paradigms which is
represantative of 2 family of related nethocdologies that have
been develcced over the past decade, The methodology described

5555 U U =maes 5555 Y Y 5555
5 L L = 505 Y Y 5
5 U u ¢ & S Y Y S
555 L U HBEER 555 Y 558
5 L R ! S Y M
S U u n 5 S Y S
SSSS Cuuuly 5Rus 55585 Y $355S
11177 X x TTI1I77 333 5936 tnt
H X X T 3 3 G 9 £
T X ¥ T 30 E &
T X i 3 G969 HELHE
T X X T 3 2 5 i
T X X H . 3313 G9g EHE
FSTARTH® Joo HULSYS req #977 fcor LGB Date 2Y=—-apr—-85 G:141311 Monitor: //+ TOPS

File BMICKVMTLLIPECOSUBSYS.TXTL3G6y created: 17=Mar-85% 193128152

grinted? ?9-ipnr=-d% 9:41:173
Job parameters: Request creatediZS-2Apr-35% 62135303 Page limit:s4 Forms:NORMAL
File nerarveters?t Copys 1 of 1 SpacingrSIKCLE Fife formatiASCII Print modesASC

#START* Job SUBSYS keq #4977 feor EGH
RMIKFTLLSPECOSUBSYS.TXT. 396,

File

U U seps 558S Y
L L B E 5 Y
L U 2 g S
L U BHEH 5SS
L vt 8 B M
U Uu B B S
LUyuuy 5988 5555
X x TT7T177
x X T 3

X X T

X T

X X T
X X T .s 3
X X T .s

printeds

Job parameters:

File

gperareters?

29-4nr=-85% 9
Request created:Z2S-2er-35

Copy:

1 of 1

Y 5555
Y s

YY s

Y 5SS

Y 5

Y S

Y $55%

333 595
3¢ g
3 9 9
3 3999
3 g
3 9

333 993

created:
t41:13

Spacing: 5 INGLE

Date 2Y—aApr—-85

G:a111

17-Mar-85 19:128:52

5238303

Page limit:ina
File format:ASCII

Moni tor:

/7+ TOPS

Forms:NORMAL
Print modezASC]

3

URAFT 240 == not readye.

3 Subsysten Develcopment Paradiama

3.1 General.,

#While Acda znd the Kational Programming Environment can support a
wide tange ot prooragming methodolocies and project management
strategiesy the {anauace ancd the envircnment are particularty
suited to those methodologies based upon techniques such as
hierarchical cecompositions otject-orientecg designy levels of
abstraction, information hidings data abstractions etc. In this
section we introduce the Rational Subsystem Paradigmy which is
representative of 2 family ot relsted rethodologies that have
peen develceped ovar the past decade. The methodpology described
here is tailored to Ada and the R100Cs and provides a framework
that can be adapted or extenced to address the reguirements of a
particular project,

e will introcuce hoth the methodology and zssociated programming
enyironment suonort by considering key activities in various
phases of the development {ife cycle. For purposes of
discussions we orasent 2 very simple view of the developrent
cycles In practices developnent will bte very iteratives and at
gifferent Jevels the same software will be in all ot the phases
descriced heres. Thuss development activities overlap and the
facilities cdiscussed find use in every phase of development, HWe
will consicer only the foullcowing phases:

Ga Preliginary desian,

Ge Detail design and inplementation.

Ce Te2s5t and inteygration.

da Maintenance and on—-going development.

Note that we 00 not adoress requirements analysiss but begin with
desion tases. Aftar considering these ph3ases we will briefly
consider devslopment in & distributed environment and support for
rultiple targefssy two topics which will be addressed more fully
tater.

Jel2s Preliminary Desians

3elels Decomposing 2 System into Subsystems.,

In the subsystem methocologysy 2 larce system is decomposed into 2
hierarchy of sutsystems, For the moments w2 will view each
subsystem sitmply as a2 collection of one or more Ada packages
which inplesert some portion cf the system., The system should be
cgecomposed in acenrdance with good design practices and software
engineering grinciples. For decomposing large Ada systems into
suhbsystemss it is particulariy important to recocnize two
gimznsions of decomposition. In the Yvertical"™ dimensions it is
important te cecompose the systa2my or any portion of the system,
into levels of abstrzctions with separate subsystems for major
layers,. This iAayering results in a more manageable and
maintainable system, In the "horizontal®” dimensions the system
{3t 2ny particular tevel] of abstraction) should be modularized
into logical entitiesy preferrably in an object-oriented manner,
Essentizgllys the decompositiorn of a larage system into subsystems

N
.
|
f
o
\

an extensien cf the process of decomposing a large Ada program
lnto PACKAGES

in acddition to refiecting ycod design practicess the decompostion

a system intc subsystews must reflect organizational and
prJECt management considerations. For many projectss a
subsystem will correspond to the amount of work that can pe
reasonatly allocated to a sincle persony or to a small team.
Distriouticn of activities btetween different development groups
with differinc exnertise (and nerhaps cifferent geographic
locations) may also influence the deconposition. If the system
is to be bundled and unbundleg in different product
conficuraticnsy that separation shoulcd be reflected in the
subsystem structuras,., Generallys a3 subsystem will serve as the
fielo replacatie unit for purposes of software repairy release
ancg distribution., Uther orcanizatioral constraints on system
decomposition will vary according the to particular project and
develcprent team,

The ceccmposition into subsystems must identify the subsystems,
define (at least at a niagh level) the contents of each subsystem
and specify the interfaces hetween subsystemss Then the design
effort can focus on the ingividual subsystemss, although there
will continue to ve some evclution of the system structure as the
desiun matures,

3eldela Subsysten Interfaces.

A subset of the packages Iin a subsystem will be exported. The
visitle parts of a3ll the exported packages forim the abstract
interface which the supsystem presents to higher—level
subsystems. This abstract interface should hide implementation
details from bighaer—level sutsysteams, while completely capturing
the facilities tc e provided by the subsystenm. Agains good
desion practices based on information hidingy abstractiony 2tcass
shoulc te sppliec in designing subsystem interfaces.

A subsystem will import lower~level subsystems to use in its
trplementations This Musing® ralationships where one subsystem
uses another in its implementation or it Ada specss must form a
strict hiersrchy {no cycles)a.

3sle3. Supsysten Designe.

Unce the interfaces have defineds it is possible tp gesign the
subsystem itself, The desion of the individual subsystem should
conform Lo good software enginesring practicess but is largely
driven by the specific application and the system design goalsa.
BEach subsystuen shoulc be designeo to be indepently tested and
maintained to the areatest extent possible.

Precisely specifying the apstract interface for a subsystem and
then constructing the subsystem on top of other subsystemss
brings us to thes next ohase of develcpwent,

3,3, uvetatled NDesicen and Inplementsation,

3321 Subsystems as R1000 Control Points,

In the environment, each subsystem is represented as an object
conirol point {see 2.341)s The control pcint contains the specs
which make up the abstract interface for the subsystemy contains
the pooies for aitl those specss contzins cther library units
regquired to implement the subsystemsy and may contain any managed
objects which steore information relating to the subsysteme. The
use of a control point 3s 3 subsystem exploits the control point
configuration mechanisn,

323220 Sugsysten “elezses.

bach version of the control point configuration {(see 2,3.,4)
represents a consistent view of the subsystems which we will cali
a reirase.

3+3.3. (reating a Subsystem,

Consider the examnle of creating a new subsystzam named Foo. This
in turn creates an initial (fairly empty) releases In creating
the control gcint we had the option of specifying the name of the
first releascs Let us assuwe we named it F_O_0s representing the
first release of the suosystem Foo. We can specify that the
F_CG_C retesse of Foo is part of our sessicr configuraitcne.
Uperaticns on any control point are with respect to the specified
release, For exampley the first operation on the newly created
library might te to create several new Ada upits. This would
update the release to reflect the new cbjects {and the current
versions of those objectsl},.

3e364s {Lomgilation anc Semantic Consistency.

In zaccorcance with section 2.3.4.9 each retease includes
compilation switches and a target key. For our example, assume
that we have {=2t the target key default to the R1000. The
switches control compilation optionss and are passed to any
compilaticn that occurs in the control point. Switches can be
set on a per release basis. Consistent with section 2.5y we can
compiley elalorate and execute units in the subsystem., The
configuration mechanism 211ows the system to view the rejeases as
a sinale set cf units, and ignore version issues. The
compitatior facitities {(both interactive and batch) use the
session configuration to determine ralease of the subsystems and
then compile with respect tc that refease., As discussed in
Ze523y the system autoratically maintains semantic consistency
within a refease,

Assume that in cur example sutsystemy Foos we have constructed

three packagass 89y B and C. Ffurther assume that the bodies of

these packages reference another subsystem 8ar. Having created
these units and updatec the library context clausesy our example
relaase will look like the following.

Library Foo is
package & is separate;
package U is separate;
package € is sepnarate;
packace body 2 is separate;
package body B is separate;
packace tody € is separate;

gnd Foos

The release conficuration includes the newly created versions of
each of the packaoes,. Howevers compiling the subsystem at this
point would ve only partially successful, The visibie parts will
all comgilesy but the hodies reference the subsystem Bare which
must first he imvorted,.

3345 Imperting Subsystems.

For casual libtrariesy the library context clause (see 2.4.2) and
normal configuration defaulting mechanisms (seec 2.3) are
adequaltes Howavers when constructing sutsystems it is important
to bind the subsystes to a3 particular version of the abstract
interface for each lower—level subsystsm that is importede. For
this purposey there is a subsystem impert operation which updates
the library context clause as necessarys and updates the release
confiaguration to reflect the specified release of the imported
subsystem,

in the example we have been using we might wish to import the
B_0_1_5 reiease of Fars which is an export retease of Bar that
includes ail of the specs we will need in inplementing Fooe
Construction ¢t export releases is discussed later. The import
operaticn would update the litrary context for Foo to include Bar
and woulc update the release configuration to inciude all of the
specs for £_0_1_%5. In generals a relesase {control point)
configuraticn identifies 2 version of each unit in the subsystem,
and a version of each spec imported into the subsystem.
Subsystens never rely uocn defaulting wmechanisms to access
irported unitsy but rely upon explicit importings.

Having completed the import operation, compilation of Foo will
proceed progerlye.

30325 Local and Global Diana tools,

There sre two classes of toels that use Uiana on the system,
focal tools and global tools. The tirst ciass relies only upon
the release configuraticn and references only units within the
control point and imported specs. The cowmpiler is probably the
most important member of this first class. The second class uses
2 system configuration to lcok through references to specs to
reach the "real"” version of the particular unit. The editor and
debueger are nembers of the second class. {tiine out of ten
respondents disacree with nave the editor automatically Jlook
throuoh specs, Still working on that one.)

In this mocelsy cempilation is mors efficienty but relies only
upon tocal information. Debugging and =2diting make fess frequent
use of semantic attributess but provide a complete and consistent
view of a nmore globzl universe. For exampley using DEFINITION in
the ecitor will take the user to the real specsy so that he may
than use CTHERK_PART to sese the body. The user would only see the
{truncated) specs in tha spec sublitraries in the case where his
session conficuration does not include 2a real versicn of the
referenced sutsystem,

tne can proceed in this manners designing and implementing the
subsystem as e consistent set of Ada urits. As soon as a first
{possitty incomplete} relruse 0of the subsystem has been compiled,

one will want to test and debug that release before proceecing to
ada functicnality or otherwise change the subsystemo. The issues
of executions testing and debugging Are acddressed in the
fotlowing section,

3abs Test and Integration,

we will continue the exampie ¢cf the previous section to
itlustrate the wodel for test and integraticne Let us assume
that the Foo subsystem we have constructed is to be a

SHAREC_CNLY subsystems and that the Bar subsystem

is a SHAREG_CGMLY sutsystem which the owner has already elaboarated
{ises9 our sessicn configuration references an elaborated release
of Bar)e. Let us further assune that our initial

test plan invalves the follcewing steps:

Step 1. Construct a3 Foo Test library which will hold test
proarams as we write them,

Step 2. txecute several simple commands which exercise
facilitites from HBar that the Foo needs.

Step 3. In thas Foo Test librarys, construct a more
comprehensive tast which excercises key 8ar
facilities in a manner similar to actual foo operatiocn,

5tep 4. tlatorate the Fcoo subsystemy using the debugger
a5 neeged Lo analyze problenms,

Step S, Faving successfully elaborated the Foos execute
severail simrple commands which provide & preliminary indication
that the foco htas initialized itself properiy.

Step 6. In the Foo Test librarys construct a more
comprehensive test which verifies proper foo initialization
checks cocrrect ogerstion of simple facilitiess

Ster 7. The owner of B8ar has produced 3 new
release ancd woulc like to test his subsyster using the Foo and
Foo Tests procuced earliers

These steps are only a few of the many requireds but they
ilttustrate key characteristics of the sutsystem paradigme. Even
pefore discussing the individual stepsy it is clear that the
K100G supports an interactive and incremental approach to test
and integraticon,

344s1le Constructing a Test Librarye.

First we construct our test libhrary nested within the foo
library. This test library will consists of test proegrams which
execute on top ot the exported Foo specs. Thus the Foo

Litrary now lcoks like the following,.

use Zar;

Library Fco is
packice A is separate;
package # is separate;
packace tody A is separate;
package tody B is separates
liorary Jest is separate;

end Foos

3ebele Estabtishing the Test Configuration,

Step 2 in our plan involves exaecuting a few simple commands to
exercise facilities in 8Sar that the Foc would

rely upons. All execution requires a system configuraticons and in
this case our session configuration is adeguste since it should
include an eiabor2ted Pfar., The key issue here is

that we must have properly established our session configquration
so that it inciudes an elaborated release of Rar

which supports the facilities we need for testing the Foo.

This may be an unnecessary stepy but prevents wasting time
pecause of improperly established test configurationss. While the
subsystem paradigm is desigred to help eliminate many of these
probiemsy cress subsystem coordination recuires manual
intervention anc is subject to some error. Therefores the system
facilitates quicky interactive verification at key stepsy so that
arrors which do occur can be detecteg early in the process. Lnce
the user is confident that his session confisuration is being
established properlys this step may be 2liminated.

Kecail that for SHARED_ONLY libraries the library is elaborated
45 A wholes If »e visit one cf the specs in Bary

it should be in the elaboratec state at this point., If it is
nety we must {possibly in cooperation with tne owner of

Bar) either upcate ocur configuration to reflect an

already elaborated release c¢f Rars or create an

elaborated relcase for our own use.

e can then write shbort commrands which call specs exported by
machine inter face. Even if these test commands do not exercise
the most interesting faciiitiesy they give us nuick feedback that
Ear is properly elaborated, If there are new

facilities that have just been added for our uses we might try to
exercise those tc make sure they at least exist. If any errors
are uncovereds we can construct minimal) test cases which produce
the probtiemy and then work with the owner of Bar to

resolve the problems,

Ae4as3s Constructing a Test Program,

Sten 3 is 4 continuation cof Step 2. #hile Bar

presumatbtiy hos 2 set of test programss we may want a test program
that further verifies specific propertias that we depend upon.

We aad this tc the teo Test {ibrary anc compile against the

spacs importec from Bar. The test library is not a

shared tlitraryy, and we can call the test pregram as scon as it
has btieen cocec, The library Foo.Test would look like the
following at this point.

use Bar;
Library Test is

procecure Test_KMI is separate;
enda;

From a commanc window we can execute Test_XMI and review the
resuitss. If the test produces 3 log file we can save a Ygolden™
caopy of the file in the test librarys and have each execution
compare its results to the colden results. e can later add test

drivers in the test Jiorary which invoke this test along with
others and produce 3 summary of the results.

3sftat4s tlaberation of a new Subsystem.

Step 4 actually involves exacuting the new code we have written
in the Foo Jitrary. we can elaborate the current release of
‘the Foos or we can produce a new release of the Foo which
differs from the previous only in that we will promote it to
elaboratecd. FElaboration information is retained as part of the
realease automatically. When elaborating a SHARED_ONLY subsystem
we have the following three options with respect to the
persistence of the elaboration,.

1+ The sudsystem remains elaborated from the time It is
explicitly eisborated until it is demoted or until the system
cces doawly whichever comes firste.

2+ The subsystem remains elaborated until it is cemotedy, and
it is auvtomatically elanorated after a crash at the time the
system is breought up.

3. The subsysten remsins elabtorated until it is demotedy, and
it is automatically elaborated after a crash at the time of the
first reference to the subsystem that reguires it to be
elaborated,

while we are first cdebugging the subsystermy option 1 is most
appropriates since we dec not expect anyone eise to be using the
subsystems Lnce we have released 2 versiocn of the Foc for
widespread usey we must chose between option 2 and option 3. The
system elaborates the new subsystemr with respect to a particular
system configurations in this casa2 our sessicn configuration.
Since trte constructions of any system configuration verifies
subsystem compatinilitys we are certain thzt we are slaborating
against compatibie varsions of the lcocwer level subsystems.

This consistency checking is addressed further in 3.5.y since
the main issues ceal with upward compatible changes.

If Aany croblems are encountered with the elaboration of the

Foo (quilte likely if there is much new cucely we can use the
interactive cetugging facilities to investicate the problems.
Interactive debugagina is further discussed in section xxxx. Once
We have successfully elaborated the subtsystems we can move on to
the next phsase ¢f testing,

Lol eDa Test znd “elease of a new Subsystiem.

Step 5 in cur test plan involves executing s few commands to
check that the newly elaborated Foo is properly elaborated and
that hasic facilities work properly. This gives us quick
feedback anc lets us interact with the subystem directiy to
determine its hezlth. [f the Foo exports operations which
perform internal consistency checksy those are probably the first
operations we I1nvokes From a command windowsy wWe can invoke any
operation exported bty any package in the subsystems including
exportec packages {Foo.,A and Foo.B8) and internal packages
{Foo.C)s Having executaed some of the visible operationss
perhaps with the debucgery we move on to the next sterg.

Step 6 involves adding to the Foo Test library a more

comprehensive test of the initializaticon of the Foos. Ths test
tibrary would now look like the following.

use 5ar;
use FGo;
Library Test is

procecure Tost_KMI is separate;

procecure Jest_Initialization is separate;
end;

Gnce this test program has been codedy we can execute it anc
determine the resultse.s Again this test can e structured so that
the results are reuroducibly verifiables wWe can continue in this
veiny executing simpie commands that excercise the Foo

directlyy writinc more test programsy and building up our test
librarys anc¢ then cycling oack to design and implementation of
additioral Foue facitlitiss,.

In pregaration for moving on to step 7, let us assume that these
first two test proarams work correctly apd we and freeze an
elaborated relaeaase of the Foo and an unelaborated release of
Foo.Test, re can establish these releases as the defaults,
which other users will sse if they co not specify particular
releasesa. In a very minimal sens2s the subsystem has be=sn
released. A pore formal releass nrocess can be supported,
including mcre comprehensive test and cocumentation procedures.
For the moment, assume we are constructing an informaly internal
release.

3abdat. kecomtinant test and integraticn.

Now assume that while we were geveloping the Foos the owner of
Bar nas just frozen & new release of his subsystem,

In asddition to running his own rearession testsy he now has a
custemer {the Froo) who hias cocde which executes on top of

Bar. He may wish to run the Foo testsy since

they may actually exercise RBar in more or different

WAYS,

The subsystem ovaradigm allows the combination of different
versions of subsystems that have comgatitle interfaces. Thus the
owner of 2ar should be able run his new subsystem

with the previously refeased Fooy which is known to execute
properly with the previous release of Bar. This

property will hold for the R1I00D as 2n execution vehicle in the
face of 4 fairly wide range of ugward compatible changes in the
differert versions of the subsystem specs (including different
private partss adding new functionss etc.s see 3.5.1).

hWon=R10CO targets which follow fzirly simple conventions for
linking and loadinn w2y slsc be atle tc support this aspect of
the subsystem paradigm, although a3 smaller {(possibly empty) set
of upward compatible changes will be supported (see 2.54)

In our exampie, the session configuration for the owner of

Bar currently includes the new release of

Bara. we have relfeased Foo and Foo.Test

librariess so he can get those releases automatically. Howevers
in this case he cannct agcd the =laborated release to his sessiony
pecruse it is =laborated aczinst a different Bar.

Howevery if he desigrates the Foo suosystem and demotes it to
cod2dy he implicitly spawns 2 new release {(which is added to his
session configuration)s which can be elborated on top of his new

dars Then be can execute the Foo tests and

ensure that the new release of Bar supports the

current retease cf the Foo. He may even include this as part

of the stancard regression testing procecdure for new releases of
£2A0 .

Note that relatively little interactior is required between the
gevelopers of different subsystems, Theres may be many releases
of Zar cor many relezses of the Fopo, put they

need not te coordinated as long as they are spec compatible, In
practices interface issues or subtle bugs may arisesy requiring
Joint deburging sno cocrdinated fixes.

S0 far we hzave focused on testinog an individual subsystem in the
context of other subsystems. System testing can simply bs viewed
45 testing the "top"™ subsystes in terms of ail the lower
subsystems., For system testings and s2ven subsystem testings one
can create conficuration objects which capture meaningful
configuraticns of subsystems. The system will enforce
consistency and ensure that the systems are configured properly.

More orn regressicn testingy system testy test toolsy etce Somedaye

3.5. HMaintenance and Cn=~Going develcpment,

S0 far we have been considering very sinmple scenarios involving
new subsystems with very few versicns, Yuch more complex issues
arise curing naintenance and on-coing develcopment of 3 subsystenm
which has one or more released version which rust be supported.
In particulzary support for incremental and upward-compatidple
changes becomes essential {(since one is "fixing” existing code
rather than uwritina new codel)ly scurce managment becomes a major
issusy and tracking of history and other infcrmation beccmes more
irportant. Let us continue with the example of previous sections
to illustrate these issues.

325e1s Incrermental and Upward Compatible Changes.

recatl that a4t the end ot step six in the previous section we
froze a versicn cf the Foo. Now assume that based on our

first round of incremental testing we wish to fix several
prooiems and add several facilities in the package Fooc.C. We
Spawn a new releasesy KK_0_1ls. A1t of the units are initially
shared with the previous redfease {(KK_0_6G). If we make changes in
package {y only that package will have a new varsion which is in
the new Fco retease anc not in the old release, The Foo
subsystem configuration we 3are using is upcated to reflect these
new versions of gackane C. When we have made our changes,
propably using the incremental compiiation facilitiess w2 can
test them immediately by elaborating this new release and
repeating a foerem of the test cycle described in the pravious
section.

Changing exported specs provides a more interesting example.
dssume that several clients are now using the frozen version of
Foo released earlier (KK_C_OC)s and we wish to change exported
Foo specs to produce a new relzase (¥K_0O_1) that is compatible
Wwith the code the clients have procucedy but which includes new
facilities that support future client develgcpment. in
particulary we Wwish to be able to have the clients run against

KK_C_1 {(when we reiease it) without the clients having to
recompile any of there subsystems, In tacts old frozen versions
of the clients which ran against XKK_0_0 shguid run against
KK_O0_1y while new versions of client code may be developed using
the new facilities of KK_0O_1.

The systenm actuailly goes furthery, in that clients can import the
new specs into their subsystems without causing any
recompilations The only compitation irvolved is that associated
with changces the client might make to use the new facilities

pgrovided by the new foo specse.

¥e cannot demcte the spracs to source ang aake arbitrary changes
and have the chanvues be upward compatible. However, if we make
increrentai chiangess the system will produce a new version
{reflected in the KK_0_1 subsystem configuration) and property
maintain the version so that it is upward compatible. In
particulars it will not allow incremental deletions without
informing us that such a change would rot be upward compatible.
Incremental acditions would be supportedy and the systen would
properly maintain semantic and code generator attributes such
that the change is ugward ccmpatinle,

|

|

|

|

|

|

|

} For the R10COs most additions are upward compatibles and if we

' have specifiec that the spec has a closed private party then no

t client was 3llowest to rety upon the information in the private
part anc aill changes which affect only the private part are then

’ upward compaticle. {The conplete set of rules for upward

] compatibility for esach target lincluding the R1IGDO) will

' specified separately.)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

The system implements Lpwarc compatibility by restricting the set
of changes allowerd in the specsy and managing specific compiler
attritutess Froper wanacement of compiler attributes requires
that ail compativie versions of a spec be maintzined {(especially
mogified) on a single machine which maintains the set of related
varsions of the snpecs. tach compatipie version of a spec is
relateg to the crigiral and shares a compatibility key which is
us2d for cross—subsystem compatitility checking. Anytime a
system configuration is constructeds 2xported specs are checked
against dimpertad specs {for all subsystems in the configuration)
to ansure that they have the same compatibility key.

In our exampies we could add changes to FooeA 3nd Foona.8

lexportec packages) using the incremental facilities of thsa

environments and then tast those changes 3s described above.

ince we asre satisfied that the changes have been made properly,

we can freez2 and rejease KK_GO_1, If we make that release the

new defaults 3and encourage clients update their systen
configurzticns properlys then users will be using KK_GC_1s which
should support atl old facilitiesy plus the new facilities we
have provided,

345470 Source Mznagemanta.

The facilitics discusses so far are sdequate for supporting a
single dgevelopmeant pathy where there is a sequance of releasess
each release superceding the previous release. Given that the
system has been cecompcesed inte small subsystems where 2 very
small team is working c¢cn each subsystems and given that only a
single developmrent psth nead be supporteds no additional source
management surport woulg be required, Howevery in the face of
maintaining one o¢f rore released versions while supporting one or

more active new developmrent paths invoiving more people and possibly

muttiple target wachinesy, the user will reguired more substantial
spurce managamrent support.

basic model is tec know which devel paths are relateds, inform user
when he is making a2 change that it will impact other paths,
support policies that restrict changes which impact other paths,
and support merging ancd {sewilautomatic propogation of changes to
other paths.,.

source mymt =-- serizl releasess divergence and parzailel devel,
multt (lower—level) specs and nmulti targets,

3e5e3. History,

keep all relavant info at objecty releases subsystemy and project
fevel. supnort construction of tools that operate on this info.

