U U 83ts 5558 Y Y S58S TTTYT EEEEE M M SSSS
L L ¢ oS Y Yy S T £ MM MM S
L u 2 S Yy S T £ MMM S
U U #aegl 558 Y 555 T EEEE M M 53S
U L g] S Y S T £ M M S
L v 3 =) 5 Y 5 T £ M M S
Loyl sEgR SS5535 Y $5S8°% T FEEEE M M 5555
222
2 2
Z
Z
2
2
22242
START Job DESIGN Kea #9766 for EGBH Date 29-Apr—85 G:37:2G Monitor: J/4 TOPS

File RMIKSYSTEMGSPECOSUBSYSTEMS .42y created: 24-Feb=-35 17144347
printeds: 29-Aapr-A5% 9131348144
- Job parameters: Repguest createdi?2S-Apr-85 G:137:27 Page limit:2él FormsINORMAL
File paroweters: Copy: 1 of 1 SpacinagtSINGLE File format:ASCII Print mode:ASC

Separate specification anc implementations

The wrincipal difference tetween worlds and subsystems is the abiflity
to reference the visible pgarts of packages whose implementation is not
present in the particular worilde. This is accomplishec by allowing cne
or rore ltibraries cecicated to subsystem interface specification
yvisible parts (spgecs) tc be included in the world. These specs are
usec in ccwpilatior as with any visible party but their iaplenmentation
is hidden.

Subsystem interface libraries are igentified at the time they are
builts All subsystam interface Jibtraries precede implementation
tibraries in the library sequence., The particular limitations on
subsystem specs derends on target-specific characteristicse For the
R1CCL targety the ahility to have "closed” private parts reduces the
nead to have specs for packages only used in the private parts Targets
that co nct support truly private types may not support this feature.
Similartys the irlining/generic instantiation characteristics ocf the
particular taraet aay require sefjected bodies to te included in the
spec library.

Program executions

Seperatiorn of specs and igplementation requires a loading mechanismy
simidar to £EfD%,y to specify which imglementation is to be executed to
represent specs.

Initial R1GCC iwmplerentations have treated each ingorted subsystemw as
an atoric unit. For more diverse development and for other targetss it
mady De necessary tec load a smatler closure of the specs referenced.

Veritying scecs.,

Dissoctation of specs and inplementation introduces opportunities for
violations cf the Ada typing mechanismse. Facilitiess possibly
optional, for checking spec—implementation compatibility will be
reguireds, Initial implementation could be for equivalences then for
simple upwarc coapatibility. These checks may be target—specifica.

Acgquiring and maintaining specs.

Specs are reprasentatives of an isplecdentation that is proceeding in
paraliels FExplicit action is required to acguire newly referenced
of changed sgecsa.

For a particular systems there is & set of current versions of subsystems
from which specs can be derived. For each version of a subsystems there
can ope a specification of particular versions of worlds from which to
acquire specs for 3 particular subsysterm. UOperations exist to find a spec
that nas teenp usec for the first times g9et 2 new version of a spec that is
known to have changedy assure that al!l specs are the same as the ones
currently in usey and to cet new specs for a specific subsystem, All of
these are fairly simples except that no easy mechanisms currently exists
to cetect sauivalence of cifferent version of the same unit. This
primarily aftects situations that call for getting specs that have
changecg,

Parallel cdevelopment,

At any particular times there may be nmore than one version of each of the
active subsystemss, These are grouced into setss called activitiess that
allow trackina of these subsystems and their relations. Specs are updated
frenm other subsystams in the activitys; the current version of a subsystem

is relative to the activity of interest {though there is a "current®
activityl. This atlows rmultiple threads of developnent within the same
basic system structure and makes the tools as =2asy to use for new
activities as for established and released activities.

