TTTIT EEEEE 2RRR B ¥ 5555

T E i ¥ MM oMM S
T t X 2 MoM M S
T FEEL KRRR b | SSS
T E = R he e S
T E B N bl # S
T FERLE 2 K M M 5585
4 4 222 333 BBE 5555 1
4 4 2 z 3 3 g 3 % 11
& 4 4 3 £ 3 555 1
44444 @ ——m--- z 3 - B38E 5 1
4 2 3 8 3 5 1
4 2 3 3 o] o1 5 5 s 1
4 22222 333 588 555 e 111
#START%® Job DESIGN kep #9776 for £GB Date 29-Apr-8% 53137329 Monitor: /74 TOPS

File RMIKSYSTEM,SPECDTERMS,,4-23~-£5,1y created: 2B—Apr-85 14:42:38

grinted: 29-Apr=-85% 9:38:1572
Job parasmeters: keguest created:z9-Apr-85 G337:27 Page limit:2¢€1 Forms:NORMAL
File parameters: Copy? 1 of 1 Spacing:SINGLE File formatiASCII Print modeASC

DRAFT 9 4/:22/%%
le Active 2gents.
.10.3.0 Tasks.,

The Ada Task is the primitivea active agent in the environment.
Short term scheduling of processor rescurces occurs at the task
levels ancd surports an implementation of Ada pricrities,

1.2 Jobse

A Job is a cgrecup of ¢cne or wmore tasks rerforming some user or
environment operatione i£ach command that is executed is 3 separate
Job.

From an irplenmentation point of views, e3ach job corresponds to a
R1GO0C Job ¥PIL« Hedium term scheduling occurs at the job level and
uses 2 job priority mechanisnm which supplenents the Ada task
priority mechanism,

Processor time ltimits and swapping disk steorage limits are enforced
at the Jobt level,. Fesgurce {imits may bz set at Jjob creaticn and
changed thereafter, Default limits are used if no explicit limits
are provicac,

For both orocessor and disk {imitsy there is a warning limit and an
absolute limit,

When a job exceegs the warning limity 2 warning message is sz2nt to
thea owning s=sssion and to the 2nvirconment locge. The jcb will be
suspended by the medium term scheduler. The user may chose to
terxinate the jobs or to examine the suspended job with the
gepuggerys of to resume the Jjob after ircressing resource limits or
somehow freeirg resources. Haowevers the job may continue to consume
resources after it has suspendeds in which case it may exceed its
avsolute timits,

Khen a job exceecs ansolute {imitss 3 message is azgain sent to the
system log anc to the cwning session. Then the job is terminated.,

Setting the warnina linwit at the abscgiute limit ensures that the Jjob
will never te suspenced. Howavers there is no way to gaurantee that
a job will never he terminate pecause ¢f resource constraintss This
means that tne censtruction of robust servers must take into account
proper managerent of processor and disk resgcurces.,

123 58S5{0Ne.

A wuser {1ogoinc ontg the environment interacts with a particular
session. A session is tne celiection of jobs {including editor jobs
and commang execution jobs) which serve as the active agents on
behalf of the user. & session includes certain permanent
information {user profiley, etcad. {needs work)

2+ Manaued b jecis.
Zelesle NManaged Types.
The prograswging environment provides support for a set of types

called manacgecd tyres, These types buila upon standard fagi!ities
provicdec by the environmenty are registered with the environment,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
1
|
i

and fcollow protocoils establisted by the envirocamente.

The most important managed types inclucde directoriesy Ada units,
viewss filess Userss and various devices. Objects of these types
are manza2gyed objectss and are the only permanent objects in the
environment,

2a22s 1Eata 2anc Seomentse

The virtual memory system provides the primitive storage mechanisn
for gatz on tha xK10CO0. The segment §is the bhasic unit of storage in
virtual memory. A segment stores up to 2%%32 pits of data.

Theoreticailyy the system can store an essentially unlinmited number
of segments. Howevers the ancunt and oreanization of physical disk
storage constrains the number and size of segments stored in the
system. For exawples the sum of the data in 311 sagments cannot
exceed the sterage capacity of the disks in the system {note that
every existing seamert consumes a nmininum of one block).

A segment may oe permanents meaning that it will persist across
syster crash/shutdown. *anaged objects are implemanted in terms of
permanernt segments. Terporary segments are used for tempocrary files
and as heaps for sz2agmented heap Access types.

The data in 4 segment consists of a swell set of fixed fields common
to all segments and a {ocotentially Jarce) user data area organized
45 typed Aca cata structures. Access to the user data is achieved
{after foliowing the nrotocels discussed below) by constructing an
Ada access value of the appropriate tyrey which provices a typed
handie for maripulating the data.

Zedse Uibjects.,

An object is the basic antity in the systema. AN object is
representec in the system as 3 perxanent secment, The legal values
for the data in the objects and the operations which way be applied
to the onject are determined by the tygpe. &11 objects have 3
variety of comaor properties discussed Delows as well as properties
unigue to cbjects of a particular type.

Zast [bject icse

f£ach maraqged cbject nas an object id that can e used to reference
the urderlying ouject.

The cbject ic¢ censists of three components —=— the classse the worid
idy 2ngd an object index.

The class is a snall integer encoding ¢f the managed type (2.1)y and
from an implerentation point of view determines which object manager
is responsitcle for the obDject.

The world ic¢ identifiess the world contzining the objsct (3.7)s and
from an implementation point of view corresponds to the R1000 VPID.

The object incex unigquely identifies the object within the worid,

Each object stores its own gbject ic¢ and the object id of its parent
{(3.1),

P

Ze5e Objdject hames,

Fach ob ject has a full name and a siwple name. The simple name is
stored in th2 objecta. See 3.6,

2ebrn Yersions.,

tach object hes & version nunber. The system supports nmultiple
objects with the same ohject id and same names uwhich are
distinouished by their versicn number.

when we rafer to a “version of an object™ we mean one of the several
objects which have the same object icd. This usage is scmewhat
imprecise since the version is an obtject, In spite of this
tmprecisicns such usaae generally allows 3 clearer description,.

Given an object idy a particular object with that object id can be
seliectacd witn a version specification. A wversion specification
either explicitly provides a2 version number to selact the objects or
uses the view mechanise discussed below (4.1).

2afe CLoOmmon oOperationses

There is 2 set of cparations which are defined on ali managed
cbjectss called common operations. These include createy delete,
copys 2tcs. Scme types may have limitea support for particular
oparations (i.z2.s copy may not work well for objects of type group).
These operations are specified in detail in the package
Directory.Cparations,

Zela Uren/{icse protocol.

In addition tc the common operationss managed objects support an
open/close grotocol for accessing the typed user data stored in the
undarlying secments.

The oupen operaticn takes an cbject id and version selection
information {sz=ction 4) as inputs ancg raturns a typed handle which
references the data in the segmant representina the selected object.
Synchrorizaticn (2,10) and access control {2.11) are 3associated with
the open operaticn,

Given the handle returned by the open operations type-specific
operations may be used tc manipulate the data in the object. For
each maraged types there is 3 small set of packages in the
envircnment which define the type-specific operations {see
KSystem.Dird>}.

The close half of the open/cicse protocol reieases access to the
data anc occurs when the acticr is cempitted or abandoned (2.9).

225 Atomic Actions.

The programming envirorment suoports simple {(non—-nested) atomic
acticnse An atomic action is a sequence of one or more operations
where either 1) ati of the operations succeed and all of the results
are pervanentiy recordeds or 2) none of the operations will have any
effacts The envircroent guarantees the atomicity of such actions,
even in Lhe face of system crashes, Atomic actions allow large
composite oparations to be easily constructed without programming
complex erraor recovery and tackout procedures.

Iin this action paradigrs 2n acent {Ada task) may obtain an action
idy which unicuely identifies the action being performed, All of
the comron directory operations and all open operations on managed

objects reguire 2n sction i¢ as a parameter, An agent may perform a
farge number of operations {limited by contention for a iarge but
fixed pool of system resocurces reguired to implement the action
paradigr) within one action,

An agent may cosmit or abandon the action when all operations have
peen performed.

If an action is cemmitteds then immediately upon return from the
call to commit all of the pperations perfcermed in that action will
have taken permancnt effecte The system no longer uses the snapshot
mechanisms. Permanance is associated with committing each action,
there is no waiting for the next snzpshot,

If an actior is ahandonedsy then the environment backs out of all the
operations performed on behalf of that actions rtestoring all
affectec cbjects to their criginal state as if no operations had
ever occurred,

An action is asutcematically sbandoned when the agent is no longer
callable {(the Ada TYCALLABLE attribute vields falseds This prevents
completeds terminatec or a3bnermal tasks from locking resources
{2.1C). Acticns sterted during the elaboration of a gackage should
be committed or abanconed during that eiaboration.

Certain envircoment operaticns consist of a large number of swalier
operationss all perfcrmec as 3 single larce action. The failure of
one of the internedisate operations might {eave the environment in an
inconsistent state if the action were to be committed.

In those cases where a environment operation is performed on behalf
of scme action and the operation fails in a manner that requires the
action to te zbandoned, the ervironment marks the action as
uncomrittatcle,

An uncommrittatie action can be 2abandoneds tut can not be committed.
This prevents the client fromwm committing the action and possitly
invalicating system invarianrtss. At the same times this mechanism
does not force immediz2te abancdonment of the actions which would
close all objects opened by the action anc prevent the client from
performing reasonanle 2rror pDrocessinge This facitlity is used
extensively within the anvironmrant and is gvailable to tsersa

221C. Locks and Synchronization.

khen performing operations ¢cn an objects the operation regquasts
reads update cr unsynchronized access to the objecte In the first
two cases 2 read or update lock will be obtained on behalf of the
specified action. If 3 reac lock is ottainecs other readers are
allowecy But no updaters. If an update lock is obtainedy, only
operations with the same action id may manipulate the object.
Committing or abandening the action relesases all Jocks obtained by
the actions This is the basic envircnment synchronization
mechanism,

frpen cperations must specify whnether the open is for read or for
update. If the object is opened for updates the object may be
modifiec. tttempting to modify an cbject that is only cpen for read
will cause the exception Write_To_Read_Only_Page.

Keleasing locks is &ssociated with the commit of the action which
obtainecd the Jockss, Ability to modify the objects is revoked
imrediatelys. Read access (using a handle previously returned by

open) is revoked no Jlater than the next open fer undate,

For the common operationrss the regquirecd tocks are part of the
specificaeticn of the operation {for exampley copy aquires a read
tock on the source and an wugpdate lock ¢cn the destination).

An 3gent operating eon an obhject may specify a maximum time that it
is willing to wait to cbtain a leck on the opjects If the requested
object is currentiy lockeds the environment will gueue the new
request untii the object Decomes availablie. If the object does not
vpecome availatie withir the specified naxinur wait times an error
status will bDe returned and the oceration will fail. If no wait
time is proviceds the standard system default wait time (5 saconds)
is useda .

The third form of accessy unsynchronized accesss will obtain no

focks ard wiil never queue., Unsynchronized access is inherently
usafes since cther acents can modify or delete the cobject being

accessec,

The standard IC gackages use upidate access to implexent input_output
and output modess The mode input is implemented with either
unsynchronized or ready depending upon user preference {indicated by
Job switches or the 2da “form" parameter). Using unsynchronized
accass and opening 2 file for input does not prevent other agents
from writing {or delating) the same file,

Zella Access Contrcle.

The envirorment enforces access control at the point cf aquiring 3
lock ¢on an object. The three access rights supported are reads update
and owner., HMezsd rights are required to cobtain a read lock or
unsynchronizec accesss Yrdate rights are are required to obtain an
update Jock. wner rights are renguirec¢ to changs the access writese.

The environrant stores an access list with each object for each
access right, The access lists determine which groups may use the
indicated mode to access the object.

The systenm supports z swmall set of sroups {crdar 2%%3). A group is
2 setl of users. The environment supports adding and removing users
from groupse. There is a distinguished group {operator) which has
access to zmll ctbjectss Thaere is also 2 distinguished group {(public)
to which all users belona.

A session has as sassion state the list of grouns representing the
rights for the session. When 2 sessior is createdy the list is
initiatizead te the set of groups which contain the user who started
the session. fhis list may be modifiec Dy the user.

3. Directory Structure,
Fele Parent/Chnitld relation.

fvery otjects Ly has 2 single parent objects Py where P is the only
object wWwhich huas £ 2s one of its children. The only exception to this
is the obtject which is the root of the directory structures cafied
Universes which has the nil object as a parent. DOnly two of the
currently supported managed types {object classes) may have childreny
directories ard Ada unitse. The parent/child relation forms a tree of
objectss which is the entire directory systems or universes for a
given k10CC.

el Sirectoriess.

There is a maraged type called directorye. Cbjects of that type are
called cirectories. Directeries are the gain structuring mechanise in
the environment. A directory may have children of 2any managed type.

There can be cnly one object with a civen object id for directory
objects {ie.e.9 multiple versions are not supported for directories).

33 dda Unitse.

There is a managed tyn= called Ada., Ubjects of that type are called
Ada unitss. 2Ace units are primarily for represanting Ada programss angd
as such are discussed at lencth in section 5. Here we are only
concernea with the structural directory properties of Ada units.

Ada library units appear as children of directories. Ada library unit
bodies zre children of the asscciated litrary unit, Ada library unit
bodies can have children which are subunitse Thus the parent of the
tibrary unit tody is tha likrary units anc the parent of the subunit
is the library unit body., This follcecws the definitions in the LRM,
Chapter 10,

» Ubject Daclarations.

All objects l(excent atiributess see 3,5) have a declaraticn in the
directory systams. For Ada units {(one type of managed object) the
declaration apnears as a unit declaration in a directory or as a
subunit stub ceclaration in an Ada units For other managed objects,
the geclaraticn sppears as an osbject deciaration in a directory.

3495 Attritute Chjects,

Diractories and Ada units may have a special kind of child object
called an asttribute object. This is an ot ject whose parent is the
girectory or 293 units but which is not explicitly dectared in the
parent., while the normal display of Directories and Ada units will
not show these atiribute objectse a full display will include then.
Attribute otjects are named using Acga attribute gualification {3.6).

Jabe (b ject Mames.

cach marvsgec coject has z siaple nare, To form path namess the
simple names cf objects are combined in secguencess with sach simple
naming teing a chilc of the preceding simple name. The simple names
in the path name are separatec by a periocd (".") where the second of
two simple namas does not begin with arn apostophe Three canonical
path names 3re suppnrtads the simple Aca name of an objects the

directory nawme of an objectsy and the full nawre of an cbject.
3ebale Simple Names,

The simple nare ¢f an object is limites to 64 characters, A sinmple
name is either an Adz identifiery or an agostrophe (') followed by
either an icentifier or the Ada reserved word Body.

For Aca livrary units and subunitss the simple name is the
identifier of the unit. If the identifier of the unit is greater
than ¢4 characterss the first 64 characters form the cbject simple
names which is used for 2l! directory raming operations. Higher
fevel nzming facilities may accept the longer names, If two Ada
units ir the same directory are not unigue in the first &4

characterssy creating the second cone will fail {there are two knowun
sofjutions which would e2liminate this restrictions but it has been
decided that it is rnct worth the troutle a3t this point).

For Ada licrary unit bodiess the simple name is YRody.

&n attribute cobject has as its simple name the identifier which is
the name of 2 user defined attributes preceded by an apostrophe
{'codesy 'cg_attrs, etc.).

3a68le Simple Acz Names.

Gnly 2da otjects have simple Ada names. The simple Ada name cf an
Ada unit is always the simple name (3.6.1) except for library unit
todiess where the sigple Ada name is the same as the directory nane
{3.6.3) for tha chject.

3s643. Uirectory Namses.,.

The directory nare of an obJject is a path name for the object
starting at (but not including) the first directory enclosing the
gbject.

I SIP N Fulld Names,

The full name of 2n pobject is a path name starting with (and
inctudiry) the lUniverse,

3ebebHs Nasminc Example.

fLonsider 8 simple example where 0 is a Directory whose parent is

Universesy U is a2 fibrary unit in Dy 2nc Ul is @& subunit of U. Assume

that each Ada unit involved her= as a '"Code attribute.

The full name for 1) is Universe.il.U, The simple namey simple Ada
namey and the cirectory name are all U.

The full name for the bocy of L is Universe.l.Ui'Bodys, The simple
name is 'Bedy. The simple 2da name anc the directory name are
U¥20dy.

The full name for the code for the body of U is
Universe.D.U'kody'Code. The simple nare is 'Body. The directory
name is U'kody'Lode. There is no siample 2da name for code.

The full name for Ul is Univaerse,D.U.Ul, The simple name and simgple
Aca name are Ll. The directory name is U.Ul.

|

|

|

|

|

|

|

|

|

\

|

|

|

|

|

|

\

|

| The full rame for the code for Ul is Universe.D.U.Ul'Code. The
- simple nrame is 'Code. The directory name is U.,Ul'Code,
|
|
|
|
|
|
|
|
|
|
|

Bebatie Name Fasclutiorn.

The system provides facilities for resolving a string name and
detaermining the set of ouject ids denoted by the name. Depending
upon the context and other factorss many names may resolve to a
particular otj2ct. Ses S.4,.

37+ Wworlds.
Certain distinguished directories are callec Worid Directoriess or

simply Werlds. Fach world tas a unique world ide which from an
inpltementation pcint of view corresponds te the R1000 YPID. Worlds

are the entitiess of interest for controlling cisk rescurcess
recording historyy providing Ada libtrary supporty and managing
configuraticnss. The wcerid manages these for atl of the objects
within ity inclucing rested directories (that are not worlds) and
their cecntents,

The root of the cirecteory system is z world,y each user home
directory is a woridy and the root directory for each subsystem
{section 949) is a worlds There is a fixed fimit on the number of
worlds in tre universe (1024 - JobVPs - System¥Ps = approx 75C)s so
their creatior msut te expliicitly managed by the user. The fact
that worids are the basis for resource management and configuration
management nrovides adgitioral incentive for users to carefully
manauyed creatior of worlds.,

3e7.1s Pescurce Management.

A1l of tihe objects in a world are on the same disk volumes which must
be specified lexplicitly or by default) at the time the World is
created. Like 3 job (1.2)y a world has warninag and absoclute disk
resource limitss ECxceeding those limits causes a responsible job
{that was cconsuming space in the worid) to be terminated. Several
Jobis may te terminated before the "real”™ culprit is terminatedy since
any job aliccating space in the world will te terminated when only one
might te 3 "run zway"™ job.

307.2. iiist(}ry-

The history mechanism is closely related to version control facilities
which must be designed and specified before much can be said about
history.

JeTe3e Libraries.,

In order to inmplement the fl1at name space of Ada units required by
the ada library mechanisms for sach worlds Ky ther2 is a special
subdirectorys #'Library,s which contains an entry {object of class
Aliasy see 442.2) for every Ada unit in the world and every Ada unit
importecd into the worid, Tbris library mechanism is discussed beleow
in the disucssion of views ang in the discussion of Ads naming.

Jel7et4e Configuration Management,

The retle of werlds in configuration management is discusses in
section 4.

4 o Yiews.

491 Views and Configuration Managment.

The presence of multiple objects with the same object id {multiple
versions of ar otject) requires 2 mechanism for selecting consistent
sets of objects to feoermr » configuratior or “viaw", Constructing and
maintaining these consistent views is cocften referred to as

configuration manzgement.,

There are two xinds of views in the systems world views and universe
views.,

Gala Worddad Views,

There is a wanaged type worlg view. Uhjects of this type are called
world viewss world views can only exist cirectly within the root
directory ot 3 world. F¥ach worid can contain any number of world
views,

A world view has fogur main componentsy an object map {(4.2.1)y a8 worlild
map (4424319 3 taraoet hkey {(4.2.4)y and switches {(4.2+.5)

4.2.1s Cbhiect Mzn.

kecall that ar object id consists of a classy 2 worlc id and an object
inde2x (3.1)s The object map has as its cdomain all the object ids
whose werla i¢ i5 the world containing the world views Stated another
waysy the ot ject map has as its domain the object incices for the
enclosing werida.

RKecall alsc that there may be saveral cbjects with the same object id
{is2esy saveral versions of an object)e The range of the object map is
one of the objects whose object id4 matches the domain elerents, or the
nil object.

Thus the object nap selects at most one object for every object id in
the given woride This provides a consistent "view" of the objects
within the woric. Operatine within this "view" frees one from having
to explicitly specify version selectior information when referencing
phjects.

The environment wmainta2ins structural censistency for the objscts in
the worla views., OStructural consistency mesans that no object in the
worlc can e in the world view {isees zppear in the range of the
cbject wap) unless its parent is also in the world view {the parent
object ic¢ maps to 3 non-nil range value)l. Hote that the the directory
object which is the root of the world is in every world view and is
special 1n that its parent cbhject id is nct in the same worid and
therefore is cutside the dorain of the map.

iy

The environment maintains semantic consistency of all installed {see
£a2+) Acdz urits in 2 world views In terms of Dianas the basic
invariant is that for any twe units with cgoject ids A arnd B in 2 worid
views if A has semantic attributes which reference a2 unit with object
id Cy then any references from 3 to C reference the same object.
Furtherrores the referenced otject with ic C must appear in the world
views. This last voint implies that the werld view rust inciude units
importec from other worids {(see 4.72.2).

A11 operaticns on objects ir a8 world are with respect to 3 world views
Directory crerations {createy deleteys etce) update the world view
appropriately toc maintain structural consistencys and such operations
fail it they viclate structural consistency requirements. Similarlys
directory orperations and compilation operations update the world view
appropriately to maintain semantic consistencys and such operations
wiltl fail if they vivclate semantic consistency requirements.

Gl els Aliases.

The definitior of semantic consistency introduced above raises the
issue of references to objects in other wor lds.

Here w2 are concerned with impgorting objects so that compiled
refarences carn e constructed in an efficient manner while
supporting consistency requiremants. This is inplemented with a
special class of objecty callec¢ an alias. The value of an alias is
the object id {(and fulil name) of an object in another worid. The

contents of the alias is accelarated into the object map so that
references to the 2tias are efticiently mapped to the aliased
ohject.

Note that 2n slias will map a local cbject id {same world as that
containing the view) to an object id in scme other world; howevery
an alias coes not designete a specific object {since there may be
several objects with the same ohject id). Pereaferencing an alias teo
get tec an object involves a sacond step using a world map {(4.2.3).

407e3 world Magp,.

& world map is A map whose domain is world ids and whose range is
worlc¢ viewss, Thus 2 werid map setects a particular view of all the
other worlcs in the universe.

Entries are mede into the world map of a world view by importing world
views for other wortos, The import operation first adds the worlid
view to the world map. Thens for each Ada unit in the world described
by the importeg world views the import opesration creates a atias in
the 'Library cirectory for the importing world (if the atias did not
already exist).

Fully resolving an atias requires extrzcling from a2 world map the
worlcd view corresponding to the worid id in the object id that is the
value of the zalias. This will provide a world view which must either
map the ot ject i¢ to anm objecty or map the object id to nil. In
either cases we have complated resolution of the alias.

It is impossitle to construct z2liases to a world which has not been
imported,

Al of the worild views in a world map nust be consistent (see 4,3),

452+4s Tarast Key.,

The worid view contains a target keys which determines which tools are
used to process Acz units within a world views This control both the
target machine for code generztiocn and the particular vesiorn of all
the comrilaticn tools.

The tarcet key is refated to semantic consistency in that atl units in
the worla view rust be precessed by cowpatible target tcols. Changing
the tarcet key in an incompatible way will obsolesce compiled units,

49205, Switches.

The world view ctentains switches which control compilations history
and certain directory operations. These switches are consulted by
such operations to control processing,

b4el et Freezing wWorld Views.

A& world view may ve frozens in which case none of the objects in the
world which appear in the range of the object map can be modified
{openec tor urpdates destrovedy 2tcala

A Wworld view nust be frozen before it can be imported into other worid
viewsSa This requirement eiiminates the need to record cross world
dependenciesy and implies that obsolescence processing {(Ha.xx) is
always restrictec to a single worid.

haZeln creating World VYiews,

Creating 3 world view initializes it to form a view which includes the
root directory for the worild and the world view itseifa The target
key and switches sre initialized to the default R1000 key and
switches, Ctharwise the world view is empty.

Normallys an empty world view is createg only when first creating a
new wor ld. The steps involved in creating a new worild are to create
the root directory, create the initial world views and then update the
Jck universe vieuw {4,3) to include the new worids These steps are
combined in a sirole user command for constructing worldsa.

4e9Z2efs Lopying ¥orld Views.

Copying a world view to another world view in the same world spawns
a4 new world view which is differential off of its predecessor. The
predecessor is automatically frozen as a result of the copys. The
new woric view shares all cf the contents of its predecessory put is
updated 3s changes are made.

Consider the following examplie operations znd how they affect the
newly created view, (pening a file for update will implicitly make
2 new version of the file which is only reflected in the new world
view anc¢ not in its predecesscr. Similarlys editting an installed
Ada spec (demoting it to source) will make a new version that anly
appears in the new world views and will propogate obsoclescence in
the new world views leaving the unit installed in the predecessor
Views

A world view has exactly one pradecessors tut may have any number of
S5UCCe550rSa. This Dasic mechanisn sugperts construction of
successive releasas of a werlds supperting higher—{evel
configuration manajement anc version ccntrols. See section 99.

4924G lestroying korld Views,

Destroying a worid view destroys the werild view object itselfy but
destroys none of the orjects in the world views Destroying a world
view may cause objects in the world to no ionager be reachable from any
world views The expunge operation {which may De applied to individguzal
objectss or to entire worfds) destroys all objects which are not
reachatle from an existing world view.

As mentionec earlier {4.2.6)s the system relies upon the fact that
only frozen worlc viesws can be imported tc minimize the amount of
dependency cala recorded and to limit cbsolescence processings.
Basicallyy we have shifted cress worid obsciescence processing from
the demotion of individua! units to the destruction of frozen warld
views.

when a frozen world view is destroyeds the system must check to
determine whether that world view has heen imported by any other worild
Viewss 1f it hzsy the destroy failsy procducing a list of dependent
worldss. The system provides an operation that destroys a world view
and the closure of its dependents.

4,3, Universe Viows.
A universe view is 2 managed object which selects a set of world views

{4,2) to form a consistent universe. A universe view consists of a
world map as cdescritbed in 4.2.3,

The primary censistency recguirement is that a21f of the worids in
a universe bte conrpatibile, Compativility of worlds is T8D.

The environment mwaintains a single machine—-wide default universe view,
for each worics, one worlcd view may be selected to be in the default
universe views,

tach session tas a default universe view. FEach job has a default
universe view. Unless otherwise specifieds the job universe view i5s
inherited fron the session default universe views

Any operaticn which goes not specify a particular version explicitly
Wwhen using anc object 1d or object name uses the job view to select
the appropriate world views and through the world views select the
appropriate versions of objectss If the job view does not include a
world view for the world containing the object in guestions the system
defaultl universe view i5 used.

5« Namings Scope Rules and Visibility.
S5ele A¢C3 units.

Ada tibrary urits may aopear in directories, #ithin Ada units the
envircnaent fclicws Ara semantics. Litrary units and tibrary unit
podies 2re cicsec scopes and rmay only reference external units that
are imported via ¥ITHE clausess, Supunits have visibility to their
parents zs well as units that are imported via WITH clausesa.

A& simpie nare in 2 WITH clause of an Acda unit is resoived by looking
for the siaple name in the 'Library directory of the enclosing sorlda.
Note thzat Lre use of the "Library directory enforces that atl Ada
units in a worlds including imported unitss have unigque simple names,
Creating A¢a units makes an antry in the *Licrarys and will fail if
the name collides with another entry in the "Library. Similarlys the
import operation discussed abova (4.2.10) will make entries in the
*Library for evary imported unite. If the pame of an imported unit
collides with an existing entry in the 'Liprarys the system chooses a
ressonable nage and constructs a {renaming) atias in the 'Library and
notifies the user.,

The w17+ cisuses on a unit car only denote Ada unitss, This implies
that there are no conpiled references to managed objects cther than
Ada units,

503 Cemmang Context,

Cemmands are civen from a2 cewmand windeow that is associated with 3
window on some object in the directory system. Commands are compiled
using the ‘Litrary mechkanisn to provide 3 contexty, with an implicit
WITH on every unit available in the "Library. The *Library for the
cemmand is stightly different from that of a normal Ada units, in that
the session includes a search path which desigcnales severai woridse.
The units in the 'Library directories of the worids named in the
search pasth 2re combined into a sincle logical "Librarys where units
in =2ariier worlds in the path hice units with the same name from later
worlids, The cefaull search path is 1) the world containing the object
in the wincdows 2) the user home directorys 3) the environment commands
world,.

HS5e4s Ubject Mamino.

Se42le Namincin Context.

The environmenrt resolves a string name to an object id with respgect to
a particular context., The context may be any object in the directory
system, The environaent supports a default context on a per Jjobt
pasise The default Jjoo context is the object associated with the
window where the command which intiatec the job w3s issueda.

Helele Name Eesglutltion,

In resolving 2 names the first name segment is resolved by determining
if the civer context (object) has any children {objects) with the
given name. 1f roty move out to the parent and repeat. For worlds,
include the ccntents of the 'Library if no children match. #When a
mateh is founcy sefect the child of the matching object whose name
matches the second component of the names, and so on,

The 'Body does ncect affect the meaning of a names except when
appear in the last rortion of the nams {after the fast ®,.%),

Analogous tc 'Hocys there is a 'Spec which may appear in full
NAMES » *Spec is never a3 sigple name and has no impact on the
meaning of 2 fulli nape for purposes of object name resolution.

Sefada Yersicn Seiection.

Names a2re resclved with resrcect to the job universe views with the
defaulting mechanisms as descrined in 4.3. Specific versions of an
cbject may be nomed using the version attribute.

Consider the examnlie of 2 package Foo in a korld called Bar. Assume
that our sszssiocn view is based on a universe view called Gamma_1l.
Assume that Gamma_l selects a worlg view for the Bar called B_2.
Assume that £_2 selects version 37 of the package Foo. Then simply
using the name YHar.Foo™ will resolve to version 37 of the foco,

1f we wish to denote version 31 of Fooas we use the name Bar.Foo'V{(31).

It we wish to select the version of the Foo which appeared in the
univaerse view Lld_ReleaseseCarma_~0s we use the name
Bar.Foo'V(Cld_keleases.Gamma_C).,

If we wish to select the version of the Foo which appeared in the B_1
world view of the world Bary we use the name Har.Foco'V{(B_1).

In the case where the parameter to the version attribute is not a
numbery the environment first tries to find an object of type universe
view with the given name in the current object naming context. If
unable toc finc such 3 universe views the environment looks at the
worlad containing the designated object to see if there is a worid view
with the civer simple name, That is why the last example did nceot
reguire using 2ar.8_1 or some other notation,

Delata wildcards.

5+5. Uebuaging Context., T8D.

& AdAa Units
tels Static Frogram #Hepresentationa

An Ada unit is a type of managed object represented by a program unit
stub declaration (rather than an object declaration) in the parent

unilt or directory, Thae environment maintains a complete program
rapresentation which 15 made availabie to all environment facilities
and tooclss. The basic pregram represantaticon is standard Diana.
Additioral information is stered in the Ada unit or as object
attritutes associated with the Ada unit. Section H6.x discusses the
interacticn vetween Jiana anc the viaw mechanism.

Ea2a Unit States,

An Ada unit will ke in one cf the several statessy depending ugon the
phases of compiiation which have occurred. Environment operations
exist Lo promote a unit (and its closure) to higher states, and
similarly tec cemole 2 unit to lower states, Based on user inputy
these environment facilities will automatically determine the proper
closure and cewpilation orderingy log errors and schecdule processing.
The followirg states are supported.

As - Sturces., A unit which has not been made semantically
consistent and cannoti be referenced for sevantic purposes. wHhen first
created {through the editor or batch parser or the copying) units are
in the cogplacent source state.

Da Instalied, The unit is sepantically consistent, and the
environnment will maintain that censistency unless reguested to return
the unit to the source state. A unit is installed with respect to a
particular view and targetl (4.2 and £.3),

cs, Cocuec. Executable code has been generatec for the unit
for a particular target,

ds Etlaborated. For unilts in shared libraries {(6.4)y the unit
has been elabcrated {in the Ada sense) anc a persistent runtime
representatior exists,

Units azy nte noved baetween sources installec and coded in any
combination gesired by the users so long as it is consistent with the
rules of Ada sepzrate compilation ang any constiraints imposed by the
target code menerator (for moving to arnd from the coded state)s The
enpvircnmaent will not ailow a unit to be cemoted from a higher state to
& lower state it that would obsolesce octher unitss unless the request
to do sc by the usar.,

t+3s Compatinility of Ada unitse

A unity Uly which differs from an earlier version of the units UDy
only in upwarc cempatible ways is said to be upward compatible with
respect tc the sarlier version, The set of changes which a2re upward
compatitie is target oependent. For the R1CC00,s the following changes
are upward compatitle,

aes Addition and deletion of entire declarations in package Specss

B Arbitrary changes to private parts designated as "closed®,

Cs Arbitrary changes to bodies which do not include inlined or
macro-exganded progranm units,.

de Limited (TBD) changes to bodies which include inlined or
macro-expanded program units.

In order for the system to properly recocnize that Ul is upward
compatibtie with UDsy Ul must either have been derived from 3 sequence
of incremental changes without demotior tc sources or have heen
constructec Ly a special tocel from the coced UU and the source for Ul.,.

Fach installec Ada unit has a competibility index stored in ite. The

index remains the sane so fong as the unit remains installed and no
incompatibhle changes are mace to the unite Two units with the same
compatlibility incex are saic to be avproximately compatible,

while vetermiring t
relatively inexpens
with respegct to the o
invaolves actuzally axa

hat two units are approximately comnpatible is

ives determining whether Ul is upwara compatible
poroxinmately compatibtte UD is more expensives and
. ,

WY 4

{

tning attributes on the two Diana trees.

Construction of 3 universe view enforces that for =s2ach Ada unit in the
universes each werid view in the universe view selects either no
version of thnat unity, cr 2 version that is approximately compatible
with the one in the world view of the worild containing {rather than
importing) the unite This level of compatibility does not guarantee
cemplete consistencye.

semantic iSSUES.
runtinme 1SsSULS.,

Constructicn of 2 world view enforces aore stringent consistency
requiresents,

Cata Program Flaboration anc Executior,.

There are two fundamental moces of elaboration that the environment
supporisy shared slaboration and unshared efaboration.

Shared elaboraticn involves promoting a world to the elaborated state
{elatorating 31l the units in the worlg in accordance with Ada
e!a?nraticn sexantics) and then sharing that elabtoration among one or
more clients, fnce the user has elaporated the worldy all of the
units are elatoratad and can be called directly from commands. 1In
additiory cother shared worlds which reference the first may be
elaborateds, A shared worldg must have the praowma SHARED_ELABGRATICN in
its contexti clause,

Elaborating a shared world invelves aguiring a Jjob control point which
provides 3l storage for the elaboration and has all of the properties
of any other job {(space and time linitsy scheduling parametersy etcasje

An important example of shared worlds are the environment packages
that are avariable as part of the R100CG. Thess environment packages
have one elaboration that is shared by all users. These packages are
in a specially constructed world, which has the semantics of a shared
worlc ftromrm the users point of views.

Note that shared worlds which will have smultiple concurrent cliesnts
must be structured carefully to operate correctly. In particulars one
must properly address syrchronization a2and storage management issues
recognizing that package state is shared by all clients.

Units from unshared worlds are elaborated as needed. Any time a
cemmand is executedy the environment computes {as much as necessary)
the transitive closure of the units referenced by the ccmmand. Units
from shared worlds are already elaborated and that elaboration is
shared by the command haing exscuteds else the command fails with
elaboraticn error {program error exception). If the closure involves
unshared unitsy they will not be in the elabtorated state and there
#will be no eiabcraticn to share. Insteads the command will =2laborate
it's own copnpy of the unshared units,

Unsharec elatoration basically follows the semantics for Ada main
proceduress treating the cosmand as a2 wmain procedure, A command which

consists of exactly one statewent which is a procedure call to an
unsharec library unit procecure will follcw Ada main unit semantics
exactly. ASs an coptimizatiory the user may include a pragma MAIN in a
jiprary urit procedure, This causes the environment to save the
transitive clesure and elaboration information for the procedure so
that calis are more efficient. Note thkat the environment still
computes a clicecsure and elaboration order for the command (which may
cal! two main unitss for examclels but the computation can be faster
with wain units since the closure information is retained {and
obsolesced when appropriate), There is alse a facility for computinag
that inforwation without actually executing the procedure (loading)a.

