TIITTITITITT
TITTTTITI77Y
T
17
T7
T7
T
17
TT
7
T7
7
17
TT

TITYTTITITT
TTTYTTT777
17
17
17
17
T
17
17
17
17
17
17
17

¥*STAFRT* Job

File

printed:
Jon parameters:
tile parameters:

JESIGH Feg

XX XX
%X XX
XX X X
XX XX
XX XX
XXX
XX
xX
x¥ XX
XA XX
X ¥ XX
XX X X
XX XX
XX XX

Copy?

ERRRRRRY
RERRRRRK

KR 2R
ER g
RR RR
R¥K RR
FERZRERE
RRRRRKRER
RR @R
RE® RR
KRR RR
RR RR
KR KR
ER KR
TITITTTIT77T
TITTITTITTY

17

TT

T7

17

17

T

17

TT

TT

17

17

17

#9576 for £GE
BRICSYSTEN SPECDTERMS . TXT.70,
2S5 —Apr=£5
kepuest creatediZ2b~-Apr=-#% G
1 of 1

Gi29:157

MM MM
MM MM
MMM MMMM
MEMM MMMM
MFE MM MM
MM MM MM
M MM
MM MM
MM MM
MM MM
M¥ MM
MM hel
MM My
MM MM

Date Z29-Apr—&%

crezteds

Spacing:s SINGLE

29=-Apr—£5

1373227

Page

SS5SS55S5S3
$SS5SS55S
SS
SS
SS
5SS
5555553
S5SSSS
535
SS
SS
S3
SS555535S5S
SSSSS5SSS

71791797777
1777777177
77
77
77
17
77
77
77
77
77
77
77
77

limitz261
File format:sASCII

9:37:29 Monitor: //s TOPS
§332:03

FormsINORMAL
Print mode:ASC]

|
|
|
|
|

DRAFT G 4723785
l. Active Agents.
ia.1 Taskse

The aAda Task is the primitive active agent in the envircnment,
Short term scheduling of processor rescurces occurs at the task
levely and supports an implementation of Ada prioritiese.

12> JObSa

A jou is a group of one or more tasks performing some user or
environment operations £ach command that is executed is a separate
job.

From an amplenentation point ot views each job corresponds to a
#100C¢ Job VPIL. #edium term scheduling occurs at the job level and
uses a Jjou priority mechanism which supplements the Ada task
priority mechanism,

Processor time limits and swapping disk storags limits are enforced
at the Jjou lzvel, Resource limits may De sef at job creation and
changed therezfter, Cefzult limits are used if no explicit timits
zre provided,

For both orocessor ang disk {imitsy there is a warning lirmit and an
absofute linit,

When a job exceecs 1he warning limity 2 warning message is sent to
the owning sessicon and to the environment fogs. The job will be
suspencec py the medium tern scheduler. The user may chose to
terminate the jobsy or to examine the susvended Jjob with the
cebuggersy or tu resunme the Jjob after ircreasing resource limits or
somehow freeiny resourcess, Howevery the job may continue to consume
resogurces after it hkas suspendeds in which case it may exceed its
absolute limits.,

when 2 Jjob exceeds apsolute limitsy & message is again sent to the
syster 1og Aand to the cwning sessions Then the job is tasrminated.

Setting the warning limit at the absolute limit ensures that the Jjob
will never he suspanded. Howevers there is no way to gaurantee that
a job will rever be terminate because of resource constraints. This
means that the construction of robust servers must take into account
proper managenant of processor and cisk resources.

143> 5e551Cn.

A user logging onto the environment interacts with a particular
session. A session is the collection ¢f Jjobs (including =2ditor jobs
and command exscution jobs) which serve as the active agents on
vehalf of the user. 4 sessicr includes certain permanent
information {(user profile, etc.). {needs work)

Zs» Manzgec Ubjects.
Z+2e1le Managoved Types,
The procramming environment provides support for a set of types

called ranagec types, These types tbuild upon standard facilities
providec by tre envircnment,y are registered with the environment,

and follow preotocols 2stablished by the environment.

The mest important managed types incluce cirectoriess Ada units,
viewsy filesy userss and various devices, Objects of these types
are manaced onjectss and are the only permanent objects in the
environment,

Zel2e Uatza anc Seaments.

The virtual memory system provides the primitive storage mechaniss
for data on the R10C0G. The seament is the basic unit of storage in
virtual merory. A segwent stcra2s up to 2%%32 pits of data.

Theoreticallysy the system can store an essentially unlimited number
cf seaqments., however, the amount and organization of physical disk
storage constrains the number and size of segments storsd in the
system, For examnlesy the sum of the data in 21! segments cannot
excaeqd the stecrage capacity of the disks in the system (note that
every existing seagment consumes 3 nminimum of one block).

& sagment may be pefrmwananty meaning that it will parsist across
system crash/shutdown. Managed objects are igplemented in terms of
permanant ssqrents, Temporary segments are used for tewmporary files
and 2s heaps for segmented heap access tyrpeses

The data in a3 segment consists of a smalil set of fixed fietds common
to all segments and a {potentiatiy farce) user data area organized
as Lyped Adz catz structures. Access to the user data is achieved
{after following the protoceols discussed below) by constructing an
Ada access value of the appropriate types which provides a typed
handle for manipulating the cata.

£33 inJeCtSo

An object 15 the basic entity in the systeme. 4an object is
represented ir the system as 2 permanent segment, The 1egal values
for the data in the objecty arg the operations which may be applied
to the object are determined by ths type. All objects have a
variety of commecn properties discussed belowy as well as properties
unigue to ot jects of a particular type.

2.4 UGibject ids.

Each managed opject has an object id that can be used to reference
the underlying object.

The ohject id consists of three components —-— the classy the worid
ids mnd an cbject index.

The class is 2 saall integer encoding of the managed type {2.1)+ and
from an imgilementation point of view determines which object manager
is responsible for the object.

The worid id¢ identifies the world containing the object {3.7}s and
from an iaplementation point of view corresponds to the R1G00 VPID,.

The ohject index uniguely icentifies the object within the world.

Each object stores its own ocbject id and the object id of its parent
{2.1).

225 Sbject Aames,

Each object has 3 full name and a simple name. The simple name is
stored in the objact. See 3,6,

2abs Versions.,

tach object hes 2 version number., The system supports rultinle
objacts with the same chject id and same names which are
gistinguished by their versicn number.

when we refer to & "version of an object® we mean one of the several
objects which have the same object ide This usage is somewhat
iTrprecise since the version is an object. In spite of this
imprecision, such uszge generally allows a clearer description.

Given an otject ide 3 particular object with that object id can be
selectec with 3 versior specifications A version specification
either explicitly provicdes 2 version number to select the objecty, or
uses the view mechanisy discussad below {4.1).

Zsle CcCcommon cperationse.

There is & set of operations which are defined on all managed
objectss calied common operations, These include creates deletes
copys 2tce Scme types may have limitec support for particular
operations {i.2.y copy may not work well for objects of type group).
These operztions are specified in detail in the package
Directory.Uperations,

Z2e3s Gpen/Close protocol.,

In addition to the ccmiron operationss wanaged objects support an
open/cliose prcetocol for accessing the typed user data stored in the
underlying secments., '

The ovpen operation takes an otject id and version selsction
information (saction 4) as inputy and re2turns a typed handle which
references the cata in the secment repr2senting the selected objecte.
Synchrerizaticn (2.10) ard access control (2.11) are associated with
the open operation,

Given the hancle returned by the open operations type-specific
operations xa3y be used to manipulate the data in the objects. For
each managsed types there is a small set of packages in the
envircenmrent which define the type-specific operations (see
KSystem.DirD>}).

The close nalf of the onen/close vrotocol releases access to the
gata and occurs when the action is committed or abandoned {2.9).

£eTn Ltormic 2ctinns,

The programning environment supports simple {non-nested) atonmic
actionss An atomic action is a seguence of one or more operatjons
where either 1) ail of the cperations succeed and all of the results
are perrvenentiy recordeds or 2} none of the cperations will have any
effact. The environment guarantees the atcmicity of such actions,
even in the face of system crashes. Atomic actions allow large
composite ogerations to e easily constructed without programming
complex errcr recovery and backout procedures.

in this action paracigmws an agent [Aga task) may otbtain an action
ids which unicuely identifies the action being performeds. All of
the common diractory ogerations and alil open operations on wanaged

objects reguire an action id as a parameter. An agent may perform a
targe numbter of operations {iimiteg by contention for a large but
fixed ponl cof system resources required to implement the action
paradigmr) within one action.

An agent may comirit or 3bandon the 2ction when all operations have
Leen performed.

If an action is commitieds then impediately upon return from the
cail to comswit 3all of the operations performed in that action will
have taken permanent effect. The system no tonger uses the snapshot
mechanisms. Permanence is associated with cormitting each action,
there is no waiting for the next snapshot.

If an action is abandoneds then the envircnment backs out of atlil the
operaticns garformed on hehalf of that actions restoring all
affactec oujects to their original state as if no operations had
BYEF OCCUTTrEei,

An action is automatically abandoned when the agent is no longer
callable (the Ada T'CALLABLE attribute yields false). This prevents
completeds termirated or abrermal tasks frow locking resources
(2,10). Acticons startaed during the elaboration of a package should
pe cemmitied or ahandoned during that elaboration,

Certain envircnmeni operations consist of a larage pumber of smaller
gperationsy ali pertormed as a single large action, The failure of
one of the interumediate operations might leave the environment in an
inconsistent state if thne zaction were to be committed,

In those cases where 3 envircnment operaticn is performed on hehalf
of some actior and the operation fails in 2 mannsr that reguires the
action Lo te apandonedsy the environment marks the action as
uncamrittable.

An uncormmittable action can pe abandoned,y, but can not be committed.
This prevents the client from committing the action and possibly
invalidating system invariants., At the same time, this mechanisn
does not force immediate abandonment of the actiony which would
close all objects opened by the action anc prevent the client from
performing reascnable error processings This facility is used
extensively within the environment and is avaitable to users.

Z2+10Ca Locks anc¢ Synchraonizationa.

¥hen performing overations on an objecty the operation regquests
ready update cr unsynchronized access to the object. In the first
two cases a read or update lock will be obttained on behaif of the
specified action, If a read fock is obtaineds other readers are
alloweds but no updaterss If an update lock is obtained, only
operaticns with the same action id may manipulate the object.
Committing or abandoning the action releases all locks optained by
the action. Thnis is the basic envirconwent synchronization

mechani sm.

pen operations must specify whether the open is for read or for
upgate. If tte object is ogened for updatey the object may be
modifieds Attempting to modify an cbject that is only open for read
will cause the excepticn wWrite_To_Read_Only_Page.

Feleasing locks is associated with the coamit of the action which
obtained the 1oCkS. Ability to modify the objects is revoked
iTmediately. Kead access {using a3 handle previcusiy returned by

“open) is revekacd no later than the next oren for update.

For the comwon operaticnss the requirec locks are part of the
specificaticn ¢f tne operation {(for exzamples copy aquires a read
fock on the source and an update lock on the destination).

An agent operating on an object may specify a maximum time that it
is willine to wait to obtain a lock on the objects If the requested
object is currantly ltockeds the environment wifl queue the new
reguest until the ob ject becomes availaple. If the ptject does not
tecome asvailatle within the specified maxinmum wait times an error
status will e returned and the cperation will fail. If nc wait
time is provideds the standarc systen default wait time {5 saconds)
i5 used,

The third feorm of accesss unsynchronized accessy will obtain no
focks and will never queue. Unsynchronized access is inherently
usafes since clher acents can modify or delete the object being
ACCESSEC.

The standard I0 packaqes use update access to implement input_output
and output modges. The mede input is irplementaed with either
unsynchronizec or read, depencding upon user preference (indicated by
Jjob switches or the ada “fore™ parameter). Using unsynchronized
access anc opening & file for input deoes not prevent other agents
from writing {(or deletinc) the same file.

2«1l Access {ontroci.

The envircnasent enforces access control at the point of aquiring a
lock on an objsct. The three access rights supported are readsy update
and owner. FHesd rights are requireg to cbtain a read lock or
unsynchronized accesss Update rights are are required to obtain an
update locks. Juwner rights are required to change the access writes,

The environment stores an access list with each object for each
access richt, The access lists determine which groups may use the
indicatec mode to access the object.

The system supports a small set of croups {order 2%%5), A group is
a s2t of users. The environwent supports adding and removing users
from grcupse There is 3 aistinguished grcup (ocperator) which has
access to all objectss There is also s distinguished group {public)
to which all users helong.

A sessicn has 25 sessicn state the list of groups representing the
rights for the session. When a sessior is createdy the list is
initialized ftc the set of groups which contain the user who started
the sessiocn. This list may be modifiecd by the user.

3. Oirectory Structure.
3.1l Parant/Chnild relation.

Every objects Uy has a sinale parent objecty Py where P is the only
object which has C as one of its chifdren. The only exception to this
is the gbject which is the root of the directory structure, called
Universes which has the nil object as a parent. Onily two of the
currently suspori=2d manaced types (object classes) may have children,
directories and 4Ad2 units., The parent/child relation forms a tree of
objectssy whick is the entire directory systemy or universes for a
given R10CC.

3s2s Lirectories,

There is a managed type called directorye. Ghjecits of Lthat type are
called cdirectorias, Directories 2are the gain structuring mechanism in
the environment, A directory may have children of any managed type.

There can pe cnly one object with a civen object id for directory
objects (iecsy multiple versicns are not supported for directories).

\

Je3. Ada Units.

There is a managed type called Ada. Objects of that type are called
Ada unitss, 4¢3 units are primarily for renresenting Ada programss and
35 sdch are discussec at length in section 5, Here we are only
concerned with the structural directory properties of Ada units,

Ade library units appear as children of directoriess, Ada library unit
bodies are children of the associated library unit. Ada lihrary unit
podies cuan have children whick are subunits. Thus the parent of the
Vibrary unmit tody is the iitrary unity and the parent of the subunit
is the liprary unit body. This follouws the definitions in the LRM,
Chapgter 110,

3a4s ({hyect Decliarations,

All objects {except attributess see 3.%5) have a declaration in the
directory system., Ffor Ada units {one type of managed object) the
declaration sppesrs as a unit declaration in a directory or as a
subunit stub dacliaration in an Ada unit., For other managed objects,
the declarztion appears as an object ceclarstion in a directory.

3D Attribute Cbjectsa.

Directories and 2da units may have a special kind of child object
calted an attribute ohject,. This is an object whose parent is the
directory cr 2da units but which is not explicitly dectared in the
parente While the normal display of Directories and A4da units will
not show these attribute objectsy 4 full display will include ther.
Attribute objects are ramed using Ada attribute cualification {3.8).

3eba ibject Naress,

fach managec object has @ simple names. Tc form path namess the
simole rames cf chjects are combined in sesguencess with g2ach simple
naming being a child of the preceding simple name. The simple names
in the path name are separatec by a pericc {(".") where the second of
two simple names does not begin with an apostophe Three canonical
path nanes are sunported, the simple Ada name of an objecty ths
gdirectory name of an obtjecty and the full name of an object.

3.G6s1ls Simple Names,

The simcie nane of an object is limited to €4 characters.s A simple
name is either an Ada identifiers, or an apostrophe (') followed by
either an icentifier or the Ada reserved word 3ody.

For Aca library units and subunitsy the simple nam=2 is the
identifier of the unit. If the identifier of the unit is greater
than 64 charactersy the first 64 characters form the ob ject simple
names which is used for all directory raming operations. Higher
level naming facilities may accept the leonger names. If two Ada
units in the same directory are not unigue in the first 64

characlerss creating tne second one will fail {(there are two known
sclutions which woula eliminate this restrictiony Dut it has been
decicec that it is not worth the trouble at this point),

For Ads iibrary unit hbodiess the simple name is "8ody.

An attribute object has as its simple name the identifier which is
the name of 2 user defined attribute, preceded by an apostrophe
{'codey 'ca_stirsy etca)a

3atrale Simple Aca MNames,

fnly Ad3a objects have simple Ada names. The simple Acda name of an
Ada urit is alsays the simple name (3.6.1) except for library unit
bodiesy where the simple Ad3 nare is the same as the directory name
{3.6.3) for the cbjecta.

3ebe3e DLirectory Names.,

The directory name of an cbject is a pzth name for the chject
starting at {tut not ircludincg) Lhe first directory enclosing the
objectes

3eCsha Full Nzmes.

The full nzre of an object is a path name starting with {and
including) the Universe,

3abe5s Naming Exampie.

Consider & simple example where) is a Directory whose parent is
Universe, U is a ftibrary unit in Dy anc Ul is 2 subunit of U. Assume
that each ada unit Invoilved here as a 'Code attribute.

The full narme for U is UniverseesDsUs. The simple namesy simple Ada
naimey ard the directory name are atll U.

The full nare for the body of U is Universe.U.U'80dys The simple
name2 is 'Hcdy. The simple Acda name ancd the directory name are
U'Body.

The full name tor the code for the body of U is
UniversesC.U'Eudy'Coces The simpie name is 'Rodys. The directory
name is U'Body'Code., There is no simple Ada name for cordes

The full nase for Ul is Universe,D.U.Ul, The simple name and simple
Ada name are Ul. The directory name is Ulills

The full name for the code for Ul is Universe.D.U.U1'Code. The
simple name is *'Cone. The directory name is U.Ul'Code.

2ebet:e Name Paspglution,

The system provices facilities for rescolving a string name and
determining the set of object ids denoted by the name. Depending
upon the context and other factorss many nawmes may resolve to a
particular cirject. 3See 5.4,

3+7a wWorlaos.,
Certain distinguished directories are calted Worid Directories, or

simply Worlds. tach worid has a unigue world idy which from an
implementation pcint of view corresponds to the R1000 YPID. Worlds

are the erntities of interast for controlling disk resourcess
recording historys providine Ada library supporty controliing
compilaticn switches and maraging configurationse. The world manages
these fer all of the objscts within ity including nested directories
{that are not worlds) and their contents,

The root of the directory system is a2 wortds egach user home
girectory s a wWworlds and the root directory for each subsystem
{section 99) is & worlue. There is a fixed limit on the number of
worlds in the universe (1024 - Job¥Ps - SystemV¥Ps = approx 750), s0O
their creatior must explicitly managed by the user. The fact that
worldas z2re the basis fcr resource management and configuration
manayement provices additioral incentive for users to carefully
managed creation of worlags.

3¢721s Kkesource #Management,

A1l of the objects in a worluo are on the same disk volumes which must
te specificc {(explicitiy or by default) at the time the World is
createcs, Like 3 job (l.2)» a worid has warning and absolute disk
rescurce limitss, Exceeding ttose limits causes a responsible job
{that wes consuming space in the world} tc te terminated. Several
Joos may be terminatecd before the "renl” culnrit is terminatedy, since
any Jjob aliocating space in the world will be terminated when only one
might Le a2 "run away" Jjob.

3272 Histﬂry.

The history mechanisn is closely related to version control
facilities which must ne designed and specified hefore much can be
s3id about rtistorya.

34743, Libraries.

In order to dnmplement the flat name snace of Ada units required by
the Ada litrory wechanisme for sach worlds We there is a special
subdirectorys #w'Librarys which contains an entry {object of class
Aliasy see 4.&,) for every £da unit in the world and every Ada unit
importec into the worla. This library mechanism is discussed below
in the cisucssion of views and in the discussion of Ada naming.

AT 04 Switches.

The woria cont2ins 2 switch ochbject which controls compilations,
history arc certain directory operatiors which consult the switches
to control prceccessinga. {ne of the most iwportant functions
controtled is which set of taraet tools (code generatory etc.) are
1nvoked in cormpiling Ada unitse There may be several different
versions of the switches, which appear in {and apply to) different
views of tne world {(4.3).

The sswitches are related to semantic consistency of Ada units in
that atl units in the world view must bte processed by compatible
switches, Cheanging the switches in an incompatible way will
cbsolesce compited units,

327e5 Conficguraticn Management,

The role of worlds in configuration management is discusses in
section 4.

4. Yiewse

49l Views and (nnficuraticn Managment,

The presence of multipie objects with the same object id {(muitiple
versions of an otject) requires a mechanism for selecting consistent
sets of objects to fecrmw a configuration or Yyiew'", Constructings
manipulating and maintazining these consistent views is often referred
to as conficuration management.,

’ There are two kinds ¢f yiews in the systems universe views and world
] universe viewss, A4 universe view defines a consistent set of world

’ viawse £ wortao view defines a consistent set of objects within a

’ WOr 1

4.2, Universe Viows.

There is a managed type Universe Views A universe view is
essanti1ally a map whose domain is worla ids and whose range is world
viewss Thus 2 universe view selects a particular view of all the
worlds in the universe,

The basic ogperations on universe views are to add world views to the
universe views to regove world views from the universe views and to
guery given a particuliar world id which world view is a member of
the UNIVETSE Vicwva.

The worilc¢ views which make up a universe view must be consistent.
The primary consistency reguirerment is that for each Ada unit
fmported {(4.4) by world views in the universe views the univarse
view include a worid view which exports a version of the Ada unit
which is upward compatible with all of the imported versions. The
definition of upward compatibitity of Ada units is described in
CeXXa

The environment mRintains a single machine-wide default universe
View, For each worlds one world view may be ssilected to be in the
defaull universe viewe.

|

|

|

|

|

|

|

|

|

|

|

|

|

| tach session has a default universe views Fach job has a default

’ universe views, Uniess otherwise specifieds the job universe view is
| inheritec fronm the session defaull universe vicu.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Any operation w#hich doss not specify a particular version when using
an object ic¢ or object namesy will use the job view to select the
appropriate worlc views and through the world views select the
appropriate versions of objects.,

493 Worlc viaws,

There is a wmanaged type worid views The worid view is essentially a
map from ot ject ids to objects,

Xecali that an object id consists of 4 classs a world id and an
object incdex (3.1}s The2 world view has as its domain all the object
ids whose werild id is the world containing the world view. Stated
ancther wavy the world view has as its dowain the object indices for
objects in the erclosirng world,

Recail also that there may be saveral cobjects with the same object
id (i.eas several versions of an object)s, The range of the world
view map is one of the objects whose object ic matches the dowmain
elements or the ril ghject.

Thus the world view selacts at most one object for every object id

in the given worid. This provides a consistent "view” of the world.
Operating sithin this "vieuw" frees one from having to explicitly
specify versicn selection infcrmation when refarencing objectsa

The environment maintains structural consistency for the objects in
the wor t¢ view. Structural consistency means that no object in the
worlc can L2 in the world view {i.2.9y 2ppear in the rangs of the
object map) uriess its parent is also in the worid view {the parent
object id wmaps tc a non-nil range value), Note that the the
directory object which is the root of the wortd is in every world
view for thne world and is special in that its parent object id is
not in the same worlc and therefore is outside the domain of the
AP

The environment waintains serantic consistency of all instatled {see
©alde) ACa units in 2 world view. In terms of LDianas the basic
invariant is that for any twec units with object ids A and B in a
world viewas if A has semantic attributes which reference a unit with
cbgject io Ty then any references from & to C reference the same
objects Furthermores the referenced ohbject with id € must appear in
the worild view, This ltast point implies that the worid view mwust
include units imported from other worlds (see 4.4).

211 operations on objects in a world are with respect to a world
viaws, Tirectory operations (crasatey deletes etce) update the world
view appropriately to maintain structural consistencys and such
operations fail if they violate structura! consistency requirements,
Simitaclys ciractory onarations znd comrpilation operations update
the world view appropriately to maintain semantic consistencys and
such ogerations will fail if they violate semantic consistency
regquireaentis,

world views are assocciated with 5 particular world and cannot appear
at arbitrary locations in the dircctory systema Ail of the
different world views which describe views of a given woridy ks
appear in the special directory W'Views., tach worid view has as its
parent 3 universe views where the universe views has as its parant
the directory #'Views., The universe view always includes the child
world view as 3 gsember of the universe view. This pair of views
{the universe view and the world view) are closely related and are
Kept consistant by the systemos This structure reflects the fact
that it actually takes a2 world view anc a universe view to describe
a consistent view of a wortd. {This is descrivoed more clearly
pelows her= we are trying to specify the structural aspects of the
directory system with respect to world views).

Because of the special nature and contents of the 'View directory,
there sre certain restrictions on operations there. The common
create canncl be usecd to create objects irn the "Wiew direactory.

ipen anc copy operations cannot wmodify the contents of the

*Yizw directory {(althouah universe views in the 'View directory may
appears 3$ the source of a coryls. Delete and Destroy operate in the
YYiew directorys but treat universe/world views as a pair {ie2ay
destroying ones destroys the nther alseo).

The wWorlo package provides the basic operations for creating a world
with an initial world views freezing world viewss Spawning naw views
of a worldy ard importing intn a world views Thesz operations

properly construct and maintain the contents of the 'View directory.

404, Creating wWorilds

The steps invelved in creating 2 new world are to create the root

directory {lon the indicated volumels create the 'Library and 'Viewus
subdirectorizsy create the initial world view {and its parent
universe viewl)ls and then update the Jjob universe view {(4.2) to
include the newly created world.

4.5, Freezing wkorlcd Viewss,

4 world view may he frozens in which case none of the objects in the
world which appear in the range of the object map can be modified
{opened for updates destroyeds etca.).

A worlo view must be fraozen before it can he imported into other
world views (4.6)s This requirement eliminates the need to record
cross werld dependernciess and implies that obsolescence processing
{6exx) is always restricted to a singls worlde

Q4.6 Aliases ang Importing World Viewss.

The cdefinitior of semarntic consistency introduced above raises the
issue of references to ohjects in other uworlds.

Here we are concerned with inmporting objects from other worlds so
that compiles references can pe constructed in an efficient manner
while supporting consistency requirements. This is implemented with
a special class of objecty callec an alias. The value c¢f an alias
is the cobject id {and full name) of an object in another worid. The
contents of the alizas is accelarated into the world view so that
references to the alias are efficientiy mapped to the aliased
object.

Note that ar atlias will mag 3 local object id {(same world as that
containing the worlc view) to an object id in some other world;
howevers an alias does not designate a specific object {(since there
may be several otbjects with the same ob ject id).

Cereferencing an 2lias to get to an object involves a second step
using A universe view to intergcret this nen-local object id. Fully
resolvirng an aiias reqguires extracting from the job universe view
the worlad view correspending to the world id in the object id that
is5 the value of the alias, This will provide 2 world view which
must either map the object id to an objecty or map the object id to
nite In either cases w2 have completed resolution of the alias,

Fer compilatiorn 2nd other operations that require strict semantic
consistencys the Jjob universe view is set to the universe view
associated with the world view of interest. Thus semantic
consistenty 1s cefinerd with respect to the pair of associated views
{the universe view and its child worid view).

tEntries are made intc the universe view associated with a world view
by importing world views for other worids. The import operation
first adces the werlda view to th2 universe views Thens for each Ada
unit in the werlc described by the inpcrited world views the import
operation creates a alias in the 'Library directory for the
importing worid {if the alias did not already existd). These aliases
appear in ths worid views as described above.

It is impossible to construct atiases which reference objects in 3
world which has not been imported.

4.7 Spawninge world views.

4o {)E"Etiﬂq Kor g vieﬂgn
44,9, Destroving World Viewse

Gestroying a2 world view destroys the worf{d view object itselfs and
the asscciatec universe viewsy bhut destroys none of the objects in
the world viawe Destroving a world view may cause objects in the
warlc tc no lcocnger Le reachable from any world views. The expunge
operaticn {(which may be applied to individual objectss or to entire
worlds) destrcoys 211 objects which are not reachable from an
gxisting world view.

As menticned earlier {(4.2.6)s Lthe system relies upon the fact that
orly frcozen werld views ©an pe importeo tc minimize the amount of
dependency c¢ata re2corded and to limit copsolescence processing.
sasicallys we nave shifited cross world obsolescence processing from
the demction of individusl units to the destruction of frozen worlid
ViewsSa

when a frozen world view is destroyeds the system must check to
determine whether that world view has heen imported by any other world
Views., If it hass the destroy failss procucing a list ¢cf dependent
worlds. The system crovides an ocperation that destroys a world view
ang the closure of its dependents.,

4410, Expunging Worlds.

S5« HNaminuas Scope Rules and Visibilitye.
591- Agsa Uf‘zitstn

Ada tibrary units mnay apnear in directorigese Within Ada units the
environment folliows Ada semantics. Library units and fibrary unit
bogies are clcocsed scopes and may only reference external units that
are imported via «ITH clausess Subunits have visibility to their
parents as well a2s units that are imported via WITH clauses.

& simple name in 2 WITE clause of an Aca unit is resolved by looking
for the simpls name in the 'Library directory of the enclosing world.
Note that the use of the 'Library directory enforces that all Ada
units in a4 wortdy including imported unitsy have unigue simple namesa
Creating 2da units makes an entry in the 'Librarys and will fail if
the name collides with another entry in the 'Library. Similartys the
tmport operation discussed above {4.2.10) will make entries in the
*Library for every imported unrit, If the name of an imported unit
collides with an axisting entry in the *Librarys the system chooses a
reasonable nire 2and constructs a {renaring) alias in the YLibrary and
notifies the user.

The wITF clauses on 3 unit can only dernote Ada units. This implies
that there are no conpiled references to manzged objects cother than
Ada units,

503 Cemrand Context,

Commands are civen from a ccmmand wWwindow that is associated with a
window on same otiect in the directory system. Commands are compiied
using the 'Library mechanisw to provide a contexty with an implicit
WITH on every unit available in the 'Library. The 'Library for the
command is slightiy cifferent from that of a normatl Ada units in that
the session includes a search path which cesignates several worldse.

The units in the 'Litrary directories of the worlds named in the
search path sre combined intoc & single logical *Librarys where units
in earlier worids in %the path hide units with the same name from later
worldse The cefasult search path is 1) the wortd containing the object
in the windows 2) the user home directorys 3) the envircnment commands
world,

Sels Lbject Maming.,
S5e4s1e Hamincin Context,

The environment resolves a string name to an object id with respect to
a4 particutar context., The context may be any object in the directory
system. The environrent supports a default context on a per Jjob
basiss. The default job context is the object associated with the
window where the command which intisted the job was issued.

Dattelw Name Fescglution.

In resolving a name, the first name seament is resclved by determining
if the civen context {object) has any children {objects) with the
given names I1f rots move cut to the pzrent and repeat. For worldss
include the coentents of the "Library if no children match. #®hen 3
match is founcy select thne child of the matching obJject whose name
matches the sSecond component of the names and so ONa

The 'Zocy does ncot affact the meaning of 2 namesy except when
appear in the 1ast portion of the name {after the last ¥,."),

Analoguus to "Bodyy therc is a '"Spec which may appear in full
Namess. *Spec is never a simple name ard has no impact on the
meaning of 2 full nawe for purposes of object name resolution.

Hedslds Version Selecticne

Names are resolved with respect to the job universs views Wwith the
defaulting mechanisms 3s described ip 4.3, Specific versions of an
vbject may bLe nama2d usine the version atiribute,

Consider the example of @ packange Foo in a World called Bar. Assume
that our session view is based on a universe view called Gamma_1l,.
Assume that Lamma_l selects a world view for the 3ar calied B8_2.
Assume that B_2 selects version 27 of the package Foo. Then simply
using the name "Bar.boc” will resolve to version 37 of the Foo.

If we wish to denote version 31 of Foos we use the nanme Bar.Foco'y¥(31).,

If we wish tov select the versicn of the Foo which appeared in the
universe view 21C_Releases,Canrma_0yy we use the name
Sar.Foo'Wi{lld_Releases.Gamma_C).

If we wish to setect the version of the Foo which appeared in the B_1
world view of the world %ars we use the name Rar.Foo'V{(B_1).

In the case where the parameter to the version attribute is not a
numbers the znvironment first tries to find an object of type universe
view with the given name in the current object naming context. if
unable te findg such 3 universe views the environment looks at the
world centaining the desicnatecd object to see if there is a world view
with the civen simple name. That is why the last exasple did not
require using 82r.3_1 or sowme other notation.

H5ebstba viildcards.

5259 Debuagirg Context. TED

£ n Ada Units
Hele Static Frogram Papresentation.

An Ada unit is a type of managed object represented by a program unit
stub cdecliaration {rather than an object declaration) in the parent
unit or directory. The environment maintains 2 complete progran
representationr which is made availtable to atl environment facilities
and tools. The basic crogram representation is standard Diana.
Additional information is stored in the Acda unit or as object
alttritutes associated with the Ada unit,. Secticn Hb.x discusses the
interaction between Liana and the view mechanism.

Ewle Urit Stzates,

An Ada unit will be in one c¢cf the sevarai statess depending upon the
phases ¢t compiltation which have occurred. Environment operations
exist to promnte 2 unit lanc its closure) to higher statess and
similarly to cewmote 2 unit to lower states. Based on user input,
these environment facilities will automatically determine the proper
closure anc compilation orderings log errors and schecule processing.
The followiny states are sugpcerted,

3e Source. £ unit which has not peen made semantically
consistent and¢ cannot be referenced for semantic purposes. wWhen first
created (throuuh the =2gitor or batch parser or the copying) units are
in the complacent source state,

D Installede The unit is semantically consistents and the
envirennment will maintsin that consistency unless reaguested to return
the unit to the snurce state. 4 unit is instatled with respect to a
particular view and target (4.2 and b.3).

Cs CLodad. Executable code has been generated for the unit
for a particular taraget.,

ie ©tlakcriateds For units in shared libraries (6.4)y the unit
has been elavoratea (in the Ada sense) and a persistent runtime
representatior exists.

Units wmay be moved between sourcey installed and coded in any
combination desired by the users so lonyg as it is consistent with the
rules of Acda sepzrate compilation an¢ any constraints imposed by the
target code yenerator {for moving to and from the coded state). The
environnant will not allow a unit to be demoted from a higher state to
a lower state if tnat would obsolesce other unitss unless the request
to do0 sG¢ by the user,

He3as Compatibility of Ada units.

A units Uls which differs from an earlier version of the unity UOy
only in upwarc compatible ways is said to be upward compatible with
respect tn the ezarlier version, The set of changes which are upward
compatitle is taraet dependent. For tke RP100Cs the following changes
Are upwWard cowmpalinle.

as. aAcciliorn and deletion of entire declarations in package Specs.
De Arpitrary changes to private parts designated as "closed™,
Ces Afbiblrary changes te bodies which do not include inltined or

macro-expanded proarar units.
de Limited (THEDR) chances to bodies which include inlined or
macre—axgpanded orogram units.

In order for the system tc properly recognize that Ul is upward ,
compatitle with U0s Ul must either have been derived from & seguence
of incremental changes without demotior Lo sources or have been
constructed by a spectial toc! from the coded UQ and the source for Ul.

tach instellec 2Ada unit has a3 compatibility index stcred in it. The
index remains the same so long as the unit remains instalied and no
incompatible changes sre made to the unit. Two units with the same
compatibility incex are saic to be approximately compatible.

While cetersining that two units are approximately conmpatible is
relatively inexpensive, determining whether Ul is upward compatible
with respect to the approximately compatible UD is more e2xpensives and
involves actuzclly examrining attributes on the two Diana trees,

Construction c¢f & universe view enforces that for each Ada unit in the
universe, e3ch werld view in the universe view selects either no
version of that unity or a3 version that is approximately compatible
with the one in th2 worlg view ot the world containing {rather than
irporting) the unit. This level of compatibility does not guarantee
cemplete consistency.

semantic 1Ss5uUEsS.
runtime jssues.

Constructior of & world view enforces pore strincent consistency
reguirenents.,

Hoba Programs Elaboration and Ffxeculior.

There are two fundamental moedes of ejaboration that the environment
supportss sharad eiatoratiorn and unshared elaboration.

Shared elaboration involves promoting a world to the elaborated state
{elaborating ail the urnits in the worldé in accordance with Ads
elzboration sepantics) and then sharinc that elaboration among one or
more clients, nce the user has ataborated the worlidsy ail of the
units are elatorated and can be called directly from commands. In
additionrs other shared worids which reference the first may be
elaborsteds £ shnared world must have the pragma SHARED_ELABORATICN in
its context clause,

Elaborating a shareg world involves aquiring a job control point which
provides all storage for the elatoration and has all of the properties
of any cther jobt {space and time limitss scheduling parameterss etca.)e.

An important example of shared worids are the environment packages
that z2re available &s part of the RICCC. These environment packages
have one ei3aiucration that is shared by all user s. These packages are
in 3 specially constructed worldsy which has the semantics of a shared
worla from the users point of view.

Notes thet shared worlds which will have multiple concurrant clients
must be structurcd carefully to cperate correctlye. In particulars cone
must preperily address synchronization and storage management issues
recognizing that package state is shared by alil clients,

Units from unshared worlcs are elaboratec as neecdeds. Any time 3
commanc is executsdy Lthe environment computes (3s much as necessary)

the transitive ciosure of the units refarenced by the command. Units
from shared worlcs are already elaborated and that elaboration is
shared by the coamand being executeds else the command fails with
elaboration error (program error oxception). If the closure involves
unsharec unitss they will nect be in the elaborzted state and there
will be no eieporation to share. Instead, the command will 2laborate
it's own copy ot the unshared units.

Unsharec slzporation hasically follows the semantics for Ada main
proceduresy Lreating the command as a g3in grocedure. A command which
consists of exactly cne statenent which is a procedure call to an
unshared litrary unit procedure will foliow Ada main unit semantics
exactly. As an optimizations the user may include a pragma MAIN in a
library unit procedure. This causes the environment to save the
transitive closure 2and elaboration information for the procedure so
that calls are more efficient. HNote that the environment still
computes & closure and elaboration order for the command (which may
cal! twc main unitss for examplel)y but the computation can be faster
with main units since the closure information is retained {and
obsolesced when appropriatel). There is slso a facility for computing
that inforsation without actually executinog the procedurs {loading).

