ZERL e m S

Dansk Data Elektronik A/S

SUPERMAX
Programmer’s Guide
System V Release 3.1

Version 2.0

©Copyright 1993 by
Dansk Data Elektronik A/S and AT&T

©1986 AT&T, USA L4
©1989 Dansk Data Elektronlk A/S, Denmark
Version 1.0, First Edition, published December 1989

©1991 Dansk Data Elektronlk A/S, Denmark
Version 2.0, revised and published January 1991

©1993 Dansk Data Elektronlk A/S, Denmark
Verslion 2.0, Chapter 18 added and published March 1993

All Rights Reserved
Printed in Denmark

Stock no.: 94300441

NOTICE

The information in this document is subject to change without notice.
AT&T or Dansk Data Elektronik A/S, Denmark assumes no responsi**-
ity for any errors that may appear in this document.

UNIX is a registered trademark of AT&T in the USA and other coun-
tries.

SUPERMAX is a registered trademark of Dansk Data Elektronik A/S,
Denmark. ,

PDP is a trademark of Digital Equipment.
Teletype is a registered trademark of AT&T.
VT100 is a trademark of Digital Equipment.

~

Table of Contents

PART 1: PROGRAMMING

Chapter 1: Programming in a UNIX System Environ-
ment: An Overview

INErOQUCLION.......coveeeeeieteeiitieeeeeee e eeeeceesseeeeneessaesnnsensessannren

UNIX System Tools and Where You Can Read
About Them

...

......................................

Chapter 2: Programming Basics
Introduction

..

The Interface Between a Programming Language
and the UNIX System

Analysis/Debugging.............c.coveuiireenencreeiesereesesseesenenerens
Program Organizing Utilities

..

..

TABLE OF CONTENTS

Table of Contents

Page

Chapter 3: Application Programming
INtroduction...........cveierineinennnneieneneseressee s s seeseenesanaesees 3-1
Application Programmingcc.ccoevvverereenrrvrecsnsrenrrensareenes 3-3
Language Selectionccccovvererenrrnnereeneeseneerevesssrinensernes 3-17
Advanced Programming ToolS............cccccecvrverivneerinrenrecsirerens 3-17
Programming Support Tools............ccceceverveevcrenrerrecnrnesnnnens 3-27
Project Control Tools..............ccccocrueveeenrivrieeenannenrcseerensennns 3-39
liber, A Library System..........cccccoovrrriineenniecereeerearnaens 3-43

PART 2: SUPPORT TOOLS

Chapter 4: awk
INErodUCtIOn......couevvcmecere e e 4-1
Basic AWK ..ot ars s aereasans 4- 3
Patterns...........ccccoirnirniecrrnrirrnene e et s sressasenseorones 4-15
ACHIONB....c.o ottt crte et se e sne e s et sre st s sve st esresaenasnne 4-23
OQUEPUL ... rereaecrsnesressesenssserssnerssasssssnssssssens 4-43
INPUL.....orr e e e 4-49
Using awk with Other Commands and the Shell............... 4-57
Example Applicationscccerenvenrevesernrsresereeseassessens 4-61
AWK SUMMATY ...ttt rsesestessasseeresenes 4-67

Chapter 5: lex

| An Overview of lex Programming............cccccoeeivereeerernenrens 5-1
Writing lex Programas...............ccccoeeveeeverreienenrsnessssesacsesesssenes 5-3
Running lex under the UNIX System..........c..cccoevvvverueenee. 5-21

|
|
i PROGRAMMER'S GUIDE

v

—

Table of Contents
Page
Chapter 6: yacc
INtroduction............oo it sesesnsaseaes 6-1
Basic Specifications.............ccccvevvvereeevreenenrinr s 6-5
Parser Operation.................ccovvvevreerrerivneernnisseseessesesssssens 6-15
Ambiguity and Conflicts...............ccccoeemrereeerererercreerrencanne 6-21
Precedence...........ccceveoreiieeinteeie e cresssoscssnsoves 6-27
Error Handling.........c.cccovurevninnrncnennnenensnnreessreseseeeseesnssnenes 6-31
The yacc Environmentcoeovieeececreerceecnenes 6—35
Hints for Preparing Specifications............cccccevvrveverervncrennne. 6-37
Advanced TOoPiCs.........cccouureirernerennnererererereneneesesessessessesesens 6—-43
Examples..........coioereeecee e ereenese et e 6-51
Chapter 7: File and Record Locking
INtroduction ... 7-1
Terminologyccoevienenniinierieeseee et 7-3
File Protection..........c.cccccoeeviiineeeieece e ecesnenenessessenes 7- 5
Selecting Advisory or Mandatory Locking............................ 7-18
Chapter 8: Interprocess Communication
Introduction..........cvveveecieinre et 8-1
MeBBAZES.........couiiecceeceirter e e et s beenene 8-3
Getting Message QUEUES..............ccecvvererreeremeeneverenescresansens 8- 8
Controlling Message QUeUes.................c.cvvmreerrrerensreseassenes 8-17
Operations for MeSSagescceeeveeeeeerereerecrsssnenseenenne 8—-24
SemAPROTES.ccooerererertre et cses e eeceteesnesessesssansenns 8-39
Shared MemOrycocoemmrrienrennirersensmnessssessssssssseesoes 8-17
Operations for Shared Memorycccccocvvvvrnererveveeerennnnne. 8-103

TABLE OF CONTENTS

Table of Contents

Page
Chapter 9: curses/terminfo

INtroduction..........coeceeecrnernenicrencrnniceerenn et s caes 9-1
OVBIVIBWoceveerireeeeer e erereseesessesesssssesssssnsaseasssasasansneenesns 9- 3
Working with curses Routines..........cccccovevercccencnniiinennns 9-9
Getting Simple Output and Input........ccoccvviienennernerenennens 9-20
Controlling Output and Inputcccccrvrvnivvvnernncseenens 9-41
Building Windows and Padscccccvvivenirnnennninnennens 9-53
NEW WIDAOWEoooennoeeeeeseesvomessesesssssesensssessssssssssssssnns 9-59
Using Advanced curses Featurescocovvvvvrcnennenne 9-63
Working with terminfo Routines............cccevvvinnvvniccranncnns 9-69
Working with the terminfo Database.............ccoevurennncee. 9-1717
curses Program Examplescccccociinnmnnnnniniinsennennn 9-91

Chapter 10: The Common Object File Format (COFF)

INtroduction..........ccovvirenniiiinneiienee e carseeesseat e sasansaes 10-1
Definitions and Conventions..............ccoevenininricrcsnncsnsennns 10~ 3
Optional Header Informationccccocnivnrnnrninnniscnnennas 10- 17
Section Headers............ccocevvrreeeeeceenennecnnecensssisesssissansssssncsnes 10-10
SECLIOMBoceeereeeecerreeerereecreersrrnseronesaneneeeecreassscsesessessssssmares 10-13
Relocation Information..........c.coceereerivrerneisnenrresscssissnsessans 10-13
Line NUmDbers.........ccccoeveeiveniiveeneenrinenssneseesenesscsssisssssssnnns 10-16
Symbol Table..........ccovviuinniineiiinniiieieiescsnn e 10-18
Storage CIasses............ceceervenuiinrircnseinincsessnsnsessssnssesssonens 10-26
TYPE ENLIY ...t cccnecsecnccseseesassssssasnsesasnss 10-32
Auxillary Table Entries............cccoeevincneninirinnecinsnncsnannns 10-38
String Table........c.oovccvceicrincicrcn s 10-47 u

PROGRAMMER'S GUIDE

™

—

Table of Contents
Page
Chapter 11: The Link Editor
The Link Editorccoeerriomeeniecereieeeececrseeeneeevenssnenns n-1
Link Editor Command Language..............cccccecevmmreecerrensrenans 11- 5
Notes and Special Considerations...............coecevevrrevvrennnn... 1-25
Syntax Diagram for Input Directives.........c.ccccevevrerrereerrennns 1n-37
Chapter 12: make
INErOQUCLION ..ottt eeenesereseesneens 12-1
BagiC FEaturesccoovuvunveeiecececnecsisneceneesereesessessesesseens 12- 2
Description Files and Substitutions................cccocoovmnveeeen.... 12-9
Recursive Makefiles.....................cc.ooovuemeeeooereerereresereernnnn 12-15
Source Code Control System Filenames: the Tilde.............. 12-21
Command Usage..........c.ccommrrreeeieriereencreeeeeeneeeer s esreesrenons 12-27
Suggestions and Warnings................coccooecvoeeevereevevnenrennnn 12-31
Internal Rules.............ccooovriirceteee e esesrsesons 12-33
Chapter 13: Source Code Control System (SCCS)
INErOAUCEIONcovrcerrreerecetcteceecs e eeeee e rseenessers e oes 13-1
SCCS For Beginners.............c....ocoevveecmereenrcrseessoseesesssssssons 13- 3
Delta Numbering................oooouioeieiuecemeeeeeeee oo 13- 9
SCCS Command Conventions...............cceoevevreeersrersesrnnnn 13-13
SCCS Commands............c.cuoueeeeeeeeeceeeeeeeeeeeseseesesessseeeenns 13-15
BCCS FileB ...ttt seeeseecseesesssssssssssssssssnns 13-45
TABLE OF CONTENTS

Table of Contents

Page
Chapter 14: SDB/DBX — The Symbolic Debugger
Preface.........cco oottt sasasenns 4-1
sdb
Introduction to 8dbc.cccvevenncreireneienersenre e 4-3
USING 8dD...........oeer s cesersesessessasossssesens 1¥-5
Source File Display and Manipulation................ccoeunen... 14-10
A Controlled Environment for Program Testing................. 14-12
Machine Language Debugging...............cccocovvremrcrvereervennnn. 14-16
Other Commands.............c.oucvveerericnreererireienescaecsssesesssssens 14-17
dbx
Debugging Your Code with dbx...........cc..cccoeveceerrenerrennnne 14-19
Introduction to dbX............comrrieeeeneereeerccee e 14-23
Running DBX ...t e sertsveeeesessesseeesene 14-27
Using DBX Commands................ccooevuimerniiiinnsesinesseseseseneces 14-3
Working with the DBX Monitor............ccccoveererererreeencrenenn. 14-39
Controlling DBX.........ccccooourveireeeeeeecrennensseeneeseseessessesesees 14-45
Examining Source Programs with DBXc.cccocvvvrernnenen. 14-67 u
Controlling Your Program with DBXccccecerveuvvrvinnnne 14-77
Setting Breakpoints with DBX.........cc.ccccecereereenverrnvernrennens 14 -87
Examining Program State with DBX...............c.ccecevovereun.... 14-99
Debugging at the Machine Level with DBX......................... 14 -109
DBX Debugger Command Summary..............cccoevevrrerruennnee. 14-119
DBX Sample PLOGram...........ccooororreeeerveooeeressesessssessssssssssesns 14-127

PROGRAMMER'S GUIDE

—

Table of Contents
Page
Chapter 16: lint
©INEPOAUCEION ...t eaes 16-1
UBBEEceiirinereieercerentnsestsreenie et s sssesssrsssessassssssansssssanasonss 15- 3
lint Message TYPes...........coccevueirenereenvenrerenesnisesesssesssssesssans 15-5
Chapter 16: C Language
INEroduction...........eceieicreeeeicccrecr s enessessenebessessasenss 16-1
Lexical Conventions..........c.ccccceveeeninenirreveveceneereceercserieresennenes 16— 3
Storage Class and TYpe..........ccccevrrerrnreverreesrrrrenenreseiveresssesens 16-9
Operator Conversions................coeecuevereureeeeeneneevscserescssesennes 16-13
Expressions and Operatorscccoeeveueevervrereercecereninenes 16-17
Declarations..............ccveenneninecenesneeveresensesssesenssesessesssssens 16-31
Statements...........coeviveeinrereine e aees 16-49
External Definitions...........cccccceeeeemreereeneeererersneencneressnissens 16-57
ScoPe RUIES........cooeneercrrereire e e sssensresesesesossssnessens 16-61
Compiler Control Lines...........c.ccoooverurrerereecrsrererercserenssensennns 16—-65
Types Revisitedcccouivienrnenccrrereneeee s vensesesnans 16-T1
Constant EXpPressions................cc.ccoerveerversennersesesesesesssseeseses 16-177
Portability Considerationsccecoevevervvcveeeecreenacnens 16-79
Syntax SUMMATY........ccocovmieriirce et e 16-81
Chapter 17: Improving Program Performance
Introduction...........ccocoevveverererenereececcnen reneererressenssensssnenones 17-1
OPtimization...........c.coveevenrveeeiicereeie e ceresescessvene st seeensane 17- 3
OVEIVIBW ... ceercrcencrintecinissns ettt e s s e 17- 3
Optimization Optionsc.cc.oeveeeeereeeeeveencnse e eeeseenenas 17~ 17

Improving Global Optimization

TABLE OF CONTENTS vil

Table of Contents
W
Page
Improving Other Optimization............c.ccccccevvnrcinnervevnenane 17-21
Limiting the Size of Global Pointer Data............................. 17-23
Chapter 18: Native Language Support
INtroduction...........cconeueneerineicnnrennnenenrenniesstee e seeesesssens 18-1
The NLS Databasec.coourvemerennreresereensenserneeressessrennns 8-1 ,
Configuration Data...............ccoeeeveerveenivimnecrnrerneseniessoresnns 18-1 u
Collating Sequence Tables..............cccccocerrvvrererrnrcrrrrenennne 18- 2
Character Classification Tables.............c.cccoevrerrrreeveerrureenees 18- 3
Shift Tables........c.ccereeeereereireecriceereeersrecesrnereressesserseseesens 18- 3
Language Informationc.cccovevenreiennevenincneereneneennne 18- 3
Program Localisation.............ccccvereeeneniernnsenieneenseesssssnensns 18- 5
The Program Locale.............ccccconmicivnninininrnnnicncecnreneinses 18- 5
The Announcement Mechanismc.ccccevvvrerncverenn 18- 6
Announcement Categories.............ccccoeeervrervercrvreesrersrerennns 18- 8
Setting the Program Localecccoueveeiererievecnrcrceennee 18- 9
Setting a Specific Category to the
Implementation-defined Default............cccceovvrvurvervneereenns 18-10
Setting all Categories to the u
Implementation-defined Defaultccccovrverervenrcrennne 18-10
Message Catalogues............cceueeveeenecvneieeenencnssneceneeeesssseneans 18-13
INtroductioncvceeniiiceeee e 18-13
Creating a Message Catalogue............cccecceceuerenerrersecrennnn. 18-13
Message Text Source Filesccvevevevveveernirererenne. 18-14
GENCAL ...ttt et et saereenes 18-16
Accessing a Message Catalogue.................cocoeecrieeevecrinnenns 18-17
CBLERLS ...ttt ter e ear s ensaes 18-17 u i

vill

PROGRAMMER'S GUIDE

_

m Table of Contents
Page
Search and Naming Conventions...........cccccovvevmerenreeveeenis 18-19
C Program Localec.cccoueeecivenurevenenrnneensnesnsensncesassesassssens 18-21
Coded Character Setocoueeeriveeecrereisenerenssasessessaes 18-21
CUltural DAta..........coovueemieeiniiirceiecreesreesseessaseensersssssessssnses 18-27
ﬂ Additional References................c..coeevvenvevemrereresrenesseessesacssaens 18-28
GLOBBAKYc.ooctrereeerrenerrenterrerrieeseeesssssessesseseessssssssessessssasssas G-1
Index to ULIlItIes.............oeeiooeeirierereeececreneeeseessssssssnnees I-1

LIST OF FIGURES Ix

List of Figures

Figure 2- 1.
Figure 2—- 2:
Figure 2~ 3:
Figure 2~ 4:
Figure 2— 5:

Figure 2— 6:
Figure 2—- T:
Figure 2~ 8:
Figure 2— 9:

Figure 2-10:

Figure 2-11:

Figure 2-12:
Figure 2—-13:
Figure 2—14:

Figure 2—15:
Figure 2-—-16:
Figure 2-17:
Figure 2-18:

Figure 2-19:

Figure 2 —-20:

Figure 2-21.

Figure 2 -22:
Figure 2-23:
Figure 2-24:

Page
Using Command Line Arguments to Set Flags. 2-19
Using argvin] Pointers to Pass a Filename...... 2-20
C Language Standard I/O Subroutines.............. 2-23
String Operationsccccocrveerenerernnnsesnenenes 2-25
Classifying ASCII Character-Coded
Integer Values...........ccccoceemiiccnncnincncnnininnes 2-27
Conversion Functions and Macros...................... 2-28
Manual Page for gets(3S)..............ccovemvvvnnnneee. 2-30
How gets Is Used in a Program...........c.cueueee. 2-32
A Version of stdiohoniinnirnninnne 2-33
Environment and Status System Calls 2-42
Process Status.........cccoevvnnemniccnnniniinenen, 2-43
Example of fork...........cccccorrnnmininnnninninnsnnens 2-47
Example of a popen pipe.........cccoeevvvirrinrccnnnns 2-49
Signal Numbers Defined in
Jusr/include/sys/signalh 2-51
Source Code for Sample Programccceeuueee. 2-64
cflow Qutput, No Options.............ccccvvcrennnee 2-57
cflow Output, Using —r Option......................... 2-58
cflow Output, Using —ix Option 2-59
cflow Output, Using —r and —ix Options...... 2-60
ctrace Output.............ccceevecvirnnnnennnncnnniennnns 2-62
cxref Output, Using —c Option........................ 2-65
Hnt Qutput.........occeieii e 2-70
Prof Qutputccovvrveiiirecc et 2-74
nm Output, with —f Optioncuenneeee. 2-177

PROGRAMMER’S GUIDE

—

List of Figures
Page
Figure 3— 1. The fcntl.h Header File.............cooueevureueuvenecunnene 3-20
Figure 4— 1: awk Program Structure and Example................ 4- 3
Figure 4— 2: The Sample Input File countries...................... 4- 6
Figure 4— 3: awk Comparison Operators...............ccceeuenunee... 4-16
Figure 4— 4: awk Regular Expressions............ccccooecucuunn..e. 4-21
Figure 4— 5: awk Built-in Variables.............ccoueueevveueennnen.... 4-23
Figure 4— 6: awk Built-in Arithmetic Functions.................... 4-26
Figure 4— 7: awk Built-in String Functions............................ 4-27
Figure 4— 8: awk printf Conversion Characters................... 4-45
Figure 4— 9: getline Function.............ccccoovvuvverinivennenenennann 4-54
Figure 56— 1. Creation and Use of a Lexical Analyzer
With Iex........ccooiricrecerrereee e 5-2
Figure 8- 1: ipc_perm Data Structure.............o.oooveerrernn..... 8- 6
Figure 8— 2: Operation Permissions Codes.............................. 8-10
Figure 8- 3: Control Commands (Flags)..................cceuerue..... 8-11
Figure 8— 4: msgget() System Call Example.......................... 8-15
Figure 8— 5: msgctl() System Call Example............................ 8-21
Figure 8-~ 6: msgop() System Call Example 8-32
Figure 8— 7: Operation Permissions Codes.............................. 8-47
Figure 8~ 8: Control Commands (Flags).............c.cooveuruune... 8-48
Figure 8— 9: semget() System Call Exampile.......................... 8-52
Figure 8 -10: semctl() System Call Example.......................... 8-63
Figure 8—11: semop(2) System Call Example......................... 8-173
Figure 8 -12: Shared Memory State Information 8-80
Figure 8-13: Operation Permissions Codes............................. 8-84
Figure 8 -14: Control Commands (Flags)ccccoevuunn........ 8-85
Figure 8 -15: shmget(2) System Call Example........................ 8-89
UIST OF FIGURES xi

Ust of Figures

Figure 8 —16: shmctl(2) System Call Example.......................

Figure 8 —17: shmop() System Call Example

Figure 9 - 1:
Figure 9 - 2:
Figure 9 - 3:

Figure 9 — 4:
Figure 9 - &:

Figure 9 — 6:
Figure 9 - 7:

Figure 9 — 8:
Figure 9 — 9:

Figure 10- 1:
Figure 10— 2:
Figure 10— 3:
Figure 10— 4:
Figure 10— &:
Figure 10— 6:
Figure 10— 7:
Figure 10— 8:
Figure 10— 9:
Figure 10-10:
Figure 10-11:
Figure 10 -12:

..........................

A Simple curses Program..............cccoevrcrnienns

A Shell Script Using terminfo Routines..........

The Purposes of initscr(), refresh(), and
endwin() in a Program..........c.c.occcenvnnnsnnsnoraese

The Relationship between stdscr and a
Terminal SCreen.........cccveeerennesissenierssassssisaesasesss

Multiple Windows and Pads Mapped to a
Terminal Screen........cccoceeerrvcrveniinnnncnencsnnns

Input Option Settings for curses Programs....

The Relationship Between a Window and a
Terminal Screen...........ccococnnnininrnesrereeerenns

Sending a Message to Several Terminals..........
Typical Framework of a terminfo Program....

Object File Formatcccoccevivrnnnncsericcrsnennens
File Header Contentas.............cccccvimvmrcerrncsennncns
File Header Flags..........c.cccocverinienuncnnnrcseirareras
File Header Declarationcccvcenieeicnnnnnnes
Optional Header Contents................ccococveinnnen.
UNIX System Magic Numbersccoeeuvnenes
aouthdr Declaration...........coccccovvrnvcninvcnncennene
Section Header Contents.........cccceoooccreceecieirenacne
Section Header Flags..........cccccceeercncervrcncnecs —
Section Header Declaration..........cc.cceceererreenanee
Relocation Section Contents..............cocceveeunnene
Relocation Types........ccceceereccerccerennensesscsnsnsncnine

Figure 10 ~-13: Relocation Entry Declaration.............cccccnne.

xil

PROGRAMMER'’S GUIDE

List of Figures
Page
Figure 10 —14: Line Number Grouping............ccccoevereererrereene 10-16
Figure 10 —15: Line Number Entry Declaration....................... 10-17
Figure 10 -16: COFF Symbol Table...........ccocoevuerrecruerereenen. 10-18
Figure 10 -17: Special Symbols in the Symbol Table............... 10-20
Figure 10 —18: Special Symbols (.bb and .eb) 10-21
Figure 10 —19: Nested DIOCKSc...vemmereeeereereeseseeeesasssne 10-22
Figure 10 —20: Example of the Symbol Table........................... 10-23
Figure 10 -21: Symbols for Functionsc.cccocevvvvrcevrevevvnnnns 10-23
Figure 10 —22: Symbol Table Entry Format 10-24
Figure 10 -23: Name Field...........cccooerrvrrnrreeeereerecrreees 10-25
Figure 10 -24: Storage Classges................cccoeeeevererrerreecrrrencnnn. 10-26
Figure 10 —~25: Storage Class by Special Symbols..................... 10-28
Figure 10 —26: Restricted Storage Classesccceeuruencne... 10-28
Figure 10— 27: Storage Class and Value..................................... 10-29
Figure 10 —28: Section Number...........c.ccceveveererneennrencrreerennnns 10-30
Figure 10 -29: Section Number and Storage Class.................. 1-31
Figure 10 —30: Fundamental Typesccccoevvrrrererverncresnennn, 10-33
Figure 10 —31: Derived Typesccocvverevereriverversnrnrrensesenenns 1034
Figure 10 —32: Type Entries by Storage Class.......................... 10-35
Figure 10 -33: Symbol Table Entry Declaration 10-37
Figure 10 - 34: Auxiliary Symbol Table Entries........................ 10-38
Figure 10 —-35: Format for Auxiliary Table Entries
for Sections........c...coevurrienrnrceenreeeerre s 10-39
Figure 10 -36: Tag Names Table Entries............cccouvuenenn.e... 10-40
Figure 10— 37: Table Entries for End of Structures................. 10-40
Figure 10—38: Table Entries for Functions..............cccccvun...... 10—-41
Figure 10—-39: Table Entries for Arrays 1042
Figure 10—40: End of Block and Function Entries.................. 1042
LIST OF FIGURES xil

List of Figures

Figure 10 -41:
Figure 10 —42:

Figure 10 —43:
Figure 10 —44:
Figure11- 1 :
Figure 11— 2 ;
Figure 12— 1 :
Figure 12~ 2 :
Figure 13- 1 :
Figure 13- 2 :
Figure 13- 3 :
Figure 13- 4 :

xlv

Page
Format for Beginning of Block and Function.. 10-43
Entries for Structures, Unions,

W

and Enumerations.............ccccovemminenirccnerverircnes 10-43
Auxiliary Symbol Table Entry 10—-45
String Table..........ccecceevreereveresrenirensrsrenereerassnese 10-47
Operator Symbolscccovvrenrnrernnvessisnseranas 11- 6 u
Syntax Diagram for Input Directives.............. 11-37
Summary of Default Transformation Path... 12-17
make Internal Rules...........c.ccovvvvvvncerearennens 12-33
Evolution of an SCCS File........cccccvececnicirincnen 13- 9
Tree Structure with Branch Deltas................ 13-10
Extended Branching Conceptc....... 13-11
Determination of New SIDccccccenvnecee 13-24

PROGRAMMER'S GUIDE

Purpose

This guide is designed to give you information about programming in
a UNIX system environment. It does not attempt to teach you how to
write programs. Rather, it is intended to supplement texts on pro-
gramming languages by concentrating on the other elements that are
part of getting programs into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing programmers, especially those
who have not worked extensively with the UNIX system. No special
level of programming involvement is assumed. We hope the book will
be useful to people who write only an occasional program as well as
those who work on or manage large application development projects.

Programmers in the expert class, or those engaged in developing sys-
tem software, may find this guide lacks the depth of information they
need. For them we recommend the System V Reference Manual.

Knowledge of terminal use, of a UNIX system editor, and of the
UNIX system directory/file structure is assumed. If you feel shaky
about your mastery of these basic tools, you might want to look over
the User’s Guide before tackling this one.

Organization
The material is organized into two parts and seventeen chapters, as
follows:

¢ Part 1, Chapter 1 — Overview

Identifies the special features of the UNIX system that make up
the programming environment: the concept of building blocks,
pipes, special files, shell programming, etc. As a framework for
the material that follows, three different levels of programming

PURPOSE xv

in a UNIX system are defined: single-user, applications, and
systems programming.

e Chapter 2 — Programming Basics
Describes the most fundamental utilities needed to get pro-
grams running.

® Chapter 3 — Application Programming

Enlarges on many of the topics covered in the previous chapter
with particular emphasis on how things change as the project
grows bigger. Describes tools for keeping programming projects

organized.

e Part 2, Chapters 4 through 18 — Support Tools, Descriptions,
and Tutorials
Includes detailed information about the use of many of the
UNIX system tools.

The C Connection

The UNIX system supports many programming languages, and C
compilers are available on many different operating systems.
Nevertheless, the relationship between the UNIX operating system
and C has always been and remains very close. Most of the code in
the UNIX operating system is C, and over the years many organiza-
tions using the UNIX system have come to use C for an increasing
portion of their application code. Thus, while this guide is intended to
be useful to you no matter what language(s) you are using, you will
find that, unless there is a specific language-dependent point to be
made, the examples assume you are programming in C.

xvi PROGRAMMER'S GUIDE

—

Purpose

Hardware/Software Dependencies

The text reflects the way things work on an SUPERMAX computer
running under System V Release 3.1. A SUPERMAX may be mul-
tiprocessor and heterogeneous at the same time, as it may consist of
one or more CISC (Motorola 680x0) processors and maybe one or
more RISC (Mips R3000) processors.

A program may be developed to run on either processor type as com-
pilers, linkers, . . ., are controlled by the environment variable TAR-
GETMC that can be adjusted. Different types of executable modules
may be put together in one loadmodule that may run on either pro-
cessor type by use of the mkhem(1) feature.

TARGETMC | Processor | Compatibility

68020 68020/68030 | Motorola
R3KMO R3000 Motorola
R3KM1 R3000 MIPS

By adjusting the TARGETMC a program running on a R3000 may
either be BINARY compatible with MIPS (big-endian), or it will place
data the MOTOROLA way.

Notation Conventions

Whenever the text includes examples of output from the computer
and/or commands entered by you, we follow the standard notation
scheme that is common throughout UNIX system documentation:

¢ Commands that you type in from your terminal are shown in
bold type.

PURPOSE xvii

Text that is printed on your terminal by the computer is shown
in constant width type. Constant width type is also used for
code samples because it allows the most accurate representation
of spacing. Spacing is often a matter of coding style, but is
sometimes critical.

Comments added to a display to show that part of the display
has been omitted are shown in italic type and are indented to
separate them from the text that represents computer output
or input. Comments that explain the input or output are shown
in the same type font as the rest of the display. Italics are also
used to show substitutable values, such as, filename, when the
format of a command is shown.

There is an implied RETURN at the end of each command and
menu response you enter. Where you may be expected to enter
only a RETURN (a8 in the case where you are accepting a
menu default), the symbol <CR > is used.

In cases where you are expected to enter a control character, it
is shown as, for example, CTRL-D. This means that you press
the d key on your keyboard while holding down the CTRL key.

The dollar sign, $, and pound sign, #, symbols are the standard
default prompt signs for an ordinary user and root respectively.
$ means you are logged in as an ordinary user. # means you
are logged in as root.

When the # prompt is used in an example, it means the com-
mand illustrated may be used only by root.

PROGRAMMER'S GUIDE

w

Purpose

Command References

When commands are mentioned in a section of the text for the first
time, a reference to the manual section where the command is for-
mally described is included in parentheses: command(section).

Information in the Examples

While every effort has been made to present displays of information
just as they appear on your terminal, it is possible that your system
may produce slightly different output. Some displays depend on a par-
ticular machine configuration that may differ from yours. Changes
between releases of the UNIX system software may cause small
differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure
they compile and work as represented. Where code fragments are
shown, we have attempted to maintain the same standards of coding
accuracy for them.

PURPOSE xix

This page is intentionally left blank u

20) PROGRAMMER'S GUIDE

23

o 1db

Chapter 1: Programming in a UNIX Sys-
tem Environment: An Overview

Page

INtroductioncocvviiiiiririneiiree e ee e e 1-1
The Early Daysccccevvveriiennieinerieeniecreeniereeereeseeeenesecnenens 1-1
UNIX System Philosophy Simply Statedcccccoeveenneene 1-3
UNIX System Tools and Where You Can Read About Them 1- 5
Tools Covered and Not Covered in this Guide.................... 1- 5
The Shell as a Prototyping Toolc.coveeeviiveinineicineenn. 1- 6
Three Programming Environments...........cccccoecerienceeneeninennen. 1- 8
Single-User Programmercccocceveeciieeeciieeeecieesiinee s 1- 8
Application Programming..........ccccccovevieeieesiicccieeceesee e, 1-9
Systems Programmers............ccccocovvevvviinveeceeenneeeneesnnveennenens 1-10
SUMIMATY ..ottt errteee et e e e sre et ss s sen e saassas 1-10

TABLE OF CONTENTS -1

Table of Contents

This page is intentionally left blank
|
|
|
|

PROGRAMMER’S GUIDE

e

25

] d&|

Introduction

The 1983 Turing Award of the Association for Computing Machinery
was given jointly to Ken Thompson and Dennis Ritchie, the two men
who first designed and developed the UNIX operating system. The
award citation said, in part:

"The success of the UNIX system stems from its
tasteful selection of a few key ideas and their elegant
implementation. The model of the UNIX system has
led a generation of software designers to new ways of
thinking about programming. The genius of the
UNIX system is its framework which enables pro-
grammers to stand on the work of others.”

As programmers working in a UNIX system environment, why should
we care what Thompson and Ritchie did? Does it have any relevance
for us today?

It does because if we understand the thinking behind the system
design and the atmosphere in which it flowered, it can help us
become productive UNIX system programmers more quickly.

The Early Days

You may already have read about how Ken Thompson came across a
DEC PDP-7 machine sitting unused in a hallway at AT&T Bell
Laboratories, and how he and Dennis Ritchie and a few of their col-
leagues used that as the original machine for developing a new
operating system that became UNIX.

The important thing to realize, however, is that what they were try-
ing to do was fashion a pleasant computing environment for them-
selves. It was not, "Let’s get together and build an operating system
that will attract world-wide attention.”

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-1

Introduction

The sequence in which elements of the system fell into place is
interesting. The first piece was the file system, followed quickly by its
organization into a hierarchy of directories and files. The view of
everything, data stores, programs, commands, directories, even dev-
ices, as files was critical, as was the idea of a file as a one-dimensional
array of bytes with no other structure implied. The cleanness and
simplicity of this way of looking at files has been a major contributing
factor to a computer environment that programmers and other users
have found comfortable to work in.

The next element was the idea of processes, with one process being
able to create another and communicate with it. This innovative way
of looking at running programs as processes led easily to the practice
(quintessentially UNIX) of reusing code by calling it from another
process. With the addition of commands to manipulate files and an
assembler to produce executable programs, the system was essentially
able to function on its own.

The next major development was the acquisition of a DEC PDP-11
and the installation of the new system on it. This has been described
by Ritchie as a stroke of good luck, in that the PDP-11 was to become
a hugely successful machine, its success to some extent adding
momentum to the acceptance of the system that began to be known
by the name of UNIX.

By 1972 the innovative idea of pipes (connecting links between
processes whereby the output of one becomes the input of the next)
had been incorporated into the system, the operating system had
been recoded in higher level languages (first B, then C), and had been
dubbed with the name UNIX (coined by Brian Kernighan). By this
point, the ”"pleasant computing environment” sought by Thompson
and Ritchie was a reality; but some other things were going on that
had a strong influence on the character of the product then and
today.

It is worth pointing out that the UNIX system came out of an atmo-
sphere that was totally different from that in which most commer-
cially successful operating systems are produced. The more typical
atmosphere is that described by Tracy Kidder in The Soul of a New

1-2 PROGRAMMER'’S GUIDE

92

27

B —— 07—

Introduction

Machine. In that case, dozens of talented programmers worked at
white heat, in an atmosphere of extremely tight security, against
murderous deadlines. By contrast, the UNIX system could be said to
have had about a ten year gestation period. From the beginning it
attracted the interest of a growing number of brilliant specialists,
many of whom found in the UNIX system an environment that
allowed them to pursue research and development interests of their
own, but who in turn contributed additions to the body of tools avail-
able for succeeding ranks of UNIX programmers.

Beginning in 1971, the system began to be used for applications
within AT&T Bell Laboratories, and shortly thereafter (1974) was
made available at low cost and without support to colleges and
universities. These versions, called research versions and identified
with Arabic numbers up through 7, occasionally grew on their own
and fed back to the main system additional innovative tools. The
widely-used screen editor vi(l), for example, was added to the UNIX
system by William Joy at the University of California, Berkeley. In
1979 acceding to commercial demand, AT&T began offering supported
versions (called development versions) of the UNIX system. These are
identified with Roman numerals and often have interim release
numbers appended. The current development version, for example, is
UNIX System V Release 3.1.

Versions of the UNIX system being offered now by AT&T are coming
from an environment more closely related, perhaps, to the standard
software factory. Features are being added to new releases in
response to the expressed needs of the market place. The essential
quality of the UNIX system, however, remains as the product of the
innovative thinking of its originators and the collegial atmosphere in
which they worked. This quality has on occasion been referred to as
the UNIX philosophy, but what is meant is the way in which sophisti-
cated programmers have come to work with the UNIX system.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-3

Introduction

UNIX System Philosophy Simply Stated

For as long as you are writing programs on a UNIX system you
should keep this motto hanging on your wall:

Build on the work of others

Unlike computer environments where each new project is like start-
ing with a blank canvas, on a UNIX system a good percentage of any
programming effort is lying there in bins, and lbins, and /usr/bins,
not to mention ete, waiting to be used.

The features of the UNIX system (pipes, processes, and the file sys-
tem) contribute to this reusability, as does the history of sharing and
contributing that extends back to 1969. You risk missing the essential
nature of the UNIX system if you don’t put this to work.

\
1-4 PROGRAMMER’S GUIDE

8¢

29

—————————] db|

UNIX System Tools and Where You Can
Read About Them

The term "UNIX system tools” can stand some clarification. In the
narrowest sense, it means an existing piece of software used as a com-
ponent in a new task. In a broader context, the term is often used to
refer to elements of the UNIX system that might also be called
features, utilities, programs, filters, commands, languages, functions,
and so on. It gets confusing because any of the things that might be
called by one or more of these names can be, and often are, used in
the narrow way as part of the solution to a programming problem.

Tools Covered and Not Covered in this Guide

The Programmer’s Guide is about tools used in the process of creat-
ing programs in a UNIX system environment, so let’s take a minute
to talk about which tools we mean, which ones are not going to be
covered in this book, and where you might find information about
those not covered here. Actually, the subject of things not covered in
this guide might be even more important to you than the things that
are. We couldn’t possibly cover everything you ever need to know
about UNIX system tools in this one volume.

Tools not covered in this text:
® the login procedure,
® UNIX system editors and how to use them,

¢ how the file system is organized and how you move
around in it,

® shell programming.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-5

UNIX System Tools

Information about these subjects can be found in the User’s Guide
and a number of commercially available texts.

Tools covered here can be classified as follows:
e utilities for getting programs running
o utilities for organizing software development projects
® specialized languages
¢ debugging and analysis tools

¢ compiled language components that are not part of the
language syntax, for example, standard libraries, systems calls,
and functions.

The Shell as a Prototyping Tool

Any time you log in to a UNIX system machine you are using the
shell. The shell is the interactive command interpreter that stands
between you and the UNIX system kernel, but that’s only part of the
story. Because of its ability to start processes, direct the flow of con-
trol, field interrupts and redirect input and output it is a full-fledged
programming language. Programs that use these capabilities are
known as shell procedures or shell scripts.

Much innovative use of the shell involves stringing together com-
mands to be run under the control of a shell script. The dozens and
dozens of commands that can be used in this way are documented in
the System V Reference Manual. Time spent with the System V Refer-
ence Manual can be rewarding. Look through it when you are trying
to find a command with just the right option to handle a knotty pro-
gramming problem. The more familiar you become with the com-
mands described in the manual pages the more you will be able to
take full advantage of the UNIX system environment.

1-6 PROGRAMMER'’S GUIDE

o€

31

B —— 7]

UNIX System Tools

It is not our purpose here to instruct you in shell programming. What
we want to stress here is the important part that shell procedures can
play in developing prototypes of full-scale applications. While under-
standing all the nuances of shell programming can be a fairly complex
task, getting a shell procedure up and running is far less time-
consuming than writing, compiling and debugging compiled code.

This ability to get a program into production quickly is what makes
the shell a valuable tool for program development. Shell programming
allows you to “build on the work of others” to the greatest possible
degree, since it allows you to piece together major components simply
and efficiently. Many times even large applications can be done using
shell procedures. Even if the application is initially developed as a
prototype system for testing purposes rather than being put into pro-
duction, many months of work can be saved.

With a prototype for testing, the range of possible user errors can be
determined — something that is not always easy to plan out when an
application is being designed. The method of dealing with strange
user input can be worked out inexpensively, avoiding large re-coding
problems.

A common occurrence in the UNIX system environment is to find
that an available UNIX system tool can accomplish with a couple of
lines of instructions what might take a page and a half of compiled
code. Shell procedures can intermix compiled modules and regular
UNIX system commands to let you take advantage of work that has
gone before.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-7

Three Programming Environments

We distinguish among three programming environments to emphasize
that the information needs and the way in which UNIX system tools
are used differ from one environment to another. We do not intend to
imply a hierarchy of skill or experience. Highly-skilled programmers
with years of experience can be found in the "single-user” category,
and relative newcomers can be members of an application develop-
ment or systems programming team.

Single-User Programmer

Programmers in this environment are writing programs only to ease
the performance of their primary job. The resulting programs might
well be added to the stock of programs available to the community in
which the programmer works. This is similar to the atmosphere in
which the UNIX system thrived; someone develops a useful tool and
shares it with the rest of the organization. Single-user programmers
may not have externally imposed requirements, or co-authors, or pro-
ject management concerns. The programming task itself drives the
coding very directly. One advantage of a timesharing system such as
UNIX is that people with programming skills can be set free to work
on their own without having to go through formal project approval
channels and perhaps wait for months for a programming department
to solve their problems.

Single-user programmers need to know how to:
® select an appropriate language
® compile and run programs
® use system libraries

® analyze programs

1-8 PROGRAMMER’S GUIDE

[4>

33

Three Programming Environments

® debug programs
® keep track of program versions

Most of the information to perform these functions at the single-user
level can be found in Chapter 2.

Application Programming

Programmers working in this environment are developing systems for
the benefit of other, non-programming users. Most large commercial
computer applications still involve a team of applications development
programmers. They may be employees of the end-user organization or
they may work for a software development firm. Some of the people
working in this environment may be more in the project management
area than working programmers.

Information needs of people in this environment include all the topics
in Chapter 2, plus additional information on:

e software control systems

o file and record locking

® communication between processes
® shared memory

e advanced debugging techniques

These topics are discussed in Chapter 3.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-9

Three Programming Environments

Systems Programmers

These are programmers engaged in writing software tools that are
part of, or closely related to the operating system itself. The project
may involve writing a new device driver, a data base management sys-
tem or an enhancement to the UNIX system kernel. In addition to
knowing their way around the operating system source code and how
to make changes and enhancements to it, they need to be thoroughly
familiar with all the topics covered in Chapters 2 and 3.

Summary

In this overview chapter we have described the way that the UNIX
system developed and the effect that has on the way programmers
now work with it. We have described what is and is not to be found in
the other chapters of this guide to help programmers. We have also
suggested that in many cases programming problems may be easily
solved by taking advantage of the UNIX system interactive command
interpreter known as the shell. Finally, we identified three program-
ming environments in the hope that it will help orient the reader to
the organization of the text in the remaining chapters.

1-10 PROGRAMMER'S GUIDE

e

35

o EBEREESTARE o T e T S

Chapter 2: Programming Basics

INtrOQUCEION.....eeeeieiiiiiiitiiieittee e e

Choosing a Programming Language.........c.ccccecevvcivncvvenennnnee.
Supported Languages in a System V Environment
C LanGUAZEccoovvireeicieeee e etee et

After Your Code Is Writtenccccoeeevveieeieecieieee e,
Compiling and Link Editing.........ccoocvvviiivinnnnininnciecenienn,
Compiling C Programsccooeeveueeeeeveieveeeeeeeeeeenen
Loading and Running BASIC Programs........................
Compiler Diagnostic Messages........c.cccoeceverveceercervrnneeneen.

Link Editing.....ccccovevrviniiiciiiiennceereeene e

PROGRAMMING BASICS

Chapter 2: Programming Basics

Page
The Interface Between a Programming Language

and the UNIX Systemccccuvuveeeieiveieicereeee e eesessenn 2-17
Why C Is Used to Illustrate the Interfaceoo.......... 2-17
How Arguments Are Passed to a Program......................... 2-18
System Calls and Subroutines...........ccoovvvveveeveeeeeevverenn 2-21
Categories of System Calls and Subroutines................. 2-22
Where the Manual Pages Can Be Found....................... 2-29

How System Calls and Subroutines Are Used
IN C Programsccocevveinieneimeeriieeeeeeeeeee e eeeeeeeeesens 2-29
Header Files and Libraries...........c.ccccoovevvviveevereneeneeneeeenene.. 2-35
Object File LIDTariescc.cooovvieeeeeeeeeeeeeeeseeeeeeeeeeeeiesessesen 2-36
INPUL/OULPUL ... 2-37
Three Files You Always Have.........c..ccoccovivinveveeeeicinenne. 2-38
Named Files.......coccvvereneecriiiriirieeeeeeceeteeeete e seene 2-39
Low-level I/O and Why You Shouldn’t Use It.............. 2-40
System Calls for Environment or Status Information 2—-42
ProcesSes ..ottt e 2-43
SYStEMIU(3S) ..covveiniiiicieee e 2—-45
EXEC(2) ..ottt e st e re e 2—-45
FOTK(2)....iiiiiiinicecceee ettt 2-46
PiDES ccoriiieeiii ettt ettt 2-48
Error Handlingccccooveviirinriniiniiinenrcrereveisee st eeeeeeeae 2-50
Signals and INterruptsccoueceeriveeireeeeieeieieeceeieresieneanen 2-50
Analysis/Debugging..........cccoecerureeeisieereeieeer e esserens 2-53
Sample Programccocoeceoneeneeienieeeeeeeereeeseeseveens 2-53
CHOW ...t 2—-57
CLPACE.......coeii ittt ettt erre e 2-60
CXTEE ...t 2-64

-2 PROGRAMMER'’S GUIDE

9€

Chapter 2: Programming Basics

Page

BNt e 2-170

SLZE ..ottt s e 2-71

‘ SELIP. ..o et 2-1
| SADB/ADX ...t e s 2-172
Program Organizing Utilities..........c.ccceeeviveneeicinenececvene. 2-173

ﬁ The make Command............ccoouveureveerinriieeeiieiiieeeeeeeene 2-173

The Archive.......c.covvvveiiiieieeceee e 2-175

Use of SCCS by Single-User Programmers 2-81

37

PROGRAMMING BASICS I-3

Chapter 2: Programming Basics

This page is intentionally left blank

8¢

-4 PROGRAMMER’S GUIDE

39

Introduction

The information in this chapter is for anyone just learning to write
programs to run in a UNIX system environment. In Chapter 1 we
identified one group of UNIX system users as single-user program-
mers. People in that category, particularly those who are not deeply
interested in programming, may find this chapter (plus related refer-
ence manuals) tells them as much as they need to know about coding
and running programs on a UNIX system computer.

Programmers whose interest does run deeper, who are part of an
application development project, or who are producing programs on
one UNIX system computer that are being ported to another, should
view this chapter as a starter package.

PROGRAMMING BASICS 2-1

Introduction

This page is intentionally left blank

PROGRAMMER’S GUIDE

ot

41

Choosing a Programming Language

How do you decide which programming language to use in a given
situation? One answer could be, ”I always code in HAIRBOL, because
that’s the language I know best.” Actually, in some circumstances
that’s a legitimate answer. But assuming more than one program-
ming language is available to you, that different programming
languages have their strengths and weaknesses, and assuming that
once you've learned to use one programming language it becomes
relatively easy to learn to use another, you might approach the prob-
lem of language selection by asking yourself questions like the follow-

ing:

What is the nature of the task this program is to do?

Does the task call for the development of a complex algorithm,
or is this a simple procedure that has to be done on a lot of
records?

Does the programming task have many separate parts?

Can the program be subdivided into separately compilable func-
tions, or is it one module?

How soon does the program have to be available?

Is it needed right now, or do I have enough time to work out
the most efficient process possible?

What is the scope of its use?

Am I the only person who will use this program, or is it going
to be distributed to the whole world?

Is there a possibility the program will be ported to other sys-
tems?
What is the life-expectancy of the program?

Is it going to be used just a few times, or will it still be going
strong five years from now?

PROGRAMMING BASICS 2-3

—
]

Language Selection

Supported Languages in a System V Environ-
ment

By ”supported languages” we mean those offered for use on an
SUPERMAX Computer running System V Release 3.1. Since these are
separately purchasable items, not all of them will necessarily be
installed on your machine. On the other hand, you may have
languages available on your machine that came from another source
and are not mentioned in this discussion. Be that as it may, in this
section and the one to follow we give brief descriptions of the nature
of a) six full-scale programming languages, and b) a number of special
purpose languages.

C Language

C is intimately associated with the UNIX system since it was origi-
nally developed for use in recoding the UNIX system kernel. If you
need to use a lot of UNIX system function calls for low-level 1/0,
memory or device management, or inter-process communication, C
language is a logical first choice. Most programs, however, don’t
require such direct interfaces with the operating system so the deci-
sion to choose C might better be based on one or more of the follow-
ing characteristics:

® a variety of data types: character, integer, long integer, float,
and double

® low level constructs (most of the UNIX system kernel is written
in C)

® derived data types such as arrays, functions, pointers, struc-
tures and unions

e multi-dimensional arrays

® scaled pointers, and the ability to do pointer arithmetic

2-4 PROGRAMMER'S GUIDE

[44

43

Language Selection

® bit-wise operators

® a variety of flow-of-control statements: if, if-else, switch, while,
do-while, and for

® a high degree of portability

C is a language that lends itself readily to structured programming. It
is natural in C to think in terms of functions. The next logical step is
to view each function as a separately compilable unit. This approach
(coding a program in small pieces) eases the job of making changes
and/or improvements. If this begins to sound like the UNIX system
philosophy of building new programs from existing tools, it’s not just
coincidence. As you create functions for one program you will surely
find that many can be picked up, or quickly revised, for another pro-
gram.

A difficulty with C is that it takes a fairly concentrated use of the
language over a period of several months to reach your full potential
as a C programmer. If you are a casual programmer, you might make
life easier for yourself if you choose a less demanding language.

FORTRAN

The oldest of the high-level programming languages, FORTRAN is
still highly prized for its variety of mathematical functions. If you are
writing a program for statistical analysis or other scientific applica-
tions, FORTRAN is a good choice. An original design objective was to
produce a language with good operating efficiency. This has been
achieved at the expense of some flexibility in the area of type
definition and data abstraction. There is, for example, only a single
form of the iteration statement. FORTRAN also requires using a
somewhat rigid format for input of lines of source code. This
shortcoming may be overcome by using one of the UNIX system tools
designed to make FORTRAN more flexible.

PROGRAMMING BASICS 2-5

Language Selection

Pascal

Originally designed as a teaching tool for block structured program-
ming, Pascal has gained quite a wide acceptance because of its
straightforward style. Pascal is highly structured and allows system
level calls (characteristics it shares with C). Since the intent of the
developers, however, was to produce a language to teach people about
programming it is perhaps best suited to small projects. Among its
inconveniences are its lack of facilities for specifying initial values for
variables and limited file processing capability.

COBOL

Probably more programmers are familiar with COBOL than with any
other single programming language. It is frequently used in business
applications because its strengths lie in the management of
input/output and in defining record layouts.

It is somewhat cumbersome to use COBOL for complex algorithms,
but it works well in cases where many records have to be passed
through a simple process; a payroll withholding tax calculation, for
example. It is a rather tedious language to work with because each
program requires a lengthy amount of text merely to describe record
layouts, processing environment and variables used in the code. The
COBOL language is wordy so the compilation process is often quite
complex. Once written and put into production, COBOL programs
have a way of staying in use for years, and what might be thought of
by some as wordiness comes to be considered self-documentation. The
investment in programmer time often makes them resistant to
change.

BASIC

The most commonly heard comment about BASIC is that it is easy to
learn. With the spread of personal microcomputers many people have
learned BASIC because it is simple to produce runnable programs in
very little time. It is difficult, however, to use BASIC for large pro-
gramming projects. It lacks the provision for structured flow-of-

2-6 PROGRAMMER’S GUIDE

124

"/

45

Language Selection

control, requires that every variable used be defined for the entire
program and has no way of transferring values between functions and
calling programs. Most versions of BASIC run as interpreted code
rather than compiled. That makes for slower running programs.
Despite its limitations, however, it is useful for getting simple pro-
cedures into operation quickly.

COMAL 80

COMAL 80 is a programming language originally developed for educa-
tion. COMAL 80 combines the simplicity of the environment of
BASIC with the elegant structure of PASCAL. COMAL 80 is easy to
learn, and programs written in COMAL 80 are easy to develop.
COMAL 80 is an interpreted language making programs slower and
therefore not suitable for time consuming tasks.

Assembly Language

The closest approach to machine language, assembly language is
specific to the particular computer on which your program is to run.
High-level languages are translated into the assembly language for a
specific processor as one step of the compilation. The most common
need to work in assembly language arises when you want to do some
task that is not within the scope of a high-level language. Since
assembly language is machine-specific, programs written in it are not
portable.

Special Purpose Languages

In addition to the above formal programming languages, the UNIX
system environment frequently offers one or more of the special pur-
pose languages listed below.

PROGRAMMING BASICS 2-7

Language Selection

Since UNIX system utilities and commands are packaged in func-
NOTE | tional groupings, it is possible that not all the facilities mentioned

will be available on all systems.

awk

awk (its name is an acronym constructed from the initials of its
developers) scans an input file for lines that match pattern(s)
described in a specification file. On finding a line that matches a pat-
tern, awk performs actions also described in the specification. It is
not uncommon that an awk program can be written in a couple of
lines to do functions that would take a couple of pages to describe in
a programming language like FORTRAN or C. For example, consider
a case where you have a set of records that consist of a key field and a
second field that represents a quantity. You have sorted the records
by the key field, and you now want to add the quantities for records
with duplicate keys and output a file in which no keys are duplicated.
The pseudo-code for such a program might look like this:

Read the first record into a hold area;
Read additional records until EOF;

{
If the key matches the key of the record in the hold area,

add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;
}
At EOF, write out the last record from the hold area.
An awk program to accomplish this task would look like this:

{ qty[$1] += $2 }
END { for (key in qty) print key, gty(key] }
This illustrates only one characteristic of awk; its ability to work
with associative arrays. With awk, the input file does not have to be
sorted, which is a requirement of the pseudo-program.

2-8 PROGRAMMER’S GUIDE

47

Language Selection

lex

lex is a lexical analyzer that can be added to C programs. A lexical
analyzer is interested in the vocabulary of a language rather than its
grammar, which is a system of rules defining the structure of a
language. lex can produce C language subroutines that recognize reg-
ular expressions specified by the user, take some action when a regu-
lar expression is recognized and pass the output stream on to the
next program.

yacce

yacc (Yet Another Compiler Compiler) is a tool for describing an
input language to a computer program. yacc produces a C language
subroutine that parses an input stream according to rules laid down
in a specification file. The yacc specification file establishes a set of
grammar rules together with actions to be taken when tokens in the
input match the rules. lex may be used with yace to control the
input process and pass tokens to the parser that applies the grammar
rules.

M4

M4 is a macro processor that can be used as a preprocessor for
assembly language, and C programs. It is described in Section (1) of
the System V Reference Manual.

be and de

be enables you to use a computer terminal as you would a programm-
able calculator. You can edit a file of mathematical computations and
call be to execute them. The be program uses de. You can use de
directly, if you want, but it takes a little getting used to since it works
with reverse Polish notation. That means you enter numbers into a
stack followed by the operator. be and dec are described in Section (1)
of the System V Reference Manual.

PROGRAMMING BASICS 2-9

Language Selection

curses

Actually a library of C functions, curses is included in this list
because the set of functions just about amounts to a sub-language for
dealing with terminal screens. If you are writing programs that
include interactive user screens, you will want to become familiar
with this group of functions.

In addition to all the foregoing, don’t overlook the possibility of using
shell procedures.

2-10 PROGRAMMER'’S GUIDE

8t

49

——————] db|

After Your Code Is Written

The last two steps in most compilation systems in the UNIX system
environment are the assembler and the link editor. The compilation
system produces assembly language code. The assembler translates
that code into the machine language of the computer the program is
to run on. The link editor resolves all undefined references and makes
the object module executable. With most languages on the UNIX sys-
tem the assembler and link editor produce files in what is known as
the Common Object File Format (COFF). A common format makes it
easier for utilities that depend on information in the object file to
work on different machines running different versions of the UNIX
system. In the Common Object File Format an object file contains:

® 3 file header

® optional secondary header

a table of section headers

data corresponding to the section header(s)
relocation information

line numbers

a symbol table

a string table

An object file is made up of sections. Usually, there are at least two:
.text, and .data. Some object files contain a section called .bss. (.bss
is an assembly language pseudo-op that originally stood for ”block
started by symbol.”) .bss, when present, holds uninitialized data.
Options of the compilers cause different items of information to be
included in the Common Object File Format. Compiling a program
with the —g option adds line numbers and other symbolic informa-
tion that is needed for the sdb (Symbolic Debugger) command to be
fully effective. You can spend many years programming without hav-
ing to worry too much about the contents and organization of the
Common Object File Format, so we are not going into any further
depth of detail at this point. See Chapter 10 of this guide.

PROGRAMMING BASICS 21

Compiling and Link Editing

Compiling and Link Editing

The command used for compiling depends on the language used;

e for C programs, cc both compiles and link edits

Compiling C Programs

To use the C compilation system you must have your source code in a
file with a filename that ends in the characters .c, as in mycode.c.
The command to invoke the compiler is:

cc mycode.c

If the compilation is successful the process proceeds through the link
edit stage and the result will be an executable file by the name of
a.out.

Several options to the ce command are available to control its opera-
tion. The most used options are:

-c causes the compilation system to suppress the link
edit phase. This produces an object file (mycode.o)
that can be link edited at a later time with a ee com-
mand without the —c option.

-g causes the compilation system to generate special
information about variables and language statements
used by the symbolic debugger sdb/dbx. If you are
going through the stage of debugging your program,
use this option.

-0 causes the inclusion of an additional optimization
phase. This option is logically incompatible with the
—g option. You would normally use —O after the
program has been debugged, to reduce the size of
the object file and increase execution speed.

212 PROGRAMMER'S GUIDE

0s

51

—————] db

Compiling and Link Editing

—o outfile tells ec to tell the link editor to use the specified
name for the executable file, rather than the default
a.out.

Other options can be used with ec. Check the System V Reference
Manual. If you enter the ¢cc command using a file name that ends in
.5, the compilation system treats it as assembly language source code
and bypasses all the steps ahead of the assembly step.

As a heterogeneous SUPERMAX may consist of more than one type
of processor, a program like ce, through the environment parameter
TARGETMOC, is told which cpu to generate code for.

Loading and Running other Programs

The other programming languages have different procedures for com-
pilation and/or interpretation. You are kindly requested to read about
this in corresponding manuals.

Compiler Diagnostic Messages

The C compiler generates error messages for statements that don’t
compile. The messages are quite understandable, but in common with
most language compilers they sometimes point several statements
beyond where the actual error occurred. If you inadvertently put an
extra ; at the end of an if statement, a subsequent else will be
flagged as a syntax error. In the case where a block of several state-
ments follows the if, the line number of the syntax error caused by
the else will start you looking for the error well past where it is.
Unbalanced curly braces, { }, are another common producer of syntax
errors.

PROGRAMMING BASICS 213

G SR oA B S TR T R SR e L T e L e P TR S LN S g T b Y e

Compiling and Link Editing

Link Editing

The 1d command invokes the link editor directly. The typical user,
however, seldom invokes ld directly. A more common practice is to
use a language compilation control command (such as ec) that
invokes 1d.

The link editor combines several object files into one, performs reloca-
tion, resolves external symbols, incorporates startup routines, and
supports symbol table information used by sdb/dbx. You may, of
course, start with a single object file rather than several. The result-
ing executable module is left in a file named a.out.

Any file named on the 1d command line that is not an object file (typi-
cally, a name ending in 0) is assumed to be an archive library or a file
of link editor directives. The 1d command has some 16 options. We
are going to describe four of them. These options should be fed to the
link editor by specifying them on the ee command line if you are
doing both jobs with the single command, which is the usual case.

—o outfile provides a name to be used to replace a.out as
the name of the output file. Obviously, the
name a.out is of only temporary usefulness. If
you know the name you want use to invoke
your program, you can provide it here. Of
course, it may be equally convenient to do this:

mv a.out progname
giving your program a less temporary name.

—lx directs the link editor to search a library libx.a,
where x is up to nine characters. For C pro-
grams, libe.a is automatically searched if the ecc
command is used. The —lx option is used to
bring in libraries not normaily in the search
path such as libm.a, the math library. The —lx
option can occur more than once on a command
line, with different values for the x. A library is
searched when its name is encountered, so the

214 PROGRAMMER'’S GUIDE

cS

53

Compiling and Link Editing

placement of the option on the command line is
important. The safest place to put it is at the
end of the command line. The —Lx option is
related to the —L option.

—L dir changes the libx.a search sequence to search in
the specified directory before looking in the
default library directories, usually /lib? or
Jjusr/lib?, where ? is the TARGETMC. This is
useful if you have different versions of a library
and you want to point the link editor to the
correct one. It works on the assumption that
once a library has been found no further
searching for that library is necessary. Because
—~L diverts the search for the libraries specified
by —1x options, it must precede such options on
the command line.

—u symname enters symname as an undefined symbol in the
symbol table. This is useful if you are loading
entirely from an archive library, because ini-
tially the symbol table is empty and needs an
unresolved reference to force the loading of the
first routine.

As a heterogeneous SUPERMAX may consist of more than one type
of processor, a program like 1d, through the environment parameter
TARGETMC, is told which cpu to generate code for. Different types
of executable modules (different TARGETMC) may be put together in
one loadmodule by use of the mkhem(l) command in order to have
one executable module that can run on either processor type.

When the link editor is called through ce, a startup routine (typically
/lib?/crt0.0 for C programs, where ? is the TARGETMC) is linked
with your program. This routine calls exit(2) after execution of the
main program.

PROGRAMMING BASICS 2-15

Compiling and Link Editing

The link editor accepts a file containing link editor directives. The
details of the link editor command language can be found in Chapter
11

141

2-16 PROGRAMMER’S GUIDE

55

SRS R N R S e m SEREHT

The Interface Between a Programming
Language and the UNIX System

When a program is run in a computer it depends on the operating
system for a variety of services. Some of the services such as bringing
the program into main memory and starting the execution are com-
pletely transparent to the program. They are, in effect, arranged for
in advance by the link editor when it marks an object module as exe-
cutable. As a programmer you seldom need to be concerned about
such matters.

Other services, however, such as input/output, file management,
storage allocation do require work on the part of the programmer.
These connections between a program and the UNIX operating sys-
tem are what is meant by the term UNIX system/language interface.
The topics included in this section are:

® How arguments are passed to a program
o System calls and subroutines

o Header files and libraries

¢ Input/Output

® Processes

o Error Handling, Signals, and Interrupts

Why C Is Used to lllustrate the Interface

Throughout this section C programs are used to illustrate the inter-
face between the UNIX system and programming languages because
C programs make more use of the interface mechanisms than other
high-level languages. What is really being covered in this section then
is the UNIX system/C Language interface. The way that other
languages deal with these topics is described in the user’s guides for
those languages.

PROGRAMMING BASICS 217

The UNIX System/Language Interface

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as argu-
ments on the command line. When the program is run as a command,
arguments on the command line are made available to the function
main in two parameters, an argument count and an array of pointers
to character strings. (Every C program is required to have an entry
module by the name of main.) Since the argument count is always
given, the program does not have to know in advance how many argu-
ments to expect. The character strings pointed at by elements of the
array of pointers contain the argument information.

The arguments are presented to the program traditionally as arge
and argv, although any names you choose will work. arge is an
integer that gives the count of the number of arguments. Since the
command itself is considered to be the first argument, argv[0], the
count is always at least one. argv is an array of pointers to character
strings (arrays of characters terminated by the null character \0).

If you plan to pass runtime parameters to your program, you need to
include code to deal with the information. Two possible uses of run-
time parameters are:

® as control data. Use the information to set internal flags that
control the operation of the program.

® to provide a variable filename to the program.

Figures 2-1 and 2-2 show program fragments that illustrate these
uses.

2-18 PROGRAMMER'S GUIDE

9S

C

~————————————————]d&

The UNIX System/Language Interface

4)

#include <stdio.h>
main(argc, argv)
int argc;
char *argv(];
{
void exit();
int oflag = FALSE;
- int pflag = FALSE; /* Function Flags */
f ’ int rflag = FALSE;
int ch;
while ((ch = getopt(argc,argv, "opr”)) != EOF)
{
/* For options present, set flag to TRUE */
‘ /* If no options present, print error message */
‘ switch (ch)
{
case 'o0’:
oflag = 1;
5 break;
case ‘p’:
pflag = 1;
break;
case 'r’:
| rflag = 1;
break;
| default:
| (void) fprintf(stderr,
‘ f’\ “Usage: $s [-oprl\n”, argv[0]);
‘ ' exit(2);
}
}
}

N)

Figure 2-1: Using Command Line Arguments to Set Flags

PROGRAMMING BASICS 219

The UNIX System/Language Interface

#include <stdio.h>
main(argec, argv)

4)

{

}

N

int argc;
char *argv[];

FILE *fopen(), *fin;
void perror(), exit();

if (arge > 1)
if ((fin = fopen(argv[1l], "r”)) = = NULL)

/* First string (%s) is program name (argv({0]) *
/* Second string (%s) is name of file that */
/* could not be opened (argv[1l]) */

(void)fprintf(stderr,
”"%s: cannot open %s: ”,
argv[0], argv[l]);

perroxr(””);

exit(2);

)

Figure 2-2: Using arg{n] Pointers to Pass a Filename

The shell, which makes arguments available to your program, consid-
ers an argument to be any non-blank characters separated by blanks
or tabs. Characters enclosed in double quotes ("abc def”) are passed
to the program as one argument even if blanks or tabs are among the
characters. It goes without saying that you are responsible for error
checking and otherwise making sure the argument received is what
your program expects it to be.

2-20

PROGRAMMER'S GUIDE

8s

59

A —— 7]

The UNIX System/Language Interface

A third argument is also present, in addition to arge and argv. The
third argument, known as envp, is an array of pointers to environ-
ment variables. You can find more information on envp in the Sys-
tem V Reference Manual under exec(2) and environ(5).

System Calls and Subroutines

System calls are requests from a program for an action to be per-
formed by the UNIX system kernel. Subroutines are precoded
modules used to supplement the functionality of a programming
language.

Both system calls and subroutines look like functions such as those
you might code for the individual parts of your program. There are,
however, differences between them:

e At link edit time, the code for subroutines is copied into the
object file for your program; the code invoked by a system call
remains in the kernel.

® At execution time, subroutine code is executed as if it was code
you had written yourself; a system function call is executed by
switching from your process area to the kernel.

This means that while subroutines make your executable object file

larger, runtime overhead for context switching may be less and execu-
tion may be faster.

PROGRAMMING BASICS 2-21

SRS
—_—
]

The UNIX System/Language Interface

Categories of System Calls and Subroutines
System calls divide fairly neatly into the following categories:
e file access
e file and directory manipulation
® process control
® environment control and status information
You can generally tell the category of a subroutine by the section of
the System V Reference Manual in which you find its manual page.

However, the first part of Section 3 (3C and 8S) covers such a variety
of subroutines it might be helpful to classify them further.

® The subroutines of sub-class 3S constitute the UNIX system/C
Language standard I/O, an efficient I/0 buffering scheme for C.

® The subroutines of sub-class 3C do a variety of tasks. They
have in common the fact that their object code is stored in
libe.a. They can be divided into the following categories:

¢ string manipulation

e character conversion

e character classification

¢ environment management

¢ memory management

Figure 2-3 lists the functions that compose the standard I/0 subrou-
tines. Frequently, one manual page describes several related func-
tions. In Figure 2-3 the left hand column contains the name that
appears at the top of the manual page; the other names in the same
row are related functions described on the same manual page.

2-22 PROGRAMMER’S GUIDE

09

61

—————————1dk

The UNIX System/Language Interface

Function Name(s)

Purpose

fclose | fllush

ferror | feof clearerr
fopen | freopen | fdopen
fread | fwrite

fseek rewind | ftell
getc getchar | fgetc
gets fgets

popen | pclose

printf | fprintf sprintf

fileno

getw

close or flush a stream
stream status inquiries
open a stream

binary input/output

reposition a file pointer
in a stream

get a character or word
from a stream

get a string from
a stream

begin or end a pipe to or
from a process

print formatted output

For all functions: #include <stdio.h>

The function name shown in bold gives the location in the System

V Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines (sheet 1 of 2)

PROGRAMMING BASICS

2-23

The UNIX System/Language Interface

Function Name(s)

Purpose

putc putchar | fputc
puts fputs

scanf fscanf sscanf
setbuf setvbuf

system

tmpfile

tmpnam tempnam
ungetc

vprintf viprintf | vsprintf

putw

put a character or word
on a stream

put a string on a stream
convert formatted input

assign buffering to a
stream

issue a command
through the shell

create a temporary file

create a name for a tem-
porary file

push character back into
input stream

29

print formatted output
of a varargs argument
list

For all functions: #include <stdio.h>

The function name shown in bold gives the location in the System

V Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines (sheet 2 of 2)

2-24

PROGRAMMER'S GUIDE

63

————— —————— Jdb

The UNIX System/Language Interface

Figure 2-4 lists string handling functions that are grouped under the
heading string(3C) in the System V Reference Manual.

String Operations

strcat(sl, s2) append a copy of s2 to the end of sl.
strncat(sl, s2, n) append n characters from s2 to the end of sl.

stremp(sl, s2) compare two strings. Returns an integer less
than, greater than or equal to 0 to show that
sl is lexicographically less than, greater than
or equal to s2.

strncmp(sl, s2, n) | compare n characters from the two strings.
Results are otherwise identical to stremp.

strepy(sl, s2) copy s2 to sl, stopping after the null character
(\0) has been copied.

strncpy(sl, s2, n) | copy n characters from s2 to sl. s2 will be
truncated if it is longer than n, or padded with
null characters if it is shorter than n.

strdup(s) returns a pointer to a new string that is a
duplicate of the string pointed to by s.

strchr(s, c) returns a pointer to the first occurrence of
character c in string s, or a NULL pointer if ¢
is not in s.

strrchr(s, c) returns a pointer to the last occurrence of
character c in string s, or a NULL pointer if ¢
is not in s.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations (sheet 1 of 2)

PROGRAMMING BASICS 2-25

AR et e At S S S e S AR e e e
—
]

The UNIX System/Language lnterl‘ace

String Operations

strlen(s) returns the number of characters in s up to
the first null character.

strpbrk(sl, s2) | returns a pointer to the first occurrence in sl
of any character from s2, or a NULL pointer if
no character from s2 occurs in sl.

strspn(sl, s2) returns the length of the initial segment of sl,
which consists entirely of characters from s2.

strespn(sl, s2) | returns the length of the initial segment of sl,
which consists entirely of characters not from
s2.

strtok(sl, s2) look for occurrences of s2 within sl.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations (sheet 2 of 2)

2-26 PROGRAMMER'’S GUIDE

¥9

65

The UNIX System/Language Interface

Figure 2-5 lists macros that classify ASCII character-coded integer
values. These macros are described under the heading ctype(3C) in
Section 3 of the System V Reference Manual.

Classify Characters

isalpha(c)
isupper(c)
islower(c)
isdigit(c)
isxdigit(c)
isalnum(c)

isspace(c)
ispunct(c)
isprint(c)
isgraph(c)
isentrl(c)

isascii(c)

is ¢ a letter

is ¢ an upper-case letter

is ¢ a lower-case letter

is ¢ a digit [0-9]

is ¢ a hexadecimal digit [0-9], [A-F] or [a-f]
is ¢ an alphanumeric (letter or digit)

is ¢ a space, tab, carriage return, new-line, vertical tab
or form-feed

is ¢ a punctuation character (neither control nor
alphanumeric)

is ¢ a printing character, code 040 (space) through
0176 (tilde) and 0240 (NBSP) through 0377 (small
letter y with diareses).

same as isprint except false for 040 (space)

is ¢ a control character (less than 040) or a delete
character (0177)

is ¢ an ASCII character (code less than 0200)

For all macros: #include <ctype.h>
Nonzero return = = true; zero return = = false

Figure 2-5: Classifying ASCII Character-Coded Integer Values

PROGRAMMING BASICS 2-27

The UNIX System/Language Interface

Figure 2-6 lists functions and macros that are used to convert charac-
ters, integers, or strings from one representation to another.

Function Name(s) Purpose
a64l 164a convert between long integer and base-64
ASCII string

ecvt fevt | gevt | convert floating-point number to string)
; 13tol 1tol3 convert between 3-byte integer and long u
| integer

strtod atof convert string to double-precision number

strtol atol | atoi | convert string to integer

conv(3C): Translate Characters

toupper lower-case to upper-case

99

_toupper | macro version of toupper
tolower upper-case to lower-case
_tolower | macro version of tolower

toascii turn off all bits that are not part of a
standard ASCII character; intended for
compatibility with other systems

For all econv(3C) macros: #include <ctype.h>

Figure 2-6: Conversion Functions and Macros

2-28 PROGRAMMER’S GUIDE

67

The UNIX System/Language Interface

Where the Manual Pages Can Be Found

System calls are listed alphabetically in Section 2 of the System V
Reference Manual. Subroutines are listed in Section 3. We have
described above what is in the first subsection of Section 3. The
remaining subsections of Section 3 are:

e 3M — functions that make up the Math Library, libm
e 3X — various spécialized functions
e 3N — Networking Support Utilities

How System Calls and Subroutines Are Used in C
Programs

Information about the proper way to use system calls and subroutines
is given on the manual page, but you have to know what you are
looking for before it begins to make sense. To illustrate, a typical
manual page (for gets(3S)) is shown in Figure 2-7 on the following

page.

PROGRAMMING BASICS 2-29

The UNIX System/Language Interface

NAME

gets, fgets — get a string from a stream

SYNOPSIS

#include <stdio.h>
char = gets (s)
char =s;

char = fgets (s, n, stream)
char =s;
int ng
FILE «stream;

DESCRIPTION

gets reads characters from the standard input stream, stdin,
into the array pointed to by s, until a new-line character is
read or an end-of-file condition is encountered. The new-line
character is discarded and the string is terminated with a null
character.

fgets reads characters from the stream into the array pointed
to by s, until n —1 characters are read, or a new-line character
is read and transferred to s, or an end-of-file condition is
encountered. The string is then terminated with a null char-
acter.

SEE ALSO

ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S), stdio(3).

DIAGNOSTICS

2-30

If end-of-file is encountered and no characters have been read,
no characters are transferred to s and a NULL pointer is
returned. If a read error occurs, such as trying to use these
functions on a file that has not been opened for reading, a
NULL pointer is returned. Otherwise s is returned.

Figure 2-7: Manual Page for gets(3S)

PROGRAMMER’S GUIDE

89

69

o ———1d&

The UNIX System/Language Interface

As you can see from the illustration, two related functions are
described on this page: gets and fgets. Each function gets a string
from a stream in a slightly different way. The DESCRIPTION sec-
tion tells how each operates.

It is the SYNOPSIS section, however, that contains the critical infor-
mation about how the function (or macro) is used in your program.
Notice in Figure 2-7 that the first line in the SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard
I/O header file into your program (generally right at the top of the
file). There is something in stdio.h that is needed when you use the
described functions. Figure 2-9 shows a version of stdio.h. Check it
to see if you can understand what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a manual page
that documents system calls or subroutines is the formal declaration
of the function. The formal declaration tells you:

e the type of object returned by the function

In our example, both gets and fgets return a character
pointer.

o the object or objects the function expects to receive
when called

These are the things enclosed in the parentheses of the func-
tion. gets expects a character pointer. (The DESCRIPTION
section sheds light on what the tokens of the formal declaration
stand for.)

® how the function is going to treat those objects
The declaration
char *s;

in gets means that the token s enclosed in the parentheses will
be considered to be a pointer to a character string. Bear in
mind that in the C language, when passed as an argument, the

PROGRAMMING BASICS 2-31

The UNIX System/Language Interface

name of an array is converted to a pointer to the beginning of
the array.

We have chosen a simple example here in gets. If you want to test
yourself on something a little more complex, try working out the
meaning of the elements of the fgets declaration.

While we’re on the subject of fgets, there is another piece of C eso-
terica that we’ll explain. Notice that the third parameter in the fgets
declaration is referred to as stream. A stream, in this context, is a
file with its associated buffering. It is declared to be a pointer to a
defined type FILE. Where is FILE defined? Right! In stdio.h.

To finish off this discussion of the way you use functions described in
the System V Reference Manual in your own code, in Figure 2-7?7 we
show a program fragment in which gets is used.

- N

#include <stdio.h>

main()
{
char sarray[80];
for(;;)
{
if (gets(sarray) != NULL)

/* Do something with the string */

}

- /

Figure 2-8: How gets Is Used in a Program

You might ask, "Where is gets reading from?” The answer is, "From
the standard input.” That generally means from something being
keyed in from the terminal where the command was entered to get
the program running, or output from another command that was
piped to gets. How do we know that? The DESCRIPTION section of

2-32 PROGRAMMER’S GUIDE

0L

>

————————1de

The UNIX System/Language Interface

the gets manual page says, “gets reads characters from the standard
input....” Where is the standard input defined? In stdio.h.

4 N

#ifndef NFILE
#define NFILE 32

#define BUFSIZ 2048
#define _SPFSIZ 8

‘ ,’ typedef struct {

int _cnt;
unsigned char * ptr;
unsigned char * base;

4l

char _flag;
char _file;
} FILE;
#define _IOFBF 0000 /* _IOLBF means that a file's output */
#define _IOREAD 0001 /* will be buffered line by line. */
#define _IOWRT 0002 /* In addition to being flags, _IONBF,*/
#define _IONBF 0004 /* IOLBF and IOFBF are possible */
#define _IOMYBUF 0010 /* values for "type” in setvbuf. */
#define _IOEOF 0020
#define _IOERR 0040
#define _IOLBF 0100
#define _IORW 0200
#ifndef NULL
#define NULL 0
ﬁ #endif
#ifndef EOF
#define EOF (-1)

#endif

N /

Figure 2-9: A Version of stdio.h (sheet 1 of 2)

PROGRAMMING BASICS 2-33

The UNIX System/Language Interface

/

#endif

-

#define stdin (&_iob[0])

#define stdout (&_iob[1])

#define stderr (&_iob[2})

#define _bufend(p) _bufendtab[(p)-> file]

#define bufsiz(p) (_bufend(p) - (p)->_ base)

#ifndef lint

#define getc(p) (-=(p)->_cnt < 0 ? _filbuf(p) : (int) *(p)->_ptr++)
#define putc(x, p) (--(p)->_cnt < 0 ?

_flsbuf((unsigned char) (x), (p)) :
(int) (*(p)~->_ptr++ = (unsigned char) (x)))

#define getchar() getc(stdin)
#define putchar(x) putc((x), stdout)

#define clearerr(p)((void) ((p)->_flag &= ~(_IOERR | _IOEOF)))
#define feof (p) ((p)->_flag & _IOEOF)

#define ferror(p) ((p)->_flag & _IOERR)

#define fileno(p) (p)->_file

#endif

extern FILE _iob[_NFILE];

extern FILE *fopen(), *fdopen(), *freopen(), *popen(), *tmpfile();
extern long ftell();

extern void rewind(), setbuf();

extern char *ctermid(), *cuserid(), *fgets(), *gets(), *tempnam(), *tmpnam()[;
extern unsigned char *_ bufendtab|];

#define L _ctermid 9

#define L cuserid 9

#define P_tmpdir ”/usr/tmp/”

#define L tmpnam (sizeof(P_tmpdir) + 15)

2-34

Figure 2-9: A Version of stdio.h (sheet 2 of 2)

PROGRAMMER'’S GUIDE

[

73

The UNIX System/Language Interface

Header Files and Libraries

In the earlier parts of this chapter there have been frequent refer-
ences to stdio.h, and a version of the file itself is shown in Figure 2-
9. stdio.h is the most commonly used header file in the UNIX
system/C environment, but there are many others.

Header files carry definitions and declarations that are used by more
than one function. Header filenames traditionally have the suffix .h,
and are brought into a program at compile time by the C-
preprocessor. The preprocessor does this because it interprets the
#include statement in your program as a directive; as indeed it is.
All keywords preceded by a pound sign (#) at the beginning of the
line, are treated as preprocessor directives. The two most commonly
used directives are #include and #define. We have already seen
that the #include directive is used to call in (and process) the con-
tents of the named file. The #define directive is used to replace a
name with a token-string. For example,

#define NFILE 32

sets to 32 the number of files a program can have open at one time.
See cpp(1) for the complete list.

In the pages of the System V Reference Manual there are about 45
different .h files named. The format of the #include statement for
all these shows the file name enclosed in angle brackets (< >), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard
places for the file. In most systems the standard place is in the
Jusr/include directory. If you have some definitions or external
declarations that you want to make available in several files, you can
create a .h file with any editor, store it in a convenient directory and
make it the subject of a #include statement such as the following:

#include ”../defs/rec.h”

PROGRAMMING BASICS 2-35

The UNIX System/Language Interface

It is necessary, in this case, to provide the relative pathname of the
file and enclose it in quotation marks (*”). Fully-qualified pathnames
(those that begin with /) can create portability and organizational
problems. An alternative to long or fully-qualified pathnames is to
use the —Idir preprocessor option when you compile the program.
This option directs the preprocessor to search for #include files
whose names are enclosed in ””, first in the directory of the file being
compiled, then in the directories named in the —1I option(s), and
finally in directories on the standard list. In addition, all #include
files whose names are enclosed in angle brackets (< >) are first
searched for in the list of directories named in the —1I option and
finally in the directories on the standard list.

Object File Libraries

It is common practice in UNIX system computers to keep modules of
compiled code (object files) in archives; by convention, designated by a
.a suffix. System calls from Section 2, and the subroutines in Section
3, subsections 3C and 38, of the System V Reference Manual that are
functions (as distinct from macros) are kept in an archive file by the
name of libc.a. In most systems, libe.a is found in the directory
/lib? or /usr/lib?, where ? is the TARGETMC. If both libraries
occur, the latter is apt to be used to hold archives that are related to
specific applications.

During the link edit phase of the compilation and link edit process,
copies of some of the object modules in an archive file are loaded with
your executable code. By default the cc command that invokes the C
compilation system causes the link editor to search libc.a. If you
need to point the link editor to other libraries that are not searched
by default, you do it by naming them explicitly on the command line
with the —1 option. The format of the —1 option is —lx where x is
the library name, and can be up to nine characters. For example, if
your program includes functions from the curses screen control pack-
age, the option

—lcurses

2-36 PROGRAMMER'’S GUIDE

123

75

The UNIX System/Language Interface

will cause the link editor to search for /lib?/libcurses.a or
/usr/lib?/libcurses.a, (? is the TARGETMC), and use the first one
it finds to resolve references in your program.

In cases where you want to direct the order in which archive libraries
are searched, you may use the —L dir option. Assuming the —L
option appears on the command line ahead of the —1 option, it directs
the link editor to search the named directory for libx.a before looking
in /lib? and /usr/lib?, where ? is TARGETMC. This is particularly
useful if you are testing out a new version of a function that already
exists in an archive in a standard directory. Its success is due to the
fact that once having resolved a reference the link editor stops look-
ing. That’s why the —L option, if used, should appear on the com-
mand line ahead of any ~1 specification.

Input/Output

We talked some about I/O earlier in this chapter in connection with
system calls and subroutines. A whole set of subroutines constitutes
the C language standard I/O package, and there are several system
calls that deal with the same area. In this section we want to get into
the subject in a little more detail and describe for you how to deal
with input and output concerns in your C programs. First off, let’s
briefly define what the subject of I/O encompasses. It has to do with

® creating and sometimes removing files

® opening and closing files used by your program

® transferring information from a file to your program (reading)

¢ transferring information from your program to a file (writing)
In this section we will describe some of the subroutines you might

choose for transferring information, but the heaviest emphasis will be
on dealing with files.

PROGRAMMING BASICS 2-37

The UNIX System/Language Interface

Three Files You Always Have

Programs are permitted to have several files open simultaneously.
The number may vary from system to system; the most common max-
imum is 32. NFILE in stdio.h specifies the number of standard I/0
FILEs a program is permitted to have open.

Any program automatically starts off with three files. If you will look
again at Figure 2-9, about midway through you will see that stdio.h
contains three #define directives that equate stdin, stdout, and
stderr to the address of _iob[0], _iob[1], and _iob[2], respectively.
The array _iob holds information dealing with the way standard I/O
handles streams. It is a representation of the open file table in the
control block for your program. The position in the array is a digit
that is also known as the file descriptor. The default in UNIX sys-
tems is to associate all three of these files with your terminal.

The real significance is that functions and macros that deal with
stdin or stdout can be used in your program with no further need to
open or close files. For example, gets, cited above, reads a string
from stdin; puts writes a null-terminated string to stdout. There
are others that do the same (in slightly different ways: character at a
time, formatted, etc.). You can specify that output be directed to
stderr by using a function such as fprintf. fprintf works the same
as printf except that it delivers its formatted output to a named
stream, such as stderr. You can use the shell’s redirection feature
on the command line to read from or write into a named file. If you
want to separate error messages from ordinary output being sent to
stdout and thence possibly piped by the shell to a succeeding pro-
gram, you can do it by using one function to handle the ordinary out-
put and a variation of the same function that names the stream, to
handle error messages.

2-38 PROGRAMMER’S GUIDE

9L

77

———————1db

The UNIX System/Language Interface

Named Files

Any files other than stdin, stdout, and stderr that are to be used by
your program must be explicitly connected by you before the file can
be read from or written to. This can be done using the standard
library routine fopen. fopen takes a pathname (which is the name
by which the file is known to the UNIX file system), asks the system
to keep track of the connection, and returns a pointer that you then
use in functions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your pro-
gram you need to have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then
assign the name of a particular file to the pointer with a statement in
your program like this:

fin = fopen(”filename”, "r"”);

where filename is the pathname to open. The ”r” means that the
file is to be opened for reading. This argument is known as the
mode. As you might suspect, there are modes for reading, writing,
and both reading and writing. Actually, the file open function is often
included in an if statement such as:

if ((fin = fopen(”filename”, “r”)) = = NULL)
(void) fprintf(stderr,”%s: Unable to open file %$s\n”,argv[0],”filename”);

that takes advantage of the fact that fopen returns a NULL pointer
if it can’t open the file.

Once the file has been successfully opened, the pointer fin is used in
functions (or macros) to refer to the file. For example:

int c¢;
c = getc(fin);

PROGRAMMING BASICS 2-39

=] ——g

The UNIX System/Language Interface

brings in a character at a time from the file into an integer variable
called ¢. The variable ¢ is declared as an integer even though we are
reading characters because the function getc() returns an integer.
Getting a character is often incorporated into some flow-of-control
mechanism such as:

while ((¢c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and
the macro getc are all defined in stdio.h. getc and others that make
up the standard I/O package keep advancing a pointer through the
buffer associated with the file; the UNIX system and the standard
I/O subroutines are responsible for seeing that the buffer is refilled
(or written to the output file if you are producing output) when the
pointer reaches the end of the buffer. All these mechanics are merci-
fully invisible to the program and the programmer.

The function fclose is used to break the connection between the
pointer in your program and the pathname. The pointer may then be
associated with another file by another call to fopen. This re-use of
a file descriptor for a different stream may be necessary if your pro-
gram has many files to open. For output files it is good to issue an
fclose call because the call makes sure that all output has been sent
from the output buffer before disconnecting the file. The system call
exit closes all open files for you. It also gets you completely out of
your process, however, so it is safe to use only when you are sure you
are completely finished.

Low-level 1/0 and Why You Shouldn’t Use It

The term low-level I/0 is used to refer to the process of using system
calls from Section 2 of the System V Reference Manual rather than
the functions and subroutines of the standard I/O package. We are
going to postpone until Chapter 3 any discussion of when this might
be advantageous. If you find as you go through the information in

2-40 PROGRAMMER’S GUIDE

8.

79

B m—— 7]

The UNIX System/Language Interface

this chapter that it is a good fit with the objectives you have as a pro-
grammer, it is a safe assumption that you can work with C language
programs in the UNIX system for a good many years without ever
having a real need to use system calls to handle your I/O and file
accessing problems. The reason low-level 1/0 is perilous is because it
is more system-dependent. Your programs are less portable and prob-
ably no more efficient.

PROGRAMMING BASICS 2-41

—) —_——

The UNIX System/Language Intérface

System Calls for Environment or Status Infor-
mation

Under some circumstances you might want to be able to monitor or
control the environment in your computer. There are system calls
that can be used for this purpose. Some of them are shown in Figure

2-10.

Function Name(s) Purpose
chdir change working directory
chmod change access permission of a file
chown change owner and group of a file

getpid | getpgrp | getppid | get process IDs
getuid | geteuid | getgid get user IDs

ioctl control device

link unlink add or remove a directory entry
mount | umount mount or unmount a file system
nice change priority of a process

stat fstat get file status

time get time

ulimit get and set user limits

uname get name of current UNIX system

Figure 2-10: Environment and Status System Calls

As shown in Figure 2-10, many of the functions have equivalent
UNIX system shell commands. Shell commands can easily be incor-
porated into shell scripts to accomplish the monitoring and control
tasks you may need to do. The functions are available, however, and
may be used in C programs as part of the UNIX system/C Language

2-42 PROGRAMMER’S GUIDE

08

81

The UNIX System/Language Interface

interface. They are documented in Section 2 of the System V Refer-
ence Manual.

Processes

Whenever you execute a command in the UNIX system you are ini-
tiating a process that is numbered and tracked by the operating sys-
tem. A flexible feature of the UNIX system is that processes can be
generated by other processes. This happens more than you might
ever be aware of.

For example, when you log in to your system you are running a pro-
cess, very probably the shell. If you then use an editor such as vi,
take the option of invoking the shell from vi, and execute the ps com-
mand, you will see a display something like that in Figure 2-11 (which
shows the results of a ps —f command):

UID PID PPID C STIME TTY TIME COMMAND
abc 24210 1 0 06:13:14 tty29 0:05 -sh

abc 24631 24210 0 06:59:07 tty29 0:13 vi c2.uli
abc 28441 28358 80 09:17:22 tty29 0:01 ps -f
abc 28358 24631 2 09:15:14 tty29 0:01 sh -1

Figure 2-11: Process Status

As you can see, user abc (who went through the steps described
above) now has four processes active. It is an interesting exercise to
trace the chain that is shown in the Process ID (PID) and Parent
Process ID (PPID) columns. The shell that was started when user
abc logged on is Process 24210; its parent is the initialization process
(Process ID 1). Process 24210 is the parent of Process 24631, and so
on.

The four processes in the example above are all UNIX system shell
level commands, but you can spawn new processes from your own
program.

PROGRAMMING BASICS 2-43

The UNIX System/Language Interface

(Actually, when you issue the command from your terminal to exe-
cute a program you are asking the shell to start another process, the
process being your executable object module with all the functions
and subroutines that were made a part of it by the link editor.)

You might think, "Well, it’s one thing to switch from one program to
another when I’'m at my terminal working interactively with the com-
puter; but why would a program want to run other programs, and if
one does, why wouldn’t I just put everything together into one big
executable module?”

Overlooking the case where your program is itself an interactive
application with diverse choices for the user, your program may need
to run one or more other programs based on conditions it encounters
in its own processing. (If it’s the end of the month, go do a trial bal-
ance, for example.) The usual reasons why it might not be practical
to create one monster executable are:

® The load module may get too big to fit in the maximum process
size for your system.

® You may not have control over the object code of all the other
modules you want to include.
Suffice it to say, there are legitimate reasons why this creation of new
processes might need to be done. There are three ways to do it:
o system(3S) —request the shell to execute a command

® exec(2) —stop this process and start another

o fork(2) —start an additional copy of this process

2-44 PROGRAMMER’S GUIDE

28

83

The UNIX System/Language Interface

system(3S)
The formal declaration of the system function looks like this:
#include <stdio.h>

int system(string)
char =*string;

The function asks the shell to treat the string as a command line.
The string can therefore be the name and arguments of any execut-
able program or UNIX system shell command. If the exact argu-
ments vary from one execution to the next, you may want to use
sprintf to format the string before issuing the system command.
When the command has finished running, system returns the shell
exit status to your program. Execution of your program waits for the
completion of the command initiated by system and then picks up
again at the next executable statement.

exec(2)

exec is the name of a family of functions that includes execv, exe-
cle, execve, execlp, and execvp. They all have the function of
transforming the calling process into a new process. The reason for
the variety is to provide different ways of pulling together and
presenting the arguments of the function. An example of one version
(execl) might be:

execl(”/bin/prog2”, ”prog”, progargl, progarg2, (char =)0);
For execl the argument list is

/bin/prog2 path name of the new process file

prog the name the new process gets in its argv[0]

progargl, arguments to prog2 as char #*’s

progarg2

(char =*)0 a null char pointer to mark the end of the
arguments

PROGRAMMING BASICS 2-45

The UNIX System/Language Interface

Check the manual page in the System V Reference Manual for the
rest of the details. The key point of the exec family is that there is
no return from a successful execution: the calling process is finished,
the new process overlays the old. The new process also takes over
the Process ID and other attributes of the old process. If the call to
exec is unsuccessful, control is returned to your program with a
return value of —1. You can check errno (see below) to learn why it
failed.

fork(2)

The fork system call creates a new process that is an exact copy of
the calling process. The new process is known as the child process;
the caller is known as the parent process. The one major difference
between the two processes is that the child gets its own unique pro-
cess ID. When the fork process has completed successfully, it
returns a 0 to the child process and the child’s process ID to the
parent. If the idea of having two identical processes seems a little
funny, consider this:

® Because the return value is different between the child process
and the parent, the program can contain the logic to determine
different paths.

® The child process could say, "Okay, I’'m the child. I’'m supposed
to issue an exec for an entirely different program.”

® The parent process could say, "My child is going to be execing
a new process. I'll issue a wait until I get word that that pro-
cess is finished.”

To take this out of the storybook world where programs talk like peo-
ple and into the world of C programming (where people talk like pro-
grams), your code might include statements like this:

2-46 PROGRAMMER’S GUIDE

8

85

The UNIX System/Language Interface

4)

#include <errno.h>

int ch_stat, ch _pid, status;
char *progargl;

char *progarg2;

void exit();

extern int errno;

if ((ch_pid = fork()) < 0)
{
/* Could not fork...
check errno
*/
}
else if (ch pid == 0) /* child */
{
(void)execl(”/bin/prog2”, “prog”,progargl,progarg2, (char *)0);
exit(2); /* execl() failed */

else /* parent */
while ((status = wait(&ch_stat)) != ch_pid)
{
if (status < 0 && errno == ECHILD)

break;
errno = 0;

N /

Figure 2-12: Example of fork

Because the child process ID is taken over by the new exec’d process,
the parent knows the ID. What this boils down to is a way of leaving
one program to run another, returning to the point in the first pro-
gram where processing left off. This is exactly what the system(3S)
function does. As a matter of fact, system accomplishes it through
this same procedure of forking and execing, with a wait in the
parent.

PROGRAMMING BASICS 2-47

——I

The UNIX System/Language Interface

Keep in mind that the fragment of code above includes a minimum
amount of checking for error conditions. There is also potential con-
fusion about open files and which program is writing to a file. Leav-
ing out the possibility of named files, the new process created by the
fork or exec has the three standard files that are automatically
opened: stdin, stdout, and stderr.

If the parent has buffered output that should appear before output

from the child, the buffers must be flushed before the fork. Also, if .
the parent and the child process both read input from a stream, u
whatever is read by one process will be lost to the other. That is,

once something has been delivered from the input buffer to a process

the pointer has moved on.

Pipes

The idea of using pipes, a connection between the output of one pro-
gram and the input of another, when working with commands exe-
cuted by the shell is well established in the UNIX system environ-
ment.

98

For example, to learn the number of archive files in your system you
might enter a command like:

echo /lib*/*.a /usr/lib*/*.a | wc -w

that first echoes all the files in /lib? and /usr/lib?, (? is the TAR- U
GETMC), that end in .a, then pipes the results to the we command,
which counts their number.

A feature of the UNIX system/C Language interface is the ability to
establish pipe connections between your process and a command to be
executed by the shell, or between two cooperating processes. The
first uses the popen(3S) subroutine that is part of the standard I/0
package; the second requires the system call pipe(2).

popen is similar in concept to the system subroutine in that it
causes the shell to execute a command. The difference is that once w
having invoked popen from your program, you have established an
open line to a concurrently running process through a stream. You

2-48 PROGRAMMER’S GUIDE

~—————— ——————1d&

The UNIX System/Language Interface

can send characters or strings to this stream with standard I/O sub-
routines just as you would to stdout or to a named file. The connec-
tion remains open until your program invokes the companion pclose
subroutine. A common application of this technique might be a pipe
to a printer spooler. For example:

4 N

#include <stdio.h>

eﬂaﬂs main()

{

FILE *pptr;
char *outstring;

if ((pptr = popen(”lp”,”w”)) != NULL)
{
for(;;)
{
/* Organize output */

87

(void)fprintf(pptr, “%s\n”, outstring);

pclose(pptr);
m N

Figure 2-13: Example of a popen pipe

PROGRAMMING BASICS 2-49

k3

The UNIX System/Language Interface

Error Handling

Within your C programs you must determine the appropriate level of
checking for valid data and for acceptable return codes from functions
and subroutines. If you use any of the system calls described in Sec-
tion 2 of the System V Reference Manual, you have a way in which
you can find out the probable cause of a bad return value.

UNIX system calls that are not able to complete successfully almost
always return a value of —1 to your program. (If you look through
the system calls in Section 2, you will see that there are a few calls
for which no return value is defined, but they are the exceptions.) In
addition to the —1 that is returned to the program, the unsuccessful
system call places an integer in an externally declared variable,
errno. You can determine the value in errno if your program con-
tains the statement

#include <errno.h>

The value in errno is not cleared on successful calls, so your program
should check it only if the system call returned a —1. The errors are
described in intro(2) of the System V Reference Manual.

The subroutine perror(3C) can be used to print an error message (on
stderr) based on the value of errno.

Signals and Interrupts

Signals and interrupts are two words for the same thing. Both words
refer to messages passed by the UNIX system to running processes.
Generally, the effect is to cause the process to stop running. Some
signals are generated if the process attempts to do something illegal;
others can be initiated by a user against his or her own processes, or
by the super-user against any process.

2-50 PROGRAMMER’S GUIDE

88

89

The UNIX System/Language Interface

There is a system call, kill, that you can include in your program to
send signals to other processes running under your user-id. The for-
mat for the kill call is:

kill(pid, sig)

where pid is the process number against which the call is directed,
and sig is an integer from 1 to 19 that shows the intent of the mes-
sage. The name “kill” is something of an overstatement; not all the
messages have a “drop dead” meaning. Some of the available signals
are shown in Figure 2-14 as they are defined in <sys/signal.h>.

4 N

#define SIGHUP 1 /* hangup */

#define SIGINT 2 /* interrupt (rubout) */

#define SIGQUIT 3 /* quit (ASCII FS) */

#define SIGILL 4 /* illegal instruction (not reset when caught) */
#define SIGTRAP 5 /* trace trap (not reset when caught) */

#define SIGIOT 6 /* IOT instruction */

#define SIGABRT 6 /* used by abort, replace SIGIOT in the future */
#define SIGEMT 7 /* EMT instruction */

#define SIGFPE 8 /* floating point exception */

#define SIGKILL 9 /* kill (cannot be caught or ignored) */

#define SIGBUS 10 /* bus error */

#define SIGSEGV 11 /* segmentation violation */

#define SIGSYS 12 /* bad argument to system call */

#define SIGPIPE 13 /* write on a pipe with no one to read it */
#define SIGALRM 14 /* alarm clock */
#define SIGTERM 15 /* software termination signal from kill */

#define SIGUSR1 16 /* user defined signal 1 */
#define SIGUSR2 17 /* user defined signal 2 */
#define SIGCLD 18 /* death of a child */
#define SIGPWR 19 /* power-fail restart */

#define SIGPOLL 22 /* pollable event occurred */

#define NSIG 32 /* maximum number of exceptions */
#define MAXSIG 32 /* maximum number of exceptions */

/

Figure 2-14: Signal Numbers Defined in /usr/include/sys/signal.h

PROGRAMMING BASICS 2-51

The UNIX System/Language Interface

System generated signals are sent to all processes started from the
terminal that carries the same process group-id as the process that is
really the target. Unless some other provision within the program is
made to field the signal, the processes are terminated when an inter-
rupt, quit, hangup, or terminate signal is received.

The signal(2) system call is designed to let you code methods of deal-
ing with incoming signals. You have a three-way choice. You can a)
accept whatever the default action is for the signal, b) have your pro-
gram ignore the signal, or c¢) write a function of your own to deal with
it.

2-52 PROGRAMMER’S GUIDE

06

91

Analysis/Debugging

The UNIX system provides several commands designed to help you
discover the causes of problems in programs and to learn about
potential problems.

Sample Program

To illustrate how these commands are used and the type of output
they produce, we have constructed a sample program that opens and
reads an input file and performs one to three subroutines according
to options specified on the command line. This program does not do
anything you couldn’t do quite easily on your pocket calculator, but it
does serve to illustrate some points. The source code is shown in Fig-
ure 2-15. The header file, recdef.h, is shown at the end of the source
code.

The output produced by the various analysis and debugging tools
illustrated in this section may vary slightly from one installation to
another. The System V Reference Manual is a good source of addi-
tional information about the contents of the reports.

PROGRAMMING BASICS 2-53

Analysis/Debugging

Figure 2-15: Source Code for Sample Program

4 N

/* Main module —- restate.c */

#include <stdio.h>
#include "recdef.h”

#define TRUE 1
#define FALSE 0

main(argec, argv)

int arge;

char *argv{};

{
FILE *fopen(), *fin;
void exit();
int getopt();
int oflag = FALSE;
int pflag = FALSE;
int rflag = FALSE;
int ch;
struct rec first;
extern int opterr;
extern float oppty(), pft(), rfe();

if (argc < 2)

{
(void) fprintf(stderr, ”%s: Must specify option\n”,argv[0]);
(void) fprintf(stderr, “Usage: %s -rpo\n”, argv(0]);
exit(2);
}
opterr = FALSE;
while ((ch = getopt(argc,argv,”opr”)) != EOF)
{
switch(ch)
{
case '0’:
oflag = TRUE;
break;
case 'p’:
pflag = TRUE;
break;

N

(continued on next page)

2-54 PROGRAMMER’S GUIDE

c6

93

II..IllllllIIIIIIIllllII

Analysis/Debugging

k3

///'

o

case ‘r':
rflag = TRUE;
break;
default:
(void) fprintf(stderr, "Usage: %s -rpo\n”,argv[0]);
exit(2);
}
}
if ((fin = fopen(”info”,”r”)) = = NULL)
{
(void) fprintf(stderr, ”%s: cannot open input file %s\n”,
argv(0],”info”);
exit(2);
}

if (fscanf(fin, “3s%fRfSfY£%£%£f”, first.pname,&first.ppx,
sfirst.dp,&first.i,&first.c,&first.t,&first.spx) != 7)

{
(void) fprintf(stderr,”%s: cannot read first record from %s\n”,
argv{0],”info");
exit(2);
}

printf(“Property: %s\n”,first.pname);

if(oflag)
printf(”Opportunity Cost: $%#5.2f\n”,oppty(&first));

if(pflag)
printf(”Anticipated Profit(loss): $%#7.2f\n”,pft(&first));

if(rflag)
printf(”Return on Funds Employed: $#3.2f%%\n”,rfe(&first));

/* End of Main Module —- restate.c */

/* Opportunity Cost -- oppty.c */

#include “recdef.h”

float
oppty(ps)
struct rec *ps;
{

~

/

(continued on next page)

PROGRAMMING BASICS

2-55

Analysis/Debugging

return(ps->i/12 * ps->t * ps->dp);
/* Profit -- pft.c */
#include "recdef.h”
float
pft(ps)

struct rec *ps;

{
return(ps->spx - ps->ppx + ps->c);

/* Return on Funds Employed —- rfe.c */

#include "recdef.h”

fleoat
rfe(ps)
struct rec *ps;
{

return(100 * (ps->spx - ps->c) / ps->spx);
}

/* Header File -- recdef.h */

struct rec { /* To hold input */

char pname{25];
float ppx;
float dp;

float i;

float c;

float t;

float spx;

}oi

-

2-56 PROGRAMMER’S GUIDE

6

.]db|

Analysis/Debugging

cflow

cflow produces a chart of the external references in C, yacc, lex, and
assembly language files. Using the modules of our sample program,
the command

cflow restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-16.

main: int(), <restate.c 11>
fprintf: <>
exit: <>
getopt: <>
fopen: <>
fscanf: <>
printf: <>
oppty: float(), <oppty.c 7>
pft: float(), <pft.c 7>
rfe: float(), <rfe.c 8>

95

o

/H\am\lmm»uww\

Figure 2-16: c¢flow Output, No Options

PROGRAMMING BASICS 2-57

Analysis/Debugging

The —r option looks at the caller:callee relationship from the other
side. It produces the output shown in Figure 2-17.

~

\

1 exit: <>

2 main : <>

3 fopen: <>

4 main : 2

5 fprintf: <>

6 main : 2

7 fscanf: <>

8 main : 2

9 getopt: <>

10 main : 2

11 main: int(), <restate.c 11>
12 oppty: float(), <oppty.c 7>
13 main : 2

14 pft: float(), <pft.c 7>

15 main : 2

16 printf: <>

17 main : 2

18 rfe: float(), <rfe.c 8>

19 main : 2

Figure 2-17: c¢flow Output, Using —r Option

2-58 PROGRAMMER’S GUIDE

96

___E!

Analysis /Debugging

The -ix option causes external and static data symbols to be
included. Our sample program has only one such symbol, opterr.
The output is shown in Figure 2-18.

main: int(), <restate.c 11>

fprintf: <>

exit: <>

opterr: <>

getopt: <>

fopen: <>

fscanf: <>

printf: <>

oppty: float(), <oppty.c 7>

pft: float(), <pft.c 7>
rfe: float(), <rfe.c 8>)

L =1

/HH\DQ\IG\M#WNH\

Figure 2-18: eflow Output, Using —ix Option

97

PROGRAMMING BASICS 2-59

k3

Analysis/Debugging

Combining the —r and the —ix options produces the output shown

in Figure 2-19.

\

W~ B W N

L I I e e e I i N °]
H O WO WUbd WO

-

exit: <>

main : <>
fopen: <>

main : 2
fprintf: <>

main : 2
fscanf: <>

main : 2
getopt: <>

main : 2
main: int(), <restate.c 11>
oppty: float(), <oppty.c 7>

main : 2
opterr: <>

main : 2
pft: float(), <pft.c 7>

main : 2
printf: <>

main : 2
rfe: float(), <rfe.c 8>

main : 2

\

/

ctrace

ctrace lets you follow the execution of a C program statement by
statement. ctrace takes a .c file as input and inserts statements in
the source code to print out variables as each program statement is
executed. You must direct the output of this process to a temporary
.c file. The temporary file is then used as input to cc. When the
resulting a.out file is executed it produces output that can tell you a
lot about what is going on in your program.

2-60

Figure 2-19: eflow Qutput, Using —r and —ix Options

PROGRAMMER’S GUIDE

86

99

. ———————————]dk|

Analysis /Debugging

Options give you the ability to limit the number of times through
loops. You can also include functions in your source file that turn the
trace off and on so you can limit the output to portions of the pro-
gram that are of particular interest.

ctrace accepts only one source code file as input. To use our sample
program to illustrate, it is necessary to execute the following four
commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c

ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any
names that are convenient for you. The names must end in .c, since
the files are used as input to the C compilation system.

cc —o ct.run ct.main.c ct.op.c ct.p.c ct.r.c
Now the command
ct.run -opr

produces the output shown in Figure 2-20. The command above will
cause the output to be directed to your terminal (stdout). It is prob-
ably a good idea to direct it to a file or to a printer so you can refer to
it.

PROGRAMMING BASICS 2-61

Analysis/Debugging

4 N

8 main(argc, argv)
23 if (argc < 2)
/* arge = = 2 %/
30 opterr = FALSE;
/* FALSE = = 0 */
/* opterr = = 0 */
31 while ((ch = getopt(argc,argv,”opr”)) != EOF)
/* argv = = 14679644 */
/* arge = =2 */
/* ch = = 111 or ‘o’ */
32 {
33 switch(ch)
/* ch = = 111 or ‘o’ */
35 case ‘o’:
36 oflag = TRUE;
/* TRUE = = 1 */
/* oflag = = 1 */
37 break;
48)
31 while ((ch = getopt(argc,argv,”opr”)) != EOF)
/* argv = = */ 14679644 */
/* arge = = 2 */
/* ch = = 112 or 'p’ */
32 ¢
33 switch(ch)
/* ¢ch = =112 or 'p’' */
38 case 'p’:
39 pflag = TRUE;
/* TRUE = = 1 */
/* pflag = = 1 */
40 break;
48)

Figure 2-20: ctrace Output (sheet 1 of 3)

2-62 PROGRAMMER’S GUIDE

001

101

1=

Analysis/Debugging

e

31 while ((ch = getopt(argc,argv,”opr”)) != EOF)
/* argv = = 15679644 */
/* arge = = 2 */
/* ch = = 114 or 'r’ */
32 {
33 switch(ch)
/* ch == 114 or 'r' */
41 case ‘r’:
42 rflag = TRUE;
/* TRUE = = 1 */
/* rflag = = 1 */
43 break;
48 }
31 while ((ch = getopt(argc,argv,”opr”)) = EOF)
/* argv = = 15679644 */
/* argc = = 2 */
/* ch = = -1 %/
49 if ((fin = fopen(”info”,"r”)) = = NULL)
/* fin = = 3149530 */
54 if (fscanf(fin, "3s¥fILILIE£3£%f”,first.pname,&first.ppx,
&first.dp,&first.i,safirst.c,sfirst.t,&first.spx) = 7)
/* f£in = = 3149530 */
/* first.pname = = 14679572 */
61 printf(”Property: %s0,first.pname);
/* first.pname = = 14679572 or "Linden Place” */ Property: Linden Place
63 if(oflag)
/* oflag = = 1 or */
64 printf(”Opportunity Cost: $%#5.2f0,oppty(&first));
5 oppty(ps)
8 return(ps->i/12 * ps->t * ps->dp);
/* ps—>dp = = 1088765312 */ Opportunity Cost: $4476.87
/* ps->t = = 1076494336 */
/* ps->i = = 1069044203 */

~

Figure 2-20: etrace Output (sheet 2 of 3)

PROGRAMMING BASICS

2-63

Analysis/Debugging

4)

66 if(pflag)

/* pflag = = 1 */
67 printf(”Anticipated Profit(loss): $%#7.2f0,pft(&first));
5 pft(ps)
8 return(ps->spx - ps->ppx + ps->C);
/* ps->c = = 1087409536 */ Anticipated Profit(loss): $85950.00
/* ps->spx = = 1091649040 */
/* ps->ppx = = 1091178464 */

69 if(rflag)

/* rflag = = 1 */
70 printf(”Return on Funds Employed: %#3.2f%%0,rfe(&first));
6 rfe(ps)
9 return(l00 * (ps->spx - ps->c) / ps->Spx);
/* ps—>spx = = 1091649040 */
/* ps->c = = 1087409536 */ Return on Funds Employed: 94.00%

/* return */
o /

Figure 2-20: ctrace Output (sheet 3 of 3)

Using a program that runs successfully is not the optimal way to
demonstrate ctrace. It would be more helpful to have an error in
the operation that could be detected by etrace. It would seem that
this utility might be most useful in cases where the program runs to
completion, but the output is not as expected.

cxref

cxref analyzes a group of C source code files and builds a cross-
reference table of the automatic, static, and global symbols in each
file. The command

cxref —c¢ —o cx.op restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-21 in a file named, in this
case, cx.op. The —c option causes the reports for the four .e files to
be combined in one cross-reference file.

2-64 PROGRAMMER’S GUIDE

20t

103

S ————————— 1 db

Analysis/Debugging

-

restate.c:
oppty.c:
pft.c:
rfe.c:
SYMBOL

BUFSIZ

L_ctermid
L_cuserid
L_tmpnam
NULL

P_tmpdir
TRUE
_IOEOF
_IOERR
_IOFBF
_IOLBF
_IOMYBUF
_IONBF
_TOREAD
_TORW
_IOWRT
_NFILE
_SBFSIZ

FILE

Jusr/include/stdio.h
/usr/include/stdio.h
restate.c

restate.c

Jusr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h

~

LINE

*9

49 *50

31

*6 15 16 17 30
*29 73 74

12

*80

Figure 2-21:; cxref Output, Using — ¢ Option (sheet 1 of 5)

PROGRAMMING BASICS

Analysis/Debugging

-

SYMBOL

_base
_bufend()

_bufendtab
_bufsiz()

cnt

_file
_flag
_iob

_ptr
argc

argv

[}

ch
clearerr()

ctermid(})
cuserid()

dp

exit()

fdopen()

FILE
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
Jusr/include/stdio.h
restate.c
/usr/include/stdio.h
restate.c

restate.c

restate.c

restate.c

./recdef.h

pft.c

restate.c

rfe.c

restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
./recdef.h

oppty.c

restate.c

restate.c

/usr/include/stdio.h

oppty
main

main

*58

*20

*28

*27

*73

25 26 45 51 57
*21

8

*9 23 31

8

*10 25 26 31 45 51 57

*18 31 33

*13 27 46 52 58

%74 /

Figure 2-21: exref Output, Using — ¢ Option (sheet 2 of 5)

2-66

PROGRAMMER'S GUIDE

Y01

105

~————————————] d&

Analysis/Debugging

(/"

SYMBOL
feof ()
ferror()
fgets()
fileno()
fin

first
fopen()

fprintf
freopen()

fscanf
ftell()

getc()
getchar()
getopt.()

gets()

lint
main()

o

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c
restate.c
/usr/include/stdio.h
restate.c

restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c

/usr/include/stdio.h
./recdef.h

oppty.c

restate.c
/usr/include/stdioc.h

restate.c

FUNCTION

LINE

*70
*12 49 54
*19 54 55 61 64 67 70

*74
12 49
25 26 45 51 57

Figure 2-21: exref Output, Using — ¢ Option (sheet 3 of 5)

PROGRAMMING BASICS

2-67

Analysis/Debugging

-

SYMBOL

oflag
oppty()

opterr
p

pdpll
pflag

pname
popen()

ppx

printf

putc()

rec

N

putchar()

FILE
restate.c

oppty.c

restate.c

restate.c
/usr/include/stdio.h

FUNCTION LINE

main *15 36 63
- *5

main *21 64
main *20 30

*62 63 64 67 *67

/usr/include/stdio.h
restate.c

pft.c

restate.c

./recdef.h
restate.c

/usr/include/stdio.h
./recdef.h
pft.c
restate.c
restate.c
oppty.c
oppty.c
pft.c
pft.c
rfe.c
rfe.c

/usr/include/stdio.h

/usr/include/stdio.h
./recdef.h

oppty.c

pft.c

restate.c

rfe.c

*57 *58 *61 62

68 *68 69 *69 70 *70

11

*16 39 66
*5

*21 67

*2

54 61

61 64 67 70

J

Figure 2-21: cxref Output, Using —c¢ Option

PROGRAMMER'’S GUIDE

(sheet 4 of 5)

90t

107

II..IIIIIIIlIlIIlIIIIIIIIIlIllIIlIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

de

Analysis/Debugging

s

SYMBOL
rewind()
rfe()
rflag
setbuf()

Spx

stderr

stdin
stdout
t

tempnam()
tmpfile()
tmpnam()

u370
u3b
u3b5s
vax
x

-

FILE

/usr/include/stdio.h

restate.c
rfe.c .
restate.c

/usr/include/stdio.h
./recdef.h

pft.c

restate.c

rfe.c
/usr/include/stdio.h
restate.c
/usr/include/stdio.h
/usr/include/stdio.h
. /recdef .h

oppty.c

restate.c

Jusr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h

FUNCTION

LINE

25 26 45 51 57

8 19
8 19
*62 63 64 66 *66

~

Figure 2-21: exref Output, Using —c¢ Option (sheet 5 of 5)

PROGRAMMING BASICS

2-69

Analysis/Debugging

lint

lint looks for features in a C program that are apt to cause execution
errors, that are wasteful of resources, or that create problems of por-
tability.

The command
lint restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-22.

4 N

restate.c:

restate.c

(71) warning: main() returns random value to invocation environment
oppty.c:

pft.c:

rfe.c:

function returns value which is always ignored
printf

o)

Figure 2-22: lint Output

lint has options that will produce additional information. Check the
System V Reference Manual. The error messages give you the line
numbers of some items you may want to review.

2-70 PROGRAMMER’S GUIDE

80}

109

S ——————db

Analysis/Debugging

size

size produces information on the number of bytes occupied by the
three sections (text, data, and bss) of a common object file when the
program is brought into main memory to be run. Here are the
results of one invocation of the size command with our object file as
an argument. The output from the size routine depends on processor
type and thereby on the TARGETMC:

TARGETMC = 68020:
10212(.text) + 3396(.data) + 5256(.bss) + O(.stack) = 18864

TARGETMC = R3KMI:
14736(.text) + 32(.init) + 368(.rdata) + 2928(.data) +
144(.1it8) + 224(.sdata) + 48(.sbss) + 2960(.bss) = 21440

TARGETMC =R3KMO:
15840 (.text) + 32(.init) + 368(.rdata) + 2704(.data) +
144(.1it8) + 224(.sdata) + 48(.sbss) + 2960(.bss) = 22320

Don’t confuse this number with the number of characters in the
object file that appears when you do an Is —1 command. That figure
includes the symbol table and other header information that is not
used at run time.

strip

strip removes the symbol and line number information from a com-
mon object file. When you issue this command the number of charac-
ters shown by the 1Is -1 command approaches the figure shown by the
size command, but still includes some header information that is not
counted as part of the .text, .data, or .bss section. After the strip
command has been executed, it is no longer possible to use the file
with the sdb command.

PROGRAMMING BASICS 2-7

Analysis/Debugging

sdb/dbx

sdb stands for Symbolic Debugger, which means you can use the
symbolic names in your program to pinpoint where a problem has
occurred. You can use sdb to debug C, or PASCAL programs. There
are two basic ways to use sdb: by running your program under con-
trol of sdb, or by using sdb to rummage through a core image file left
by a program that failed. The first way lets you see what the pro-
gram is doing up to the point at which it fails (or to skip around the
failure point and proceed with the run). The second method lets you
check the status at the moment of failure, which may or may not dis-
close the reason the program failed.

Chapter 14 of sdb describes the interactive commands you can use to
work your way through your program. For the time being we want
to tell you just a couple of key things you need to do when using it.

1. Compile your program(s) with the —g option, which causes
additional information to be generated for use by sdb.

2. Run your program under sdb with the command:
sdb myprog — srcdir

where myprog is the name of your executable file (a.out is the
default), and sredir is an optional list of the directories where
source code for your modules may be found. The dash between
the two arguments keeps sdb from looking for a core image
file.

sdb is for 68xxx based programs; while dbx is used for the
NoTE| R3000 based programs.

2-72 PROGRAMMER'’S GUIDE

[o]18

m

B —— 7]

Program Organizing Utilities

The following three utilities are helpful in keeping your programming
work organized effectively.

The make Command

When you have a program that is made up of more than one module
of code you begin to run into problems of keeping track of which
modules are up to date and which need to be recompiled when
changes are made in another module. The make command is used to
ensure that dependencies between modules are recorded so that
changes in one module results in the re-compilation of dependent pro-
grams. Even control of a program as simple as the one shown in Fig-
ure 2-15 is made easier through the use of make.

The make utility requires a description file that you create with an
editor. The description file (also referred to by its default name:
makefile) contains the information used by make to keep a target
file current. The target file is typically an executable program. A
description file contains three types of information:

1) dependency information tells the make utility the rela-
tionship between the modules
that comprise the target pro-

gram.

2) executable commands needed to generate the target
program. make uses the depen-
dency information to determine
which executable commands
should be passed to the shell for
execution.

PROGRAMMING BASICS 2-73

]

Program Organizing Utilities

3) macro definitions provide a shorthand notation
within the description file to
make maintenance easier. Macro
definitions can be overridden by
information from the command
line when the make command is
entered.

The make command works by checking the ”last changed” time of w
the modules named in the description file. When make finds a com-

ponent that has been changed more recently than modules that

depend on it, the specified commands (usually compilations) are

passed to the shell for execution.

The make command takes three kinds of arguments: options, macro
definitions, and target filenames. If no description filename is given
as an option on the command line, make searches the current direc-
tory for a file named makefile or Makefile. Figure 2-23 shows a
makefile for our sample program.

4 N

OBJECTS = restate.o oppty.o pft.o rfe.o
all: restate
restate: $(OBJECTS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o restate

(418

$(OBJECTS): ./recdef.h U

clean:
rm -f $(OBJECTS)

clobber: clean
m -f restate

. /

Figure 2-23: make Description File

The following things are worth noticing in this description file:

2-74 PROGRAMMER’S GUIDE

S ST A S S s m -

Program Organizing Utilities

e It identifies the target, restate, as being dependent on the four
object modules. Each of the object modules in turn is defined
as being dependent on the header file, recdef.h, and by default,
on its corresponding source file.

e A macro, OBJECTS, is defined as a convenient shorthand for
referring to all of the component modules.

. Whenever testing or debugging results in a change to one of the com-
m ponents of restate, for example, a command such as the following
should be entered:

make CFLAGS = — g restate |
This has been a very brief overview of the make utility. There is

more on make in Chapter 3, and a detailed description of make can
be found in Chapter 12.

113

The Archive

The most common use of an archive file, although not the only one, is
to hold object modules that make up a library. The library can be
named on the link editor command line (or with a link editor option
m on the cc command line). This causes the link editor to search the
symbol table of the archive file when attempting to resolve references.

The ar command is used to create an archive file, to manipulate its
contents and to maintain its symbol table. The structure of the ar
command is a little different from the normal UNIX system arrange-
ment of command line options. When you enter the ar command you
include a one-character key from the set drqtpmx that defines the
type of action you intend. The key may be combined with one or
more additional characters from the set vuaibcels that modify the
way the requested operation is performed. The makeup of the com-
mand line is

PROGRAMMING BASICS 2-75

Program Organizing Utilities

ar —key [posname] afile [namel...

where posname is the name of a member of the archive and may be
used with some optional key characters to make sure that the files in
your archive are in a particular order. The afile argument is the
name of your archive file. By convention, the suffix .a is used to indi-
cate the named file is an archive file. (libc.a, for example, is the
archive file that contains many of the object files of the standard C
subroutines.) One or more names may be furnished. These identify
files that are subjected to the action specified in the key.

We can make an archive file to contain the modules used in our sam-
ple program, restate. The command to do this is

ar —rv rste.a restate.o oppty.o pft.o rfe.o

If these are the only .o files in the current directory, you can use
shell metacharacters as follows:

ar —rv rste.a *.0

Either command will produce this feedback:

a - restate.o
a - oppty.o

a - pft.o

a - rfe.o

ar: creating rste.a

The nm command is used to get a variety of information from the
symbol table of common object files. The object files can be, but don’t
have to be, in an archive file. Figure 2-24 shows the output of this
command when executed with the —f (for full) option on the archive
we just created. The object files were compiled with the — g option.

2-76 PROGRAMMER'S GUIDE

141

115

Program Organizing Utilities

Symbols from rste.alrestate.o]

Name Val Class Type Size | Line Sect
restate.c file
.0fake strtag struct 14
_cnt 0 strmem int (ABS)
ptr 4 strmem *Uchar (ABS)
_base 8 strmem *Uchar (ABS)
flag 12 strmem char (ABS)
_file 13 strmem Uchar (ABS)
.eos endstr 14 (ABS)
rec strtag struct 50
pname 0 strmem char[25] 25 (ABS)
pPpxX 26 strmem float (ABS)
dp 30 strmem float (ABS)
i 34 strmem float (ABS)
c 38 strmem float (ABS)
t 42 strmem float (ABS)
sSpx 46 strmem float (ABS)
.eos endstr 50 (ABS)
main 0 extern int() 504 .text
.bf 0 fcn 11 .text
argc 6 regprm int (ABS)
argv 13 regprm **char (ABS)
fin 12 reg *struct-.0fake| 14 (ABS)
oflag 5 reg int (ABS)
pflag 4 reg int (ABS)
rflag 3 reg int (ABS)
ch 2 reg int (ABS)

Figure 2-24: nm Output, with —f Option (sheet 1 of 5)

PROGRAMMING BASICS

2-77

5

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Val Class Type Size | Line Sect

first 52 auto struct-rec 50 (ABS)
.ef 496 fcn 61 .text
FILE typdef |struct-.0fake| 16

_iob 0 extern

fprintf 0 extern

exit 0 extern

opterr 0 extern

getopt 0 extern

fopen 0 extern

fscanf 0 extern

printf 0 extern

oppty 0 extern float()

pft 0 extern float ()

rfe 0 extern float()

Figure 2-24: nm Output, with —f Option (sheet 2 of 5)

2-78

PROGRAMMER'S GUIDE

oLl

117

= m SRR

Program Organizing Utilities

Symbols from rste.a[oppty.o]

Name Val Class Type Size | Line | Sect
oppty.c file

rec strtag struct 50

pname 0 strmem char[25] 25

ppx 26 strmem float

dp 30 strmem float

i 34 strmem float

c 38 strmem float

t 42 strmem float

Spx 46 strmem float

.eos endstr 50

oppty 0 extern float () 38 .text
.bf 10 fcn 7 .text
ps 8 regprm |*struct-rec| 50

.ef 34 fcn 3 .text

Figure 2-24: nm Output, with —f Option (sheet 3 of 5)

PROGRAMMING BASICS 2-79

Program Organizing Utilities

Symbols from rste.alpft.o]

Name Val Class Type Size | Line | Sect

pft.c file

rec strtag struct 50

pname 0 strmem char([25}] 25

ppx 26 strmem float

dp 30 strmem float o
i 34 strmem float v
c 38 strmem float

t 42 strmem float

spx 46 strmem float

.€o0s endstr 50

pft 0 extern float() 60 .text

.bf 10 fcn 7 .text

ps 0 argm’'t |*struct-rec| 50

.ef 58 fcn 3 .text

8Lt

Figure 2-24: nm Output, with —f Option (sheet 4 of 5)

2-80

PROGRAMMER’S GUIDE

19

Symbols from rste.a[rfe.o]

Program Organizing Utilities

Name Val Class Type Size | Line | Sect
rfe.c file

rec strtag struct 50

pname 0 strmem char[25] 25

pPpPX 26 strmem float

dp 30 strmem float

i 34 strmem float

c 38 strmem float

t 42 strmem float

spx 46 strmem float

.eos endstr 50

rfe 0 extern float() 68 .text
.bf 10 fcn 8 .text
PSs 0 argm’t |[*struct-rec 50

.ef 64 fen 3 .text

Figure 2-24: nm Output, with —f Option (sheet 5 of 5)

For nm to work on an archive file all of the contents of the archive
have to be object modules. If you have stored other things in the
archive, you will get the message:

nms:

rste.a

bad magic

when you try to execute the command.

Use of SCCS by Single-User Programmers

The UNIX system Source Code Control System (SCCS) is a set of pro-
grams designed to keep track of different versions of programs. When
a program has been placed under control of SCCS, only a single copy
of any one version of the code can be retrieved for editing at a given
time. When program code is changed and the program returned to
SCCS, only the changes are recorded. Each version of the code is

PROGRAMMING BASICS

2-81

m —
]

Program Organizing Utilities

identified by its SID, or SCCS IDentifying number. By specifying the
SID when the code is extracted from the SCCS file, it is possible to
return to an earlier version. If an early version is extracted with the
intent of editing it and returning it to SCCS, a new branch of the
development tree is started. The set of programs that make up SCCS
appear as UNIX system commands. The commands are:

admin
get
delta
prs
rmdel
cde
what
scesdiff
comb
val

It is most common to think of SCCS as a tool for project control of
large programming projects. It is, however, entirely possible for any
individual user of the UNIX system to set up a private SCCS system.
Chapter 13 is an SCCS user’s guide.

2-82 PROGRAMMER’S GUIDE

(074"

f”

121

Chapter 3: Application Programming

INEPOAUCLION.coiiiiiiiiiiiiee e eeeeeeeeeeeeeevesesanneeaseseaasanans

Application Programming..........c..cccoeceveeinceneereneeneneseeseennens
NUIMDBETScoovieiiieciriirernitere et saeas
Portabilitycccccoomvimnieiiiiinine e
Documentation.......c..ccoceveevirmiiiiincisieceecieeeeeec e

Language Selectionc.cccovvnvenmnieneencninnienee e
INfIUENCEScevieriietiiiiiree et
Special Purpose Languagesccoeeeveeeeeeeneciiienneenne

What awk Is Likeccccoveviiiieicieeeeeceeceeecies
How awk Is Usedccoeeuveureieieeiecieee e,
Where to Find More Information..........cococecevvuirennenne.
What lex and yace Are Like.......coooevveeeeceecviiciinnee.
How lex Is Used.....cccoouevvreeiiciieiicicceeeceeeeeee e

How yace Is Used........ccooooevmniniiecniinecicrceceece .
Where to Find More Information......cccooeevveeveeveevennnn,

Advanced Programming Tools...........cccocovveeiiciiciiiinieeereen.
Memory Managementcccecveeeeeeeeeereeeieeeeeireereeeeeeeenan

TABLE OF CONTENTS

Table of Contents

Page

IPC get Calls.......coooevcviriieireereeeree et 3-23

IPC ctl Calls.....cccccovvrmirceiiiniiirnrecenrieiesee e e e esse e ens 3-23
| IPC OP CallS ..ot seseseessenees 3-23
} Where to Find More Information..........cccccecevreeurerennne. 3-24
| Programming Terminal Screens...........ccccceeeveviererereecnennn. 3-24
CUI'SESoeviiiiiiiiiiiiiiittieetieniiretteesaeseesreranasessasseresesssasnns 3—-25

Where to Find More Information..........c.cccccoeveeeneennnen. 3-25
Programming Support T00ISccccecevvirvernccrnercnnsneseeseenns 3-27

Link Edit Command Language..........ccccccooeeeieerirecvreccneeens 3-27

Where to Find More Information.........cccccceceevveevnnnenee. 3-28

Common Object File Format...........cccocoevvivveivenreerecreennene, 3-28

Where to Find More Information...........cccccooeevevvvenneneen. 3-29

LiBTariescccovevverveeeenverienrieseneesensennersesesssensessessassessasssasses 3-29

The Object File Library..........cccocvvvivinirninnnierneeccennennnn. 3-30

Common Object File Interface Macros (Idfen.h)......... 3-32

The Math LIbrarycccocceconeernenirieniensesseseesonecnsenens 3-33
Trigonometric Functions ... 3-34

Bessel Functionscccevevvvvnineneeneeneenenneneeesnennes 3-34

Hyperbolic Functionsccococciiieiiininiicinicnnnnnen. 3-35

Miscellaneous Functions..........ccceeveecierceencciencvennnne. 3-35

Symbolic Debugger.........ccooveiiiceiieeeeeeeceeecee e eeie e 3-36

Where to Find More Information.........cccceceverivenreennnn 3-37

lint as a Portability Tool........c.ccecoueeriieiiiiaiiieieceeciecene 3-37

Where to Find More Information...........cccecevvenrerinennen. 3-38

Project Control Tools ..., 3-39

IMAKE ...ttt e s seseesr e s reesreenns 3-39

Where to Find More Information..........ccccooveeveninennnnnn. 3-40

-2 PROGRAMMER'’S GUIDE

ccl

123

Table of Contents

Page

SCCS ...ttt ettt sasssr st sost e ts s e e nnes 3-40

Where to Find More Information.......cccccoccveevevveeeenennn.. 3—42

liber, A Library SyStem........ccocoooeveeiiimieiiiieccieeceeeeee e 3-43
TABLE OF CONTENTS

Table of Contents

This page is intentionally left blank

124"

PROGRAMMER'S GUIDE

125

S————————————1dbk

Introduction

This chapter deals with programming where the objective is to pro-
duce sets of programs (applications) that will run on a UNIX system
computer.

The chapter begins with a discussion of how the ground rules change
as you move up the scale from writing programs that are essentially
for your own private use (we have called this single-user program-
ming), to working as a member of a programming team developing an
application that is to be turned over to others to use.

There is a section on how the criteria for selecting appropriate pro-
gramming languages may be influenced by the requirements of the
application.

The next three sections of the chapter deal with a number of loosely-
related topics that are of importance to programmers working in the
application development environment. Most of these mirror topics
that were discussed in Chapter 2, Programming Basics, but here we
try to point out aspects of the subject that are particularly pertinent
to application programming. They are covered under the following
headings:

Advanced Programming deals with such topics as File and Record
Locking, Interprocess Communication,
and programming terminal screens.

Support Tools covers the Common Object File Format,
link editor directives, shared libraries,
sdb/dbx, and lint.

Project Control Tools includes some discussion of make and
SCCS.

The chapter concludes with a description of a sample application
called liber that uses several of the components described in earlier
portions of the chapter.

APPLICATION PROGRAMMING 3-1

Introduction

3-2

This page is intentionally left blank

9ct

PROGRAMMER’S GUIDE

127

Application Programming

The characteristics of the application programming environment that
make it different from single-user programming have at their base
the need for interaction and for sharing of information.

Numbers

Perhaps the most obvious difference between application program-
ming and single-user programming is in the quantities of the com-
ponents. Not only are applications generally developed by teams of
programmers, but the number of separate modules of code can grow
into the hundreds on even a fairly simple application.

When more than one programmer works on a project, there is a need
to share such information as:

® the operation of each function

e the number, identity and type of arguments expected by
a function

e if pointers are passed to a function, are the objects
being pointed to modified by the called function, and
what is the lifetime of the pointed-to object

® the data type returned by a function
In an application, there is an odds-on possibility that the same func-
tion can be used in many different programs, by many different pro-

grammers. The object code needs to be kept in a library accessible to
anyone on the project who needs it.

APPLICATION PROGRAMMING 3-3

Application Programming

Portability

When you are working on a program to be used on a single model of a
computer, your concerns about portability are minimal. In applica-
tion development, on the other hand, a desirable objective often is to
produce code that will run on many different UNIX system comput-
ers. Some of the things that affect portability will be touched on later
in this chapter.

Documentation

A single-user program has modest needs for documentation. There
should be enough to remind the program’s creator how to use it, and
what the intent was in portions of the code.

On an application development project there is a significant need for
two types of internal documentation:

® comments throughout the source code that enable suc-
cessor programmers to understand easily what is hap-
pening in the code. Applications can be expected to
have a useful life of 5 or more years, and frequently
need to be modified during that time. It is not realistic
to expect that the same person who wrote the program
will always be available to make modifications. Even if
that does happen the comments will make the mainte-
nance job a lot easier.

® hard-copy descriptions of functions should be available
to all members of an application development team.
Without them it is difficult to keep track of available
modules, which can result in the same function being
written over again.

34 PROGRAMMER’S GUIDE

8¢l

129

(g

Application Programming

Unless end-users have clear, readily-available instructions in how to
install and use an application they either will not do it at all (if that
is an option), or do it improperly.

The microcomputer software industry has become ever more keenly
aware of the importance of good end-user documentation. There are
cases on record where the success of a software package has been
attributed in large part to the fact that it had exceptionally good
documentation. There are also cases where a pretty good piece of
software was not widely used due to the inaccessibility of its manuals.
There appears to be no truth to the rumor that in one or two cases,
end-users have thrown the software away and just read the manual.

Project Management

Without effective project management, an application development
project is in trouble. This subject will not be dealt with in this guide,
except to mention the following three things that are vital functions
of project management:

e tracking dependencies between modules of code
e dealing with change requests in a controlled way

® seeing that milestone dates are met

APPLICATION PROGRAMMING 3-5

Application Programming

This page is intentionally left blank

3-6 PROGRAMMER’S GUIDE

oel

Language Selection

In this section we talk about some of the considerations that
influence the selection of programming languages, and describe two of
the special purpose languages that are part of the UNIX system
environment.

M Influences

In single-user programming the choice of language is often a matter
of personal preference; a language is chosen because it is the one the
programmer feels most comfortable with.

An additional set of considerations comes into play when making the
same decision for an application development project.

131

Q: Is there an existing standard within the organiza-
tion that should be observed?

A: A firm may decide to emphasize one language
because a good supply of programmers is available
who are familiar with it.

ﬂ Q: Does one language have better facilities for han-
‘ dling the particular algorithm?

A: One would like to see all language selection based
on such objective criteria, but it is often necessary
to balance this against the skills of the organiza-
tion.

Q: Is there an inherent compatibility between the
language and the UNIX operating system?

A: This is sometimes the impetus behind selecting C
for programs destined for a UNIX system machine.

APPLICATION PROGRAMMING 3-7

Language Selection

Q: Are there existing tools that can be used?

A: If parsing of input lines is an important phase of
the application, perhaps a parser generator such as
yacce should be employed to develop what the
application needs.

Q: Does the application integrate other software into
the whole package?

A: If, for example, a package is to be built around an
existing data base management system, there may
be constraints on the variety of languages the data
base management system can accommodate.

Special Purpose Languages

The UNIX system contains a number of tools that can be included in
the category of special purpose languages. Three that are especially
interesting are awk, lex, and yacec.

What awk Is Like

The awk utility scans an ASCII input file record by record, looking
for matches to specific patterns. When a match is found, an action is
taken. Patterns and their accompanying actions are contained in a
specification file referred to as the program. The program can be
made up of a number of statements. However, since each statement
has the potential for causing a complex action, most awk programs
consist of only a few. The set of statements may include definitions
of the pattern that separates one record from another (a newline
character, for example), and what separates one field of a record from
the next (white space, for example). It may also include actions to be
performed before the first record of the input file is read, and other
actions to be performed after the final record has been read. All
statements in between are evaluated in order for each record in the
input file.

3-8 PROGRAMMER'’S GUIDE

2el

133

Language Selection

To paraphrase the action of a simple awk program, it would go some-
thing like this:

Look through the input file.

Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

First do some initialization.

Then, look through the input file.

Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, do these final things.

The directions for finding the patterns and for describing the actions
can get pretty complicated, but the essential idea is as simple as the
two sets of statements above.

One of the strong points of awk is that once you are familiar with
the language syntax, programs can be written very quickly. They
don’t always run very fast, however, so they are seldom appropriate if
you want to run the same program repeatedly on a large quantities of
records. In such a case, it is likely to be better to translate the pro-
gram to a compiled language.

How awk Is Used

One typical use of awk would be to extract information from a file
and print it out in a report. Another might be to pull fields from
records in an input file, arrange them in a different order and pass
the resulting rearranged data to a function that adds records to your
data base. There is an example of a use of awk in the sample appli-
cation at the end of this chapter.

APPLICATION PROGRAMMING 3-9

e e e

Language Selection

Where to Find More Information

The manual page for awk is in Section (1) of the System V Reference
Manual. Chapter 4 contains a description of the awk syntax and a
number of examples showing ways in which awk may be used.

What lex and yacc Are Like

lex and yacc are often mentioned in the same breath because they
perform complementary parts of what can be viewed as a single task:
making sense out of input. The two utilities also share the common
characteristic of producing source code for C language subroutines
from specifications that appear on the surface to be quite similar.

Recognizing input is a recurring problem in programming. Input can
be from various sources. In a language compiler, for example, the
input is normally contained in a file of source language statements.
The UNIX system shell language most often receives its input from a
person keying in commands from a terminal. Frequently, information
coming out of one program is fed into another where it must be
evaluated.

The process of input recognition can be subdivided into two tasks:
lexical analysis and parsing, and that’s where lex and yace come in.
In both utilities, the specifications cause the generation of C language
subroutines that deal with streams of characters; lex generates sub-
routines that do lexical analysis while yacc generates subroutines
that do parsing.

To describe those two tasks in dictionary terms:

® Lexical analysis has to do with identifying the words
or vocabulary of a language as distinguished from its
grammar or structure.

o Parsing is the act of describing units of the language
grammatically. Students in elementary school are often
taught to do this with sentence diagrams.

3-10 PROGRAMMER'’S GUIDE

Vel

135

Language Selection

Of course, the important thing to remember here is that in each case
the rules for our lexical analysis or parsing are those we set down
ourselves in the lex or yacc specifications. Because of this, the divid-
ing line between lexical analysis and parsing sometimes becomes
fuzzy.

The fact that lex and yacc produce C language source code means
that these parts of what may be a large programming project can be
separately maintained. The generated source code is processed by the
C compiler to produce an object file. The object file can be link edited
with others to produce programs that then perform whatever process
follows from the recognition of the input.

How lex Is Used

A lex subroutine scans a stream of input characters and waves a flag
each time it identifies something that matches one or another of its
rules. The waved flag is referred to as a token. The rules are stated
in a format that closely resembles the one used by the UNIX system
text editor for regular expressions. For example,

[\t]+

describes a rule that recognizes a string of one or more blanks or tabs
(without mentioning any action to be taken). A more complete state-
ment of that rule might have this notation:

[\tl+;

which, in effect, says to ignore white space. It carries this meaning
because no action is specified when a string of one or more blanks or
tabs is recognized. The semicolon marks the end of the statement.
Another rule, one that does take some action, could be stated like
this:

[0-9]+{
i = atoi(yytext);
return(NBR) ;
}

APPLICATION PROGRAMMING 3-11

Language Selection

This rule depends on several things:

¢ NBR must have been defined as a token in an earlier part of
the lex source code called the declaration section. (It may be in
a header file which is #include’d in the declaration section.)

® i is declared as an extern int in the declaration section.

® It is a characteristic of lex that things it finds are made avail-
able in a character string called yytext.

® Actions can make use of standard C syntax. Here, the standard
C subroutine, atoi, is used to convert the string to an integer.
What this rule boils down to is lex saying, "Hey, I found the kind of
token we call NBR, and its value is now in i.”
To review the steps of the process:

1. The lex specification statements are processed by the lex util-
ity to produce a file called lex.yy.c. (This is the standard name
for a file generated by lex, just as a.out is the standard name
for the executable file generated by the link editor.)

2. lex.yy.c is transformed by the C compiler (with a —¢ option)
into an object file called lex.yy.o that contains a subroutine
called yylex().

3. lex.yy.o is link edited with other subroutines. Presumably one
of those subroutines will call yylex() with a statement such as:

while((token = yylex()) != 0)

and other subroutines (or even main) will deal with what
comes back.

3-12 PROGRAMMER’S GUIDE

9€!

137

de

Language Selection

Where to Find More Information

The manual page for lex is in Section (1) of the System V Reference
Manual. A tutorial on lex is contained in Chapter 5.

How yacc Is Used

yace subroutines are produced by pretty much the same series of
steps as lex:

1. The yacc specification is processed by the yace utility to pro-
duce a file called y.tab.c.

2. y.tab.c is compiled by the C compiler producing an object file,
y.tab.o, that contains the subroutine yyparse(). A significant
difference is that yyparse() calls a subroutine called yylex() to
perform lexical analysis.

3. The object file y.tab.o may be link edited with other subrou-
tines, one of which will be called yylex().

There are two things worth noting about this sequence:

1. The parser generated by the yacc specifications calls a lexical
analyzer to scan the input stream and return tokens.

2. While the lexical analyzer is called by the same name as one
produced by lex, it does not have to be the product of a lex
specification. It can be any subroutine that does the lexical
analysis.

What really differentiates these two utilities is the format for their
rules. As noted above, lex rules are regular expressions like those
used by UNIX system editors. yace rules are chains of definitions
and alternative definitions, written in Backus-Naur form, accom-
panied by actions. The rules may refer to other rules defined further
down the specification. Actions are sequences of C language state-
ments enclosed in braces. They frequently contain numbered vari-
ables that enable you to reference values associated with parts of the
rules. An example might make that easier to understand:

APPLICATION PROGRAMMING 3-13

Language Selection

-

-

$token NUMBER

%

expr : numb {$$ =51; }
| expr ‘+’ expr {$$ =851+ §3;)
| expr ‘-’ expr {88 =851 - 83; }
| expr '*’ expr { $8 = $1 * $3; }
| expr '/’ expr {8 =81/83;}
| "¢ expr ') {§$ =525}

numb : NUMBER {$% =81; 1}

~

/

This fragment of a yace specification shows:

NUMBER identified as a token in the declaration section

the start of the rules section indicated by the pair of percent
signs

a number of alternate definitions for expr separated by the |
sign and terminated by the semicolon

actions to be taken when a rule is matched

within actions, numbered variables used to represent com-
ponents of the rule:

$$ means the value to be returned as the value of the whole
rule

$n means the value associated with the nth component of the
rule, counting from the left

numb defined as meaning the token NUMBER. This is a trivial
example that illustrates that one rule can be referenced within
another, as well as within itself.

As with lex, the compiled yace object file will generally be link edited
with other subroutines that handle processing that takes place after
the parsing— or even ahead of it.

3-14

PROGRAMMER'’S GUIDE

g€}

V

139

Language Selection

Where to Find More Information

The manual page for yace is in Section (1) of the System V Reference
Manual. A detailed description of yacc may be found in Chapter 6 of
this guide.

APPLICATION PROGRAMMING 3-15

Language Selection

3-16

This page is intentionally left blank

PROGRAMMER’S GUIDE

oyt

141

Advanced Programming Tools

In Chapter 2 we described the use of such basic elements of program-
ming in the UNIX system environment as the standard I/O library,
header files, system calls and subroutines. In this section we intro-
duce tools that are more apt to be used by members of an application
development team than by a single-user programmer. The section
contains material on the following topics:

® memory management

file and record locking

interprocess communication

® programming terminal screens

Memory Management

There are situations where a program needs to ask the operating sys-
tem for blocks of memory. It may be, for example, that a number of
records have been extracted from a data base and need to be held for
some further processing. Rather than writing them out to a file on
secondary storage and then reading them back in again, it is likely to
be a great deal more efficient to hold them in memory for the dura-
tion of the process. (This is not to ignore the possibility that portions
of memory may be paged out before the program is finished; but
such an occurrence is not pertinent to this discussion.) There are two
C language subroutines available for acquiring blocks of memory and
they are both called malloc. One of them is malloc(3C), the other is
malloc(3X). Each has several related commands that do specialized
tasks in the same area. They are:

o free — toinform the system that space is being
relinquished

® realloc— to change the size and possibly move the block

APPLICATION PROGRAMMING 317

o

Advanced Programming Tools

e calloc — to allocate space for an array and initialize it
to zeros

In addition, malloe(3X) has a function, mallopt, that provides for
control over the space allocation algorithm, and a structure, mal-
linfo, from which the program can get information about the usage
of the allocated space.

malloe(3X) runs faster than the other version. It is loaded by speci-
fying u
—Imalloc

on the ce(l) or 1d(1) command line to direct the link editor to the
proper library. When you use malloc¢(3X) your program should con-
tain the statement

#include <malloc.h>

where the values for mallopt options are defined.

See the System V Reference Manual for the formal definitions of the S
two mallocs.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to U

prevent the sort of error that can occur when two or more users of a
file try to update information at the same time. The classic example
is the airlines reservation system where two ticket agents each assign
a passenger to Seat A, Row 5 on the 5 o’clock flight to Detroit. A
locking mechanism is designed to prevent such mishaps by blocking
Agent B from even seeing the seat assignment file until Agent A’s
transaction is complete.

File locking and record locking are really the same thing, except that

file locking implies the whole file is affected; record locking means

that only a specified portion of the file is locked. (Remember, in the W/
UNIX system, file structure is undefined; a record is a concept of the
programs that use the file.)

3-18 PROGRAMMER'’S GUIDE

143

Advanced Programming Tools

Two types of locks are available: read locks and write locks. If a pro-
cess places a read lock on a file, other processes can also read the file
but all are prevented from writing to it, that is, changing any of the
data. If a process places a write lock on a file, no other processes can
read or write in the file until the lock is removed. Write locks are
also known as exclusive locks. The term shared lock is sometimes
applied to read locks.

Mandatory locking means that the system prevents other processes
from reading and writing a file or record if the action is incompatible
with the lock. If for instance a process sets a write-lock on a file no
other process will be able to read or write that file before the lock is
removed.

Advisory locking is sort of a gentleman agreement. Even though a
lock is set on a file, other processes may read and write that file. This
mechanism require that the programs involved act gentle. Before a
read or write is performed the corresponding lock must be effective. If
the lock request is rejected the file has been locked by another pro-
cess. The gentleman agreement requires you not to perform the read-
ing or writing procedure before the lock request is accepted. After
performing the read/write, the lock should be removed to allow access
to this file.

How File and Record Locking Works

The system call for file and record locking is fentl(2). Programs
should include the line

#include <fcntl.h>

to bring in the header file shown in Figure 3-1.

APPLICATION PROGRAMMING 3-19

Advanced Programming Tools

-

}i

#define

#define

vdef ine

values accessible only to open(2) */

/*file segment locking
struct flock {

short
short
long
long
short
short

/* Flag values accessible to open(2) and fcntl(2) */
/* (The first three can only be set by open) */

0

1

2
04
010
020

00400
01000
02000

#define O_RDONLY
#define O WRONLY
#define O _RDWR
#define O NDELAY
#define O_APPEND
#define O SYNC
/* Flag

#define O_CREAT
#define O TRUNC
#define O_EXCL
/* fentl(2) requests */
#define F_DUPFD
#define F_GETFD
tdefine F_SETFD
#define F GETFL
#define F_SETFL
#define F _GETLK
#define F_SETLK
#define F_SETLKW
#define F_CHKFL

W~ AN e WO

set data type - information passed to system by user*

1_type;
1_whence;
1 start;

1 len;

1 _sysid;

1 pid;

/* file segment locking types */

/* Read lock */

F_RDLCK

01

/* Write lock */

F_WRLCK

F_UNLCK

/: Remove lock(s) */ A///

02

03

/* Non-blocking I/0 */
/* append (writes guaranteed at the end) */
/* synchronous write option */

/* open with file create (uses third open arg)*/
/* open with truncation */
/* exclusive open */

/* Duplicate fildes */

/* Get fildes flags */

/* Set fildes flags */

/* Get file flags */

/* Set file flags */

/* Get file lock */

/* Set file lock */

/* Set file lock and wait */

/* Check legality of file flag changes */

/* len = 0 means until end of file */

3-20

Figure 3-1: The fentl.h Header File

PROGRAMMER'S GUIDE

144’

145

Advanced Programming Tools

The format of the fentl(2) system call is

int fcntl(fildes, cmd, arg)
int fildes, cmd, arg;

fildes is the file descriptor returned by the open system call. In addi-
tion to defining tags that are used as the commands on fentl system
calls, fentl.h includes the declaration for a struct flock that is used to
pass values that control where locks are to be placed.

lockf

A subroutine, lockf(3), can also be used to lock sections of a file or an
entire file. The format of lockf is:

#include <unistd.h>

int lockf (fildes, function, size)
int fildes, function;
long size;

fildes is the file descriptor; function is one of four control values
defined in unistd.h that let you lock, unlock, test and lock, or simply
test to see if a lock is already in place. size is the number of contigu-
ous bytes to be locked or unlocked. The section of contiguous bytes
can be either forward or backward from the current offset in the file.
(You can arrange to be somewhere in the middle of the file by using
the Iseek(2) system call.)

Where to Find More Information

There is an example of file and record locking in the sample applica-
tion at the end of this chapter. The manual pages that apply to this
facility are fentl(2), fentl(5), lockf(3), and chmod(2) in the System
V Reference Manual. Chapter 7 is a detailed discussion of the subject
with a number of examples.

APPLICATION PROGRAMMING 3-21

Advanced Programming Tools

Interprocess Communications

In Chapter 2 we described forking and execing as methods of com-
municating between processes. Business applications running on a
UNIX system computer often need more sophisticated methods. In
applications, for example, where fast response is critical, a number of
processes may be brought up at the start of a business day to be con-
stantly available to handle transactions on demand. This cuts out ini-
tialization time that can add seconds to the time required to deal with
the transaction. To go back to the ticket reservation example again
for a moment, if a customer calls to reserve a seat on the 5 o’clock
flight to Detroit, you don’t want to have to say, "Yes, sir. Just hang
on a minute while I start up the reservations program.” In transac-
tion driven systems, the normal mode of processing is to have all the
components of the application standing by waiting for some sort of an
indication that there is work to do.

To meet requirements of this type the UNIX system offers a set of
nine system calls and their accompanying header files, all under the
umbrella name of Interprocess Communications (IPC).

The IPC system calls come in sets of three; one set each for messages,
semaphores, and shared memory. These three terms define three
different styles of communication between processes:

messages communication is in the form of data stored in
a buffer. The buffer can be either sent or
received.

semaphores communication is in the form of positive

integers with a value between 0 and 32,767.
Semaphores may be contained in an array the
size of which is determined by the system
administrator. The default maximum size for
the array is 25.

3-22 PROGRAMMER'’S GUIDE

14}

147

SRR

o s PR

Advanced Programming Tools

shared memory communication takes place through a common
area of main memory. One or more processes
can attach a segment of memory and as a
consequence can share whatever data is placed
there.

The sets of IPC system calls are:

msgget semget shmget
msgcetl semctl shmetl
msgop semop shmop

IPC get Calls

The get calls each return to the calling program an identifier for the
type of IPC facility that is being requested.

IPC ctl Calis

The ctl calls provide a variety of control operations that include
obtaining (IPC_STAT), setting (IPC_SET) and removing
(IPC_RMID), the values in data structures associated with the
identifiers picked up by the get calls.

IPC op Calls

The op manual pages describe calls that are used to perform the par-
ticular operations characteristic of the type of IPC facility being used.
msgop has calls that send or receive messages. semop (the only one
of the three that is actually the name of a system call) is used to
increment or decrement the value of a semaphore, among other func-
tions. shmop has calls that attach or detach shared memory seg-
ments.

APPLICATION PROGRAMMING 3-23

Advanced Programming Tools

Where to Find More Information

An example of the use of some IPC features is included in the sample
application at the end of this chapter. The system calls are all located
in Section (2) of the System V Reference Manual. Don’t overlook
intro(2). It includes descriptions of the data structures that are used
by IPC facilities. A detailed description of IPC, with many code
examples that use the IPC system calls, is contained in Chapter 8.

Programming Terminal Screens

The facility for setting up terminal screens to meet the needs of your
application is provided by two parts of the UNIX system. The first of
these, terminfo, is a data base of compiled entries that describe the
capabilities of terminals and the way they perform various operations.

The terminfo data base normally begins at the directory
/usr/lib/terminfo. The members of this directory are themselves
directories, generally with single-character names that are the first
character in the name of the terminal. The compiled files of operat-
ing characteristics are at the next level down the hierarchy. For
example, the standard entry for a terminal on a SUPERMAX is
located in usr/lib/terminfo/T/T3-24-C80.

The Virtual Terminal Interface (VTI) at the SUPERMAX use descrip-
tion files placed in /etc/types. The Terminal Interface will work
correct if the terminology-program is invoked with the description
file as an argument.

Describing the capabilities of a terminal can be a painstaking task.
Quite a good selection of terminal entries is included in the
/etc/types that comes with your SUPERMAX Computer. However,
if you have a type of terminal that is not already described in the
data base, the best way to proceed is to find a description of one that
comes close to having the same capabilities as yours and building on
that one.

3-24 PROGRAMMER'’S GUIDE

148

149

Advanced Programming Tools

For further information about the SUPERMAX VTI please refer to
the Supermax Virtual Interface Guide.

curses

After you have made sure that the terminology has been executed
with correct argument, you can then proceed to use the routines that
make up the curses(3X) package to create and manage screens for
your application.

The curses library includes functions to:
® define portions of your terminal screen as windows

® define pads that extend beyond the borders of your physical ter-
minal screen and let you see portions of the pad on your termi-
nal

® read input from a terminal screen into a program
® write output from a program to your terminal screen

e manipulate the information in a window in a virtual screen
area and then send it to your physical screen

Where to Find More Information

In the sample application at the end of this chapter, we show how you
might use curses routines. Chapter 9 contains a tutorial on the sub-
Ject. The manual pages for curses are in Section (3X), and those for
terminfo are in Section (4) and those for terminology in Section (1)
of the System V Reference Manual.

APPLICATION PROGRAMMING 3-25

—) ———

Advanced Programming Tools

This page is intentionally left blank

0si

3-26 PROGRAMMER'’S GUIDE

151

SRR RS I SRR R T

Programming Support Tools

This section covers UNIX system components that are part of the
programming environment, but that have a highly specialized use.
We refer to such things as:

® link edit command language
® Common Object File Format

o libraries

Symbolic Debugger

lint as a portability tool

Link Edit Command Language

The link editor command language is for use when the default
arrangement of the 1d output will not do the job. The default loca-
tions for the standard Common Object File Format sections are
described in a.out(4) in the System V Reference Manual. On a
SUPERMAX Computer, it depends on the processor type where the
different parts of data are loaded. Also the stack position is processor
dependant, but it will always grow to lower memory addresses.

The link editor command language provides directives for describing
different arrangements. The two major types of link editor directives
are MEMORY and SECTIONS. MEMORY directives can be used to
define the boundaries of configured and unconfigured sections of
memory within a machine, to name sections, and to assign specific
attributes (read, write, execute, and initialize) to portions of memory.
SECTIONS directives, among a lot of other functions, can be used to
bind sections of the object file to specific addresses within the
configured portions of memory.

APPLICATION PROGRAMMING 3-27

Programming Support Tools

%m_—____.

Why would you want to be able to do those things? Well, the truth is
that in the majority of cases you don’t have to worry about it. The
need to control the link editor output becomes more urgent under
two, possibly related, sets of circumstances.

1. Your application is large and consists of a lot of object files.

2. The hardware your application is to run on is tight for space.

Chapter 11 gives a detailed description of the subject.

|

|

Where to Find More Information

Common Object File Format
The details of the Common Object File Format have never been
looked on as stimulating reading. In fact, they have been recom-
mended to hard-core insomniacs as preferred bedtime fare. However,
if you’re going to break into the ranks of really sophisticated UNIX
system programmers, you're going to have to get a good grasp of
COFF. A knowledge of COFF is fundamental to using the link editor
command language. It is also good background knowledge for tasks
such as:

® setting up archive libraries or shared libraries

® using the Symbolic Debugger

The following system header files contain definitions of data struc-
tures of parts of the Common Object File Format:

3-28 PROGRAMMER'S GUIDE

f4:18

153

Programming Support Tools

<syms.h > symbol table format

<linenum.h > line number entries

<ldfen.h > COFF access routines

< filehdr.h > file header for a common object file
<a.out.h> common assembler and link editor output
<scnhdr.h> section header for a common object file
<reloc.h> relocation information for a common object file

<storclass.h> storage classes for common object files

The object file access routines are described below under the heading
”The Object File Library.”

Where to Find More Information
Chapter 10 gives a detailed description of COFF.

Libraries

A library is a collection of related object files and/or declarations that
simplify programming effort. Programming groups involved in the
development of applications often find it convenient to establish
private libraries. For example, an application with a number of pro-
grams using a common data base can keep the I/O routines in a
library that is searched at link edit time.

Prior to Release 3.1 of the UNIX System V the libraries, whether sys-
tem supplied or application developed, were collections of common
object format files stored in an archive (filename.a) file that was
searched by the link editor to resolve references. Files in the archive
that were needed to satisfy unresolved references became a part of
the resulting executable.

In Chapter 2 we described many of the functions that are found in
the standard C library, libe.a. The next two sections describe two
other libraries, the object file library and the math library.

APPLICATION PROGRAMMING 3-29

de

Programming Support Tools

The Obiject File Library

The object file library provides functions for the access and manipula-
tion of object files. Some functions locate portions of an object file
such as the symbol table, the file header, sections, and line number
entries associated with a function. Other functions read these types
of entries into memory. The need to work at this level of detail with
object files occurs most often in the development of new tools that
manipulate object files. For a description of the format of an object
file, see "The Common Object File Format” in Chapter 10. This
library consists of several portions. The functions reside in:

/usr/1ib68020/1ibld.a,
/usr/1ibR3KMO/libmld.a,
or in
/usr/1ibR3KMI/libmld.a

and are loaded during the compilation of a C language program by
the —1 command line option:

cc file =11d

which causes the link editor to search the object file library. The
argument —Ild must appear after all files that reference functions in
libld.a.

The following header files must be included in the source code.

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

3-30 PROGRAMMER'’S GUIDE

vS1

155

A R A TR R e AR T LR

Programming Support Tools

APPLICATION PROGRAMMING

Function | Reference Brief Description

ldaclose ldclose(3X) Close object file being processed.

ldahread ldahread(3X) Read archive header.

ldaopen ldopen(3X) Open object file for reading.

ldclose ldclose(3X) Close object file being processed.

ldfhread ldfhread(3X) Read file header of object file
being processed.

ldgetname | ldgetname(3X) | Retrieve the name of an object file
symbol table entry.

1dlinit ldlread(3X) Prepare object file for reading line
number entries via ldlitem.

1dlitem ldlread(3X) Read line number entry from
object file after 1dlinit.

ldlread ldlread(3X) Read line number entry from
object file.

1dlseek ldlseek(3X) Seeks to the line number entries
of the object file being processed.

ldnlseek 1dlseek(3X) Seeks to the line number entries
of the object file being processed
given the name of a section.

ldnrseek ldrseek(3X) Seeks to the relocation entries of
the object file being processed
given the name of a section.

ldnshread | ldshread(3X) Read section header of the named
section of the object file being
processed.

ldnsseek ldsseek(3X) Seeks to the section of the object
file being processed given the
name of a section.

3-31

—J db

Programming Support Tools

Function | Reference Brief Description

ldohseek ldohseek(3X) Seeks to the optional file header
of the object file being processed.

ldopen ldopen(3X) Open object file for reading.

ldrseek ldrseek(3X) Seeks to the relocation entries of
the object file being processed.

ldshread ldshread(3X) Read section header of an object
file being processed.

ldsseek ldsseek(3X) Seeks to the section of the object
file being processed.

ldtbindex 1dtbindex(3X) Returns the long index of the
symbol table entry at the current
position of the object file being
processed.

ldtbread ldtbread(3X) Reads a specific symbol table
entry of the object file being pro-
cessed.

ldtbseek ldtbseek(3X) Seeks to the symbol table of the
object file being processed.

sgetl sputl(3X) Access long integer data in a
machine independent format.

sputl sputl(3X) Translate a long integer into a
machine independent format.

Common Obiject File Interface Macros (1dfcn.h)

The interface between the calling program and the object file access
routines is based on the defined type LDFILE, which is in the header
file ldfen.h (see 1dfen(4)). The primary purpose of this structure is
to provide uniform access to both simple object files and to object files
that are members of an archive file.

3-32

PROGRAMMER’S GUIDE

961

157

Programming Support Tools

The function ldopen(3X) allocates and initializes the LDFILE struc-
ture and returns a pointer to the structure. The fields of the LDFILE
structure may be accessed individually through the following macros:

® The TYPE macro returns the magic number of the file, which is
used to distinguish between archive files and object files that
are not part of an archive.

® The IOPTR macro returns the file pointer, which was opened
by ldopen(3X) and is used by the input/output functions of the
C library.

® The OFFSET macro returns the file address of the beginning of
the object file. This value is non-zero only if the object file is a
member of the archive file.

® The HEADER macro accesses the file header structure of the
object file.

Additional macros are provided to access an object file. These macros
parallel the input/output functions in the C library; each macro
translates a reference to an LDFILE structure into a reference to its
file descriptor field. The available macros are described in ldfen(4) in
the System V Reference Manual.

The Math Library

The math library package consists of functions and a header file. The
functions are located and loaded during the compilation of a C
language program by the —1 option on a command line, as follows:

cc file —=lm
This option causes the link editor to search the math library, libm.a.
In addition to the request to load the functions, the header file of the

math library should be included in the program being compiled. This
is accomplished by including the line:

#include <math.h>

APPLICATION PROGRAMMING 3-33

Programming Support Tools

near the beginning of each file that uses the routines.
The functions are grouped into the following categories:
® trigonometric functions
® Bessel functions
® hyperbolic functions

® miscellaneous functions

Trigonometric Functions

These functions are used to compute angles (in radian measure),
sines, cosines, and tangents. All of these values are expressed in
double-precision.

Function | Reference Brief Description
acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of a ratio.
cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate Bessel functions of the first and second
kinds of several orders for real values. The Bessel functions are jO,
j1, jn, y0, yl, and yn. The functions are located in section
bessel(3M).

3-34 PROGRAMMER'’S GUIDE

861

159

Programming Support Tools

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

Function | Reference Brief Description
cosh sinh(3M) Return hyperbolic cosine.
sinh sinh(3M) Return hyperbolic sine.
tanh sinh(3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural
logarithm, exponential, and absolute value. In addition, several are
provided to truncate the integer portion of double-precision numbers.

Function Reference Brief Description

ceil floor(3M) Returns the smallest integer not
less than a given value.

exp exp(3M) Returns the exponential function
of a given value.

fabs floor(3M) Returns the absolute value of a
given value.

floor floor(3M) Returns the largest integer not
greater than a given value.

fmod floor(3M) Returns the remainder produced
by the division of two given
values.

gamma gamma(3M) Returns the natural log of the
absolute value of the result of
applying the gamma function to a
given value.

APPLICATION PROGRAMMING

3-35

e —

_—

Programming Support Tools

Function Reference Brief Description

hypot hypot(3M) Return the square root of the
sum of the squares of two
numbers.

log exp(3M) Returns the natural logarithm of

a given value.

logl0 exp(3M) Returns the logarithm base ten of w
a given value.

matherr | matherr(3M) | Error-handling function.

pow exp(3M) Returns the result of a given
value raised to another given
value.

sqrt exp(3M) Returns the square root of a
given value.

09t

Symbolic Debugger

The use of sdb/dbx was mentioned briefly in Chapter 2. In this sec-
tion we want to say a few words about sdb/dbx within the context of w
an application development project.

sdb/dbx works on a process, and enables a programmer to find

errors in the code. It is a tool a programmer might use while coding

and unit testing a program, to make sure it runs according to its

design. sdb/dbx would normally be used prior to the time the pro-

gram is turned over, along with the rest of the application, to testers.

During this phase of the application development cycle programs are
compiled with the —g option of cc to facilitate the use of the
debugger. The symbol table should not be stripped from the object

file. Once the programmer is satisfied that the program is error-free, :
strip(1) can be used to reduce the file storage overhead taken by the u
file.

3-36 PROGRAMMER'S GUIDE

161

Programming Support Tools

Where to Find More Information

Chapter 14 contains information on how to use sdb/dbx. The
manual page is in Section (1) of the System V Reference Manual.

lint as a Portability Tool

It is a characteristic of the UNIX system that language compilation
systems are somewhat permissive. Generally speaking it is a design
objective that a compiler should run fast. Most C compilers, there-
fore, let some things go unflagged as long as the language syntax is
observed statement by statement. This sometimes means that while
your program may run, the output will have some surprises. It also
sometimes means that while the program may run on the machine on
which the compilation system runs, there may be real difficulties in
running it on some other machine.

That’s where lint comes in. lint produces comments about incon-
sistencies in the code. The types of anomalies flagged by lint are:

® cases of disagreement between the type of value expected from
a called function and what the function actually returns

e disagreement between the types and number of arguments
expected by functions and what the function receives

® inconsistencies that might prove to be bugs
® things that might cause portability problems
Here is an example of a portability problem that would be caught by
lint.
Code such as this:
int i = lseek(fdes, offset, whence)

would get by most compilers. However, lseek returns a long integer
representing the address of a location in the file. On a machine with
a 16-bit integer and a bigger long int, it would produce incorrect

APPLICATION PROGRAMMING 3-37

Programming Support Tools

results, because i would contain only the last 16 bits of the value
returned.

Since it is reasonable to expect that an application written for a
UNIX system machine will be able to run on a variety of computers,
it is important that the use of lint be a regular part of the application
development.

Where to Find More Information

Chapter 15 contains a description of lint with examples of the kinds
of conditions it uncovers. The manual page is in Section (1) of the
System V Reference Manual.

3-38 PROGRAMMER’'S GUIDE

2ot

163

Project Control Tools

Volumes have been written on the subject of project control. It is an
item of top priority for the managers of any application development
team. Two UNIX system tools that can play a role in this area are
described in this section.

make

make is extremely useful in an application development project for
keeping track of what object files need to be recompiled as changes
are made to source code files. One of the characteristics of programs
in a UNIX system environment is that they are made up of many
small pieces, each in its own object file, that are link edited together
to form the executable file. Quite a few of the UNIX system tools are
devoted to supporting that style of program architecture. For exam-
ple, archive libraries, shared libraries and even the fact that the ce
command accepts .0 files as well as .c files, and that it can stop short
of the 1d step and produce .o files instead of an a.out, are all impor-
tant elements of modular architecture. The two main advantages of
this type of programming are that

® A file that performs one function can be re-used in any program
that needs it.

® When one function is changed, the whole program does not
have to be recompiled.

On the flip side, however, a consequence of the proliferation of object
files is an increased difficulty in keeping track of what does need to be
recompiled, and what doesn’t. make is designed to help deal with
this problem. You use make by describing in a specification file,
called makefile, the relationship (that is, the dependencies) between
the different files of your program. Once having done that, you con-
clude a session in which possibly a number of your source code files
have been changed by running the make command. make takes

APPLICATION PROGRAMMING 3-39

Project Control Tools

care of generating a new a.out by comparing the time-last-changed of
your source code files with the dependency rules you have given it.

make has the ability to work with files in archive libraries or under
control of the Source Code Control System (SCCS).

Where to Find More Information

The make(l) manual page is contained in the System V Reference
Manual. Chapter 12 gives a complete description of how to use
make.

SCCS

SCCS is an acronym for Source Code Control System. It consists of a
set of 14 commands used to track evolving versions of files. Its use is
not limited to source code; any text files can be handled, so an
application’s documentation can also be put under control of SCCS.
SCCS can:

® store and retrieve files under its control

¢ allow no more than a single copy of a file to be edited at one
time

® provide an audit trail of changes to files

® reconstruct any earlier version of a file that may be wanted

SCCS files are stored in a special coded format. Only through com-
mands that are part of the SCCS package can files be made available
in a user’s directory for editing, compiling, etc. From the point at
which a file is first placed under SCCS control, only changes to the
original version are stored. For example, let’s say that the program,
restate, that was used in several examples in Chapter 2, was con-
trolled by SCCS. One of the original pieces of that program is a file
called oppty.c that looks like this:

3-40 PROGRAMMER'S GUIDE

9l

165

Project Control Tools

/* Opportunity Cost -- oppty.c */

#include “recdef.h”

float
oppty(ps)
struct rec *ps;
{
return(ps->i/12 * ps->t * ps->dp);
}

.

~

/

If you decide to add a message to this funtion, you might change the

file like this:

/* Opportunity Cost -- oppty.c */
#include "recdef.h”
#include <stdio.h>

float

oppty(ps)

struct rec *ps;

{ .
(void) fprintf(stderr, “Opportunity calling\n”);
return(ps->i/12 * ps->t * ps->dp);

}

N

~

/

SCCS saves only the two new lines from the second version, with a
coded notation that shows where in the text the two lines belong. It
also includes a note of the version number, lines deleted, lines
inserted, total lines in the file, the date and time of the change and

the login id of the person making the change.

APPLICATION PROGRAMMING

3-41

—
__]

Project Control Tools

Where to Find More Information

Chapter 13 is an SCCS user’s guide. SCCS commands are in Section
(1) of the System V Reference Manual.

991

3-42 PROGRAMMER'’S GUIDE

167

4 D e O I S ST

liber, A Library System

To illustrate the use of UNIX system programming tools in the
development of an application, we are going to pretend we are
engaged in the development of a computer system for a library. The
system is known as liber. The early stages of system development,
we assume, have already been completed; feasibility studies have been
done, the preliminary design is described in the coming paragraphs.
We are going to stop short of producing a complete detailed design
and module specifications for our system. You will have to accept
that these exist. In using portions of the system for examples of the
topics covered in this chapter, we will work from these virtual
specifications.

We make no claim as to the efficacy of this design. It is the way it is
only in order to provide some passably realistic examples of UNIX
system programming tools in use.

liber is a system for keeping track of the books in a library. The
hardware consists of a single computer with terminals throughout the
library. One terminal is used for adding new books to the data base.
Others are used for checking out books and as electronic card cata-
logs.

The design of the system calls for it to be brought up at the begin-
ning of the day and remain running while the library is in operation.
The system has one master index that contains the unique identifier
of each title in the library. When the system is running the index
resides in memory. Semaphores are used to control access to the
index. In the pages that follow fragments of some of the system’s
programs are shown to illustrate the way they work together. The
startup program performs the system initialization; opening the
semaphores and shared memory; reading the index into the shared
memory; and kicking off the other programs. The id numbers for the
shared memory and semaphores (shmid, wrtsem, and rdsem) are
read from a file during initialization. The programs all share the in-
memory index. They attach it with the following code:

APPLICATION PROGRAMMING 3-43

SAMPLE APPLICATION: liber

/* attach shared memory for index */
if ((int)(index = (INDEX *) shmat(shmid, NULL, 0)) = = -1)
{
(void) fprintf(stderr, “shmat failed: %¥d\n”, errno);
exit(1l);

-

Of the programs shown, add —books is the only one that alters the
index. The semaphores are used to ensure that no other programs
will try to read the index while add —books is altering it. The
checkout program locks the file record for the book, so that each copy
being checked out is recorded separately and the book cannot be
checked out at two different checkout stations at the same time,

The program fragments do not provide any details on the structure of
the index or the book records in the data base.

4)

/* liber.h - header file for the library system. */

typedef ... INDEX; /* data structure for book file index */
typedef struct { /* type of records in book file */

char title[30];

char author{30];

} BOOK;

int shmid;
int wrtsem;
int rdsem;
INDEX *index;

int book file;
BOOK book_buf;

N /

(continued on next page)

3-44 PROGRAMMER'S GUIDE

891

169

SR s

SAMPLE APPLICATION: liber

4)

/* startup program*/

* 1. Open shared memory for file index and read it in.
* 2, Open two semaphores for providing exclusive write access to index.
* 3, Stash id’s for shared memory segment and semaphores in a file

* where they can be accessed by the programs.

* 4, Start programs: add-books, card-catalog, and checkout running

* on the various terminals throughout the library.

#include <stdio.h>
tinclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include “liber.h”

void exit();
extern int errno;

key t key;
int shmid;
int wrtsem;
int rdsem;
FILE *ipc_file;

main()
{
if ((shmid = shmget(key, sizeof(INDEX), IPC_CREAT | 0666)) = = -1)
{
(void) fprintf(stderr, ”startup: shmget failed: errno=%d\n”,
errno);
exit(1l);
}
if ((wrtsem = semget(key, 1, IPC_CREAT | 0666)) = = -1)
{

(void) fprintf(stderr, “startup: semget failed: errno=%d\n”,

o J

(continued on next page)

APPLICATION PROGRAMMING 3-45

SAMPLE APPLICATION: liber

-

errno);
exit(1l);
}
if ((rdsem = semget(key, 1, IPC CREAT | 0666)) = = -1)
{
(void) fprintf(stderr, "startup: semget failed: errno=td\n”,
errno);
exit(l);
}
(void) fprintf(ipc file, "%d\n%d\n%d\n”, shmid, wrtsem, rdsem);

/*

* Start the add-books program running on the terminal in the

* basement. Start the checkout and card-catalog programs

* running on the various other terminals throughout the library.
*/

0Ll

/* card-catalog program */

* 1. Read screen for author and title.

* 2, Use semaphores to prevent reading index while it is being written.
* 3. Use index to get position of book record in book file.

* 4, Print book record on screen or indicate book was not found.

* 5. Go to 1.

#include <stdio.h>
#include <sys/types.h>
#tinclude <sys/ipc.h>
#include <sys/sem.h>
#include <fentl.h>
#include “liber.h”

void exit();

extern int errno;
struct sembuf sop([l];

- Vv

(continued on next page)

3-46 PROGRAMMER’S GUIDE

71

SAMPLE APPLICATION: liber

main() {
while (1)
{
/*
* Read author/title/subject information from screen.
*/
/*
* Wait for write semaphore to reach 0 (index not being
written).
*/
sop[0].sem op = 1;
if (semop(wrtsem, sop, 1) = = -1)
{
(void) fprintf(stderr, "semop failed: %d\n”,
errno);
exit(1l);
}
/*

* Increment read semaphore so potential writer will wait
* for us to finish reading the index.

*/

sop[0].sem op = 0;

if (semop(rdsem, sop, 1) = = -1)

{
(void) fprintf(stderr, "semop failed: %d\n”,
errno);
exit(1l);

}

/* Use index to find file pointer(s) for book(s) */

/* Decrement read semaphore */

sop{0].sem op = -1;

if (semop(rdsem, sop, 1) = = -1)

{
(void) fprintf(stderr, "semop failed: %d\n”,
errno);
exit(l);

-

\

)

(continued on next page)

APPLICATION PROGRAMMING

3-47

SAMPLE APPLICATION: liber

-

~ ~ ~
* *

* * * * X A X ¥ ¥

*
~

/*

*

*

Now we use the file pointers found in the index to
read the book file. Then we print the information
on the book(s) to the screen.

*/
} /* while */

checkout program */

6.
7.

main()

Read screen for Dewey Decimal number of book to be checked out.
Use semaphores to prevent reading index while it is being written.
Use index to get position of book record in book file.

If book not found print message on screen, otherwise lock

book record and read.

If book already checked out print message on screen, otherwise
mark record "checked out” and write back to book file.

Unlock book record.

Go to 1.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <fentl.h>
#include “liber.h”

void exit();

long lseek();

extern int errno;
struct flock flk;
struct sembuf sop[l];
long bookpos;

/

3-48

(continued on next page)

PROGRAMMER'’S GUIDE

el

173

SAMPLE APPLICATION:

liber

-

while (1)

{

/*

* Read Dewey Decimal number from screen.
*/

/*

* Wait for write semaphore to reach 0 (index not being
written).

*/
sop[0].sem flg = 0;
sop[0].sem op = 0;

if (semop(wrtsem, sop, 1) = = -1)

{
(void) fprintf(stderr, ”semop failed: %¥d\n”,
errno);
exit(l);

}

/*

* Increment read semaphore so potential writer will wait
* for us to finish reading the index.

*/

sop[0].sem op = 1;

if (semop(rdsem, sop, 1) = = -1)

{
(void) fprintf(stderr, "semop failed: %d\n”,
errno);
exit(l);

}

/*

* Now we can use the index to find the book’s record position.
* Assign this value to "bookpos”.

*/

/* Decrement read semaphore */

sop{0}.sem op = -1;

if (semop(rdsem, sop, 1) = = -1)

{
(void) fprintf(stderr, "semop failed: %d\n",
errno);
exit(l);

~

)

(continued on next page)

APPLICATION PROGRAMMING

3-49

SAMPLE APPLICATION: liber

4 N

}

/* Lock the book’s record in book file, read the record. */
flk.1 type = F_WRLCK;

£f1k.1 whence = 0;

flk.1_start = bookpos;

flk.1_len = sizeof (BOOK);

if (fentl(book_file, F_SETLKW, &flk) = = -1)
{
(void) fprintf(stderr, “trouble locking: %d\n”,
errno) ;
exit(l);
}
if (1lseek(book file, bookpos, 0) = = -1)
{
Error processing for 1seek;
}
if (read(book_file, &book buf, sizeof(BOOK)) = = -1)
{
Error processing for read;
}
/*

* If the book is checked out inform the client, otherwise
* mark the book’s record as checked out and write it

* back into the book file.

*/

/* Unlock the book’'s record in book file. */
flk.1_type = F_UNLCK;

if (fcntl(book file, F_SETIK, &flk) = = -1)
{
(void) fprintf(stderr, “trouble unlocking: $d\n”,
errno);
exit(l);
}
} /* while */

}

/* add-books program */

/*
* 1. Read a new book entry from screen.
* 2. Insert book in book file.

N J

(continued on next page)

3-50 PROGRAMMER’S GUIDE

vitE

v

175

SAMPLE APPLICATION: liber

N

*

* X % %

*

/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include “liber.h”

3. Use semaphore “wrtsem” to block new readers.
4. Wait for semaphore "rdsem” to reach 0.

5. Insert book into index.

6. Decrement wrtsem.

7. Go to 1.

void exit();

extern int errno;
struct sembuf sop{l];
BOOK bookbuf;

main()

* Read information on new book from screen.

*/

addscr (&bookbuf) ;

/* write new record at the end of the bookfile.
* Code not shown, but

* addscr() returns a 1 if title information has
* been entered, 0 if not.

*/

/*

* Increment write semaphore, blocking new readers from

* accessing the index.

*/

sop{0].sem flg = 0;

sop[0].sem op = 1;

if (semop(wrtsem, sop, 1) = = -1)

{
(void) fprintf(stderr, "semop failed: %d\n",
errno);

\

/

(continued on next page)

APPLICATION PROGRAMMING

3-51

SAMPLE APPLICATION: liber

4)

exit(l);
}
/t
* Wait for read semaphore to reach 0 (all readers to finish
* using the index).

*/
sop{0].sem op = 0;
if (semop(rdsem, sop, 1) = = -1)

‘ W/

(void) fprintf(stderr, "semop failed: %d\n”,
errno);
exit(l);
}
/a\-
* Now that we have exclusive access to the index we
* insert our new book with its file pointer.

*/

/* Decrement write semaphore, permitting readers to read index. * /
sop[0].sem op = -1;
if (semop(wrtsem, sop, 1) = = -1)
{
(void) fprintf(stderr, ”semop failed: %d\n~,
errno);
exit(l);
}
} /* for */

_ y,

The example following, addser(), illustrates two significant points
about curses screens:

9/t

1. Information read in from a curses window can be stored in
fields that are part of a structure defined in the header file for
the application.

3-52 PROGRAMMER'’S GUIDE

177

2. The address of the structure can be passed from another
tion where the record is processed.

SAMPLE APPLICATION:

liber

func-

/

/* addscr is called from add-books.
* The user is prompted for title
* information.
*/

#include <curses.h>

WINDOW *cmdwin;

addscr (bb)

struct BOOK *bb;

{

int c;
initscr();
nonl();
noecho(};
cbreak();

cmdwin = newwin(6, 40, 3, 20);
mvprintw(0, 0, "This screen is for adding titles to the data base”);
mvprintw(l, 0, "Enter a to add; gq to quit: ”);
refresh();
for (;;)
{
refresh();
c = getch();
switch (c) {
case 'a’:
werase(cmdwin};
box(cmdwin, ‘|‘, '=');
mvwprintw(cmdwin, 1, 1, “Enter title: ”);
wmove (cmdwin, 2, 1);
echo();
wrefresh(cmdwin) ;
wgetstr(emdwin, bb->title);
noecho();
werase(cmdwin);
box(cmdwin, ‘|’, ‘=');
mvwprintw(cmdwin, 1, 1, "Enter author: ”);
wmove (cmdwin, 2, 1);
echo();

-

~

J

(continued on next page)

APPLICATION PROGRAMMING

3-53

SAMPLE APPLICATION: liber

-

wrefresh(cmdwin);
wgetstr(cmdwin, bb->author);

noecho();
werase(cmdwin);
wrefresh(cmdwin);
endwin();
return(l);
case 'q’:
erase();
endwin();
return(0);
}
}
}
#
Makefile for liber library system
#
CC = cc
CFLAGS = -0

all: startup add-books checkout card-catalog

startup: liber.h startup.c
$(CC) $(CFLAGS) -0 startup startup.c

add-books: add-books.o addscr.o

add-bdoks.o: liber.h

checkout: liber.h checkout.c
$(CC) $(CFLAGS) -o checkout checkout.c

card-catalog: liber.h card-catalog.c

-

$(CC) $(CFLAGS) -o add-books add-books.o addscr.o

$(CC) $(CFLAGS) -o card-catalog card-catalog.c

3-54

PROGRAMMER'S GUIDE

8.1

G

Chapter 4: awk

Page

Introduction.......cccoeciiveiiieciic e 4-1

Basic aWKc.cocoiiiiiie e 4—- 3

Program Structurecccoeevevireverecrierreenneereoseessesniesnnens 4- 3

m UBSBZE ettt ettt ser et e 4- 4
Fields. ..o 4-5

Printing ...ooccoecciieiic 4- 6

Formatted Printingccccoovvvvveeeiieiiiiieccccceeeeceeeere s 4—- 8

Simple Patternscoccooeveeiniiniiiniireceneseeese e 4-9

SIimple ACLIONSc.occeruiriiririirieeireerrsee e s rae e ereeeesaenns 4-10

Built-in Variablesc.cccocciiiivviciiei e 4-10

@ User-defined Variables...........ccccooeeeieeceiciiiveiieee e 4-11
i FUunCtionscoceeimviiiiiiiiieeeiecee ettt e rree s 4-11
A Handful of Useful One-linersc.cccccceeeerirecireirenecnnenns 4-12

Error MesSSagescoccveveiiieieeieiiire e cvneeeinse e s s aeeeaeas 4-13

Patterns ...t 4-15

- BEGIN and END ..o 4-15
m Relational EXpressions........ccccceecvevecviicenvverenciiceesereesnnnens 4-16
Regular EXpressions........cccceccvveeeeciieienieescciieeseieeeeeseeee s 4-17
Combinations of Patterns.........ccceevveevieeiiiivieeniennceecieenne 4-21

Pattern Ranges.......c..cccoeviuviniieiiiceiieccieeecee et 4-22

ACLIONIS ..ttt et e et e ree s anen 4-23

Built-in Variables........cccccviriiiiiiniiniccieeeeseceeee e 4-23

ATIthmetic ...cooviiieiieeicer e 4-24

Strings and String Functions..........cccccveevenvenviniencnionnnnnnns 4-27

TABLE OF CONTENTS -1

Table of Contents

1 Page
| Field Variables..........cccccoverimiinmnieeereeerecces e 4-31
| Number or String?c..ooeoeieieiiiceiire e, 4-32
| Control Flow Statements...............ccocoevvuvveueeeeneeeeeeereeesnn. 4-34
ATTAYS ..ottt ettt sttt eeeee e 4-37
User-Defined Functionsccooueoeveeeiveeceneneeeeereresnn. 4—-40

Some Lexical Conventions...............cccoueveueeeveveveeeveeeerersisnnns 4-41

OUEPUL .ttt e 4-43

The print Statementcccoouevieceeriiieeeeeeeeeeeee e 4—-43

Output Separators.........cccvveeeeeeeirieeeeeeeeeeeeeeeeeeeeer e eseeans 4-43

The printf Statement...............ccoevvereeriineeeeeeeeeeeeeenn, 4—44

Output into Filescooeiieeieriiceceeeeee e, 4—-46

Output into Pipes.......cccccemuiieeireveeeeeeeeeececeee e 4-46

INPUL .ot 4-49

Files and Pipes.......cccccccevvtrieiiinninrererecceeectceeees et 4-49

Input Separators.........cccccoceveiieriinccreseeeese e 4-50

Multi-line Recordsccocuevieieieierivieiiceeecre e 4-50

The getline Function...........c...c.cooeeeveiiveeineeeeeeeeeeeeen. 4-51
Command-line Arguments..............cccocoeevvveuecceriseereeeeennn. 4-54

Using awk with Other Commands and the Shell................... 4-57

The system Functionc.ooveeeivininneeeeeeeeeeeeeeeaenn 4-57
Cooperation with the Shell..............ccooveieeeeeereeeeeeren. 4-57

Example Applicationsc.ccocvceuieerieeericerieeceeeeeeeeeeeeeeeeeenenn 4-61
Generating Reportsccoceveuiuieeeeeereeiicecececeecceee v 4-61

Additional Examplescccceeeirveuerereeeereririeceee e 4-63

Word Frequenciesc.ccoveeeeeeeereeeecicecceeeeseseene. 4-63

Accumulation ... 4-64

Random Choice........cccoeierioercieieiece et 4-64

1-2 PROGRAMMER'’S GUIDE

[022]3

181

Table of Contents

Page

Shell Facility........cccccourrieieeiiieiieeirecreeieeeee e e 4-65
Form-letter Generationccceceeeceveecrieesieeccreceeennes. 4-65
AWK SUMMATY.....cccconiiiriiiiinie e saeesae e 4-67
Command Line.........cccoveeviinreiiiiienieniieneteseee e s evee e 4-67
Patterns......ccooeeieiirieee et 4-67
Control Flow Statements.........cccccceeeeiviceiiieeeiiencieeciecreieens 4-67
Input-output.......ccccoriiiriieeire e 4-68
FUnctions....c..oeeveeeiieeiieree e 4-68
String Functions........cceevevereiieieesiicceeeerceeeece e 4-69
Arithmetic Functions.......c..cccvioviiciiicciniee e 4-69
Operators (Increasing Precedence)..........cccceeveevveeevveveenenee. 4-170
Regular Expressions (Increasing Precedence).................... 4-170
Built-in Variables........cccccocvevieiiieienieieeeeceee e 4-7
LiMIES..eevviieenierreneineereree ettt ettt e ene 4-71
Initialization, Comparison, and Type Coercion.................. 4~-172

TABLE OF CONTENTS -3

Table of Contents

This page is intentionally left blank

28t

-4 PROGRAMMER’S GUIDE

183

Introduction

This chapter describes the new version of awk released in UNIX
NoTE | System V Release 3.1 and described in awk(l). An earlier ver-
sion is described in oawk(1).

Suppose you want to tabulate some survey results stored in a file,
print various reports summarizing these results, generate form
letters, reformat a data file for one application package to use with
another package, or count the occurrences of a string in a file. awk
is a programming language that makes it easy to handle these and
many other tasks of information retrieval and data processing. The
name awk is an acronym constructed from the initials of its develop-
ers; it denotes the language and also the UNIX system command you
use to run an awk program.

awk is an easy language to learn. It automatically does quite a few
things that you have to program for yourself in other languages. As a
result, many useful awk programs are only one or two lines long.
Because awk programs are usually smaller than equivalent programs
in other languages, and because they are interpreted, not compiled,
awk is also a good language for prototyping.

The first part of this chapter introduces you to the basics of awk and
is intended to make it easy for you to start writing and running your
own awk programs. The rest of the chapter describes the complete
language and is somewhat less tutorial. For the experienced awk
user, there’s a summary of the language at the end of the chapter.

You should be familiar with the UNIX system and shell programming
to use this chapter. Although you don’t need other programming
experience, some knowledge of the C programming language is
beneficial, because many constructs found in awk are also found in C.

awk 441

Introduction

This page is intentionally left blank

PROGRAMMER'’S GUIDE

8t

185

Basic awk

This section provides enough information for you to write and run
some of your own programs. Each topic presented is discussed in
more detail in later sections.

Program Structure

The basic operation of awk(1) is to scan a set of input lines one after
another, searching for lines that match any of a set of patterns or
conditions you specify. For each pattern, you can specify an action;
this action is performed on each line that matches the pattern.
Accordingly, an awk program is a sequence of pattern-action state-
ments, as Figure 4-1 shows.

Structure:
pattern { action }
pattern { action }
Example:
$1 = = "address” { print $2, $3 }

Figure 4-1: awk Program Structure and Example

The example in the figure is a typical awk program, consisting of one
pattern-action statement. The program prints the second and third
fields of each input line whose first field is address. In general, awk
programs work by matching each line of input against each of the
patterns in turn. For each pattern that matches, the associated
action (which may involve multiple steps) is executed. Then the next
line is read and the matching starts over. This process typically con-
tinues until all the input has been read.

awk 4-3

Basic awk

Either the pattern or the action in a pattern-action statement may be
omitted. If there is no action with a pattern, as in

$1 = = "name”

the matching line is printed. If there is no pattern with an action, as
in

{ print $1, $2 }

the action is performed for every input line. Since patterns and
actions are both optional, actions are enclosed in braces to distinguish
them from patterns.

Usage
There are two ways to run an awk program. First, you can type the
command line

awk ’pattern-action statements’ optional list of input files

to execute the pattern-action statements on the set of named input
files. For example, you could say

awk ’{ print $1, $2 }’ filel file2

Notice that the pattern-action statements are enclosed in single
quotes. This protects characters like $ from being interpreted by the
shell and also allows the program to be longer than one line.

If no files are mentioned on the command line, awk(1) reads from the
standard input. You can also specify that input comes from the stan-
dard input by using the hyphen (—) as one of the input files. For
example,

awk ’{ print $3, $4 }" filel —

says to read input first from filel and then from the standard input.

4-4 PROGRAMMER’S GUIDE

98I

187

Basic awk

The arrangement above is convenient when the awk program is short
(a few lines). If the program is long, it is often more convenient to
put it into a separate file and use the —f option to fetch it:

awk —f program file optional list of input files

For example, the following command line says to fetch and execute
myprogram on input from the file filel:

awk -f myprogram filel
Fields

awk normally reads its input one line, or record, at a time; a record
is, by default, a sequence of characters ending with a newline. awk
then splits each record into fields, where, by default, a field is a string
of non-blank, non-tab characters.

As input for many of the awk programs in this chapter, we use the
file countries, which contains information about the ten largest
countries in the world. Each record contains the name of a country,
its area in thousands of square miles, its population in millions, and
the continent on which it is found. (Data are from 1978; the U.S.S.R.
has been arbitrarily placed in Asia.) The white space between fields
is a tab in the original input; a single blank separates North and
South from America .

awk 4-5

Basic awk

USSR 8650 262 Asia

Canada 3852 24 North America
China 3692 866 Asia

usa 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Figure 4-2: The Sample Input File countries

This file is typical of the kind of data awk is good at processing — a
mixture of words and numbers separated into fields by blanks and
tabs.

The number of fields in a record is determined by the field separator.
Fields are normally separated by sequences of blanks and/or tabs, so
that the first record of countries would have four fields, the second
five, and so on. It’s possible to set the field separator to just tab, so
each line would have four fields, matching the meaning of the data;
we’ll show how to do this shortly. For the time being, we’ll use the
default: fields separated by blanks and/or tabs. The first field within
a line is called $1, the second $2, and so forth. The entire record is
called $0.

Printing

If the pattern in a pattern-action statement is omitted, the action is
executed for all input lines. The simplest action is to print each line;
you can accomplish this with an awk program consisting of a single
print statement

{ print }

4-6 PROGRAMMER'’S GUIDE

88l

W/

189

Basic awk

s0 the command line

awk ’{ print }’ countries

prints each line of countries, copying the file to the standard output.
The print statement can also be used to print parts of a record; for
instance, the program

{ print $1, $3 }
prints the first and third fields of each record. Thus
awk ’{ print $1, $3 }’ countries

produces as output the sequence of lines:

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

When printed, items separated by a comma in the print statement
are separated by the output field separator, which by default is a sin-
gle blank. Each line printed is terminated by the output record
separator, which by default is a newline.

In the remainder of this chapter, we only show awk programs,
NoTE | without the command line that invokes them. Each complete pro-
gram can be run either by enclosing it in quotes as the first argu-
l ment of the awk command, or by putting it in a file and invoking

awk with the —f flag, as discussed in "awk Command Usage.”
In an example, if no input is mentioned, the input is assumed to
be the file countries.

awk 4-7

Basic awk

Formatted Printing

For more carefully formatted output, awk provides a C-like printf
statement

printf format, expr., exprs, . . ., expr,

which prints the expr;’s according to the specification in the string
format. For example, the awk program

{ printf ”%10s %6d\n”, $1, $3 } U

prints the first field ($1) as a string of 10 characters (right justified),
then a space, then the third field ($3) as a decimal number in a six-
character field, then a newline (\n). With input from the file coun-
tries, this program prints an aligned table:

USSR 262
Canada 24
China 866 g
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19)
Algeria 18 V

With printf, no output separators or newlines are produced automat-
ically; you must create them yourself by using \m in the format
specification. ”The printf Statement” in this chapter contains a full
description of printf.

4-8 PROGRAMMER’S GUIDE

191

Basic awk

Simple Patterns

You can select specific records for printing or other processing by
using simple patterns. awk has three kinds of patterns. First, you
can use patterns called relational expressions that make comparisons.
For example, the operator tests for equality. To print the lines for
which the fourth field equals the string Asia, we can use the pro-
gram consisting of the single pattern

$4 == "Asia”
With the file countries as input, this program yields

USSR 8650 262 Asia
China 3692 866 Asia
India 1269 637 Asia

The complete set of comparisons is >, > =, <, <=, == (equal to)
and != (not equal to). These comparisons can be used to test both
numbers and strings. For example, suppose we want to print only
countries with a population greater than 100 million. The program

$3 > 100

is all that is needed. (Remember that the third field in the file coun-
tries is the population in millions.) It prints all lines in which the
third field exceeds 100.

Second, you can use patterns called regular expressions that search
for specified characters to select records. The simplest form of a reg-
ular expression is a string of characters enclosed in slashes:

/us/

This program prints each line that contains the (adjacent) letters US
anywhere; with the file countries as input, it prints

USSR 8650 262 Asia
UsAa 3615 219 North America

We will have a lot more to say about regular expressions later in this
chapter.

awk 4-9

SRR O SE Y ST SRR T L i L
]
]

Basic awk

Third, you can use two special patterns, BEGIN and END, that
match before the first record has been read and after the last record
has been processed. This program uses BEGIN to print a title:

BEGIN { print "Countries of Asia:” }
/Asia/ { print ~ ", §1 }

The output is

Countries of Asia:
USSR
China
India

Simple Actions

We have already seen the simplest action of an awk program: print-
ing each input line. Now let’s consider how you can use built-in and
user-defined variables and functions for other simple actions in a pro-

gram.,

Built-in Variables

Besides reading the input and splitting it into fields, awk(l) counts
the number of records read and the number of fields within the
current record; you can use these counts in your awk programs. The
variable NR is the number of the current record, and NF is the
number of fields in the record. So the program

{ print NR, NF }
prints the number of each line and how many fields it has, while
{ print NR, $0 }

prints each record preceded by its record number.

4-10 PROGRAMMER’S GUIDE

318

193

Basic awk

User-defined Variables

Besides providing built-in variables like NF and NR, awk lets you
define your own variables, which you can use for storing data, doing
arithmetic, and the like. To illustrate, consider computing the total
population and the average population represented by the data in the
file countries:

{ sum = sum + $3 }
END { print “Total population is”, sum, “million”
print "Average population of”, NR,
"countries is”, sum/NR

}

awk initializes sum to zero before it is used.
NOTE

The first action accumulates the population from the third field; the
second action, which is executed after the last input, prints the sum
and average:

Total population is 2201 million
Average population of 10 countries is 220.1

Functions

awk has built-in functions that handle common arithmetic and string
operations for you. For example, there’s an arithmetic function that
computes square roots. There is also a string function that substi-
tutes one string for another. awk also lets you define your own func-
tions. Functions are described in detail in the section ”Actions” in
this chapter.

awk 4-1

]
—) ———

Basic awk

A Handful of Useful One-liners

Although awk can be used to write large programs of some complex-
ity, many programs are not much more complicated than what we’ve
seen so far. Here is a collection of other short programs that you
may find useful and instructive. They are not explained here, but any
new constructs do appear later in this chapter.

Print last field of each input line: w
{ print $NF }

Print 10th input line:
NR = = 10

Print last input line:
{ line = $0}
END { print line }

V6l

Print input lines that don’t have four fields:
NF != 4 { print $0, "does not have 4 fields” }

Print input lines with more than four fields:
NF > 4

Print input lines with last field more than 4: u
SNF > 4

Print total number of input lines:
END { print NR }

Print total number of fields:
{ nf = nf + NF }
END { print nf }

Print total number of input characters: V

{ nc = nc + length($0) }
END { print nc + NR }

4-12 PROGRAMMER’S GUIDE

195

Basic awk

(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:
/Asia/ { nlines++ }
END { print nlines }

(The statement nlines++ has the same effect as

nlines = nlines + 1.)

Error Messages

If you make an error in your awk program, you generally get an
error message. For example, trying to run the program

$3 < 200 { print ($1 }
generates the error messages

awk: syntax error at source line 1
context is
$3 < 200 { print (>>> $§1 } <<<
awk: illegal statement at source line 1
1 extra (

Some errors may be detected while your program is running. For
example, if you try to divide a number by zero, awk stops processing
and reports the input record number (NR) and the line number in
the program.

awk 4-13

— [007] ———

Basic awk

This page is intentionally left blank

4-14 PROGRAMMER'’S GUIDE

961

197

PATTERNS

In a pattern-action statement, the pattern is an expression that
selects the records for which the associated action is executed. This
section describes the kinds of expressions that may be used as pat-
terns.

BEGIN and END

BEGIN and END are two special patterns that give you a way to
control initialization and wrap-up in an awk program. BEGIN
matches before the first input record is read, so any statements in the
action part of a BEGIN are done once, before the awk command
starts to read its first input record. The pattern END matches the
end of the input, after the last record has been processed.

The following awk program uses BEGIN to set the field separator to
tab (\t) and to put column headings on the output. The field separa-
tor is stored in a built-in variable called FS. Although FS can be
reset at any time, usually the only sensible place is in a BEGIN sec-
tion, before any input has been read. The program’s second printf
statement, which is executed for each input line, formats the output
into a table, neatly aligned under the column headings. The END
action prints the totals. (Notice that a long line can be continued
after a comma.)

BEGIN {FS = "\t”
printf ”%10s %6s %5s %s\n”,
"COUNTRY”, "AREA”, "POP”, "CONTINENT” }
{printf ”%10s %6d %5d %s\n”, $1, $2, $3, $4
area = area + $2; pop = pop + $3 }
END {printf "\n%10s %6d %5d\n”, "TOTAL”, area, pop }

With the file countries as input, this program produces:

awk 4-15

) ——g

PATTERNS

COUNTRY
USSR
Canada
China

UsA
Brazil
Australia
India
Argentina
Sudan
Algeria

TOTAL 3

8650
3852
3692
3615
3286
2968
1269
1072

968

920

0292

POP CONTINENT

262 Asia
24 North America
866 Asia

219 North America
116 South America
14 Australia

637 Asia
26 South America
19 Africa
18 Africa
2201

Relational Expressions

An awk pattern can be any expression involving comparisons
between strings of characters or numbers. awk has six relational

operators, and two regular expression matching operators, ~ (tilde)
and !~, which are discussed in the next section, for making comparis-
ons. Figure 4-3 shows these operators and their meanings.

Operator Meaning
< less than
<= less than or equal to
== equal to
1= not equal to
>= greater than or equal to
> greater than

matches
does not match

Figure 4-3: awk Comparison Operators

4-16

PROGRAMMER'’S GUIDE

861

PATTERNS

In a comparison, if both operands are numeric, a numeric comparison
is made; otherwise, the operands are compared as strings. (Every
value might be either a number or a string; usually awk can tell
what is intended. The section "Number or String?” contains more
information about this.) Thus, the pattern $3>100 selects lines
where the third field exceeds 100, and the program

$1 >= ”S"
selects lines that begin with the letters S through Z, namely,

USSR 8650 262 Asia
USA 3615 219 North America
Sudan 968 19 Africa

In the absence of any other information, awk treats fields as strings,
so the program

compares the first and fourth fields as strings of characters, and with
the file countries as input, prints the single line for which this test
succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numer-
ically.

Regular Expressions

awk provides more powerful patterns for searching for strings of
characters than the comparisons illustrated in the previous section.
These patterns are called regular expressions, and are like those in
egrep(l) and lex(1). The simplest regular expression is a string of
characters enclosed in slashes, like

/Asia/

This program prints all input records that contain the substring

awk 4-17

PATTERNS

Asia. (If a record contains Asia as part of a larger string like Asian
or Pan-Asiatic, it is also printed.) In general, if re is a regular
expression, then the pattern:

/re/

matches any line that contains a substring specified by the regular
expression re.

To restrict a match to a specific field, you use the matching operators
~ (matches) and !~ (does not match). The program

$4 - /Asia/ { print $1 }

prints the first field of all lines in which the fourth field matches
Asia, while the program
$4 !~ /Asia/ { print $1 }

prints the first field of all lines in which the fourth field does not
match Asia.

In regular expressions, the symbols

\"$.[1 = +20|

are metacharacters with special meanings like the metacharacters in
the UNIX shell. For example, the metacharacters ~ and $ match the
beginning and end, respectively, of a string, and the metacharacter .
(”dot”) matches any single character. Thus,

/7-8/
matches all records that contain exactly one character.

A group of characters enclosed in brackets matches any one of the
enclosed characters; for example, /[ABC]/ matches records contain-
ing any one of A, B, or C anywhere. Ranges of letters or digits can
be abbreviated within brackets: /[a—2zA—Z]/ matches any single
letter.

4-18 PROGRAMMER'’S GUIDE

00¢

201

PATTERNS

If the first character after the [is a -, this complements the class so
it matches any character not in the set: /["a—2zA—Z]/ matches any
non-letter. The program

$2 17 /7[0-9]1+8/

prints all records in which the second field is not a string of one or
more digits (* for beginning of string, [0—9]+ for one or more digits,
and $ for end of string). Programs of this nature are often used for
data validation.

Parentheses () are used for grouping and the symbol | is used for
alternatives. The program

/(apple|cherry) (pie|tart)/

matches lines containing any one of the four substrings apple pie,
apple tart, cherry pie, or cherry tart.

To turn off the special meaning of a metacharacter, precede it by a \
(backslash). Thus, the program

/B\$/
prints all lines containing b followed by a dollar sign.

In addition to recognizing metacharacters, the awk command recog-
nizes the following C programming language escape sequences within
regular expressions and strings:

\b backspace
\f formfeed

\n newline

\r carriage return

\t tab

\ddd octal value ddd

\” quotation mark

\¢ any other character c literally

awk 4-19

)

PATTERNS

For example, to print all lines containing a tab, use the program
/\t/

awk interprets any string or variable on the right side of a ~or !” as
a regular expression. For example, we could have written the pro-
gram

$2 17 /7 {0-9]1+8/

BEGIN { digitS = " [0__,9]+ $" }
$2 1- digits

Suppose you wanted to search for a string of characters like "[0—
9]+ $. When a literal quoted string like ”~[0—9] + $” is used as a
regular expression, one extra level of backslashes is needed to protect
regular expression metacharacters. This is because one level of
backslashes is removed when a string is originally parsed. If a
backslash is needed in front of a character to turn off its special
meaning in a regular expression, then that backslash needs a preced-
ing backslash to protect it in a string.

For example, suppose we want to match strings containing b followed
by a dollar sign. The regular expression for this pattern is b\$. If
we want to create a string to represent this regular expression, we
must add one more backslash: ”b\\$”. The two regular expressions
on each of the following lines are equivalent:

x ~ "b\\$” x ~ /b\$/
x ~ "b\$” x - /b$/
x ~ "b$*” x = /b$/
x 7 "\\t” x 7 /\t/

The precise form of regular expressions and the substrings they
match is given in Figure 4-4. The unary operators *, +, and ? have
the highest precedence, then concatenation, and then alternation | .
All operators are left associative. r stands for any regular expression.

4-20 PROGRAMMER’S GUIDE

c0e

203

— m —

PATTERNS

Expression Matches
c any non-metacharacter ¢
\e character c literally
" beginning of string
$ end of string
. any character but newline
[s] any character in set s
["s] - | any character not in set s
rx Zero or more r’s
r+ one or more r’s
r? Zero or one r
(r) r
rirs ri then r, (concatenation)
ri|re r, or ry (alternation)

Figure 4-4: awk Regular Expressions

Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and
the logical operators || (or), && (and), and ! (not). For example,
suppose we want to print all countries in Asia with a population of
more than 500 million. The following program does this by selecting
all lines in which the fourth field is Asia and the third field exceeds
500:

$4 = = "Asia” && $3 > 500
The program
$4 = = "Asia” || $4 = = "Africa”

awk 4-21

PATTERNS

selects lines with Asia or Africa as the fourth field. Another way to
write the latter query is to use a regular expression with the alterna-
tion operator | :

$4 ~ /" (Asia|Africa)$/
The negation operator ! has the highest precedence, then &&, and

finally ||. The operators && and || evaluate their operands from
left to right; evaluation stops as soon as truth or falsehood is deter-
mined.

Pattern Ranges

A pattern range consists of two patterns separated by a comma, as in

patl, pat2 { eee }

In this case, the action is performed for each line between an
occurrence of pat; and the next occurrence of pat, (inclusive). As an
example, the pattern

/Canada/, /Brazil/

matches lines starting with the first line that contains the string
Canada up through the next occurrence of the string Brazil:

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America

Similarly, since FNR is the number of the current record in the
current input file (and FILENAME is the name of the current input
file), the program

FNR = = 1, FNR = = 5 { print FILENAME, $0 }

prints the first five records of each input file with the name of the
current input file prepended.

4-22 PROGRAMMER'’S GUIDE

144

205

ACTIONS

In a pattern-action statement, the action determines what is to be
done with the input records that the pattern selects. Actions fre-
quently are simple printing or assignment statements, but they may
also be a combination of one or more statements. This section
describes the statements that can make up actions.

Built-in Variables

Figure 4-5 lists the built-in variables that awk maintains. Some of
these we have already met; others are used in this and later sections.

Variable Meaning Default
ARGC number of command-line arguments —
ARGV array of command-line arguments -
FILENAME | name of current input file -
FNR record number in current file —
FS input field separator blank&tab
NF number of fields in current record -
NR number of records read so far -
OFMT output format for numbers %.6g9
OFS output field separator blank
ORS output record separator newline
RS input record separator newline
RSTART index of first char. matched by match() -
RLENGTH length of string matched by match() -
SUBSEP subscript separator ”\034”

Figure 4-5: awk Built-in Variables

awk

m— 007) ——

ACTIONS

Arithmetic

Actions can use conventional arithmetic expressions to compute
numeric values. As a simple example, suppose we want to print the
population density for each country in the file countries. Since the
second field is the area in thousands of square miles and the third
field is the population in millions, the expression 1000 * $3 / $2
gives the population density in people per square mile. The program

{ printf "$10s $6.1f\n", $1, 1000 * $3 / $2 } | W)

applied to the file countries prints the name of each country and its
population density:

USSR 3
Canada
China 23
usa 6
Brazil 3
Australia
India 502.
Argentina 24.3
Sudan 19.6
Algeria 19.6

902

Arithmetic is done internally in floating point. The arithmetic opera- A
tors are +, —, *, /, % (remainder) and ~ (exponentiation; * = is a U
synonym). Arithmetic expressions can be created by applying these
operators to constants, variables, field names, array elements, func-

tions, and other expressions, all of which are discussed later. Note

that awk recognizes and produces scientific (exponential) notation:

le6, 1E6, 10e5, and 1000000 are numerically equal.

awk has assignment statements like those found in the C program-
ming language. The simplest form is the assignment statement

UV =e

where v is a variable or field name, and e is an expression. For exam- V
ple, to compute the number of Asian countries and their total

4-24 PROGRAMMER’S GUIDE

207

ACTIONS

population, we could write

$4 = = "Asia” {pop=pop + §3; n=n+ 1}
END { print “population of”, n,
“Asian countries in millions is”, pop }

Applied to countries, this program produces
population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 = = “Asia” contains two
assignment statements, one to accumulate population and the other
to count countries. The variables are not explicitly initialized, yet
everything works properly because awk initializes each variable with
the string value ”” and the numeric value 0.

The assignments in the previous program can be written more con-
cisely using the operators + = and + +:

$4 = = "Asia” { pop += $3; +n }

The operator + = is borrowed from the C programming language:
pop += $3

has the same effect as
pop = pop + $3

but the + = operator is shorter and runs faster. The same is true of
the + + operator, which adds one to a variable.

The abbreviated assignment operators are + =, - =, * =, /=, %=,
and ~=. Their meanings are similar:

vop=e
has the same effect as

v=uvope.

awk 4-25

e~

ACTIONS

The increment operators are + + and ~ —. As in C, they may be
used as prefix (+ +x) or postfix (x+ +) operators. If x is 1, then
i= + +X increments x, then sets i to 2, while i=x+ + sets i to 1,
then increments x. An analogous interpretation applies to prefix and
postfix — —.

Assignment and increment and decrement operators may all be used
in arithmetic expressions.

We use default initialization to advantage in the following program,
which finds the country with the largest population:

maxpop < $3 { maxpop = $3; country = $1 }
END { print country, maxpop }

Note, however, that this program would not be correct if all values of
$3 were negative.

awk provides the built-in arithmetic functions shown in Figure 4-6.

Function Value Returned
atan2(y,x) | arctangent of y /x in the range —w to =
cos(x) cosine of x, with x in radians

exp(x) exponential function of x

int(x) integer part of x truncated towards 0
log(x) natural logarithm of x

rand() random number between 0 and 1
sin(x) sine of x, with x in radians

sqrt(x) square root of x

srand(x) x is new seed for rand()

Figure 4-6: awk Built-in Arithmetic Functions

x and y are arbitrary expressions. The function rand() returns a
pseudo-random floating point number in the range (0,1), and
srand(x) can be used to set the seed of the generator. If srand() has
no argument, the seed is derived from the time of day.

4-26 PROGRAMMER’S GUIDE

80¢

209

ACTIONS

Strings and String Functions

A string constant is created by enclosing a sequence of characters
inside quotation marks, as in ”abe¢” or "hello, everyone”. String
constants may contain the C programming language escape sequences
for special characters listed in "Regular Expressions” in this chapter.

String expressions are created by concatenating constants, variables,
field names, array elements, functions, and other expressions.

The program
{ print NR ":” $0 }

prints each record preceded by its record number and a colon, with
no blanks. The three strings representing the record number, the
colon, and the record are concatenated and the resulting string is
printed. The concatenation operator has no explicit representation
other than juxtaposition.

awk provides the built-in string functions shown in Figure 4-7. In
this table, r represents a regular expression (either as a string or as
/r/), s and t string expressions, and n and p integers.

Function Description

gsub(r,s) substitute s for r globally in current record,
return number of substitutions

gsub(r,s,t) substitute s for r globally in string ¢, return
number of substitutions

index(s,t) return position of string ¢ in s,
0 if not present

length(s) return length of s

match(s,r) return the position in s where r occurs,
0 if not present

split(s,a) split s into array a on FS, return number
of fields

awk 4-27

ACTIONS
Function Description

split(s,a,r) split s into array a on r, return number
of fields

sprintf(fmt,expr-list) | return expr-list formatted according to format
string fmt

sub(r,s) substitute s for first » in current record,
return number of substitutions

sub(r,s,t) substitute s for first r in ¢, return number of
substitutions

substr(s,p) return suffix of s starting at position p

substr(s,p,n) return substring of s of length n starting at
position p

Figure 4-7: awk Built-in String Functions

The functions sub and gsub are patterned after the substitute com-
mand in the text editor ed(1) . The function gsub(r,s,t) replaces suc-
cessive occurrences of substrings matched by the regular expression r
with the replacement string s in the target string . (As in ed, the
leftmost match is used, and is made as long as possible.) It returns
the number of substitutions made. The function gsub(r,s) is a
synonym for gsub(r,s,$0) . For example, the program

{ gsub(/USA/, "United States”); print }

transcribes its input, replacing occurrences of USA by United
States. The sub functions are similar, except that they only replace
the first matching substring in the target string.

The function index(s,t) returns the leftmost position where the
string ¢ begins in s, or zero if ¢ does not occur in s . The first charac-
ter in a string is at position 1. For example,

index(”banana”, “an”)

returns 2.

4-28 PROGRAMMER’S GUIDE

(1]¥4

21

ACTIONS

The length function returns the number of characters in its argu-
ment string; thus,

{ print length($0), $0 }

prints each record, preceded by its length. ($0 does not include the
input record separator.) The program

length($1l) > max { max = length($l); name
END " { print name }

$1 1}

applied to the file countries prints the longest country name: Aus-
tralia.

The match(s,r) function returns the position in string s where regu-
lar expression r occurs, or 0 if it does not occur. This function also
sets two built-in variables RSTART and RLENGTH. RSTART is
set to the starting position of the match in the string; this is the same
value as the returned value. RLENGTH is set to the length of the
matched string. (If a match does not occur, RSTART is 0, and
RLENGTH is —1.) For example, the following program finds the
first occurrence of the letter i followed by at most one character fol-
lowed by the letter a in a record:

{ if (match($0, /i.?a/))
print RSTART, RLENGTH, $0 }

It produces the following output on the file countries:

17 2 USSR 8650 262 Asia
26 3 Canada 3852 24 North America
3 3 China 3692 866 Asia
24 3 USA 3615 219 North America

27 3 Brazil 3286 116 South America
8 2 Australia 2968 14 Australia

4 2 India 1269 637 Asia

7 3 Argentina 1072 26 South America
17 3 Sudan 968 19 Africa

6 2 Algeria 920 18 Africa

awk _ 4-29

ACTIONS

match() matches the left-most longest matching string. For
NOTE | example, with the record

AsiaaaAsiaaaaan
as input, the program
{ if (match($0, /a+/)) print RSTART, RLENGTH, $0 }

matches the first string of a’s and sets RSTART to 4 and

RLENGTH to 3.
The function sprintf(format, expr,, expr,, . . ., expr,) returns
(without printing) a string containing expr, expr,, . . ., expr, format-

ted according to the printf specifications in the string format. “The
printf Statement” in this chapter contains a complete specification of
the format conventions. The statement

X = sprintf(”%10s %6d”, $1, $2)

assigns to x the string produced by formatting the values of $1 and
$2 as a ten-character string and a decimal number in a field of width
at least six; x may be used in any subsequent computation.

The function substr(s,p,n) returns the substring of s that begins at
position p and is at most n characters long. If substr(sp) is used,
the substring goes to the end of s; that is, it consists of the suffix of s
beginning at position p. For example, we could abbreviate the coun-
try names in countries to their first three characters by invoking the
program

{ $1 = substr($1l, 1, 3); print }

on this file to produce

4-30 PROGRAMMER'’S GUIDE

cie

213

ACTIONS

USS 8650 262 Asia

Can 3852 24 North America
Chi 3692 866 Asia

USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia

Ind 1269 637 Asia

Arg 1072 26 South America
Sud 968 19 Africa

Alg 920 18 Africa

Note that setting $1 in the program forces awk to recompute $0
and, therefore, the fields are separated by blanks (the default value of
OF'S), not by tabs.

Strings are stuck together (concatenated) merely by writing them one
after another in an expression. For example, when invoked on file
countries,

{ s = s substr(s$1, 1, 3) 7 " }
END { print s }

prints
USS Can Chi USA Bra Aus Ind Arg Sud Alg

by building s up a piece at a time from an initially empty string.

Field Variables

The fields of the current record can be referred to by the field vari-
ables $1, $2, ..., $NF. Field variables share all of the properties of
other variables — they may be used in arithmetic or string opera-
tions, and they may have values assigned to them. So, for example,
you can divide the second field of the file countries by 1000 to con-
vert the area from thousands to millions of square miles:

{ $2 /= 1000; print }

awk

ACTIONS

or assign a new string to a field:

BEGIN { FS = OFS = "\t” }
$4 = = "North America” { $4 = "NA” }
$4 = = ”"South America” { $4 = ”"SA” }

{ print }

]

The BEGIN action in this program resets the input field separator FS
and the output field separator OFS to a tab. Notice that the print in
the fourth line of the program prints the value of $0 after it has been
modified by previous assignments.

Fields can be accessed by expressions. For example, $(NF 1) is the
second to last field of the current record. The parentheses are
needed: the value of $NF —1 is 1 less than the value in the last field.

A field variable referring to a nonexistent field, for example,
$(NF +1), has as its initial value the empty string. A new field can
be created, however, by assigning a value to it. For example, the fol-
lowing program invoked on the file countries creates a fifth field giv-
ing the population density:

BEGIN { FS
{ $5

OFS = "\t" }
1000 * $3 / $2; print }

The number of fields can vary from record to record, but there is usu-
ally an implementation limit of 100 fields per record.

Number or String?

Variables, fields and expressions can have both a numeric value and a
string value. They take on numeric or string values according to con-
text. For example, in the context of an arithmetic expression like

pop += $3

pop and $3 must be treated numerically, so their values will be
coerced to numeric type if necessary.

4-32 PROGRAMMER’S GUIDE

4%

215

ACTIONS 1

$1 and $2 must be strings to be concatenated, so they will be coerced
if necessary.

In a string context like

print $1 ~:” $2

In an assignment v = e or v op = e, the type of v becomes the type of
e. In an ambiguous context like

$1 == §2

the type of the comparison depends on whether the fields are numeric
or string, and this can only be determined when the program runs; it
may well differ from record to record.

In comparisons, if both operands are numeric, the comparison is
numeric; otherwise, operands are coerced to strings, and the com-
parison is made on the string values. All field variables are of type
string; in addition, each field that contains only a number is also con-
sidered numeric. This determination is done at run time. For exam-
ple, the comparison “$1 = = $2” will succeed on any pair of the
inputs

1 1.0 +1 0.letl 10E-1 001
but fail on the inputs

(null) o
(null) 0.0
0a 0

1e50 1.0e50

There are two idioms for coercing an expression of one type to the
other:

number ”” concatenate a null string to a number to coerce
it to type string
string + 0 add zero to a string to coerce it to type numeric

awk

.
|

ACTIONS

Thus, to force a string comparison between two fields, say

$1 "y - = $2 mn

The numeric value of a string is the value of any prefix of the string
that looks numeric; thus the value of 12.34x is 12.34, while the value
of x12.34 is zero. The string value of an arithmetic expression is
computed by formatting the string with the output format conversion
OFMT.

Uninitialized variables have numeric value 0 and string value ””.
Nonexistent fields and fields that are explicitly null have only the
string value ””; they are not numeric.

Control Flow Statements

awk provides if —else, while, do—while, and for statements, and
statement grouping with braces, as in the C programming language.

The if statement syntax is
if (expression) statement, else statement,

The expression acting as the conditional has no restrictions; it can
include the relational operators <, <=, >, >=, ==, and !=; the
regular expression matching operators ~ and !~ ; the logical opera-
tors ||, &&, and !; juxtaposition for concatenation; and parentheses
for grouping.

In the if statement, the expression is first evaluated. If it is non-zero
and non-null, statement, is executed; otherwise statement, is exe-
cuted. The else part is optional.

A single statement can always be replaced by a statement list
enclosed in braces. The statements in the statement list are ter-
minated by newlines or semicolons.

4-34 PROGRAMMER'S GUIDE

9l

217

ACTIONS

Rewriting the maximum population program from ”Arithmetic Func-
tions” with an if statement results in

{ if (maxpop < $3) {
maxpop = $3
country = $1

}

}
END { print country, maxpop }

The while statement is exactly that of the C programming language:
while (expression) statement

The expression is evaluated; if it is non-zero and non-null the state-
ment is executed and the expression is tested again. The cycle repeats
as long as the expression is non-zero. For example, to print all input
fields one per line,

{ i=1
while (i <= NF) {
print $i
i++
}
}

The for statement is like that of the C programming language:
for (expression |3 expression; expression ;) statement
It has the same effect as

expression |

while (expression) {
statement
expression g

awk 4-35

) ——

ACTIONS

{ for (i = 1; i <= NF; i++) print $i }
does the same job as the while example above. An alternate version
of the for statement is described in the next section.
The do statement has the form

do statement while (expression)

The statement is executed repeatedly until the value of the expression
becomes zero. Because the test takes place after the execution of the
statement (at the bottom of the loop), it is always executed at least
once. As a result, the do statement is used much less often than
while or for, which test for completion at the top of the loop.

The following example of a do statement prints all lines except those
between start and stop.

/start/ {
do {
getline x
} while (x !~ /stop/)
}
{ print }

The break statement causes an immediate exit from an enclosing
while or for; the continue statement causes the next iteration to
begin. The next statement causes awk to skip immediately to the
next record and begin matching patterns starting from the first
pattern-action statement.

The exit statement causes the program to behave as if the end of the
input had occurred; no more input is read, and the END action, if
any, is executed. Within the END action,

exit expr

causes the program to return the value of expr as its exit status. If
there is no expr, the exit status is zero.

4-36 PROGRAMMER'’S GUIDE

:1%4

219

ACTIONS

Arrays

awk provides one-dimensional arrays. Arrays and array elements
need not be declared; like variables, they spring into existence by
being mentioned. An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement
X[NR] = $0

assigns the current input line to the NRth element of the array x .
In fact, it is possible in principle (though perhaps slow) to read the
entire input into an array with the awk program

{ x[NR] = $0 }
END { ... processing ... }

The first action merely records each input line in the array x,
indexed by line number; processing is done in the END statement.

Array elements may also be named by nonnumeric values. For exam-
ple, the following program accumulates the total population of Asia
and Africa into the associative array pop. The END action prints the
total population of these two continents.

/Rsia/ { pop["Asia”] += $3 }
/Africa/ { pop[”Africa”] += $3 }
END { print ”Asian population in millions is”,
pop[“Asia”]
print "African population in millions is”,
pop[“Africa”} }

On the file countries, this program generates

Asian population in millions is 1765
African population in millions is 37

In this program if we had used pop[Asia] instead of pop[”Asia”]
the expression would have used the value of the variable Asia as the
subscript, and since the variable is uninitialized, the values would
have been accumulated in pop[””] .

awk 4-37

eF————————

ACTIONS

Suppose our task is to determine the total area in each continent of
the file countries. Any expression can be used as a subscript in an
array reference. Thus

area[$4] += $2

| uses the string in the fourth field of the current input record to index

the array area and in that entry accumulates the value of the second
field:

BEGIN { FS = ”\t" }
{ area[$4] += $2 }
END { for (name in area)
print name, area[name] }

Invoked on the file countries, this program produces

Africa 1888

North America 7467
South America 4358
Asia 13611
Australia 2968

This program uses a form of the for statement that iterates over all
defined subscripts of an array:

for (i in array) statement

executes statement with the variable i set in turn to each value of i
for which array/i] has been defined. The loop is executed once for
each defined subscript, which are chosen in a random order. Results
are unpredictable when i or array is altered during the loop.

awk does not provide multi-dimensional arrays, but it does permit a
list of subscripts. They are combined into a single subscript with the
values separated by an unlikely string (stored in the variable SUB-
SEP). For example,

4-38 PROGRAMMER’S GUIDE

0ce

221

ACTIONS

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)
arr(i,j] = ...

creates an array which behaves like a two-dimensional array; the sub-
script is the concatenation of i, SUBSEP, and j.

You can determine whether a particular subscript i occurs in an array
arr by testing the condition i in arr, as in

if ("Africa” in area) ...

This condition performs the test without the side effect of creating
area[“Africa”], which would happen if we used

if (area["Africa"] 1= "") .

Note that neither is a test of whether the array area contains an ele-
ment with value "Africa” .

It is also possible to split any string into fields in the elements of an
array using the built-in function split. The function

split(”sl:s2:s83”, a, ":")

splits the string sl:s2:s3 into three fields, using the separator : ,
and stores sl in a[l], s2in a[2], and s3 in a[3] . The number
of fields found, here three, is returned as the value of split. The
third argument of split is a regular expression to be used as the field
separator. If the third argument is missing, FS is used as the field
separator.

An array element may be deleted with the delete statement:

delete arraynamelsubscript]}

awk 4-39

_—) ——

ACTIONS

User-Defined Functions

awk provides user-defined functions. A function is defined as

function name(argument-list) {
statements
}

The definition can occur anywhere a pattern-action statement can. -
The argument list is a list of variable names separated by commas; v
within the body of the function these variables refer to the actual
parameters when the function is called. There must be no space
between the function name and the left parenthesis of the argument

list when the function is called; otherwise it looks like a concatena-

tion. For example, the following program defines and tests the usual
recursive factorial function (of course, using some input other than

the file countries):

function fact(n) {
if (n <= 1)
return 1
else
return n * fact(n-1)

(444

}

{ print $1 ~! is ” fact($1l) } Qii
Array arguments are passed by reference, as in C, so it is possible for

the function to alter array elements or create new ones. Scalar argu-

ments are passed by value, however, so the function cannot affect

their values outside. Within a function, formal parameters are local
variables but all other variables are global. (You can have any

number of extra formal parameters that are used purely as local vari-

ables.) The return statement is optional, but the returned value is
undefined if it is not included.

4-40 PROGRAMMER’S GUIDE

223

ACTIONS

Some Lexical Conventions

Comments may be placed in awk programs: they begin with the
character # and end at the end of the line, as in

print x, y # this is a comment

Statements in an awk program normally occupy a single line.
Several statements may occur on a single line if they are separated by
semicolons. A long statement may be continued over several lines by
terminating each continued line by a backslash. (It is not possible to
continue a ”...” string.) This explicit continuation is rarely necessary,
however, since statements continue automatically if the line ends
with a comma (for example, as might occur in a print or printf

statement) or after the operators && and | |.

Several pattern-action statements may appear on a single line if
separated by semicolons.

awk 4-41

—] dk |

ACTIONS

4-42

‘ﬁ

This page is intentionally left blank

yee

PROGRAMMER’S GUIDE

225

e e AR S

OUTPUT

The print and printf statements are the two primary constructs that
generate output. The print statement is used to generate simple out-
put; printf is used for more carefully formatted output. Like the
shell, awk lets you redirect output, so that output from print and
printf can be directed to files and pipes. This section describes the
use of these two statements.

The print Statement

The statement
print expry, exprsg, . . ., expr,

prints the string value of each expression separated by the output
field separator followed by the output record separator. The state-
ment

print

is an abbreviation for
print $0

To print an empty line use

pr int "

Output Separators

The output field separator and record separator are held in the built-
in variables OFS and ORS. Initially, OFS is set to a single blank
and ORS to a single newline, but these values can be changed at any
time. For example, the following program prints the first and second
fields of each record with a colon between the fields and two newlines

awk 4-43

de

OuUTPUT

after the second field:

BEGIN { OFS = ”:”; ORS = "\n\n" }
{ print $1, $2 }

Notice that
{ print $1 $2 }

prints the first and second fields with no intervening output field
separator, because $1 $2 is a string consisting of the concatenation
of the first two fields.

The printf Statement

awk’s printf statement is the same as that in C except that the =
format specifier is not supported. The printf statement has the gen-
eral form

printf format, expr,, exprs, . . ., expr,

where format is a string that contains both information to be printed
and specifications on what conversions are to be performed on the
expressions in the argument list, as in Figure 4-8. Each specification
begins with a %, ends with a letter that determines the conversion,
and may include

- left-justify expression in its field

width pad field to this width as needed; fields that begin
with a leading 0 are padded with zeros

.prec maximum string width or digits to right of
decimal point

4-44 PROGRAMMER'S GUIDE

922

OUTPUT

Character Prints Expression as

single character
decimal number
[-1d.ddddddE[+ — 1dd
[~1ddd.dddddd
e or f conversion, whichever is shorter, with
nonsignificant zeros suppressed
o unsigned octal number
m s string
' x unsigned hexadecimal number
% print a %; no argument is converted

Q=m0 Qe

Figure 4-8: awk printf Conversion Characters

Here are some examples of printf statements along with the
corresponding output:

M~

& printf “%d”, 99/2 49
printf ”%e”, 99/2 4.950000e+01
printf "%f”, 99/2 49.500000
printf "%6.2f", 99/2 49.50
printf “%g”, 99/2 49.5
printf “%o”, 99 143

m printf “%060”, 99 000143
printf “%x”, 99 63
printf ”|%s}|”, ”January” | January |
printf ”|%10s|”, “January” | January|
printf ”|%-10s|”, "January” |January |
printf ”|%.3s|”, "January” |Jan|
printf ”|%10.3s|”, "January” | Jan |
printf “|%-10.3s|”, ”January” | Jan |
printf ~%%~ %

The default output format of numbers is %.6g; this can be changed

ﬁ by assigning a new value to OFMT. OFMT also controls the conver-
sion of numeric values to strings for concatenation and creation of
array subscripts.

awk 4-45

OUTPUT

Output into Files

It is possible to print output into files instead of to the standard out-
put by using the > and > > redirection operators. For example, the
following program invoked on the file countries prints all lines
where the population (third field) is bigger than 100 into a file called
bigpop, and all other lines into smallpop:

$3 > 100 { print $1, $3 >"bigpop” }
$3 <= 100 { print $1, $3 >"smallpop” }

Notice that the file names have to be quoted; without quotes, bigpop
and smallpop are merely uninitialized variables. If the output file
names were created by an expression, they would also have to be
enclosed in parentheses:

$4 ~ /North America/ { print $1 > ("tmp” FILENAME) }

This is because the > operator has higher precedence than concate-
nation; without parentheses, the concatenation of tmp and FILENAME
would not work.

Files are opened once in an awk program. If > is used to open

NoTE | a file, its original contents are overwritten. But if > > is used

to open a file, its contents are preserved and the output is

| appended to the file. Once the file has been opened, the two
operators have the same effect.

Output into Pipes

It is also possible to direct printing into a pipe with a command on
the other end, instead of into a file. The statement

print | “command-line”

causes the output of print to be piped into the command-line.

4-46 PROGRAMMER'S GUIDE

82¢

229

OUTPUT

Although we have shown them here as literal strings enclosed in
quotes, the command-line and file names can come from variables and
the return values from functions, for instance.

Suppose we want to create a list of continent-population pairs, sorted
alphabetically by continent. The awk program below accumulates
the population values in the third field for each of the distinct con-
tinent names in the fourth field in an array called pop. Then it
prints each continent and its population, and pipes this output into
the sort command.

BEGIN { FS = "\t” }
{ pop[$4] += $3 }
END { for (c in pop)
print ¢ “:” pop[c] | "sort” }

Invoked on the file countries, this program yields

Africa:37
Asia:1765
Australia: 14
North America:243
South America:142

In all of these print statements involving redirection of output, the
files or pipes are identified by their names (that is, the pipe above is
literally named sort), but they are created and opened only once in
the entire run. So, in the last example, for all ¢ in pop, only one sort
pipe is open.

There is a limit to the number of files that can be open simultane-
ously. The statement close(file) closes a file or pipe; file is the string
used to create it in the first place, as in

close(”"sort”)

When opening or closing a file, different strings are different com-
mands.

awk 4-47

—J db

OUTPUT

—

This page is intentionally left blank

PROGRAMMER'S GUIDE

oge

231

INPUT

The most common way to give input to an awk program is to name
on the command line the file(s) that contains the input. This is the
method we’ve been using in this chapter. However, there are several
other methods we could use, each of which this section describes.

Files and Pipes

You can provide input to an awk program by putting the input data
into a file, say awkdata, and then executing

awk ’program’ awkdata

awk reads its standard input if no file names are given (see ”Usage”
in this chapter); thus, a second common arrangement is to have
another program pipe its output into awk. For example, egrep(l)
selects input lines containing a specified regular expression, but it can
do so faster than awk since this is the only thing it does. We could,
therefore, invoke the pipe

2

egrep ’Asia’ countries | awk °...

egrep quickly finds the lines containing Asia and passes them on to
the awk program for subsequent processing.

awk 4-49

) ——

INPUT

Input Separators

With the default setting of the field separator FS, input fields are
separated by blanks or tabs, and leading blanks are discarded, so each
of these lines has the same first field:

fieldl field2
fieldl
fieldl

When the field separator is a tab, however, leading blanks are not dis-
carded.

The field separator can be set to any regular expression by assigning
a value to the built-in variable FS. For example,

BEGIN { FS = “(,[\\t1*)|([\\tl1+H)” }

sets it to an optional comma followed by any number of blanks and
tabs. FS can also be set on the command line with the —F argu-
ment:

awk —F’([\t]*)|([\t]1+) ...

behaves the same as the previous example. Regular expressions used
as field separators match the left-most longest occurrences (as in
sub()), but do not match null strings.

Multi-line Records

Records are normally separated by newlines, so that each line is a
record, but this too can be changed, though only in a limited way. If
the built-in record separator variable RS is set to the empty string, as
in

BEGIN {RS =""}

then input records can be several lines long; a sequence of empty
lines separates records. A common way to process multiple-line

4-50 PROGRAMMER'’S GUIDE

[4>4

233

INPUT

records is to use

BEGIN { RS = "”; FS = "\n" }

to set the record separator to an empty line and the field separator to
a newline. There is a limit, however, on how long a record can be; it
is usually about 2500 characters. ”“The getline Function” and
”Cooperation with the Shell” in this chapter show other examples of
processing multi-line records.

The getline Function

awk’s facility for automatically breaking its input into records that
are more than one line long is not adequate for some tasks. For
example, if records are not separated by blank lines, but by something
more complicated, merely setting RS to null doesn’t work. In such
cases, it is necessary to manage the splitting of each record into fields
in the program. Here are some suggestions.

The function getline can be used to read input either from the
current input or from a file or pipe, by redirection analogous to
printf. By itself, getline fetches the next input record and performs
the normal field-splitting operations on it. It sets NF, NR, and FNR.
getline returns 1 if there was a record present, 0 if the end-of-file
was encountered, and —1 if some error occurred (such as failure to
open a file).

To illustrate, suppose we have input data consisting of multi-line
records, each of which begins with a line beginning with START and
ends with a line beginning with STOP. The following awk program
processes these multi-line records, a line at a time, putting the lines
of the record into consecutive entries of an array

f[1] £[2] ... £[nf]

Once the line containing STOP is encountered, the record can be pro-
cessed from the data in the £ array:

awk 4-51

finf=1] = $0

while (getline && $0 !~ /"STOP/)
f[++nf] = $0

now process the data in f[1]...f[nf]

LY

}
Notice that this code uses the fact that && evaluates its :
operands left to right and stops as soon as one is true. U

The same job can also be done by the following program:

/ START/ && nf= =0 { f[nf=1] = $0 }
nf > 1 { f[++nf] = $0 }
/"STOP/ { # now process the data in f[1]...f[nf]

}

The statement

yee

getline x

reads the next record into the variable x. No splitting is done; NF is
not set. The statement

getline <”file”

reads from file instead of the current input. It has no effect on NR
or FNR, but field splitting is performed and NF is set. The state-
ment

getline x <”file”

gets the next record from file into x; no splitting is done, and NF,
NR and FNR are untouched.

4-52 PROGRAMMER'’S GUIDE

235

INPUT

i a filename is an expression, it needs to be placed in
NoTE | parentheses for correct evaluation:

' while (getline x < (ARGV[1] BRGV[2]) } { ... }

This is because the < has precedence over concatenation.
Without parentheses, a statement such as

getline x < “tmp” FILENAME
sets x to read the file tmp and not tmp <value of FILENAME>.
Also, if you use this getline statement form, a statement like
while (getline x < file) { ... }

loops forever if the file cannot be read, because getline returns
—1, not zero, if an error occurs. A better way to write this test
is

while (getline x < file > 0) { ... }

It is also possible to pipe the output of another command directly into
getline. For example, the statement

while (“who” | getline)
n++

executes who and pipes its output into getline. Each iteration of the
while loop reads one more line and increments the variable n, so
after the while loop terminates, n contains a count of the number of
users. Similarly, the statement

"date” | getline d

pipes the output of date into the variable d, thus setting d to the
current date. Figure 4-9 summarizes the getline function.

awk 4-53

Form Sets

getline $0, NF, NR, FNR
getline var var, NR, FNR
getline <file $0, NF

getline var <file var

cmd | getline $0, NF

cmd | getline var | var

Figure 4-9: getline Function

Command-line Arguments

The command-line arguments are available to an awk program: the
array ARGV contains the elements ARGV[0], ..., ARGV[ARGC —1];
as in C, ARGC is the count. ARGV[O0] is the name of the program
(generally awk); the remaining arguments are whatever was provided
(excluding the program and any optional arguments).

9ee

The following command line contains an awk program that echoes
the arguments that appear after the program name: -
awk ’ u
BEGIN {
for (i = 1;i < ARGC;i+ +)
printf ”%s 7, ARGV/[i]
printf ”\n”
b8
The arguments may be modified or added to; ARGC may be altered.
As each input file ends, awk treats the next non-null element of
ARGV (up to the current value of ARGC —1) as the name of the next
input file.

4-54 PROGRAMMER’S GUIDE

237

SPGB

There is one exception to the rule that an argument is a file name: if
it is of the form

var=value

then the variable var is set to the value value as if by assignment.

Such an argument is not treated as a file name. If value is a string,
no quotes are needed.

awk 4-55

INPUT

4-56

This page is intentionally left blank

PROGRAMMER’S GUIDE

8¢

239

Using awk with Other Commands and the
Shell

awk gains its greatest power when it is used in conjunction with
other programs. Here we describe some of the ways in which awk
programs cooperate with other commands.

The system Function

The built-in function system(command-line) executes the command
command-line, which may well be a string computed by, for example,
the built-in function sprintf. The value returned by system is the
return status of the command executed.

For example, the program

$1 = = "#include” { gsub(/[<>"1/, "", $2);
system(”cat " $2) }

calls the command cat to print the file named in the second field of
every input record whose first field is #include, after stripping any
<, >or ” that might be present.

Cooperation with the Shell

In all the examples thus far, the awk program was in a file and
fetched from there using the —f flag, or it appeared on the command
line enclosed in single quotes, as in

awk ’{ print $1 }’ ...

Since awk uses many of the same characters as the shell does, such
as $ and ”, surrounding the awk program with single quotes ensures
that the shell will pass the entire program unchanged to the awk
interpreter.

awk 4-57

Using awk with Other Commands and the Shell

Now, consider writing a command addr that will search a file
addresslist for name, address and telephone information. Suppose
that addresslist contains names and addresses in which a typical
entry is a multi-line record such as

G. R. Emlin

600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like
addr Emlin

That is easily done by a program of the form

awk '

BEGIN { RS = "" }
/Emlin/

' addresslist

The problem is how to get a different search pattern into the program
each time it is run.

There are several ways to do this. One way is to create a file called
addr that contains

awk

BEGIN { RS = "" }

/'$17/

' addresslist
The quotes are critical here: the awk program is only one argument,
even though there are two sets of quotes, because quotes do not nest.
The $1 is outside the quotes, visible to the shell, which therefore
replaces it by the pattern Emlin when the command addr Emlin is
invoked. On a UNIX system, addr can be made executable by chang-
ing its mode with the following command: chmod +x addr.

4-58 PROGRAMMER’S GUIDE

otve

241

;_____EI!

Using awk with Other Commands and the Shell

A second way to implement addr relies on the fact that the shell sub-
stitutes for $ parameters within double quotes:

awk ”
BEGIN { RS = \"\" }
/$1/

" addresslist

Here we must protect the quotes defining RS with backslashes, so
that the shell passes them on to awk, uninterpreted by the shell. $1
is recognized as a parameter, however, so the shell replaces it by the
pattern when the command addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular
expression to an awk program that explicitly reads through the
address list with getline:

awk '
BEGIN { RS = ""
while (getline < "addresslist”)
if ($0 ~ ARGV[1])
print $0
} oS
All processing is done in the BEGIN action.

Notice that any regular expression can be passed to addr; in particu-
lar, it is possible to retrieve by parts of an address or telephone
number as well as by name.

awk 4-59

Using awk with Other Commands and the Shell

This page is intentionally left blank

4-60 PROGRAMMER’S GUIDE

243

Example Applications

awk has been used in surprising ways. We have seen awk programs
that implement database systems and a variety of compilers and
assemblers, in addition to the more traditional tasks of information
retrieval, data manipulation, and report generation. Invariably, the
awk programs are significantly shorter than equivalent programs
written in more conventional programming languages such as Pascal
or C. In this section, we will present a few more examples to illus-
trate some additional awk programs.

Generating Reports

awk is especially useful for producing reports that summarize and
format information. Suppose we wish to produce a report from the
file countries in which we list the continents alphabetically, and
after each continent its countries in decreasing order of population:

Africa: Sudan 19
Algeria 18
Asia: China 866
India 637
USSR 262
Australia: Australia 14
North America: USA 219
Canada 24
South America: Brazil 116

Argentina 26

As with many data processing tasks, it is much easier to produce this
report in several stages. First, we create a list of continent-country-
population triples, in which each field is separated by a colon. This

awk 4-61

Example Applications

can be done with the following program triples, which uses an array
pop indexed by subscripts of the form ’continent:country’ to store the
population of a given country. The print statement in the END sec-
tion of the program creates the list of continent-country-population
triples that are piped to the sort routine.

BEGIN { FS = "\t” }
{ pop[$4 ":” $1] += §3 }
END { for (cc in pop)
print cc “:” pop[cc] | "sort -t: +0 -1 +2nr” }

The arguments for sort deserve special mention. The -t: argu-
ment tells sort to use : as its field separator. The +0 -1 argu-
ments make the first field the primary sort key. In general, +i —j
makes fields i +1, i +2, ..., j the sort key. If —j is omitted, the fields
from i+1 to the end of the record are used. The +2nr argument
makes the third field, numerically decreasing, the secondary sort key
(n is for numeric, r for reverse order). Invoked on the file coun-
tries, this program produces as output

Africa:Sudan:19
Africa:Algeria:18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia:14
North America:USA:219
North America:Canada:24
South America:Brazil:116
South America:Argentina:26

This output is in the right order but the wrong format. To transform

the output into the desired form we run it through a second awk pro-
gram format:

4-62 PROGRAMMER’S GUIDE

“/

4444

245

~——————————] db|

Example Applications

BEGIN { FS = ”:" }

{ if ($1 != prev) {
print "\nn $1 "en
prev = $1

}

printf ”\t%-10s %6d\n"”, $2, $3
}

This is a control-break program that prints only the first occurrence
of a continent name and formats the country-population lines associ-
ated with that continent in the desired manner. The command line

awk —f triples countries | awk —f format

gives us our desired report. As this example suggests, complex data
transformation and formatting tasks can often be reduced to a few
simple awks and sorts.

As an exercise, add to the population report subtotals for each con-
tinent and a grand total.

Additional Examples

Word Frequencies

Our first example illustrates associative arrays for counting. Suppose
we want to count the number of times each word appears in the
input, where a word is any contiguous sequence of non-blank, non-tab
characters. The following program prints the word frequencies,
sorted in decreasing order.

{ for (w = 1; w <= NF; w+t+) count[$w]++ }
END { for (w in count) print count[w], w | ”"sort -nr” }

The first statement uses the array count to accumulate the number
of times each word is used. Once the input has been read, the second
for loop pipes the final count along with each word into the sort
command.

awk 4-63

Example Applications

Accumulation

Suppose we have two files, deposits and withdrawals, of records
containing a name field and an amount field. For each name we want
to print the net balance determined by subtracting the total with-
drawals from the total deposits for each name. The net balance can
be computed by the following program:

awk ’

FILENAME = = "deposits” { balance[$1] + = $2 }
FILENAME = = "withdrawals” { balance[$1] — = §2 }
END { for (name in balance)

print name, balance[name]
} ' deposits withdrawals

The first statement uses the array balance to accumulate the total
amount for each name in the file deposits. The second statement
subtracts associated withdrawals from each total. If there are only
withdrawals associated with a name, an entry for that name will be
created by the second statement. The END action prints each name
with its net balance.

Random Choice

The following function prints (in order) k random elements from the
first n elements of the array A. In the program, k is the number of
entries that still need to be printed, and n is the number of elements
yet to be examined. The decision of whether to print the ith element
is determined by the test rand() < k/n.

function choose(A, k, n) {
for (i = 1; n > 0; i++) {
if (rand() < k/n--) {
print A[i]
k—

4-64 PROGRAMMER’S GUIDE

9ve

247

N —————————]db

Example Applications

Shell Facility

The following awk program simulates (crudely) the history facility of
the UNIX system shell. A line containing only = re-executes the last
command executed. A line beginning with = c¢md re-executes the last
command whose invocation included the string cmd. Otherwise, the
current line is executed.
$1 == "=" { if (NF = = 1)
system(x[NR] = %[NR-1])
else
for (i = NR-1; i > 0; i--)
if (x[i] 7 $2) {
system(x[NR] = x[1])
break

next }

/-/ { system(x[NR] = $0) }

Form-letter Generation

The following program generates form letters, using a template stored
in a file called form.letter:

This is a form letter.
The first field is $1, the second $2, the third $3.
The third is $3, second is $2, and first is $1.

and replacement text of this form:

field 1|field 2|field 3
one|two|three
a|b|c

The BEGIN action stores the template in the array template; the
remaining action cycles through the input data, using gsub to replace

awk

—

Example Applications

| template fields of the form $n with the corresponding data fields.

BEGIN { FS = |~
while (getline <”form.letter”)
line[++n] = $0

}
{ for (i = 1; i <= n; i++) {
s = line[i]
for (j = 1; j <= NF; j++)
gsub(”\\$"j, $i, s)
| print s
| }
}

In all such examples, a prudent strategy is to start with a small ver-
sion and expand it, trying out each aspect before moving on to the
next.

4-66 PROGRAMMER’S GUIDE

8ve

249

G

awk Summary

Command Line

awk program filenames
awk —f program-file filenames
awk —Fs sets field separator to string s; —Ft sets separator to tab

Patterns

BEGIN

END

/regular expression /
relational expression
pattern && pattern
pattern || pattern
(pattern)

Ipattern

pattern, pattern

Control Flow Statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement

for (expr; expr; expr) statement
for (var in array) statement

do statement while (expr)

break

continue

next

exit [expr]

return [expr]

awk 4-67

B SR v R it e O e S R e

awk Summary

Input-output

close(filename) close file

getline set $0 from next input record; set NF, NR
getline <file set $0 from next record of file; set NF

getline var set var from next input record; set NR, FNR
getline var <file set var from next record of file

print print current record B
print expr-list print expressions w
print expr-list > file print expressions on file

printf fmt, expr-list format and print

printf fmt, expr-list >file format and print on file

system(cmd-line) execute command cmd-line, return status

In print and printf above, > >file appends to the file, and | “com-
mand” writes on a pipe. Similarly, "command” | getline pipes into
getline. getline returns 0 on end of file, and —1 on error.

0se

Functions
func name(parameter list) { statement }

function name(parameter list) { statement }
function-name(expr, expr, ...)

4-68 PROGRAMMER’S GUIDE

251

String Functions

gsub(r,s,t)

index(s,t)

length(s)
match(s, r)

split(s,a,r)

sprintf(fmt, expr-list)
sub(r,s,t)

substr(s,i,n)

awk Summary

substitute string s for each substring match-
ing regular expression r in string ¢, return
number of substitutions; if £ omitted, use $0
return index of string ¢ in string s, or 0 if
not present

return length of string s

return position in s where regular expression
r occurs, or 0 if r is not present

split string s into array ¢ on regular expres-
sion r, return number of fields; if r omitted,
FS is used in its place

print expr-list according to fmt, return
resulting string

like gsub except only the first matching sub-
string is replaced

return n-char substring of s starting at i; if n
omitted, use rest of s

Arithmetic Functions

atan2(y,x) arctangent of y /x in radians

cos(expr) cosine (angle in radians)
expl(expr) exponential

int(expr) truncate to integer

log(expr) natural logarithm

rand() random number between ¢ and 1
sin(expr) sine (angle in radians)
sqrt(expr) square root

srand(expr) new seed for random number generator;
use time of day if no expr

awk

4-69

awk Summary

Operators (Increasing Precedence)

= 4= — = *= /= §= "= assignment

?: conditional expression

[logical OR

&& logical AND

B regular expression match, negated match
< <=>>= |l= == relationals

blank string concatenation

+ - add, subtract

* /% multiply, divide, mod

+ -1 unary plus, unary minus, logical negation
- exponentiation (** is a synonym)

++ = increment, decrement (prefix and postfix)
$ field

Regular Expressions (Increasing Precedence)

c matches non-metacharacter ¢
\¢ matches literal character ¢

. matches any character but newline
matches beginning of line or string

$ matches end of line or string

labe...] character class matches any of abec...

[“abc...] negated class matches any but abc... and newline
rljr2 matches either rI or r2

rir2 concatenation: matches rl, then r2

r+ matches one or more r’s

r* matches zero or more r’s

r? matches zero or one r’s

r) grouping: matches r

4-70 PROGRAMMER'’S GUIDE

¢se

253

awk Summary

Built-in Variables

ARGC number of command-line arguments

ARGV array of command-line arguments (0.. ARGC-1)
FILENAME name of current input file

FNR input record number in current file

FS input field separator (default blank)

NF number of fields in current input record

NR input record number since beginning

OFMT output format for numbers (default %.6qg)
OFS output field separator (default blank)

ORS output record separator (default newline)
RS input record separator (default newline)
RSTART index of first character matched by match();

0 if no match

RLENGTH length of string matched by match();
—1 if no match

SUBSEP separates multiple subscripts in array elements;
default ”\034”

Limits

Any particular implementation of awk enforces some limits. Here
are typical values:

100 fields

2500 characters per input record

2500 characters per output record

1024 characters per individual field
1024 characters per printf string

400 characters maximum quoted string
400 characters in character class

15 open files

1 pipe

numbers are limited to what can be represented on the local
machine, e.g., 1e — 308..1e + 308

awk

ey R SR

awk Summary

Initialization, Comparison, and Type Coercion

Each variable and field can potentially be a string or a number or
both at any time. When a variable is set by the assignment

var = expr

its type is set to that of the expression. (Assignment includes + =,

— =, etc.) An arithmetic expression is of type number, a concatena-
tion is of type string, and so on. If the assignment is a simple copy, U
as in

vl = v2
then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is
made numerically. Otherwise, operands are coerced to string if neces-
sary, and the comparison is made on strings. The type of any expres-
sion can be coerced to numeric by subterfuges such as

414

expr + 0
and to string by
expr "
(that is, concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value
»? Accordingly, if x is uninitialized,

if (x) ...
is false, and
if (Ix) ...
if (x==10) ...
if (X== nn)

are all true. But the following is false:

if (x == "0") ... w/

4-72 PROGRAMMER'S GUIDE

255

awk Summary

The type of a field is determined by context when possible; for exam-
ple,

$1++
clearly implies that $1 is to be numeric, and
$1 =81 "," §2

implies that $1 and $2 are both to be strings. Coercion is done as
needed.

In contexts where types cannot be reliably determined, for example,
if ($1 = = $2) ...

the type of each field is determined on input. All fields are strings; in
addition, each field that contains only a number is also considered
numeric.

99

Fields that are explicitly null have the string value ; they are not
numeric. Non-existent fields (i.e., fields past NF) are treated this
way, too.

As it is for fields, so it is for array elements created by split().

Mentioning a variable in an expression causes it to exist, with the
value ”” as described above. Thus, if arr[i] does not currently
exist,

if (arr[i] =="") ...

causes it to exist with the value »” so the if is satisfied. The special
construction

if (i in arr) ...

determines if arr[i] exists without the side effect of creating it if it
does not.

awk 4-73

awk Summary

This page is intentionally left blank

9Se

4-74 PROGRAMMER'’S GUIDE

M
Chapter 5: lex

Page

An Overview of lex Programming...........cccerverrverrcniinciinnnnns 5-1

Writing lex Programs ... 5-3

The Fundamentals of lex Rules.........c.ccocevirvuriiiniicnianne 5- 3

ﬁ Specificationscccoceveiieerviinierneniiic s 5-3
ACHIONS ...ttt ettt 5—- 6

Advanced 1ex USage......cccccverieciiiiieecniinien e 5—- 8

Some Special Features........c.cccoveevvnniniiniininnniiiinnn, 5-9

DefiNitioNscccoeeeeiirereieeerienrrr et reee et 5-13

SUDTOULINESoviciiieiiecieeeie et eetsrneeaae s 5-15

Using lex with Yacec.ccoocvrriiinninineieee 5-17

e Running lex under the UNIX System.........ccccovnveivnnnnninnn 5-21

TABLE OF CONTENTS I-1

Table of Contents

This page is intentionally left blank

862

-2 PROGRAMMER'’S GUIDE

259

An Overview of lex Programming

lex is a software tool that lets you solve a wide class of problems
drawn from text processing, code enciphering, compiler writing, and
other areas. In text processing, you may check the spelling of words
for errors; in code enciphering, you may translate certain patterns of
characters into others; and in compiler writing, you may determine
what the tokens (smallest meaningful sequences of characters) are in
the program to be compiled. The problem common to all of these
tasks is recognizing different strings of characters that satisfy certain
characteristics. In the compiler writing case, creating the ability to
solve the problem requires implementing the compiler’s lexical
analyzer. Hence the name lex.

It is not essential to use lex to handle problems of this kind. You
could write programs in a standard language like C to handle them,
too. In fact, what lex does is produce such C programs. (lex is
therefore called a program generator.) What lex offers you is typi-
cally a faster, easier way to create programs that perform these tasks.
Its weakness is that it often produces C programs that are longer
than necessary for the task at hand and that execute more slowly
than they otherwise might. In many applications this is a minor con-
sideration, and the advantages of using lex considerably outweigh it.

To understand what lex does, see the diagram in Figure 5-1. We
begin with the lex source (often called the lex specification) that you,
the programmer, write to solve the problem at hand. This lex source
consists of a list of rules specifying sequences of characters (expres-
sions) to be searched for in an input text, and the actions to take
when an expression is found. The source is read by the lex program
generator. The output of the program generator is a C program that,
in turn, must be compiled by a host language C compiler to generate
the executable object program that does the lexical analysis. Note
that this procedure is not typically automatic—user intervention is
required. Finally, the lexical analyzer program produced by this pro-
cess takes as input any source file and produces the desired output,
such as altered text or a list of tokens.

lex 5-1

An Overview of lex Programming

lex can also be used to collect statistical data on features of the input,
such as character count, word length, number of occurrences of a
word, and so forth. In later sections of this chapter, we will see

® how to write lex source to do some of these tasks

® how to translate lex source

® how to compile, link, and execute the lexical analyzer in C
® how to run the lexical analyzer program

We will then be on our way to appreciating the power that lex pro-
vides.

lex
lex Analyzer
inC

lex
Source

C
Compiler

lex Output:
Analyzer |——s Tokens,
Program Text, etc.

Input
Text

Figure 5-1: Creation and Use of a Lexical Analyzer with lex

5-2 PROGRAMMER 'S GUIDE

09¢

261

Writing lex Programs

A lex specification consists of at most three sections: definitions,
rules, and user subroutines. The rules section is mandatory. Sec-
tions for definitions and user subroutines are optional, but if present,
must appear in the indicated order.

The Fundamentals of lex Rules

The mandatory rules section opens with the delimiter %%. If a sub-
routines section follows, another %% delimiter ends the rules section.
If there is no second delimiter, the rules section is presumed to con-
tinue to the end of the program.

Each rule consists of a specification of the pattern sought and the
action(s) to take on finding it. (Note the dual meaning of the term
specification — it may mean either the entire lex source itself or,
within it, a representation of a particular pattern to be recognized.)
Whenever the input consists of patterns not sought, lex writes out
the input exactly as it finds it. So, the simplest lex program is just
the beginning rules delimiter, %%. It writes out the entire input to
the output with no changes at all. Typically, the rules are more ela-
borate than that.

Specifications

You specify the patterns you are interested in with a notation called
regular expressions. A regular expression is formed by stringing
together characters with or without operators. The simplest regular
expressions are strings of text characters with no operators at all.
For example,

apple
orange
pluto

These three regular expressions match any occurrences of those

lex 5-3

Writing lex Programs

character strings in an input text. If you want to have your lexical
analyzer a.out remove every occurrence of orange, from the input
text, you could specify the rule

orange;

Because you did not specify an action on the right (before the semi-
colon), lex does nothing but print out the original input text with
every occurrence of this regular expression removed, that is, without .
any occurrence of the string orange at all. V

Unlike orange above, most of the expressions that we want to search
for cannot be specified so easily. The expression itself might simply
be too long. More commonly, the class of desired expressions is too
large; it may, in fact, be infinite. Thanks to the use of operators, we
can form regular expressions signifying any expression of a certain
class. The + operator, for instance, means one or more occurrences
of the preceding expression, the ? means 0 or 1 occurrence(s) of the

preceding expression (this is equivalent, of course, to saying that the §
preceding expression is optional), and * means 0 or more
occurrences of the preceding expression. (It may at first seem odd to
speak of 0 occurrences of an expression and to need an operator to
capture the idea, but it is often quite helpful. We will see an example
in a moment.) So m+ is a regular expression matching any string of
ms such as each of the following: u
mmm
m
mmmmm
mm

and 7* is a regular expression matching any string of zero or more 7s:

77
77777

77

The string of blanks on the third line matches simply because it has
no 7s in it at all.

5-4 PROGRAMMER 'S GUIDE

263

——] db|

Writing lex Programs

Brackets, [], indicate any one character from the string of characters
specified between the brackets. Thus, [dgka)] matches a single d, g,
k, or a. Note that commas are not included within the brackets. Any
comma here would be taken as a character to be recognized in the
input text. Ranges within a standard alphabetic or numeric order are
indicated with a hyphen, —. The sequence [a—z], for instance, indi-
cates any lowercase letter. Somewhat more interestingly:

[A-Za-z0-9*&#)

is a regular expression that matches any letter (whether upper- or
lowercase), any digit, an asterisk, an ampersand, or a sharp character.
Given the input text

$$$$22 222211 1%$$ $88988&+= == = =xr""# ({(

the lexical analyzer with the previous specification in one of its rules
will recognize the *, &, r, and #, perform on each recognition what-
ever action the rule specifies (we have not indicated an action here),
and print out the rest of the text as it stands.

The operators become especially powerful in combination. For exam-
ple, the regular expression to recognize an identifier in many pro-
gramming languages is

[a-zA-Z][0-9a~2A-Z]*

An identifier in these languages is defined to be a letter followed by
zero or more letters or digits, and that is just what the regular
expression says. The first pair of brackets matches any letter. The
second, if it were not followed by a #*, would match any digit or
letter. The two pairs of brackets with their enclosed characters
would then match any letter followed by a digit or a letter. But with
the asterisk, *, the example matches any letter followed by any
number of letters or digits. In particular, it would recognize the fol-
lowing as identifiers:

lex 5-5

Writing lex Programs

e
pay
distance
pH
EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not idenTIFER)
S5times U
Shello

because not_idenTIFER has an embedded underscore; 5times starts
with a digit, not a letter; and $hello starts with a special character.
Of course, you may want to write the specifications for these three
examples as an exercise.

A potential problem with operator characters is how we can refer to
them as characters to look for in our search pattern. The last exam-
ple, for instance, will not recognize text with an * in it. lex solves
the problem in one of two ways: a character enclosed in quotation
marks or a character preceded by a \ is taken literally, that is, as part
of the text to be searched for. To use the backslash method to recog-
nize, say, an * followed by any number of digits, we can use the pat-
tern

v9e

[1-9]

To recognize a \ itself, we need two backslashes: \\.

Actions

Once lex recognizes a string matching the regular expression at the
start of a rule, it looks to the right of the rule for the action to be
performed. Kinds of actions include recording the token type found
and its value, if any; replacing one token with another; and counting
the number of instances of a token or token type. What you want to -
do is write these actions as program fragments in the host language U
C. An action may consist of as many statements as are needed for

5-6 PROGRAMMER 'S GUIDE

265

d

Writing lex Programs

the job at hand. You may want to print out a message noting that
the text has been found or a message transforming the text in some
way. Thus, to recognize the expression Amelia Earhart and to note
such recognition, the rule

“Amelia Earhart” printf(”found Amelia”);

would do. And to replace in a text lengthy medical terms with their
equivalent acronyms, a rule such as

Electroencephalogram printf (”EEG”);

would be called for. To count the lines in a text, we need to recognize
end-of-lines and increment a linecounter. lex uses the standard
escape sequences from C like \n for end-of-line. To count lines we
might have the following,

\n lineno++;

where lineno, like other C variables, is declared in the definitions
section that we discuss later.

lex stores every character string that it recognizes in a character
array called yytext[]. You can print or manipulate the contents of
this array as you want. Sometimes your action may consist of two or
more C statements and you must (or for style and clarity, you choose
to) write it on several lines. To inform lex that the action is for one
rule only, simply enclose the C code in braces. For example, to count
the total number of all digit strings in an input text, print the run-
ning total of the number of digit strings (not their sum, here) and
print out each one as soon as it is found, your lex code might be
+?2[1-9]+ { digstrngcount++;
printf(”%d”,digstrngcount);
printf(”%s”, yytext); }

This specification matches digit strings whether they are preceded by
a plus sign or not, because the ? indicates that the preceding plus
sign is optional. In addition, it will catch negative digit strings
because that portion following the minus sign, —, will match the
specification. The next section explains how to distinguish negative
from positive integers.

lex 5-7

,
—Jdef — " ©

Writing lex Programs

W
Advanced lex Usage

lex provides a suite of features that lets you process input text rid-

dled with quite complicated patterns. These include rules that decide

what specification is relevant, when more than one seems so at first;
functions that transform one matching pattern into another; and the

use of definitions and subroutines. Before considering these features,

you may want to affirm your understanding thus far by examining ,
the following example drawing together several of the points already u

covered:

%%

-[0-9]1+ printf (”negative integer”);
+?[0-9]+ printf(”positive integer”);
-0.[0-9]+ printf(“negative fraction,

no whole number part”);

rail[}+road printf(”railroad is one word”);

crook printf(”Here’'s a crook”);

function subprogcount++;

Gl[a-zA-Z]* { printf(“may have a G word here: ", yytext);
Gstringcount++; }

992

The first three rules recognize negative integers, positive integers,

and negative fractions between 0 and —1. The use of the terminating

+ in each specification ensures that one or more digits compose the)
number in question. Each of the next three rules recognizes a u
specific pattern. The specification for railroad matches cases where

one or more blanks intervene between the two syllables of the word.

In the cases of railroad and crook, you may have simply printed a
synonym rather than the messages stated. The rule recognizing a
function simply increments a counter. The last rule illustrates

several points:

e The braces specify an action sequence extending over several
lines.

5-8 PROGRAMMER 'S GUIDE

267

Writing lex Programs

e Its action uses the lex array yytext[l, which stores the recog-
nized character string.

e Its specification uses the * to indicate that zero or more letters
may follow the G.

Some Special Features

Besides storing the recognized character string in yytext[], lex
automatically counts the number of characters in a match and stores
it in the variable yyleng. You may use this variable to refer to any
specific character just placed in the array yytext[]. Remember that
C numbers locations in an array starting with 0, so to print out the
third digit (if there is one) in a just recognized integer, you might
write

[1-91+ {if (yyleng > 2)
printf(“sc”, yytext[2]); }

lex follows a number of high-level rules to resolve ambiguities that
may arise from the set of rules that you write. Prima facie, any
reserved word, for instance, could match two rules. In the lexical
analyzer example developed later in the section on lex and yace, the
reserved word end could match the second rule as well as the
seventh, the one for identifiers.

lex follows the rule that where there is a match with two or
NOTE| more rules in a specification, the first rule is the one whose

action will be executed.

By placing the rule for end and the other reserved words before the
rule for identifiers, we ensure that our reserved words will be duly
recognized.

Another potential problem arises from cases where one pattern you
are searching for is the prefix of another. For instance, the last two
rules in the lexical analyzer example above are designed to recognize
> and > = . If the text has the string > = at one point, you might

lex 5-9

—) ——

Writing lex Programs

worry that the lexical analyzer would stop as soon as it recognized
the > character to execute the rule for > rather than read the next
character and execute the rule for > =.

lex follows the rule that it matches the longest character string
NOTE | possible and executes the rule for that.

Here it would recognize the > = and act accordingly. As a further
example, the rule would enable you to distinguish + from + + in a
program in C.

Still another potential problem exists when the analyzer must read
characters beyond the string you are seeking because you cannot be
sure you've in fact found it until you’'ve read the additional charac-
ters. These cases reveal the importance of trailing context. The clas-
sic example here is the DO statement in FORTRAN. In the state-
ment

DO50 k=1, 20, 1

we cannot be sure that the first 1 is the initial value of the index k
until we read the first comma. Until then, we might have the assign-
ment statement

DO50k =1

(Remember that FORTRAN ignores all blanks.) The way to handle
this is to use the forward-looking slash, / (not the backslash, \),
which signifies that what follows is trailing context, something not to
be stored in yytext[], because it is not part of the token itself. So
the rule to recognize the FORTRAN DO statement could be

DO/[1*[0-9])[]*[a-z A-Z0-9]+=[a-z A-20-9]+, printf(”found
DO");

Different versions of FORTRAN have limits on the size of identifiers,

here the index name. To simplify the example, the rule accepts an
index name of any length.

5-10 PROGRAMMER'S GUIDE

89¢

269

e ST Skt

Writing lex Programs

lex uses the $ as an operator to mark a special trailing context —the
end of line. (It is therefore equivalent to \n.) An example would be a
rule to ignore all blanks and tabs at the end of a line:

[\t]+$ i

On the other hand, if you want to match a pattern only when it starts
a line, lex offers you the circumflex, *, as the operator. The for-
matter nroff, for example, demands that you never start a line with a
blank, so you might want to check input to nroff with some such rule
as:

T 1 printf(”error: remove leading blank”);

Finally, some of your action statements themselves may require your
reading another character, putting one back to be read again a
moment later, or writing a character on an output device. lex sup-
plies three functions to handle these tasks—input(), unput(c), and
output(c), respectively. One way to ignore all characters between
two special characters, say between a pair of double quotation marks,
would be to use input(), thus:

\n while (input() 1= IIII);

Upon finding the first double quotation mark, the generated a.out
will simply continue reading all subsequent characters so long as
none is a quotation mark, and not again lock for a match until it
finds a second double quotation mark.

To handle special I/0 needs, such as writing to several files, you may
use standard I/O routines in C to rewrite the functions input(),
unput(c), and output. These and other programmer-defined func-
tions should be placed in your subroutine section. Your new routines
will then replace the standard ones. The standard input(), in fact, is
equivalent to getchar(), and the standard output(e) is equivalent to
putchar(c).

lex 5-11

Writing lex Programs

There are a number of lex routines that let you handle sequences of
characters to be processed in more than one way. These include
yymore(), yyless(n), and REJECT. Recall that the text matching a
given specification is stored in the array yytext[]. In general, once
the action is performed for the specification, the characters in
yytext[] are overwritten with succeeding characters in the input
stream to form the next match. The function yymore(), by contrast,
ensures that the succeeding characters recognized are appended to
those already in yytext[]. This lets you do one thing and then u
another, when one string of characters is significant and a longer one
including the first is significant as well. Consider a character string
bound by Bs and interspersed with one at an arbitrary location.

B...B...B

In a simple code deciphering situation, you may want to count the
number of characters between the first and second B’s and add it to
the number of characters between the second and third B. (Only the
last B is not to be counted.) The code to do this is

022

B{"B]* { if (flag = 0)
save = yyleng;
flag = 1;
yymore();

else {
importantno = save + yyleng; \ﬁ’
flag = 0; }

}

where flag, save, and importantno are declared (and at least flag
initialized to 0) in the definitions section. The flag distinguishes the
character sequence terminating just before the second B from that
terminating just before the third.

The function yyless(n) lets you reset the end point of the string to be
considered to the nth character in the original yytext{]. Suppose you]
are again in the code deciphering business and the gimmick here is to U
work with only half the characters in a sequence ending with a cer-

tain one, say upper- or lowercase Z. The code you want might be:

5-12 PROGRAMMER 'S GUIDE

27

SR Se B g e ke Bl m Bt

Writing lex Programs

[a-yA-Y]+[Z2] { yyless(yyleng/2);

... process first half of string... }
Finally, the function REJECT lets you more easily process strings of
characters even when they overlap or contain one another as parts.
REJECT does this by immediately jumping to the next rule and its
specification without changing the contents of yytext{]. If you want
to count the number of occurrences both of the regular expression
snapdragon and of its subexpression dragon in an input text, the
following will do:

snapdragon {countflowers++; REJECT;}
dragon countmonsters++;

As an example of one pattern overlapping another, the following
counts the number of occurrences of the expressions comedian and
diana, even where the input text has sequences such as comedi-
ana..:

comedian {comiccount++; REJECT;}
diana princesscount++;

Note that the actions here may be considerably more complicated
than simply incrementing a counter. In all cases, the counters and
other necessary variables are declared in the definitions section com-
mencing the lex specification.

Definitions

The lex definitions section may contain any of several classes of
items. The most critical are external definitions, #include state-
ments, and abbreviations. Recall that for legal lex source this section
is optional, but in most cases some of these items are necessary.
External definitions have the form and function that they do in C.
They declare that variables globally defined elsewhere (perhaps in
another source file} will be accessed in your lex-generated a.out.
Consider a declaration from an example to be developed later.

extern int tokval;

When you store an integer value in a variable declared in this way, it
will be accessible in the routine, say a parser, that calls it. If, on the

lex 5-13

) ——

Writing lex Programs

other hand, you want to define a local variable for use within the
action sequence of one rule (as you might for the index variable for a
loop), you can declare the variable at the start of the action itself
right after the left brace, { .

The purpose of the #include statement is the same as in C: to
include files of importance for your program. Some variable declara-
tions and lex definitions might be needed in more than one lex
source file. It is then advantageous to place them all in one file to be
included in every file that needs them. One example occurs in using
lex with yace, which generates parsers that call a lexical analyzer.
In this context, you should include the file y.tab.h, which may con-
tain #defines for token names. Like the declarations, #include
statements should come between %{ and }%, thus:

%{

#include "y.tab.h”

extern int tokval;

int lineno;

%}
In the definitions section, after the %} that ends your #include’s
and declarations, you place your abbreviations for regular expressions
to be used in the rules section. The abbreviation appears on the left
of the line and, separated by one or more spaces, its definition or
translation appears on the right. When you later use abbreviations in
your rules, be sure to enclose them within braces.

The purpose of abbreviations is to avoid needless repetition in
NOTE | writing your specifications and to provide clarity in reading them.

As an example, reconsider the lex source reviewed at the beginning of
this section on advanced lex usage. The use of definitions simplifies
our later reference to digits, letters, and blanks. This is especially
true if the specifications appear several times:

5-14 PROGRAMMER 'S GUIDE

cle

273

Writing lex Programs

D [0-9]

L [a-2zA-Z]

B []

%%

-{D}+ printf(”negative integer”);
+?{D}+ printf(“positive integer”);
-0.{D}+ printf(”negative fraction”);
G{L}* printf(“may have a G word here”);
rail{B}+road printf(”railroad is one word”);
crook printf(”criminal”);

\"\./{B}+ printf(”.\"");

The last rule, newly added to the example and somewhat more com-
plex than the others, is used in the WRITER'S WORKBENCH
Software, an AT&T software product for promoting good writing.
(See the UNIX System WRITER’S WORKBENCH Software Release
3.0 User’s Guide for information on this product.) The rule ensures
that a period always precedes a quotation mark at the end of a sen-
tence. It would change example”. to example.”

Subroutines

You may want to use subroutines in lex for much the same reason
that you do so in other programming languages. Action code that is
to be used for several rules can be written once and called when
needed. As with definitions, this can simplify the writing and reading
of programs. The function put_in_tabl(), to be discussed in the next
section on lex and yacc, is a good candidate for a subroutine.

Another reason to place a routine in this section is to highlight some
code of interest or to simplify the rules section, even if the code is to
be used for one rule only. As an example, consider the following rou-
tine to ignore comments in a language like C where comments occur
between / * and */ :

lex 5-15

— 0] ———

Writing lex Programs

"/xn skipemnts();
. /* rest of rules */
$%
skipcmnts ()
{
for(;;
{
while (input() != '*’);
if (input() != /') {
unput (yytext[yyleng-1]);
else return;
}
}

There are three points of interest in this example. First, the
unput(e) function (putting back the last character read) is necessary
to avoid missing the final / if the comment ends unusually with a
+ * / . In this case, eventually having read an #*, the analyzer finds
that the next character is not the terminal / and must read some
more. Second, the expression yytext[yyleng—1] picks out that last
character read. Third, this routine assumes that the comments are
not nested. (This is indeed the case with the C language.) If, unlike
C, they are nested in the source text, after input(Qing the first */
ending the inner group of comments, the a.out will read the rest of
the comments as if they were part of the input to be searched for pat-
terns.

Other examples of subroutines would be programmer-defined versions
of the I/O routines input(), unput(c), and output(), discussed
above. Subroutines such as these that may be exploited by many pro-
grams would probably do best to be stored in their own individual file
or library to be called as needed. The appropriate #include state-
ments would be necessary in the definitions section.

5-16 PROGRAMMER 'S GUIDE

vie

275

LRI vy

Writing lex Programs

Using lex with yacc

If you work on a compiler project or develop a program to check the
validity of an input language, you may want to use the UNIX system
program tool yacc. yacc generates parsers, programs that analyze
input to ensure that it is syntactically correct. (yacc is discussed in
detail in Chapter 6 of this guide.) lex often forms a fruitful union
with yace in the compiler development context. Whether or not you
plan to use lex with yace, be sure to read this section because it cov-
ers information of interest to all lex programmers.

The lexical analyzer that lex generates (not the file that stores it)
takes the name yylex(). This name is convenient because yacc calls
its lexical analyzer by this very name. To use lex to create the lexical
analyzer for the parser of a compiler, you want to end each lex action
with the statement return foken, where token is a defined term
whose value is an integer. The integer value of the token returned
indicates to the parser what the lexical analyzer has found. The
parser, whose file is called y.tab.c by yacc, then resumes control and
makes another call to the lexical analyzer when it needs another
token.

In a compiler, the different values of the token indicate what, if any,
reserved word of the language has been found or whether an
identifier, constant, arithmetic operand, or relational operator has
been found. In the latter cases, the analyzer must also specify the
exact value of the token: what the identifier is, whether the constant,
say, is 9 or 888, whether the operand is + or * (multiply), and
whether the relational operator is = or >.

Consider the following portion of lex source for a lexical analyzer for
some programming language perhaps slightly reminiscent of Ada:

lex 5-17

Writing lex Programs

begin return(BEGIN) ;

end return(END);

while return(WHILE);

if return(IF);

package return(PACKAGE) ;

reverse return(REVERSE) ;

loop return(LOOP) ;

[a-2A-Z])[a-2zA-Z0-9]* { tokval = put_in tabl();
return(IDENTIFIER); }

[0-9]+ { tokval = put_in tabl();
return(INTEGER); }

\+ { tokval = PLUS;
return(ARITHOP); }

\- { tokval = MINUS;
return(ARITHOP); }

> { tokval = GREATER;
return(RELOP); }

>= { tokval = GREATEREQL;

return(RELOP); }

Despite appearances, the tokens returned, and the values assigned to
tokval, are indeed integers. Good programming style dictates to use
informative terms such as BEGIN, END, WHILE, and so forth to
signify the integers the parser understands, rather than use the
integers themselves. You establish the association by using #define
statements in your parser calling routine in C. For example,

#define BEGIN 1
#define END 2

#define PLUS 7

If the need arises to change the integer for some token type, you then
change the #define statement in the parser rather than hunt
through the entire program, changing every occurrence of the partic-
ular integer. In using yacc to generate your parser, it is helpful to

5-18 PROGRAMMER 'S GUIDE

9/¢e

277

] d&

Writing lex Programs

insert the statement
#include y.tab.h

into the definitions section of your lex source. The file y.tab.h pro-
vides #define statements that associate token names such as
BEGIN, END, and so on with the integers of significance to the gen-
erated parser.

To indicate the reserved words in the example, the returned integer
values suffice. For the other token types, the integer value of the
token type is stored in the programmer-defined variable tokval. This
variable, whose definition was an example in the definitions section, is
globally defined so that the parser as well as the lexical analyzer can
access it. yacc provides the variable yylval for the same purpose.

Note that the example shows two ways to assign a value to tokval.
First, a function put_in_tabl() places the name and type of the
identifier or constant in a symbol table so that the compiler can refer
to it in this or a later stage of the compilation process. More to the
present point, put_in_tabl() assigns a type value to tokval so that
the parser can use the information immediately to determine the syn-
tactic correctness of the input text. The function put_in_tabl()
would be a routine that the compiler writer might place in the sub-
routines section discussed later. Second, in the last few actions of the
example, tokval is assigned a specific integer indicating which
operand or relational operator the analyzer recognized. If the vari-
able PLUS, for instance, is associated with the integer 7 by means of
the #define statement above, then when a + sign is recognized, the
action assigns to tokval the value 7, which indicates the +. The
analyzer indicates the general class of operator by the value it returns
to the parser (in the example, the integer signified by ARITHOP or
RELOP).

lex

—] ——

Writing lex Programs

This page is intentionally left blank

8.¢

5-20 PROGRAMMER 'S GUIDE

279

Running lex under the UNIX System

As you review the following few steps, you might recall Figure 5-1 at
the start of the chapter. To produce the lexical analyzer in C, run

lex lex.1

where lex.l is the file containing your lex specification. The name
lex.] is conventionally the favorite, but you may use whatever name
you want. The output file that lex produces is automatically called
lex.yy.c; this is the lexical analyzer program that you created with
lex. You then compile and link this as you would any C program,
making sure that you invoke the lex library with the —11 option:

cc lex.yy.c —11

The lex library provides a default main() program that calls the lexi-
cal analyzer under the name yylex(), so you need not supply your
own main().

If you have the lex specification spread across several files, you can
run lex with each of them individually, but be sure to rename or
move each lex.yy.c file (with mv) before you run lex on the next one.
Otherwise, each will overwrite the previous one. Once you have all
the generated .c files, you can compile all of them, of course, in one
command line.

With the executable a.out produced, you are ready to analyze any
desired input text. Suppose that the text is stored under the filename
textin (this name is also arbitrary). The lexical analyzer a.out by
default takes input from your terminal. To have it take the file tex-
tin as input, simply use redirection, thus:

a.out < textin

By default, output will appear on your terminal, but you can redirect
this as well:

a.out < textin > textout

lex 5-21

Running lex under the UNIX System

In running lex with yace, either may be run first.

yacc —d grammar.y
lex lex.]

spawns a parser in the file y.tab.c. (The —d option creates the file
y.tab.h, which contains the #define statements that associate the
yacc assigned integer token values with the user-defined token
names.) To compile and link the output files produced, run

cc lex.yy.c y.tab.c ~1y -11

Note that the yacc library is loaded (with the —1ly option) before the
lex library (with the —11 option) to ensure that the main() program
supplied will call the yacc parser.

There are several options available with the lex command. If you use
one or more of them, place them between the command name lex and
the filename argument. If you care to see the C program, lex.yy.c,
that lex generates on your terminal (the default output device), use
the —t option.

lex —t lex.1

The —v option prints out for you a small set of statistics describing
the so-called finite automata that lex produces with the C program
lex.yy.c. (For a detailed account of finite automata and their impor-
tance for lex, see the Aho, Sethi, and Ullman text, Compilers: Princi-
ples, Techniques, and Tools, Addison-Wesley, 1986.)

lex uses a table (a two-dimensional array in C) to represent its finite
automaton. The maximum number of states that the finite automa-
ton requires is set by default to 500. If your lex source has a large
number of rules or the rules are very complex, this default value may
be too small. You can enlarge the value by placing another entry in
the definitions section of your lex source, as follows:

%n 700

This entry tells lex to make the table large enough to handle as many
as 700 states. (The —v option will indicate how large a number you

5-22 PROGRAMMER 'S GUIDE

08e

281

3.

Running lex under the UNIX System

should choose.) If you have need to increase the maximum number of
state transitions beyond 2000, the designated parameter is a, thus:

%a 2800

Finally, check the System V Reference Manual page on lex for a list
of all the options available with the lex command. In addition,
review the paper by Lesk (the originator of lex) and Schmidt, "Lex —
A Lexical Analyzer Generator,” in volume 5 of the UNIX
Programmer’s Manual, Holt, Rinehart, and Winston, 1986. It is
somewhat dated, but offers several interesting examples.

This tutorial has introduced you to lex programming. As with any
programming language, the way to master it is to write programs and
then write some more.

lex 5-23

=) —_——

Running lex under the UNIX System

This page is intentionally left blank

5-24 PROGRAMMER'S GUIDE

e8¢

283

Chapter 6: yacc

Page

INtroduction......ccccveieeiieiicient e sitere et ceeset st sae s 6-1
Basic Specifications.......cc.ccccevvireerierenrrnnnicii 6—5
ACHIONS ...t ettt ie e st e st se s seee s s cmeesesnesaessreeias 6— 8
Lexical ANALYSisccocoovvevriirernvinieenenneennienneeseessssessessisanins 6-11
Parser Operationc.cccocevevreencienenninnennncectnes s 6-15
Ambiguity and Conflicts........cccceevveenersernnnrecceneciicnnnicniene 6—-21
Precedence........oooiiiiieie it 6-—-27
Error Handling........c..cooeiiiiiiineiieerienenenceseeeseee e ee e 6-31
The yace Environment.........c.cocovveevienneeenennienncennennenecoes e 6-35
Hints for Preparing Specifications........ccccccvevernveeriernrceesieennne 6-37
INPUL StYle...ccceiieiiei e 6-—-37
Left ReCUrSion......ccecciiieiierieeiieienie et saesnessesnes 6—38
Lexical Tie-INscoeoeeeeeiieeeeeceeecceee e sresve e 6—-39
Reserved Wordsccoociiieieciiniiiceenece e see e 6—-41
Advanced TopiCSccvveveciiiriiiiirecee et eeee e e 6—43
Simulating error and accept in Actions........cccceeeveerninn 643
Accessing Values in Enclosing Rules..........ccccccovvininnnce. 6—43
Support for Arbitrary Value Types......cccccrvrervrirciinnveennne 6—45
yace Input Syntax.........cccoevvveiiieneiniieiceenreeereee e 6-—-47
EXamples......cococevveieciiieiieeiinerereennrestee e 6-51
1. A Simple Exampleccccecvrvvreverirecieniineneneeneneeenienn 6-51

2. An Advanced Example........ccccecrevnniniirnienieenneconenenneenne 6—-55

TABLE OF CONTENTS I-1

) ——g

Table of Contents

This page is intentionally left blank

PROGRAMMER’S GUIDE

414

Introduction

yace provides a general tool for imposing structure on the input to a
computer program. The yacc user prepares a specification that
includes:

® a set of rules to describe the elements of the input
e code to be invoked when a rule is recognized

e either a definition or declaration of a low-level routine
to examine the input

yace then turns the specification into a C language function that
examines the input stream. This function, called a parser, works by
calling the low-level input scanner. The low-level input scanner,
called a lexical analyzer, picks up items from the input stream. The
selected items are known as tokens. Tokens are compared to the
input construct rules, called grammar rules. When one of the rules is
recognized, the user code supplied for this rule, (an action) is invoked.
Actions are fragments of C language code. They can return values
and make use of values returned by other actions.

The heart of the yaec specification is the collection of grammar rules.
Each rule describes a construct and gives it a name. For example,
one grammar rule might be

-

date : month name day , year H

where date, month_name, day, and year represent constructs of
interest; presumably, month_name, day, and year are defined in
greater detail elsewhere. In the example, the comma is enclosed in
single quotes. This means that the comma is to appear literally in
the input. The colon and semicolon merely serve as punctuation in
the rule and have no significance in evaluating the input. With
proper definitions, the input

July 4, 1776
might be matched by the rule.

eF————————

Introduction

The lexical analyzer is an important part of the parsing function.
This user-supplied routine reads the input stream, recognizes the
lower-level constructs, and communicates these as tokens to the
parser. The lexical analyzer recognizes constructs of the input
stream as terminal symbols; the parser recognizes constructs as non-
terminal symbols. To avoid confusion, we will refer to terminal sym-
bols as tokens.

There is considerable leeway in déciding whether to recognize con-
structs using the lexical analyzer or grammar rules. For example, the
rules

might be used in the above example. While the lexical analyzer only
needs to recognize individual letters, such low-level rules tend to
waste time and space, and may complicate the specification beyond
the ability of yaee to deal with it. Usually, the lexical analyzer recog-
nizes the month names and returns an indication that a
month_name is seen. In this case, month_name is a token and the
detailed rules are not needed.

Literal characters such as a comma must also be passed through the
lexical analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date : month '/’ day '/’ year ;
allowing
7/4/1776

6-2 PROGRAMMER’S GUIDE

982

287

Introduction

as a synonym for
July 4, 1776

on input. In most cases, this new rule could be slipped into a work-
ing system with minimal effort and little danger of disrupting existing
input.

The input being read may not conform to the specifications. With a
left-to-right scan input errors are detected as early as is theoretically
possible. Thus, not only is the chance of reading and computing with
bad input data substantially reduced, but the bad data usually can be
found quickly. Error handling, provided as part of the input
specifications, permits the reentry of bad data or the continuation of
the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self-
contradictory, or they may require a more powerful recognition
mechanism than that available to yace. The former cases represent
design errors; the latter cases often can be corrected by making the
lexical analyzer more powerful or by rewriting some of the grammar
rules. While yace cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the constructs
that are difficult for yace to handle are also frequently difficult for
human beings to handle. Some users have reported that the discip-
line of formulating valid yacc specifications for their input revealed
errors of conception or design early in the program development.

The remainder of this chapter describes the following subjects:
® basic process of preparing a yacc specification
® parser operation
® handling ambiguities

¢ handling operator precedences in arithmetic expressions

yacc 6-3

=

Introduction

error detection and recovery

the operating environment and special features of the parsers
yace produces

suggestions to improve the style and efficiency of the
specifications

advanced topics

In addition, there are two examples and a summary of the yace input
syntax.

6-4

PROGRAMMER’S GUIDE

88¢

289

M

O

Basic Specifications

Names refer to either tokens or nonterminal symbols. yacc requires
token names to be declared as such. While the lexical analyzer may
be included as part of the specification file, it is perhaps more in keep-
ing with modular design to keep it as a separate file. Like the lexical
analyzer, other subroutines may be included as well. Thus, every
specification file theoretically consists of three sections: the declara-
tions, (grammar) rules, and subroutines. The sections are separated
by double percent signs, % % (the percent sign is generally used in
yace specifications as an escape character).

A full specification file looks like:

declarations
%%

rules

%%
subroutines

when all sections are used. The declarations and subroutines sections
are optional. The smallest legal yace specification is

%%
rules

Blanks, tabs, and newlines are ignored, but they may not appear in
names or multicharacter reserved symbols. Comments may appear
wherever a name is legal. They are enclosed in / * ... * /, as in the C
language.

The rules section is made up of one or more grammar rules. A gram-
mar rule has the form

A : BODY ;

where A represents a nonterminal symbol, and BODY represents a
sequence of zero or more names and literals. The colon and the semi-
colon are yacc punctuation.

yacc 6-5

Basic Specifications

Names may be of any length and may be made up of letters, dots,
underscores, and digits although a digit may not be the first character
of a name. Uppercase and lowercase letters are distinct. The names
used in the body of a grammar rule may represent tokens or nonter-
minal symbols.

A literal consists of a character enclosed in single quotes, ’. As in the
C language, the backslash, \, is an escape character within literals,
and all the C language escapes are recognized. Thus:

“\n~ newline

‘Ar’ return

\ single quote ()
“\\’ backslash (\)

\t° tab

“\b~ backspace

\f° form feed

“\xxx” xxx in octal notation

are understood by yace. For a number of technical reasons, the
NULL character (\0 or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the
vertical bar, |, can be used to avoid rewriting the left-hand side. In
addition, the semicolon at the end of a rule is dropped before a verti-
cal bar. Thus the grammar rules

A : B C D ;
A : E F ;
A : G H

can be given to yacc as

A : B C D
| E F
| G
;

by using the vertical bar. It is not necessary that all grammar rules
with the same left side appear together in the grammar rules section
although it makes the input more readable and easier to change.

6-6 PROGRAMMER’S GUIDE

062

Basic Specifications

If a nonterminal symbol matches the empty string, this can be indi-
cated by

epsilon : ;
The blank space following the colon is understood by yace to be a
nonterminal symbol named epsilon.

Names representing tokens must be declared. This is most simply
ﬁ done by writing

$token namel name2 ...

| in the declarations section. Every name not defined in the declara-
| tions section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular
importance. By default, the start symbol is taken to be the left-hand
side of the first grammar rule in the rules section. It is possible and
desirable to declare the start symbol explicitly in the declarations sec-
tion using the %start keyword.

$start symbol

291

The end of the input to the parser is signaled by a special token,
called the end-marker. The end-marker is represented by either a

h zero or a negative number. If the tokens up to but not including the
end-marker form a construct that matches the start symbol, the
parser function returns to its caller after the end-marker is seen and
accepts the input. If the end-marker is seen in any other context, it
is an error.

It is the job of the user-supplied lexical analyzer to return the end-
marker when appropriate. Usually the end-marker represents some
reasonably obvious I/O status, such as end of file or end of record.

Yacc 6-7

Basic Specifications

Actions

With each grammar rule, the user may associate actions to be per-
formed when the rule is recognized. Actions may return values and
may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens if desired.

An action is an arbitrary C language statement and as such can do
input and output, call subroutines, and alter arrays and variables. An
action is specified by one or more statements enclosed in curly braces,
{, and }. For example:

A . I(I B I)I

hello(1, "abc”);

and
XXX s YYY ZZ2Z
(void) printf(”a message\n");

flag = 25;
}

are grammar rules with actions.

The dollar sign symbol, $, is used to facilitate communication between
the actions and the parser, The pseudo-variable $$ represents the
value returned by the complete action. For example, the action

{ $$=1; }
returns the value of one; in fact, that’s all it does.

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the pseudo-variables $1, $2, ... $n.
These refer to the values returned by components 1 through n of the
right side of a rule, with the components being numbered from left to

6-8 PROGRAMMER’S GUIDE

I4:4

Basic Specifications

right. If the rule is
A : B C D H
then $2 has the value returned by C, and $3 the value returned by D.

The rule
expr : ‘(' expr ')’ ;

provides a common example. One would expect the value returned by
this rule to be the value of the expr within the parentheses. Since the
first component of the action is the literal left parenthesis, the desired
logical result can be indicated by

expr : ‘(' expr ')’

$2 ;

By default, the value of a rule is the value of the first element in it
($1). Thus, grammar rules of the form

A : B ;

frequently need not have an explicit action. In previous examples, all
the actions came at the end of rules. Sometimes, it is desirable to get
control before a rule is fully parsed. yacc permits an action to be
written in the middle of a rule as well as at the end. This action is
assumed to return a value accessible through the usual $ mechanism
by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule below the effect
is to set x to 1 and y to the value returned by C.

o) ——

Basic Specifications

A B
{
$$ = 1;
}
c
{
X = $2;
Yy = $3;
}

N 4

Actions that do not terminate a rule are handled by yaec by
manufacturing a new nonterminal symbol name and a new rule
matching this name to the empty string. The interior action is the
action triggered by recognizing this added rule. yace treats the
above example as if it had been written

4)

$ACT : /x empty */
{
$$ = 1;
}
A : B $ACT C
{
x = $2;
y = $3;
}

N /

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A
data structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse
trees are particularly easy to construct given routines to build and

6-10 PROGRAMMER’S GUIDE

62

295

Basic Specifications

maintain the tree structure desired. For example, suppose there is a
C function node written so that the call

node(L, nl, n2)

creates a node with label L and descendants nl and n2 and returns
the index of the newly created node. Then a parse tree can be built
by supplying actions such as

expr : expr '+’ expr
{
$$ = node('+’', $1, $3);
}

in the specification.

The user may define other variables to be used by the actions.
Declarations and definitions can appear in the declarations section
enclosed in the marks %{ and %}. These declarations and definitions
have global scope, so they are known to the action statements and
can be made known to the lexical analyzer. For example:

%{ int variable = 0; %}

could be placed in the declarations section making variable accessi-
ble to all of the actions. Users should avoid names beginning with yy
because the yacc parser uses only such names. In the examples
shown thus far all the values are integers. A discussion of values of
other types is found in the section ”Advanced Topics.”

Lexical Analysis

The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexi-
cal analyzer is an integer-valued function called yylex. The function
returns an integer, the token number, representing the kind of token
read. If there is a value associated with that token, it should be
assigned to the external variable yylval.

yacc 6-1

Basic Specifications

The parser and the lexical analyzer must agree on these token
numbers in order for communication between them to take place.
The numbers may be chosen by yace or the user. In either case, the
#define mechanism of C language is used to allow the lexical
analyzer to return these numbers symbolically. For example, suppose
that the token name DIGIT has been defined in the declarations sec-
tion of the yace specification file. The relevant portion of the lexical
analyzer might look like

~ N v

int yylex()

{
extern int yylval;
int c;

c = getchar();

switch (c¢)
{

case ‘0':

case 'l’:

case '9‘:

yylval = ¢ - '0’;
return (DIGIT);

}

N)

to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to
the numerical value of the digit. Provided that the lexical analyzer
code is placed in the subroutines section of the specification file, the
identifier DIGIT is defined as the token number associated with the
token DIGIT.

6-12 PROGRAMMER’S GUIDE

962

297

Basic Specifications

This mechanism leads to clear, easily modified lexical analyzers. The
only pitfall to avoid is using any token names in the grammar that
are reserved or significant in C language or the parser. For example,
the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name
error is reserved for error handling and should not be used naively.

In the default situation, token numbers are chosen by yace. The
default token number for a literal character is the numerical value of
the character in the local character set. Other names are assigned
token numbers starting at 257. If the yacc command is invoked with
the —d option a file called y.tab.h is generated. y.tab.h contains
#define statements for the tokens.

If the user prefers to assign the token numbers, the first appearance
of the token name or literal in the declarations section must be fol-
lowed immediately by a nonnegative integer. This integer is taken to
be the token number of the name or literal. Names and literals not
defined this way are assigned default definitions by yace. The poten-
tial for duplication exists here. Care must be taken to make sure that
all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or
negative. This token number cannot be redefined by the user. Thus,
all lexical analyzers should be prepared to return 0 or a negative
number as a token upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex utility.
Lexical analyzers produced by lex are designed to work in close har-
mony with yace parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules. lex can
be easily used to produce quite complicated lexical analyzers, but
there remain some languages (such as FORTRAN), which do not fit
any theoretical framework and whose lexical analyzers must be
crafted by hand.

yacce 6-13

Basic Specifications

6-14

This page is intentionally left blank

PROGRAMMER’S GUIDE

86¢

299

Parser Operation

yace turns the specification file into a C language procedure, which
parses the input according to the specification given. The algorithm
used to go from the specification to the parser is complex and will not
be discussed here. The parser itself, though, is relatively simple and
understanding its usage will make treatment of error recovery and
ambiguities easier. '

The parser produced by yace consists of a finite state machine with a
stack. The parser is also capable of reading and remembering the
next input token (called the look-ahead token). The current state is
always the one on the top of the stack. The states of the finite state
machine are given small integer labels. Initially, the machine is in
state 0 (the stack contains only state 0) and no look-ahead token has
been read.

The machine has only four actions available —shift, reduce, accept,
and error. A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-
ahead token to choose the action to be taken. If it needs one
and does not have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out. This may
result in states being pushed onto the stack or popped off of the
stack and in the look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. When-
ever a shift action is taken, there is always a loock-ahead token. For
example, in state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current
state (56) is pushed down on the stack, and state 34 becomes the
current state (on the top of the stack). The look-ahead token is
cleared.

yacc 6-15

Parser Operation

The reduce action keeps the stack from growing without bounds.
reduce actions are appropriate when the parser has seen the right-
hand side of a grammar rule and is prepared to announce that it has
seen an instance of the rule replacing the right-hand side by the left-
hand side. It may be necessary to consult the look-ahead token to
decide whether or not to reduce (usually it is not necessary). In fact,
the default action (represented by a dot) is often a reduce action.

reduce actions are associated with individual grammar rules. Gram-
mar rules are also given small integer numbers, and this leads to
some confusion. The action

. reduce 18
refers to grammar rule 18, while the action
IF shift 34
refers to state 34.
Suppose the rule
A : X y 2 ;

is being reduced. The reduce action depends on the left-hand symbol
(A in this case) and the number of symbols on the right-hand side
(three in this case).

To reduce, first pop off the top three states from the stack. (In gen-
eral, the number of states popped equals the number of symbols on
the right side of the rule.) In effect, these states were the ones put
on the stack while recognizing x, y, and z and no longer serve any
useful purpose.

After popping these states, a state is uncovered, which was the state
the parser was in before beginning to process the rule. Using this
uncovered state and the symbol on the left side of the rule, perform
what is in effect a shift of A. A new state is obtained, pushed onto
the stack, and parsing continues.

6-16 PROGRAMMER'’S GUIDE

W/

0oe

Parser Operation

There are significant differences between the processing of the left-
hand symbol and an ordinary shift of a token, however, so this action
is called a goto action. In particular, the look-ahead token is cleared
by a shift but is not affected by a goto. In any case, the uncovered
state contains an entry such as

A goto 20

causing state 20 to be pushed onto the stack and become the current
ﬁ state. In effect, the reduce action turns back the clock in the parse
' popping the states off the stack to go back to the state where the
right-hand side of the rule was first seen. The parser then behaves as
if it had seen the left side at that time. If the right-hand side of the
rule is empty, no states are popped off of the stacks. The uncovered

state is in fact the current state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with
the rule is executed before the stack is adjusted. In addition to the
stack holding the states, another stack running in parallel with it
holds the values returned from the lexical analyzer and the actions.
When a shift takes place, the external variable yylval is copied onto
the value stack. After the return from the user code, the reduction is
carried out. When the goto action is done, the external variable
yyval is copied onto the value stack. The pseudo-variables $1, $2,
(“\ etc., refer to the value stack.

301

The other two parser actions are conceptually much simpler. The
accept action indicates that the entire input has been seen and that
it matches the specification. This action appears only when the look-
ahead token is the end-marker and indicates that the parser has suc-
cessfully done its job. The error action, on the other hand,
represents a place where the parser can no longer continue parsing
according to the specification. The input tokens it has seen (together
with the look-ahead token) cannot be followed by anything that would
result in a legal input. The parser reports an error and attempts to
ﬂ recover the situation and resume parsing. The error recovery (as
’ opposed to the detection of error) will be discussed later.

yacc 6-17

Parser Operation

Consider:

4)

%token DING DONG DELL
%%
rhyme : sound place
i
sound : DING DONG
H
place : DELL
H

o /

as a yacc specification. When yaec is invoked with the —v option, a
file called y.output is produced with a human-readable description of
the parser. The y.output file corresponding to the above grammar
(with some statistics stripped off the end) follows.

4 N

state 0
$accept : _rhyme S$end

DING shift 3
error

rhyme goto 1
sound goto 2

state 1
Saccept @ rhyme $end

$end accept
error

state 2
rhyme : sound place

DELL shift 5
error

N)

(continued on next page)

6-18 PROGRAMMER’S GUIDE

c0e

s e e e e S

Parser Operation

4 I

place goto 4

state 3
sound : DING DONG

DONG shift 6
error

ﬁ state 4

rhyme : sound place_ (1)

reduce 1
state 5
place : DELL _ (3)
reduce 3
state 6
sound : DING DONG_ (2)

303

. reduce 2 4//)

The actions for each state are specified and there is a description of

the parsing rules being processed in each state. The _ character is

used to indicate what has been seen and what is yet to come in each
m rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the
current state is state 0. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first
token, DING, is read and becomes the look-ahead token. The action
in state 0 on DING is shift 3, state 3 is pushed onto the stack, and
the look-ahead token is cleared. State 3 becomes the current state.
The next token, DONG, is read and becomes the look-ahead token.
m The action in state 3 on the token DONG is shift 6, state 6 is pushed
‘ onto the stack, and the look-ahead is cleared. The stack now contains

g m R R I s T R S R

Parser Operation

0, 3, and 6. In state 6 the parser reduces by
sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack
uncovering state 0. Consulting the description of state 0 (looking for
a goto on sound),

sound goto 2

is obtained. State 2 is pushed onto the stack and becomes the
current state.

In state 2, the next token, DELL, must be read. The action is shift
5, so state 5 is pushed onto the stack, which now has 0, 2, and 5 on
it, and the look-ahead token is cleared. In state 5, the only action is
to reduce by rule 3. This has one symbol on the right-hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in
state 2 on place (the left side of rule 3) is state 4. Now, the stack
contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1.
There are two symbols on the right, so the top two states are popped
off, uncovering state 0 again. In state 0, there is a goto on rhyme
causing the parser to enter state 1. In state 1, the input is read and
the end-marker is obtained indicated by $end in the y.output file.
The action in state 1 (when the end-marker is seen) successfully ends
the parse.

The reader is urged to consider how the parser works when con-
fronted with such incorrect strings as DING DONG DONG, DING
DONG, DING DONG DELL DELL, etc. A few minutes spent with
this and other simple examples is repaid when problems arise in more
complicated contexts.

6-20 PROGRAMMER'S GUIDE

y0€

305

Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string
that can be structured in two or more different ways. For example,
the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an
arithmetic expression is to put two other expressions together with a
minus sign between them. Unfortunately, this grammar rule does
not completely specify the way that all complex inputs should be
structured. For example, if the input is

eXpr - exXpr - expr
the rule allows this input to be structured as either
(expr - exXpr) =— expr
or as
expr - (expr - expr)
(The first is called left association, the second right association.)
yacc detects such ambiguities when it is attempting to build the
parser. Given the input
expr - exXpr - expr
consider the problem that confronts the parser. When the parser has
read the second expr, the input seen

expr - expr
matches the right side of the grammar rule above. The parser could
reduce the input by applying this rule. After applying the rule, the
input is reduced to expr (the left side of the rule). The parser would
then read the final part of the input

- expr

and again reduce. The effect of this is to take the left associative
interpretation.

yace 6-21

EEe m T T T THIERAE

Ambiguity and Conflicts

Alternatively, if the parser sees
expr - expr

it could defer the immediate application of the rule and continue
reading the input until

exXpr - expr - expr

is seen. It could then apply the rule to the rightmost three symbols
reducing them to expr, which results in

expr - expr

being left. Now the rule can be reduced once more. The effect is to
take the right associative interpretation. Thus, having read

expr - expr

the parser can do one of two legal things, a shift or a reduction. It
has no way of deciding between them. This is called a shift-reduce
conflict. It may also happen that the parser has a choice of two legal
reductions. This is called a reduce-reduce conflict. Note that there
are never any shift-shift conflicts.

When there are shift-reduce or reduce-reduce conflicts, yace still
produces a parser. It does this by selecting one of the valid steps
wherever it has a choice. A rule describing the choice to make in a
given situation is called a disambiguating rule.

yace invokes two default disambiguating rules:
1. In a shift-reduce conflict, the default is to do the shift.
2. In a reduce-reduce conflict, the default is to reduce by the

earlier grammar rule (in the yace specification).

Rule 1 implies that reductions are deferred in favor of shifts when
there is a choice. Rule 2 gives the user rather crude control over the
behavior of the parser in this situation, but reduce-reduce conflicts
should be avoided when possible.

6-22 PROGRAMMER'’S GUIDE

90€

Ambiguity and Conflicts

Conflicts may arise because of mistakes in input or logic or because
the grammar rules (while consistent) require a more complex parser
than yace can construct. The use of actions within rules can also
cause conflicts if the action must be done before the parser can be
sure which rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect
parser. For this reason, yacc always reports the number of shift-
reduce and reduce-reduce conflicts resolved by Rule 1 and Rule 2.

(“ In general, whenever it is possible to apply disambiguating rules to
produce a correct parser, it is also possible to rewrite the grammar
rules so that the same inputs are read but there are no conflicts. For
this reason, most previous parser generators have considered conflicts
to be fatal errors. Our experience has suggested that this rewriting is
somewhat unnatural and produces slower parsers. Thus, yacc will
produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

307

stat IF (' cond ')’ stat

IF ‘(' cond ')’ stat ELSE stat

~. — oo

which is a fragment from a programming language involving an if-
then-else statement. In these rules, IF and ELSE are tokens, cond
m is a nonterminal symbol describing conditional (logical) expressions,
and stat is a nonterminal symbol describing statements. The first
rule will be called the simple if rule and the second the if-else rule.

These two rules form an ambiguous construction because input of the
form

IF (Cl1) IF (C2) Sl ELSE 82

can be structured according to these rules in two ways

yace 6-23

RSy R S S i

IF (Cl)
{
IF (C2)
s1
}
ELSE
s2
or
IF (Cl)
{
IF (C2)
s1
ELSE
s2
}

where the second interpretation is the one given in most program-
ming languages having this construct; each ELSE is associated with
the last preceding un-ELSE’d IF. In this example, consider the situa-
tion where the parser has seen

IF (Ccl1) IF (c2) s1

and is looking at the ELSE. It can immediately reduce by the simple
if rule to get

IF (Cl) stat
and then read the remaining input
ELSE S2
and reduce
IF (Cl1) stat ELSE §2

by the if-else rule. This leads to the first of the above groupings of
the input.

6-24 PROGRAMMER'’S GUIDE

RS Te A R RSN RO

80€

309

Ambiguity and Conflicts

On the other hand, the ELSE may be shifted, S2 read, and then the
right-hand portion of

IF (Cl1) IF (C2) 81 ELSE S2
can be reduced by the if-else rule to get
IF (Cl1) stat

which can be reduced by the simple if rule. This leads to the second
of the above groupings of the input which is usually desired.

Once again, the parser can do two valid things — there is a shift-
reduce conflict. The application of disambiguating rule 1 tells the
parser to shift in this case, which leads to the desired grouping.

This shift-reduce conflict arises only when there is a particular
current input symbol, ELSE, and particular inputs, such as

IF (Ccl) IF (Cc2) s1

have already been seen. In general, there may be many conflicts, and
each one will be associated with an input symbol and a set of previ-
ously read inputs. The previously read inputs are characterized by
the state of the parser.

The conflict messages of yacc are best understood by examining the
verbose (—v) option output file. For example, the output correspond-
ing to the above conflict state might be

- D

23: shift-reduce conflict (shift 45, reduce 18) on ELSE

state 23
stat ¢ IF (cond) stat_ (18)
stat ¢ IF (cond) stat ELSE stat
ELSE shift 45

reduce 18

_ /

Ambiguity and Conflicts

where the first line describes the conflict — giving the state and the
input symbol. The ordinary state description gives the grammar
rules active in the state and the parser actions. Recall that the
underline marks the portion of the grammar rules, which has been
seen. Thus in the example, in state 23 the parser has seen input
corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser
can do two possible things. If the input symbol is ELSE, it is possible
to shift into state 45. State 45 will have, as part of its description,
the line

stat : IF (cond) stat ELSE stat

because the ELSE will have been shifted in this state. In state 23,
the alternative action (describing a dot, .), is to be done if the input
symbol is not mentioned explicitly in the actions. In this case, if the
input symbol is not ELSE, the parser reduces to

stat : IF ’'(' cond ')’ stat
by grammar rule 18.

Once again, notice that the numbers following shift commands refer
to other states, while the numbers following reduce commands refer
to grammar rule numbers. In the y.output file, the rule numbers
are printed in parentheses after those rules, which can be reduced.
In most states, there is a reduce action possible in the state and this
is the default command. The user who encounters unexpected shift-
reduce conflicts will probably want to look at the verbose output to
decide whether the default actions are appropriate.

6-26 PROGRAMMER'S GUIDE

oLe

311

Precedence

There is one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of arith-
metic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left
or right associativity. It turns out that ambiguous grammars with
appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambi-
guous grammars. The basic notion is to write grammar rules of the
form

expr : expr OP eXxpr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambi-
guous grammar with many parsing conflicts. As disambiguating
rules, the user specifies the precedence or binding strength of all the
operators and the associativity of the binary operators. This informa-
tion is sufficient to allow yacc to resolve the parsing conflicts in
accordance with these rules and construct a parser that realizes the
desired precedences and associativities.

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning with
a yacc keyword: %left, %right, or %nonassoc, followed by a list of
tokens. All of the tokens on the same line are assumed to have the
same precedence level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus:

sleft '+’ '-'
tleft 'xr /¢

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative and have lower pre-
cedence than star and slash, which are also left associative. The

yacce 6-27

AR

Precedence

keyword %right is used to describe right associative operators, and
the keyword %nonassoc is used to describe operators, like the opera-
tor .LT. in FORTRAN, that may not associate with themselves.
Thus:

A ..LT. B .LT. C

is illegal in FORTRAN and such an operator would be described with
the keyword %nonassoc in yace. As an example of the behavior of
these declarations, the description

s D

%right ‘=
$left ‘47 -
tleft ‘x' '/

%%

expr H expr '=' expr
| expr '+ expr
| expr ‘-’ expr
| expr '*' expr
| expr /' expr
| NaME
H

- /

might be used to structure the input

a = b = c*xd - e - f=x*xg
as follows
a= (b= (((cxd)-e) - (£xg)))

in order to perform the correct precedence of operators. When this
mechanism is used, unary operators must, in general, be given a pre-
cedence. Sometimes a unary operator and a binary operator have the
same symbolic representation but different precedences. An example
is unary and binary minus, —.

6-28 PROGRAMMER’S GUIDE

313

Precedence

Unary minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than multiplica-
tion. The keyword, %prec, changes the precedence level associated
with a particular grammar rule. The keyword %prec appears
immediately after the body of the grammar rule, before the action or
closing semicolon, and is followed by a token name or literal. It
causes the precedence of the grammar rule to become that of the fol-
lowing token name or literal. For example, the rules

s)

expr : expr '+’ expr
| expr ‘- expr
| expr ‘*' expr
| expr '/’ expr
| r—' expr fprec ‘*
| NAME
H

might be used to give unary minus the same precedence as multiplica-
tion.

A token declared by %left, %right, and %nonassoc need not be, but
may be, declared by %token as well.

Precedences and associativities are used by yacc to resolve parsing
conflicts. They give rise to the following disambiguating rules:

1. Precedences and associativities are recorded for those tokens
and literals that have them.

2. A precedence and associativity is associated with each grammar
rule. It is the precedence and associativity of the last token or
literal in the body of the rule. If the %prec construction is
used, it overrides this default. Some grammar rules may have
no precedence and associativity associated with them.

Precedence

3. When there is a reduce-reduce conflict or there is a shift-
reduce conflict and either the input symbol or the grammar
rule has no precedence and associativity, then the two default
disambiguating rules given at the beginning of the section are
used, and the conflicts are reported.

4. If there is a shift-reduce conflict and both the grammar rule
and the input character have precedence and associativity asso-
ciated with them, then the conflict is resolved in favor of the
action—shift or reduce—associated with the higher pre-
cedence. If precedences are equal, then associativity is used.
Left associative implies reduce; right associative implies shift;
nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of
shift-reduce and reduce-reduce conflicts reported by yace. This
means that mistakes in the specification of precedences may disguise
errors in the input grammar. It is a good idea to be sparing with pre-
cedences and use them in a cookbook fashion until some experience
has been gained. The y.output file is very useful in deciding whether
the parser is actually doing what was intended.

6-30 PROGRAMMER'S GUIDE

vie

Error Handling

Error handling is an extremely difficult area, and many of the prob-
lems are semantic ones. When an error is found, for example, it may
be necessary to reclaim parse tree storage, delete or alter symbol
table entries, and/or, typically, set switches to avoid generating any
further output.

ﬂ It is seldom acceptable to stop all processing when an error is found.

' It is more useful to continue scanning the input to find further syntax
errors. This leads to the problem of getting the parser restarted after
an error. A general class of algorithms to do this involves discarding
a number of tokens from the input string and attempting to adjust
the parser so that input can continue.

To allow the user some control over this process, yacc provides the
token name error. This name can be used in grammar rules. In
effect, it suggests places where errors are expected and recovery
might take place. The parser pops its stack until it enters a state
where the token error is legal. It then behaves as if the token error
were the current look-ahead token and performs the action encoun-
tered. The look-ahead token is then reset to the token that caused
the error. If no special error rules have been specified, the processing
halts when an error is detected.

315

In order to prevent a cascade of error messages, the parser, after
detecting an error, remains in error state until three tokens have
been successfully read and shifted. If an error is detected when the
parser is already in error state, no message is given, and the input
token is quietly deleted.

As an example, a rule of the form
stat : error

means that on a syntax error the parser attempts to skip over the
statement in which the error is seen. More precisely, the parser
ﬂ scans ahead, looking for three tokens that might legally follow a
statement, and start processing at the first of these. If the beginnings

yacc 6-31

B e N PO T S

Error Handling

of statements are not sufficiently distinctive, it may make a false start
in the middle of a statement and end up reporting a second error
where there is in fact no error.

Actions may be used with these special error rules. These actions
might attempt to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general but difficult to control.
Rules such as

stat : error ;'

are somewhat easier. Here, when there is an error, the parser
attempts to skip over the statement but does so by skipping to the
next semicolon. All tokens after the error and before the next semi-
colon cannot be shifted and are discarded. When the semicolon is
seen, this rule will be reduced and any cleanup action associated with
it performed.

Another form of error rule arises in interactive applications where it
may be desirable to permit a line to be reentered after an error. The
following example

4 N

input : error ‘\n’
{

(void) printf("Reenter last line: ”);
}
input
{
$$ = $4;
}

- J
is one way to do this. There is one potential difficulty with this
approach. The parser must correctly process three input tokens
before it admits that it has correctly resynchronized after the error.
If the reentered line contains an error in the first two tokens, the

parser deletes the offending tokens and gives no message. This is
clearly unacceptable. For this reason, there is a mechanism that can

6-32 PROGRAMMER’S GUIDE

9Ie

317

Error Handling

force the parser to believe that error recovery has been accomplished.
The statement
yyerrok ;

in an action resets the parser to its normal mode. The last example
can be rewritten as

;-)

input : error ‘\n’
{
yyerrok;
(void) printf(“Reenter last line: ”);
}
input

o /

which is somewhat better.

As previously mentioned, the token seen immediately after the error
symbol is the input token at which the error was discovered. Some-
times, this is inappropriate; for example, an error recovery action
might take upon itself the job of finding the correct place to resume
input. In this case, the previous look-ahead token must be cleared.
The statement

yyclearin ;

in an action will have this effect. For example, suppose the action
after error were to call some sophisticated resynchronization routine
(supplied by the user) that attempted to advance the input to the
beginning of the next valid statement. After this routine is called, the
next token returned by yylex is presumably the first token in a legal
statement. The old illegal token must be discarded and the error
state reset.

yacce 6-33

Error Handling

A rule similar to

4 N

stat H error

{
resynch();
yyerrok ;
yyclearin;

___ o~

could perform this,

These mechanisms are admittedly crude but do allow for a simple,
fairly effective recovery of the parser from many errors. Moreover,
the user can get control to deal with the error actions required by
other portions of the program.

81e

6-34 PROGRAMMER’S GUIDE

The yacc Environment

When the user inputs a specification to yace, the output is a file of C
language subroutines, called y.tab.c. The function produced by yace
is called yyparse(); (an integer valued function). When it is called, it
in turn repeatedly calls yylex(), the lexical analyzer supplied by the
user (see "Lexical Analysis”), to obtain input tokens. If an error is
detected, yyparse() returns the value 1, and no error recovery is pos-
sible, or the lexical analyzer returns the end-marker token and the
parser accepts. In this case, yyparse() returns the value 0.

The user must provide a certain amount of environment for this
parser in order to obtain a working program. For example, as with
every C language program, a routine called main() must be defined
that eventually calls yparse(). In addition, a routine called yyerror()
is needed to print a message when a syntax error is detected.

These two routines must be supplied in one form or another by the
user. To ease the initial effort of using yace, a library has been pro-
vided with default versions of main() and yyerror(). The library is
accessed by a —ly argument to the ec(l) command or to the loader.
The source codes

main()

{
return (yyparse());

}

include <stdio.h>
yyerror(s)
char *s;

{
(void) fprintf(stderr, ”$s\n”, s);

}
show the triviality of these default programs.

EEREREE Sl S e AR ey

The yacc Environment

The argument to yyerror() is a string containing an error message,
usually the string syntax error. The average application wants to
do better than this. Ordinarily, the program should keep track of the
input line number and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the
look-ahead token number at the time the error was detected. This
may be of some interest in giving better diagnostics. Since the
main() routine is probably supplied by the user (to read arguments,
etc.), the yacc library is useful only in small projects or in the earli-
est stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is
set to a nonzero value, the parser will output a verbose description of
its actions including a discussion of the input symbols read and what
the parser actions are. It is possible to set this variable by using sdb.

6-36 PROGRAMMER'’S GUIDE

321

Hints for Preparing Specifications

This part contains miscellaneous hints on preparing efficient, easy to
change, and clear specifications. The individual subsections are more
or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a
readable specification file. The following are a few style hints.

1. Use all uppercase letters for token names and all lowercase
letters for nonterminal names. This is useful in debugging.

2. Put grammar rules and actions on separate lines. It makes
editing easier.

3. Put all rules with the same left-hand side together. Put the
left-hand side in only once and let all following rules begin with
a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand
side and put the semicolon on a separate line. This allows new
rules to be easily added.

5. Indent rule bodies by one tab stop and action bodies by two tab
stops.

6. Put complicated actions into subroutines defined in separate
files.

Example 1 is written following this style, as are the examples in this
section (where space permits). The user must decide about these
stylistic questions. The central problem, however, is to make the
rules visible through the morass of action code.

yacc 6-37

Hints for Preparing Specifications

Left Recursion
The algorithm used by the yacc parser encourages so called left
recursive grammar rules. Rules of the form

name : name rest_of rule ;

match this algorithm. These rules such as

list : item
| list ‘,’ item
;
and
seq : item
| segq item
7

frequently arise when writing specifications of sequences and lists. In
each of these cases, the first rule will be reduced for the first item
only; and the second rule will be reduced for the second and all
succeeding items.

With right recursive rules, such as

seq : item

| item segq

the parser is a bit bigger; and the items are seen and reduced from
right to left. More seriously, an internal stack in the parser is in

danger of overflowing if a very long sequence is read. Thus, the user
should use left recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any
meaning, and if so, consider writing the sequence specification as

/* empty */

seq :
| seq item
H

using an empty rule. Once again, the first rule would always be

6-38 PROGRAMMER’S GUIDE

(44>

323

Hints for Preparing Specifications

reduced exactly once before the first item was read, and then the
second rule would be reduced once for each item read. Permitting
empty sequences often leads to increased generality. However,
conflicts might arise if yacc is asked to decide which empty sequence
it has seen when it hasn’t seen enough to know!

Lexical Tie-Ins

Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally, but not within quoted
strings, or names might be entered into a symbol table in declarations
but not in expressions. One way of handling these situations is to
create a global flag that is examined by the lexical analyzer and set by
actions. For example,

yacc 6-39

k3

Hints for Preparing Specifications

-

{
int dflag;
%}
other declarations ...
%
prog H decls stats
H
decls : /* empty */
{
dflag = 1;
}
| decls declaration
i
stats : /% empty */
{
dflag = 0;
| stats statement
other rules

- y

specifies a program that consists of zero or more declarations followed ;
by zero or more statements. The flag dflag is now 0 when reading w
statements and 1 when reading declarations, except for the first token

in the first statement. This token must be seen by the parser before

it can tell that the declaration section has ended and the statements

have begun. In many cases, this single token exception does not

affect the lexical scan.

This kind of back-door approach can be elaborated to a noxious
degree. Nevertheless, it represents a way of doing some things that
are difficult, if not impossible, to do otherwise.

6-40 PROGRAMMER’S GUIDE

e —————————————] d&]

Hints for Preparing Specifications

Reserved Words

Some programming languages permit you to use words like if, which
are normally reserved as label or variable names, provided that such
use does not conflict with the legal use of these names in the pro-
gramming language. This is extremely hard to do in the framework
of yace. It is difficult to pass information to the lexical analyzer tel-
ling it this instance of if is a keyword and that instance is a variable.
The user can make a stab at it using the mechanism described in the
last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until
then, it is better that the keywords be reserved, i.e., forbidden for use
as variable names. There are powerful stylistic reasons for preferring
this.

Hints for Preparing Specifications

6-42

This page is intentionally left blank

PROGRAMMER’S GUIDE

9ze

327

~—————] d&

Advanced Topics

This part discusses a number of advanced features of yace.

Simulating error and accept in Actions

The parsing actions of error and accept can be simulated in an
action by use of macros YYACCEPT and YYERROR. The YYACCEPT
macro causes yyparse() to return the value 0; YYERROR causes the
parser to behave as if the current input symbol had been a syntax
error; yyerror() is called, and error recovery takes place. These
mechanisms can be used to simulate parsers with multiple end-
markers or context sensitive syntax checking.

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the
current rule. The mechanism is simply the same as with ordinary
actions, a dollar sign followed by a digit.

yace 6-43

Advanced Topics

4 I

sent : adj noun verb adj noun

look at the sentence ...

adj : THE
{
\ $$ = THE;
) y
| youne U
{
$$ = YOUNG;
}
noun H DOG
{
$$ = DOG;
| CRONE 8
©
if($0 = = YOUNG)

{
(void) printf("what?\n”);

}
$$ = CRONE;

In this case, the digit may be 0 or negative. In the action following
the word CRONE, a check is made that the preceding token shifted
was not YOUNG. Obviously, this is only possible when a great deal is
known about what might precede the symbol noun in the input.
There is also a distinctly unstructured flavor about this. Neverthe-
less, at times this mechanism prevents a great deal of trouble espe-
cially when a few combinations are to be excluded from an otherwise
regular structure.

6-44 PROGRAMMER'’S GUIDE

329

Advanced Topics

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are
integers. yace can also support values of other types including struc-
tures. In addition, yacc keeps track of the types and inserts
appropriate union member names so that the resulting parser is
strictly type checked. yacc value stack is declared to be a union of
the various types of values desired. The user declares the union and
associates union member names with each token and nonterminal
symbol having a value. When the value is referenced through a $$ or
$n construction, yace will automatically insert the appropriate union
name so that no unwanted conversions take place. In addition, type
checking commands such as lint are far more silent.

There are three mechanisms used to provide for this typing. First,
there is a way of defining the union. This must be done by the user
since other subroutines, notably the lexical analyzer, must know
about the union member names. Second, there is a way of associating
a union member name with tokens and nonterminals. Finally, there
is a mechanism for describing the type of those few values where
yace cannot easily determine the type.

To declare the union, the user includes

%union
{

body of union ...

}

in the declaration section. This declares the yace value stack and the
external variables yylval and yyval to have type equal to this union.
If yace was invoked with the —d option, the union declaration is
copied onto the y.tab.h file as YYSTYPE.

Once YYSTYPE is defined, the union member names must be associ-
ated with the various terminal and nonterminal names. The con-
struction

Advanced Topics

<name>

is used to indicate a union member name. If this follows one of the
keywords %token, %left, %right, and %mnonassoc, the union
member name is associated with the tokens listed. Thus, saying

%¥left <optype> '+’ -’

causes any reference to values returned by these two tokens to be
tagged with the union member name optype. Another keyword,
%type, is used to associate union member names with nonterminals.
Thus, one might say

¥type <nodetype> expr stat

to associate the union member nodetype with the nonterminal sym-
bols expr and stat.

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value returned by
this action has no a priori type. Similarly, reference to left context
values (such as $0) leaves yacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by insert-
ing a union member name between < and > immediately after the
first $. The example

4 ™

rule : aaa
{
$<intval>$ = 3;

}
bbb

fun($<intval>2, $<other>0);
shows this usage. This syntax has little to recommend it, but the
situation arises rarely.

6-46 PROGRAMMER'S GUIDE

oee

331

Advanced Topics

A sample specification is given in Example 2. The facilities in this
subsection are not triggered until they are used. In particular, the
use of %type will turn on these mechanisms. When they are used,
there is a fairly strict level of checking. For example, use of $n or $$
to refer to something with no defined type is diagnosed. If these facil-
ities are not triggered, the yace value stack is used to hold ints.

yacc Input Synta)(

This section has a description of the yace input syntax as a yace
specification. Context dependencies, etc. are not considered. Ironi-
cally, although yaecc accepts an LALR(1) grammar, the yace input
specification language is most naturally specified as an LR(2) gram-
mar; the sticky part comes when an identifier is seen in a rule
immediately following an action. If this identifier is followed by a
colon, it is the start of the next rule; otherwise, it is a continuation of
the current rule, which just happens to have an action embedded in
it. As implemented, the lexical analyzer looks ahead after seeing an
identifier and decides whether the next token (skipping blanks, new-
lines, and comments, etc.) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals
(quoted strings) are also returned as IDENTIFIERs but never as part
of C_ IDENTIFIERs.

yacc 6-47

Advanced Topics

i .

/* grammar for the input to yacc */

/* basic entries */

$token IDENTIFIER /* includes identifiers and literals */
$token C_IDENTIFIER /* identifier (but not literal) followed by a : */
$token NUMBER J* 1091+ */

/* reserved words: %type=>TYPE %left=>LEFT,etc. */

$token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
$token MARK /* the %% mark */
$token LCURL /* the %{ mark */
%$token RCURL /* the %} mark */

/* BASCII character literals stand for themselves */

$token spec

%
spec : defs MARK rules tail
H
tail : MARK
{
In this action, eat up the rest of the file
}
| /* empty: the second MARK is optional */
;
defs : /* empty */
| defs def
H
def H START IDENTIFIER
| UNION
{
Copy union definition to output
}
| LCuRL
{
Copy C code to output file
}

NG 2N

(continued on next page)

6-48 PROGRAMMER'’S GUIDE

A ——— [107)

Advanced Topics

;
H

rules

;

H

/* rule section */

~

RCURL
rword tag nlist

/* empty: union tag is optional */
‘<’ IDENTIFIER ’'>’

nmno
nlist nmno
nlist ’,' nmno

IDENTIFIER /* Note: literal illegal with % type */
IDENTIFIER NUMBER /* Note: illegal with % type */

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
|+ rbody prec

/* empty */
rbody IDENTIFIER
rbody act

oy
{

Copy action translate $$ etc.
}
"y

y

(continued on next page)

Advanced Topics

/* empty */

PREC IDENTIFIER
PREC IDENTIFIER act
prec ’;’

6-50

vee

PROGRAMMER’S GUIDE

335

Examples

1. A Simple Example

This example gives the complete yacc applications for a small desk
calculator; the calculator has 26 registers labeled a through z and
accepts arithmetic expressions made up of the operators

+, -, *, /, ¥ (mod operator), & (bitwise and),
| (bitwise or), and assignments.

If an expression at the top level is an assignment, only the assign-
ment is done; otherwise, the expression is printed. As in the C
language, an integer that begins with 0 (zero) is assumed to be octal;
otherwise, it is assumed to be decimal.

As an example of a yaecc specification, the desk calculator does a rea-
sonable job of showing how precedence and ambiguities are used and
demonstrates simple recovery. The major oversimplifications are that
the lexical analyzer is much simpler than for most applications, and
the output is produced immediately line by line. Note the way that
decimal and octal integers are read in by grammar rules. This job is
probably better done by the lexical analyzer.

yacce 6-51

Examples

N

-

3{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

8}

start list w

$token DIGIT LETTER

sleft ' |’

tleft &’

tleft '+ -

tleft 'x* /¢ ‘%’

tleft UMINUS /* supplies precedence for unary minus */

33 /* beginning of rules section */

9ee

list /* empty */
list stat ‘\n’

list error ‘\n’

A~ ——

yyerrok;

stat : expr w

(void) printf("%d\n”, $1);
| LETTER '=' expr

regs[$1l] = $3;

expr s (" expr ')’

\ /Y

(continued on next page)

6-52 PROGRAMMER'’S GUIDE

k3

Examples

| expr '+' expr

$8 = $1 + $3;

expr ‘=’ T
| exp exp:

m $8 = $1 - $3;
’ {

| expr '*' expr

{
$$ = $1 * $3;
}
| expr '/’ expr
{
$$ = $1 / $3;
| exp '%’ expr
{
& $$ = $1 % §3;
@ }
| expr ‘&’ expr
{
$$ = $1 & $3;
}
| expr ‘|’ expr
$$ = $1 | $3;
& ;
' | ‘- expr %prec UMINUS
{
$$ = -$2;
}
| LETTER
{
$$ = reg[$l];
}
| number

number H DIGIT

S TN /

(continued on next page)

yace 6-53

Examples

/

%

{

| number DIGIT

int yylex() /*

/'k
/*
/*
/t

int c¢;

while ((¢ = getchar()) == "' ")

if (islower(c))

{

}

if (isdigit(c))

}

}

return (c);

$$ = $1; base = ($1==0) ? 8 ; 10;

$$ = base * $1 + $2;

’

/* beginning of subroutines section */

lexical analysis routine */

return LETTER for lowercase letter, */

yylval = 0 through 25 */

returns DIGIT for digit, yylval = 0 through 9 */
all other characters are returned immediately */

/*skip blanks*/

/* ¢ is now nonblank */

yylval = ¢c - 'a’;
return (LETTER);

yylval = c - '0';
return (DIGIT);

6-54

PROGRAMMER'’S GUIDE

8¢ee

Examples

2. An Advanced Example

This section gives an example of a grammar using some of the
advanced features. The desk calculator example in Example 1 is
modified to provide a desk calculator that does floating point interval
arithmetic. The calculator understands floating point constants; the
arithmetic operations +, — * /, unary — a through z. Moreover, it
also understands intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued vari-
ables A through Z that may also be used. The usage is similar to that
in Example 1; assignments return no value and print nothing while
expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and
C. Intervals are represented by a structure consisting of the left and
right endpoint values stored as doubles. This structure is given a
type name, INTERVAL, by using typedef. yacc value stack can also
contain floating point scalars and integers (used to index into the
arrays holding the variable values). Notice that the entire strategy
depends strongly on being able to assign structures and unions in C
language. In fact, many of the actions call functions that return
structures as well.

It is also worth noting the use of YYERROR to handle error
conditions —division by an interval containing 0 and an interval
presented in the wrong order. The error recovery mechanism of yace
is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar
also demonstrates an interesting use of syntax to keep track of the
type (for example, scalar or interval) of intermediate expressions.
Note that scalar can be automatically promoted to an interval if the
context demands an interval value. This causes a large number of
conflicts when the grammar is run through yace: 18 shift-reduce
and 26 reduce-reduce. The problem can be seen by looking at the
two input lines.

—J ok

Examples

2.5 + (3.5 - 4.)
and

2.5 + (3.5, 4)

Notice that the 2.5 is to be used in an interval value expression in the
second example, but this fact is not known until the comma is read.
By this time, 2.5 is finished, and the parser cannot go back and

change its mind. More generally, it might be necessary to look ahead u
an arbitrary number of tokens to decide whether to convert a scalar
to an interval. This problem is evaded by having two rules for each
binary interval valued operator —one when the left operand is a scalar
and one when the left operand is an interval. In the second case, the
right operand must be an interval, so the conversion will be applied
automatically. Despite this evasion, there are still many cases where
the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the
specification file; in this way, the conflict will be resolved in the direc-
tion of keeping scalar valued expressions scalar valued until they are
forced to become intervals.

ove

This way of handling multiple types is very instructive. If there were

many kinds of expression types instead of just two, the number of

rules needed would increase dramatically and the conflicts even more
dramatically. Thus, while this example is instructive, it is better u
practice in a more normal programming language environment to

keep the type information as part of the value and not as part of the
grammar.

Finally, a word about the lexical analysis. The only unusual feature
is the treatment of floating point constants. The C language library
routine atof() is used to do the actual conversion from a character
string to a double-precision value. If the lexical analyzer detects an
error, it responds by returning a token that is illegal in the grammar
provoking a syntax error in the parser and thence error recovery.

6-56 PROGRAMMER’S GUIDE

Examples

%{
#include <stdio.h>
#include <ctype.h>

typedef struct interval

{
double lo, hi;

M } INTERVAL;

INTERVAL vmul(), vdiv();
double atof();

double dreg([26];
INTERVAL vreg[26];

%)
$start line

$union

{
int ival;
double dval;
INTERVAL vval;

341

}
$token <ival> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

m stype <dval> dexp /* expression */

$type <vval> vexp /* interval expression */
/* precedence information about the operators */

sleft '+ ‘-’
tleft xc)0
$left UMINUS /* precedence for unary minus */

(1) /* beginning of rules section */

/* empty */

lines
| 1lines line
H

dexp ‘\n’

aJIN J

(continued on next page)

line

yace 6-57

== [}

Examples

-

dexp

(void) printf(”%15.8f\n",$1);
vexp ‘\n’

(void) printf(”(%15.8f, %15.8f)\n”, $1l.lo, $1.hi);

DREG ‘=’ dexp '\n’
dreg[$1] = $3;
VREG ‘=’ vexp '\n’
vreg[$1] = $3;
error ‘\n’

yyerrok;

CONST
DREG

$$ = dreg[$1};

dexp '+’ dexp

$$ = $1 + $3;
dexp ‘-’ dexp

$¢ = 51 - $3;
dexp '*’ dexp

$8 = §1 * $3;

dexp ‘/’ dexp

/

6-58

(continued on next page)

PROGRAMMER’S GUIDE

ove

343

k3

Examples

lI..IIIIlIlIIIIIIllllIlIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
//’>

vexp

$$ = $1 / $3;

‘-’ dexp tprec UMINUS

$8 = -$2;
‘(* dexp’)’
$$ = $2;

dexp

$$.hi = §$.1o = §1;

(' dexp ‘,’ dexp ')’

$$.1o = §2;

$$.hi = $4;

if($$.1o > $$.hi)
{

(void) printf(”interval out of order \n”);
YYERROR;
VREG
$$ = vreg[$1];
vexp ‘+' vexp

$$.hi
$$.1o

$1.hi + $3.hi;
$1.1o + $3.lo;

dexp '+’ vexp

$$.hi = §1 + $3.hi;
$$.1o = $1 + $3.1o;
vexp ‘—' vexp

~

J

yacc

(continued on next page)

$$.hi
$$.1o0

$1.hi - $3.10;
$l.1o - $3.hi;

| dvep ‘-’ vdep

$$.hi = $1 - $3.10;
$$.1o = $1 - $3.hi

| vexp "*’ vexp
$$ = vml($1.lo,$.hi,$3)
| dexp '+ vexp
$$ = vmul($1, $1, $3)
} Véxp /" vexp
if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3)
| dexp '/’ vexp

if(dcheck($3)) YYERROR;
$$ = vdiv($1.1lo, $1.hi, $3)

| = vexp $prec UMINUS

$$.hi = -$2.10;$$.1o = -$2.hi

| (" vexp ')’

%% /* beginning of subroutines section */

define BSZ 50 /* buffer size for floating point number */

N

)

(continued on next page)

PROGRAMMER'S GUIDE

vbe

Examples

-

~

/* lexical analysis */

int yylex()
{
register int c¢;

/* skip over blanks */
while ((c = getchar()) == "' ')

m ;

if (isupper(c))

{
yylval.ival = ¢ - ‘A’
return (VREG);
}
if (islower(c))
{
yylval.ival = ¢ - 'a’,
return(DREG);
0
< }
™
/* gobble up digits. points, exponents */
if (isdigit(e) || ¢ == "'.")
{
char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;
m for(; (cp - buf) < BSZ ; ++cp, ¢ = getchar())
' {
*cp = C;
if (isdigit(c))
continue;
if (c=="'.’
{

if (dot++ || exp)
return (‘.‘); /* will cause syntax error */
continue;

}

if(¢ == ‘e’

{

if (expt+)

(continued on next page)

yace 6-61

Examples

6-62

- D

-)

return (‘e’); /* will cause syntax error */
continue;
}
/* end of number */
break;
}
*cp ="' ';

if (cp - buf >= BS2Z)
(void) printf(“constant too long - truncated\n”);
else
ungetc(c, stdin); /* push back last char read */
yylval.dval = atof (buf);
return (CONST);
}
return (c);
}
INTERVAL
hilo(a, b, ¢, d)
double a, b, c, d;

/* returns the smallest interval containing a, b, ¢, and d */

/* used by *,/ routine */

INTERVAL v;
if (a>b)
{
v.hi = a;
v.lo = b;
}
else
{
v.hi = b;
v.lo = a;
}
if (c > d)
{
if (¢ > v.hi)
v.hi =¢;
if (d < v.lo)
v.lo = d;

(continued on next page)

PROGRAMMER'S GUIDE

e

¥

Examples

4 N

else
}
if (d > v.hi)
v.hi = d;
if (c < v.lo)
v.lo = ¢;
}
return (v);
™)
INTERVAL
vml(a, b, v)
double a, b;
INTERVAL v;
{
return (hilo(a * v.hi, a * v,1lo0, b * v.hi, b * v.lo));
}
dcheck(v) }
INTERVAL v; }
{
'; if (v.hi >= 0, && v.lo <= 0.) ‘
@ {
(void) printf(~”divisor interval contains 0.\n"); ‘
return (1);
}
return (0);
{
INTERVAL
vdiv(a, b, v)
ﬁ double a, b;
INTERVAL v;
{
return (hilo(a / v.hi, a / v,10, b / v.hi, b / v.lo));
}

Examples

This page is intentionally left blank

6-64 PROGRAMMER’S GUIDE

8ve

Chapter 7: File and Record Locking
Page
INEroduction......cc.coocoviiiieeeiierree ettt 7-1
Terminologyccccoceveveeniecinreeieesestestees e ereesessesnsneressans 7—- 3
' File Protection.........ccccovveeieoneeerieeceeinreresrecreeeseernesensessessoncnes 7-5
ﬁ Opening a File for Record Locking............cccocvevvvvmvververenennne 7—-5
Setting a File LocK.......cccovvviveieiiiieeeeeeceeeeeeeeeeeeaae 7- 17
Setting and Removing Record Locksccevvvvueerineeernnneen. 7-10
Getting Lock Information.............ccccervevivmivireecercneirisensessinnens 7-14
Deadlock Handling........c.ccccevvveeevirennniencnreenesece e eecneeeenes 7-17
Selecting Advisory or Mandatory Locking.............ccccevvervennenennen 7-18
o Caveat Emptor —Mandatory Lockingc.cccvvevvverneencnnnnee. 7-19
3 Record Locking and Future Releases of the UNIX System. 7-20

TABLE OF CONTENTS -1

Table of Contents

This page is intentionally left blank

0se

I-2 PROGRAMMER’S GUIDE

] db&

Introduction

Mandatory and advisory file and record locking both are available on
current releases of the UNIX system. The intent of this capability is
to provide a synchronization mechanism for programs accessing the
same stores of data simultaneously. Such processing is characteristic
of many multi-user applications, and the need for a standard method
of dealing with the problem has been recognized by standards advo-
cates like /usr/group, an organization of UNIX system users from
businesses and campuses across the country.

Advisory file and record locking can be used to coordinate self-
synchronizing processes. In mandatory locking, the standard I/0
subroutines and 1/0 system calls enforce the locking protocol. In this
way, at the cost of a little efficiency, mandatory locking double checks
the programs against accessing the data out of sequence.

The remainder of this chapter describes how file and record locking
capabilities can be used. Examples are given for the correct use of
record locking. Misconceptions about the amount of protection that
record locking affords are dispelled. Record locking should be viewed
as a synchronization mechanism, not a security mechanism.

The manual pages for the fentl(2) system call, the lockf(3) library
function, and fentl(5) data structures and commands are referred to
throughout this section. You should read them before continuing.

FILE AND RECORD LOCKING

]
=

Introduction

This page is intentionally left blank

PROGRAMMER’S GUIDE

cse

353

Terminology

Before discussing how record locking should be used, let us first
define a few terms.

Record
A contiguous set of bytes in a file. The UNIX operating sys-
tem does not impose any record structure on files. This may
be done by the programs that use the files.

Cooperating Processes

Processes that work together in some well defined fashion to
accomplish the tasks at hand. Processes that share files must
request permission to access the files before using them. File
access permissions must be carefully set to restrict non-
cooperating processes from accessing those files. The term
process will be used interchangeably with cooperating process
to refer to a task obeying such protocols.

Read (Share) Locks

These are used to gain limited access to sections of files.
When a read lock is in place on a record, other processes may
also read lock that record, in whole or in part. No other pro-
cess, however, may have or obtain a write lock on an overlap-
ping section of the file. If a process holds a read lock it may
assume that no other process will be writing or updating that
record at the same time. This access method also permits
many processes to read the given record. This might be
necessary when searching a file, without the contention
involved if a write or exclusive lock were to be used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files.
When a write lock is in place on a record, no other process
may read or write lock that record, in whole or in part. If a
process holds a write lock it may assume that no other pro-
cess will be reading or writing that record at the same time.

FILE AND RECORD LOCKING 7-3

Terminology

Advisory Locking

A form of record locking that does not interact with the I/0
subsystem (i.e. creat(2), open(2), read(2), and write(2)).
The control over records is accomplished by requiring an
appropriate record lock request before I/O operations. If
appropriate requests are always made by all processes access-
ing the file, then the accessibility of the file will be controlled
by the interaction of these requests. Advisory locking
depends on the individual processes to enforce the record
locking protocol; it does not require an accessibility check at
the time of each I/O request.

Mandatory Locking

A form of record locking that does interact with the I/O sub-
system. Access to locked records is enforced by the creat(2),
open(2), read(2), and write(2) system calls. If a record is
locked, then access of that record by any other process is res-
tricted according to the type of lock on the record. The con-
trol over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations,
but an additional check is made by the system before each
I/0O operation to ensure the record locking protocol is being
honored. Mandatory locking offers an extra synchronization
check, but at the cost of some additional system overhead.

PROGRAMMER'’S GUIDE

355

File Protection

There are access permissions for UNIX system files to control who
may read, write, or execute such a file. These access permissions may
only be set by the owner of the file or by the superuser. The permis-
sions of the directory in which the file resides can also affect the ulti-
mate disposition of a file. Note that if the directory permissions allow
anyone to write in it, then files within the directory may be removed,
even if those files do not have read, write or execute permission for
that user. Any information that is worth protecting, is worth protect-
ing properly. If your application warrants the use of record locking,
make sure that the permissions on your files and directories are set
properly. A record lock, even a mandatory record lock, will only pro-
tect the portions of the files that are locked. Other parts of these files
might be corrupted if proper precautions are not taken.

Only a known set of programs and/or administrators should be able
to read or write a data base. This can be done easily by setting the
set-group-ID bit (see chmod(1)) of the data base accessing programs.
The files can then be accessed by a known set of programs that obey
the record locking protocol. An example of such file protection,
although record locking is not used, is the mail(1) command. In that
command only the particular user and the mail command can read
and write in the unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a
valid open file descriptor. If read locks are to be done, then the file
must be opened with at least read accessibility and likewise for write
locks and write accessibility. For our example we will open our file
for both read and write access:

FILE AND RECORD LOCKING 7-5

dde

File Protection

-

int argc;

{

N

#include <stdio.h>
#include <errno.h>
#include <fentl.h>

/* file descriptor */

char *filename;
main(arge, argv)

char *argv(];

extern void exit(), perror();

/* get data base file name from command line and open the

* file for read and write access.
*/ ,
if (argc < 2) {

(void) fprintf(stderr, "usage:

exit(2);

}

filename = argvil];

fd = open(filename, O RDWR);

if (£fd < 0) {
perror(filename);
exit(2);

%s filename\n”, argv{0]);

/

The file is now open for us to perform both locking and I/0 functions.
We then proceed with the task of setting a lock.

\
|
int fd;
|
|
|
|
|

7-6

PROGRAMMER’S GUIDE

9s¢g

File Protection

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these
methods depend upon how the lock interacts with the rest of the pro-
gram. There are also questions of performance as well as portability.
Two methods will be given here, one using the fentl(2) system call,
the other using the /usr/group standards compatible lockf(3) library
function call.

m Locking an entire file is just a special case of record locking. For both
these methods the concept and the effect of the lock are the same.
The file is locked starting at a byte offset of zero (0) until the end of
the maximum file size. This point extends beyond any real end of the
file so that no lock can be placed on this file beyond this point. To do
this the value of the size of the lock is set to zero. The code using the
fcntl(2) system call is as follows:

357

FILE AND RECORD LOCKING 7-7

File Protection

4)

N)

#include <fcntl.h>
#define MAX TRY 10
int try;

struct flock 1lck;

o

try = 0;
/* set up the record locking structure, the address of which

* is passed to the fcntl system call.

*/

lck.l type = F_WRLCK; /* setting a write lock */

lck.l whence = 0; /* offset 1 _start from beginning of file */
lck.1l_start = OL;

lck.1l_len = OL; /* until the end of the file address space */

/* Attempt locking MAX TRY times before giving up.

*
/
while (fentl(fd, F_SETLK, &lck) < 0) {
if (errno = = EAGAIN || errnmo = = EACCES) {
/* there might be other errors cases in which
* you might try again.
*/
if (++try < MAX TRY) {
(void) sleep(2);
continue;
}
(void) fprintf(stderr,”File busy try again later!\n”);
return;
}
perror(”fcntl”);
exit(2);
}

This portion of code tries to lock a file. This is attempted several
times until one of the following things happens:

7-8

PROGRAMMER'’S GUIDE

86¢e

B m—— 0]

File Protection

e the file is locked
® an error occurs
® it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf(3) function, the code is as
1 follows:

4 N

m #include <unistd.h>

#define MAX TRY 10

int try;

try = 0;

/* make sure the file pointer

+ ig at the beginning of the file.

*/

1lseek(fd, OL, 0);

/* Attempt locking MAX TRY times before giving up. */
while (lockf(fd, F_TLOCK, OL) < 0) {

if (errno = = EAGAIN || errno = = EACCES) {

: /* there might be other errors cases in which
‘ * you might try again. */
| if (++try < MAX TRY) {
1 sleep(2);
| continue;

359

}
(void) fprintf(stderr,”File busy try again later!\n”);
return;
s :

’ perror("lockf”);
exit(2);

N .
It should be noted that the lockf(3) example appears to be simpler,
| but the fentl(2) example exhibits additional flexibility. Using the
| fentl(2) method, it is possible to set the type and start of the lock
m request simply by setting a few structure variables. lockf(3) merely
' sets write (exclusive) locks; an additional system call (Iseek(2)) is

| required to specify the start of the lock.

FILE AND RECORD LOCKING 7-9

File Protection

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the
differing starting point and length of the lock. We will now try to
solve an interesting and real problem. There are two records (these
records may be in the same or different file) that must be updated
simultaneously so that other processes get a consistent view of this
information. (This type of problem comes up, for example, when
updating the interrecord pointers in a doubly linked list.) To do this
you must decide the following questions:

® What do you want to lock?

e For multiple locks, what order do you want to lock and unlock
the records?
What do you do if you succeed in getting all the required locks?
What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if one can-
not obtain all the required locks. It is because of contention for these
records that we have decided to use record locking in the first place.
Different programs might:

® wait a certain amount of time, and try again

® abort the procedure and warn the user

® Jet the process sleep until signaled that the lock has been freed
® some combination of the above

Let us now look at our example of inserting an entry into a doubly
linked list. For the example, we will assume that the record after
which the new record is to be inserted has a read lock on it already.
The lock on this record must be changed or promoted to a write lock
so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted
if no other process is holding a read lock in the same section of the
file. If there are processes with pending write locks that are sleeping
on the same section of the file, the lock promotion succeeds and the
other (sleeping) locks wait. Promoting (or demoting) a write lock to a

7-10 PROGRAMMER’S GUIDE

09¢

361

_

de

File Protection

read lock carries no restrictions. In either case, the lock is merely
reset with the new lock type. Because the /usr/group lockf function
does not have read locks, lock promotion is not applicable to that call.
An example of record locking with lock promotion follows:

-~

struct record {

-

/* data portion of record */

long prev; /* index to previous record in the list */
long next; /* index to next record in the list */

Lock promotion using fentl(2)
when this routine is entered it is assumed that there are read
locks on "here” and "next”.
If write locks on “"here” and "next” are obtained:
Set a write lock on "this”.
Return index to "this” record.
If any write lock is not obtained:
Restore read locks on “here” and "next”.
Remove all other locks.
Return a -1. */

long

set3lock (this, here, next)
long this, here, next;

{

struct flock 1ck;
1ck.l_type = F WRLCK; /* setting a write lock */
lck.l whence = 0; /* offset 1 start from beginning of file */

lck.1l_start = here;
lck.1 len = sizeof(struct record);

/* promote lock on “here” to write lock */

if (fcntl(fd, F_SETLKW, &lck) < 0) {
return (-1);

}

/* lock ”this” with write lock */

lck.l _start = this;

if (fontl(fd, F_SETLKW, &lck) < 0) {
/* Lock on "this” failed;

\

/

(continued on next page)

FILE AND RECORD LOCKING

7-1

File Protection

e A

* demote lock on "here” to read lock.
*/
lck.l type = F_RDICK;
lck.1l start = here;
(void) fentl(fd, F_SETLKW, &lck);
return (-1);
}
/* promote lock on ”next” to write lock */
lck.1l_start = next;
if (fcntl(fd, F_SETLKW, &lck) < 0) {
/* Lock on "next” failed;
* demote lock on "here” to read lock,
*/
lck.1_type = F_RDLCK;
lck.1l start = here;
(void) fentl(fd, F_SETLK, &lck);
/* and remove lock on “this”.
*/
1ck.1l type = F_UNICK;
lck.1l_start = this;
(void) fentl(fd, F_SETLK, &lck);
return (-1); /* cannot set lock, try again or quit */
}
return (this);

- /

The locks on these three records were all set to wait (sleep) if another
process was blocking them from being set.. This was done with the
F_SETLKW command. If the F SETLK command was used instead,
the fentl system calls would fail if blocked. The program would then
have to be changed to handle the blocked condition in each of the
error return sections.

Let us now look at a similar example using the lockf function. Since
there are no read locks, all (write) locks will be referenced generically
as locks.

712 PROGRAMMER’S GUIDE

29e

S JdbF—

File Protection

/

*

*

~ :

*/

long

{

363

) -

/* Lock promotion using lockf(3)

* when this routine is entered it is assumed that there are
* no locks on "here” and "next”.

* If locks are obtained:

* If any lock is not obtained:

#include <unistd.h>

set3lock (this, here, next)
long this, here, next;

~

Set a lock on “this”.
Return index to "this” record.

Remove all other locks.
Return a -1.

/* lock "here” */

(void) lseek(fd, here, 0);

if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
return (-1);

}

/* lock *this” */

(void) lseek(fd, this, 0);

if (lockf(fd, F_IOCK, sizeof(struct record)) < 0) {
/* Lock on ”this” failed.
* Clear lock on "here”.
*/
(void) lseek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record));
return (-1);

}

/* lock "next” */

(void) lseek(fd, next, 0);

if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
/* Lock on "next” failed.
* Clear lock on "here”,
*/
(void) l1seek(fd, here, 0);
(void) lockf(fd, F_ULOCK, sizeof(struct record)});

/* and remove lock on "this”.

*/

)

FILE AND RECORD LOCKING 713

(continued on next page)

File Protection

(void) lseek(fd, this, 0);
(void) lockf(fd, F ULOCK, sizeof(struct record));
return (-1); /* cannot set lock, try again or quit */
} !
return (this);

-~

Locks are removed in the same manner as they are set, only the lock
type is different (F_UNLCK or F_ULOCK). An unlock cannot be
blocked by another process and will only affect locks that were placed
by this process. The unlock only affects the section of the file defined
in the previous example by lck. It is possible to unlock or change the
type of lock on a subsection of a previously set lock. This may cause
an additional lock (two locks for one system call) to be used by the
operating system. This occurs if the subsection is from the middle of
the previously set lock.

Getting Lock Information

One can determine which processes, if any, are blocking a lock from
being set. This can be used as a simple test or as a means to find
locks on a file. A lock is set up as in the previous examples and the
F GETLK command is used in the fentl call. If the lock passed to
fentl would be blocked, the first blocking lock is returned to the pro-
cess through the structure passed to fentl. That is, the lock data
passed to fentl is overwritten by blocking lock information. This
information includes two pieces of data that have not been discussed
yet, 1_pid and 1_sysid, that are only used by F_GETLK. (For sys-
tems that do not support a distributed architecture the value in
1_sysid should be ignored.) These fields uniquely identify the process
holding the lock.

7414 PROGRAMMER'’S GUIDE

9¢€

365

—

d

File Protection

If a lock passed to fentl using the F_GETLK command would not be
blocked by another process’ lock, then the 1_type field is changed to
F_UNLCK and the remaining fields in the structure are unaffected.
Let us use this capability to print all the segments locked by other
processes. Note that if there are several read locks over the same

segment only one of these will be found.

-

struct flock lck;

1ck.1l_whence = 0;
lck.1l start = OL;
lck.1l_len = OL;
do {
lck.l_type = F_WRLCK;
(void) fentl(fd, F_GETLK, &lck);
if (lck.l type != F_UNLCK) {
(void) printf(”$5d 85d %c %8d %8d\n”,
1ck.1l_sysid,
1ck.1l_pid,
(lck.l _type = = F_WRICK) ? ‘W’ : 'R’,
lck.1_start,
1ck.1l len);
/* if this lock goes to the end of the address

*/

if (lck.1_len = = 0)

break;

/* otherwise, look for new lock after the one
* just found.
*/

1ck.l _start += lck.l len;

}
} while (lck.l type != F_UNICK);

-

/* Find and print "write lock” blocked segments of this file. */
(void) printf(”sysid pid type start length\n”);

* gpace, no need to look further, so break out.

\

J

fentl with the F_GETLK command will always return correctly (that
is, it will not sleep or fail) if the values passed to it as arguments are

valid.

FILE AND RECORD LOCKING

7-15

File Protection

The lockf function with the F_TEST command can also be used to
test if there is a process blocking a lock. This function does not, how-
ever, return the information about where the lock actually is and
which process owns the lock. A routine using lockf to test for a lock
on a file follows:

4)

/* find a blocked record. */

/* seek to beginning of file */
(void) lseek(fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*
/
if (lockf(fd, F_TEST, OL) < 0) {
switch (errno) {
case EACCES:
case EAGAIN:
(void) printf(”file is locked by another process\n”);
break;
case EBADF:
/* bad argument passed to lockf */
perror(”lockf”);
break;
default:
(void) printf(”lockf: unknown error <¥d>\n”, errno);
break;
}
}

- /

When a process forks, the child receives a copy of the file descriptors
that the parent has opened. The parent and child also share a com-
mon file pointer for each file. If the parent were to seek to a point in
the file, the child’s file pointer would also be at that location. This
feature has important implications when using record locking. The
current value of the file pointer is used as the reference for the offset
of the beginning of the lock, as described by 1_start, when using a
1_whence value of 1. If both the parent and child process set locks
on the same file, there is a possibility that a lock will be set using a
file pointer that was reset by the other process. This problem

7-16 PROGRAMMER'’S GUIDE

99¢

367

~——————————————] db

File Protection

appears in the lockf(3) function call as well and is a result of the
Jusr/group requirements for record locking. If forking is used in a
record locking program, the child process should close and reopen the
file if either locking method is used. This will result in the creation
of a new and separate file pointer that can be manipulated without
this problem occurring. Another solution is to use the fentl system
call with a 1_whence value of 0 or 2. This makes the locking func-
tion atomic, so that even processes sharing file pointers can be locked
without difficulty.

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the
record locking facility. This deadlock handling provides the same
level of protection granted by the /usr/group standard lockf call.
This deadlock detection is only valid for processes that are locking
files or records on a single system. Deadlocks can only potentially
occur when the system is about to put a record locking system call to
sleep. A search is made for constraint loops of processes that would
cause the system call to sleep indefinitely. If such a situation is
found, the locking system call will fail and set errno to the deadlock
error number. If a process wishes to avoid the use of the systems
deadlock detection it should set its locks using F_GETLK instead of
F_GETLKW.

FILE AND RECORD LOCKING 717

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that
will be made clear in a subsequent section. Whether or not locks are
enforced by the I/O system calls is determined at the time the calls
are made and the state of the permissions on the file (see chmod(2)).
For locks to be under mandatory enforcement, the file must be a reg-
ular file with the set-group-ID bit on and the group execute permis-
sion off. If either condition fails, all record locks are advisory. Man-
datory enforcement can be assured by the following code:

4 I

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

if (stat(filename, &buf) < 0) {
perror (“program”) ;
exit (2);
}
/* get currently set mode */
mode = buf.st mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);
/* set ’‘set group id bit’ in mode */
mode |= S_ISGID;
if (chmod(filename, mode) < 0) {
perror("program”);
exit(2);

7-18 PROGRAMMER'’S GUIDE

369

de

Selecting Advisory or Mandatory Locking

Files that are to be record locked should never have any type of exe-
cute permission set on them. This is because the operating system
does not obey the record locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have
mandatory locking. This can be done with the command:

chmod +1 filename

The 1s(1) command was also changed to show this setting when you
ask for the long listing format:

Is -1 filename
causes the following to be printed:

-rw-—--1--- 1 abc other 1048576 Dec 3 11:44 filename

Caveat Emptor —Mandatory Locking

® Mandatory locking only protects those portions of a file that are
locked. Other portions of the file that are not locked may be
accessed according to normal UNIX system file permissions.

e If multiple reads or writes are necessary for an atomic transac-
tion, the process should explicitly lock all such pieces before any
I/0 begins. Thus advisory enforcement is sufficient for all pro-
grams that perform in this way.

® As stated earlier, arbitrary programs should not have unres-
tricted access permission to files that are important enough to
record lock.

e Advisory locking is more efficient because a record lock check
does not have to be performed for every I/0 request.

FILE AND RECORD LOCKING 7-19

dvisory or Mandatory Locking

Selecting A

Record Locking and Future Releases of the
UNIX System

Provisions have been made for file and record locking in a UNIX sys-
tem environment. In such an environment the system on which the
locking process resides may be remote from the system on which the
file and record locks reside. In this way multiple processes on
different systems may put locks upon a single file that resides on one
of these or yet another system. The record locks for a file reside on
the system that maintains the file. It is also important to note that
deadlock detection/avoidance is only determined by the record locks
being held by and for a single system. Therefore, it is necessary that
a process only hold record locks on a single system at any given time
for the deadlock mechanism to be effective. If a process needs to
maintain locks over several systems, it is suggested that the process
avoid the sleep-when-blocked features of fentl or lockf and that
the process maintain its own deadlock detection. If the process uses
the sleep-when-blocked feature, then a timeout mechanism should
be provided by the process so that it does not hang waiting for a lock
to be cleared.

7-20 PROGRAMMER'S GUIDE

0.

Chapter 8: Interprocess Communication

Page

INtroduction...........ccccerevirreiieirecrer et e e 8-1

MeESBAGESeeeeeeeiieeeiecerereteee ettt sae e e s nens 8- 3

_ Getting Message QUEUES..........cccoceveeeieceerieriecenveensecnessesnane 8- 8
ﬂ Using mMSEEetccoevieiieiiriienenrseecer et et ereeeseeeeees 8- 8
Example Program.........cccccoeevirnreennennnncesennenressenenniosnnes 8-13

Controlling Message QUEUES.........cccoceerrerrreereecieecreecnecensensnsenne 8-17

Using MSECL] ...t ereeeesrcee e 8-17

Example Program.......cccocecerniercerneereenneneeneeseecceseeseessens 8-18

Operations for Messagescccccervureverrenennnrnenreenreenicnsessanens 8-24

. USIing MSGOPcoeovviiiiiiiiiiiiniiiienicicseeiteseesnessesssessnes 8-24
® Sending a Messageccceveeevrererveereecrreneeceeeenereeseenrenenes 8—24
Receiving a Message.........ccccocveeciiieceenieecieeecceeesnesnee e 8-26

Example Program.........ccccoccevvinvennennnnenneeneenesseesessssssens 827

MSESIA ...ttt 8-29
IMSEICV....ooviiiiiiiiitiiiieianitteeertrsesssretseaesssaeesenssasmsseeensaeens 8§-31

ﬁ Semaphoresccocoeeeirrerineeree ettt 8-39
Using Semaphores..........ccccuieriiireciieeireccreirseseeereseesesseesenanes 8—-42

Getting Semaphores.........cccoecoviivciireiireiecieeecee e 8—-46

Using semget...........coocorvriiiiiiiieiiiricrireeeeenreeesnsnneessveees 8§—-46

Example Program..........ccceeveeveenierneeniecnonieesesseessesssnssesssens 8-50

Controlling Semaphores............ccoceevveveeeeneecieecieseecee e, 8-54

Using semetl.........ccoooiiiriiiiiiiceicceerncrrceeeeenee 8-55

Example Programi...........ccccooeevieiienineccenensnnenseecrenresnneenee 8-57

m Operations on Semaphores..........c...cceeeeienienreereesenienierienens 8-68
TABLE OF CONTENTS -1

m SRR e e e SR IR T e L S Bt T e e

Table of Contents

Page
USING SEMIOPcoeereeeerriintinirintenee e seeeseseesessnessens 8—-68
Example Program.........c.cccoconiinniniecinnncencneeneescneeseennes 8-170
Shared MemoOryccocceeirerierieeineeeetetee et eseeseeseeseeans 8-177
Using Shared Memoryc.ccoeevverevereeieesnnrenienereeesseeeseens 8178
Getting Shared Memory Segments...........c.ccoeevveeveevrerirernn. 8-82
Using Shmgetc..ccooeieeiernnniecieceereeeeereeenreseconeens 8-83
Example Program........c.cccoeoiinvininnecctnnnncceneneseeeseeesienaes 887
Controlling Shared Memorycccocccecvmnrimccsrerinmeenvcnncininnas 8-93
Using shmetl............ccoooiiicn 8-93
Example Program.........ccccoriiiincnineninneninceenecseecenenenee 8-94
Operations for Shared Memorycccocevvnuerireenieniinenrennne. 8-103
Using Shmop ... 8-103
Attaching a Shared Memory Segmentc.cccceeeenee. 9-103
Detaching Shared Memory Segments.........cccccecenuennen. 9-104
Example Program.......cccccoeenieevininnnnininecerienssinecnneennes 8-105
ShIMAL......ooic e 8-106
ShdL ... 8106

-2 PROGRAMMER'’S GUIDE

2Lle

373

Introduction

The UNIX system supports three types of Inter-Process Communica-
tion (IPC):

® messages
® semaphores
® shared memory
This chapter describes the system calls for each type of IPC.

Included in the chapter are several example programs that show the
use of the IPC system calls.

Since there are many ways in the C Programming Language to
accomplish the same task or requirement, keep in mind that the
example programs were written for clarity and not for program
efficiency. Usually, system calls are embedded within a larger user-
written program that makes use of a particular function that the calls
provide.

INTERPROCESS COMMUNICATION 841

Introduction

This page is intentionally left blank

8-2 PROGRAMMER 'S GUIDE

i€

375

B — i)

Messages

The message type of IPC allows processes (executing programs) to
communicate through the exchange of data stored in buffers. This
data is transmitted between processes in discrete portions called mes-
sages. Processes using this type of IPC can perform two operations:

® sending

® receiving

Before a message can be sent or received by a process, a process must
have the UNIX operating system generate the necessary software
mechanisms to handle these operations. A process does this by using
the msgget(2) system call. While doing this, the process becomes the
owner/creator of the message facility and specifies the initial opera-
tion permissions for all other processes, including itself. Subse-
quently, the owner/creator can relinquish ownership or change the
operation permissions using the msgetl(2) system call. However, the
creator remains the creator as long as the facility exists. Other
processes with permission can use msgctl() to perform various other
control functions.

Processes which have permission and are attempting to send or
receive a message can suspend execution if they are unsuccessful at
performing their operation. That is, a process which is attempting to
send a message can wait until the process which is to receive the mes-
sage is ready and vice versa. A process which specifies that execution
is to be suspended is performing a "blocking message operation.” A
process which does not allow its execution to be suspended is per-
forming a "nonblocking message operation.”

A process performing a blocking message operation can be suspended
until one of three conditions occurs:

INTERPROCESS COMMUNICATION 8-3

k3

Messages

® It is successful.
® It receives a signal.

® The facility is removed.

System calls make these message capabilities available to processes.

The calling process passes arguments to a system call, and the system

call either successfully or unsuccessfully performs its function. If the

system call is successful, it performs its function and returns applica- V
ble information. Otherwise, a known error code (—1) is returned to

the process, and an external error number variable errno is set
accordingly.

Before a message can be sent or received, a uniquely identified mes-
sage queue and data structure must be created. The unique identifier
created is called the message queue identifier (msqid); it is used to
identify or reference the associated message queue and data struc-
ture.

9.8

The message queue is used to store (header) information about each
message that is being sent or received. This information includes the
following for each message:

® pointer to the next message on queue
® message type
® message text size
® message text address
There is one associated data structure for the uniquely identified mes-

sage queue. This data structure contains the following information
related to the message queue:

® operation permissions data (operation permission structure)

® pointer to first message on the queue

8-4 PROGRAMMER 'S GUIDE

Messages

® pointer to last message on the queue

e current number of bytes on the queue

e number of messages on the queue

® maximum number of bytes on the queue

; process identification (PID) of last message sender
e PID of last message receiver

® last message send time

® last message receive time

® last change time

All include files discussed in this chapter are located in the
noTE | /usr/include or fusr/include/sys directories.

I

The C Programming Language data structure definition for the mes-
sage information contained in the message queue is as follows:

4)
ﬂ jtruct msg

377

struct msg *msg_next; /* ptr to next message on q */
long msqg_type; /* message type */

short msg_ts; /* message text size */

short msg_spot; /* message text map address */

}i

o /

It is located in the /usr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is
as follows:

INTERPROCESS COMMUNICATION 8-5

-
Messages

-

struct msqgid ds
{

struct msg
struct msg
ushort
ushort
ushort
ushort
ushort
time t
time_t
time_t
Yi

-

struct ipc perm

msg_perm;
*msg_first;
*msg_last;
msg_cbytes;
msg_gnum;
msg_gbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

operation permission struct */
ptr to first message on q */
ptr to last message on q */
current # bytes on q */

of messages on q */

max # of bytes on q */

pid of last msgsnd */

pid of last msgrev */

last msgsnd time */

last msgrcv time */

last change time */

~

/

It is located in the #include <sys/msg.h> header file also. Note
that the msg perm member of this structure uses ipc_perm as a
template. The breakout for the operation permissions data structure
is shown in Figure 8-1.

The definition of the ipc_perm data structure is as follows:

//"

struct ipc_perm

{
ushort
ushort
ushort
ushort
ushort
ushort
key t

Yi

/* owner’'s user id */

/* owner’'s group id */

/* creator’'s user id */

/* creator’s group id */

/* access modes */

/* slot usage sequence number */
/* key */

~

Figure 8-1: ipc_perm Data Structure

8-6

PROGRAMMER 'S GUIDE

8.€

379

Messages

It is located in the #include <sys/ipc.h> header file; it is common
for all IPC facilities.

The msgget(2) system call is used to perform two tasks when only
the IPC_CREAT flag is set in the msgflg argument that it receives:

e to get a new msqid and create an associated message queue
and data structure for it

® to return an existing msqid that already has an associated
message queue and data structure

The task performed is determined by the value of the key argument
passed to the msgget() system call. For the first task, if the key is
not already in use for an existing msqid, a new msqid is returned
with an associated message queue and data structure created for the
key. This occurs provided no system tunable parameters would be
exceeded.

There is also a provision for specifying a key of value zero which is
known as the private key (IPC PRIVATE = 0); when specified, a
new msqid is always returned with an associated message queue and
data structure created for it unless a system tunable parameter would
be exceeded. When the ipes command is performed, for security rea-
sons the KEY field for the msqid is all zeros.

For the second task, if a msqid exists for the key specified, the value
of the existing msqid is returned. If you do not desire to have an
existing msqid returned, a control command (IPC EXCL) can be
specified (set) in the msgflg argument passed to the system call. The
details of using this system call are discussed in the "Using msgget”
section of this chapter.

When performing the first task, the process which calls msgget
becomes the owner/creator, and the associated data structure is ini-
tialized accordingly. Remember, ownership can be changed but the
creating process always remains the creator; see the ”Controlling
Message Queues” section in this chapter. The creator of the message
queue also determines the initial operation permissions for it.

INTERPROCESS COMMUNICATION 8-7

dde

Messages

Once a uniquely identified message queue and data structure are
created, message operations [msgop(2)] and message -control
[msgetl()] can be used.

Message operations, as mentioned previously, consist of sending and
receiving messages. System calls are provided for each of these opera-
tions; they are msgsnd() and msgrev(). Refer to the “Operations
for Messages” section in this chapter for details of these system calls.

Message control is done by using the msgctl(2) system call. It per-
mits you to control the message facility in the following ways:

® to determine the associated data structure status for a message
queue identifier (msqid)

® to change operation permissions for a message queue

® to change the size (msg_gbytes) of the message queue for a
particular msqid

® to remove a particular msqid from the UNIX operating system
along with its associated message queue and data structure

Refer to the "Controlling Message Queues” section in this chapter for
details of the msgetl() system call.
Getting Message Queues

This section gives a detailed description of using the msgget(2) sys-
tem call along with an example program illustrating its use.

Using msgget

The synopsis found in the msgget(2) entry in the System V Reference
Manual is as follows:

8-8 PROGRAMMER 'S GUIDE

W

[
o]
o

381

£33

Messages

_
4 N

#include <sys/types.h>
tinclude <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

/

All of these include files are located in the /fusr/include/sys direc-
tory of the UNIX operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget() is a function with two formal arguments
that returns an integer type value, upon successful completion
(msqid). The next two lines:

key t key;
int msgflg;

declare the types of the formal arguments. key t is declared by a
typedef in the types.h header file to be an integer.

The integer returned from this function upon successful completion is
the message queue identifier (msqid) that was discussed earlier.

INTERPROCESS COMMUNICATION 8-9

Messages

As declared, the process calling the msgget() system call must supply
two arguments to be passed to the formal key and msgflg argu-
ments.

A new msgqid with an associated message queue and data structure is
provided if either

® key is equal to IPC_PRIVATE,
or
® key is passed a unique hexadecimal integer, and msgflg
ANDed with IPC_CREAT is TRUE.

The value passed to the msgflg argument must be an integer type
octal value and it will specify the following:

® access permissions

® execution modes

® control fields (commands)
Access permissions determine the read/write attributes and execution
modes determine the user/group/other attributes of the msgflg argu-
ment. They are collectively referred to as “operation permissions.”

Figure 8-2 reflects the numeric values (expressed in octal notation)
for the valid operation permissions codes.

Operation Permissions | Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 8-2: Operation Permissions Codes

8-10 PROGRAMMER 'S GUIDE

28¢e

B —— 7]

Messages

A specific octal value is derived by adding the octal values for the
operation permissions desired. That is, if read by user and read/write
by others is desired, the code value would be 00406 (00400 plus
00006). There are constants located in the msg.h header file which
can be used for the user (OWNER).

Control commands are predefined constants (represented by all
uppercase letters). Figure 8-3 contains the names of the constants
which apply to the msgget() system call along with their values.
They are also referred to as flags and are defined in the ipe.h header
file.

Control Command I Value

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 8-3: Control Commands (Flags)

The value for msgflg is therefore a combination of operation permis-
sions and control commands. After determining the value for the
operation permissions as previously described, the desired flag(s) can
be specified. This is accomplished by bitwise ORing (|) them with the
operation permissions; the bit positions and values for the control
commands in relation to those of the operation permissions make this
possible. It is illustrated as follows:

Octal Value Binary Value

IPC_CREAT 01000 0 000 001 000 000 000
| Read by User 00400 0 000 000 100 000 000

msgflg 01400 0 000 001 100 000 000

The msgflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

INTERPROCESS COMMUNICATION

; m S e T e SRR S R r e s R e TR L e i

msqid = msgget (key, (IPC_CREAT | 0400));

msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the msgget(2) page in the System V Reference
Manual, success or failure of this system call depends upon the argu-
ment values for key and msgflg or system tunable parameters. The
system call will attempt to return a new msqid if one of the following
conditions is true:

® Key is equal to IPC_PRIVATE (0)

® Key does not already have a msqid associated with it, and
(msgflg & IPC_CREAT) is "true” (not zero).

The key argument can be set to IPC_PRIVATE in the following
ways:

msqid = msgget (IPC_PRIVATE, msgflg);
or
msgid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it
satisfies the first condition specified. Exceeding the MSGMNI system
tunable parameter always causes a failure. The MSGMNI system
tunable parameter determines the maximum number of unique mes-
sage queues (msqid’s) in the UNIX operating system.

The second condition is satisfied if the value for key is not already
associated with a msqid and the bitwise ANDing of msgflg and
IPC_CREAT is "true” (not zero). This means that the key is unique
(not in use) within the UNIX operating system for this facility type
and that the IPC_CREAT flag is set (msgflg | IPC_CREAT). The
bitwise ANDing (&), which is the logical way of testing if a flag is set,
is illustrated as follows:

8-12 PROGRAMMER 'S GUIDE

8¢

Messages

msgflg = x1xxx (x = immaterial)
& IPC_CREAT = 01000
result = 01000 (not zero)

Since the result is not zero, the flag is set or "true.”

IPC_EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a
msqid exists for the specified key provided. This is necessary to
prevent the process from thinking that it has received a new (unique)
msqid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a new msqid is returned if the system call is
successful.

Refer to the msgget(2) page in the System V Reference Manual for
specific associated data structure initialization for successful comple-
tion. The specific failure conditions with error names are contained
there also.

Example Program

The example program in this section (Figure 8-4) is a menu driven
program which allows all possible combinations of using the
msgget(2) system call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 4-8) by including the required header files
as specified by the msgget(2) entry in the System V Reference
Manual. Note that the errno.h header file is included as opposed to
declaring errno as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-
explanatory. These names make the program more readable, and it is
perfectly legal since they are local to the program. The variables

INTERPROCESS COMMUNICATION 8-13

Messages

declared for this program and their purposes are as follows:
o key—used to pass the value for the desired key
e opperm—used to store the desired operation permissions
e flags—used to store the desired control commands (flags)

e opperm_flags —used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the msgflg argument

e msqid —used for returning the message queue identification
number for a successful system call or the error code (~1) for
an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command com-
binations (flags) which are selected from a menu (lines 15-32). All
possible combinations are allowed even though they might not be
viable. This allows observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the
opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored at the address
of the msqid variable (line 53).

Since the msqid variable now contains a valid message queue
identifier or the error code (—1), it is tested to see if an error
occurred (line 55). If msqid equals —1, a message indicates that an
error resulted, and the external errno variable is displayed (lines 57,
58).

If no error occurred, the returned message queue identifier is
displayed (line 62).

The example program for the msgget(2) system call follows. It is
suggested that the source program file be named msgget.c and that
the executable file be named msgget.

8-14 PROGRAMMER 'S GUIDE

98€

Messages

Figure 8-4: msgget() System Call Example

1 /*This is a program to illustrate
2 **the message get, msgget(),
3 **gystem call capabilities.*/
4 #include <stdio.h>
5 #include <sys/types.h>
m 6 #include <sys/ipc.h>
7 #include <sys/msg.h>
8 #include <errno.h>
9 /*Start of main C language program*/
10 main()
11 {
12 key t key; /*declare as long integer*/
13 int opperm, flags;
14 int msqid, opperm flags;
15 /*Enter the desired key*/
g 16 printf(”Enter the desired key in hex = ”);
[} 17 scanf (”¥x”, &key);
18 /*Enter the desired octal operation
19 permissions.*/
20 printf(”\nEnter the operation\n”);
21 printf(”permissions in octal = ”);
22 scanf (”"%0”, &opperm);
m 23 /*Set the desired flags.*/
24 printf(”\nEnter corresponding number to\n”);
25 printf(”set the desired flags:\n");
26 printf(“No flags = 0\n");
27 printf(”IPC_CREAT = 1\n");
28 printf(“IPC_EXCL = 2\n");
29 printf(“IPC_CREAT and IPC_EXCL = 3\n");
30 printf(” Flags =");
31 /*Get the flag(s) to be set.*/
32 scanf (”"%d”, &flags);
33 /*Check the values.*/
34 printf (”\nkey =0x%x, opperm = 0%, flags = 0%o\n”, j

(continued on next page)

INTERPROCESS COMMUNICATION 8-15

Messages

-

35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53

54
55
56
57
58
59

60
61
62
63
64

key, opperm, flags);

/*Incorporate the control fields (flags) with
the operation permissions*/

switch (flags)

{

case 0: /*No flags are to be set.*/
opperm_flags = (opperm | 0);
break;
case 1: /*Set the IPC_CREAT flag.*/
opperm flags = (opperm | IPC_CREAT);
break;
case 2: /*Set the IPC_EXCL flag.*x/
opperm flags = (opperm | IPC_EXCL);
break;
case 3: /*Set the IPC CREAT and IPC EXCL flags.*/

opperm flags = (opperm | IPC_CREAT | IPC EXCL);
}

/*Call the msgget system call.*/
msqid = msgget (key, opperm flags);

/*Perform the following if the call is unsuccessful.*/
if(msqid = = -1)
{
printf (“\nThe msgget system call failed!\n");
printf ("The error number = %d\n”, errno);
}

/*Return the msqid upon successful completion.*/
else

printf (”\nThe msgid = %d\n”, msqid);
exit(0);

8-16

PROGRAMMER 'S GUIDE

88¢

Messages

Controliing Message Queues

This section gives a detailed description of using the msgctl system
call along with an example program which allows all of its capabilities
to be exercised.

Using msgctl

m The synopsis found in the msgetl(2) entry in the System V Reference
Manual is as follows:

~ 2

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;

\struct msqid ds *buf;)

The msgetl() system call requires three arguments to be passed to it,
and it returns an integer value.

389

Upon successful completion, a zero value is returned; and when
ﬂ unsuccessful, it returns a —1.

The msqid variable must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msgget()
system call.

The emd argument can be replaced by one of the following control
commands (flags):

IPC _STAT return the status information contained in the
associated data structure for the specified msqid,
and place it in the data structure pointed to by the

ﬁ * buf pointer in the user memory area.

INTERPROCESS COMMUNICATION 8-17

— m L T R R R T B N S e

IPC SET for the specified msqid, set the effective user and
group identification, operation permissions, and the
number of bytes for the message queue.

IPC_RMID remove the specified msqid along with its associ-
ated message queue and data structure.

A process must have an effective wuser identification of
OWNER/CREATOR or super-user to perform an IPC SET or
IPC_RMID control command. Read permission is required to perform
the IPC_STAT control command.

The details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in
this program, read the "Using msgget” section of this chapter; it
goes into more detail than what would be practical to do for every
system call.

Example Program

The example program in this section (Figure 8-5) is a menu driven
program which allows all possible combinations of using the
msgctl(2) system call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out. This program begins (lines 5-9) by
including the required header files as specified by the msgetl(2) entry
in the System V Reference Manual. Note in this program that errno
is declared as an external variable, and therefore, the errno.h header
file does not have to be included.

Variable and structure names have been chosen to be as close as pos-
sible to those in the synopsis for the system call. Their declarations
are self-explanatory. These names make the program more readable,
and it is perfectly legal since they are local to the program. The vari-
ables declared for this program and their purpose are as follows:

8-18 PROGRAMMER'S GUIDE

06€

391

uid

gid
mode
bytes
rtrn
msqid

command

choice

msqid_ds

* buf

Messages

used to store the IPC_SET value for the effective
user identification

used to store the IPC_SET value for the effective
group identification

used to store the IPC_SET value for the operation
permissions

used to store the IPC_SET value for the number of
bytes in the message queue (msg_gbytes)

used to store the return integer value from the sys-
tem call

used to store and pass the message queue identifier
to the system call

used to store the code for the desired control com-
mand so that subsequent processing can be per-
formed on it

used to determine which member is to be changed
for the IPC_SET control command

used to receive the specified message queue
identifier’s data structure when an IPC_STAT con-
trol command is performed

a pointer passed to the system call which locates
the data structure in the user memory area where
the IPC_STAT control command is to place its
return values or where the IPC_SET command
gets the values to set

Note that the msqid_ds data structure in this program (line 16) uses
the data structure located in the msg.h header file of the same name
as a template for its declaration. This is a perfect example of the
advantage of local variables.

INTERPROCESS COMMUNICATION 8-19

The next important thing to observe is that although the = buf
pointer is declared to be a pointer to a data structure of the
msqid_ds type, it must also be initialized to contain the address of
the user memory area data structure (line 17). Now that all of the
required declarations have been explained for this program, this is
how it works.

First, the program prompts for a valid message queue identifier which
is stored at the address of the msqid variable (lines 19, 20). This is
required for every msgetl system call.

Then the code for the desired control command must be entered
(lines 21-27), and it is stored at the address of the command variable.
The code is tested to determine the control command for subsequent
processing.

If the IPC_STAT control command is selected (code 1), the system
call is performed (lines 37, 38) and the status information returned is
printed out (lines 39-46); only the members that can be set are
printed out in this program. Note that if the system call is unsuc-
cessful (line 106), the status information of the last successful call is
printed out. In addition, an error message is displayed and the errno
variable is printed out (lines 108, 109). If the system call is success-
ful, a message indicates this along with the message queue identifier
used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first thing
done is to get the current status information for the message queue
identifier specified (lines 50-52). This is necessary because this exam-
ple program provides for changing only one member at a time, and
the system call changes all of them. Also, if an invalid value hap-
pened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a
code corresponding to the member to be changed (lines 53-59). This
code is stored at the address of the choice variable (line 60). Now,
depending upon the member picked, the program prompts for the
new value (lines 66-95). The value is placed at the address of the
appropriate member in the user memory area data structure, and the

8-20 PROGRAMMER 'S GUIDE

26€

] dk

Messages

system call is made (lines 96-98). Depending upon success or failure,
the program returns the same messages as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system

call is performed (lines 100-103), and the msqid along with its associ-

ated message queue and data structure are removed from the UNIX

operating system. Note that the * buf pointer is not required as an

argument to perform this control command, and its value can be zero

, or NULL. Depending upon the success or failure, the program
A returns the same messages as for the other control commands.

The example program for the msgcetl() system call follows. It is sug-
gested that the source program file be named msgetl.c and that the
executable file be named msgetl.

Figusre 8-5: msgcetl() System Call Example

4 N

1 /*This is a program to illustrate
2 **the message control, msgctl(),
3 *+*gystem call capabilities.

4 */

393

5 /*Include necessary header files.*/
6 #include <stdio.h>

7 #include <sys/types.h>

8 #include <sys/ipc.h>

9 #include <sys/msg.h>

10 /*Start of main C language program*/

11 main()

12 {

13 extern int errno;

14 int uid, gid, mode, bytes;

15 int rtrn, msqid, command, choice;
16 struct msqgid ds msqid ds, *buf;
17 buf = &msqid ds;

18 /*Get the msqid, and command.*/
19 printf(”Enter the msqid = ”);

20 scanf ("%d”, &msgid);

& TN J

(continued on next page)

INTERPROCESS COMMUNICATION 8-21

Messages

~

-

21 printf(”\nEnter the number for\n”);

22 printf(”the desired command:\n”);

23 printf(”IPC_STAT = 1\n");

24 printf(”IPC_SET = 2\n");

25 printf(“IPC_ RMID = 3\n");

26 printf(”Entry = ");

27 scanf (“%d”, &command);

28 /*Check the values.*/

29 printf (”\nmsqid =%d, command = %d\n”,

30 msgid, command);

31 switch (command)

32 {

33 case 1: /*Use msgctl() to duplicate

34 the data structure for

35 msqid in the msqid_ds area pointed
36 to by buf and then print it out.*/
37 rtrn = msgctl(msqid, IPC_STAT,

38 buf);

39 printf (”\nThe USER ID = %d\n”,

40 buf->msg_perm.uid);

41 printf ("The GROUP ID = %d\n",

42 buf->msg_perm.gid);

43 printf (”The operation permissions = 0%o\n”,
44 buf->msg_perm.mode) ;

45 printf ("The msg_gbytes = %d\n”,

46 buf->msg_gbytes);

47 break;

48 case 2: /*Select and change the desired

49 member (s) of the data structure.*/
50 /*Get the original data for this msqid

51 data structure first.*/

52 rtrn = msgetl(msqid, IPC_STAT, buf);

53 printf(”\nEnter the number for the\n”);

54 printf(“member to be changed:\n”);

55 printf("msg_perm.uid = 1\n”);

56 printf("msg_perm.gid = 2\n");

57 printf("msg_perm.mode = 3\n");

58 printf("msg_gbytes = 4\n");

59 printf(”Entry =");

N J

(continued on next page)

8-22 PROGRAMMER 'S GUIDE

v6e

395

de

Messages

/

-

~

scanf (”%d"”, &choice);
/*Only one choice is allowed per
pass as an illegal entry will
cause repetitive failures until
msqgid _ds is updated with
IPC_STAT.*/

switch(choice}{
case 1:
printf(”\nEnter USER ID = ");
scanf (”%d”, &uid);
buf->msg_perm.uid = uid;
printf(”\nUSER ID = %d\n”,
buf->msg_perm.uid);
break;
case 2:
printf(”\nEnter GROUP ID = *);
scanf(”%d”, &gid);
buf->msg_perm.gid = gid;
printf(”\nGROUP ID = %d\n”,
buf->msg_perm.gid);
break;
case 3:
printf(”\nEnter MODE = ”);
scanf(“%0”, amode);
buf->msg_perm.mode = mode;
printf(”\nMODE = 0%o\n”,
buf->msg_perm.mode) ;
break;

case 4:
printf(”\nEnter msq bytes = ");
scanf(”%d”, &bytes);
buf->msg_gbytes = bytes;
printf(”\nmsg_gbytes = %d\n",

buf->msg_gbytes);

break;

}

/*Do the change.*/
rtrn = msgctl(msqid, IPC_ SET,
buf);

/

(continued on next page)

INTERPROCESS COMMUNICATION 8-23

—] dk

4 N

99 break;

100 case 3: /*Remove the msqid along with its

101 associated message queue

102 and data structure.*/

103 rtrn. = msgctl(msqid, IPC_RMID, NULL);

104 }

105 /*Perform the following if the call is unsuccessful.*/
106 if(rtrn = = -1)

107 {

108 printf (”\nThe msgctl system call failed!\n”);

109 printf (“The error number = %d\n”, errno);

110 }

111 /*Return the msqid upon successful completion.*/

112 else

113 printf (”\nMsgctl was successful for msqid = %d\n”,
114 msqid);

115 exit (0);

116 }

j

Operations for Messages

This section gives a detailed description of using the msgsnd(2) and
msgrev(2) system calls, along with an example program which allows
all of their capabilities to be exercised.

Using msgop

The synopsis found in the msgop(2) entry in the System V Reference
Manual is as follows:

8-24 PROGRAMMER 'S GUIDE

96€

397

——————————————] dbk

Messages

4 N

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msqgp;

int msgsz;

long msgtyp;

int msgflg;

NG J

Sending a Message

The msgsnd system call requires four arguments to be passed to it.
It returns an integer value.

Upon successful completion, a zero value is returned; and when
unsuccessful, msgsnd() returns a —1.

The msqid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msgget()
system call.

The msgp argument is a pointer to a structure in the user memory
area that contains the type of the message and the message to be
sent.

The msgsz argument specifies the length of the character array in
the data structure pointed to by the msgp argument. This is the
length of the message. The maximum size of this array is deter-
mined by the MSGMAX system tunable parameter.

INTERPROCESS COMMUNICATION 8-25

Messages

The msg _qgbytes data structure member can be lowered from
MSGMNB by using the msgetl() IPC SET control command, but
only the super-user can raise it afterwards.

The msgflg argument allows the "blocking message operation” to be
performed if the IPC_NOWAIT flag is not set (msgflg &
IPC_NOWAIT = 0); this would occur if the total number of bytes
allowed on the specified message queue are in use (msg_gbytes or
MSGMNB), or the total system-wide number of messages on all
queues is equal to the system imposed limit (MSGTQL). If the
IPC_NOWAIT flag is set, the system call will fail and return a —1.

Further details of this system call are discussed in the example pro-
gram for it. If you have problems understanding the logic manipula-
tions in this program, read the ”Using msgget” section of this
chapter; it goes into more detail than what would be practical to do
for every system call.

Receiving Messages

The msgrev() system call requires five arguments to be passed to it,
and it returns an integer value.

Upon successful completion, a value equal to the number of bytes
received is returned and when unsuccessful it returns a —1.

The msqid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the msgget()
system call.

The msgp argument is a pointer to a structure in the user memory
area that will receive the message type and the message text.

The msgsz argument specifies the length of the message to be
received. If its value is less than the message in the array, an error
can be returned if desired; see the msgflg argument.

The msgtyp argument is used to pick the first message on the mes-
sage queue of the particular type specified. If it is equal to zero, the
first message on the queue is received; if it is greater than zero, the
first message of the same type is received; if it is less than zero, the

8-26 PROGRAMMER 'S GUIDE

86¢

399

A ———)

Messages

lowest type that is less than or equal to its absolute value is received.

The msgflg argument allows the ”blocking message operation” to be
performed if the IPC NOWAIT flag is not set (msgflg &
IPC_ NOWAIT = 0); this would occur if there is not a message on the
message queue of the desired type (msgtyp) to be received. If the
IPC_NOWAIT flag is set, the system call will fail immediately when
there is not a message of the desired type on the queue. Msgflg can
also specify that the system call fail if the message is longer than the
size to be received; this is done by not setting the MSG_NOERROR
flag in the msgflg argument (msgflg & MSG_NOERROR = 0). If
the MSG_ NOERROR flag is set, the message is truncated to the
length specified by the msgsz argument of msgrev().

Further details of this system call are discussed in the example pro-
gram for it. If you have problems understanding the logic manipula-
tions in this program, read the ”“Using msgget” section of this
chapter; it goes into more detail than what would be practical to do
for every system call.

Example Program

The example program in this section (Figure 8-6) is a menu driven
program which allows all possible combinations of using the
msgsnd() and msgrev(2) system calls to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files
as specified by the msgop(2) entry in the System V Reference
Manual. Note that in this program errno is declared as an external
variable, and therefore, the errno.h header file does not have to be
included.

INTERPROCESS COMMUNICATION 8-27

Messages

Variable and structure names have been chosen to be as close as pos-
sible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly
legal since they are local to the program. The variables declared for
this program and their purposes are as follows:

sndbuf

rcvbuf

* msgp

flag

8-28

used as a buffer to contain a message to be sent
(line 13); it uses the msgbufl data structure as a
template (lines 10-13) The msgbufl structure
(lines 10-13) is almost an exact duplicate of the
msgbuf structure contained in the msg.h header
file. The only difference is that the character array
for msgbufl contains the maximum message size
(MSGMAX) for the Computer where in msgbuf it
is set to one (1) to satisfy the compiler. For this
reason msgbuf cannot be used directly as a tem-
plate for the user-written program. It is there so
you can determine its members.

used as a buffer to receive a message (line 13); it
uses the msgbufl data structure as a template
(lines 10-13)

used as a pointer (line 13) to both the sndbuf and
revbuf buffers

used as a counter for inputting characters from the
keyboard, storing them in the array, and keeping
track of the message length for the msgsnd() sys-
tem call; it is also used as a counter to output the
received message for the msgrev() system call

used to receive the input character from the
getchar() function (line 50)

used to store the code of IPC_NOWAIT for the
msgsnd() system call (line 61)

PROGRAMMER 'S GUIDE

oot

;__EB

Messages

flags used to store the code of the IPC_NOWAIT or
MSG_NOERROR flags for the msgrev() system
call (line 117)

choice used to store the code for sending or receiving (line
30)
rtrn used to store the return values from all system
calls
ﬁ msqid used to store and pass the desired message queue

identifier for both system calls

msgsz used to store and pass the size of the message to
be sent or received

msgflg used to pass the value of flag for sending or the
value of flags for receiving

msgtyp used for specifying the message type for sending,
or used to pick a message type for receiving.

401

Note that a msqid_ds data structure is set up in the program (line

21) with a pointer which is initialized to point to it (line 22); this will

allow the data structure members that are affected by message opera-

tions to be observed. They are observed by using the msgetl()

(IPC_STAT) system call to get them for the program to print them
m out (lines 80-92 and lines 161-168).

The first thing the program prompts for is whether to send or receive
a message. A corresponding code must be entered for the desired
operation, and it is stored at the address of the choice variable (lines
23-30). Depending upon the code, the program proceeds as in the fol-
lowing msgsnd or msgrev sections.
|

msgsnd

When the code is to send a message, the msgp pointer is initialized

(line 33) to the address of the send data structure, sndbuf. Next, a
ﬁ message type must be entered for the message; it is stored at the

address of the variable msgtyp (line 42), and then (line 43) it is put

INTERPROCESS COMMUNICATION 8-29

Messages

into the mtype member of the data structure pointed to by msgp.

The program now prompts for a message to be entered from the key-
board and enters a loop of getting and storing into the mtext array of
the data structure (lines 48-51). This will continue until an end of file
is recognized which for the getchar() function is a control-d (CTRL-
D) immediately following a carriage return (<CR>). When this hap-
pens, the size of the message is determined by adding one to the i
counter (lines 52, 53) as it stored the message beginning in the zero
array element of mtext. Keep in mind that the message also contains
the terminating characters, and the message will therefore appear to
be three characters short of msgsz.

The message is immediately echoed from the mtext array of the
sndbuf data structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code
of a 1 be entered for yes or anything else for no (lines 57-65). It is
stored at the address of the flag variable. If a 1 is entered,
IPC_NOWAIT is logically ORed with msgflg; otherwise, msgflg is set

to zero.

The msgsnd() system call is performed (line 69). If it is unsuccess-
ful, a failure message is displayed along with the error number (lines
70-72). If it is successful, the returned value is printed which should
be zero (lines 73-76).

Every time a message is successfully sent, there are three members of
the associated data structure which are updated. They are described

as follows:

msg_qnum

msg_lspid

8-30

represents the total number of messages on the
message queue; it is incremented by one.

contains the Process Identification (PID) number
of the last process sending a message; it is set
accordingly.

PROGRAMMER 'S GUIDE

[4v4

403

. ———————]db

Messages

msg stime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) of the last message
sent; it is set accordingly.

These members are displayed after every successful message send
operation (lines 79-92).

msgrcv

If the code specifies that a message is to be received, the program
continues execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line
99).

Next, the message queue identifier of the message queue from which
to receive the message is requested, and it is stored at the address of
msqid (lines 100-103).

The message type is requested, and it is stored at the address of
msgtyp (lines 104-107).

The code for the desired combination of control flags is requested
next, and it is stored at the address of flags (lines 108-117). Depend-
ing upon the selected combination, msgflg is set accordingly (lines
118-133).

Finally, the number of bytes to be received is requested, and it is
stored at the address of msgsz (lines 134-137).

The msgrev() system call is performed (line 144). If it is unsuccess-
ful, a message and error number is displayed (lines 145-148). If suc-
cessful, a message indicates so, and the number of bytes returned is
displayed followed by the received message (lines 153-159).

When a message is successfully received, there are three members of
the associated data structure which are updated; they are described
as follows:

INTERPROCESS COMMUNICATION 8-31

—] dk |

Messages

msg gnum contains the number of messages on the message
queue; it is decremented by one.

msg _lrpid contains the process identification (PID) of the last
process receiving a message; it is set accordingly.

msg_rtime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) that the last process
received a message; it is set accordingly.

The example program for the msgop(2) system calls follows. It is
suggested that the program be put into a source file called msgop.c
and then into an executable file called msgop.

Figure 8-6: msgop(2) System Call Example

4 N

1 /*This is a program to illustrate
2 **the message operations, msgop(2),
3 **gystem call capabilities.

4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>

7 #include <sys/types.h>

8 #include <sys/ipc.h>

9 #include <sys/msq.h>

10 struct msgbufl {

11 long mtype;

12 char mtext[8192];
13 } sndbuf, rcvbuf, *msgp;

14 /*Start of main C language program*/
15 main()

16 {

17 extern int errno;

18 int i, ¢, flag, flags, choice;
19 int rtrn, msqid, msgsz, msgflg;
20 long mtype, msgtyp;

N)

(continued on next page)

8-32 PROGRAMMER 'S GUIDE

14024

A —— 7]

Messages

4)

21 struct msqgid ds msqgid ds, *buf;

22 buf = &msqid ds;
23 /*Select the desired operation.*/
24 printf(”Enter the corresponding\n”);
25 printf(”code to send or\n");
26 printf(”receive a message:\n”);
27 printf(”Send = 1\n");

m 28 printf (”Receive = 2\n");
29 printf(”Entry = ");
30 scanf(”%d”, &choice);
31 if(choice = = 1) /*Send a message.*/
32 {
33 msgp = &sndbuf; /*Point to user send structure.*/
34 printf(”\nEnter the msqid of\n”);
35 printf(”the message queue to\n”);
36 printf(”handle the message = ");

8 37 scanf(”%d”, smsqid);

<
38 /*Set the message type.*/
39 printf(”\nEnter a positive integer\n”);
40 printf(“message type (long) for the\n”);
41 printf("message = ");
42 scanf (”%d”, &amsgtyp);
43 msgp->mtype = msgtyp;

ﬁ 44 /*Enter the message to send.*/
45 printf(”\nEnter a message: \n”});
46 /*A control-d (°d) terminates as
47 EOF.*/
48 /*Get each character of the message
49 and put it in the mtext array.*/
50 for(i = 0; ((c = getchar()) != EOF); i++)
51 sndbuf.mtext{i) = c;
52 /*Determine the message size.*/
53 msgsz = i + 1;

~n Y

(continued on next page)

INTERPROCESS COMMUNICATION 8-33

Messages

~

-

54 /*Echo the message to send.*/
55 for(i = 0; i < msgsz; i++)
56 putchar (sndbuf.mtext([1]);
57 /*Set the IPC_NOWAIT flag if
58 desired.*/
59 printf(”\nEnter a 1 if you want the\n”);
60 printf(“the IPC_NOWAIT flag set: *);
61 scanf (”“%d”, &flag);
‘ 62 if(flag = = 1)
63 msgflg |= IPC_NOWAIT;
64 else
| 65 msgflg = 0;
66 /*Check the msgflg.*/
67 printf(”\nmsgflg = 0%0\n”, msgflg);
68 /*Send the message.*/
69 rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
70 if(rtrn = = ~1)
71 printf(”\nMsgsnd failed. Error = %d\n”,
72 errno);
73 else {
74 /*Print the value of test which
75 should be zero for successful.*/
76 printf(”\nvalue returned = %d\n”, rtrn);
17 /*Print the size of the message
78 sent.*/
79 printf("\nMsgsz = %d\n”, msgsz);
80 /*Check the data structure update.*/
81 msgctl(msqid, IPC_STAT, buf);
82 /*Print out the affected members.*/
83 /*Print the incremented number of
84 messages on the queue.*/
85 printf(”\nThe msg_gnum = %d\n”,
86 buf->msg_gnum);
87 /*Print the process id of the last sender.*/
88 printf(“The msg lspid = $d\n”,

- /

(continued on next page)

8-34 PROGRAMMER 'S GUIDE

90y

407

k3

Messages

—
4

-

buf->msg lspid);
/*Print the last send time.*/
printf(”The msg stime = $d\n”,
buf->msg_stime);

}
}
if(choice = = 2) /*Receive a message.*/
{

/*Initialize the message pointer
to the receive buffer.*/
msgp = &rcvbuf;

/*Specify the message queue which contains
the desired message.*/

printf(”\nEnter the msqid = ");

scanf (“%d”, &msqgid);

/*Specify the specific message on the queue
by using its type.*/

printf(”\nEnter the msgtyp = ”);

scanf(”%d”, &msgtyp);

/*Configure the control flags for the
desired actions.*/

printf(”\nEnter the corresponding code\n”);

printf(”to select the desired flags: \n”);

printf(”No flags = 0\n");
printf("MSG_NOERROR = 1\n");
printf(”IPC_NOWAIT = 2\n");
printf(”MSG_NOERROR and IPC NOWAIT = 3\n");
printf(” Flags = *);

scanf (”"%d”, &flags);

switch(flags) {

/*Set msgflg by ORing it with the appropriate

flags (constants).*/
case 0:
msgflg = 0;
break;
case 1:
msgflg |= MSG_NOERROR;

~

/

(continued on next page)

INTERPROCESS COMMUNICATION

8-35

Messages

N

-

126 break;
127 case 2:
128 msgflg |= IPC_NOWAIT;
129 break;
130 case 3:
131 msgflg |= MSG_NOERROR | IPC_NOWAIT;
132 break;
133 }
134 /*Specify the number of bytes to receive.*/ U
135 printf(”\nEnter the number of bytes\n”);
136 printf(”to receive (msgsz) = ”);
137 scanf (”%d”, &msgsz);
138 /*Check the values for the arguments.*/
139 printf(”\nmsqid =%d\n”, msqid);
140 printf("\nmsgtyp = %d\n”, msgtyp);
141 printf(”\nmsgsz = %d\n”, msgsz);
142 printf(”\nmsgflg = 0%o\n”, msgflg);
5
143 /*Call msgrcv to receive the message.*/ ©
144 rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);
145 if(rtrn = = -1) {
146 printf(“\nMsgrev failed. ~);
147 printf(“Error = %d\n”, errno);
148 }
149 else {
150 printf (”\nMsgctl was successful\n”);
151 printf(“for msqid = 3d\n”, u
152 msqid);
153 /*Print the number of bytes received,
154 it is equal to the return
155 value.*/
156 printf(”Bytes received = %d\n”, rtrn);
157 /*Print the received message.*/
158 for(i = 0; i<=rtrn; i++)
159 putchar (revbuf.mtext[1i]);
160 }
161 /*Check the associated data structure.*/

o D2

(continued on next page)

8-36 PROGRAMMER 'S GUIDE

409

de

Messages

162
163
164
165
166
167
168

170

msgctl(msqid, IPC_STAT, buf);

/*Print the decremented number of messages.*/
printf(”\nThe msg_gnum = %d\n”, buf->msg_gnum);
/*Print the process id of the last receiver.*/
printf(”The msg_lrpid = $d\n”, buf->msg_lrpid);
/*Print the last message receive time*/
printf(”The msg_rtime = %d\n”, buf->msg_rtime);

~

INTERPROCESS COMMUNICATION

8-37

de

8-38

This page is intentionally left blank

PROGRAMMER'S GUIDE

(0184

4

Semaphores

The semaphore type of IPC allows processes to communicate through
the exchange of semaphore values. A semaphore is a positive integer
(0 through 32,767). Since many applications require the use of more
than one semaphore, the UNIX operating system has the ability to
create sets or arrays of semaphores. A semaphore set can contain one
or more semaphores up to a limit set by the system administrator.
The tunable parameter, SEMMSL has a default value of 25. Sema-
phore sets are created by using the semget(2) system call.

The process performing the semget(2) system call becomes the
owner/creator, determines how many semaphores are in the set, and
sets the operation permissions for the set, including itself. This pro-
cess can subsequently relinquish ownership of the set or change the
operation permissions using the semctl(2), semaphore control, sys-
tem call. The creating process always remains the creator as long as
the facility exists. Other processes with permission can use
semctl(2) to perform other control functions.

Provided a process has alter permission, it can manipulate the
semaphore(s). Each semaphore within a set can be manipulated in
two ways with the semop(2) system call (which is documented in the
System V Reference Manual):

® incremented
® decremented
To increment a semaphore, an integer value of the desired magnitude

is passed to the semop(2) system call. To decrement a semaphore, a
minus (—) value of the desired magnitude is passed.

The UNIX operating system ensures that only one process can mani-
pulate a semaphore set at any given time. Simultaneous requests are
performed sequentially in an arbitrary manner.

INTERPROCESS COMMUNICATION 8-39

Semaphores

A process can test for a semaphore value to be greater than a certain
value by attempting to decrement the semaphore by one more than
that value. If the process is successful, then the semaphore value is
greater than that certain value. Otherwise, the semaphore value is
not. While doing this, the process can have its execution suspended
(IPC_NOWAIT flag not set) until the semaphore value would permit
the operation (other processes increment the semaphore), or the
semaphore facility is removed.

The ability to suspend execution is called a ”blocking semaphore
operation.” This ability is also available for a process which is testing
for a semaphore to become zero or equal to zero; only read permis-
sion is required for this test, and it is accomplished by passing a value
of zero to the semop(2) system call.

On the other hand, if the process is not successful and the process
does not request to have its execution suspended, it is called a "non-
blocking semaphore operation.” In this case, the process is returned
a known error code (—1), and the external errmo variable is set
accordingly.

The blocking semaphore operation allows processes to communicate
based on the values of semaphores at different points in time.
Remember also that IPC facilities remain in the UNIX operating sys-
tem until removed by a permitted process or until the system is reini-
tialized.

Operating on a semaphore set is done by using the semop(2), sema-
phore operation, system call.

When a set of semaphores is created, the first semaphore in the set is
semaphore number zero. The last semaphore number in the set is
one less than the total in the set.

An array of these “blocking/nonblocking operations” can be per-
formed on a set containing more than one semaphore. When per-
forming an array of operations, the ”blocking/nonblocking opera-
tions” can be applied to any or all of the semaphores in the set. Also,
the operations can be applied in any order of semaphore number.
However, no operations are done until they can all be done

8-40 PROGRAMMER 'S GUIDE

454

413

A —— i)

Semaphores

successfully. This requirement means that preceding changes made
to semaphore values in the set must be undone when a “blocking
semaphore operation” on a semaphore in the set cannot be completed
successfully; no changes are made until they can all be made. For
example, if a process has successfully completed three of six opera-
tions on a set of ten semaphores but is "blocked” from performing the
fourth operation, no changes are made to the set until the fourth and
remaining operations are successfully performed. Additionally, any
operation preceding or succeeding the “blocked” operation, including
the blocked operation, can specify that at such time that all opera-
tions can be performed successfully, that the operation be undone.
Otherwise, the operations are performed and the semaphores are
changed or one "nonblocking operation” is unsuccessful and none are
changed. All of this is commonly referred to as being “atomically per-
formed.”

The ability to undo operations requires the UNIX operating system to
maintain an array of "undo structures” corresponding to the array of
semaphore operations to be performed. Each semaphore operation
which is to be undone has an associated adjust variable used for
undoing the operation, if necessary.

Remember, any unsuccessful “nonblocking operation” for a single
semaphore or a set of semaphores causes immediate return with no
operations performed at all. When this occurs, a known error code
(—1) is returned to the process, and the external variable errno is set
accordingly.

System calls make these semaphore capabilities available to
processes.The calling process passes arguments to a system call, and
the system call either successfully or unsuccessfully performs its func-
tion. If the system call is successful, it performs its function and
returns the appropriate information. Otherwise, a known error code
(~1) is returned to the process, and the external variable errno is set
accordingly.

INTERPROCESS COMMUNICATION 8-41

Semaphores

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely
identified data structure and semaphore set (array) must be
created. The unique identifier is called the semaphore identifier
{semid); it is used to identify or reference a particular data structure
and semaphore set.

The semaphore set contains a predefined number of structures in an
array, one structure for each semaphore in the set. The number of
semaphores (nsems) in a semaphore set is user selectable. The fol-
lowing members are in each structure within a semaphore set:

semaphore text map address
process identification (PID) performing last operation

number of processes awaiting the semaphore value to become
greater than its current value

number of processes awaiting the semaphore value to equal
zero

There is one associated data structure for the uniquely identified
semaphore set. This data structure contains information related to
the semaphore set as follows:

operation permissions data (operation permissions structure)
pointer to first semaphore in the set (array)

number of semaphores in the set

last semaphore operation time

last semaphore change time

The C Programming Language data structure definition for the sema-
phore set (array member) is as follows:

8-42

PROGRAMMER 'S GUIDE

W

1427

. —————— ———]db

Semaphores

~

semaphore text map address */
pid of last operation */

awaiting semval > cval */
awaiting semval = 0 */

n J

It is located in the #include <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data
structure is as follows:

4)

struct semid ds

{
struct ipc_perm sem perm; operation permission struct */
struct sem *sem_base; ptr to first semaphore in set */
ushort sem_nsems; # of semaphores in set */
time t sem otime; last semop time */
time t sem_ctime; last change time */

/

It is also located in the #include <sys/sem.h> header file. Note
that the sem_perm member of this structure uses ipc_perm as a
template. The breakout for the operation permissions data structure
is shown in Figure 8-1.

The ipc_perm data structure is the same for all IPC facilities, and it
is located in the #include <sys/ipc.h> header file. It is shown in
the "Messages” section.

The semget(2) system call is used to perform two tasks when only
the IPC_CREAT flag is set in the semflg argument that it receives:

INTERPROCESS COMMUNICATION

Semaphores

® to get a new semid and create an associated data structure and
semaphore set for it

® to return an existing semid that already has an associated data
structure and semaphore set

The task performed is determined by the value of the key argument

passed to the semget(2) system call. For the first task, if the key is

not already in use for an existing semid, a new semid is returned U
with an associated data structure and semaphore set created for it
provided no system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0) which
is known as the private key (IPC_ PRIVATE = 0); when specified, a
new semid is always returned with an associated data structure and
semaphore set created for it unless a system tunable parameter would
be exceeded. When the ipes command is performed, the KEY field
for the semid is all zeros.

9y

When performing the first task, the process which calls semget()
becomes the owner/creator, and the associated data structure is ini-
tialized accordingly. Remember, ownership can be changed, but the
creating process always remains the creator; see the ”Controlling
Semaphores” section in this chapter. The creator of the semaphore
set also determines the initial operation permissions for the facility.

For the second task, if a semid exists for the key specified, the value
of the existing semid is returned. If it is not desired to have an
existing semid returned, a control command (IPC_EXCL) can be
specified (set) in the semflg argument passed to the system call. The
system call will fail if it is passed a value for the number of sema-
phores (nsems) that is greater than the number actually in the set; if
you do not know how many semaphores are in the set, use 0 for
nsems. The details of using this system call are discussed in the
”Using semget” section of this chapter.

8-44 PROGRAMMER'S GUIDE

de

Semaphores

Once a uniquely identified semaphore set and data structure are
created, semaphore operations [semop(2)] and semaphore control
[semctl(2)] can be used.

Semaphore operations consist of incrementing, decrementing, and
testing for zero. A single system call is used to perform these opera-
tions. It is called semop(2). Refer to the "Operations on Sema-
phores” section in this chapter for details of this system call.

ﬂ Semaphore control is done by using the semectl(2) system call. These
control operations permit you to control the semaphore facility in the
following ways:

® to return the value of a semaphore
® to set the value of a semaphore

® to return the process identification (PID) of the last process
performing an operation on a semaphore set

417
[]

to return the number of processes waiting for a semaphore
value to become greater than its current value

® to return the number of processes waiting for a semaphore
value to equal zero

® to get all semaphore values in a set and place them in an array
m in user memory

® to set all semaphore values in a semaphore set from an array of
values in user memory

® to place all data structure member values, status, of a sema-
phore set into user memory area

® to change operation permissions for a semaphore set

® to remove a particular semid from the UNIX operating system
along with its associated data structure and semaphore set

INTERPROCESS COMMUNICATION 8-45

|

Semaphores

Refer to the ”“Controlling Semaphores” section in this chapter for
details of the semctl(2) system call.

Getting Semaphores

This section contains a detailed description of using the semget(2)
system call along with an example program illustrating its use.

Using semget

The synopsis found in the semget(2) entry in the System V Reference
Manual is as follows:

e)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semg)
key t key;
int nsems, semg;

)

The following line in the synopsis:
int semget (key, nsems, semflg)

informs you that semget() is a function with three formal arguments
that returns an integer type value, upon successful completion
(semid). The next two lines:

key t key;
int nsems, semflg;

declare the types of the formal arguments. key_t is declared by a
typedef in the types.h header file to be an integer.

8-46 PROGRAMMER 'S GUIDE

8iv

419

Semaphores

The integer returned from this system call upon successful comple-
tion is the semaphore set identifier (semid) that was discussed above.
As declared, the process calling the semget() system call must supply
three actual arguments to be passed to the formal key, nsems, and
semflg arguments.

A new semid with an associated semaphore set and data structure is
provided if either

e key is equal to IPC_PRIVATE,
or
¢ key is passed a unique hexadecimal integer, and semflg ANDed
with IPC_CREAT is TRUE.

The value passed to the semflg argument must be an integer type
octal value and will specify the following:

® access permissions

® execution modes

e control fields (commands)

Access permissions determine the read/alter attributes and execution
modes determine the user/group/other attributes of the semflg argu-
ment. They are collectively referred to as operation permissions.”
Figure 8-7 reflects the numeric values (expressed in octal notation)
for the valid operation permissions codes.

Operation Permissions | Octal Value
Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

Figure 8-7: Operation Permissions Codes

INTERPROCESS COMMUNICATION 8-47

—J db|

Semaphores

A specific octal value is derived by adding the octal values for the
operation permissions desired. That is, if read by user and read/alter
by others is desired, the code value would be 00406 (00400 plus
00006). There are constants #define’d in the sem.h header file
which can be used for the user (OWNER). They are as follows:

SEM A 0200 /* alter permission by owner */
SEM R 0400 /* read permission by owner */

Control commands are predefined constants (represented by all
uppercase letters). Figure 8-8 contains the names of the constants
which apply to the semget(2) system call along with their values.
They are also referred to as flags and are defined in the ipc.h header
file.

Control Command | Value

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 8-8: Control Commands (Flags)

The value for semflg is, therefore, a combination of operation permis-
sions and control commands. After determining the value for the
operation permissions as previously described, the desired flag(s) can
be specified. This specification is accomplished by bitwise ORing (|)
them with the operation permissions; the bit positions and values for
the control commands in relation to those of the operation permis-
sions make this possible. It is illustrated as follows:

Octal Value Binary Value
IPC_CREAT = 01000 0 000 001 000 000 000
| Read by User = 00400 0 000 000 100 000 000
semflg = 01400 0 000 001 100 000 000

8-48 PROGRAMMER 'S GUIDE

ozgy

421

.]d&

Semaphores

The semflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

msgid = msgget (key, (IPC_CREAT | 0400));

msgid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the semget(2) entry in the System V Reference
Manual, success or failure of this system call depends upon the actual
argument values for key, nsems, semflg or system tunable parame-
ters. The system call will attempt to return a new semid if one of
the following conditions is true:

e Key is equal to IPC_PRIVATE (0)
® Key does not already have a semid associated with it, and
(semflg & IPC_CREAT) is "true” (not zero).

The key argument can be set to IPC PRIVATE in the following
ways:

msgid = msgget (IPC_PRIVATE, msgflqg);
or
msgid = msgget (0, msgflg);

This alone will cause the system call to be attempted because it
satisfies the first condition specified.

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable
parameters will always cause a failure. The SEMMNI system tunable
parameter determines the maximum number of unique semaphore
sets (semid’s) in the UNIX operating system. The SEMMNS system
tunable parameter determines the maximum number of semaphores
in all semaphore sets system wide. The SEMMSL system tunable
parameter determines the maximum number of semaphores in each
semaphore set.

INTERPROCESS COMMUNICATION 8-49

Semaphores

The second condition is satisfied if the value for key is not already
associated with a semid, and the bitwise ANDing of semflg and
IPC CREAT is "true” (not zero). This means that the key is unique
{not in use) within the UNIX operating system for this facility type
and that the IPC_CREAT flag is set (semflg | IPC_CREAT). The
bitwise ANDing (&), which is the logical way of testing if a flag is set,
is illustrated as follows:

msgflg (x = immaterial)

& IPC_CREAT

Il
c O N

1l x x X
1000
10

result 0 0 (not zero)

Since the result is not zero, the flag is set or "true.” SEMMN]I,
SEMMNS, and SEMMSL apply here also, just as for condition one.

IPC EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a
semid exists for the specified key provided. This is necessary to
prevent the process from thinking that it has received a new (unique)
semid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a new semid is returned if the system call is
successful. Any value for semflg returns a new semid if the key
equals zero (IPC_PRIVATE) and no system tunable parameters are
exceeded.

Refer to the semget(2) manual page for specific associated data struc-
ture initialization for successful completion.

Example Program

The example program in this section (Figure 8-9) is a menu driven
program which allows all possible combinations of using the
semget(2) system call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

8-50 PROGRAMMER 'S GUIDE

(444

P —— 7]

Semaphores

This program begins (lines 4-8) by including the required header files
as specified by the semget(2) entry in the System V Reference
Manual. Note that the errno.h header file is included as opposed to
declaring errno as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this pro-
gram and their purpose are as follows:

o key-used to pass the value for the desired key
e opperm—used to store the desired operation permissions
o flags —used to store the desired control commands (flags)

opperm_flags —used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the semflg argument

semid —used for returning the semaphore set identification
number for a successful system call or the error code (—1) for
an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and the control command combinations
(flags) which are selected from a menu (lines 15-32). All possible com-
binations are allowed even though they might not be viable. This
allows observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the
opperm_flags variable (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-
57), and its value is stored at the address of nsems.

INTERPROCESS COMMUNICATION

Semaphores

The system call is made next, and the result is stored at the address
of the semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set
identifier or the error code (—1), it is tested to see if an error
occurred (line 63). If semid equals —1, a message indicates that an
error resulted and the external errno variable is displayed (lines 65,
66). Remember that the external errno variable is only set when a
system call fails; it should only be tested immediately following sys-
tem calls.

If no error occurred, the returned semaphore set identifier is
displayed (line 70).

The example program for the semget(2) system call follows. It is
suggested that the source program file be named semget.c and that
the executable file be named semget.

Figure 8-9: semget() System Call Example

4)

1 /*This is a program to illustrate
2 **the semaphore get, semget(),

3 **gystem call capabilities.*/

4 #include <stdio.h>

5 #include <sys/types.h>

6 #include <sys/ipc.h>

7 #include <sys/sem.h>

8 #include <errno.h>

9 /*Start of main C language program*/
10 main()

11 {
12 key_t key; /*declare as long integer*/
13 int opperm, flags, nsems;

14 int semid, opperm flags;

15 /*Enter the desired key*/

16 printf(”\nEnter the desired key in hex = ");

o /

(continued on next page)

8-52 PROGRAMMER'S GUIDE

~] &

Semaphores

4)

17 scanf ("%x", &key);
18 /*Enter the desired octal operation
19 permissions.*/
20 printf(”\nEnter the operation\n”);
21 printf(“permissions in octal = *);
22 scanf (”%0", &opperm);

m 23 /*Set the desired flags.*/

’ 24 printf(”\nEnter corresponding number to\n”);

25 printf(”set the desired flags:\n”);
26 printf(”“No flags = 0\n");
27 printf (”IPC_CREAT = 1\n");
28 printf("IPC_EXCL = 2\n");
29 printf(”IPC CREAT and IPC_EXCL = 3\n");
30 printf(” Flags =");
31 /*Get the flags to be set.*/
32 scanf ("%d”, &flags);

9 33 /*Error checking (debugging)*/

< 34 printf (”\nkey =0x%x, opperm = 0%o, flags = 0%0o\n”,
35 key, opperm, flags);
36 /*Incorporate the control fields (flags) with
37 the operation permissions.*/
38 switch (flags)
39 {
40 case 0: /*No flags are to be set.*/
41 opperm_flags = (opperm | 0);

ﬂ 42 break;

- 43 case 1: /*Set the IPC_CREAT flag.*/
44 opperm flags = (opperm | IPC_CREAT);
45 break;
46 case 2: /*Set the IPC_EXCL flag.*/
47 opperm_flags = (opperm | IPC_EXCL);
48 break;
49 case 3: /[*Set the IPC CREAT and IPC EXCL
50 flags.*/
51 opperm flags = (opperm | IPC_CREAT | IPC_EXCL);
52 }
53 /*Get the number of semaphores for this set.*/
54 printf(”\nEnter the number of\n");

~n y

(continued on next page)

INTERPROCESS COMMUNICATION 8-53

Semaphores

4)

55 printf(“”desired semaphores for\n”);

56 printf(”this set (25 max) = ”);

57 scanf (”%d”, &nsems);

58 /*Check the entry.*/

59 printf(”\nNsems = $d\n”, nsems);

60 /*Call the semget system call.*/

61 semid = semget(key, nsems, opperm flags); w
62 /*Perform the following if the call is unsuccessful.*/

63 if(semid = = -1)

64 {

65 printf(”The semget system call failed!\n");

66 printf(“The error number = %d\n”, errno);

67 }

68 /*Return the semid upon successful completion.*/

69 else

70 printf(”\nThe semid = %d\n”, semid);

71 exit(0);]
72 } @

e /

Controlling Semaphores W
This section contains a detailed description of using the semctl(2)

system call along with an example program which allows all of its
capabilities to be exercised.

8-54 PROGRAMMER 'S GUIDE

Semaphores

Using semctl

The synopsis found in the semctl(2) entry in the System V Reference
Manual is as follows:

(# include <sys/types.h>

#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, omd;
int semnum;
union semun
{
int val;
struct semid ds *bu;
ushort array{]};
} arg;

N /

The semctl(2) system call requires four arguments to be passed to it,
and it returns an integer value.

427

The semid argument must be a valid, non-negative, integer value
that has already been created by using the semget(2) system call.

: The semnum argument is used to select a semaphore by its number.
ﬂ This relates to array (atomically performed) operations on the set.
When a set of semaphores is created, the first semaphore is number
0, and the last semaphore has the number of one less than the total

in the set.

The emd argument can be replaced by one of the following control
commands (flags):

¢ GETVAL-return the value of a single semaphore within a
semaphore set

INTERPROCESS COMMUNICATION 8-55

—] dk|

Semaphores

® SETVAL-set the value of a single semaphore within a sema-
phore set

¢ GETPID—return the Process Identifier (PID) of the process
that performed the last operation on the semaphore within a
semaphore set

® GETNCNT —return the number of processes waiting for the
value of a particular semaphore to become greater than its
current value

® GETZCNT —return the number of processes waiting for the
value of a particular semaphore to be equal to zero

¢ GETALL-—return the values for all semaphores in a semaphore
set

o SETALL—set all semaphore values in a semaphore set

® [PC_STAT —return the status information contained in the
associated data structure for the specified semid, and place it
in the data structure pointed to by the =*buf pointer in the
user memory area; arg.buf is the union member that contains
the value of buf

o IPC SET—for the specified semaphore set (semid), set the
effective user/group identification and operation permissions

o TPC RMID —remove the specified (semid) semaphore set along
with its associated data structure.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC SET or
IPC_RMID control command. Read/alter permission is required as
applicable for the other control commands.

The arg argument is used to pass the system call the appropriate
union member for the control command to be performed:

8-56 PROGRAMMER'S GUIDE

8cv

429

Semaphores

® arg.val
e arg.buf

® arg.array

The details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in
this program, read the ”"Using semget” section of this chapter; it
goes into more detail than what would be practical to do for every
system call.

Example Program

The example program in this section (Figure 8-10) is a menu driven
program which allows all possible combinations of using the
semctl(2) system call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files
as specified by the semectl(2) entry in the System V Reference
Manual. Note that in this program errno is declared as an external
variable, and therefore the errno.h header file does not have to be
included.

Variable, structure, and union names have been chosen to be as close
as possible to those in the synopsis. Their declarations are self-
explanatory. These names make the program more readable, and this
is perfectly legal since they are local to the program. Those declared
for this program and their purpose are as follows:

® semid _ds—used to receive the specified semaphore set
identifier’s data structure when an IPC STAT control com-
mand is performed

INTERPROCESS COMMUNICATION 8-57

Semaphores

8-58

c—used to receive the input values from the scanf(3S) func-
tion, (line 117) when performing a SETALL control command

i—used as a counter to increment through the union arg.array
when displaying the semaphore values for a GETALL (lines 97-
99) control command, and when initializing the arg.array
when performing a SETALL (lines 115-119) control command

length —used as a variable to test for the number of sema-
phores in a set against the i counter variable (lines 97, 115)

uid —used to store the IPC _SET value for the effective user
identification

gid —used to store the IPC_SET value for the effective group
identification

mode —used to store the IPC_SET value for the operation per-
missions

rtrn—used to store the return integer from the system call
which depends upon the control command or a —1 when unsuc-
cessful

semid —used to store and pass the semaphore set identifier to
the system call

semnum — used to store and pass the semaphore number to the
system call

cmd —used to store the code for the desired control command
so that subsequent processing can be performed on it

choice —used to determine which member (uid, gid, mode)
for the IPC_SET control command that is to be changed

arg.val —used to pass the system call a value to set (SETVAL)
or to store (GETVAL) a value returned from the system call for
a single semaphore (union member)

PROGRAMMER 'S GUIDE

oey

431

B e—— 7

Semaphores

e arg.buf—a pointer passed to the system call which locates the
data structure in the user memory area where the IPC_STAT
control command is to place its return values, or where the
IPC SET command gets the values to set (union member)

® arg.array-—used to store the set of semaphore values when
getting (GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses
the data structure located in the sem.h header file of the same name
as a template for its declaration. This is a perfect example of the
advantage of local variables.

The arg union (lines 18-22) serves three purposes in one. The com-
piler allocates enough storage to hold its largest member. The pro-
gram can then use the union as any member by referencing union
members as if they were regular structure members. Note that the
array is declared to have 25 elements (0 through 24).This number
corresponds to the maximum number of semaphores allowed per set
(SEMMSL), a system tunable parameter.

The next important program aspect to observe is that although the
* buf pointer member (arg.buf) of the union is declared to be a
pointer to a data structure of the semid_ds type, it must also be ini-
tialized to contain the address of the user memory area data struc-
ture (line 24). Because of the way this program is written, the
pointer does not need to be reinitialized later. If it was used to incre-
ment through the array, it would need to be reinitialized just before
calling the system call.

Now that all of the required declarations have been presented for this
program, this is how it works.

First, the program prompts for a valid semaphore set identifier, which
is stored at the address of the semid variable (lines 25-27). This is
required for all semetl(2) system calls.

INTERPROCESS COMMUNICATION 8-59

| Semaphores

Then, the code for the desired control command must be entered
(lines 28-42), and the code is stored at the address of the emd vari-
able. The code is tested to determine the control command for subse-
quent processing.

If the GETVAL control command is selected (code 1), a message
prompting for a semaphore number is displayed (lines 49, 50). When
it is entered, it is stored at the address of the semnum variable (line
51). Then, the system call is performed, and the semaphore value is
displayed (lines 52-55). If the system call is successful, a message
indicates this along with the semaphore set identifier used (lines 195,
196); if the system call is unsuccessful, an error message is displayed
along with the value of the external errno variable (lines 191-193).

If the SETVAL control command is selected (code 2), a message
prompting for a semaphore number is displayed (lines 56, 57). When
it is entered, it is stored at the address of the semnum variable (line
58). Next, a message prompts for the value to which the semaphore
is to be set, and it is stored as the arg.val member of the union (lines
59, 60). Then, the system call is performed (lines 61, 63). Depending
upon success or failure, the program returns the same messages as
for GETVAL above.

If the GETPID control command is selected (code 3), the system call
is made immediately since all required arguments are known (lines
64-67), and the PID of the process performing the last operation is
displayed. Depending upon success or failure, the program returns
the same messages as for GETVAL above.

If the GETNCNT control command is selected (code 4), a message
prompting for a semaphore number is displayed (lines 68-72). When
entered, it is stored at the address of the semnum variable (line 73).
Then, the system call is performed, and the number of processes wait-
ing for the semaphore to become greater than its current value is
displayed (lines 74-77). Depending upon success or failure, the pro-
gram returns the same messages as for GETVAL above.

8-60 PROGRAMMER 'S GUIDE

433

Semaphores

If the GETZCNT control command is selected (code 5), a message
prompting for a semaphore number is displayed (lines 78-81). When
it is entered, it is stored at the address of the semnum variable (line
82). Then the system call is performed, and the number of processes
waiting for the semaphore value to become equal to zero is displayed
(lines 83, 86). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program
first performs an IPC STAT control command to determine the
number of semaphores in the set (lines 88-93). The length variable is
set to the number of semaphores in the set (line 91). Next, the sys-
tem call is made and, upon success, the arg.array union member
contains the values of the semaphore set (line 96). Now, a loop is
entered which displays each element of the arg.array from zero to
one less than the value of length (lines 97-103). The semaphores in
the set are displayed on a single line, separated by a space. Depend-
ing upon success or failure, the program returns the same messages
as for GETVAL above.

If the SETALL control command is selected (code 7), the program
first performs an IPC STAT control command to determine the
number of semaphores in the set (lines 106-108). The length variable
is set to the number of semaphores in the set (line 109). Next, the
program prompts for the values to be set and enters a loop which
takes values from the keyboard and initializes the arg.array union
member to contain the desired values of the semaphore set (lines
113-119). The loop puts the first entry into the array position for
semaphore number zero and ends when the semaphore number that
is filled in the array equals one less than the value of length. The
system call is then made (lines 120-122). Depending upon success or
failure, the program returns the same messages as for GETVAL
above.

If the IPC_STAT control command is selected (code 8), the system
call is performed (line 127), and the status information returned is
printed out (lines 128-139); only the members that can be set are
printed out in this program. Note that if the system call is

INTERPROCESS COMMUNICATION 8-61

m < e MR NI R (T o R R e S e S R e T R U B ST

Semaphores

unsuccessful, the status information of the last successful one is
printed out. In addition, an error message is displayed, and the
errno variable is printed out (lines 191, 192).

If the IPC SET control command is selected (code 9), the program
gets the current status information for the semaphore set identifier
specified (lines 143-146). This is necessary because this example pro-
gram provides for changing only one member at a time, and the
semctl(2) system call changes all of them. Also, if an invalid value
happened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a
code corresponding to the member to be changed (lines 147-153).
This code is stored at the address of the choice variable (line 154).
Now, depending upon the member picked, the program prompts for
the new value (lines 155-178). The value is placed at the address of
the appropriate member in the user memory area data structure, and
the system call is made (line 181). Depending upon success or failure,
the program returns the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system
call is performed (lines 183-185). The semid along with its associated
data structure and semaphore set is removed from the UNIX operat-
ing system. Depending upon success or failure, the program returns
the same messages as for the other control commands.

The example program for the semctl(2) system call follows. It is sug-
gested that the source program file be named semectl.c and that the
executable file be named semctl.

8-62 PROGRAMMER'S GUIDE

vey

&4

Semaphores

Figure 8-10: semctl(2) System Call Example

1 /*This is a program to illustrate
2 **the semaphore control, semctl(2),
3 **gystem call capabilities.
4 */
y 5 /*Include necessary header files.*/

m 6 #include <stdio.h>
7 #include <gys/types.h>
8 #include <gys/ipc.h>
9 #include <sys/sem.h>
10 /*Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 struct semid ds semid ds;
15 int ¢, i, length;

8 16 int uid, gid, mode;

< 17 int retrn, semid, semnum, cmd, choice;
18 union semun {
19 int val;
20 struct semid ds *buf;
21 ushort array(25];
22 } arg;
23 /*Initialize the data structure pointer.*/

ﬁ 24 arg.buf = &semid ds;

| 25 /*Enter the semaphore ID.*/

26 printf(”Enter the semid = ”);
27 scanf("%d”, &semid);
28 /*Choose the desired command.*/
29 printf(”\nEnter the number for\n”);
30 printf(”the desired cmd:\n");
31 printf (“GETVAL = 1\n");
32 printf (“SETVAL = 2\n");
33 printf ("GETPID = 3\n");
34 printf (“GETNCNT = 4\n");
35 printf ("GETZCNT = 5\n”);

n L y

(continued on next page)

INTERPROCESS COMMUNICATION 8-63

Semaphores

e

36 printf (”"GETALL = 6\n");
37 printf(”SETALL = 7\n");
38 printf(”IPC_STAT = 8\n”);
39 printf(”IPC_SET = 9\n");
40 printf(”IPC_RMID = 10\n”);
41 printf(”Entry = ");
; 42 scanf (”"%d”, &cmd);
l 43 /*Check entries.*/
44 printf (”\nsemid =%d, emd = %d\n\n”,
‘ 45 semid, cmd);
46 /*Set the command and do the call.*/
47 switch (cmd)
48 {
49 case 1: /*Get a specified value.*/
50 printf(“\nEnter the semnum = ");
51 scanf(”“%d”, &semnum);
52 /*Do the system call.*/ 8
53 retrn = semctl(semid, semnum, GETVAL, 0); o
54 printf(”\nThe semval = %d\n”, retrn);
55 break;
56 case 2: /*Set a specified value.*/
57 printf(”\nEnter the semnum = “);
58 scanf(”%d”, &semnum);
59 printf(”\nEnter the value = ”);
60 scanf(”%d”, &arg.val);
61 /*Do the system call.*/ .
62 retrn = semctl(semid, semnum, SETVAL, arg.val); U
63 break;
64 case 3: /*Get the process ID.*/
65 retrn = semctl(semid, 0, GETPID, 0);
66 printf(”\nThe sempid = %d\n”, retrn);
67 break;
68 case 4: /*Get the number of processes
69 waiting for the semaphore to
70 become greater than its current
71 value.*/
72 printf(”\nEnter the semnum = *);
73 scanf (“%¥d”, &semnum);
74 /*Do the system call.*/
(continued on next page) u
8-64 PROGRAMMER 'S GUIDE

] de

Semaphores

4)

75 retrn = semctl(semid, semnum, GETNCNT, 0);
76 printf(”\nThe semncnt = %d”, retrn);
77 break;
78 case 5: /*Get the number of processes
79 waiting for the semaphore
80 value to become zero.*/
81 printf(”“\nEnter the semmum = 7);
ﬁ 82 scanf (”%d”, &semnum);
83 /*Do the system call.*/
84 retrn = semctl(semid, semnum, GETZCNT, 0);
85 printf(”\nThe semzent = %d”, retrn);
86 break;
87 case 6: /*Get all of the semaphores.*/
88 /*Get the number of semaphores in
89 the semaphore set.*/
90 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
91 length = arg.buf->sem nsems;
(l}) 92 if(retrn = = -1)
< 93 goto ERROR;
94 /*Get and print all semaphores in the
95 specified set.*/
96 retrn = semctl(semid, 0, GETALL, arg.array);
97 for (i = 0; i < length; i++)
98 {
99 printf(”%d”, arg.array[i]);
100 /*Seperate each
ﬁ 101 semaphore. */
‘ . 102 printf(”sc”, ' ');
103 }
104 break;
105 case 7: /*Set all semaphores in the set.*/
106 /*Get the number of semaphores in
107 the set.*/
108 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
109 length = arg.buf->sem nsems;
110 printf(”Length = $d\n”, length);
111 if(retrn = = -1)
112 goto ERROR;
113 /*Set the semaphore set values.*/

AN

(continued on next page)

INTERPROCESS COMMUNICATION 8-65

Semaphores

4)

114 printf(”\nEnter each value:\n");

115 for(i = 0; i < length ; i++)

116 {

117 scanf (”%d”, &c);

118 ‘arg.array[i] = c;

119 }

120 /*Do the system call.*/

121 retrn = semctl(semid, 0, SETALL, arg.array);
122 break;

123 case 8: /*Get the status for the semaphore set.*/
125 /*Get and print the current status values.*/
127 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
128 printf (”\nThe USER ID = %d\n”,

129 arg.buf->sem perm.uid);

130 printf (“The GROUP ID = %d\n”,

131 arg.buf->sem perm.gid);

132 printf (“The operation permissions = 0%o\n”,
133 arg.buf->sem perm.mode);

134 printf (”“The number of semaphores in set = %d\n”,
135 arg.buf->sem nsems);

136 printf (“The last semop time = %d\n”,

137 arg.buf->sem otime);

138 printf ("The last change time = %d\n”,

139 arg.buf->sem ctime);

140 break;

141 case 9: /*Select and change the desired

142 member of the data structure.*/
143 /*Get the current status values.*/

144 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
145 if(retrn = = -1)

146 goto ERROR;

147 /*Select the member to change.*/

148 printf(”\nEnter the number for the\n”);

149 printf(“member to be changed:\n");

150 printf(”sem perm.uid = 1\n");

151 printf(“sem perm.gid = 2\n");

152 printf(“sem perm.mode = 3\n");

153 printf ("Entry =");

154 scanf(”%d”, &choice);

- J

(continued on next page)

8-66 PROGRAMMER 'S GUIDE

21514

439

Semaphores

163
164
165
166
167
168
169

NG

switch(choice){

case 1: /*Change the user ID.*/
printf(”\nEnter USER ID = ”);
scanf (”%d”, &uid);
arg.buf->sem perm.uid = uid;
printf(”\nUSER ID = %d\n”,

arg.buf->sem perm.uid);
break;

case 2: /*Change the group ID.*/
printf(”\nEnter GROUP ID = ”);
scanf(”%d”, &gid);
arg.buf->sem perm.gid = gid;
printf(”\nGROUP ID = %d\n”,

arg.buf->sem perm.gid);
break;

case 3: /*Change the mode portion of
the operation
permissions.*/
printf(”\nEnter MODE = "});
scanf (”%0”, &mode);
arg.buf->sem perm.mode = mode;
printf(”\nMODE = 0%o\n”,
arg.buf->sem perm.mode);
break;
}
/*Do the change.*/
retrn = semctl(semid, 0, IPC_SET, arg.buf);
break;
case 10: /*Remove the semid along with its
data structure.*/
retrn = semctl(semid, 0, IPC_RMID, 0);

}
/*Perform the following if the call is unsuccessful.*/
if(retrn = = -1)
{
ERROR:

printf (“\n\nThe semctl system call failed!\n”);
printf (”The error number = $d\n”, errno);
exit(0);

~

J

(continued on next page)

INTERPROCESS COMMUNICATION

8-67

Semaphores

-

~

194 }
195 printf (”\n\nThe semctl system call was successful\n”);
196 printf ("for semid = %¥d\n", semid);
197 exit (0);
198 }
Operations on Semaphores

This section contains a detailed description of using the semop(2)
system call along with an example program which allows all of its
capabilities to be exercised.

Using semop

The synopsis found in the semop(2) entry in the System V Reference
Manual is as follows:

-

int semid;
struct sembuf

-

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)

unsigned nsops; /

~

**S0pS;

8-68

PROGRAMMER’S GUIDE

(0147

]

Semaphores

The semop(2) system call requires three arguments to be passed to
it, and it returns an integer value.

Upon successful completion, a zero value is returned and when unsuc-
cessful it returns a —1.

The semid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the
semget(2) system call.

The sops argument is a pointer to an array of structures in the user
memory area that contains the following for each semaphore to be
changed:

® the semaphore number
® the operation to be performed

® the control command (flags)

The **sops declaration means that a pointer can be initialized to the
address of the array, or the array name can be used since it is the
address of the first element of the array. sembuf is the fag name of
the data structure used as the template for the structure members in
the array; it is located in the #include <sys/sem.h> header file.

The nsops argument specifies the length of the array (the number of
structures in the array). The maximum size of this array is deter-
mined by the SEMOPM system tunable parameter. Therefore, a
maximum of SEMOPM operations can be performed for each
semop(2) system call. .

The semaphore number determines the particular semaphore within
the set on which the operation is to be performed.

The operation to be performed is determined by the following:

® a positive integer value means to increment the semaphore
value by its value

INTERPROCESS COMMUNICATION 8-69

Semaphores

® a negative integer value means to decrement the semaphore
value by its value

® a value of zero means to test if the semaphore is equal to zero

The following operation commands (flags) can be used:

® IPC NOWAIT —this operation command can be set for any
operations in the array. The system call will return unsuccess-
fully without changing any semaphore values at all if any
operation for which IPC_NOWAIT is set cannot be performed
successfully. The system call will be unsuccessful when trying
to decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not.

e SEM UNDO —this operation command allows any operations in
the array to be undone when any operation in the array is
unsuccessful and does not have the IPC NOWAIT flag set.
That is, the blocked operation waits until it can perform its
operation; and when it and all succeeding operations are suc-
cessful, all operations with the SEM_UNDO flag set are
undone. Remember, no operations are performed on any sema-
phores in a set until all operations are successful. Undoing is
accomplished by using an array of adjust values for the opera-
tions that are to be undone when the blocked operation and all
subsequent operations are successful.

Example Program

The example program in this section (Figure 9-11) is a menu driven
program which allows all possible combinations of using the
semop(2) system call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

8-70 PROGRAMMER'S GUIDE

W

t444

Semaphores

This program begins (lines 5-9) by including the required header files
as specified by the shmop(2) entry in the System V Reference Manual
Note that in this program errno is declared as an external variable,
and therefore, the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as pos-
sible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly
legal since the declarations are local to the program. The variables
declared for this program and their purpose are as follows:

e sembuf[10] —used as an array buffer (line 14) to contain a max-
imum of ten sembuf type structures; ten equals SEMOPM, the
maximum number of operations on a semaphore set for each
semop(2) system call

e x«sops—used as a pointer (line 14) to sembuf[10] for the sys-
tem call and for accessing the structure members within the
array

e rtrn—used to store the return values from the system call

e flags—used to store the code of the IPC_NOWAIT or
SEM_UNDO flags for the semop(2) system call (line 60)

® i—used as a counter (line 32) for initializing the structure
members in the array, and used to print out each structure in
the array (line 79)

¢ nsops—used to specify the number of semaphore operations for
the system call —must be less than or equal to SEMOPM

e semid—used to store the desired semaphore set identifier for
the system call

First, the program prompts for a semaphore set identifier that the
system call is to perform operations on (lines 19-22). Semid is stored
at the address of the semid variable (line 23).

INTERPROCESS COMMUNICATION 8-7

Semaphores

A message is displayed requesting the number of operations to be per-
formed on this set (lines 25-27). The number of operations is stored
at the address of the nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-
77). The semaphore number, operation, and operation command
(flags) are entered for each structure in the array. The number of
structures equals the number of semaphore operations (nsops) to be
performed for the system call, so nsops is tested against the i
counter for loop control. Note that sops is used as a pointer to each
element (structure) in the array, and sops is incremented just like i.
sops is then used to point to each member in the structure for set-
ting them.

After the array is initialized, all of its elements are printed out for
feedback (lines 78-85).

The sops pointer is set to the address of the array (lines 86, 87).
sembuf could be used directly, if desired, instead of sops in the sys-
tem call. The system call is made (line 89), and depending upon suc-
cess or failure, a corresponding message is displayed. The results of
the operation(s) can be viewed by using the semctl(2) GETALL con-
trol command.

The example program for the semop(2) system call follows. It is sug-
gested that the source program file be named semop.c and that the
executable file be named semop.

8-72 PROGRAMMER 'S GUIDE

IS
N
IS

Semaphores

Figure 8-11: semop(2) System Call Example

/*This is a program to illustrate
**the semaphore operations, semop(2),
**gystem call capabilities.

*/

/*Include necessary header files.*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
/*Start of main C language program*/
main()
{
extern int errno;
struct sembuf sembuf{10), *sops;
char string[};
int retrn, flags, sem num, i, semid;
unsigned nsops;
sops = sembuf; /*Pointer to array sembuf.*/

/*Enter the semaphore ID.*/
printf(”\nEnter the semid of\n");
printf(”the semaphore set to\n");
printf(”be operated on = “);
scanf(”%d”, &semid);
printf(”\nsemid = %d”, semid);

/*Enter the number of operations.*/
printf(”\nEnter the number of semaphore\n”);
printf(”operations for this set = ");

scanf (“%d”, &nsops);

printf(”\nnosops = %d”, nsops);

/*Initialize the array for the

number of operations to be performed.*/
for(i = 0; i < nsops; i++, sops++)
{

/*This determines the semaphore in
the semaphore set.*/

o J

(continued on next page)

INTERPROCESS COMMUNICATION

Semaphores
36 printf(”\nEnter the semaphore\n”);
37 printf(“number (sem num) = “);
38 scanf(”%¥d”, &sem num);
39 SOpS—>Sem _num = sem num;
40 printf(”\nThe sem num = %d”, sops->sem num);
41 /*Enter a (-)number to decrement,
42 an unsigned number (no +) to increment,
43 or zero to test for zero. These values
44 are entered into a string and converted
45 to integer values.*/
46 printf(”\nEnter the operation for\n");
47 printf(“the semaphore (sem op) = *);
48 scanf(”%s”, string);
49 sops—>sem Op = atoi(string);
50 printf(”\nsem op = %¥d\n”, sops->sem op);
51 /*Specify the desired flags.*/
52 printf(“\nEnter the corresponding\n”);
53 printf(“number for the desired\n”);
54 printf(“flags:\n");
55 printf(“No flags = 0\n");
56 printf(”IPC_NOWAIT = 1\n");
57 printf (“SEM_UNDO = 2\n");
58 printf(“IPC NOWAIT and SEM UNDO = 3\n");
59 printf(” Flags = *);
60 scanf (”%d”, &flags);
61 switch(flags)
62 {
63 case 0:
64 sops—>sem_flg = 0;
65 break;
66 case 1:
67 sops—>sem_flg = IPC NOWAIT;
68 break;
69 case 2:
70 sops->sem _flg = SEM UNDO;
71 break;
72 case 3:
73 sops->sem_flg = IPC_NOWAIT | SEM UNDO;
74 break;

. J

(continued on next page)

8-74 PROGRAMMER 'S GUIDE

fei44

Semaphores

-)

75 }
76 printf(”\nFlags = 0%o\n”, sops—>sem flg);
77 }
78 /*Print out each structure in the array.*/
79 for(i = 0; i < nsops; it++)
80 {
81 printf(”\nsem num = ¥d\n”, sembuf[i].sem num);
m 82 printf(”sem op = %d\n”, sembuf{i].sem op);

83 printf(”sem flg = %o\n”, sembuf[i}.sem flg);
84 printf(“%c”, * ');
85 }
86 sops = sembuf; /*Reset the pointer to
87 sembuf[0}.*/
88 /*Do the semop system call.*/
89 retrn = semop(semid, sops, nsops);
90 if(retrn = = -1) ¢

5 91 printf(”\nSemop failed. ”);

N 92 printf(”Error = %d\n”, errno);
93 }
94 else {
95 printf (”\nSemop was successful\n”);
96 printf(”for semid = %d\n”, semid);
97 printf(”value returned = %d\n"”, retrn);
98 }

~ »

INTERPROCESS COMMUNICATION 8-75

Semaphores

8-76

This page is intentionally left blank

PROGRAMMER 'S GUIDE

5144

449

Shared Memory

The shared memory type of IPC allows two or more processes (exe-
cuting programs) to share memory and consequently the data con-
tained there. This is done by allowing processes to set up access to a
common virtual memory address space. This sharing occurs on a seg-
ment basis, which is memory management hardware dependent.

This sharing of memory provides the fastest means of exchanging
data between processes.

A process initially creates a shared memory segment facility using the
shmget(2) system call. Upon creation, this process sets the overall
operation permissions for the shared memory segment facility, sets its
size in bytes, and can specify that the shared memory segment is for
reference only (read-only) upon attachment. If the memory segment
is not specified to be for reference only, all other processes with
appropriate operation permissions can read from or write to the
memory segment.

There are two operations that can be performed on a shared memory
segment:

¢ shmat(2) — shared memory attach
o shmdt(2) — shared memory detach

Shared memory attach allows processes to associate themselves with
the shared memory segment if they have permission. They can then
read or write as allowed.

Shared memory detach allows processes to disassociate themselves
from a shared memory segment. Therefore, they lose the ability to
read from or write to the shared memory segment.

The original owner/creator of a shared memory segment can relinqu-
ish ownership to another process using the shmetl(2) system call.
However, the creating process remains the creator until the facility is
removed or the system is reinitialized. Other processes with permis-
sion can perform other functions on the shared memory segment

INTERPROCESS COMMUNICATION 8-77

Shared Memory

using the shmetl(2) system call.

System calls, which are documented in the System V Reference
Manual, make these shared memory capabilities available to
processes. The calling process passes arguments to a system call, and
the system call either successfully or unsuccessfully performs its func-
tion. If the system call is successful, it performs its function and
returns the appropriate information. Otherwise, a known error code
(—1) is returned to the process, and the external variable errno is set
accordingly.

Using Shared Memory

The sharing of memory between processes occurs on a virtual seg-
ment basis. There is one and only one instance of an individual
shared memory segment existing in the UNIX operating system at
any point in time.

Before sharing of memory can be realized, a uniquely identified
shared memory segment and data structure must be created. The
unique identifier created is called the shared memory identifier
(shmid); it is used to identify or reference the associated data struc-
ture. The data structure includes the following for each _shared
memory segment:

® operation permissions

® segment size

® segment descriptor

® process identification performing last operation
e process identification of creator

e current number of processes attached

8-78 PROGRAMMER 'S GUIDE

osy

T 2

Shared Memory

® in memory number of processes attached

last attach time

last detach time

last change time

The C Programming Language data structure definition for the
ﬁ shared memory segment data structure is located in the
7 /usr/include/sys/shm.h header file. It is as follows:

a N

/*
* There is a shared mem id data structure for
*x each segment in the system.
*/
struct shmid ds {
- struct ipc_perm shm_perm; /* operation permission struct */
2 int shm_segsz; /* segment size */
struct region *shm reg; /* ptr to region structure */
char pad[4]; /* for swap compatibility */
ushort shm_lpid; /* pid of last shmop */
ushort shm_cpid; /* pid of creator */
ushort shm_nattch; /* used only for shminfo */
ushort shm _cnattch; /* used only for shminfo */
time t shm_atime; /* last shmat time */
" time t shm dtime; /* last shmdt time */
ﬂ time t shm_ctime; /* last change time */

Note that the shm_perm member of this structure uses ipc_perm

as a template. The breakout for the operation permissions data
structure is shown in Figure 8-1.

The ipc_perm data structure is the same for all IPC facilities, and it
is located in the #include <sys/ipc.h> header file. It is shown in
ﬁ the introduction section of "Messages.”

INTERPROCESS COMMUNICATION 8-79

Shared Memory

Figure 8-12 is a table that shows the shared memory state informa-

tion.

Shared Memory States

Lock Bit | Swap Bit | Allocated Bit Implied State
0 0 0 Unallocated Segment
0 1 Incore
0 1 0 Unused
0 1 1 On Disk
1 0 1 Locked Incore
1 1 0 Unused
0 0 Unused
1 1 1 Unused

Figure 8-12: Shared Memory State Information

The implied states of Figure 8-12 are as follows:

¢ Unallocated Segment —the segment associated with this seg-
ment descriptor has not been allocated for use.

® Incore —the shared segment associated with this descriptor has
been allocated for use. Therefore, the segment does exist and is
currently resident in memory.

® On Disk—the shared segment associated with this segment
descriptor is currently resident on the swap device.

¢ Locked Incore—the shared segment associated with this seg-
ment descriptor is currently locked in memory and will not be a
candidate for swapping until the segment is unlocked. Only the
super-user may lock and unlock a shared segment.

8-80

PROGRAMMER 'S GUIDE

2sy

453

Shared Memory

® Unused —this state is currently unused and should never be
encountered by the normal user in shared memory handling.

The shmget(2) system call is used to perform two tasks when only
the IPC_CREAT flag is set in the shmflg argument that it receives:

® to get a new shmid and create an associated shared memory
segment data structure for it

® to return an existing shmid that already has an associated
shared memory segment data structure

The task performed is determined by the value of the key argument
passed to the shmget(2) system call. For the first task, if the key is
not already in use for an existing shmid, a new shmid is returned
with an associated shared memory segment data structure created for
it provided no system tunable parameters would be exceeded.

There is also a provision for specifying a key of value zero which is
known as the private key (IPC PRIVATE = 0); when specified, a
new shmid is always returned with an associated shared memory
segment data structure created for it unless a system tunable parame-
ter would be exceeded. When the ipes command is performed, the
KEY field for the shmid is all zeros.

For the second task, if a shmid exists for the key specified, the value
of the existing shmid is returned. If it is not desired to have an
existing shmid returned, a control command (IPC_EXCL) can be
specified (set) in the shmflg argument passed to the system call. The
details of using this system call are discussed in the "Using shmget”
section of this chapter.

When performing the first task, the process that calls shmget
becomes the owner/creator, and the associated data structure is ini-
tialized accordingly. Remember, ownership can be changed, but the
creating process always remains the creator; see the ”Controlling
Shared Memory” section in this chapter. The creator of the shared
memory segment also determines the initial operation permissions for
it.

INTERPROCESS COMMUNICATION 8-81

A

Shared Memory

Once a uniquely identified shared memory segment data structure is
created, shared memory segment operations [shmop()] and control
{shmetl(2)] can be used.

Shared memory segment operations consist of attaching and detach-
| ing shared memory segments. System calls are provided for each of
‘ these operations; they are shmat(2) and shmdt(2). Refer to the
”Operations for Shared Memory” section in this chapter for details of
these system calls.

Shared memory segment control is done by using the shmcetl(2) sys-
tem call. It permits you to control the shared memory facility in the
following ways:

® to determine the associated data structure status for a shared
memory segment (shmid) \

® to change operation permissions for a shared memory segment

|

® to remove a particular shmid from the UNIX operating system

along with its associated shared memory segment data struc-
ture

® to lock a shared memory segment in memory

e to unlock a shared memory segment

Refer to the ”Controlling Shared Memory” section in this chapter for
details of the shmetl(2) system call.

Getting Shared Memory Segments

This section gives a detailed description of using the shmget(2) sys-
tem call along with an example program illustrating its use.

8-82 " PROGRAMMER’S GUIDE

1414

455

=3

Shared Memory

Using shmget

The synopsis found in the shmget(2) entry in the System V Reference
Manual is as follows:

4)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key t key;
int size, shmflg;

/

All of these include files are located in the fusr/include/sys direc-
tory of the UNIX operating system. The following line in the
synopsis:

int shmget (key, size, shmflg)

informs you that shmget(2) is a function with three formal argu-
ments that returns an integer type value, upon successful completion
(shmid). The next two lines:

key_t key;
int size, shmflg;

declare the types of the formal arguments. The variable key_t is
declared by a typedef in the types.h header file to be an integer.

The integer returned from this function upon successful completion is
the shared memory identifier (shmid) that was discussed earlier.

As declared, the process calling the shmget(2) system call must sup-
ply three arguments to be passed to the formal key, size, and shmflg
arguments.

INTERPROCESS COMMUNICATION 8-83

Shared Memory

A new shmid with an associated shared memory data structure is
provided if either

¢ key is equal to IPC_PRIVATE,
or

® key is passed a unique hexadecimal integer, and shmflg

ANDed with IPC_CREAT is TRUE.

The value passed to the shmflg argument must be an integer type
octal value and will specify the following:

® access permissions

® execution modes

¢ control fields (commands)
Access permissions determine the read/write attributes and execution
modes determine the user/group/other attributes of the shmflg argu-
ment. They are collectively referred to as “operation permissions.”

Figure 8-13 reflects the numeric values (expressed in octal notation)
for the valid operation permissions codes.

Operation Permissions | Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 8-13: Operation Permissions Codes

A specific octal value is derived by adding the octal values for the
operation permissions desired. That is, if read by user and read/write
by others is desired, the code value would be 00406 (00400 plus
00006). There are constants located in the shm.h header file which

8-84 PROGRAMMER 'S GUIDE

96

457

~——————————————] &

Shared Memory

can be used for the user (OWNER). They are as follows:

SHM R 0400
SHM W 0200

Control commands are predefined constants (represented by all
uppercase letters). Figure 8-14 contains the names o. the constants
that apply to the shmget() system call along with their values. They
are also referred to as flags and are defined in the ipc.h header file.

Control Command \ Value

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 8-14: Control Commands (Flags)

The value for shmflg is, therefore, a combination of operation per-
missions and control commands. After determining the value for the
operation permissions as previously described, the desired flag(s) can
be specified. This is accomplished by bitwise ORing (|) them with the
operation permissions; the bit positions and values for the control
commands in relation to those of the operation permissions make this
possible. It is illustrated as follows:

Octal Value Binary Value
IPC CREAT = 01000 0 000 001 000 000 000
| Read by User = 00400 0 000 000 100 000 000
shmflg = 01400 0 000 001 100 000 000

The shmflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

msgid = msgget (key, (IPC_CREAT | 0400));

msgid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

INTERPROCESS COMMUNICATION 8-85

S R R e R N R R R R R N R B

Shared Memory

As specified by the shmget(2) entry in the System V Reference
Manual, success or failure of this system call depends upon the argu-
ment values for key, size, and shmflg or system tunable parameters.
The system call will attempt to return a new shmid if one of the fol-
lowing conditions is true:

¢ Key is equal to IPC_PRIVATE (0).
e Key does not already have a shmid associated with it, and
(shmflg & IPC_CREAT) is "true” (not zero).

The key argument can be set to IPC_PRIVATE in the following
ways:

msgid msgget (IPC_PRIVATE, msgflg);

or

msgid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it
satisfies the first condition specified. Exceeding the SHMMNI system
tunable parameter always causes a failure. The SHMMNI system
tunable parameter determines the maximum number of unique
shared memory segments (shmids) in the UNIX operating system.

The second condition is satisfied if the value for key is not already
associated with a shmid and the bitwise ANDing of shmflg and
IPC_CREAT is "true” (not zero). This means that the key is unique

(not in use) within the UNIX operating system for this facility type.

and that the IPC_CREAT flag is set (shmflg | IPC_CREAT). The
bitwise ANDing (&), which is the logical way of testing if a flag is set,
is illustrated as follows:

8-86 PROGRAMMER'S GUIDE

8GY

459

Shared Memory

msgflg = x 1 X x X (x = immaterial)
& IPCCREAT = 0 100 0
result = 0100 0 {not zero)

Because the result is not zero, the flag is set or “true.” SHMMNI
applies here also, just as for condition one.

IPC EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a
shmid exists for the specified key provided. This is necessary to
prevent the process from thinking that it has received a new (unique)
shmid when it has not. In other words, when both IPC_CREAT and
IPC_EXCL are specified, a unique shmid is returned if the system
call is successful. Any value for shmflg returns a new shmid if the
key equals zero (IPC_PRIVATE).

The system call will fail if the value for the size argument is less
than SHMMIN or greater than SHMMAX. These tunable parameters
specify the minimum and maximum shared memory segment sizes.

Refer to the shmget(2) manual page for specific associated data
structure initialization for successful completion. The specific failure
conditions with error names are contained there also.

z

Example Program

The example program in this section (Figure 8-15) is a menu driven
program which allows all possible combinations of using the
shmget(2) system call to be exercised.

INTERPROCESS COMMUNICATION 8-87

Shared Memory

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 4-7) by including the required header files
as specified by the shmget(2) entry in the System V Reference
Manual. Note that the errno.h header file is included as opposed to
declaring errno as an external variable; either method will work.

Variable names have been chosen to be as close as possible to those in
the synopsis for the system call. Their declarations are self-
explanatory. These names make the program more readable, and this
is perfectly legal since they are local to the program. The variables
declared for this program and their purposes are as follows:

® key—used to pass the value for the desired key
¢ opperm —used to store the desired operation permissions
o flags—used to store the desired control commands (flags)

e opperm_flags—used to store the combination from the logical
ORing of the opperm and flags variables; it is then used in the
system call to pass the shmflg argument

o shmid—used for returning the message queue identification
number for a successful system call or the error code (—1) for
an unsuccessful one

® size—used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal
operation permissions code, and finally for the control command com-
binations (flags) which are selected from a menu (lines 14-31). All
possible combinations are allowed even though they might not be
viable. This allows observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored at the address of the
opperm_flags variable (lines 35-50).

8-88 PROGRAMMER'S GUIDE

01534

461

~ ————— ———]dk

Shared Memory

A display then prompts for the size of the shared memory segment,
and it is stored at the address of the size variable (lines 51-54).

The system call is made next, and the result is stored at the address
of the shmid variable (line 56).

Since the shmid variable now contains a valid message queue
identifier or the error code (—1), it is tested to see if an error
occurred (line 58). If shmid equals —1, a message indicates that an
error resulted and the external errno variable is displayed (lines 60,
61).

If no error occurred, the returned shared memory segment identifier
is displayed (line 65).

The example program for the shmget(2) system call follows. It is
suggested that the source program file be named shmget.c and that
the executable file be named shmget.

Figure 8-15: shmget(2) System Call Example

a)

1 /*This is a program to illustrate
**the shared memory get, shmget(),
**gystem call capabilities.*/

w N

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <errno.h>

~N o

8 /*Start of main C language program*/

9 main()

10 {

11 key_t key; /*declare as long integer*/
12 int opperm, flags;

13 int shmid, size, opperm flags;

14 /*Enter the desired key*/

15 printf(”Enter the desired key in hex = 7);

16 scanf ("%x"”, &key);

e /

(continued on next page)

INTERPROCESS COMMUNICATION 8-89

Shared Memory

-

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53

/*Enter the desired octal operation
permissions.*/

printf(”\nEnter the operation\n”);

printf(”permissions in octal = ");

scanf (”%0”, &opperm);

/*Set the desired flags.*/
printf(”\nEnter corresponding number to\n”);
printf(”set the desired flags:\n");

printf(”No flags = 0\n");
printf(”IPC_CREAT = 1\n");
printf(”IPC_EXCL = 2\n");
printf(”IPC_CREAT and IPC_EXCL = 3\n");
printf(” Flags =");

/*Get the flag(s) to be set.*/
scanf (“%d”, &flags);

/*Check the values.*/
printf (”\nkey =0x%x, opperm = 0%0, flags = 0%c\n”,
key, opperm, flags);

/*Incorporate the control fields (flags) with
the operation permissions*/
switch (flags)

{
case 0: /*No flags are to be set.*/
opperm_flags = (opperm | 0);
break;
case 1: /*Set the IPC_CREAT flag.*/
opperm flags = (opperm | IPC_CREAT);
break;
case 2: /*Set the IPC EXCL flag.*/
opperm flags = (opperm | IPC_EXCL);
break;
case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
}

/*Get the size of the segment in bytes.*/
printf (”\nEnter the segment”);
printf ("\nsize in bytes = *);

/

8-90

(continued on next page)

PROGRAMMER 'S GUIDE

[414

463

_

de

Shared Memory

scanf (”%d”, &size);

/*Call the shmget system call.*/
shmid = shmget (key, size, opperm flags);

/*Perform the following if the call is unsuccessful.*/
if(shmid = = -1)
{
printf (“\nThe shmget system call failed!\n");
printf (”The error number = td\n”, errno);
}
/*Return the shmid upon successful completion.*/
else
printf (”\nThe shmid = %¥d\n”, shmid);
exit(0);

~

INTERPROCESS COMMUNICATION

8-91

Shared Memory

8-92

This page is intentionally left blank

PROGRAMMER'S GUIDE

14514

465

Controlling Shared Memory

This section gives a detailed description of using the shmetl(2) sys-
tem call along with an example program which allows all of its capa-
bilities to be exercised.

Using shmectl

The synopsis found in the shmetl(2) entry in the System V Reference
Manual is as follows:

4 |)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, oemd, buf)
int shmid, cmd; ‘
struct shmid ds *buf;

. /

The shmetl(2) system call requires three arguments to be passed to
it, and shmetl(2) returns an integer value.

Upon successful completion, a zero value is returned; and when
unsuccessful, shmetl() returns a —1.

The shmid variable must be a valid, non-negative, integer value. In
other words, it must have already been created by using the
shmget(2) system call.

The emd argument can be replaced by one of following control com-
mands (flags):

e IPC STAT —return the status information contained in the
associated data structure for the specified shmid and place it in
the data structure pointed to by the = buf pointer in the user
memory area

INTERPROCESS COMMUNICATION 8-93

m R R S R N S U S

Controlling Shared Memory

e IPC SET —for the specified shmid, set the effective user and
group identification, and operation permissions

e TPC RMID —remove the specified shmid along with its associ-
ated shared memory segment data structure

e SHM LOCK-lock the specified shared memory segment in
memory, must be super-user

¢ SHM UNLOCK-—unlock the shared memory segment from
memory, must be super-user.

A process must have an effective user identification of
OWNER/CREATOR or super-user to perform an IPC _SET or
IPC_RMID control command. Only the super-user can perform a
SHM LOCK or SHM UNLOCK control command. A process must
have read permission to perform the IPC_STAT control command.

The details of this system call are discussed in the example program
for it. If you have problems understanding the logic manipulations in
this program, read the ”Using shmget” section of this chapter; it
goes into more detail than what would be practical to do for every
system call.

Example Program

The example program in this section (Figure 8-16) is a menu driven
program which allows all possible combinations of using the
shmetl(2) system call to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files
as specified by the shmctl(2) entry in the System V Reference
Manual. Note in this program that errno is declared as an external
variable, and therefore, the errno.h header file does not have to be
included.

8-94 PROGRAMMER 'S GUIDE

99y

1=

Controlling Shared Memory

Variable and structure names have been chosen to be as close as pos-
sible to those in the synopsis for the system call. Their declarations
are self-explanatory. These names make the program more readable,
and it is perfectly legal since they are local to the program. The vari-
ables declared for this program and their purposes are as follows:

e uid—used to store the IPC_SET value for the effective user
identification

™ e gid—used to store the IPC_SET value for the effective group
' identification

e mode—used to store the IPC_SET value for the operation per-
missions

e rtrn—used to store the return integer value from the system
call

o shmid—used to store and pass the shared memory segment
identifier to the system call

467

e command —used to store the code for the desired control com-
mand so that subsequent processing can be performed on it

o choice—used to determine which member for the IPC_SET
control command that is to be changed

ﬁ e shmid_ds—used to receive the specified shared memory seg-
, ment identifier’s data structure when an IPC_STAT control
command is performed

e *buf—a pointer passed to the system call which locates the
data structure in the user memory area where the IPC_STAT
control command is to place its return values or where the
IPC_SET command gets the values to set.

Note that the shmid_ds data structure in this program (line 16) uses

the data structure located in the shm.h header file of the same name

as a template for its declaration. This is a perfect example of the
ﬁ advantage of local variables.

INTERPROCESS COMMUNICATION 8-95

Controlling Shared Memory

The next important thing to observe is that although the *buf
pointer is declared to be a pointer to a data structure of the
shmid_ds type, it must also be initialized to contain the address of
the user memory area data structure (line 17).

Now that all of the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid shared memory segment
identifier which is stored at the address of the shmid variable (lines
18-20). This is required for every shmctl(2) system call.

Then, the code for the desired control command must be entered
(lines 21-29), and it is stored at the address of the command variable.
The code is tested to determine the control command for subsequent
processing.

If the IPC_STAT control command is selected (code 1), the system
call is performed (lines 39, 40) and the status information returned is
printed out (lines 41-71). Note that if the system call is unsuccessful
(line 146), the status information of the last successful call is printed
out. In addition, an error message is displayed and the errno vari-
able is printed out (lines 148, 149). If the system call is successful, a
message indicates this along with the shared memory segment
identifier used (lines 151-154).

If the IPC_SET control command is selected (code 2), the first thing
done is to get the current status information for the message queue
identifier specified (lines 90-92). This is necessary because this exam-
ple program provides for changing only one member at a time, and
the system call changes all of them. Also, if an invalid value hap-
pened to be stored in the user memory area for one of these
members, it would cause repetitive failures for this control command
until corrected. The next thing the program does is to prompt for a
code corresponding to the member to be changed (lines 93-98). This
code is stored at the address of the choice variable (line 99). Now,
depending upon the member picked, the program prompts for the
new value (lines 105-127). The value is placed at the address of the
appropriate member in the user memory area data structure, and the

8-96 PROGRAMMER’S GUIDE

89t

Controlling Shared Memory

system call is made (lines 128-130). Depending upon success or
failure, the program returns the same messages as for IPC_STAT
above.

If the IPC_ RMID control command (code 3) is selected, the system
call is performed (lines 132-135), and the shmid along with its associ-
ated message queue and data structure are removed from the UNIX
operating system. Note that the *buf pointer is not required as an
ﬁ argument to perform this control command and its value can be zero
or NULL. Depending upon the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_LOCK control command (code 4) is selected, the system
call is performed (lines 137,138). Depending upon the success or
failure, the program returns the same messages as for the other con-
trol commands.

If the SHM_UNLOCK control command (code 5) is selected, the sys-
tem call is performed (lines 140-142). Depending upon the success or
failure, the program returns the same messages as for the other con-
trol commands.

469

The example program fer the shmetl(2) system call follows. It is
suggested that the source program file be named shmetl.c and that
the executable file be named shmetl.

INTERPROCESS COMMUNICATION 8-97

Controlling Shared Memory

Figure 8-16: shmetl(2) System Call Example

4)

- /

(continued on next page)

8-98 PROGRAMMER 'S GUIDE

1 /*This is a program to illustrate
2 **the shared memory control, shmctl(),
3 **gystem call capabilities.
4 */
5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <gys/shm.h>
10 /*Start of main C language program*/
| 11 main()
12 {
13 extern int errno;
14 int uid, gid, mode;
| 15 int rtrn, shmid, command, choice;
| 16 struct shmid_ds shimid_ds, *buf;
17 buf = &shmid ds;
18 /*Get the shmid, and command.*/
19 printf(”Enter the shmid = ”);
20 scanf(”%d”, &shmid); \
21 printf(”\nEnter the number for\n”);
22 printf(“the desired command:\n”);
23 printf(”IPC_STAT = 1\n");
24 printf (”IPC_SET = 2\n");
25 printf (”IPC_RMID = 3\n");
26 printf(”SHM LOCK = 4\n");
27 printf(”SHM UNLOCK = 5\n");
28 printf(“Entry = "y;
29 scanf (”%d”, &command);
30 /*Check the values.*/
31 printf (”\nshmid =%d, command = $d\n”,
32 shmid, command);
33 switch (command)
34 {
35 case 1: /*Use shmctl() to duplicate

(1744

_m

Controlling Shared Memory

a N

36 the data structure for
37 shmid in the shmid ds area pointed
38 to by buf and then print it out.*/
39 rtrn = shmctl(shmid, IPC_STAT,
40 buf);
41 printf (”\nThe USER ID = %d\n”,
42 buf->shm perm.uid);
43 printf (”The GROUP ID = %d\n”,
ﬂ 44 buf->shm perm.gid);
45 printf (“”The creator’s ID = %d\n”,
46 buf->shm_perm.cuid);
47 printf (”The creator’s group ID = %d\n”,
48 buf->shm_perm.cgid);
49 printf (“The operation permissions = 0%o\n”,
50 buf->shm perm.mode);
51 printf (“The slot usage sequence\n”);
52 printf (“number = 0%x\n",
53 buf->shm _perm.seq);
< 54 printf ("The key= 0%x\n”,
< 55 buf->shm perm.key);
56 printf ("The segment size = %d\n”,
57 buf->shm segsz);
58 printf ("The pid of last shmop = %d\n”,
59 buf->shm lpid);
60 printf ("The pid of creator = %d\n”,
61 buf->shm_cpid);
62 printf (“The current # attached = %d\n”,
n 63 buf->shm nattch);
64 printf(”The in memory # attached = %d\n”,
65 buf->shm_cnattach);
66 printf(”The last shmat time = %d\n~,
67 buf->shm atime);
68 printf(”The last shmdt time = %d\n”,
69 buf->shm_dtime);
70 printf(”The last change time = %d\n”,
71 buf->shm ctime);
72 break;
/* Lines 73 - 87 deleted */
88 case 2: /*Select and change the desired

~n J

(continued on next page)

INTERPROCESS COMMUNICATION 8-99

Controlling Shared Memory

-

89

90
91
92

120
121
122
123
124
125

member (s) of the data structure.*/

/*Get the original data for this shmid
data structure first.*/
rtrn = shmctl(shmid, IPC STAT, buf);

printf(”\nEnter the number for the\n”);
printf(“member to be changed:\n”);
printf(“shm perm.uid = 1\n");
printf(”shm perm.gid = 2\n");
printf(”shm perm.mode 3\n");
printf ("Entry = ");
scanf(”%d”, &choice);
/*Only one choice is allowed per
pass as an illegal entry will
cause repetitive failures until
shmid ds is updated with
IPC_STAT.*/

switch(choice){

case 1:
printf(”\nEnter USER ID = ");
scanf ("%d”, &uid);
buf->shm_perm.uid = uid;
printf(”\nUSER ID = %d\n”,

buf->shm perm.uid);

break;

case 2:
printf(”\nEnter GROUP ID = ");
scanf (”%d”, &gid);
buf->shm perm.gid = gid;
printf(”\nGROUP ID = %d\n”,
buf->shm_perm.gid);
break;

case 3:
printf(”\nEnter MODE = ");
scanf(”%0”, &mode);
buf->shm perm.mode = mode;
printf (“\nMODE = 0%oc\n",
buf->shm_perm.mode);

_/

8-100

(continued on next page)

PROGRAMMER 'S GUIDE

(A4

de

Controlling Shared Memory

4)

126 break;
127 }
128 /*Do the change.*/
129 rtrn = shmctl(shmid, IPC_SET,
130 buf);
131 break;
132 case 3: /*Remove the shmid along with its
m 133 associated
- 134 data structure.*/
135 rtrn = shmctl(shmid, IPC RMID, NULL);
136 break;
137 case 4: /*Lock the shared memory segment*/
138 rtrn = shmctl(shmid, SHM LOCK, NULL);
139 break;
140 case 5: /*Unlock the shared memory
141 segment.*/
142 rtrn = shmetl(shmid, SHM UNLOCK, NULL);
‘,2 143 break;
<+ 144 }
145 /*Perform the following if the call is unsuccessful.*/
146 if(rtrn = = ~1)
147 {
148 printf (”\nThe shmctl system call failed!\n”);
149 printf (“The error number = %d\n”, errno);
150 }
151 /*Return the shmid upon successful completion.*/
m 152 else
t 153 printf ("\nShmctl was successful for shmid = %d\n”,
154 shmid);
155 exit (0);
156 }

INTERPROCESS COMMUNICATION 8-101

Controlling Shared Memory

This page is intentionally left blank

8-102 PROGRAMMER 'S GUIDE

viy

Operations for Shared Memory

This section gives a detailed description of using the shmat(2) and
shmdt(2) system calls, along with an example program which allows
all of their capabilities to be exercised.

Using shmop

ﬁ The synopsis found in the shmop(2) entry in the System V Reference
Manual is as follows:

~ A

tinclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

475

int shmdt (shmaddr)
char *shmaddr;

/

ﬂ Attaching a Shared Memory Segment

The shmat(2) system call requires three arguments to be passed to
it, and it returns a character pointer value.

The system call can be cast to return an integer value. Upon success-
ful completion, this value will be the address in core memory where
the process is attached to the shared memory segment and when
unsuccessful it will be a —1.

The shmid argument must be a valid, non-negative, integer value. In
other words, it must have already been created by using the
("\ shmget(2) system call.

INTERPROCESS COMMUNICATION 8-103

e N R R S L

Operations for Shared Memory

The shmaddr argument can be zero or user supplied when passed to
the shmat(2) system call. If it is zero, the UNIX operating system
picks the address of where the shared memory segment will be
attached. If it is user supplied, the address must be a valid address
that the UNIX operating system would pick. The following illustrates
some typical address ranges; these are for the SUPERMAX Com-
puter:

0x400000
0x500000
0x600000
0x700000

Note that these addresses are in chunks of 10,000 hexadecimal. It
would be wise to let the operating system pick addresses so as to
improve portability.

The shmflg argument is used to pass the SHM _RND and
SHM_RDONLY flags to the shmat() system call.

Further details are discussed in the example program for shmop(). If
you have problems understanding the logic manipulations in this pro-
gram, read the "Using shmget” section of this chapter; it goes into
more detail than what would be practical to do for every system call.

Detaching Shared Memory Segments

The shmdt(2) system call requires one argument to be passed to it,
and shmdt(2) returns an integer value.

Upon successful completion, zero is returned; and when unsuccessful,
shmdt(2) returns a —1.

Further details of this system call are discussed in the example pro-
gram. If you have problems understanding the logic manipulations in
this program, read the ”Using shmget” section of this chapter; it
goes into more detail than what would be practical to do for every
system call.

8-104 PROGRAMMER’'S GUIDE

9Ly

477

P 707]

Operations for Shared Memory

Example Program

The example program in this section (Figure 8-17) is a menu driven
program which allows all possible combinations of using the
shmat(2) and shmdt(2) system calls to be exercised.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files
as specified by the shmop(2) entry in the System V Reference
Manual. Note that in this program that errno is declared as an
external variable, and therefore, the errno.h header file does not
have to be included.

Variable and structure names have been chosen to be as close as pos-
sible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly
legal since they are local to the program. The variables declared for
this program and their purposes are as follows:

e flags —used to store the codes of SHM_RND or SHM_RDONLY
for the shmat(2) system call

o addr—used to store the address of the shared memory segment
for the shmat(2) and shmdt(2) system calls

® i—used as a loop counter for attaching and detaching
e attach —used to store the desired number of attach operations

e shmid—used to store and pass the desired shared memory seg-
ment identifier

o shmflg—used to pass the value of flags to the shmat(2) system
call

e retrn—used to store the return values from both system calls

INTERPROCESS COMMUNICATION 8-105

R

Operations for Shared Memory

¢ detach—used to store the desired number of detach operations

This example program combines both the shmat(2) and shmdt(2)
system calls. The program prompts for the number of attachments
and enters a loop until they are done for the specified shared memory
identifiers. Then, the program prompts for the number of detach-
ments to be performed and enters a loop until they are done for the
specified shared memory segment addresses.

shmat

The program prompts for the number of attachments to be per-
formed, and the value is stored at the address of the attach variable
(lines 17-21).

A loop is entered using the attach variable and the i counter (lines
23-70) to perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment
identifier (lines 24-27) and it is stored at the address of the shmid
variable (line 28). Next, the program prompts for the address where
the segment is to be attached (lines 30-34), and it is stored at the
address of the addr variable (line 35). Then, the program prompts
for the desired flags to be used for the attachment (lines 37-44), and
the code representing the flags is stored at the address of the flags
variable (line 45). The flags variable is tested to determine the code
to be stored for the shmflg variable used to pass them to the
shmat(2) system call (lines 46-57). The system call is made (line 60).
If successful, a message stating so is displayed along with the attach
address (lines 66-68). If unsuccessful, a message stating so is
displayed and the error code is displayed (lines 62, 63). The loop then
continues until it finishes.

shmdt

After the attach loop completes, the program prompts for the number
of detach operations to be performed (lines 71-75), and the value is
stored at the address of the detach variable (line 76).

8-106 PROGRAMMER 'S GUIDE

8¢

B m—— [107)

Operations for Shared Memory

A loop is entered using the detach variable and the i counter (lines
78-95) to perform the specified number of detachments.

In this loop, the program prompts for the address of the shared

memory segment to be detached (lines 79-83), and it is stored at the

address of the addr variable (line 84). Then, the shmdt(2) system

call is performed (line 87). If successful, a message stating so is

displayed along with the address that the segment was detached from

” (lines 92,93). If unsuccessful, the error number is displayed (line 89).
m The loop continues until it finishes.

The example program for the shmop(2) system calls follows. It is
suggested that the program be put into a source file called shmop.c
and then into an executable file called shmop.

Figure 8-17: shmop()' System Call Example

4)

g 1 /*This is a program to illustrate

2 **the shared memory operations, shmop(),
3 **system call capabilities.
4 */
5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>

ﬁ 10 /*Start of main C lanquage program*/
11 main()
12 {
13 extern int errno;
14 int flags, addr, i, attach;
15 int shmid, shmflg, retrn, detach;
16 /*Loop for attachments by this process.*/
17 printf(”Enter the number of\n”);
18 printf(”attachments for this\n");
19 printf(”process (1-4).\n");
20 printf(” Attachments = ");
21 scanf (”%d”, &attach);
22 printf(“Number of attaches = %d\n”, attach);
23 for(i = 1; i <= attach; i++) {

~n U y

(continued on next page)

INTERPROCESS COMMUNICATION 8-107

e

Operations for Shared Memory

4)

24 /*Enter the shared memory ID.*/

25 printf(”\nEnter the shmid of\n”);

26 printf("the shared memory segment to\n”);
27 printf(”be operated on = ");

28 scanf(~%d”, &shmid);

29 printf(”\nshmid = %d\n”, shmid);

30 /*Enter the value for shmaddr.*/

31 printf(”\nEnter the value for\n”);

32 printf(“the shared memory address\n");
33 printf(”in hexadecimal:\n");

34 printf(” Shmaddr = #);

35 scanf ("$x”, &addr);

36 printf(”The desired address = Ox%x\n”, addr);
37 /*Specify the desired flags.*/

38 printf(”\nEnter the corresponding\n”);
39 printf(“number for the desired\n”);

40 printf(“flags:\n”);

41 printf(”SHM RND = 1\n");
42 printf (”SHM RDONLY = 2\n");
43 printf(”"SHM RND and SHM RDONLY = 3\n");
44 printf(” Flags = ");
45 scanf (”%d”, &flags);

46 switch(flags)

47 {

48 case 1:

49 shmflg = SHM RND;

50 break;

51 case 2:

52 shmflg = SHM RDONLY;

53 break;

54 case 3:

55 shmflg = SHM RND | SHM RDONLY;

56 break;

57)

58 printf(”\nFlags = 0%o\n”, shmflg);

59 /*Do the shmat system call.*/

60 retrn = (int)shmat(shmid, addr, shmflg);
61 if(retrn = = -1) {

62 printf(”\nShmat failed. *);

63 printf(”Error = %d\n”, errno);

o /

(continued on next page)

8-108 PROGRAMMER 'S GUIDE

08y

A——)

Operations for Shared Memory

\ 4 N

64 }
65 else {
66 printf (”\nShmat was successful\n”);
67 printf(“for shmid = %d\n”, shmid);
68 printf(“The address = Ox%x\n"”, retrn);
69 }
70 }

A 71 /*Loop for detachments by this process.*/

’ 72 printf(”Enter the number of\n”);

73 printf(”detachments for this\n");
74 printf(”process (1-4).\n");
75 printf(” Detachments = ”);
76 scanf (“%d”, &detach);
77 printf (“Number of attaches = $d\n”, detach);
78 for(i = 1; i <= detach; i++) {
79 /*Enter the value for shmaddr.*/
80 printf(”\nEnter the value for\n”);
81 printf(”the shared memory address\n”);

b= 82 printf(”in hexadecimal:\n");

A 83 printf(” Shmaddr = ");
84 scanf ("$x”, &addr);
85 printf(“The desired address = 0x%x\n", addr);
86 /*Do the shmdt system call.*/
87 retrn = (int)shmdt(addr);
88 if(retrn = = -1) {
89 printf(”Error = %d\n”, errno);

, 90)

ﬁ 91 else {
92 printf (”\nShmdt was successful\n”);
93 printf(“for address = 0%x\n”, addr);
94 }
95 }
9% 3

INTERPROCESS COMMUNICATION 8-109

Operations for Shared Memory

This page is intentionally left blank

8-110 PROGRAMMER 'S GUIDE

414

Chapter 9: curses/terminfo

What is curses?......... feeeutteeesiar a—testeeesaaa—raeesaar—reraesaearraaaeaaesan

m What is terminfo?............ccocoereieirerererceerirssesseeseseseesesseseees
How curses and terminfo Work Together.........................
Other Components of the Terminal Information Utilities .

Working with curses Routines...........ccccecevrevivncnnninniicinnnn.
What Every curses Program Needscccccovvecreecnenninnnne
The Header File <curses.h>cccooovvviieniiicnnnnee

The Routines initscr(), refresh(), endwin()
Compiling a curses Program.........c..cooceceecmrcennenrvnncnncnne,
Running a curses Programcoccoevevcecincnnennnnncinnennne,
More about initscr() and Lines and Columns.....................
More about refresh() and Windowscccccecueercennnnnnen.

483

Controlling Output and Input.......c.ccoccvvevvieireciiecieneeeecneee
Output AtEributes......ccccvvvcveriirreinrceec e
Bells, Whistles, and Flashing Lightsc.ccccooccevvcnnniiinenne.
Input Options....ccccereririirierencreercccereei e

Building Windows and Padsc.cccccoviiviniiiinvnninininen

Output and INPubc.ccoevviieererneinernierr e cceerreesseeseeaes
The Routines wnoutrefresh() and doupdate()

TABLE OF CONTENTS 11

m S A R T R S S AT
I

Table of Contents

Page
New WIndows........coceeverremeeineiieieieeeee e 9-59
Using Advanced curses Features..........ccoooeevviivevicvnvenieninne. 9-63
Routines for Drawing Lines and Other Graphics................ 9-63
Routines for Using Soft Labelscccoceevevieiiceriecrcnenen, 9-65
Working with More than One Terminal...........ccccoveueurnnnen. 9-67
Working with terminfo Routinesc.cccoovvvvvvevriveenennane. 9-69
What Every terminfo Program Needs.............ccocuvnn.e.. 9-70
Compiling and Running a terminfo Program..................... 9-7
An Example terminfo Program...........cc.ccovvevvnveceveencennne. 9-T71
Working with the terminfo Database..............cccovvvrvvvriererrnenn, 9-77
Writing Terminal Descriptionscccooeeeieeeeececccrecennae, 9-77
Name the Terminal.......c.ccocevivrvrnriniennrinreernieeseneceecreeenns 9-178
Learn About the Capabilities.........cccccervercerieriecriieeienenne. 9-179
Specify Capabilitiescccoceeveeiiiiiineecece e, 9-80
Basic Capabilitiescccocevievirerrinireirrre e 9-83
Screen-Oriented Capabilitiesccccceverivieciniensnnieennn 9-83
Keyboard-enetered Capabilities..............ccoeeeeereerreenrenns 9-84
Parameter String Capabilitiesc.cccccecovvevieeiienivenennen. 9-85
Compile the Descriptioncccocevievievienienecneiesesiesrsnnennens 9-87
Comparing or Printing terminfo Descriptions................... 9-89
Converting a termcap Description to a
terminfo Description........cccccocieeiiieeiieccceceeeee e, 9-90
curses Program Examples ..., 9-91
The editor Program...........cooiviviiniininiiiniiineen, 9-91
The highlight Program...........cccocevmiieieiiceceeeeceeeeeeeee 9-99
The scatter Programc..ccoccoceveiiieioninneneneneneeseeneenene 9-101

w Test the Deseription........ccooiveveiiieiiinntecietee e 9-88
I-2 PROGRAMMER'’S GUIDE

12°14

~——] db

Table of Contents

The show Program
The two Program
The window Program

TABLE OF CONTENTS

Table of Contents

This page is intentionally left blank

PROGRAMMER’S GUIDE

98Y

487

Introduction

Screen management programs are a common component of many
commercial computer applications. These programs handle input and
output at a video display terminal. A screen program might move a
cursor, print a menu, divide a terminal screen into windows, or draw
a display on the screen to help users enter and retrieve information
from a database.

This tutorial explains how to use the Terminal Information Utilities
package, commonly called curses/terminfo, to write screen manage-
ment programs on a UNIX system. This package includes a library of
C routines, a database, and a set of UNIX system support tools. To
start you writing screen management programs as soon as possible,
the tutorial does not attempt to cover every part of the package. For
instance, it covers only the most frequently used routines and then
points you to curses(3X) and terminfo(4) in the System V Reference
Manual for more information. Keep the manual close at hand; you’ll
find it invaluable when you want to know more about one of these
routines or about other routines not discussed here.

Because the routines are compiled C functions, you should be familiar
with the C programming language before using curses/terminfo.
You should also be familiar with the UNIX system/C language stan-
dard I/O package (see ”System Calls and Subroutines” and
“Input/Output” in Chapter 2 and stdio(3S)). With that knowledge
and an appreciation for the UNIX philosophy of building on the work
of others, you can design screen management programs for many pur-
poses.

This chapter has five sections:
e Overview

This section briefly describes curses, terminfo, and the other
components of the Terminal Information Utilities package.

curses/terminfo 91

Introduction

® Working with curses Routines

This section describes the basic routines making up the
curses(3X) library. It covers the routines for writing to a
screen, reading from a screen, and building windows. It also
covers routines for more advanced screen management pro-
grams that draw line graphics, use a terminal’s soft labels, and
work with more than one terminal at the same time. Many
examples are included to show the effect of using these rou-
tines.

Working with terminfo Routines

This section describes the routines in the curses library that
deal directly with the terminfo database to handle certain ter-
minal capabilities, such as programming function keys.

Working with the terminfo Database

This section describes the terminfo database, related support
tools, and their relationship to the curses library.

curses Program Examples

This section includes six programs that illustrate uses of
curses routines.

PROGRAMMER’S GUIDE

887y

~————————]d&

Overview

What is curses?

curses(3X) is the library of routines that you use to write screen
management programs on the UNIX system. The routines are C
functions and macros; many of them resemble routines in the stan-

ﬁ dard C library. For example, there’s a routine printw() that behaves
much like printf(3S) and another routine getch() that behaves like
getc(3S). The automatic teller program at your bank might use
printw() to print its menus and getch() to accept your requests for
withdrawals (or, better yet, deposits). A visual screen editor like the
UNIX system screen editor vi(l) might also use these and other
curses routines.

The curses routines are usually located in /usr/lib?/libcurses.a,
(where ? is the TARGETMC). To compile a program using these rou-
tines, you must use the ce(l) command and include —lcurses on the
command line so that the link editor can locate and load them:

489

cec file.e ~—lcurses -—o file

The name curses comes from the cursor optimization that this

library of routines provides. Cursor optimization minimizes the

ﬂ amount a cursor has to move around a screen to update it. For

' example, if you designed a screen editor program with curses rou-
tines and edited the sentence

curses/terminfo is a great package for creating screens.
to read
curses/terminfo is the best package for creating screens.

the program would output only the best in place of a great. The

| other characters would be preserved. Because the amount of data

1 , transmitted —the output—is minimized, cursor optimization is also
m referred to as output optimization.

curses/terminfo 9-3

e

Overview

Cursor optimization takes care of updating the screen in a manner
appropriate for the terminal on which a curses program is run. This
means that the curses library ¢gn do whatever is required to update
many different terminal types. It searches the terminfo database
(described below) to find the correct description for a terminal.

How does cursor optimization help you and those who use your pro-
grams? First, it saves you time in describing in a program how you
want to update screens. Second, it saves a user’s time when the
screen is updated. Third, it reduces the load on your UNIX system’s
communication lines when the updating takes place. Fourth, you
don’t have to worry about the myriad of terminals on which your pro-
gram might be run.

Here’s a simple curses program. It uses some of the basic curses
routines to move a cursor to the middle of a terminal screen and
print the character string BullsEye. Each of these routines is
described in the following section "Working with curses Routines” in
this chapter. For now, just look at their names and you will get an
idea of what each of them does:

4 N

#include <curses.h>

main()
{

initscr();

move(LINES/2 - 1, COLS/2 - 4);
addstr(”Bulls”);
refresh(};
addstr(“Eye”);
refresh();
endwin();
}

N J

Figure 9-1: A Simple curses Program

9-4 PROGRAMMER'’S GUIDE

06

- ——————————]d&

Overview

What is terminfo?

terminfo refers to both of the following:

e It is a group of routines within the curses library that handles
certain terminal capabilities. You can use these routines to
program function keys, if your terminal has programmable
keys, or write filters, for example. Shell programmers, as well

m as C programmers, can use the terminfo routines in their pro-
‘ grams.

e It is a database containing the descriptions of many terminals
that can be used with curses programs. These descriptions
specify the capabilities of a terminal and the way it performs
various operations—for example, how many lines and columns
it has and how its control characters are interpreted.

Each terminal description in the database is a separate, com-
piled file. You use the source code that terminfo(4) describes
to create these files and the command tic(IM) to compile them.

491

The compiled files are normally located in the directories
/usr/lib/terminfo/?. These directories have single character
names, each of which is the first character in the name of a ter-

m minal. For example, the standard entry for a terminal on the
SUPERMAX computer is located in the file
Jusr/lib/terminfo/T/T3 —24 — C80.

Here’s a simple shell script that uses the terminfo database.

curses/terminfo 9-5

SRR Beatm s o L R T
————
]

Overview

Clear the screen and show the 0,0 position.
#
tput clear

tput cup 0 0 # or tput home
echo ”<- this is 0 0~

¥

Show the 5,10 position.
#

tput cup 5 10

echo ”<- this is 5 10"

N /

Figure 9-2: A Shell Script Using terminfo Routines

How curses and terminfo Work Together

A screen management program with curses routines refers to the
terminfo database at run time to obtain the information it needs
about the terminal being used —what we’ll call the current terminal
from here on.

For example, suppose you are using a terminal with 24 lines and 80
columns. to run the simple curses program shown in Figure 9-1. To
execute properly, the program needs to know how many lines and
columns the terminal screen has to print the BullsEye in the mid-
dle of it. The description of the terminal terminfo database has this
information. All the curses program needs to know before it goes
looking for the information is the name of your terminal. You tell the
program the name by putting it in the environment variable $TERM
when you log in or by setting and exporting $TERM in your .profile
file (see profile(4)). Knowing $TERM, a curses program run on the
current terminal can search the terminfo database to find the
correct terminal description.

9-6 PROGRAMMER'’S GUIDE

493

~—————————————Jdb

Overview

For example, assume that the following example lines are in a
.profile:

TERM=T3 — 24 —C80
export TERM

The first line names the terminal type, and the second line exports it.
(See profile(4) in the System V Reference Manual.) If you had these
lines in your .profile and you ran a curses program, the program
would get the information that it needs about your terminal from the
file /usr/lib/terminfo/T /T3 —24 — C80, which provides a match for
$TERM.

Other Components of the Terminal Information
Utilities

We said earlier that the Terminal Information Utilities is commonly
referred to as curses/terminfo. The package, however, has other
components. We’ve mentioned some of them, for instance tic(1M).
Here’s a complete list of the components discussed in this tutorial:

captoinfo(1M) a tool for converting terminal descriptions
developed on earlier releases of the UNIX sys-
tem to terminfo descriptions

curses(3X)

infoecmp(1M) a tool for printing and comparing compiled
terminal descriptions

tabs(1) a tool for setting non-standard tab stops

terminfo(4)

tic(1M) a tool for compiling terminal descriptions for

the terminfo database

curses/terminfo 9-7

oo em—
I

Overview

tput(l) a tool for initializing the tab stops on a termi-
nal and for outputting the value of a terminal
capability

We also refer to profile(4), scr_dump(4), term(4), and terminol-
ogy(1). For more information about any of these components, see the

System V Reference Manual and the Virtual Terminal Interface
Guide.

9-8 PROGRAMMER'’S GUIDE

14514

495

~] d&|

Working with curses Routines

This section describes the basic curses routines for creating interac-
tive screen management programs. It begins by describing the rou-
tines and other program components that every curses program
needs to work properly. Then it tells you how to compile and run a
curses program. Finally, it describes the most frequently used
curses routines that

e write output to and read input from a terminal screen

® control the data output and input — for example, to print out-
put in bold type or prevent it from echoing (printing back on a
screen)

e manipulate multiple screen images (windows)

e draw simple graphics

¢ manipulate soft labels on a terminal screen

e send output to and accept input from more than one terminal.
To illustrate the effect of using these routines, we include simple
example programs as the routines are introduced. We also refer to a
group of larger examples located in the section "curses Program
Examples” in this chapter. These larger examples are more challeng-

ing; they sometimes make use of routines not discussed here. Keep
the curses(3X) manual page handy.

curses/terminfo 9-9

Working with curses Routines

What Every curses Program Needs

All curses programs need to include the header file <curses.h> and
call the routines initser(), refresh() or similar related routines, and
endwin().

The Header File <curses.h >

The header file <curses.h> defines several global variables and data
structures and defines several curses routines as macros.

To begin, let’s consider the variables and data structures defined.
<curses.h > defines all the parameters used by curses routines. It
also defines the integer variables LINES and COLS; when a curses
program is run on a particular terminal, these variables are assigned
the vertical and horizontal dimensions of the terminal screen, respec-
tively, by the routine initser() described below. The header file
defines the constants OK and ERR, too. Most curses routines have
return values; the OK value is returned if a routine is properly com-
pleted, and the ERR value if some error occurs.

LINES and COLS are external (global) variables that represent
NOTE| the size of a terminal secreen. Two similar variables, $LINES
and $COLUMNS, may be set in a user’s shell environment; a
I curses program uses the environment variables to determine

the size of a screen. Whenever we refer to the environment
variables in this chapter, we will use the $ to distinguish them
from the C declarations in the <curses.h> header file.

For more information about these variables, see the following
sections "The Routines initser(), refresh(), and endwin()” and
"More about initscr() and Lines and Columns.”

Now let’s consider the macro definitions. <curses.h> defines many
curses routines as macros that call other macros or curses routines.
For instance, the simple routine refresh() is a macro. The line

#define refresh() wrefresh(stdscr)

shows when refresh is called, it is expanded to call the curses

9-10 PROGRAMMER’S GUIDE

96v

497

Working with curses Routines

routine wrefresh(). The latter routine in turn calls the two curses
routines wnoutrefresh() and doupdate(). Many other routines also
group two or three routines together to achieve a particular result.

Macro expansion in curses programs may cause problems
with certain sophisticated C features, such as the use of

automatic incrementing variables.

One final point about <curses.h>: it automatically includes
<stdio.h> and the <termio.h> tty driver interface file. Including
either file again in a program is harmless but wasteful.

The Routines initser(), refresh(), endwin()

The routines initser(), refresh(), and endwin() initialize a terminal
screen to an ”in curses state,” update the contents of the screen, and
restore the terminal to an “out of curses state,” respectively. Use
the simple program that we introduced earlier to learn about each of
these routines:

4)

#include <curses.h>

main()
{
initser(); /* initialize terminal settings and <curses.h>
data structures and variables */
move(LINES/2 - 1, COLS/2 - 4);
addstr(”Bulls”);

refresh(); /* send output to (update) terminal screen */
addstr(”Eye”);

refresh(); /* send more output to terminal screen */
endwin(); /* restore all terminal settings */

}

-)

Figure 9-3: The Purposes of initscr(), refresh(), and endwin()
in a Program

curses/terminfo 9-11

Working with curses Routines

A curses program usually starts by calling initser(); the program
should call initser() only once. Using the environment variable
$TERM as the section "How curses and terminfo Work Together”
describes, this routine determines what terminal is being used. It
then initializes all the declared data structures and other variables
from <curses.h>. For example, initscr() would initialize LINES
and COLS for the sample program on whatever terminal it was run.
If STERM=T3-24—-C80 were used, this routine would initialize
LINES to 24 and COLS to 80. Finally, this routine writes error
messages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by
routines like move() and addstr() in the sample program. For exam-
ple,

move(LINES/2 - 1, COLS/2 - 4);
says to move the cursor to the left of the middle of the screen. Then
the line

addstr(”"Bulls”);

says to write the character string Bulls. For example, if
$TERM =T3—-24-C805 were used, these routines would position
the cursor and write the character string at (11,36).

All curses routines that move the cursor move it from its home
NOTE | position in the wupper left corner of a screen. The
(LINES,COLS) coordinate at this position is (0,0) not (1,1).
[Notice that the vertical coordinate is given first and the horizon-

tal second, which is the opposite of the more common ’x,y’ order
of screen (or graph) coordinates. The -1 in the sample program
takes the (0,0) position into account to place the cursor on the
center line of the terminal screen.

Routines like move() and addstr() do not actually change a physical
terminal screen when they are called. The screen is updated only
when refresh() is called. Before this, an internal representation of
the screen called a window is updated. This is a very important con-
cept, which we discuss below under "More about refresh() and Win-
dows.”

9-12 PROGRAMMER’S GUIDE

86y

W/

Working with curses Routines

Finally, a curses program ends by calling endwin(). This routine
restores all terminal settings and positions the cursor at the lower
left corner of the screen.

Compiling a curses Program

You compile programs that include curses routines as C language

ﬂ programs using the ce(l) command (documented in the System Refer-

‘ ence Manual), which invokes the C compiler (see Chapter 2 in this
guide for details).

The routines are usually stored in the library fusr/lib?/libcurses.a,
(where ? is TARGETMC). To direct the link editor to search this
library, you must use the —1 option with the cc command.

The general command line for compiling a curses program follows:

ce file.c -—lcurses -—o file

499

file.c is the name of the source program; and file is the executable
object module.

Running a curses Program

curses programs count on certain information being in a user’s
environment to run properly. Specifically, users of a curses program
should usually include the following three lines in their .profile files:

TERM=current terminal type
export TERM

For an explanation of these lines, see the section "How curses and

terminfo Work Together” in this chapter. Users of a curses pro-

gram could also define the environment variables $LINES,
ﬁ $COLUMNS, and $TERMINFO in their .profile files. However,
' unlike $TERM, these variables do not have to be defined.

curses/terminfo 9-13

Working with curses Routines

If a curses program does not run as expected, you might want to
debug it with sdb(1), which is documented in the System V Reference
Manual). When using sdb, you have to keep a few points in mind.
First, a curses program is interactive and always has knowledge of
where the cursor is located. An interactive debugger like sdb, how-
ever, may cause changes to the contents of the screen of which the
curses program is not aware.

Second, a curses program outputs to a window until refresh() or a
similar routine is called. Because output from the program may be
delayed, debugging the output for consistency may be difficult.

Third, setting break points on curses routines that are macros, such
as refresh(), does not work. You have to use the routines defined for
these macros, instead; for example, you have to use wrefresh()
instead of refresh(). See the above section, "The Header File
< curses.h>,” for more information about macros.

More about initscr() and Lines and Columns

After determining a terminal’s screen dimensions, initser() sets the
variables LINES and COLS. These variables are set from the ter-
minfo variables lines and columns. These, in turn, are set from the
values in the terminfo database, unless these values are overridden
by the values of the environment $LINES and $COLUMNS.

More about refresh() and Windows

As mentioned above, curses routines do not update a terminal until
refresh() is called. Instead, they write to an internal representation
of the screen called a window. When refresh() is called, all the accu-
mulated output is sent from the window to the current terminal
screen.

9-14 PROGRAMMER’S GUIDE

00S

501

mne:

Working with curses Routines

A window acts a lot like a buffer does when you use a UNIX system
editor. When you invoke vi(1), for instance, to edit a file, the changes
you make to the contents of the file are reflected in the buffer. The
changes become part of the permanent file only when you use the w
or ZZ command. Similarly, when you invoke a screen program made
up of curses routines, they change the contents of a window. The
changes become part of the current terminal screen only when
refresh() is called.

<curses.h> supplies a default window named stdscr (standard
screen), which is the size of the current terminal’s screen, for all pro-
grams using curses routines. The header file defines stdser to be of
the type WINDOW =, a pointer to a C structure which you might
think of as a two-dimensional array of characters representing a ter-
minal screen. The program always keeps track of what is on the phy-
sical screen, as well as what is in stdser. When refresh() is called, it
compares the two screen images and sends a stream of characters to
the terminal that make the current screen look like stdser. A
curses program considers many different ways to do this, taking into
account the various capabilities of the terminal and similarities
between what is on the screen and what is on the window. It optim-
izes output by printing as few characters as is possible. Figure 9-4
illustrates what happens when you execute the sample curses pro-
gram that prints BullsEye at the center of a terminal screen (see
Figure 9-1). Notice in the figure that the terminal screen retains
whatever garbage is on it until the first refresh() is called. This
refresh() clears the screen and updates it with the current contents
of stdscr.

curses/terminfo 9-15

Working with curses Routines

initscer()

move(LINES/2 - 1,
COLS/1 -4)
[2,3]

addstr('Bulls"

refresh()

stdser

[

stdscr

[

stdscr

Bulls []

stdscr

Bulls []

physical screen

(garbage)

physical screen

(garbage)

physical screen

(garbage)

physical screen

Bulls []

Figure 9-4: The Relationship between stdscr and a Terminal Screen

9-16

(Sheet 1 of 2)

PROGRAMMER'’S GUIDE

20s

Working with curses Routines

stdscr physical screen

Bulls Eye D Bulls D

addstr("Eye")

stdscr physical screen
refresh() Bulls Eye [] Bulls Eye]
[s]
3
stdscr physical screen
m endwin() Bulls Eye [| Bulls Eye
, Figure 9-4: The Relationship Between stdscr and a Terminal Screen
ﬁ (Sheet 2 of 2)

curses/terminfo 917

Working with curses Routines

You can create other windows and use them instead of stdser. Win-
dows are useful for maintaining several different screen images. For
example, many data entry and retrieval applications use two windows:
one to control input and output and one to print error messages that
don’t mess up the other window.

It’s possible to subdivide a screen into many windows, refreshing each
one of them as desired. When windows overlap, the contents of the
current screen show the most recently refreshed window. It’s also
possible to create a window within a window; the smaller window is
called a subwindow. Assume that you are designing an application
that uses forms, for example, an expense voucher, as a user interface.
You could use subwindows to control access to certain fields on the
form.

Some curses routines are designed to work with a special type of
window called a pad. A pad is a window whose size is not restricted
by the size of a screen or associated with a particular part of a screen.
You can use a pad when you have a particularly large window or only
need part of the window on the screen at any one time. For example,
you might use a pad for an application with a spread sheet.

Figure 9-5 represents what a pad, a subwindow, and some other win-
dows could look like in comparison to a terminal screen.

9-18 PROGRAMMER’S GUIDE

¥0S

Working with curses Routines

terminal screen

Z

subwindow

Figure 9-5: Multiple Windows and Pads Mapped to a Terminal Screen

The section "Building Windows and Pads” in this chapter
describes the routines you use to create and use them. If you'd
like to see a curses program with windows now, you can turn to
the window program under the section "curses Program
Examples” in this chapter.

curses/terminfo

]
] —

Getting Simple Output and Input

Output

The routines that curses provides for writing to stdser are similar to
those provided by the stdio(3S) library for writing to a file. They let

you
°

write a character at a time — addch()
write a string — addstr()
format a string from a variety of input arguments — printw()

move a cursor or move a cursor and print character(s) —
move(), mvaddch(), mvaddstr(), mvprintw()

clear a screen or a part of it — clear(), erase(), clrtoeol(),
clrtobot()

Following are descriptions and examples of these routines.

The curses library provides its own set of output and input
W functions. You should not use other I/O routines or system

9-20

calls, like read(2) and write(2), in a curses program. They
may cause undesirable results when you run the program.

PROGRAMMER’S GUIDE

90S

507

T
_

Getting Simple Output and Input

NAME
addch()

SYNOPSIS
#include <curses.h>
int addch(ch)

chtype ch;
NOTES

o addch() writes a single character to stdscr.

® The character is of the type chtype, which is defined in
<curses.h>. chtype contains data and attributes (see "Out-
put Attributes” in this chapter for information about attri-
butes).

e When working with variables of this type, make sure you
declare them as chtype and not as the basic type (for example,
short) that chtype is declared to be in <curses.h>. This
will ensure future compatibility.

¢ addch() does some translations. For example, it converts

o the <NL> character to a clear to end of line and a move
to the next line

¢ the tab character to an appropriate number of blanks

o other control characters to their “X notation

e addch() normally returns OK. The only time addch() returns
ERR is after adding a character to the lower right-hand corner
of a window that does not scroll.

e addch() is a macro.

curses/terminfo 9-21

—
]

Getting Simple Output and Input

EXAMPLE
#include <curses.h>

main()

{
initscr();
addch('a’);
refresh();
endwin();

}

The output from this program will appear as follows:

Also see the show program under ”curses Example Programs” in

this chapter.

9-22

PROGRAMMER'’S GUIDE

80§

509

Getting Simple Output and Input

NAME
addstr()

- SYNOPSIS

#include < curses.h>

int addstr(str)
char =* str;

NOTES
e addstr() writes a string of characters to stdscr.
e addstr() calls addch() to write each character.
e addstr() follows the same translation rules as addch().
e addstr() returns OK on success and ERR on error.
e addstr() is a macro.
EXAMPLE

Recall the sample program that prints the character string
BullsEye. See Figures 9-1, 9-2, and 9-4.

curses/terminfo 9-23

Getting Simple Output and Input

NAME

printw()

SYNOPSIS
#include < curses.h>

int printw(fmt [,arg...])
char *fmt

NOTES

e printw() handles formatted printing on stdscr.

e Like printf, printw() takes a format string and a variable

number of arguments.

e Like addstr(), printw() calls addch() to write the string.

® printw() returns OK on success and ERR on error.

9-24

PROGRAMMER'’S GUIDE

0lS

k3

Getting Simple Output and Input

EXAMPLE

#include <curses.h>
; main()

{
‘ char* title = "Not specified”;
| int no = 0;
- /* Missing code. */
| initser();
/* Missing code. */

printw(”%s is not in stock.\n”, title);

printw(”Please ask the cashier to order %d\
for you.\n"”, no);

51

refresh();
endwin();

}

The output from this program will appear as follows:

m

Not specified is not in stock.
Please ask the cashier to order 0 for you.

curses/terminfo 9-25

«‘wzs‘é\ e m AR TR SRR R S L R TR

—

Getting Simple Output and Input

NAME

move()

SYNOPSIS

#include <curses.h>

int move(y, x);
int y, x;

NOTES

® move() positions the cursor for stdscr at the given row y and

the given column x.

Notice that move() takes the y coordinate before the x coordi-
nate. The upper left-hand coordinates for stdscr are (0,0), the
lower right-hand (LINES - 1, COLS - 1). See the section
"The Routines initscr(), refresh(), and endwin()” for more
information.

move() may be combined with the write functions to form

o mvaddch(y, x, ch), which moves to a given position and
prints a character

¢ mvaddstr(y, x, str), which moves to a given position
and prints a string of characters

e mvprintw(y, x, fmt [,arg...]),
which moves to a given position and prints a formatted
string.

® move() returns OK on success and ERR on error. Trying to

move to a screen position of less than (0,0) or more than
(LINES - 1, COLS - 1) causes an error.

® move() is a macro.

9-26

PROGRAMMER’S GUIDE

cls

Getting Simple Output and Input

EXAMPLE

#include <curses.h>

main()

{
initscr();
addstr(”Cursor should be here --> if move() works.”);
printw(”\n\n\nPress <CR> to end test.”);

(m\ move(0,25);

refresh();
getch(); /* Gets <CR>; discussed below. */
endwin();

}
Here’s the output generated by running this program:

513

Cursor should be here -->[Jif move() works.

Press <CR> to end test.

After you press <CR>, the screen looks like this:

Cursor should be here ——>

Press <CR> to end test.

sOd

See the scatter program under “curses Program Examples” in this
chapter for another example of using move().

curses/terminfo 9-27

Y —

Getting Simple Output and Input

NAME

clear() and erase()

SYNOPSIS
#include < curses.h>

int clear()
int erase()

NOTES
¢ Both routines change stdser to all blanks.

o clear() also assumes that the screen may have garbage that it
doesn’t know about; this routine first calls erase() and then
clearok() which clears the physical screen completely on the
next call to refresh() for stdser. See the curses(3X) manual
page for more information about clearok().

e initscr() automatically calls clear().
® clear() always returns OK; erase() returns no useful value.

® Both routines are macros.

9-28 PROGRAMMER'’S GUIDE

vis

Getting Simple Output and Input

NAME
clrtoeol() and clrtobot()

SYNOPSIS
#include <curses.h>

int clrtoeol()
int clrtobot()

NOTES
e clrtoeol() changes the remainder of a line to all blanks.
e clrtobot() changes the remainder of a screen to all blanks.
e Both begin at the current cursor position inclusive.

e Neither returns any useful value.

515

curses/terminfo 9-29

Getting Simple Output and Input

EXAMPLE
The following sample program uses clrtobot().

#include <curses.h>

main()

{

initscr();

noecho(); ,

addstr(”Press <CR> to delete from here to the end)\ ‘“’
of the line and on.”);

addstr(”\nDelete this too.\nAnd this.”);

move(0,30);

refresh();

getch();

clrtobot();

refresh();

endwing();

9IS

}

Here’s the output generated by running this program:

Press <CR> to delete from here[Jto the end of the line and on.

Delete this too. U

And this.

Notice the two calls to refresh(): one to send the full screen of text
to a terminal, the other to clear from the position indicated to the
bottom of a screen.

Here’s what the screen looks like when you press <CR>:

9-30 PROGRAMMER’S GUIDE

e ———————dk

Getting Simple Output and input

Press <CR> to delete from here

sO

See the show and two programs under ”"curses Example Programs”
ﬂ for examples of uses for clrtoeol().

curses/terminfo 9-31

Getting Simple Output and Input

This page is intentionally left blank

9-32 PROGRAMMER'’S GUIDE

8IS

519

Input

curses routines for reading from the current terminal are similar to
those provided by the stdio(3S) library for reading from a file. They
let you

® read a character at a time — getch()
® read a <NL>-terminated string — getstr()

® parse input, converting and assigning selected data to an argu-
ment list — scanw()

The primary routine is getch(), which processes a single input char-
acter and then returns that character. This routine is like the C
library routine getchar()(3S) except that it makes several terminal-
or system-dependent options available that are not possible with
getchar(). For example, you can use getch() with the curses rou-
tine keypad(), which allows a curses program to interpret extra keys
on a user’s terminal, such as arrow keys, function keys, and other
special keys that transmit escape sequences, and treat them as just
another key. See the descriptions of getch() and keypad() on the
curses(3X) manual page for more information about keypad().

The following pages describe and give examples of the basic routines
for getting input in a screen program.

curses/terminfo 9-33

Input

NAME
getch()

SYNOPSIS

#include <curses.h>

int getch()
NOTES

9-34

getch() reads a single character from the current terminal.

getch() returns the value of the character or ERR on ’end of
file,” receipt of signals, or non-blocking read with no input.

getch() is a macro.

See the discussions about echo(), noecho(), cbreak(), noc-
break(), raw(), noraw(), halfdelay(), nodelay(), and
keypad() below and in curses(3X).

PROGRAMMER'’S GUIDE

02s

AR T SRR g

Input

EXAMPLE

#include <curses.h>

main()

{
int ch;

initscr();
fn3 cbreak(); /* Explained later in the section */
/* ”Input Options” */
addstr(”"Press any character: ”);
refresh();
ch = getch();
printw(”The character entered was a ’"%c’.”, ch);
refresh();
endwin();

}

521

The output from this program follows. The first refresh() sends the
addstr() character string from stdscr to the terminal:

Press any character: []

Then assume that a w is typed at the keyboard. getch() accepts the
character and assigns it to ch. Finally, the second refresh() is called
and the screen appears as follows:

curses/terminfo : 9-35

Input

Press any character: w

The character entered was a 'w’.

sO ; /
For another example of getch(), see the show program under
”curses Example Programs” in this chapter.

9-36 PROGRAMMER'’S GUIDE

u

22s

NAME
getstr()

SYNOPSIS

#include <curses.h>

int getstr(str)
char = str;

NOTES

getstr() reads characters and stores them in a buffer until a
<CR>, <NL>, or <ENTER> is received from stdscr.
getstr() does not check for buffer overflow.

The characters read and stored are in a character string.
getstr() is a macro; it calls geteh() to read each character.

getstr() returns ERR if getch() returns ERR to it. Otherwise
it returns OK.

See the discussions about echo(), noecho(), cbreak(), noc-
break(), raw(), noraw(), halfdelay(), nodelay(), and
keypad() below and in curses(3X).

curses/terminfo

EXAMPLE

#include <curses.h>

main()

{

char str[256];

}

initscr();
cbreak(); /* Explained later in the section */
/* "Input Options” */
addstr(”Enter a character string terminated)
by <CR>:\n\n");
refresh();
getstr(str);
printw(”The string entered was ’'%s’'”, str);
refresh();
endwin();

Assume you entered the string ’I enjoy learning about the UNIX sys-
tem.” The final screen (after entering <CR>) would appear as fol-
lows:

4 N

Enter a character string terminated by <CR>:

I enjoy learning about the UNIX system.

The string entered was
‘I enjoy learning about the UNIX system.’

_ y,

9-38 PROGRAMMER'’S GUIDE

bes

NAME

scanw()

SYNOPSIS
#include <curses.h>

int scanw(fmt [, arg...])
char * fmt;

NOTES

e scanw() calls getstr() and parses an input line.

e Like scanf(3S), scanw() uses a format string to convert and
assign to a variable number of arguments.

o scanw() returns the same values as scanf().

® See scanf(3S) for more information.

525

curses/terminfo 9-39

o}

—]
] —

Input

EXAMPLE

#include <curses.h>

main()

{
char string[100];
float number;

initscr(); \,‘
cbreak(); /* Explained later in the */
echo(); /* section "Input Options” */

addstr(”Enter a number and a string separated by)\
a comma: ");
refresh();
scanw(”%£f,%s”,&number, string);
clear();
printw(”The string was \”%s\”and the number
was %f.”,string,number);

9es

refresh();
endwin();

}

Notice the two calls to refresh(). The first call updates the screen
with the character string passed to addstr(), the second with the W
string returned from scanw(). Also notice the call to clear().
Assume you entered the following when prompted: 2,twin. After
running this program, your terminal screen would appear, as follows:

The string was “twin” and the number was 2.000000.

sO)

9-40 PROGRAMMER'’S GUIDE

527

Controlling Output and Input

Output Attributes

When we talked about addch(), we said that it writes a single charac-
ter of the type chtype to stdscr. chtype has two parts: a part with
information about the character itself and another part with informa-
tion about a set of attributes associated with the character. The
attributes allow a character to be printed in reverse video, bold,
underlined, and so on.

stdser always has a set of current attributes that it associates with
each character as it is written. However, using the routine attrset()
and related curses routines described below, you can change the
current attributes. Below is a list of the attributes and what they
mean;

e A BLINK blinking

e A BOLD extra bright or bold
e A DIM half bright

e A REVERSE reverse video

e A STANDOUT a terminal’s best highlighting mode
e A UNDERLINE underlining

e A ALTCHARSET alternate character set (see the section
"Drawing Lines and Other Graphics” in
this chapter).

To use these attributes, you must pass them as arguments to
attrset() and related routines; they can also be ORed with the bit-
wise OR (]) to addch().

curses/terminfo 9-41

m AR T R S R DGR T S T D e S e SRR R LT

Controlling Output and Input

Not all terminals are capable of displaying all attributes. If a par-
NOTE | ticular terminal cannot display a requested attribute, a curses
program attempts to find a substitute attribute. If none is possi-
] ble, the attribute is ignored.

Let’s consider a use of one of these attributes. To display a word in
bold, you would use the following code:

4)

printw(”A word in ”);

attrset (A BOLD);
printw(”boldface”);

attrset(0);

printw(” really stands out.\n");

kefresh(): /

Attributes can be turned on singly, such as attrset(A_BOLD) in the
example, or in combination. - To turn on blinking bold text, for exam-
ple, you would use attrset(A_BLINK | A BOLD). Individual attri-
butes can be turned on and off with the curses routines attron() and
attroff() without affecting other attributes. attrset(0) turns all
attributes off.

Notice the attribute called A STANDOUT. You might use it to make
text attract the attention of a user. The particular hardware attri-
bute used for standout is the most visually pleasing attribute a termi-
nal has. Standout is typically implemented as reverse video or bold.
Many programs don’t really need a specific attribute, such as bold or
reverse video, but instead just need to highlight some text. For such
applications, the A STANDOUT attribute is recommended. Two con-
venient functions, standout() and standend() can be used to turn on
and off this attribute. standend(), in fact, turns of all attributes.

9-42 PROGRAMMER’S GUIDE

825

529

~ ————————————] 4k

Controlling Output and Input

In addition to the attributes listed above, there are two bit masks
called A CHARTEXT and A_ATTRIBUTES. You can use these bit
masks with the curses function inch() and the C logical AND (&)
operator to extract the character or attributes of a position on a ter-
minal screen. See the discussion of inch() on the curses(3X) manual
page.

Following are descriptions of attrset() and the other curses routines
that you can use to manipulate attributes.

curses/terminfo 9-43

. B e T A AR

Controlling Output and Input

NAME
attron(), attrset(), and attroff()

SYNOPSIS

#include < curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attroff(attrs)
chtype attrs;

NOTES

attron() turns on the requested attribute attrs in addition to
any that are currently on. attrs is of the type chtype and is
defined in <curses.h>.

attrset() turns on the requested attributes attrs instead of any
that are currently turned on.

attroff() turns off the requested attributes attrs if they are on.
The attributes may be combined using the bitwise OR (|).
All return OK.

EXAMPLE

See the highlight program under ”curses Example Programs” in
this chapter.

PROGRAMMER’S GUIDE

0€s

531

. ———— 1 db|

Controlling Output and Input

NAME

standout() and standend()

SYNOPSIS
#include <curses.h>

int standout()
int standend()

NOTES

e standout() turns on the preferred highlighting attribute,
A STANDOUT, for the current terminal. This routine is
equivalent to attron(A_STANDOUT).

e standend() turns off all attributes. This routine is equivalent
to attrset(0).

e Both always return OK.
EXAMPLE

See the highlight program under "curses Example Programs” in
this chapter.

curses/terminfo 9-45

Controlling Output and input

Bells, Whistles, and Flashing Lights

Occasionally, you may want to get a user’s attention. Two curses
routines were designed to help you do this. They let you ring the
terminal’s chimes and flash its screen.

flash() flashes the screen if possible, and otherwise rings the bell.
Flashing the screen is intended as a bell replacement, and is particu-
larly useful if the bell bothers someone within ear shot of the user.
The routine beep() can be called when a real beep is desired. (If for
some reason the terminal is unable to beep, but able to flash, a call to
beep() will flash the screen.)

NAME
beep() and flash()

SYNOPSIS
#include <curses.h>

int flash()
int beep()

NOTES

e flash() tries to flash the terminals screen, if possible, and, if
not, tries to ring the terminal bell.

® beep() tries to ring the terminal bell, if possible, and, if not,
tries to flash the terminal screen.

® Neither returns any useful value.

9-46 PROGRAMMER'’S GUIDE

2es

533

P —— 7]

Controlling Output and Input

Input Options

The UNIX system does a considerable amount of processing on input
before an application ever sees a character. For example, it does the
following:

® echoes (prints back) characters to a terminal as they are typed
® interprets line editing keys.

e interprets a CTRL-D (control d) as end of file (EOF)

® interprets interrupt and quit characters

e strips the character’s parity bit

® translates <CR> to <NL>

Because a curses program maintains total control over the screen,
curses turns off echoing on the UNIX system and does echoing itself.
At times, you may not want the UNIX system to process other char-
acters in the standard way in an interactive screen management pro-
gram. Some curses routines, noecho() and cbreak(), for example,
have been designed so that you can change the standard character
processing. Using these routines in an application controls how input
is interpreted. Figure 9-6 shows some of the major routines for con-
trolling input.

Every curses program accepting input should set some input options.
This is because when the program starts running, the terminal on
which it runs may be in cbreak(), raw(), nocbreak(), or noraw()
mode. Although the curses program starts up in echo() mode, as
Figure 9-6 shows, none of the other modes are guaranteed.

The combination of noecho() and cbreak() is most common in
interactive screen management programs. Suppose, for instance, that
you don’t want the characters sent to your application program to be
echoed wherever the cursor currently happens to be; instead, you
want them echoed at the bottom of the screen. The curses routine
noecho() is designed for this purpose. However, when noecho()
turns off echoing, normal erase and kill processing is still on. Using
the routine cbreak() causes these characters to be uninterpreted.

curses/terminfo 9-47

Controlling Output and Input

Input Characters
Options Interpreted Uninterpreted
Normal interrupt, quit
‘out of curses stripping
state’ <CR> to <NL>
echoing
erase, kill .
EOF
Normal echoing All else
curses 'start up | (simulated) undefined.
state’
cbreak() interrupt, quit erase, kill
and echo() stripping EOF
echoing
cbreak() interrupt, quit echoing
and noecho() stripping erase, kill
EOF
nocbreak() break, quit echoing
and noecho() stripping
erase, kill
EOF
nocbreak() See caution below.
and echo()
nl() <CR> to <NL>
nonl() <CR> to <NL>
raw() break, quit
(instead of stripping
cbreak())

Figure 9-6: Input Option Settings for curses Programs

PROGRAMMER’S GUIDE

bES

635

db F—

Controlling Output and Input

Do not use the combination nocbreak() and noecho(). If
you use it in a program and also use getch(), the program
will go in and out of cbreak() mode to get each character.
Depending on the state of the tty driver when each character

is typed, the program may produce undesirable output.

In addition to the routines noted in Figure 9-6, you can use the
curses routines noraw(), halfdelay(), and nodelay() to control
input. See the curses(3X) manual page for discussions of these rou-
tines.

The next few pages describe noecho(), cbreak() and the related rou-
tines echo() and nocbreak() in more detail.

curses/terminfo 9-49

Controlling Output and Input

NAME

echo() and noecho()

SYNOPSIS
#include <curses.h>

int echo()
int noecho()

NOTES

® echo() turns on echoing of characters by curses as they are
read in. This is the initial setting.

¢ noecho() turns off the echoing.
® Neither returns any useful value.

® curses programs may not run properly if you turn on echoing
with nocbreak(). See Figure 9-6 and accompanying caution.
After you turn echoing off, you can still echo characters with
addch().

EXAMPLE

See the editor and show programs under ”curses Program Exam-
ples” in this chapter.

9-50 PROGRAMMER'’S GUIDE

~—————————————1] 4

Controlling Output and Input

NAME
cbreak() and nocbreak()

SYNOPSIS

#include < curses.h >
int cbreak()
int nocbreak()

m NOTES

e cbreak() turns on ’break for each character’ processing. A pro-
gram gets each character as soon as it is typed, but the erase,
line kill, and CTRL-D characters are not interpreted.

e nocbreak() returns to normal ’line at a time’ processing. This
is typically the initial setting.

e Neither returns any useful value.

537

® A curses program may not run properly if cbreak() is turned
on and off within the same program or if the combination noc-
break() and echo() is used.

e See Figure 9-6 and accompanying caution.
EXAMPLE

n See the editor and show programs under "curses Program Exam-
ples” in this chapter.

curses/terminfo 9-51

Controlling Output and Input

This page is intentionally left blank

9-52 PROGRAMMER'S GUIDE

8€s

- &

Building Windows and Pads

An earlier section in this chapter, "More about refresh() and Win-
dows” explained what windows and pads are and why you might want
to use them. This section describes the curses routines you use to
manipulate and create windows and pads.

m Output and Input

The routines that you use to send output to and get input from win-
dows and pads are similar to those you use with stdscr. The only
difference is that you have to give the name of the window to receive
the action. Generally, these functions have names formed by putting
the letter w at the beginning of the name of a stdser routine and
adding the window name as the first parameter. For example,
addch(’¢’) would become waddch(mywin, ‘c”) if you wanted to
write the character ¢ to the window mywin. Here’s a list of the win-
dow (or w) versions of the output routines discussed in ”Getting Sim-
ple Output and Input.”

e waddch(win, ch)

e mvwaddch(win, y, x, ch)

539

e waddstr(win, str)

o mvwaddstr(wir, y, x, str)

e wprintw(win, fmt /[, arg...])

e mvwprintw(win, y, x, fmt [, arg...])
e wmove(win, y, x)

¢ wclear(win) and werase(win)

¢ wclrtoeol(win) and welrtobot(win)
o wrefresh()

You can see from their declarations that these routines differ from
the versions that manipulate stdscr only in their names and the

curses/terminfo 9-53

Building Windows and Pads

addition of a win argument. Notice that the routines whose names
begin with mvw take the win argument before the y, x coordinates,
which is contrary to what the names imply. See curses(3X) for more
information about these routines or the versions of the input routines
getch, getstr(), and so on that you should use with windows.

All w routines can be used with pads except for wrefresh() and
wnoutrefresh() (see below). In place of these two routines, you have
to use prefresh() and pnoutrefresh() with pads.

The Routines wnoutrefresh() and doupdate()

If you recall from the earlier discussion about refresh(), we said that
it sends the output from stdscr to the terminal screen. We also said
that it was a macro that expands to wrefresh(stdscr) (see "What
Every curses Program Needs” and "More about refresh() and Win-
dows”).

The wrefresh() routine is used to send the contents of a window
(stdser or one that you create) to a screen; it calls the routines
wnoutrefresh() and doupdate(). Similarly, prefresh() sends the
contents of a pad to a screen by calling pnoutrefresh() and doup-
date().

Using wnoutrefresh() —or pnoutrefresh() (this discussion will be
limited to the former routine for simplicity)—and doupdate(), you
can update terminal screens with more efficiency than using
wrefresh() by itself. wrefresh() works by first calling
wnoutrefresh(), which copies the named window to a data structure
referred to as the virtual screen. The virtual screen contains what a
program intends to display at a terminal. After calling
wnoutrefresh(), wrefresh() then calls doupdate(), which compares
the virtual screen to the physical screen and does the actual update.
If you want to output several windows at once, calling wrefresh()
will result in alternating calls to wnoutrefresh() and doupdate(),
causing several bursts of output to a screen. However, by calling
wnoutrefresh() for each window and then doupdate() only once,
you can minimize the total number of characters transmitted and the

9-54 PROGRAMMER'S GUIDE

ovs

W/

541

B [107)

Building Windows and Pads

processor time used. The following sample program uses only one
doupdate():

4)

#include <curses.h>

main(}
{
WINDOW *wl, *w2;

initser();

wl = newwin(2,6,0,3);
w2 = newwin(1,4,5,4);
waddstr(wl, ”Bulls”);
wnoutrefresh(wl);
waddstr(w2, "Eye”);
wnoutrefresh(w2);
doupdate() ;

endwin();

}

N /

Notice from the sample that you declare a new window at the begin-
ning of a curses program. The lines

wl = newwin(2,6,0,3);
w2 newwin(1,4,5,4);

declare two windows named wl and w2 with the routine newwin()
according to certain specifications. newwin() is discussed in more
detail below.

Figure 9-7 illustrates the effect of wnoutrefresh() and doupdate()
on these two windows, the virtual screen, and the physical screen:

curses/terminfo 9-55

ST B TR Sl

Building Windows and Pads

stdscr@(0,J) virtual screen physical screen
initser() 0 3

(garbage)

stdscr@(0,0) virtual screen physical screen

w1l = newwin(2,6,0,3) O O
(garbage)
w1@(0,3)
a
stdser@(0,0) virtual screen physical screen
w2 = newwin(1,5,4,5) O m
(garbage)

wl@(0,3) w2@(5,4)

o][]

Figure 9-7: The Relationship Between a Window and a Terminal Screen
(Sheet 1 of 3)

9-56 PROGRAMMER'’S GUIDE

ers

W

~] db|

stdscr@(0,0)
waddstr(wl,"Bulls")

a O

virtual screen

Building Windows and Pads

physical screen

(garbage)

wl@(0,3) w2@(5,4)

physical screen

(garbage)

physical screen

BullsO| [O
stdscr@®(0,0) virtual screen
wnoutrefresh(w1) O Bulls []
(3]
b3
wl1@(0,3) w2@(5,4)
BullsO| O
stdscr@(0,0) virtual screen
m waddstr(w2,"Eye") 0
Bulls]

wl@(0,3) w2@(5,4)

(garbage)

Bulls(J | Eyer_']l

(Sheet 2 of 3)

curses/terminfo

Figure 9-7: The Relationship Between a Window and a Terminal Screen

9-57

m—— m m—

Building Windows and Pads

stdscr@(0,0) virtual screen physical screen
wnoutrefresh(w2) 0O
Bulls
(garbage)
Eye]

wl@(0,3) w2@(5,4)

Bullsl'.'ll

|
| stdscr@(0,0) virtual screen physical screen
‘ doupdate()]
| Bulls Bulls
‘ Eye [] Eye []
wl@(0,3) w2@(5,4)
BullsO | Eye EJ|
stdscr@(0,0) virtual screen physical screen
endwin() 0O
Bulls Bulls
Eye (J Eye []

wl@(0,3) w2@(5,4)

144

Bulls(O l Eye[jl

Figure 9-7: The Relationship Between a Window and a Terminal Screen
(Sheet 3 of 3)

9-58 PROGRAMMER’S GUIDE

545

New Windows

Following are descriptions of the routines newwin() and subwin(),
which you use to create new windows. For information about creat-
ing new pads with newpad() and subpad(), see the curses(3X)
manual page.

NAME

newwin()

SYNOPSIS
#include <curses.h>

WINDOW = newwin(nlines, ncols, begin_y, begin_x)
int nlines, ncols, begin_y, begin_x;

NOTES

e newwin() returns a pointer to a new window with a new data
area.

e The variables nlines and ncols give the size of the new win-
dow.

® begin_y and begin_x give the screen coordinates from (0,0) of
the upper left corner of the window as it is refreshed to the
current screen.

EXAMPLE

Recall the sample program using two windows; see Figure 9-7. Also
see the window program under “curses Program Examples” in this
chapter.

curses/terminfo 9-59

New Windows

NAME

subwin()

SYNOPSIS
#include < curses.h>

WINDOW + subwin(orig, nlines, ncols, begin_y, begin_x)
WINDOW = orig;
int nlines, ncols, begin_y, begin_x;

NOTES

e subwin() returns a new window that points to a section of
another window, orig.

¢ nlines and ncols give the size of the new window.

® begin_y and begin_x give the screen coordinates of the upper
left corner of the window as it is refreshed to the current
screen.

® Subwindows and original windows can accidentally overwrite
one another.

Subwindows of subwindows do not work (as of the copyright
W date of this System V Guide).

9-60 PROGRAMMER'S GUIDE

9vs

547

_

£

New Windows

EXAMPLE

#include <curses.h>
main()

{

WINDOW *sub;

initscr();

box(stdscr, 'w’,'w’); /*See the curses(3X) manual */

/*page for box()

*/

mvwaddstr(stdscr,7,10,"-—===-- this is 10,10");

mvwaddch(stdscr,8,10,'|’);
mvwaddch(stdscr,9,10,'v’");

sub = subwin(stdscr,10,20,10,10);
box(sub,’s’,’s’');
wnoutrefresh(stdscr);
wrefresh(sub);

endwin();

}

This program prints a border of ws around the stdscr (the sides of
your terminal screen) and a border of s’s around the subwindow sub
when it is run. For another example, see the window program

under ”curses Program Examples” in this chapter.

curses/terminfo

9-61

New Windows

9-62

This page is intentionally left blank

PROGRAMMER'S GUIDE

549

Using Advanced curses Features

Knowing how to use the basic curses routines to get output and
input and to work with windows, you can design screen management
programs that meet the needs of many users. The curses library,
however, has routines that let you do more in a program than handle
I/0 and multiple windows. The following few pages briefly describe
some of these routines and what they can help you do—namely, draw
simple graphics, use a terminal’s soft labels, and work with more
than one terminal in a single curses program.

You should be comfortable using the routines previously discussed in
this chapter and the other routines for I/O and window manipulation
discussed on the curses(3X) manual page before you try to use the
advanced curses features.

The routines described under "Routines for Drawing Lines and
Other Graphics” and "Routines for Using Soft Labels” are
features that are new for UNIX System V Release 3.0. If a pro-
gram uses any of these routines, it may not run on earlier
releases of the UNIX system. You must use the Release 3.0
version of the curses library on UNIX System V Release 3.0
to work with these routines.

Routines for Drawing Lines and Other Graphics

Many terminals have an alternate character set for drawing simple
graphics (or glyphs or graphic symbols). You can use this character
set in curses programs. curses use the same names for glyphs as
the VT100 line drawing character set.

To use the alternate character set in a curses program, you pass a
set of variables whose names begin with ACS_ to the curses routine
waddch() or a related routine. For example, ACS_ULCORNER is
the variable for the upper left corner glyph. If a terminal has a line
drawing character for this glyph, ACS_ULCORNER’s value is the
terminal’s character for that glyph ORd (|) with the bit-mask
A ALTCHARSET. If no line drawing character is available for that
glyph, a standard ASCII character that approximates the glyph is

curses/terminfo 9-63

SERREY

Using Advanced curses Features

stored in its place. For example, the default character for
ACS_HLINE, a horizontal line, is a — (minus sign). When a close
approximation is not available, a + (plus sign) is used. All the stan-
dard ACS_ names and their defaults are listed on the curses(3X)
manual page.

Part of an example program that uses line drawing characters follows.
The example uses the curses routine box() to draw a box around a
menu on a screen. box() uses the line drawing characters by default
or when | (the pipe) and — are chosen. (See curses(3X).) Up and
down more indicators are drawn on the box border (using
ACS_UARROW and ACS_DARROW) if the menu contained within
the box continues above or below the screen:

~ ™

box(menuwin, ACS VLINE, ACS HLINE);

/* output the up/down arrows */
wmove (menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch (menuwin, ACS UARROW);
else

addch (menuwin, ACS_HLINE);

/*output down arrow or horizontal line */
if (morebelow)

waddch (menuwin, ACS_DARROW);
else

waddch(menuwin, ACS HLINE);

/

Here’s another example. Because a default down arrow (like the
lowercase letter v) isn’t very discernible on a screen with many lower-
case characters on it, you can change it to an uppercase V.

9-64 PROGRAMMER'S GUIDE

0SS

551

B)

Using Advanced curses Features

if (! (ACS DARROW & A_ALTCHARSET))
ACS DARROW = 'V';

For more information, see curses(3X) in the System V Reference
Manual.

Routines for Using Soft Labels

Another feature available on most terminals is a set of soft labels
across the bottom of their screens. A terminal’s soft labels are usu-
ally matched with a set of hard function keys on the keyboard. There
are usually eight of these labels, each of which is usually eight charac-
ters wide and one or two lines high.

The curses library has routines that provide a uniform model of
eight soft labels on the screen. If a terminal does not have soft labels,
the bottom line of its screen is converted into a soft label area. It is
not necessary for the keyboard to have hard function keys to match
the soft labels for a curses program to make use of them.

Let’s briefly discuss most of the curses routines needed to use soft
labels: slk_clear, slk_restore, slk_init(), slk_set(), slk_refresh()
and slk_noutrefresh().

When you use soft labels in a curses program, you have to call the
routine slk_int() before imitser(). This sets an internal flag for
initscr() to look at that says to use the soft labels. If initser() dis-
covers that there are fewer than eight soft labels on the screen, that
they are smaller than eight characters in size, or that there is no way
to program them, then it will remove a line from the bottom of
stdscr to use for the soft labels.

curses/terminfo 9-65

Using Advanced curses Features

The size of stdscr and the LINES variable will be reduced by 1 to
reflect this change. A properly written program, one that is written
to use the LINES and COLS variables, will continue to run as if the
line had never existed on the screen.

slk_init() takes a single argument. It determines how the labels are
grouped on the screen should a line get removed from stdscr. The
choices are between a 3-2-3 arrangement as appears on AT&T termi-
nals, or a 4-4 arrangement as appears on Hewlett-Packard terminals.
The curses routines adjust the width and placement of the labels to
maintain the pattern. The widest label generated is eight characters.

The routine slk_set() takes three arguments, the label number (1-8),
the string to go on the label (up to eight characters), and the
Jjustification within the label (0 = left justified, 1 = centered, and 2
= right justified).

The routine slk_noutrefresh() is comparable to wnoutrefresh() in
that it copies the label information onto the internal screen image,
but it does not cause the screen to be updated. Since a wrefresh()
commonly follows, slk_noutrefresh() is the function that is most
commonly used to output the labels.

Just as wrefresh() is equivalent to a wnoutrefresh() followed by a
doupdate(), so too the function slk_refresh() is equivalent to a
slk_noutrefresh() followed by a doupdate().

To prevent the soft labels from getting in the way of a shell escape,
slk_clear() may be called before doing the endwin(). This clears the
soft labels off the screen and does a doupdate(). The function
slk_restore() may be used to restore them to the screen. See the
curses(3X) manual page for more information about the routines for
using soft labels.

9-66 PROGRAMMER’'S GUIDE

2ss

553

| —

Using Advanced curses Features

Working with More than One Terminal

A curses program can produce output on more than one terminal at
the same time. This is useful for single process programs that access
a common database, such as multi-player games.

Writing programs that output to multiple terminals is a difficult busi-
ness, and the curses library does not solve all the problems you
might encounter. For instance, the programs—not the library
routines —must determine the file name of each terminal line, and
what kind of terminal is on each of those lines. The standard
method, checking $TERM in the environment, does not work,
because each process can only examine its own environment.

Another problem you might face is that of multiple programs reading
from one line. This situation produces a race condition and should be
avoided. However, a program trying to take over another terminal
cannot just shut off whatever program is currently running on that
line. (Usually, security reasons would also make this inappropriate.
But, for some applications, such as an inter-terminal communication
program, or a program that takes over unused terminal lines, it
would be appropriate.) A typical solution to this problem requires
each user logged in on a line to run a program that notifies a master
program that the user is interested in joining the master program
and tells it the notification program’s process ID, the name of the tty
line, and the type of terminal being used. Then the program goes to
sleep until the master program finishes. When done, the master pro-
gram wakes up the notification program and all programs exit.

A curses program handles multiple terminals by always having a
current terminal. All function calls always affect the current termi-
nal. The master program should set up each terminal, saving a refer-
ence to the terminals in its own variables. When it wishes to affect a
terminal, it should set the current terminal as desired, and then call
ordinary curses routines.

curses/terminfo 9-67

Using Advanced curses Features

References to terminals in a curses program have the type
SCREEN *. A new terminal is initialized by calling newterm(type,
outfd, infd). newterm returns a screen reference to the terminal
being set up. type is a character string, naming the kind of terminal
being used. outfd is a stdio(3S) file pointer (FILE *) used for output
to the terminal and infd a file pointer for input from the terminal.
This call replaces the normal call to initser(), which -calls
newterm(getenv(”’ TERM”’), stdout, stdin).

To change the current terminal, call set_term(sp) where sp is the
screen reference to be made current. set_term() returns a reference
to the previous terminal.

It is important to realize that each terminal has its own set of win-
dows and options. Each terminal must be initialized separately with
newterm(). Options such as cbreak() and noecho() must be set
separately for each terminal. The functions endwin() and refresh()
must be called separately for each terminal. Figure 9-8 shows a typi-
cal scenario to output a message to several terminals.

for (i=0; i<nterm; i++)

{
set_term(terms[i]);
mvaddstr(0, 0, “Important message”);
refresh();

}

Figure 9-8: Sending a Message to Several Terminals

See the two program under "curses Program Examples” in this
chapter for a more complete example.

9-68 PROGRAMMER'S GUIDE

vSS

555

Working with terminfo Routines

Some programs need to use lower level routines (i.e., primitives) than
those offered by the curses routines. For such programs, the ter-
minfo routines are offered. They do not manage your terminal
screen, but rather give you access to strings and capabilities which
you can use yourself to manipulate the terminal.

There are three circumstances when it is proper to use terminfo
routines. The first is when you need only some screen management
capabilities, for example, making text standout on a screen. The
second is when writing a filter. A typical filter does one transforma-
tion on an input stream without clearing the screen or addressing the
cursor. If this transformation is terminal dependent and clearing the
screen is inappropriate, use of the terminfo routines is worthwhile.
The third is when you are writing a special purpose tool that sends a
special purpose string to the terminal, such as programming a func-
tion key, setting tab stops, sending output to a printer port, or deal-
ing with the status line. Otherwise, you are discouraged from using
these routines: the higher level curses routines make your program
more portable to other UNIX systems and to a wider class of termi-
nals.

You are discouraged from using terminfo routines except for
NOTE | the purposes noted, because curses routines take care of all the
glitches present in physical terminals. When you use the ter-
| minfo routines, you must deal with the glitches yourself. Also,

these routines may change and be incompatible with previous
releases.

curses/terminfo 9-69

Working with terminfo Routines

What Every terminfo Program Needs

A terminfo program typically includes the header files and routines
shown in Figure 9-9.

4 N

#include <curses.h>
#include <term.h>

setupterm((char*)0, 1, (int*)0);
putp(clear screen);

reset_shell mode();
exit(0);

o /

Figure 9-9: Typical Framework of a terminfo Program

The header files <curses.h> and <term.h> are required because
they contain the definitions of the strings, numbers, and flags used by
the terminfo routines. setupterm() takes care of initialization.
Passing this routine the values (char =)0, 1, and (int *)0 invokes
reasonable defaults. If setupterm() can’t figure out what kind of ter-
minal you are on, it prints an error message and exits.
reset_shell mode() performs functions similar to endwin() and
should be called before a terminfo program exits.

A global variable like clear_screen is defined by the call to setup-
term(). It can be output using the terminfo routines putp() or
tputs(), which gives a user more control. This string should not be
directly output to the terminal using the C library routine printf(3S),
because it contains padding information. A program that directly
outputs strings will fail on terminals that require padding or that use
the xon/xoff flow control protocol.

9-70 PROGRAMMER'S GUIDE

9s¢S

557

B —— 707

Working with terminfo Routines

At the terminfo level, the higher level routines like addch() and
getch() are not available. It is up to you to output whatever is
needed. For a list of capabilities and a description of what they do,
see terminfo(4); see curses(3X) for a list of all the terminfo rou-
tines.

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for run-
ning a program with terminfo routines are the same as those for
compiling any other curses program. See the sections "Compiling a
curses Program” and "Running a curses Program” in this chapter
for more information.

An Example terminfo Program

The example program termhl shows a simple use of terminfo rou-
tines. It is a version of the highlight program (see "curses Program
Examples”) that does not use the higher level curses routines.
termhl can be used as a filter. It includes the strings to enter bold
and underline mode and to turn off all attributes.

curses/terminfo 9-71

Working with terminfo Routines

4 N

9-72

N /

/*
* A terminfo level version of the highlight program.

*/

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining */

main(argc, argv)
int argc;
char **argv;

{
FILE *fd;
int ¢, ©2;
int outch();

if (argc > 2)

{
fprintf(stderr, “Usage: termhl [file}\n”);
exit(l);

}

if (arge = = 2)
{
fd = fopen(argv[l], “r”);
if (fd = = NULL)
{
perror(argv[l]);
exit(2);
}
}
else
{
fd = stdin;
}
setupterm((char*)0, 1, (int*)0);

for (;;)

{
¢ = getc(fd);
if (¢ = = EOF)

(continued on next page)

PROGRAMMER'’S GUIDE

8GS

~] db|

Working with terminfo Routines

4)

break;
if (c == "\\")
{
c2 = gete(fd);
switch (c2)
{
case 'B’:
tputs(enter_bold mode, 1, outch);
m continue;
’ case 'U’:
tputs(enter_underline mode, 1, outch);
ulmode = 1;
continue;
case ‘N’:
tputs(exit_attribute mode, 1, outch);
ulmode = 0;
continue;
}
putch(c);
putch(c2);
}
else
putch(c);

559

}

fclose(fd);
fflush(stdout);
resetterm();
exit(0);

a >
/*
* This function is like putchar, but it checks for underlining.
*/
putch(c)
int c;
{
outch(c);
if (ulmode && underline char)
{
outch(’\b’);
tputs(underline char, 1, outch);

n U y

(continued on next page)

9-73

curses/terminfo

R B e I B L A e U T e B S e

Working with terminfo Routines

4 N

}

/*
* Outchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*/
outch(c)
int c¢;
{
putchar(c);

_ J

Let’s discuss the use of the function tputs(cap, affcnt, outch) in this
program to gain some insight into the terminfo routines. tputs()
applies padding information. Some terminals have the capability to
delay output. Their terminal descriptions in the terminfo database
probably contain strings like $<20>, which means to pad for 20 mil-
liseconds (see the following section ”Specify Capabilities” in this
chapter). tputs generates enough pad characters to delay for the
appropriate time.

tput() has three parameters. The first parameter is the string capa-
bility to be output. The second is the number of lines affected by the
capability. (Some capabilities may require padding that depends on
the number of lines affected. For example, insert_line may have to
copy all lines below the current line, and may require time propor-
tional to the number of lines copied. By convention affcnt is 1 if no
lines are affected. The value 1 is used, rather than 0, for safety, since
affent is multiplied by the amount of time per item, and anything
multiplied by 0 is 0.) The third parameter is a routine to be called
with each character.

For many simple programs, affcnt is always 1 and outch always calls
putchar. For these programs, the routine putp(cap) is a convenient
abbreviation. termhl could be simplified by using putp().

9-74 PROGRAMMER’S GUIDE

09s

561

Working with terminfo Routines

Now to understand why you should use the curses level routines
instead of terminfo level routines whenever possible, note the special
check for the underline_char capability in this sample program.
Some terminals, rather than having a code to start underlining and a
code to stop underlining, have a code to underline the current charac-
ter. termhl keeps track of the current mode, and if the current char-
acter is supposed to be underlined, outputs underline_char, if neces-
sary. Low level details such as this are precisely why the curses
level is recommended over the terminfo level. curses takes care of
terminals with different methods of underlining and other terminal
functions. Programs at the terminfo level must handle such details
themselves.

termhl was written to illustrate a typical use of the terminfo rou-
tines. It is more complex than it need be in order to illustrate some
properties of terminfo programs. The routine vidattr (see
curses(3X)) could have been used instead of directly outputting

enter_bold_mode,
enter_underline_mode,
and
exit_attribute_mode.

In fact, the program would be more robust if it did, since there are
several ways to change video attribute modes.

curses/terminfo 9-75

ik

S

Working with terminfo Routines

This page is intentionally left blank

9-76

PROGRAMMER'S GUIDE

295

563

Working with the terminfo Database

The terminfo database describes the many terminals with which
curses programs, as well as some UNIX system tools, like vi(1), can
be used. Each terminal description is a compiled file containing the
names that the terminal is known by and a group of comma-separated
fields describing the actions and capabilities of the terminal. This
section describes the terminfo database, related support tools, and
their relationship to the curses library.

The Virtual Terminal Interface (VTI) on the SUPERMAX has the
effect that different terminals are able to use the same entry in the
terminfo database. The entry T3-24-C80 describes a terminal with
24 lines, 80 columns, cursor movement capabilities, insert and delete
capabilities, and four attributes, (e.g. inverse video, underlining, blink
and alternative intensity). This entry is the standard entry for termi-
nals on a SUPERMAX computer. It will therefore rarely be necessary
to build your own entry in the terminfo database.

For further information please refer to the Virtual Terminal Interface
Guide.

Writing Terminal Descriptions

Descriptions of many popular terminals are already described in the
terminfo database. However, it is possible that you’ll want to run a
curses program on a terminal for which there is not currently a
description. In that case, you’ll have to build the description.

The general procedure for building a terminal description is as fol-
lows:

« 1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

curses/terminfo 9-77

Working with the terminfo Database

3. Compile the newly-created description entry.
4. Test the entry for correct operation.

5. Go back to step 2, add more capabilities, and repeat, as neces-
sary.

Building a terminal description is sometimes easier when you build
small parts of the description and test them as you go along. These
tests can expose deficiencies in the ability to describe the terminal.
Also, modifying an existing description of a similar terminal can make
the building task easier.

In the next few pages, we follow each step required to build a termi-
nal description for the fictitious terminal named "myterm.”

Name the Terminal

The name of a terminal is the first information given in a terminfo
terminal description. This string of names, assuming there is more
than one name, is separated by pipe symbols (|). The first name
given should be the most common abbreviation for the terminal. The
last name given should be a long name that fully identifies the termi-
nal. The long name is usually the manufacturer’s formal name for
the terminal. All names between the first and last entries should be
known synonyms for the terminal name. All names but the formal
name should be typed in lowercase letters and contain no blanks.
Naturally, the formal name is entered as closely as possible to the
manufacturer’s name.

Here is the name string from the description of the AT&T Teletype
5420 Buffered Display Terminal:

5420 |att5420|AT&T Teletype 5420,

Notice that the first name is the most commonly used abbreviation
and the last is the long name. Also notice the comma at the end of
the name string.

9-78 PROGRAMMER'S GUIDE

¥9S

w/

565

~————————]d&

Working with the terminfo Database

Here’s the name string for our fictitious terminal, myterm:
myterm|mytm|mine|fancy|terminal |[My FANCY Terminal,

Terminal names should follow common naming conventions. These
conventions start with a root name, like 5425 or myterm, for exam-
ple. The root name should not contain odd characters, like hyphens,
that may not be recognized as a synonym for the terminal name.
Possible hardware modes or user preferences should be shown by
adding a hyphen and a 'mode indicator’ at the end of the name. For
example, the 'wide mode’ (which is shown by a —w) version of our
fictitious terminal would be described as myterm-w. term(5)
describes mode indicators in greater detail.

Learn About the Capabilities

After you complete the string of terminal names for your description,
you have to learn about the terminal’s capabilities so that you can
properly describe them. To learn about the capabilities your terminal
has, you should do the following:

® See the owner’s manual for your terminal. It should have
information about the capabilities available and the character
strings that make up the sequence transmitted from the key-
board for each capability.

e Test the keys on your terminal to see what they transmit, if
this information is not available in the manual. You can test
the keys in one of the following ways — type:

stty2 line 0 —vtin —vtant —;echojcat —~vu
Type in the keys you want to test;

for example, see what right arrow (—) transmits.
<CR>

<CTRL-D>

stty2 echo line 1 —vtin —vtant

curses/terminfo 9-79

—_—
]

AT i

i
i
5

Working with the terminfo Database

® The first line in this testing method sets up the terminal to
carry out the tests. The <CTRL-D> helps return the termi-
nal to its normal settings.

¢ See the terminfo(4) manual page. It lists all the capability
names you have to use in a terminal description. The following
section, "Specify Capabilities,” gives details.

Specify Capabilities

Once you know the capabilities of your terminal, you have to describe
them in your terminal description. You describe them with a string
of comma-separated fields that contain the abbreviated terminfo
name and, in some cases, the terminal’s value for each capability.
For example, bel is the abbreviated name for the beeping or ringing
capability. On most terminals, a CTRL-G is the instruction that pro-
duces a beeping sound. Therefore, the beeping capability would be
shown in the terminal description as bel="G,.

The list of capabilities may continue onto multiple lines as long as
white space (that is, tabs and spaces) begins every line but the first of
the description. Comments can be included in the description by put-
ting a # at the beginning of the line.

The terminfo(4) manual page has a complete list of the capabilities
you can use in a terminal description. This list contains the name of
the capability, the abbreviated name used in the database, the two-
letter code that corresponds to the old termcap database name, and
a short description of the capability. The abbreviated name that you
will use in your database descriptions is shown in the column titled
”Capname.”

9-80 PROGRAMMER’S GUIDE

995

567

B ———)

Working with the terminfo Database

For a curses program to run on any given terminal, its descrip-
NOTE | tion in the terminfo database must include, at least, the capa-
bilities to move a cursor in all four directions and to clear the
I screen.

A terminal’s character sequence (value) for a capability can be a
keyed operation (like CTRL-G), a numeric value, or a parameter
string containing the sequence of operations required to achieve the
particular capability. In a terminal description, certain characters are
used after the capability name to show what type of character
sequence is required. Explanations of these characters follow:

This shows a numeric value is to follow. This character fol-
lows a capability that needs a number as a value. For exam-
ple, the number of columns is defined as cols#80,.

This shows that the capability value is the character string
that follows. This string instructs the terminal how to act
and may actually be a sequence of commands. There are cer-
tain characters used in the instruction strings that have spe-
cial meanings. These special characters follow:

. This shows a control character is to be used. For
example, the beeping sound is produced by a
CTRL-G. This would be shown as "G.

\E or \e These characters followed by another character
show an escape instruction. An entry of \EC
would transmit to the terminal as ESCAPE —C.

\n These characters providle a <NL> character
sequence.

\l These characters provide a linefeed character
sequence.

\r These characters provide a return character
sequence.

curses/terminfo 9-81

Working with the terminfo Database

\t These characters provide a tab character sequence.

\b These characters provide a backspace character
sequence.

\f These characters provide a formfeed character
sequence.

\s These characters provide a space character
sequence.

\nnn This is a character whose three-digit octal is nnn, u

where nnn can be one to three digits.

$< > These symbols are used to show a delay in mil-
liseconds. The desired length of delay is enclosed
inside the “less than/greater than” symbols (<
>). The amount of delay may be a whole number,
a numeric value to one decimal place (tenths), or
either form followed by an asterisk (*). The *
shows that the delay will be proportional to the
number of lines affected by the operation. For
example, a 20-millisecond delay per line would
appear as $<20*>. See the terminfo(4) manual
page for more information about delays and pad-
ding.

89S

Sometimes, it may be necessary to comment out a capability so that U
the terminal ignores this particular field. This is done by placing a

period (.) in front of the abbreviated name for the capability. For
example, if you would like to comment out the beeping capability, the
description entry would appear as

.bel="G,
With this background information about specifying capabilities, let’s

add the capability string to our description of myterm. We’ll consider
basic, screen-oriented, keyboard-entered, and parameter string capa-

bilities. u

9-82 PROGRAMMER’S GUIDE

P e——)

Working with the terminfo Database

Basic Capabilities

Some capabilities common to most terminals are bells, columns, lines
on the screen, and overstriking of characters, if necessary. Suppose
our fictitious terminal has these and a few other capabilities, as listed
below. Note that the list gives the abbreviated terminfo name for
each capability in the parentheses following the capability description:

® An automatic wrap around to the beginning of the next line
m whenever the cursor reaches the right-hand margin (am,.

e The ability to produce a beeping sound. The instruction
required to produce the beeping sound is "G (bel).

® An 80-column wide screen (cols).
® A 30-line long screen (lines).

e Use of xon/xoff protocol (xon).

569

By combining the name string (see the section "Name the Terminal”)
and the capability descriptions that we now have, we get the following
general terminfo database entry:

myterm|mytm|mine|fancy|terminal |My FANCY terminal,
am, bel="G, cols#80, lines#30, xon,

ﬁ Screen-Oriented Capabilities

Screen-oriented capabilities manipulate the contents of a screen. Our
example terminal myterm has the following screen-oriented capabili-
ties. Again, the abbreviated command associated with the given capa-
bility is shown in parentheses.

¢ A<CR> isaCTRL-Micr).
e A cursor up one line motion is a CTRL -~ K (cuul,.

e A cursor down one line motion is a CTRL —J tcudl).

curses/terminfo 9-83

Working with the terminfo Database

¢ Moving the cursor to the left one space is a CTRL— H (cubl).
® Moving the cursor to the right one space is a CTRL —L (cufl).
® Entering reverse video mode is an ESCAPE — D (smso).

e Exiting reverse video mode is an ESCAPE —Z (rmso).

® A clear to the end of a line sequence is an ESCAPE —K and
should have a 3-millisecond delay (el).

® A terminal scrolls when receiving a <NL> at the bottom of a
page (ind).

The revised terminal description for myterm including these screen-
oriented capabilities follows:

myterm|mytm|mine|fancy|terminal [My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities

Keyboard-entered capabilities are sequences generated when a key is
typed on a terminal keyboard. Most terminals have, at least, a few
special keys on their keyboard, such as arrow keys and the backspace
key. Our example terminal has several of these keys whose sequences
are, as follows:

® The backspace key generates a CTRL —H (kbs).
® The up arrow key generates an ESCAPE —[A (kcuul).
® The down arrow key generates an ESCAPE —[B (kcudl).

9-84 PROGRAMMER’S GUIDE

0458

571

~ —————————]dk

Working with the terminfo Database

e The right arrow key generates an ESCAPE [C (kcufl).
e The left arrow key generates an ESCAPE —| D (kcubl).
e The home key generates an ESCAPE —| H (khome).

Adding this new information to our database entry for myterm pro-
duces:

‘ myterm|mytm|mine | fancy | terminal |My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="K, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=0
kbs="H, kcuul=\E[A, kcudl=\E[B, kcufl=\E([C,
kcubl=\E[D, khome=\E[H,

Parameter String Capabilities

Parameter string capabilities are capabilities that can take parame-
ters — for example, those used to position a cursor on a screen or
turn on a combination of video modes. To address a cursor, the cup
capability is used and is passed two parameters: the row and column
to address. String capabilities, such as cup and set attributes (sgr)
capabilities, are passed arguments in a terminfo program by the

ﬂ tparm() routine.

The arguments to string capabilities are manipulated with special *%’
sequences similar to those found in a printf(3S) statement. In addi-
tion, many of the features found on a simple stack-based RPN calcu-
lator are available. cup, as noted above, takes two arguments: the
row and column. sgr, takes nine arguments, one for each of the nine
video attributes. See terminfo(4) for the list and order of the attri-
butes and further examples of sgr.

Our fancy terminal’s cursor position sequence requires a row and

m column to be output as numbers separated by a semicolon, preceded

by ESCAPE —{ and followed with H. The coordinate numbers are
1-based rather than 0—based. Thus, to move to row 5, column 18,

curses/terminfo 9-85

SRR m A

Working with the terminfo Database

from (0,0), the sequence 'ESCAPE —{[6 ; 19 H’ would be output.

Integer arguments are pushed onto the stack with a '%p’ sequence
followed by the argument number, such as *%p2’ to push the second
argument. A shorthand sequence to increment the first two argu-
ments is '%i’. To output the top number on the stack as a decimal, a
"%d’ sequence is used, exactly as in printf. Our terminal’s cup
sequence is built up as follows:

cup= Meaning
o1 increment the two arguments
%pl push the 1st argument (the row) onto the stack
%d output the row as a decimal

; output a semi-colon
%p2 push the 2nd argument (the column) onto the stack
%d output the column as a decimal

H output the trailing letter

\E[output ESCAPE —[

cup=\E[%i%pl%d;%p2%dH,

Adding this new information to our database entry for myterm pro-
duces:

myterm|mytm|mine|fancy|terminal |My FANCY Terminal, \
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=0
kbs="H, kcuul=\E{A, kcudl=\E[B, kcufl=\E[C,
keubl=\E[D, khome=\E[H,
cup=\E[%1%p1%d; $p2%dH,

- J

See terminfo(4) for more information about parameter string capa-
bilities.

9-86 PROGRAMMER’S GUIDE

(74}

573

~] d&|

Working with the terminfo Database

Compile the Description

The terminfo database entries are compiled using the tic compiler.
This compiler translates terminfo database entries from the source
format into the compiled format.

The source file for the description is usually in a file suffixed with .ti.
For example, the description of myterm would be in a source file
named myterm.ti. The compiled description of myterm would usu-
ally be placed in /usr/lib/terminfo/m/myterm, since the first
letter in the description entry is m. Links would also be made to
synonyms of myterm, for example, to /usr/lib/terminfo/f/fancy.
If the environment variable $TERMINFO were set to a directory and
exported before the entry was compiled, the compiled entry would be
placed in the $TERMINFO directory. All programs using the entry
would then look in the new directory for the description file if $TER-
MINFO were set, before looking in the default /usr/lib/terminfo.
The general format for the tic compiler is as follows:

tic[—v][—c] file

The —v option causes the compiler to trace its actions and output
information about its progress. The —c option causes a check for
errors; it may be combined with the —v option. file shows what file
is to be compiled. If you want to compile more than one file at the
same time, you have to first use cat(l) to join them together. The
following command line shows how to compile the terminfo source
file for our fictitious terminal:

tic —v myterm.ti<CR>
(The trace information appears as the compilation
proceeds.)

Refer to the tic(1IM) manual page in the System V Reference Manual
for more information about the compiler.

curses/terminfo 9-87

o R O R Ry T s R

Working with the terminfo Database

Test the Description

Let’s consider three ways to test a terminal description. First, you
can test it by setting the environment variable $TERMINFO to the
path name of the directory containing the description. If programs
run the same on the new terminal as they did on the older known
terminals, then the new description is functional.

Second, you can test for correct insert line padding by commenting
out xon in the description and then editing (using vi(1)) a large file
(over 100 lines) at 9600 baud (if possible), and deleting about 15 lines
from the middle of the screen. Type u (undo) several times quickly.
If the terminal messes up, then more padding is usually required. A
similar test can be used for inserting a character.

Third, you can use the tput(l) command. This command ocutputs a
string or an integer according to the type of capability being
described. If the capability is a Boolean expression, then tput sets
the exit code (0 for TRUE, 1 for FALSE) and produces no output.
The general format for the tput command is as follows:

tput [—Ttype] capname

The type of terminal you are requesting information about is
identified with the —Tzype option. Usually, this option is not neces-
sary because the default terminal name is taken from the environ-
ment variable $TERM. The capname field is used to show what
capability to output from the terminfo database.

The following command line shows how to output the ”clear screen”
character sequence for the terminal being used:

tput clear
(The screen is cleared.)
The following command line shows how to output the number of

columns for the terminal being used:

tput cols
(The number of columns used by the terminal appears here.)

9-88 PROGRAMMER’S GUIDE

b8

575

i — 7]

Working with the terminfo Datab

The tput(l) manual page found in the System V Reference Manual
contains more information on the usage and possible messages associ-

ated with this command.

Comparing or Printing terminfo Descriptions

Sometime you may want to compare two terminal descriptions or
quickly look at a description without going to the terminfo source
directory. The infocmp(1M) command was designed to help you with
both of these tasks. Compare two descriptions of the same terminal,;

for example,

mkdir /tmp/old /tmp/new

TERMINFO = /tmp/old tic 0ld5420.ti

TERMINFO = /tmp/new tic new5420.ti

infocmp —A /tmp/old - B /tmp/new —d 5420 5420

compares the old and new 5420 entries.
To print out the terminfo source for the 5420, type
infocmp -1 5420

curses/terminfo

9-89

Working with the terminfo Database

Converting a termcap Description to a term-
info Description

The terminfo database is designed to take the place of the
termecap database. Because of the many programs and
processes that have been written with and for the termcap
database, it is not feasible to do a complete cutover at one
time. Any conversion from termcap to terminfo requires
some experience with both databases. All entries into the
databases should be handled with extreme caution. These
files are important to the operation of your terminal.

The captoinfo(1IM) command converts termecap(4) descriptions to
terminfo(4) descriptions. When a file is passed to captoinfo, it
looks for termcap descriptions and writes the equivalent terminfo
descriptions on the standard output. For example,

captoinfo /etc/termcap

converts the file /etc/termcap to terminfo source, preserving com-
ments and other extraneous information within the file. The com-
mand line

captoinfo

looks up the current terminal in the termcap database, as specified
by the $TERM and $TERMCAP environment variables and converts
it to terminfo.

If you must have both termcap and terminfo terminal descriptions,
keep the terminfo description only and use infocmp —C to get the
termcap descriptions.

If you have been using cursor optimization programs with the
—Iltermcap or —Itermlib option in the cc command line, those pro-
grams will still be functional. However, these options should be
replaced with the —lcurses option.

9-90 PROGRAMMER’S GUIDE

949

577

SRR TR R R R

curses Program Examples

The following examples demonstrate uses of curses routines.

The editor Program

This program illustrates how to use curses routines to write a screen
editor. For simplicity, editor keeps the buffer in stdser; obviously, a
real screen editor would have a separate data structure for the buffer.
This program has many other simplifications: no provision is made
for files of any length other than the size of the screen, for lines
longer than the width of the screen, or for control characters in the
file.

Several points about this program are worth making. First, it uses
the move(), mvaddstr(), flash(), wnoutrefresh() and clrtoeol()
routines. These routines are all discussed in this chapter under
”"Working with curses Routines.”

Second, it also uses some curses routines that we have not discussed.
For example, the function to write out a file uses the mvinch() rou-
tine, which returns a character in a window at a given position. The
data structure used to write out a file does not keep track of the
number of characters in a line or the number of lines in the file, so
trailing blanks are eliminated when the file is written. The program
also uses the insch(), delech(), insertln(), and deleteln() routines.
These functions insert and delete a character or line. See curses(3X)
for more information about these routines.

Third, the editor command interpreter accepts special keys, as well as
ASCI characters. On one hand, new users find an editor that han-
dles special keys easier to learn about. For example, it’s easier for
new users to use the arrow keys to move a cursor than it is to
memorize that the letter h means left,] means down, k means up,
and 1 means right. On the other hand, experienced users usually like
having the ASCII characters to avoid moving their hands from the
home row position to use special keys.

curses/terminfo 9-91

Examples

Because not all terminals have arrow keys, your curses programs
NoTe | will work on more terminals if there is an ASCII character asso-
ciated with each special key.

Fourth, the CTRL—L command illustrates a feature most programs
using curses routines should have. Often some program beyond the
control of the routines writes something to the screen (for instance, a
broadcast message) or some line noise affects the screen so much that
the routines cannot keep track of it. A user invoking editor can type
CTRL - L, causing the screen to be cleared and redrawn with a call to
wrefresh(curscr).

Finally, another important point is that the input command is ter-
minated by CTRL —D, not the escape key. It is very tempting to use
escape as a command, since escape is one of the few special keys avail-
able on every keyboard. (Return and break are the only others.)
However, using escape as a separate key introduces an ambiguity.
Most terminals use sequences of characters beginning with escape
(i.e., escape sequences) to control the terminal and have special keys
that send escape sequences to the computer. If a computer receives
an escape from a terminal, it cannot tell whether the user depressed
the escape key or whether a special key was pressed.

editor and other curses programs handle the ambiguity by setting a
timer. If another character is received during this time, and if that
character might be the beginning of a special key, the program reads
more input until either a full special key is read, the time out is
reached, or a character is received that could not have been generated
by a special key. While this strategy works most of the time, it is not
foolproof. It is possible for the user to press escape, then to type
another key quickly, which causes the curses program to think a spe-
cial key has been pressed. Also, a pause occurs until the escape can
be passed to the user program, resulting in a slower response to the
escape key.

9-92 PROGRAMMER’S GUIDE

84S

Examples

Many existing programs use escape as a fundamental command,
which cannot be changed without infuriating a large class of users.
These programs cannot make use of special keys without dealing with
this ambiguity, and at best must resort to a time-out solution. The
moral is clear: when designing your curses programs, avoid the
escape key.

- | p

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.
*/
#include <curses.h>
#define CTRL(c) ((c) & 037)
main(arge, argv)
int argc;
char **argv;
{
extern void perror(), exit();
int i, n, 1;
int c;
int line = 0;
FILE *fd;
if (argc != 2)
{
fprintf (stderr, “Usage: %s file\n”, argv(0]);
exit(l);
}
fd = fopen(argv[l], "r");
if (fd = = NULL)
{
perror(argv{l});
exit(2);
}
initser();
cbreak();
nonl();
noecho();

N /

(continued on next page)

curses/terminfo

Examples

idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

/* Read in the file */

while ((c = getc(fd)) != EOF)

{
if (¢ = = '\n*)
line++;
if (line > LINES - 2)
break;
addch(c);
}
fclose(fd);
move(0,0);
refresh();
edit();

/* Write out the file */
fd = fopen(argv([l], "w");
for (1 = 0; 1 < LINES - 1; 1++)

{
n = len(l);
for (i = 0; i < n; i++)
putc(mvinch(l, i) & A _CHARTEXT, fd);
putc(‘\n’, fd);
}
fclose(fd);
endwin();
exit(0);
}
len(lineno)
int lineno;
{
int linelen = COLS - 1;
while (linelen >= 0 && mvinch(lineno, linelen) == ' ’)
linelen-—;
return linelen + 1;
}

/* Global value of current cursor position */
int row, col;

edit()

_

/

(continued on next page)

PROGRAMMER’S GUIDE

581

Examples

-

int c;

for (;3)

~

move(row, col);

refresh();

c = getch();

/* Editor commands */

switch (c)

{

/* hjkl and arrow keys: move cursor
* in direction indicated */

case ‘h':
case KEY_LEFT:
if (col > 0)
col-—;
else
flash();
break;
case 'j':

case KEY_DOWN:
if (row < LINES - 1)
rowtt;
else
flash();
break;
case 'k’':
case KEY_UP:
if (row > 0)
row--;
else
flash(});
break;
case ‘l’:
case KEY_RIGHT:
if (col < COLS - 1)
col++;
else
flash();
break;

/

curses/terminfo

(continued on next page)

9-95

Examples

-

/* i: enter input mode */

case KEY_IC:
case ‘i’:

input();

break;
/* x: delete current character */
case KEY DC: ’
case 'Xx’:

delch();

break;

/* o: open up a new line and enter input mode */
case KEY_IL:

case '0’:
move(++row, col = 0);
insertln();
input();
break;
/* d: delete current line */
case KEY DL:
case ‘d’':
deleteln();
break;

/* "L: redraw screen */
case KEY_ CLEAR:
case CTRL('L’):

wrefresh(curscr);
break;
/* w: write and quit */
case ‘'w’:
return;
/* q: quit without writing */
case ‘q’:
endwin();
exit(2);
default:
flash(});
break;
}

)

9-96

(continued on next page)

PROGRAMMER’S GUIDE

e8s

Examples

4)

/*
* Insert mode: accept characters and insert them.
* End with "D or EIC
*/
input()
{
int c;
m standout();
mvaddstr(LINES - 1, COLS - 20, “INPUT MODE”);
standend();
move(row, col);
refresh{);
for (;;)
{
¢ = getch();
if (¢ = = CTRL('D’) || ¢ = = KEY_EIC)
break;
insch(c);
8 move(row, ++col);
D refresh();
}
move(LINES -~ 1, COLS - 20);
clrtoeol();
move(row, col);
refresh();
}

curses/terminfo 9-97 E

Examples

This page is intentionally left blank

9-98 PROGRAMMER'’S GUIDE

¥8S

~———————————Jdb

The highlight Program

This program illustrates a use of the routine attrset(). highlight
reads a text file and uses embedded escape sequences to control attri-
butes. \U turns on underlining, \B turns on bold, and \N restores
the default output attributes.

Note the first call to serollok(), a routine that we have not previ-

ﬁ ously discussed (see curses(3X)). This routine allows the terminal to
scroll if the file is longer than one screen. When an attempt is made
to draw past the bottom of the screen, scrollok() automatically
scrolls the terminal up a line and calls refresh().

4)

/*
* highlight: a program to turn \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*
/

585

#include <stdio.h>
#include <curses.h>

main(argc, argv)
int argc;

m char **argv;
{

FILE *fd;
int ¢, c2;
void exit(), perror();
if (argc != 2)
{
fprintf (stderr, ”Usage: highlight file\n”);

exit(1l);
}
fd = fopen{argv{l], "r");
if (fd = = NULL)
{

N /

(continued on next page)

curses/terminfo 9-99

dde

The highlight Program

-

perror(argv[l]);
exit(2);
}
initscr();
scrollok(stdscr, TRUE);
nonl();
while ((c = getc(fd)) != EOF)
{
if (e =="\\")
{
c2 = getc(fd);
switch (c2)
{
case 'B’:
attrset(A_BOLD);
continue;
case 'U’:
attrset(A_UNDERLINE);
continue;
case 'N':
attrset(0);
continue;
}
addch(c);
addch(c2);
}
else
addch(c);
}
fclose(fd);
refresh();
endwin();
exit(0);

9-100

PROGRAMMER’S GUIDE

985

The scatter Program

This program takes the first LINES — 1 lines of characters from the
standard input and displays the characters on a terminal screen in a
random order. For this program to work properly, the input file
should not contain tabs or non-printing characters.

N N

/*
* The scatter program.

*/

#include <curses.h>
#include <sys/types.h>

extern time t time();

'q‘) t#define MAXLINES 120
0 #define MAXCOLS 160
char s[MAXLINES][MAXCOLS]; /* Screen Array */
int T[MAXLINES][MAXCOLS]; /* Tag Array - Keeps track of *
* the number of characters *
* printed and their positions. */
main()
{
m register int row = 0,col = 0;
¢ register int c;

int char_count = 0;
time t t;
void exit(), srand();

initser();
for(row = 0;row < MAXLINES;row++)

for(col = 0;col < MAXCOLS;col++)
s[row]{col]=' ’;

/* Read screen in */
while ((c=getchar()) != EOF && row < LINES) {

N /

(continued on next page)

|
col = row = 0;
|

| curses/terminfo 9-101

The scatter Program

-

if(c t= '\n’)

{
/* Place char in screen array */
s[row][col++) = ¢c;
if(c 1= 1)
char_count++;
}
else
{
col = 0;
rowtt;
}

}

time(s&t); /* Seed the random number generator */
srand((unsigned)t);

while (char_count)

{
row = rand() % LINES;
col = (rand() >> 2) % COLS;
if (T[row){col] != 1 && s[row][col] != ')
{
move(row, col);
addch(s[row][col]);
T[row][col] = 1;
char_count--;
refresh();
}
}
endwin();
exit(0);

9-102

PROGRAMMER'S GUIDE

886

589

B m—— [107)

The show Program

show pages through a file, showing one screen of its contents each
time you depress the space bar. The program calls cbreak() so that
you can depress the space bar without having to hit return; it calls
noecho() to prevent the space from echoing on the screen. The
nonl() routine is called to enable more cursor optimization. The
idlok() routine is called to allow insert and delete line. (See
curses(3X) for more information about these routines). Also notice
that clrtoeol() and clrtobot() are called.

By creating an input file for show made up of screen-sized (about 24
lines) pages, each varying slightly from the previous page, nearly any
exercise for a curses() program can be created. This type of input
file is called a show script.

4 N

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argv(];
{
FILE *fd;
char linebuf[BUFSIZ]);
int line;
void done(), perror(), exit();

if (argc t= 2)

{
fprintf(stderr, "usage: $s file\n"”, argv[0]);
exit(l);

}

if ((fd=fopen(argv([l], "r")) = = NULL)
{

perror(argv(1]);

exit(2);

N /

(continued on next page)

curses/terminfo 9-103

The show Program

-

}

nonl();

while(1l)
{

signal (SIGINT, done);
initscr();
noecho();

cbreak();

idlok(stdscr, TRUE);

move(0,0);
for (line = 0; line < LINES; line++)

N

{
if (!fgets(linebuf, sizeof linebuf, fd))
{
clrtobot();
done();
}
move(line, 0);
printw(”%s”, linebuf);
}
refresh();
if (getch() = = 'q’)
done(});
}
}
void done()
{
move(LINES - 1, 0);
clrtoeol();
refresh();
endwin(};
exit(0);
}

9-104

PROGRAMMER'’S GUIDE

06S

591

The two Program

This program pages through a file, writing one page to the terminal
from which the program is invoked and the next page to the terminal
named on the command line. It then waits for a space to be typed on
either terminal and writes the next page to the terminal at which the
space is typed.

two is just a simple example of a two-terminal curses program. It
does not handle notification; instead, it requires the name and type of
the second terminal on the command line. As written, the command
“sleep 100000” must be typed at the second terminal to put it to
sleep while the program runs, and the user of the first terminal must
have both read and write permission on the second terminal.

4 N

#include <curses.h>
#include <signal.h>
SCREEN *me, *you;
SCREEN *set_term(};
FILE *fd, *fdyou;
char linebuf([512];

main(arge, argv)
int argc;
char **argv;
{
void done(), exit();
unsigned sleep();
char *getenv();
int c¢;
if (argc != 4)
{
fprintf (stderr, “Usage: two othertty otherttytype inputfile\n”);
exit(1l);
}
fd = fopen(argv([3], "r");
fdyou = fopen(argv[l]}, "w+");
signal(SIGINT, done); /* die gracefully */

- J

(continued on next page)

curses/terminfo 9-105

The two Program

4 N

me = newterm(getenv(“TERM”), stdout, stdin); /* initialize my tty */
you = newterm(argv[2], fdyou, fdyou); /* Initialize the other terminal */

set_term(me); /* Set modes for my terminal */

noecho(); /* turn off tty echo */
cbreak(); /* enter cbreak mode */
nonl(); /* Allow linefeed */

nodelay(stdscr, TRUE); /* No hang on input */

set_term(you); /* Set modes for other terminal */
noecho();

cbreak();

nonl();

nodelay (stdscr, TRUE) ;

/* Dump first screen full on my terminal */
dump_page(me);
/* Dump second screen full on the other terminal */
dump_page (you) ;
for (;;) /* for each screen full */
{
set_term(me);
c = getch();
if (c == "'qg") /* wait for user to read it */
done();
if(c==1"1")
dump_page (me) ;
set_term(you);
¢ = getch();
if (¢ =="q9") /* wait for user to read it */
done();
if (e == " ")
dump_page (you) ;
sleep(l);
}
}
dump_page (term)
SCREEN *term;
{
int line;
set_term(term);
move(0, 0);

N)

(continued on next page)

9-106 PROGRAMMER'’S GUIDE

~———————————Jdb

The two Program

4)

for (line = 0; line < LINES - 1; line++) {
if (fgets(linebuf, sizeof linebuf, fd) = = NULL) {
clrtobot();
done();
}
mvaddstr(line, 0, linebuf);
}
standout();
ﬁ mvprintw(LINES - 1, 0, “--More--");
standend();
refresh(); /* sync screen */
}
/ *
* Clean up and exit.
*/
void done()
{
/* Clean up first terminal */
set_term(you);
§ move(LINES - 1,0); /* to lower left corner */
clrtoeol(); /* clear bottom line */
refresh(); /* flush out everything */
endwin(); /* curses cleanup */
/* Clean up second terminal */
set_term(me);
move(LINES - 1,0); /* to lower left corner */
clrtoeol(); /* clear bottom line */
= refresh(); /* flush out everything */
m endwin(); /* curses cleanup */
exit(0);
}

curses/terminfo 9-107

o

The two Program

This page is intentionally left blank

v6S

9-108 PROGRAMMER'S GUIDE

595

The window Program

This example program demonstrates the use of multiple windows.
The main display is kept in stdscr. When you want to put something
other than what is in stdser on the physical terminal screen tem-
porarily, a new window is created covering part of the screen. A call
to wrefresh() for that window causes it to be written over the stdser
image on the terminal screen. Calling refresh() on stdser results in
the original window being redrawn on the screen. Note the calls to
the touchwin() routine (which we have not discussed — see
curses(3X)) that occur before writing out a window over an existing
window on the terminal screen. This routine prevents screen optimi-
zation in a curses program. If you have trouble refreshing a new
window that overlaps an old window, it may be necessary to call
touchwin() for the new window to get it completely written out.

4)

#include <curses.h>
WINDOW *cmdwing
main()

{

int i, c;
char buf([120];
void exit();

initser();
nonl();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines */
for (i = 0; i < LINES; i++)
mvprintw(i, 0, ”This is line %d of stdscr”, i);

for (;;)

{

- J

(continued on next page)

curses/terminfo 9-109

s

The window Program

refresh();

c = getch();
switch (¢)
{

case ‘c’': /* Enter command from keyboard */

case 'q':

werase(cmdwin);

wprintw{cmdwin, “Enter cammand:”);

wmove (cmdwin, 2, 0);
for (i = 0; i < COLS; i++)
waddch(cmdwin, '-');

wmove(cmdwin, 1, 0);
touchwin(cmdwin) ;

wrefresh (cmdwin) ;

wgetstr (cmdwin, buf);
touchwin(stdscr);

/*

* The command is now in buf.

* It should be processed here.

*/

endwin();
exit(0);

PROGRAMMER’S GUIDE

96S

ﬂ
Chapter 10: The Common Object File
Format (COFF)

Page

The Common Object File Format (COFF)............ccccevveunennn.e. 10-1

1 Definitions and Conventionscccceevveeveerveesiveeirecrnennnens 10- 3
ﬂ SECLIONS ..ottt 10- 3
' Physical and Virtual Addresses...............coooerovereerrenereen. 10— 4
Target Machineccccoceeeiieeeeciivecece e 10- 4

File Header ...ttt eciaee e 10- 5

Magic NUmbersccccceveeiiviieiiceee e 10- 5

FIagsoceoeeeeeeceeeeeete ettt ettt 10- 6

File Header Declarationccccoeeeveevveeeeneecvrenenne. 10— 7

§ Optional Header Information............ccceeeevvecvieecvrecvnereennnns 10- 7
Standard UNIX System a.out Header 10- 8

Optional Header Declarationc..ccocevveveveeeiinviesinenens 10-9

Section Headers.........cccoceevureimereecieeeiescneecee e eeeeveeseenanens 10-10

FLags oottt 10-11

Section Header Declarationcccccoeevnirecrivecnniannen. 10-12

m .bss Section Headercocooveeiiiiiveceiiicceeeeeeee e 10-12
SECEIONSeceeeeieeieriere ettt ettt reearens 10-13

Relocation Informationcccceeceieeiiicinieccneecvnieeceenneenen. 10-13

Relocation Entry Declarationc..cccooeeeevieeiveeeeneennen. 10-15

Line NUmMDbErscccooievieiiieeeeeeecee ettt r e 10-16

Line Number Declaration..................ccooeerevreirienecrreinns 10-17

Symbol Tableccceccvieieniiiieiieiieceercce et ree e 10-18

Special Symbolsccccceevinieeiieiieiece e 10-20

Inner Blocks.........ooveeireieiieeeeeeeee et 10-21

TABLE OF CONTENTS i1

Table of Contents

-2

Page

Symbols and Functions.........ccceeceeiceiiceeneenieseesieeieeiene 10—-23
Symbol Table ENtries.......cccecvenveeiivineeinnrieneeeeeeenvesennnes 10—-24

Symbol Namescccveevveecreeienreenrecrrcreecieee e reessesseens 10-24
Storage CIaSSesccvviveeieceeeieeeereeereesrecnveeteearessaesseesseenss 10-26
Storage Classes for Special Symbolsccccceeeevveevecnnnnnen. 10-28
Symbol Value Field..................... SN 10-29
Section Number Fieldcccooceviviinnnnieriecnnnsienecrennennens 10-30
Section Numbers and Storage Classes.............cceeeecvrivennens 10-31
TYPe ENLEY .ot 10-32
Type Entries and Storage Classescccccvvevcevieecevcceneennen. 10-35
Structure for Symbol Table Entries........cccceveeecereeeneennnn. 10-37
Auxiliary Table Entries.......c...coeeveveeeniecnnnnenteseseecreeeenes 1038
Auxiliary Entry Declaration..........cocecveevivivcenceccnecneennsennn 10-44
String Tableccceeeerieniinereece et 10-47
Access ROULINESccoeeeivieeiieiieiereeesecenrie e s enee e 1048

PROGRAMMER’S GUIDE

865

599

.————————Jdb

The Common Object File Format (COFF)

The COFF format described in this
chapter covers MOTOROLA 680XO0.

COFTF for MIPS is an extention to
the format shown.

This section describes the Common Object File Format (COFF) used
on SUPERMAX computers with the UNIX operating system. COFF
is the format of the output file produced by the assembler, as, and
the link editor, 1d.

Some key features of COFF are

e applications can add system-dependent information to the
object file without causing access utilities to become obsolete

® space is provided for symbolic information used by debuggers
and other applications

e programmers can modify the way the object file is constructed
by providing directives at compile time
The object file supports user-defined sections and contains extensive
information for symbolic software testing. An object file contains
o 3 file header
e optional header information
® a table of section headers

¢ data corresponding to the section headers

COFF for MOTOROLA 10-1

The Common Object File Formét (COFF)

® relocation information
¢ line numbers
® a symbol table

® a string table

Figure 10-1 shows the overall structure.

FILE HEADER
Optional Information
Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n
Relocation Info for Sect. 1

Relocation Info for Sect. n
Line Numbers for Sect. 1

Line Numbers for Sect. n
SYMBOL TABLE
STRING TABLE

Figure 10-1: Object File Format

The last four sections (relocation, line numbers, symbol table, and the
string table) may be missing if the program is linked with the —s
option of the 1d command, or if the line number information, symbol
table, and string table are removed by the strip command. The line V
number information does not appear unless the program is compiled
with the —g option of the ce command. Also, if there are no

10-2 PROGRAMMER'’S GUIDE

601

The Common Object File Format (COFF)

unresolved external references after linking, the relocation informa-
tion is no longer needed and is absent. The string table is also absent
if the source file does not contain any symbols with names longer
than eight characters.

An object file that contains no errors or unresolved references is con-
sidered executable.

Definitions and Conventions

Before proceeding further, you should become familiar with the fol-
lowing terms and conventions.

Sections

A section is the smallest portion of an object file that is relocated and
treated as one separate and distinct entity. In the most common
case, there are three sections named .text, .data, and .bss. Addi-
tional sections accommodate comments, multiple text or data seg-
ments, shared data segments, or user-specified sections. However,
the UNIX operating system loads only .text, .data, and .bss into
memory when the file is executed.

It a mistake to assume that every COFF file will have a certain
NOTE| number of sections, or to assume characteristics of sections such
as their order, their location in the object file, or the address at
T which they are to be loaded. This information is available only

after the object file has been created. Programs manipulating
COFF files should obtain it from file and section headers in the
file.

COFF for MOTOROLA 10-3

The Common Object File Format (COFF)

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that sec-
tion or symbol from address zero of the address space. The term phy-
sical address as used in COFF does not correspond to general usage.
The physical address of an object is not necessarily the address at
which the object is placed when the process is executed. For example,
on a system with paging, the address is located with respect to
address zero of virtual memory and the system performs another
address translation. The section header contains two address fields, a
physical address, and a virtual address; but in all versions of COFF
on UNIX systems, the physical address is equivalent to the virtual
address.

Target Machine

Compilers and link editors produce executable object files that are
intended to be run on a particular cpu. The term target machine
refers to the cpu on which the object file is destined to run.

10-4 PROGRAMMER'S GUIDE

209

603

SRS R

e B e SRS TN

File Header

The Common Object File Format (COFF)

The file header contains the 20 bytes of information shown in Figure
10-2. The last 2 bytes are flags that are used by 1d and object file

utilities.
Bytes Declaration Name Description
0-1 | unsigned short | f magic | Magic number
2-3 | unsigned short | f nscns Number of sections
4-7 | longint f_timdat | Time and date stamp indicating
when the file was created,
expressed as the number of
elapsed seconds since 00:00:00
GMT, January 1, 1970
8-11 | long int f_symptr | File pointer containing the start-
ing address of the symbol table
12-15 | long int f nsyms Number of entries in the symbol
table
16 —17 | unsigned short | f opthdr | Number of bytes in the optional
header
18—-19 | unsigned short | f flags Flags (see Figure 10-3)

Figure 10-2: File Header Contents

Magic Numbers

The magic number specifies the target machine on which the object
file is executable.

COFF for MOTOROLA

10-5

SRR R TS

The Common Object File Format (COFF)

Flags

The last 2 bytes of the file header are flags that describe the type of
the object file. Currently defined flags are found in the header file
filehdr.h, and are shown in Figure 10-3.

Mnemonic Flag Meaning

F RELFLG 00001 Relocation information stripped from the
file.

F EXEC 00002 File is executable (i.e., no unresolved exter-
nal references).

F_LNNO 00004 Line numbers stripped from the file.

F_LSYMS 00010 Local symbols stripped from the file.

F_MINMAL 00020 Not used by the UNIX system.

F UPDATE 00040 Not used by the UNIX system.

F SWABD 00100 Not used by the UNIX system.

F_AR16WR 00200 File has the byte ordering used by the
PDP*-11/70 processor.

F_AR32WR 00400 File has the byte ordering used by the
VAX-11/780 (i.e.,32 bits per word, least
significant byte first).

F _AR32W 01000 File has the byte ordering used by the
SUPERMAX computers (i.e.,32 bits per
word, most significant byte first).

F PATCH 02000 Not used by the UNIX system.

F_BM32ID 0160000 | WE 32000 processor ID field.

10-6

Figure 10-3: File Header Flags

PROGRAMMER'S GUIDE

09

605

The Common Object File Format (COFF)

File Header Declaration

The C structure declaration for the file header is given in Figure 10-4.
This declaration may be found in the header file filehdr.h.

4 N

struct filehdr
{

unsigned short £ magic; /* magic number */
unsigned short £ nscns; /* number of section */

long f timdat; /* time and date stamp */
long f symptr; /* file ptr to symbol table */
long f nsyms; /* number entries in the symbol table */

unsigned short £ opthdr; /* size of optional header */

unsigned short ' f_ flags; /* flags */
¥

#define FILHDR struct filehdr
t#define FILHSZ sizeof (FILHDR)

Figure 10-4: File Header Declaration

Optional Header Information

The template for optional information varies among different systems
that use COFF. Applications place all system-dependent information
into this record. This allows different operating systems access to
information that only that operating system uses without forcing all
COFF files to save space for that information.

General utility programs (for example, the symbol table access library
functions, the disassembler, etc.) are made to work properly on any
common object file. This is done by seeking past this record using the
size of optional header information in the file header field f_opthdr.

COFF for MOTOROLA 10-7

The Common Object File Format (COFF)

Standard UNIX System a.out Header

By default, files produced by the link editor for a UNIX system always

have a standard UNIX system a.out header in the optional header
field.

Bytes | Declaration Name Description

0- 1 | short magic | Magic number

2—- 3 | short vstamp Version stamp

4— 7 | longint tsize Size of text in bytes

8-11 | long int dsize Size of initialized data in bytes
12-15 | long int bsize Size of uninitialized data in bytes
16-19 | long int entry Entry point
2023 | long int text_start | Base address of text
24-27 | long int data_start | Base address of data

Figure 10-5: Optional Header Contents

Whereas, the magic number in the file header specifies the machine
on which the object file runs, the magic number in the optional
header supplies information telling the operating system on that
machine how that file should be executed. The magic numbers recog-
nized by the UNIX operating system are given in Figure 10-6.

Value Meaning

0407 | The text segment is not write-protected or sharable; the data seg-
ment is contiguous with the text segment.

0410 | The data segment starts at the next segment following the text
segment and the text segment is write protected.

0413 | Text and data segments are aligned within a.out so it can be
directly paged.

Figure 10-6: UNIX System Magic Numbers

10-8 PROGRAMMER’S GUIDE

909

607

The Common Object File Format (COFF)

Optional Header Declaration

The C language structure declaration currently used for the UNIX
system a.out file header is given in Figure 10-7. This declaration
may be found in the header file aouthdr.h.

-

{
short
short
long

long
long
long
long
long

} AOUTHDR;

typedef struct aouthdr

magic;
vstamp;
tsize;

dsize;
bsize;
entry;
text_start;

data_start

/*
/*
/*

/*
/*

magic number */

version stamp */

text size in bytes, padded */
to full word boundary */
initialized data size */
uninitialized data size */
entry point */

base of text for this file */

base of data for this file */

~

Figure 10-7: aouthdr Declaration

COFF for MOTOROLA

10-9

The Common Object File Format (COFF)

Section Headers

Every object file has a table of section headers to specify the layout of
data within the file. The section header table consists of one entry
for every section in the file. The information in the section header is
described in Figure 10-8.

Bytes | Declaration Name Description
0-7 | char $_name 8-character null padded section
name
8-11 | long int s_paddr Physical address of section
12-15 | long int s_vaddr Virtual address of section
16-19 | long int s_size Section size in bytes
20-23 | long int s_scnptr File pointer to raw data
24-27 | long int s_relptr File pointer to relocation entries
28-31 | long int s_Innoptr | File pointer to line number
entries
32-33 | unsigned s nreloc Number of relocation entries
short
34-35 | unsigned s_ninno Number of line number entries
short
36-39 | long int s_flags Flags (see Figure 10-9)

Figure 10-8: Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File pointers
are byte offsets that can be used to locate the start of data, relocation,
or line number entries for the section. They can be readily used with
the UNIX system function fseek(3S).

10-10 PROGRAMMER’S GUIDE

809

609

Flags

de

The Common Object File Format (COFF)

The lower 2 bytes of the flag field indicate a section type. The flags
are described in Figure 10-9.

Mnemonic Flag Meaning

STYP_REG 0x00 | Regular section (allocated, relocated, loaded)

STYP DSECT 0x01 | Dummy section (not allocated, relocated, not
loaded)

STYP NOLOAD | 0x02 | Noload section (allocated, relocated, not loaded)

STYP_GROUP 0x04 | Grouped section (formed from input sections)

STYP_PAD 0x08 | Padding section (not allocated, not relocated,
loaded)

STYP_COPY 0x10 | Copy section (for a decision function used in
updating fields; not allocated, not relocated,
loaded, relocation and line number entries pro-
cessed normally)

STYP_TEXT 0x20 | Section contains executable text

STYP_DATA 0x40 | Section contains initialized data

STYP_BSS 0x80 | Section contains only uninitialized data

STYP_INFO 0x200 | Comment section (not allocated, not relocated,
not loaded)

STYP_OVER 0x400 | Overlay section (relocated, not allocated, not
loaded)

STYP_LIB 0x800 | For .lib section (treated like STYP_INFO)

Figure 10-9: Section Header Flags

COFF for MOTOROLA

10-11

The Common Object File Format (COFF)

Section Header Declaration

The C structure declaration for the section headers is described in
Figure 10-10. This declaration may be found in the header file
scnhdr.h.

4)

struct scnhdr

{
char s_name(8]; /* section name */
long s_paddr; /* physical address */
long s_vaddr; /* virtual address */
long s_size; /* section size */
long 8_scnptr; /* file ptr to section raw data * /
long s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line number */
unsigned short s_nreloc; /* number of relocation entries */
unsigned short s_nlnno; /* number of line number entries */
long s_flags; /* flags */

¥

#define SCNHDR struct scnhdr

$define SCNHSZ sizeof (SCNHDR)

Figure 10-10: Section Header Declaration

.bss Section Header

The one deviation from the normal rule in the section header table is
the entry for uninitialized data in a .bss section. A .bss section has a
size and symbols that refer to it, and symbols that are defined in it.
At the same time, a .bss section has no relocation entries, no line
number entries, and no data. Therefore, a .bss section has an entry
in the section header table but occupies no space elsewhere in the file.
In this case, the number of relocation and line number entries, as

10-12 PROGRAMMER'’S GUIDE

019

The Common Object File Format (COFF)

well as all file pointers in a .bss section header, are 0. The same is
true of the STYP_NOLOAD and STYP DSECT sections.

Sections

Figure 10-1 shows that section headers are followed by the appropri-
ate number of bytes of text or data. The raw data for each section
ﬁ begins on a 4-byte boundary in the file.

Link editor SECTIONS directives (see Chapter 11) allow users to,
among other things:

® describe how input sections are to be combined

o direct the placement of output sections

® rename output sections

61

If no SECTIONS directives are given, each input section appears in
an output section of the same name. For example, if a number of
object files, each with a .text section, are linked together the output
object file contains a single .text section made up of the combined
input .text sections.

Relocation Information

Object files have one relocation entry for each relocatable reference in
the text or data. The relocation information consists of entries with
the format described in Figure 10-11.

COFF for MOTOROLA 10-13

L

The Common Object File Format (COFF)

Bytes Declaration Name Description
0-3 long int r_vaddr (Virtual) address of refer-
ence
4-7 long int r_symndx | Symbol table index
8-9 unsigned short | r_type Relocation type
Figure 10-11: Relocation Section Contents w

The first 4 bytes of the entry are the virtual address of the text or
| data to which this entry applies. The next field is the index, counted
| from 0, of the symbol table entry that is being referenced. The type

field indicates the type of relocation to be applied.

As the link editor reads each input section and performs relocation,
the relocation entries are read. They direct how references found
within the input section are treated. The currently recognized reloca-
tion types are given in Figure 10-12.

ci9

Mnemonic | Flag Meaning

R_ABS 0 | Reference is absolute; no relocation is neces-
sary. The entry will be ignored.

R DIR32 06 Direct 32-bit reference to the symbol’s virtual u
address.

R_DIR32S 012 | Direct 32-bit reference to the symbol’s virtual
address, with the 32-bit value stored in the
reverse order in the object file.

Figure 10-12: Relocation Types

10-14 PROGRAMMER’S GUIDE

The Common Object File Format (COFF)

Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 10-
13. This declaration may be found in the header file reloc.h.

4)

struct reloc

- {
" : ’ long r_vaddr; /* virtual address of reference */
long r_symndx; /* index into symbol table */
unsigned short r_type; /* relocation type */

}i

#define RELOC struct reloc

#define RELSZ 10

613

Figure 10-13: Relocation Entry Declaration

COFF for MOTOROLA 10-15

]

The Common Object File Format (COFF)

Line Numbers

When invoked with the —g option, the ce command cause an entry in
the object file for every source line where a breakpoint can be
inserted. You can then reference line numbers when using a software
debugger like sdb. All line numbers in a section are grouped by func-
tion as shown in Figure 10-14.

symbol index 0
physical address | line number
physical address | line number

symbol index 0
physical address | line number
physical address | line number

Figure 10-14: Line Number Grouping

The first entry in a function grouping has line number 0 and has, in
place of the physical address, an index into the symbol table for the
entry containing the function name. Subsequent entries have actual
line numbers and addresses of the text corresponding to the line
numbers. The line number entries are relative to the beginning of
the function, and appear in increasing order of address.

10-16 PROGRAMMER’S GUIDE

vi9

. ——] db&

The Common Object File Format (COFF)

Line Number Declaration

The structure declaration currently used for line number entries is
given in Figure 10-15.

4)

struct lineno

ﬁ { union

{

long 1 symndx; /* symtbl index of func name */

long 1 _paddr; /* paddr of line number */

} 1 addr;
unsigned short 1 lnno; /* line number */
}i
#define LINENO struct lineno
#define LINESZ 6

615

o J

Figure 10-15: Line Number Entry Declaration

COFF for MOTOROLA 10-17

R AT

The Common Object File Format (COFF)

Symbol Table

Because of symbolic debugging requirements, the order of symbols in
the symbol table is very important. Symbols appear in the sequence
shown in Figure 10-16.

filename 1
function 1

local symbols
for function 1

function 2

local symbols
for function 2

statics

filename 2
function 1

local symbols
for function 1

statics

defined global
symbols
undefined global
symbols

Figure 10-16: COFF Symbol Table

10-18 PROGRAMMER’S GUIDE

The Common Object File Format (COFF)

The word statics in Figure 10-16 means symbols defined with the C
language storage class static outside any function. The symbol table
consists of at least one fixed-length entry per symbol with some sym-
bols followed by auxiliary entries of the same size. The entry for each
symbol is a structure that holds the value, the type, and other infor-
mation.

617

COFF for MOTOROLA 10-19

The Common Object File Format (COFF)

Special Symbols

The symbol table contains some special symbols that are generated by
as, and other tools. These symbols are given in Figure 10-17.

Symbeol Meaning

file filename

text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

ef address of end of function

target | pointer to the structure or union returned by
a function

xfake dummy tag name for structure, union, or
enumeration

.€08 end of members of structure, union, or
enumeration

etext next available address after the end of the out-
put section .text

edata next available address after the end of the out-
put section .data

end next available address after the end of the out-

put section .bss

Figure 10-17: Special Symbols in the Symbol Table

10-20

PROGRAMMER'’S GUIDE

819

619

The Common Object File Format (COFF)

Six of these special symbols occur in pairs. The .bb and .eb symbols
indicate the boundaries of inner blocks; a .bf and .ef pair brackets
each function. An xfake and .eos pair names and defines the limit
of structures, unions, and enumerations that were not named. The
.eos symbol also appears after named structures, unions, and
enumerations.

When a structure, union, or enumeration has no tag name, the com-
piler invents a name to be used in the symbol table. The name
chosen for the symbol table is xfake, where x is an integer. If there
are three unnamed structures, unions, or enumerations in the source,
their tag names are .0fake, .1fake, and .2fake. Each of the special
symbols has different information stored in the symbol table entry as
well as the auxiliary entries.

Inner Blocks

The C language defines a block as a compound statement that begins
and ends with braces, {, and }. An inner block is a block that occurs
within a function (which is also a block).

For each inner block that has local symbols defined, a special symbol,
.bb, is put in the symbol table immediately before the first local sym-
bol of that block. Also a special symbol, .eb, is put in the symbol
table immediately after the last local symbol of that block. The
sequence is shown in Figure 10-18.

.bb

local symbols
for that block

.eb
Figure 10-18: Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb—.eb
pairs and associated symbols may also be nested. See Figure 10-19.

COFF for MOTOROLA 10-21

The Common Object File Format (COFF)

4)

{ /* block 1 */
int i;
char c;
{ /* block 2 */
long a;
{ /* block 3 */
int x;
} /* block 3 */
} /* block 2 */
{ /* block 4 */
long i;
} /* block 4 */
} /* block 1 */

N J

Figure 10-19: Nested blocks

The symbol table would look like Figure 10-20 on the following page.

10-22 PROGRAMMER'S GUIDE

0e9

The Common Object File Format (COFF)

.bb for block 1

c
.bb for block 2
a
.bb for block 3

) x

.eb for block 3

.eb for block 2

.bb for block 4
i

.eb for block 4

.eb for block 1

621

Figure 10-20: Example of the Symbol Table

Symbols and Functions

For each function, a special symbol .bf is put between the function
name and the first local symbol of the function in the symbol table.
ﬂ Also, a special symbol .ef is put immediately after the last local sym-
bol of the function in the symbol table. The sequence is shown in

Figure 10-21.
function name
bf
local symbol
.ef
ﬁ Figure 10-21: Symbols for Functions
COFF for MOTOROLA 10-23

|

The Common Object File Format (COFF)

Symbol Table Entries

All symbols, regardless of storage class and type, have the same for-
mat for their entries in the symbol table. The symbol table entries
each contain 18 bytes of information. The meaning of each of the
fields in the symbol table entry is described in Figure 10-22. It should
be noted that indices for symbol table entries begin at 0 and count
upward. Each auxiliary entry also counts as one symbol.

Bytes Declaration Name Description

0-7 | (see text below) _n These 8 bytes contain
either a symbol name or
an index to a symbol

8-11 | long int n_value Symbol value; storage
class dependent
12-13 | short n_scnum Section number of symbol
14—15 | unsigned short | n_type Basic and derived type
specification
16 | char n_sclass Storage class of symbol
17 | char n_numaux | Number of auxiliary
entries

Figure 10-22: Symbol Table Entry Format

Symbol Names

The first 8 bytes in the symbol table entry are a union of a character
array and two longs. If the symbol name is eight characters or less,
the (null-padded) symbol name is stored there. If the symbol name is
longer than eight characters, then the entire symbol name is stored
in the string table. In this case, the 8 bytes contain two long
integers, the first is zero, and the second is the offset (relative to the
beginning of the string table) of the name in the string table. Since
there can be no symbols with a null name, the zeroes on the first 4

10-24 PROGRAMMER'’S GUIDE

229

623

kil

The Common Object File Format (COFF)

bytes serve to distinguish a symbol table entry with an offset from
one with a name in the first 8 bytes as shown in Figure 10-23.

Bytes | Declaration Name Description

0-7 char n_name | 8-character null-padded sym-
bol name

0-3 long n_zeroes | Zero in this field indicates the
name is in the string table

4-7 long n_offset | Offset of the name in the
string table

Figure 10-23: Name Field

Special symbols generated by the C Compilation System are discussed
above in ”Special Symbols.”

COFF for MOTOROLA

10-25

s s R S o £ e . T R oS5 s PR 50 (070

The Common Object File Format (COFF)

Storage Classes

The storage class field has one of the values described in Figure 10-24.
These #define’s may be found in the header file storclass.h.

Mnemonic Value Storage Class
C_EFCN -1 physical end of a function
C NULL 0 -

C_AUTO 1 automatic variable
C_EXT 2 external symbol
C_STAT 3 | static

C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label

C ULABEL 7 undefined label
C_MOS 8 member of structure
C ARG 9 function argument
C_STRTAG 10 structure tag

C_MOU 1 member of union

C UNTAG 12 union tag

C_TPDEF 13 type definition
C_USTATIC 14 uninitialized static
C_ENTAG 15 enumeration tag

C MOE 16 member of enumeration
C_REGPARM 17 register parameter |

10-26

PROGRAMMER’S GUIDE

ve9

625

—m

The Common Object File Format (COFF)

Mnemonic Value Storage Class
C_FIELD 18 bit field
C_BLOCK 100 beginning and end of block
C FCN 101 beginning and end of function
C_EOS 102 end of structure
C_FILE 103 filename
C_LINE 104 used only by utility programs
C_ALIAS 105 duplicated tag
C_HIDDEN 106 like static, used to avoid name conflicts

Some of these storage classes are used only internally by the C Com-
pilation Systems. These storage classes are C_EFCN, C_EXTDEF,
C_ULABEL, C_USTATIC, and C_LINE.

Figure 10-24: Storage Classes

All of these storage classes except for C_ALIAS and C_HIDDEN are
generated by the cc or as commands. The compress utility, cprs,
generates the C_ALIAS mnemonic. This utility (described in the Sys-
tem V Reference Manual) removes duplicated structure, union, and
enumeration definitions and puts alias entries in their places. The
storage class C_HIDDEN is not used by any UNIX system tools.

COFF for MOTOROLA

10-27

The Common Object File Format (COFF)

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes. They
are given in Figure 10-25.

Special Symbol Storage Class
file C FILE

.bb C_BLOCK

.eb C_BLOCK

bf C FCN

.ef C FCN

.target C_AUTO

xfake C STRTAG, C_UNTAG, C_ENTAG
€08 C EOS

.text C _STAT

.data C _STAT

.bss C_STAT

Figure 10-25: Storage Class by Special Symbols

Also some storage classes are used only for certain special symbols.

Storage Class | Special Symbol
C BLOCK .bb, .eb

C FCN .bf, .ef

C EOS €08

C FILE file

Figure 10-26: Restricted Storage Classes

10-28 PROGRAMMER’S GUIDE

929

Symbol Value Field

The Common Object File Format (COFF)

The meaning of the value of a symbol depends on its storage class.
This relationship is summarized in Figure 10-27.

Storage Class

Meaning of Value

; C_AUTO
|

stack offset in bytes

C_EXT

relocatable address

C_STAT

relocatable address

C_REG

register number

relocatable address

C_MOS

offset in bytes

|
C_LABEL
\

C_ARG

stack offset in bytes

627

C_STRTAG

C_MOU

C_UNTAG

C_TPDEF

C_ENTAG

o|lojlo|o| o

C_MOE

enumeration value

C_REGPARM

register number

C_FIELD

bit displacement

C_BLOCK

relocatable address

C_FCN

relocatable address

C_EOS

COFF for MOTOROLA

size

10-29

m 4 — —

The Common Object File Format (COFF)

Storage Class Meaning of Value
C _FILE (see text below)
C_ALIAS tag index

C_HIDDEN relocatable address

Figure 10-27: Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol equals
the symbol table entry index of the next .file symbol. That is, the
file entries form a one-way linked list in the symbol table. If there
are no more .file entries in the symbol table, the value of the symbol
is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that
symbol. When the section is relocated by the link editor, the value of
these symbols changes.

Section Number Field

Section numbers are listed in Figure 10-28.

Mnemonic | Section Number Meaning
| N DEBUG -2 Special symbolic debugging
| symbol
i N_ABS -1 Absolute symbol
} N_UNDEF 0 Undefined external symbol
| N_SCNUM 1077777 Section number where symbol
is defined

Figure 10-28: Section Number

A special section number (—2) marks symbolic debugging symbols,
; including structure/union/enumeration tag names, typedefs, and the
| name of the file. A section number of —1 indicates that the symbol
has a value but is not relocatable. Examples of absolute-valued

10-30 PROGRAMMER'’S GUIDE

829

629

—————] d&

The Common Object File Format (COFF)

symbols include automatic and register variables, function arguments,
and .eos symbols.

With one exception, a section number of 0 indicates a relocatable
external symbol that is not defined in the current file. The one
exception is a multiply defined external symbol (i.e., FORTRAN com-
mon or an uninitialized variable defined external to a function in C).
In the symbol table of each file where the symbol is defined, the sec-
tion number of the symbol is 0 and the value of the symbol is a posi-
tive number giving the size of the symbol. When the files are com-
bined to form an executable object file, the link editor combines all
the input symbols of the same name into one symbol with the section
number of the .bss section. The maximum size of all the input sym-
bols with the same name is used to allocate space for the symbol and
the value becomes the address of the symbol. This is the only case
where a symbol has a section number of 0 and a non-zero value.

Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to certain
section numbers. They are summarized in Figure 10-29.

Storage Class Section Number
C_AUTO N_ABS

C_EXT N_ABS, N UNDEF, N_ SCNUM
C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N SCNUM

C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

COFF for MOTOROLA 10-31

The Common Object File Format (COFF)

Storage Class Section Number
C_MOU N_ABS
C_UNTAG N_DEBUG
C TPDEF N_DEBUG
C_ENTAG N DEBUG
C_MOE N_ABS
C_REGPARM N_ABS
C_FIELD N_ABS
C_BLOCK N_SCNUM
C_FCN N_SCNUM
C_EOS N_ABS

C FILE N _DEBUG
C_ALIAS N _DEBUG

Figure 10-29: Section Number and Storage Class

Type Entry

The type field in the symbol table entry contains information about
the basic and derived type for the symbol. This information is gen-
erated by the C Compilation System only if the —g option is used.
Each symbol has exactly one basic or fundamental type but can have
more than one derived type. The format of the 16-bit type entry is

10-32 PROGRAMMER’S GUIDE

0€9

—

d

The Common Object File Format (COFF)

| dé | d5 | d4 | d3 | d2 | A1 | typ

|

Bits 0 through 3, called typ, indicate one of the fundamental types

given in Figure 10-30.
! Mnemonic | Value Type
n T _NULL 0 type not assigned
m T VOID 1 void
T _CHAR 2 character
T_SHORT 3 short integer
T _INT 4 integer
T _LONG 5 long integer
2 T _FLOAT 6 floating point
T DOUBLE 7 double word
T_STRUCT 8 structure
T_UNION 9 union
n T ENUM 10 enumeration

| Y T MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T _USHORT 13 unsigned short
T UINT 14 unsigned integer
T ULONG 15 unsigned long

Figure 10-30: Fundamental Types

COFF for MOTOROLA

10-33

k3

The Common Object File Format (COFF)

Bits 4 through 15 are arranged as six 2-bit fields marked dl through
d6. These d fields represent levels of the derived types given in Fig-
ure 10-31.

Mnemonic | Value Type

DT _NON 0 no derived type
DT_PTR 1 pointer

DT FCN 2 function

DT _ARY 3 array

Figure 10-31: Derived Types

The following examples demonstrate the interpretation of the symbol
table entry representing type.

char *func();

Here func is the name of a function that returns a pointer to a char-
acter. The fundamental type of funec is 2 (character), the d1 field is 2
(function), and the d2 field is 1 (pointer). Therefore, the type word in
the symbol table for func contains the hexadecimal number 0x62,
which is interpreted to mean a function that returns a pointer to a
character.

short *tabptr[10][251[3}];

Here tabptr is a three-dimensional array of pointers to short
integers. The fundamental type of tabptr is 3 (short integer); the dl,
d2, and d3 fields each contains a 3 (array), and the d4 field is 1
(pointer). Therefore, the type entry in the symbol table contains the
hexadecimal number 0x7f3 indicating a three-dimensional array of
pointers to short integers.

10-34 PROGRAMMER’S GUIDE

2e9

633

~ —————————]34

The Common Object File Format (COFF)

Type Entries and Storage Classes

Figure 10-32 shows the type entries that are legal for each storage

class.
d Entry
Storage typ Entry
Class Function? | Array? | Pointer? Basic Type

C_AUTO no yes yes Any except T MOE
C_EXT yes yes yes Any except T MOE
C_STAT yes yes yes Any except T MOE
C REG no no yes Any except T_MOE
C_LABEL no no no T NULL
C_MOS no yes yes Any except T MOE
C_ARG yes no yes Any except T MOE
C_STRTAG no no no T_STRUCT
C MOU no yes yes Any except T MOE
C_UNTAG no no no T_UNION
C_TPDEF no yes yes Any except T MOE
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM no no yes Any except T_MOE
C_BLOCK no no no T _NULL

COFF for MOTOROLA

10-35

The Common Object File Format (COFF)

d Entry
Storage typ Entry
Class Function? | Array? | Pointer? Basic Type
C_FCN no no no T_NULL
C_FIELD no no no T_ENUM, T_UCHAR,
T_USHORT,
T_UNIT. T_ULONG
C_EOS no no no T _NULL
C_FILE no no no T _NULL
C_ALIAS no no no T_STRUCT.
T_UNION. T_ENUM

Figure 10-32: Type Entries by Storage Class

Conditions for the d entries apply to d1 through d6, except that it is
impossible to have two consecutive derived types of function.

Although function arguments can be declared as arrays, they are
changed to pointers by default. Therefore, no function argument can

have array as its first derived type.

10-36

PROGRAMMER'S GUIDE

u

ve9

635

| P — 7] m—

The Common Object File Format (COFF)

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry is ‘
given in Figure 10-33. This declaration may be found in the header
file syms.h.

4)

struct syment
{
union
{
char _n_name[SYMNMLEN] ; /* symbol name*/
struct
{
long _n_zeroes; /* symbol name */
long _n_offset; /* location in string table */
} _nn;
char *_n nptr(2); /* allows overlaying */
} _n;
unsigned long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /* type and derived */
char n_sclass; /* storage class */
char n_numaux; /* number of aux entries */
¥
#define n_name _n._n_name
#define n_zeroces _h. h n._n zeroes
#define n offset _n. n_n. n offset
#define n_nptr _n._n nptr[l]
tdefine SYMNMIEN 8

#define SYMESZ 18 /* size of a symbol table entry */ j

o

Figure 10-33: Symbol Table Entry Declaration

COFF for MOTOROLA 10-37

The Common Object File Format (COFF)

Auxiliary Table Entries

An auxiliary table entry of a symbol contains the same number of
bytes as the symbol table entry. However, unlike symbol table
entries, the format of an auxiliary table entry of a symbol depends on
its type and storage class. They are summarized in Figure 10-34.

Type Entry
Storage Auxiliary
Name Class d1 typ Entry Format

file C FILE DT_NON T NULL filename
.text, C_STAT DT_NON T_NULL section
.data,
.bss
tagname C_STRTAG | DT_NON T_NULL tag name

C_UNTAG ‘

C_ENTAG
€08 C_EOS DT NON T _NULL end of structure
fename C_EXT DT_FCN (Note 1) ' function

C_STAT
arrname (Note 2) DT_ARY (Note 1) array
.bb,.eb C_BLOCK DT _NON T_NULL beginning and end

of block
.bf,.ef C_FCN DT _NON T_NULL beginning and end
of function

name related | (Note 2) DT PTR, - T STRUCT, name related to
to structure, DT _ARR, ¢ T _UNION, structure, union,
union, DT NON . T_ENUM enumeration
enumeration I

Figure 10-34: Auxiliary Symbol Table Entries

10-38 PROGRAMMER'S GUIDE

9€9

E=

The Common Object File Format (COFF)

Notes to Figure 10-34:

1. Any except T MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

In Figure 10-34, tagname means any symbol name including the spe-

cial symbol xfake, and fecname and arrname represent any symbol

name for a function or an array respectively. Any symbol that

satisfies more than one condition in Figure 10-34 should have a union
ﬁ format in its auxiliary entry.

It is a mistake to assume how many auxiliary entries are associ-
NoTE | ated with any given symbol table entry. This information is avail-
able, and should be obtained from the n_numaux field in the
I symbeol table.

Filenames

637

Each of the auxiliary table entries for a filename contains a 14-
character filename in bytes 0 through 13. The remaining bytes are 0.

Sections

The auxiliary table entries for sections have the format as shown in
ﬁ Figure 10-35.

Bytes Declaration Name Description
0-3 long int x_scnlen | section length
4-5 unsigned short | x nreloc | number of relocation
entries
6-7 unsigned short | x_nlinno | number of line numbers
8-17 - - unused (filled with zeroes)
m Figure 10-35: Format for Auxiliary Table Entries for Sections

COFF for MOTOROLA 10-39

The Common Object File Format (COFF)

Tag Names

The auxiliary table entries for tag names have the format shown in

Figure 10-36.

Bytes Declaration Name Description

0-5 - - unused (filled with zeroes)

67 unsigned short | x_size size of structure, union,
and enumeration

8-11 - - unused (filled with zeroes)

12-15 | long int x_endndx | index of next entry
beyond this structure,
union, or enumeration

16-17 | -~ - unused (filled with zeroes)

Figure 10-36: Tag Names Table Entries

End of Structures

The auxiliary table entries for the end of structures have the format

shown in Figure 10-37:

Bytes Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled with zeroes)
6—-7 unsigned short | x_size size of structure, union,

or enumeration

8-17 -

unused (filled with zeroes)

Figure 10-37: Table Entries for End of Structures

10-40

PROGRAMMER’S GUIDE

8€9

£ =

The Common Object File Format (COFF)

Functions

The auxiliary table entries for functions have the format shown in

Figure 10-38:

Bytes Declaration Name Description

0-3 long int x_tagndx | tagindex

4-7 long int x_fsize size of function (in bytes)
m 8-11 long int x_Innoptr | file pointer to line number

12-15 | long int x_endndx | index of next entry

beyond this point

16 —17 | unsigned short | x tvndx index of the function’s
address in the transfer
vector table (not used in
UNIX system)

639

Figure 10-38: Table Entries for Functions

COFF for MOTOROLA 10-41

The Common Object File Format (COFF)

Arrays

The auxiliary table entries for arrays have the format shown in Fig-
ure 10-39. Defining arrays having more than four dimensions pro-
duces a warning message.

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 unsigned short x_lnno line number of declaration
6-7 unsigned short x_size size of array

8-9 unsigned short x_dimen[0] first dimension

10-11 unsigned short x_dimen[l] second dimension

12-13 unsigned short x dimen[2] third dimension

14-15 wunsigned short x_dimen{3] fourth dimension
16-17 - -

unused (ﬁlléd with zeroes)
Figure 10-39: Table Entries for Arrays

End of Blocks and Functions

The auxiliary table entries for the end of blocks and functions have
the format shown in Figure 10-40:

Bytes Declaration Name Description
0-3 - - unused (filled with zeroes:
4-5 unsigned short x_lnno C-source line number
6-17 - - unused (filled with zeroes;

Figure 10-40: End of Block and Function Entries

10-42 PROGRAMMER'S GUIDE

W/

[0)2%)

641

B —— 7]

The Common Object File Format (COFF)

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and functions
have the format shown in Figure 10-41:

Bytes Declaration Name Description

0-3 - - unused (filled with zeroes)

4-5 unsigned short | x_Inno C-source line number

6-11 - - unused (filled with zeroes)

12—-15 | long int x_endndx | index of next entry past
this block

16—-17 | - - unused (filled with zeroes)

Figure 10-41: Format for Beginning of Block and Function

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and enumeration
symbols have the format shown in Figure 10-42:

Bytes Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled with zeroes)

6-17 unsigned short | x_size size of the structure,
union, or enumeration

8-17 - - unused (filled with zeroes)

Figure 10-42: Entries for Structures, Unions, and Enumerations

COFF for MOTOROLA 10-43

R

‘ The Common Object File Format (COFF)

Aggregates defined by typedef may or may not have auxiliary table
entries. For example:

4)

typedef struct people STUDENT;

struct people
{

char name[20];
long id;

¥ V

typedef struct people EMPLOYEE; J

The symbol EMPLOYEE has an auxiliary table entry in the symbol
table but symbol STUDENT will not because it is a forward reference
to a structure.

Auxiliary Entry Declaration

2v9

The C language structure declaration for an auxiliary symbol table
entry is given in Figure 10-43 as follows. This declaration may be
found in the header file syms.h.

10-44 PROGRAMMER’S GUIDE

643

The Common Object File Format (COFF)

f

union auxent

{
struct

{
long x_tagndx;
union

struct

{
unsigned short
unsigned short
} x_lnsz;
long x_fsize;
} x misc;
union

{

struct
{

} x_fen;

struct

{
unsigned short

} x_ary;
} x_fenary;

} x_sym;

struct
{

} x_file;
struct

{

long x_scnlen;

.

unsigned short x tvndx;

char x fname[FILNMLEN];

unsigned short x nreloc;
unsigned short x nlinno;

x_lnno;
x_size;

long X_lnnoptr;
long x_endndx;

X_dimen[DIMNUM];

\

/

COFF for MOTOROLA

(continued on next page)

10-45

The Common Object File Format (COFF)

4 N

} x_scn;

struct
{
long x tvfill;
% unsigned short x tvlen;
| unsigned short x tvran[2};
| } x tv; .
) W/
tdefine FILNMLEN 14
#define DIMNUM 4
#define AUXENT union auxent
#define AUXESZ 18

N /

Figure 10-43: Auxiliary Symbol Table Entry

)

10-46 PROGRAMMER’S GUIDE

645

L._—_EI;=

The Common Object File Format (COFF)

String Table

Symbol table names longer than eight characters are stored contigu-

ously in the string table with each symbol name delimited by a null

byte. The first four bytes of the string table are the size of the string

table in bytes; offsets into the string table, therefore, are greater than |
or equal to 4. For example, given a file containing two symbols (with

names longer then eight characters, long name 1 and
another_one) the string table has the format as shown in Figure

10-44:

‘l’ ‘O, ‘n g

B n a m
‘e’ ‘_’ ‘1’ ‘\0’
‘a’ ‘n’ ‘07 ‘t’
‘h’ ‘e’ ‘r’ [

‘0’ ‘n’ ‘e, ‘\O’

Figure 10-44: String Table

The index of long name_1 in the string table is 4 and the index of
another_one is 16.

COFF for MOTOROLA 10-47

The Common Object File Format (COFF)

Access Routines

UNIX system releases contain a set of access routines that are used
for reading the various parts of a common object file. Although the
calling program must know the detailed structure of the parts of the
object file it processes, the routines effectively insulate the calling pro-
gram from the knowledge of the overall structure of the object file.

The access routines can be divided into four categories: u
1. functions that open or close an object file
2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular
section of the object file

4. a function that returns the symbol table index for a particular
symbol

99

These routines can be found in the library libld.a and are listed in
Section 3 of the System V Reference Manual. A summary of what is
available can be found in the System V Reference Manual under
ldfen(4).

10-48 PROGRAMMER’S GUIDE

647

Chapter 11: The Link Editor

Page
The Link EdItor.......c.ccocvviretrrnrnenieneniininniic e 1-1
Memory Configuration..........ccoceeeveciiininininninnnninnne e 11- 2
SECLIONS ..vveeuvrieeieeriieeertretereseeserreesreteceeessessatsssasesssssssnessassssnns 11-2
AQATESSES ..vveeneieiereierreiceeretrereereieeestresteseee e s sessssassaasesrrsaene 11- 3
Bindingccccvveeuevierirecnenieeeetee et 11- 3
Object File.....ooiiieieciericreeeeenereecrve et 11-3
Link Editor Command Language.........c.cocecoervervcrucinccnsernenincnnens 11-5
EXPIressionsccoeeceneecirierertencnse et eee et otssses e esse 11-5
Assignment Statements..........cccoecceverreeciniini, 11-6
Specifying a Memory Configuration...........cccoecvvrvininennnnnn. 11-8
Section Definition Directivescccceevcervriiircennininnenescnneneen. 11-10
File Specificationsccccoueeervevevcenimnicnniinniiccinicncicne 11-1
Load a Section at a Specified Address........c.cccccecvveeeennnne. 1-13
Aligning an Output Sectioncccoeereecirnnrcerniicciiiecenen 1-14
Grouping Sections Together...........cccocvvenineennncnncnnenn. 1-14
Creating Holes Within Output Sections........ccccccceccveeennene. 11-17
Creating and Defining Symbols at Link-Edit Time........... 1-19
Allocating a Section Into Named Memorycccecuereneen. 11-21
Initialized Section Holes or .bss Sections...........ccccceeeneee 11-21
Notes and Special Considerations.........c..ccecceveenirininciencncrnnnnnnn, 11-25
Changing the Entry Point.........cccocvvnninininnininiinien, 11-25
Use of Archive Libraries........c.ccooveerceinnnnccniencninecnescnencnne 1-26
Dealing With Holes in Physical Memory.......ccccoeeviricceencne 11-28
Allocation Algorithm.........c.ccovevevenirerninrennierrre oo 11-29
Incremental Link Editing..........ccocceiivmeiinevinnciecinneneeniereenenen. 11-30
TABLE OF CONTENTS i1

Table of Contents

o

Page
DSECT, COPY, NOLOAD, INFO, and OVERLAY Sections. 11-32
Output File BIOCKINGcccvvverruenirenieinennnreecnresseneesesesssessuenns 11-34
Nonrelocatable Input Files..........ccccccvnieriininnnnnniieneeicreeenne 11-34 "
Syntax Diagram for Input Directives...........cccccvvvevieeveevveencerrsennennn 11-37

I-2 PROGRAMMER’S GUIDE

8v9

649

The Link Editor

The link editor described in this chapter
covers MOTOROLA 680X0.

The link editor for MIPS R3000 differs a
bit.

In Chapter 2 there was a discussion of link editor command line
options (some of which may also be provided on the ce(l) command
line). This chapter contains information on the Link Editor Com-
mand Language.

The command language enables you to
® specify the memory configuration of the target machine

e combine the sections of an object file in arrangements other
than the default

e bind sections to specific addresses or within specific portions of
memory

e define or redefine global symbols

Under most normal circumstances there is no compelling need to
have such tight control over object files and where they are located in
memory. When you do need to be very precise in controlling the link
editor output, you do it by means of the command language.

Link editor command language directives are passed in a file named
on the 1d(1) command line. Any file named on the command line that
is not identifiable as an object module or an archive library is
assumed to contain directives. The following paragraphs define terms
and describe conditions with which you need to be familiar before you
begin to use the command language.

THE LINK EDITOR 1141

The Link Editor

Memory Configuration

The virtual memory of the target machine is, for purposes of alloca-
tion, partitioned into configured and unconfigured memory. The
default condition is to treat all memory as configured. It is common
with microprocessor applications, however, to have different types of
memory at different addresses. For example, an application might
have 3K of PROM (Programmable Read-Only Memory) beginning at
address 0, and 8K of ROM (Read-Only Memory) starting at 20K.
Addresses in the range 3K to 20K—1 are then not configured.
Unconfigured memory is treated as reserved or unusable by 1d(1).
Nothing can ever be linked into unconfigured memory. Thus, specify-
ing a certain memory range to be unconfigured is one way of marking
the addresses (in that range) illegal or nonexistent with respect to the
linking process. Memory configurations other than the default must
be explicitly specified by you (the user).

Unless otherwise specified, all discussion in this document of memory,
addresses, etc. are with respect to the configured sections of the
address space.

Sections

A section of an object file is the smallest unit of relocation and must
be a contiguous block of memory. A section is identified by a starting
address and a size. Information describing all the sections in a file is
stored in section headers at the start of the file. Sections from input
files are combined to form output sections that contain executable
text, data, or a mixture of both. Although there may be holes or gaps
between input sections and between output sections, storage is allo-
cated contiguously within each output section and may not overlap a
hole in memory.

1-2 PROGRAMMER’S GUIDE

059

651

k3

The Link Editor

Addresses

The physical address of a section or symbol is the relative offset from
address zero of the address space. The physical address of an object
is not necessarily the location at which it is placed when the process
is executed. For example, on a system with paging, the address is
with respect to address zero of the virtual space, and the system per-
forms another address translation.

Binding

It is often necessary to have a section begin at a specific, predefined
address in the address space. The process of specifying this starting
address is called binding, and the section in question is said to be
bound to or bound at the required address.

While binding is most commonly relevant to output sections, it is also
possible to bind special absolute global symbols with an assignment
statement in the 1d(1) command language.

Object File

Object files are produced both by the assembler (typically as a result
of calling the compiler) and by 1d(1). 1d(1) accepts relocatable object
files as input and produces an output object file that may or may not
be relocatable. Under certain special circumstances, the input object
files given to 1d(1) can also be absolute files.

Files produced from the compilation system may contain, among oth-
ers, sections called .text and .data. The .text section contains the
instruction text (executable instructions), .data contains initialized
data variables.

THE LINK EDITOR 11-3

The Link Editor

For example, if a C program contained the global (i.e., not inside a
function) declaration

int i = 100;
and the assignment
i=0;

then compiled code from the C assignment is stored in .text, and the
variable i is located in .data.

1-4 PROGRAMMER'’S GUIDE

W

cs9

653

Link Editor Command Language

Expressions

Expressions may contain global symbols, constants, and most of the
basic C language operators. (See Figure 11-2, ”"Syntax Diagram for
Input Directives.”) Constants are as in C with a number recognized
as decimal unless preceded with 0 for octal or 0x for hexadecimal. All
numbers are treated as long integers’s. Symbol names may contain
uppercase or lowercase letters, digits, and the underscore, _. Symbols
within an expression have the value of the address of the symbol
only. 1d(1) does not do symbol table lookup to find the contents of a
symbol, the dimensionality of an array, structure elements declared in
a C program, etc.

1d(1) uses a lex-generated input scanner to identify symbols,
numbers, operators, etc. The current scanner design makes the fol-
lowing names reserved and unavailable as symbol names or section
names:

ADDR COMMON LENGTH OVERLAY SIZEOF

ALIGN COoPY MEMORY PHY SPARE
ASSIGN DSECT NEXT RANGE TV
BIND GROUP NOLOAD REGIONS

BLOCK INFO ORIGIN SECTIONS

addr block length origin sizeof
align group next phy spare
assign 1 o range

bind len org s

The operators that are supported, in order of precedence from high to
low, are shown in Figure 11-1:

THE LINK EDITOR -5

Link Editor Command Language

symbol

! ~ — (UNARY Minus)

x [/ %

+ — (BINARY Minus)
>> <<

I= > < <= >=

e

n:2°—2°u

+
]
|
It
*
(]

~
I

Figure 11-1: Operator Symbols

The above operators have the same meaning as in the C language.
Operators on the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via the
assignment statement. The syntax of the assignment statement is

symbol = expression;
or
symbol op= expression;

where op is one of the operators +, —, *, or /. Assignment state-
ments must be terminated by a semicolon.

All assignment statements (with the exception of the one case
described in the following paragraph) are evaluated after allocation
has been performed. This occurs after all input-file-defined symbols
are appropriately relocated but before the actual relocation of the text

11-6 PROGRAMMER'’S GUIDE

59

v

655

de

Link Editor Command Language

and data itself. Therefore, if an assignment statement expression
contains any symbol name, the address used for that symbol in the
evaluation of the expression reflects the symbol address in the output
object file. References within text and data (to symbols given a value
through an assignment statement) access this latest assigned value.
Assignment statements are processed in the same order in which they
are input to 1d(1). '

Assignment statements are normally placed outside the scope of
section-definition directives (see "Section Definition Directives” under
"Link Editor Command Language”). However, there exists a special
symbol, called dot, ., that can occur only within a section-definition
directive. This symbol refers to the current address of 1d(1)’s location
counter. Thus, assignment expressions involving . are evaluated dur-
ing the allocation phase of 1d(1). Assigning a value to the . symbol
within a section-definition directive can increment (but not decre-
ment) 1d(1)’s location counter and can create holes within the section,
as described in ”Section Definition Directives.” Assigning the value
of the . symbol to a conventional symbol permits the final allocated
address (of a particular point within the link edit run) to be saved.

align is provided as a shorthand notation to allow alignment of a
symbol to an n —byte boundary within an output section, where n is a
power of 2. For example, the expression

align(n)
is equivalent to
(« +n-1) & (n-1)

SIZEOF and ADDR are pseudo-functions that, given the name of a
section, return the size or address of the section respectively. They
may be used in symbol definitions outside of section directives.

Link editor expressions may have either an absolute or a relocatable
value. When 1ld(1) creates a symbol through an assignment state-
ment, the symbol’s value takes on that type of expression. That type
depends on the following rules:

THE LINK EDITOR 1-7

Link Editor Command Language

® An expression with a single relocatable symbol (and zero or
more constants or absolute symbols) is relocatable.

¢ The difference of two relocatable symbols from the same section
is absolute.

o All other expressions are combinations of the above.

Specifying a Memory Configuration

MEMORY directives are used to specify
1. The total size of the virtual space of the target machine.
2. The configured and unconfigured areas of the virtual space.

If no directives are supplied, 1d(1) assumes that all memory is
configured. The size of the default memory is dependent upon the
target machine.

By means of MEMORY directives, an arbitrary name of up to eight
characters is assigned to a virtual address range. Output sections can
then be forced to be bound to virtual addresses within specifically
named memory areas. Memory names may contain uppercase or
lowercase letters, digits, and the special characters $§, ., or _. Names
of memory ranges are used by 1d(1) only and are not carried in the
output file symbol table or headers.

When MEMORY directives are used, all virtual memory not described
in a MEMORY directive is considered to be unconfigured.
Unconfigured memory is not used in 1d(1)’s allocation process; hence
nothing except DSECT sections can be link edited or bound to an
address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated
with a named memory area. In future releases this may be used to
provide error checking. Currently, error checking of this type is not
implemented.

1-8 PROGRAMMER’S GUIDE

v

959

B — 07

Link Editor Command Language

The attributes currently accepted are
1. R : readable memory
2. W : writable memory
3. X : executable, i.e., instructions may reside in this memory
4. I: initializable, i.e., stack areas are typically not initialized

Other attributes may be added in the future if necessary. If no attri-

n butes are specified on a MEMORY directive or if no MEMORY direc-
tives are supplied, memory areas assume the attributes of R, W, X,
and 1.

The syntax of the MEMORY directive is

MEMORY

namel (attr) : origin = nl, length = n2
name2 (attr) : origin = n3, length = n4
etc.

657

The keyword origin (or org or o) must precede the origin of a
ﬁ memory range, and length (or len or 1) must precede the length as
' shown in the above prototype.

The origin operand refers to the virtual address of the memory
range. origin and length are entered as long integer constants in
either decimal, octal, or hexadecimal (standard C syntax). origin and
length specifications, as well as individual MEMORY directives, may
be separated by white space or a comma.

By specifying MEMORY directives, 1d(1) can be told that memory is
configured in some manner other than the default.

THE LINK EDITOR 11-8

Link Editor Command Language

For example, if it is necessary to prevent anything from being linked
to the first 0x10000 words of memory, a MEMORY directive can
accomplish this.

MEMORY

valid : org = 0x10000, len = OXFE0000

Section Definition Directives

The purpose of the SECTIONS directive is to describe how input sec-
tions are to be combined, to direct where to place output sections
(both in relation to each other and to the entire virtual memory
space), and to permit the renaming of output sections.

In the default case where no SECTIONS directives are given, all
input sections of the same name appear in an output section of that
name. If two object files are linked, one containing sections sl and s2
and the other containing sections s3 and s4, the output object file
contains the four sections sl, s2, s3, and s4.

The order of these sections would depend on the order in which the
link editor sees the input files.

11-10 PROGRAMMER'S GUIDE

859

659

P —— 7]

Link Editor Command Language

The basic syntax of the SECTIONS directive is

S)

SECTIONS
{
secnamel :
{
file specifications,
assignment_statements
}
secname2 :
{
file specifications,
assignment_statements
}
etc
}

- /

The various types of section definition directives are discussed in the
remainder of this section.

File Specifications

Within a section definition, the files and sections of files to be
included in the output section are listed in the order in which they
are to appear in the output section. Sections from an input file are
specified by

filename (secname)
or
filename (secnaml secnam2 . . .)

Sections of an input file are separated either by white space or com-
mas as are the file specifications themselves.

filename [{COMMON]

may be used in the same way to refer to all the uninitialized, unallo-
cated global symbols in a file.

THE LINK EDITOR 1-1

Link Editor Command Language

If a file name appears with no sections listed, then all sections from
the file (but not the uninitialized, unallocated globals) are linked into
the current output section. For example,

4)

SECTIONS
{

outsecl:

{
filel.o (secl)
file2.o0
file3.o (secl, sec2)

o /

According to this directive, the order in which the input sections
appear in the output section outsecl would be

1. section secl from file filel.o
2. all sections from file2.0, in the order they appear in the file

3. section secl from file file3.0, and then section sec2 from file
file3.0

If there are any additional input files that contain input sections also
named outsecl, these sections are linked following the last section
named in the definition of outsecl. If there are any other input sec-
tions in filel.o or file3.0, they will be placed in output sections with
the same names as the input sections unless they are included in
other file specifications.

The code
* (secname)

may be used to indicate all previously unallocated input sections of
the given name, regardless of what input file they are contained in.

112 PROGRAMMER’S GUIDE

099

661

o ——————————————1db

Link Editor Command Language

Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is accom-
plished by an 1d(1) option as shown in the following SECTIONS direc-
tive example:

4)

SECTIONS
{

outsec addr:
{

}
etc.

N /

The addr is the bonding address expressed as a C constant. If
outsec does not fit at addr (perhaps because of holes in the memory
configuration or because outsec is too large to fit without overlapping
some other output section), 1d(1) issues an appropriate error message.
addr may also be the word BIND, followed by a parenthesized expres-
sion. The expression may use the pseudo-functions SIZEOF, ADDR
or NEXT. NEXT accepts a constant and returns the first multiple of
that value that falls into configured unallocated memory; SIZEOF and
ADDR accept previously defined sections.

As long as output sections do not overlap and there is enough space,
they can be bound anywhere in configured memory. The SECTIONS
directives defining output sections need not be given to 1d(1) in any
particular order, unless SIZEOF or ADDR is used.

1d(1) does not ensure that each section’s size consists of an even
number of bytes or that each section starts on an even byte boundary.
The assembler ensures that the size (in bytes) of a section is evenly
divisible by 4. 1d(1) directives can be used to force a section to start
on an odd byte boundary although this is not recommended. If a sec-
tion starts on an odd byte boundary, the section’s contents are either
accessed incorrectly or are not executed properly. When a user
specifies an odd byte boundary, 1d(1) issues a warning message.

THE LINK EDITOR 1113

o e T

Link Editor Command Language

Aligning an Output Section

It is possible to request that an output section be bound to a virtual
address that falls on an n-byte boundary, where n is a power of 2.
The ALIGN option of the SECTIONS directive performs this func-
tion, so that the option

ALIGN(n)
is equivalent to specifying a bonding address of
(.+n-1) & (n - 1)

For example

(SECTIONS

{

outsec ALIGN(0x20000) :
{

}
etc.

N J
The output section outsec is not bound to any given address but is

placed at some virtual address that is a multiple of 0x20000 (e.g., at
address 0x0, 0x20000, 0x40000, 0x60000, etc.).

Grouping Sections Together
The default allocation algorithm for 1d(1)

1. Links all input .init sections together, followed by .text sec-
tions, into one output section. This output section is called
.text and is bound to an address of 0x0 plus the size of all
headers in the output file.

11-14 PROGRAMMER'S GUIDE

299

663

dd

Link Editor Command Language

2. Links all input .data sections together into one output section.
This output section is called .data and, in paging systems, is
bound to an address aligned to a machine dependent constant
plus a number dependent on the size of headers and text.

3. Links all input .bss sections together with all uninitialized,
unallocated global symbols, into one output section. This out-
put section is called .bss and is allocated so as to immediately
follow the output section .data. Note that the output section
.bss is not given any particular address alignment.

Specifying any SECTIONS directives results in this default allocation
not being performed. Rather than relying on the 1d(1) default algo-
rithm, if you are manipulating COFF files, the one certain way of
determining address and order information is to take it from the file
and section headers. The default allocation of 1d(1) is equivalent to
supplying the following directive:

4)

SECTIONS
{

.text sizeof headers : { *(.init) *(.text) }
GROUP BIND(NEXT(align value) +
((SIZEOF(.text) + ADDR(.text)) % 0x2000)) :

{
.data
.bss

-)

where align _value is a machine dependent constant. The GROUP
command ensures that the two output sections, .data and .bss, are
allocated (e.g., grouped) together. Bonding or alignment information
is supplied only for the group and not for the output sections con-
tained within the group. The sections making up the group are allo-
cated in the order listed in the directive.

{1}
{1}

THE LINK EDITOR 115

Link Editor Command Language

If .text, .data, and .bss are to be placed in the same segment, the
following SECTIONS directive is used:

4 I

SECTIONS
{

GROUP

{
.text

.data
.bss

- /

Note that there are still three output sections (.text, .data, and
.bss), but now they are allocated into consecutive virtual memory.

o~ A
B o
(

This entire group of output sections could be bound to a starting
address or aligned simply by adding a field to the GROUP directive.
To bind to 0xC0000, use

GROUP 0xC0000 : {
To align to 0x10000, use
GROUP ALIGN(0x10000) : {

With this addition, first the output section .text is bound at 0xC0000 w
(or is aligned to 0x10000); then the remaining members of the group

are allocated in order of their appearance into the next available
memory locations.

$99

When the GROUP directive is not used, each output section is treated
as an independent entity:

11-16 PROGRAMMER'S GUIDE

665

~ ———————————————1]d-|

Link Editor Command Language

SECTIONS

{
text :t {}
.data ALIGN(0x20000) : { }
.bss : {}

The .text section starts at virtual address 0x0 (if it is in configured
memory) and the .data section at a virtual address aligned to
0x20000. The .bss section follows immediately after the .text section
if there is enough space. If there is not, it follows the .data section.
The order in which output sections are defined to 1d(1) cannot be
used to force a certain allocation order in the output file.

Creating Holes Within Output Sections

The special symbol dot, ., appears only within section definitions and
assignment statements. When it appears on the left side of an assign-
ment statement, . causes ld(1)’s location counter to be incremented
or reset and a hole left in the output section. Holes built into output
sections in this manner take up physical space in the output file and
are initialized using a fill character (either the default fill character
(0x00) or a supplied fill character). See the definition of the —f
option in ”Using the Link Editor” and the discussion of filling holes
in ”Initialized Section Holes” or .bss Sections.” in this chapter.

Consider the following section definition:

THE LINK EDITOR 117

Link Editor Command Language

4 N

outsec:

. += 0x1000;
fl.o (.text)
. += 0x100;
f2.0 (.text)
. = align (4);
£3.0 (-text)

-)

The effect of this command is as follows:

1. A 0x1000 byte hole, filled with the default fill character, is left
at the beginning of the section. Input section fl.o (.text) is
linked after this hole.

2. The .text section of input file £2.0 begins at 0x100 bytes follow-
ing the end of fl.o (.text).

3. The .text section of £3.0 is linked to start at the next full word
boundary following the .text section of £2.0 with respect to the
beginning of outsec.

For the purposes of allocating and aligning addresses within an out-
put section, 1d(1) treats the output section as if it began at address
zero. As a result, if, in the above example, outsec ultimately is
linked to start at an odd address, then the part of outsec built from
£3.0 (.text) also starts at an odd address —even though f3.0 (.text) is
aligned to a full word boundary. This is prevented by specifying an
alignment factor for the entire output section.

outsec ALIGN(4) : {
It should be noted that the assembler, as, always pads the sections it

generates to a full word length making explicit alignment
specifications unnecessary. This also holds true for the compiler.

11-18 PROGRAMMER’S GUIDE

999

667

o ————————] d&

Link Editor Command Language

Expressions that decrement . are illegal. For example, subtracting a
value from the location counter is not allowed since overwrites are
not allowed. The most common operators in expressions that assign
a value to . are + = and align.

Creating and Defining Symbols at Link-Edit Time

The assignment instruction of 1d(1) can be used to give symbols a
value that is link-edit dependent. Typically, there are three types of
assignments:

1. Use of . to adjust 1d(1)’s location counter during allocation.
2. Use of . to assign an allocation-dependent value to a symbol.
3. Assigning an allocation-independent value to a symbol.

Case 1) has already been discussed in the previous section.

Case 2) provides a means to assign addresses (known only after allo-
cation) to symbols. For example,

4 N

SECTIONS
{

outscl: {...}

outsc2:

{
filel.o (sl)
s2_start = . ;
file2.o (s2)
s2 end=.-1;

N /

The symbol s2_start is defined to be the address of file2.0(s2), and
82_end is the address of the last byte of file2.0(s2).

THE LINK EDITOR 1-19

Link Editor Command Language

Consider the following example:

-

SECTIONS

{
outscl:

{
filel.o (.data)
mark = .;
. = 4;

file2.o (.data) u

In this example, the symbol mark is created and is equal to the
address of the first byte beyond the end of filel.o’s .data section.
Four bytes are reserved for a future run-time initialization of the
symbol mark. The type of the symbol is a long integer (32 bits).

899

Assignment instructions involving . must appear within SECTIONS
definitions since they are evaluated during allocation. Assignment
instructions that do not involve . can appear within SECTIONS
definitions but typically do not. Such instructions are evaluated after
allocation is complete. Reassignment of a defined symbol to a
different address is dangerous. For example, if a symbol within .data
is defined, initialized, and referenced within a set of object files being U
link-edited, the symbol table entry for that symbol is changed to
reflect the new, reassigned physical address. However, the associated
initialized data is not moved to the new address, and there may be
references to the old address. The 1d(1) issues warning messages for
each defined symbol that is being redefined within an ifile. However,
assignments of absolute values to new symbols are safe because there
are no references or initialized data associated with the symbol.

11-20 PROGRAMMER'’S GUIDE

669

B m—)

Link Editor Command Language

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere) within a
specific named memory (as previously specified on a MEMORY direc-
tive). (The > notation is borrowed from the UNIX system concept of
redirected output.) For example,

4)

MEMORY

{
meml: 0=0x000000 1=0x10000
mem2 (RW): 0=0x020000 1=0x40000
mem3 (RW): 0=0x070000 1=0x40000
meml: 0=0x120000 1=0x04000

}

SECTIONS

{
outsecl: { fl.o(.data) } > meml

outsec2: { f2.o(.data) } > mem3

N /

This directs 1d(1) to place outsecl anywhere within the memory area
named meml (i.e., somewhere within the address range 0x0-0xFFFF
or 0x120000-0x123FFF). The outsec2 is to be placed somewhere in
the address range 0x70000-0xAFFFF.

Initialized Section Holes or .bss Sections

When holes are created within a section (as in the example in "Creat-
ing Holes within Output Sections”), 1d(1) normally puts out bytes of
zero as fill. By default, .bss sections are not initialized at all; that is,
no initialized data is generated for any .bss section by the assembler
nor supplied by the link editor, not even zeros.

Initialization options can be used in a SECTIONS directive to set
such holes or output .bss sections to an arbitrary 2-byte pattern.
Such initialization options apply only to .bss sections or holes. As an
example, an application might want an uninitialized data table to be
initialized to a constant value without recompiling the .o file or a hole

THE LINK EDITOR 1-21

ST S LR i
T S LR R R

Link Editor Command Language

in the text area to be filled with a transfer to an error routine.

Either specific areas within an output section or the entire output
section may be specified as being initialized. However, since no text
is generated for an uninitialized .bss section, if part of such a section
is initialized, then the entire section is initialized. In other words, if
a .bss section is to be combined with a .text or .data section (both of
which are initialized) or if part of an output .bss section is to be ini-

tialized, then one of the following will hold:

a.

Consider the following 1d(1) ifile:

Explicit initialization options must be used to initialize
all .bss sections in the output section.

. 1d(1) will use the default fill value to initialize all .bss
sections in the output section.

/

SECTIONS

{

secl:
{
fl.o
. =+ 0x200;
f2.0 (.text)
} = OXDFFF
sec2:
{
fl.o (.bss)
f2.0 (.bss) = 0x1234
}
sec3
{
£3.0 (.bss)
} = OXFFFF

sec4: { f4.o0 (.bss) }

~

/

11-22

PROGRAMMER’S GUIDE

049

S — ———————— —Jde

Link Editor Command Language

In the example above, the 0x200 byte hole in section secl is filled
with the value 0xDFFF. In section sec2, fl.o(.bss) is initialized to
the default fill value of 0x00, and £2.0(.bss) is initialized to 0x1234.
All .bss sections within sec3 as well as all holes are initialized to
O0xFFFF. Section sec4 is not initialized; that is, no data is written to
the object file for this section.

671

THE LINK EDITOR 1-23

e S e

—
]

Link Editor Command Language

This page is intentionally left blank

11-24 PROGRAMMER’S GUIDE

2.9

673

~ ——] d&)

Notes and Special Considerations

Changing the Entry Point

The UNIX system a.out optional header contains a field for the (pri-
mary) entry point of the file. This field is set using one of the follow-
ing rules (listed in the order they are applied):

a. The value of the symbol specified with the —e option, if
present, is used.

b. The value of the symbol _start, if present, is used.
c. The value of the symbol main, if present, is used.
d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header
field through the —e option or by using an assignment instruction in
an ifile of the form

_start = expression;

If 1d(1) is called through ee(l), a startup routine is automatically
linked in. Then, when the program is executed, the routine exit(1) is
called after the main routine finishes to close file descriptors and do
other cleanup. The user must therefore be careful when calling 1d(1)
directly or when changing the entry point. The user must supply the
startup routine or make sure that the program always calls exit
rather than falling through the end. Otherwise, the program will
dump core.

THE LINK EDITOR 11-25

MRS ST A g e
m
]

Notes and Special Considerations

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object
file. Archive libraries are created with the ar(l) command from
object files generated by ec or as. An archive library is always pro-
cessed using selective inclusion: only those members that resolve
existing undefined-symbol references are taken from the library for
link editing. Libraries can be placed both inside and outside section
definitions. In both cases, a member of a library is included for link-
ing whenever

a. There exists a reference to a symbol defined in that
member.

b. The reference is found by 1d(1) prior to the actual
scanning of the library.

When a library member is included by searching the library inside a
SECTIONS directive, all input sections from the library member are
included in the output section being defined. When a library member
is included by searching the library outside of a SECTIONS directive,
all input sections from the library member are included into the out-
put section with the same name. If necessary, new output sections
are defined to provide a place to put the input sections. Note, how-
ever, that

1. Specific members of a library cannot be referenced
explicitly in an ifile.

2. The default rules for the placement of members and
sections cannot be overridden when they apply to
archive library members.

The —1 option is a shorthand notation for specifying an input file
coming from a predefined set of directories and having a predefined
name. By convention, such files are archive libraries. However, they
need not be so. Furthermore, archive libraries can be specified
without using the —1 option by simply giving the (full or relative)
UNIX system file path.

1-26 PROGRAMMER'’S GUIDE

L9

~———— ——————1d&|

Notes and Special Considerations

The ordering of archive libraries is important since for a member to
be extracted from the library it must satisfy a reference that is known
to be unresolved at the time the library is searched. Archive libraries
can be specified more than once. They are searched every time they
are encountered. Archive files have a symbol table at the beginning
of the archive. 1d(1) will cycle through this symbol table until it has
determined that it cannot resolve any more references from that
library.

Consider the following example:

1. The input files filel.o and file2.0 each contain a reference to
the external function FCN.

2. Input filel.o contains a reference to symbol ABC.

3. Input file2.0 contains a reference to symbol XYZ.

4. Library liba.a, member 0, contains a definition of XYZ.
5

675

. Library libe.a, member 0, contains a definition of ABC.
6. Both libraries have a member 1 that defines FCN.
If the 1d(1) command were entered as
1d filel.o —la file2.0 —lc

ﬂ then the FCN references are satisfied by liba.a, member 1, ABC is
’ obtained from libc.a, member 0, and XYZ remains undefined
(because the library liba.a is searched before file2.0 is specified). If

the Id(1) command were entered as

1d filel.o file2.0 —la -lc

then the FCN references is satisfied by liba.a, member 1, ABC is
obtained from libe.a, member 0, and XYZ is obtained from liba.a,
member 0. If the 1d(1) command were entered as

1d filel.o file2.0 —1lc -la

ﬁ then the FCN references is satisfied by libc.a, member 1, ABC is
obtained from libe.a, member 0, and XYZ is obtained from liba.a,
member 0.

THE LINK EDITOR 1-27

s

—_—
I

Notes and Special Considerations

The —u option is used to force the linking of library members when
the link edit run does not contain an actual external reference to the
members. For example,

Ild —uroutl —-la

creates an undefined symbol called routl in 1d(1)’s global symbol
table. If any member of library liba.a defines this symbol, it (and
perhaps other members as well) is extracted. Without the —u option,
there would have been no unresolved references or undefined symbols
to cause ld(1) to search the archive library.

Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured
areas exist in the virtual memory, each application or user must
assume the responsibility of forming output sections that will fit into
memory. For example, assume that memory is configured as follows:

MEMORY
{
meml : o = 0x00000 1 = 0x02000
mem?2: o = 0x40000 1 = 0x05000
mem3 : o = 0x20000 1 = 0x10000
»
Let the files fl.o, f2.0, . . . fn.0 each contain three sections .text,

.data, and .bss, and suppose the combined .text section is 0x12000
bytes. There is no configured area of memory in which this section
can be placed. Appropriate directives must be supplied to break up
the .text output section so 1d(1) may do allocation. For example,

11-28 PROGRAMMER’S GUIDE

949

k3

Notes and Special Considerations

4 N

SECTIONS
{
txtl:
{
fl.o (.text)
f2.0 (.text)
f3.0 (.text)
ﬂ }
L txt2
{
f4.0 (.text)
fS5.0 (.text)
f6.0 (.text)

- _/

677

Allocation Algorithm

An output section is formed either as a result of a SECTIONS direc-
tive, by combining input sections of the same name, or by combining
.text and .init into .text. An output section can have zero or more

ﬂ input sections comprising it. After the composition of an output sec-
tion is determined, it must then be allocated into configured virtual
memory. 1d(1) uses an algorithm that attempts to minimize fragmen-
tation of memory, and hence increases the possibility that a link edit
run will be able to allocate all output sections within the specified vir-
tual memory configuration. The algorithm proceeds as follows:

1. Any output sections for which explicit bonding
addresses were specified are allocated.

2. Any output sections to be included in a specific named

m memory are allocated. In both this and the succeeding
' step, each output section is placed into the first avail-
able space within the (named) memory with any

THE LINK EDITOR 11-29

—
—

Notes and Special Considerations

alignment taken into consideration.

3. Output sections not handled by one of the above steps
are allocated.

If all memory is contiguous and configured (the default case), and no
SECTIONS directives are given, then output sections are allocated in
the order they appear to 1d(1). Otherwise, output sections are allo-
cated in the order they were defined or made known to 1d(1) into the
first available space they fit.

Incremental Link Editing

As previously mentioned, the output of 1d(1) can be used as an input
file to subsequent 1d(1) runs providing that the relocation information
is retained (—r option). Large applications may find it desirable to
partition their C programs into subsystems, link each subsystem
independently, and then link edit the entire application. For exam-
ple,

11-30 PROGRAMMER’S GUIDE

8.9

e [i07)

Notes and Special Considerations

Step 1:

ld —r -o outfilel ifilel infilel.o

4)

/* ifilel */
SECTIONS
{

m jsl:

fl.o
f2.0

Step 2:

679

ld —r -o outfile2 ifile2 infile2.0

4 N

/* ifile2 */
SECTIONS
{

ﬁ ss2:

{

gl.o
g2.0
gn.o
}
___ Y,
Step 3:
m 1d -a —o final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a form of

THE LINK EDITOR 131

| Notes and Special Considerations

incremental link editing whereby it is necessary to relink only a por-
tion of the total link edit when a few files are recompiled.

To apply this technique, there are two simple rules

1. Intermediate link edits should contain only SECTIONS declara-
tions and be concerned only with the formation of output sec-
tions from input files and input sections. No binding of output
sections should be done in these runs.

2. All allocation and memory directives, as well as any assignment W/
statements, are included only in the final 1d(1) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY

Sections
Sections may be given a type in a section definition as shown in the 2
following example: °
SECTIONS
{
namel 0x200000 (DSECT) : { filel.o }
name2 0x400000 (COPY) : { file2.0 }
name3 0x600000 (NOLOAD) : { file3.o } ~ '
name4 (INFO) : { filed.o }
name5 0x900000 (OVERLAY) : { file5.0 }
} j
The DSECT option creates what is called a dummy section. A
dummy section has the following properties:
1. It does not participate in the memory allocation for output sec-
tions. As a result, it takes up no memory and does not show up
in the memory map generated by 1d(1). w

11-32 PROGRAMMER'S GUIDE

N ———— | de

Notes and Special Considerations

2. It may overlay other output sections and even unconfigured
memory. DSECTs may overlay other DSECTs.

3. The global symbols defined within the dummy section are relo-
cated normally. That is, they appear in the output file’s symbol
table with the same value they would have had if the DSECT
were actually loaded at its virtual address. DSECT-defined
symbols may be referenced by other input sections. Undefined
external symbols found within a DSECT cause specified archive
libraries to be searched and any members which define such
symbols are link edited normally (i.e., not as a DSECT).

4. None of the section contents, relocation information, or line
number information associated with the section is written to
the output file.

In the above example, none of the sections from filel.o are allocated,
but all symbols are relocated as though the sections were link edited
at the specified address. Other sections could refer to any of the glo-
bal symbols and they are resolved correctly.

A copy section created by the COPY option is similar to a dummy sec-
tion. The only difference between a copy section and a dummy sec-
tion is that the contents of a copy section and all associated informa-
tion is written to the output file.

An INFO section is the same as a COPY section but its purpose is to
carry information about the object file whereas the COPY section may
contain valid text and data. INFO sections are usually used to con-
tain file version identification information.

A section with the type of NOLOAD differs in only one respect from a
normal output section: its text and/or data is not written to the out-
put file. A NOLOAD section is allocated virtual space, appears in the
memory map, etc.

An OVERLAY section is relocated and written to the output file. It is
different from a normal section in that it is not allocated and may
overlay other sections or unconfigured memory.

THE LINK EDITOR 1-33

Notes and Special Considerations

Output File Blocking

The BLOCK option (applied to any output section or GROUP direc-
tive) is used to direct 1d(1) to align a section at a specified byte offset
in the output file. It has no effect on the address at which the section
is allocated nor on any part of the link edit process. It is used purely
to adjust the physical position of the section in the output file.

SECTIONS
{

.text BLOCK(0x200) : { }

.data ALIGN(0x20000) BLOCK(0x200) : { }

~

With this SECTIONS directive, 1d(1) assures that each section, .text
and .data, is physically written at a file offset, which is a multiple of
0x200 (e.g., at an offset of 0, 0x200, 0x400, and so forth, in the file).

Nonrelocatable Input Files

If a file produced by 1d(1) is intended to be used in a subsequent 1d(1)
run, the first 1d(1) run should have the —r option set. This preserves
relocation information and permits the sections of the file to be relo-
cated by the subsequent run.

If an input file to 1d(1) does not have relocation or symbol table infor-
mation (perhaps from the action of a strip(l) command, or from
being link edited without a —r option or with a —s option), the link
edit run continues using the nonrelocatable input file.

For such a link edit to be successful (i.e., to actually and correctly
link edit all input files, relocate all symbols, resolve unresolved refer-
ences, etc.), two conditions on the nonrelocatable input files must be
met.

11-34 PROGRAMMER'S GUIDE

289

683

o Jdb—

Notes and Special Considerations

1. Each input file must have no unresolved external references.

2. Each input file must be bound to the exact same virtual address
as it was bound to in the 1d(1) run that created it.

If these two conditions are not met for all nonrelocatable input
note | files, no error messages are issued. Because of this fact, extreme
care must be taken when supplying such input files to 1d(1).

THE LINK EDITOR 11-35

Notes and Special Considerations

This page is intentionally left blank

89

1-36 PROGRAMMER’S GUIDE

e ——————————1d&

Syntax Diagram for Input Directives

Two punctuation symbols, square brackets and curly braces, do
NoTe | double duty in the following diagram.

] Where the actual symbols, [] and { } are used, they are part of
the syntax and must be present when the directive is specified.

ﬁ Where you see the symbols [and] (arger and in bolid), it
means the material enclosed is optional.

Where you see the symbols { and } (larger and in bold), it
means multiple occurrences of the material enclosed are permit-

ted.
Directives Expanded Directives
<ifile> {<cmd>}

7o}

8 <cmd> <memory >
< sections >
< assignment >
< filename >
< flags >

ﬂ < memory > MEMORY { <memory_spec>

{ [,] <memory_spec > } }
<memory _spec> | <name> [<attributes>] :
<origin_spec > L] < length_spec >

<attributes > ({R|W|X]|I})
<origin_spec> <origin> = <long>
<lenth spec> <length> = <long>
<origin> ORIGIN | o | org | origin
<length > LENGTH | 1| len | length

THE LINK EDITOR 1-37

== [::]

Syntax Diagram for Input Directives

Directives Expanded Directives
< sections > SECTIONS { { <sec_or_group > } }
<sec_or_group > <section> | <group> | <library>
<group > GROUP <group_options> : {

<section_list >
< section >

< group_options>
< sec_options >

<addr>

< alignoption >
<align >
<block_option >
<block >

< type option>
<fill>
<mem_spec >

< statement >

11-38

<section_list> } [< mem_spec >]
<section> { [,] <section> }

<name> <sec_options> :

{ <statement> }

[<fill>] [<mem_spec>]

[<addr>] | [< align_option >] [<block_option >]
[< addr >] | [< align_option >]

[< block _option > 1< type option >]
<long> | <bind>(<expr>)

<align> (<expr>)

ALIGN | align

<block> (<long>)

BLOCK | block

(DSECT) | (NOLOAD) | (COPY) | (INFO) | (OVERLAY)
= <long>

> < name>

> <attributes >

< filename >

<filename> (<name_list>) | [COMMON]
* (<name list>) | [COMMON

< assignment >

<library >
null

PROGRAMMER'’S GUIDE

989

B —— 10 7)

Syntax Diagram for Input Directives

687
ge
&

<term> <long>
<name>
<align> (<term>)
(<expr>)
| ﬂ <unary op> <term>
‘ <phy> (<lside>)
‘ < sizeof > (< sectionname >)
<next>(<long>)
< addr > (< sectionname >)

Directives Expanded Directives
| <name list > < section_name > L1 { < section_name > }
| <library > —l<name>
l <bind> BIND | bind
<assignment> | <lside> <assign op> <expr> <end>
<Iside > <name> | .
<assignop> | =|+=|-=|=*=]/=
m <end> N
<expr> <expr> <binary op> <expr>
<term>
| <binary_op> | /%
i ek
| >> | <<
==|l=]|>|<]|<=]>=
&

<unary_op > v -
<phy> PHY | phy
<sizeof > SIZEOF | sizeof

THE LINK EDITOR 11-39

Syntax Diagram for Input Directives

Directives Expanded Directives
<next > NEXT | next

<addr> ADDR | addr

<flags> —e<wht_space> <name >

—f<wht_space> <long>
—h<wht_space> <long>
—l<name>

-m

—o<wht_space> < filename >
-r

-5

-t

—u<wht_space> <name >
-z

-H

—L<path name>

-M

-N

-8

-V

- VS <wht_space > <long>

—a
—X

11-40 PROGRAMMER’S GUIDE

889

k3

Syntax Diagram for Input Directives

Directives Expanded Directives
<name > Any valid symbol name
<long> Any valid long integer constant

<wht_space >

< filename >

< sectionname >

<path_name >

Blanks, tabs, and newlines

Any valid UNIX operating system filename.
This may include a full or partial path name.

Any valid section name, up to 8 characters.

Any valid UNIX operating system path name
(full or partial).

Figure 11-2: Syntax Diagram For Input Directives

689

THE LINK EDITOR

1-41

Syntax Diagram for Input Directives

This page is intentionally left blank

11-42 PROGRAMMER’S GUIDE

069

