R

<%

SLETT]

[
N

W

3
%

=

EUUG

European UNIX® systems User Group

Volume 8, No. 2
Summer 1988

CONTENTS

® The JUNET Environment
® (Cake - a better make

® The LLondon Conference
® Regional Reports
® (Conference Announcements




EUROPEAN

UNIX® SYSTEMS

USER GROUP

NEWSLETTER

Volume 8, Number 2

Summer

Competitions at the London Conference .....
AFUU Report — Convention UNIX ’88 .....
The United Kingdom UNIX Users’ Group ..

1988

...............................................
...............................................
...............................................
...............................................
...............................................
...............................................

...............................................

USENIX Association News for EUUG Members ............oooveeeeoooomoooenn

Computing for the 1990’s ................ucueunee..
AUUG Conference — Call for Papers ........

-----------------------------------------------

EUUG Spring ’89 Conference — Call for Papers ...........ocoouevrvveenrnn.....
Macro Expansion as Defined by the ANSI/ISO C Draft Standard ............

Report on POSIX Meeting: 2-4 March 1988
UNIX CHRC ....eoueeecrneannenerererensnenseenenseenns
CH In Print ...t

Unification and Openness ............................
Book Review: 2 Books on ANSI C (Draft) ..
Book Review: UNIX Products for the Office
EUUG Conference Proceedings ..................
Erratum in Conference Proceedings ............
GIOSSALY ...u.eoeecneecersessrnrnnnesceesaer e sseeses s

,yLondon ......eeveeveeeennennnnnn.

...............................................

...............................................

-----------------------------------------------

...............................................

...............................................

...............................................

..............................................

...............................................

...............................................

-----------------------------------------------



Editorial Team:

Philip Peake

Alain Williams

Typesetting:

Laura Dekker

Printed by:

Published by:

This document may contain information covered by one or more licences,
copyrights and non-disclosure agreements. Copying without fee is permitted
provided that copies are not made or distributed for commercial advantage and
credit to the source is given; abstracting with credit is permitted. All other
circulation or reproduction is prohibited without the prior permission of the

EUUG.

The editor reserves the right to alter any article submitted for publication. This

Axis Digital, France
(EUUG Newsletter Editor)

Parliament Hill Computers ltd.

The Instruction Set Ltd.
City House,

190, City Road

London EC1V 2QH
UK.

Rank Xerox (Copy Bureaux) Ltd.
68-74 Rochester Place

London NW1 9JX

UK.

The EUUG

Owles Hall,
Buntingford
Hertfordshire SG9 9PL
UK.

euug@inset.co.uk (... !mcvaxlukclinsetleuug)

right has been exercised in previous issues of the newsletter.

UNIX is a registered trademark of AT&T in the USA and other countries.

PDP is a registered trademark of Digital Equipment Corp.
XENIX is a registered trademark of SCO.
PostScript is a registered trademark of Adobe Systems.

ISSN 1011-4211




WILLIAMS

EDITORIAL

Editorial

Alain Williams
addw@phcomp.co.uk

Parliament Hill Computers Ltd
London NW3 2TS

UK

+44 1 435 0200

There are more and more of you

As the membership of the EUUG grows so do the
activities of its members. Many of you were at the
very successful London conference — the biggest
European Unix conference to date.

The membership of the national groups is (February
figures):

DKUUG 216 UKUUG 229
FUUG 154 IUUG 31
BUUG-S 286 UNIGS 18
AFUU 586 GUUG 324
i2u 100 UUGA 69
NLUUG 212 BUUG 138
ICEUUG 21 NUUG 97

Future Issues

I am interested in receiving papers for publication
from readers. Although the official language of the
Newsletter in English I am happy to receive papers
in any European language.

Atrticles should be sent to me at the above address.
The idea form is by e-mail using the macros.

I can also accept articles on the following floppies:
3b2 5%", IBM-PC 54" and 3'%" high and low
densities, Apple Mac 34",

I have a template for article layout — please mail me
for a copy.

The next copy dates are:

25 July for
24 October  for

1 September
1 December

Advertising in the EUUG Newsletter

The EUUGN is now accepting publicity for
inclusion in its pages. This is subject to the

following conditions:

— The cover (front, back and inside, out) will not
normally be available.

— There is limited space available. Space will be
allocated on a first-come first-served basis with
preference being given to EUUG members.

— Material should be provided in either ‘‘camera
ready’’ or ‘‘troff source’’ format. The latter case
should be accompanied by a paper copy.

Colour may be possible — more details from the
EUUG secretariat.

— The EUUG reserves the right to refuse any
advertisement.

The current pricing scheme is as follows:

— EUUG Members
— Full page — 300 GBP
— Half page — 175 GBP
— Non Members
— Full page — 450 GBP
— Half page — 250 GBP

The deadline for receipt of advertising material is the
same as that for articles, the actual dates can be
found in preceding issues of the EUUGN.

It is not possible to do country specific advertising as
part of the EUUGN, but country specific inserts (into
the envelope) can be made.

For full details please contact the EUUG secretariat.

Extra Copies

Institutional members of the EUUG may now
receive more than one copy of the EUUGN. The
price will be just sufficient to cover the extra
production and handling costs. All copies will be
sent to one address.

EUUGN Vol8 No2 Summer 1988 1




EDITORIAL
Please contact your National group for details.

Newsletter Layout

I wish to welcome Laura Dekker who has taken over
from Sally. Laura started out as a chemist and after
inhaling a few too many organic solvents decided
that PostScript was safer as well as being much more
fun.

In this issue of the newsletter we to have moved to
2-column format, and made a few other changes in
its general appearance. We hope that this will make
it easier to read.

The headings are all unnumbered except where the
author has especially requested otherwise. You'll
also notice the EUUG logo at the top of each page,
and one or two other items — courtesy of
PostScript!

WILLIAMS

Happy Events

Congratulations are due to Rik and Teus Hagen on
the birth of the baby girl. Femke weighed in at
2.8kg at about the time of the London conference.
They are both reported to be ‘over the moon’ at the
birth of their first child.

Neil Todd has announced his engagement to Mary
Ann Doig. We wish them every happiness in their
future life together.

Jill and I had a baby boy, we are calling him George.
He weighed in at 8lb 30z, but being British, he
doesn’t understand Kg!

A letter from the Chairman

In the winter 1988 edition of the EUUG Newsletter an EUUG executive board article was published. This
article was originally drafied by Keld Simonsen; at that time a member of the EUUG executive board. Due
to time constraints modifications were made to the structure and contents of this article and the article

printed without consultation with Mr Simonsen.

Apologies are offered that the resulting article does not correspond fully with the original ideas of the
author and that it was published under his name. The responsibility for this article is fully that of the
executive board. Actions have been taken to ensure that such events will not occur in future.

Teus Hagen
Chairman, EUUG Executive

2 EUUGN Vol8 No2 Summer 1988




MURAI

The JUNET Environment

Jun Murai
Jun@utokyo-relay.csnet

University of Tokyo
2-11-16, Yayoi, Bunkyo
Tokyo, 113 JAPAN

JUNET has been developed in order to provide a
testing environment for studies of computer
networking and distributed processing by connecting
a large number of computers and by providing actual
services for users. The environment provided by the
network represents the special requirements and
problems of Japanese UNIX environment in general.
Throughout the development stages of the JUNET
environment, mechanisms to manage resource
naming, Japanese character handling, and fast dial-
up link using IP protocol have been developed for
the network.

In this paper', the current status of JUNET focusing
on the special environments and technologies to
provide them are introduced.

Introduction

JUNET'" has been developed as the first attempt to
establish an electronic communication environment
in Japanese research and development communities.
Text message exchanges such as electronic mails
and electronic news have been provided as well as
other advanced npetwork services. Several
international links to world academic networks have
also been established. Since this is the only working
environment for experimental studies on computer
networking in Japan, various research topics
including physical communication technologies,
network protocols, network interconnections and
distributed processing environments are in progress.

The purpose in the very first stage of the network,
thus, was to provide an actual network services to
researchers and put Japanese communities into

L. This paper was delivered at the BUUG Spring conference but
Wwas not submitted in time to be printed in the proceedings.

worldwide academic networks. And then, we started
to work to solve problems existing on the network
such as Japanese character handling, name handling
for distributed resources, and communication
technologies.

JUNET started its operation in October 1984
connecting local area networks in major Japanese
universities in Tokyo area” and it provides users
with the means of the worldwide communications
via various international links').

The domain addressing over UUCPNET was
introduced on May 1985 with a system to generate
the address conversion sendmail® rules. High speed
dial-up modes have been studied in order to increase
the transmission rate of the communication. To
achieve this purpose, UUCP enhancement with
kemel driver development were done, and the
efficiency using a dial-up line increased up to more
than 13Kbps. This encouraged us to migrate to
TCP/P protocol suite’®”! even on dial-up lines as
well as leased lines. As the result of the
development, the dial-up IP link is providing as high
as 8Kbps in end-to-end transmission. With general
IP transmission over high-speed leased lines and
over X.25 public packet switching network, this
variety of links introduced us with immediate needs
of advanced routing mechanisms which is one of our
major field of studies at this point.

As for the internetworking between JUNET and other
academic networks is concerned, two gateways are
operating to exchanging electronic mails and news.
One is Kokusai Denshin Denwa Co. Ltd. (KDD), an
international telephone and telegraph company
which serves a gateway between UUCPNET/USENET
and JUNET, and University of Tokyo is providing a
gateway function between CSNET'™ and JUNET
which is the major path for most of the other
academic networks in the world.

EUUGN Vol8 No2 Summer 1988 3




JUNET

Generally, there are strong demands for Japanese
character handling on computing environment and
thus support of Japanese characters by means of
computer communications are one of the primary
characteristics of JUNET. In order to provide the
functions, a JUNET standard Kanji code was chosen
and conversions between the network standard Kanji
code and operating system Kanji codes are provided
by the network application available for JUNET. The
general computing environment for Japanese
character handling were established as well in order
to cooperate with the network environment. The
statistics introduced in this paper show drastic
influences of Japanese character handling in
computer network environment in Japan.

Profile of JUNET

JUNET currently connects more than 1300 hosts in
130 organisations. The geographic areas covered by
the network expand from Hokkaido, the northem
island, to Kyushu, the southemn island, however,
concentrations in Tokyo and Osaka areas are
obvious as shown in Figure 1. Most of the links
have been dial-up lines using 1200 bps or 2400bps
modems, although special mechanisms have
developed for the UNIX operating system and its
communication software UUCP in order to use high
speed dial-up modems with 9600bps or higher
transmission rate. These mechanisms are also
effective for TCP/IP protocols over dial-up telephone
lines.

Organisations connecting to the network are
Universities as listed in Table 1, as well as research
laboratories of computer software/hardware
companies, and research laboratories of telephone
companies whose domain names are listed in Table
2. All the functions to operate the network have been
administrated by administrators at each of the
institutes in totally volunteer basis. Table 1: Second
level domains for universities in JUNET (Apr. 1988)

Size of JUNET

The size of JUNET can be examined by various
statistics. Among them, the constant growth in the
number of organisations on the network is
remarkable as shown in Figure 2.

One or two new organisations are being connected to
JUNET every week on average.

News articles are posted to the network constantly in
the £j news groups which are currently distributed
only within Japan® The number of articles posted has

4 EUUGN Voi8 No2 Summer 1988

MURAI
Table 1: Second Level Domains for
Universities in JUNET (Apr 1988)
aoyama Aoyama Gakuin Univ.
chuo-u Chuo Univ.
fit Fukuoka Inst. of Tech.
fukuoka-u Fukuoka Univ.
gunma-u Gunma Univ.
hokudai Hokkaido Univ.
kansai-u Kansai Univ.
keio Keio Univ.
kit Kyoto Inst. of Tech.
kobe-u Kobe Univ.
konan-u Konan Univ.
kyoto-su Kyoto Sangyou Univ.
kyoto—u
kyushu-u Kyushu Univ.
kyutech Kyushu Inst. of Tech.
nagano Nagano Univ.
nagoya-u Nagoya Univ.
oita-u Oita Univ.
osaka-u Osaka Univ.
osakac Osaka Elec. & Comm. Univ.,
seikei Seikei Univ.
sheart Univ. of the Sacred Heart
shinshu-u Shinshu Univ.
shizujoka Shizukoka Univ.
sophia Sophia Univ.
titech Tokyo Insti. of Tech.
tohoku Tohoku Univ.
tohoku-u Tohoku Univ. (Computer Center)
tokuyama Tokuyama National Technical College
toyo Toyo Univ.
toyota-ti Toyota Technological Inst.
tsuda Tsuda College
tsukuba Tsukuba Univ.
tuat Tokyo Univ. of Agriculture & Tech.
tut Toyohashi Univ. of Tech.
u-tokyo Univ. of Tokyo
uec Univ, of Electro-Comm.
ulis Univ. of Library & Info. Sci.
waseda Waseda Univ.
yamagata-u  Yamagata Univ
yamanashi Yamanashi Univ.

been growing as in Figure 3, and 1807 articles are
posted in October 1987, as the latest example. Note
that only about 15 percent of the articles are written
in English alphabet including articles in Romaji, an

2. Part of the £ news groups are distributed outside the country
as requested.




MURALI
Table 2: Second level domains

other than universities in JUNET
adin asahi ascii
asp asr astd
astec atr att-j
cac canon canopus
casio cec citoh
crl csk decl
dec-3j decjrd denken
dit dnp edr
etl firmware foretune
fujitsu fujixerox gctech
hitachi hst ibmtrl
icm icot ipa
jip jsd jus
jusoft k3 kaba
kajima kecs kddlabs
kiic kk kubota
kyocera m-giken m-tsrd
matsubo meiosk melco
minpaku mita mri
msr nacsis nce
ndg nec nig
nts ntt oki
omron pentel recruit
ricoh riken roland
rtri sanyo seclab
sharp sigma sony
sonytek soum sra
sumikin sun-j toshiba
tytlabs uclosk unisys
yamaha vhp ysc

alphabetical representation of Japanese language,
however, even among these articles most of them are
re-posted messages from various mailing-lists. The
major JUNET sites handle about 22 M bytes of
articles in a month; 4 M bytes of £§ news groups
and 18 M bytes of USENET news groups.

One of the systems in the JUNET backbone handles
about 200 M bytes of information in a month, and 85
percent of them are for the network news and 15
percent are for electronic mails. Since the network
news are compressed to half their size before the
actual transmission, about 370 M bytes of text
information is handled in one of the most busy
systems in JUNET.

The international information exchanges are served
by two gateways of JUNET: one is in University of
Tokyo and named ccut.cc.u-tokyo. junet.
Another is kddlab.kddlabs. junet of KDD
laboratories. The ccut.cc.u-tokyo. junet is
on CSNET as utokyo-relay and is operated as

JUNET

the JUNET-CSNET gateway, on the other hand, the
kddlab.kddlabs. junet is widely known as
one of the backbone sites in the UUCPNET and is
operated as the JUNET-UUCPNET/USENET gateway.

The amount of international messages can be
estimated by the total traffic at these two gateways.
The example traffic of June 1987 is shown in Table
3

Table 3: International Message Traffics
gateway mail news
kddlabs.junet 10MB 18MB

u-tokyo.junet 13MB 0
total 23MB  18MB

In summary, JUNET currently has approximately 41
M bytes of international traffic in a month, and it has
been increasing about 3 M bytes per month in the
last six months.

Osaka and Kyoto area
24 organizations

Figure 1: JUNET Geographical Map

JUNET Domain Addressing

In the hierarchy of JUNET domain structure, a
domain called ‘junet’ is the top domain, although we
are now pleg?aring to employ ISO’s country code
150 3116)" for Japan ‘jp’ as the top domain
name""”. The second level domains are called sub-
domains, and each of them represents a name of an
institute or an organisation. Lower level domains
than the sub-domains may be determined at each of
the sub-domains. In any cases, the lowest level
domains are the names of hosts. The names of sub-
domains usually are names well known to the

EUUGN VoI8 No2 Summer 1988 §




JUNET

society, but such names sometimes differ in
intra/inter-national environment.

Therefore, one or more names can be registered as
synonyms for a sub-domain name to help users to
address with general knowledge on the name of
organisations. A name of a resource, thus, is defined
in one of the domains.

Organizations
110
100

90
80
70
60
50
40
30
20
10

O0ct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
1984 1985 1986 1987

Figure 2: Number of domains

There is one of the distributed name server in each
of the domains which handles definitions and
deletions of names using a database dedicated to that
domain. A name server of a domain thus has a
database to define names of lower level domains
adjacent to the domain, or names of resources, such
as names of mailboxes. The information held by
each of the distributed name server is used in
retrieving information of resource names and in
accessing resources. By this concept, a resource can
be defined in a logical domain; a mailbox can be
defined even in the top domain, ‘junet’. This
provides a name space which is well-matched to the
naming concept of the real world yet providing
consistency and efficiency of operations.

Design of JUNET message delivery system

There exists a name server for each domain where a
distributed resource name can be defined. There is
at least one name server in every host; a name server
for a domain representing that host. Other than that
one, name servers which represent domains located
along a path, from the root to this system in the
domain tree, can exist in this system. Thus, name
servers for the logical domains are managed by
entities which are executed in a distributed manner.

A message delivery system using the above concept
is implemented using sendmail®! whose rules are
generated by a rule generating system which plays a
role of name servers of the JUNET naming concept.

6 EUUGN Vol8 No2 Summer 1988

MURAI

Since the production rules of the sendmail system
are different from site to site, the rules have to be
generated at each site. To keep the consistency in
the rules over JUNET sites, a configuration system to
generate the necessary rules was designed and
implemented. The configuration system to construct
a name server receives information about domain
names and about connections for communication
among the name server. Then it generates sendmail
rule as its output.

The domain database contains relations between the
physical connections to the neighbour sites and the
domain pnames which should be solved at that
system. Other than the sendmail, the rmail
command which receives messages through UUCP
links was modified to handle JUNET addresses
efficiently.

Articles/Month
2000

1800
1600
1400
1200
1000
800
600
400

200

[}

Jan Apr Jul Oct Jan Apr Ju Oct
1986 1987
Figure 3: Number of Articles in £j newsgroups

International Information Exchange

As described in this paper, the number of messages
exchanged in JUNET has increased rapidly, and the
pumber of messages exchanged intemationally via
the two gateways has also increased as well. Users
of other networks, however, sometimes complain
about the insufficient information on world networks
generated from JUNET. The primary reason for the
complaints is obviously caused by the preference of
Japanese characters with JUNET users.

The development of general purpose software to
handle Japanese characters in non-special hardware
environment as well as development of the hand-
made Kanji fonts encourages us to distribute JUNET
Kanji messages to other countries. The experimental
delivery of the domestic news groups abroad was
started to some universities in 1986.

On the other hand, submission of news articles from
the USENET environment to JUNET can be achieved




MURAI

by adding a news group called £§.misc to the
pews group list of an article. This is efficient
because all of the JUNET sites are subscribing £ 5
news groups while some sites are not subscribing
USENET news groups. The news article posted this
way is handled as a JUNET news article inside Japan.

It is known that the addresses whose top domains are
‘junet’ are properly handled at both
relay.cs.net and uunet.uu.net.
Therefore,

e user%domain.junet@relay.cs.net
s user%domain.junet @uunet .uu.net

are the most popular style of addresses from the
ARPA Internet name space.

However, both intemational links are restricted
links; mail to/from a JUNET user who does not
register the addresses to the gateway cannot be
served. This is due to the cost of the international
message exchanges. Furthermore, the mails to/from
the non-university users in JUNET cannot be passed
through the link between ccut.cc.u-
tokyo. junet and relay.cs.net. Therefore,
you should check that your friends in JUNET are
registered in the gateways before sending them mail.
Any questions should be mailed to the JUNET
administrators: junet-admin@ junet.

Domestic Language Support

One of the primary philosophies of JUNET
developments is the pursuit of the better computer
communications. For that purpose, the native
language supports on the network environment has
been chosen as one of the goals. The statistics in
Figure 3 show that most of the news articles are
written in Japanese characters, or in Kanji codes. It
is observed that a large amount of electronic mail is
also exchanged using Kanji codes. Therefore, one of
the remarkable characteristics of JUNET among
academic networks in the world is Kanji message
handling for text message exchanges. In order to
discuss this topic, some basic concepts about
Japanese character handling have to be discussed.

Kanji code

The history of Kanji code handling in computers is
rather short, and there is still some confusion about
the Kanji code itself. That is to say, several different
‘Kanji code standards’ are actually used in the
computer world. However, all the ‘standards’ refer
to a single standard defined by JIS (Japanese
Industrial Standard) X0208 as their way of defining

JUNET

a set of Kanji characters. JIS is always referred to
because it can be introduced from any codes defined
by International Standard Organisation using ISO
2022 extension guidelines. It defines as Kanji code
by two 7-bit bytes without using the most significant
bits (MSBs). Several different computer Kanji
codes exist because the switching method defined by
ISO 2022 is not practical for random access to text
messages.

The JIS X0208 defines not only Kanji characters, but
also English alphabets, digits, two types of 50 Kana
characters (phonetic representation of the Japanese
language), and special characters. Among them,
Kanji characters defined by JIS X0208 are divided
into two separate groups; one is called level one and
another is called level two. The level one includes
about 3500 Kanji characters and this set provides a
sufficient number of Kanji characters for most
ordinary texts such as technical writings. Although
more complicated Kanji characters are needed for
advanced text applications such text that includes
names of people and places, or for literary text. For
the purposes such as these, JIS defines a level two
Kanji character set which includes another 3400
characters.

In total, about 7000 Kanji characters are necessary
for providing Japanese character capability on a
computer. Obviously, this needs more than one byte
to represent it, and representing a single character
with two bytes is a standard concept. The important
issue here is that we still need to use ASCIH codes in
computers as well as Kanji codes. This means we
have to establish a way to handle a mixture of ASCII
codes and Kanji codes. In order to solve this
problem, there has to be a way to distinguish ASCHl
code sequences from Kanji code sequences.

There are three major methods which can be used to
distinguish Kanji sequences from ASCH sequences
representating  English  alphabets and special
characters:

1. JIS X0208 codes with JIS X 0202 (1502022)
2. Extended UNIX Code (EUC)
3. Microsoft Kanji Code (Shift-JIS)

Method 1| works by a surrounding a Kanji sequence
by a designating escape sequence (ESC-$-@ or
ESC-3-B) and a sequence of English alphabetics
be a designating escape sequence (ESC-(-J or
ESC- (-B).

2. was originally defined by AT&T UNIX Pacific to
provide an internationalised version of UNIX

EUUGN Vo8 No2 Summer 1988 T




JUNET

operating system[l U and is becoming to be a
standard way to representing Kanji codes in the
UNIX operating system in Japan. In the EUC, the
MSB’s of both bytes in a single Kanji character are
set to 1 whereas the MSB is cleared in an ASCI
character..

3. was originally defined for CP/M on personal
computers by a Japanese subsidiary of Microsoft
Corporation. This is now a de-facto standard for
personal computers and is also supported in some of
the Japanised UNIX environments. In the Microsoft
Kanji codes, Kanji characters are mapped by some
function so that first byte is in ranges of 0x81 —
0x9f and Oxe0 — Oxff.

In order to cooperate with the ISO standard method
of handling character codes, and to utilise existing
software which sometimes strips the MSBs off, we
decided to use JIS X0208 two 7-bit codes surrounded
with escape sequences as the network standard. This
decision requires conversion functions from JIS
X0208 to local operating system Kanji codes,
namely EUC/JAPAN and Microsoft Kanji code.

Kanji code handling

In order to design network applications using Kanji
codes, the following discussion has to be made
regarding the average environments of existing
JUNET systems.

1. There are several kinds of character codes
including above codes which are actually used
in operating systems as intemal codes to
represent Japanese characters including Kanji
characters. Among them, JIS X0208 is not
practical for internal code because of the
complicated operations of switching modes
when seeking a character in a byte sequence;
random access to a sequence of byte is
impossible. Thus, two 8-bit codes without
escape sequence is preferable to two 7-bit
codes with escape sequences as internal code
for an operating system.

2. Since we have decided to us JIS X0208 as the
JUNET network staridard Kanji code, we have
to provide conversion mechanisms from JIS
X0208 to internal code of operating systems
such as EUC and to Microsoft Kanji code.

JUNET approaches
By assuming the above issues, we have developed
the following environment for JUNET:

Kanji code As we have described before, we are
using JIS X0208 with ISO 2022 / JIS X0202

8 EUUGN Voi8 No2 Summer 1988

MURAI

extension guide lines as a network standard
Kanji code. Escape sequence introducing JIS X
0208 can either be ESC-$-@ or ESC-$-B.
These are two definitions of two minor versions
of JIS X0208 and both are legal in a sense of
standard  definition. Escape  sequence
introducing ASCII code is ESC-(-B and
introducing ROMAN character code of JIS is
ESC- (-J. Only a few characters are different
between the ASCHl and ROMAN character sets:
\ and ~ in ASCI are replaced by ¥ and ~ in
ROMAN respectively. We therefore treat both
of them equally. Note that the default code set
for JUNET text message is ASCII code; there is
no introducing escape sequence necessary if a
text starts with a ASCII code.

Control characters According to the ISO 2022 / JIS
X0202, any characters appear in both Kanji
sequence and ASCI sequence, however, deep
backtracking maybe necessary to determine the
character mode when a file is accessed
randomly, So we decided not to allow control
characters appear within Kanji code sequence;
they can only appear in ASCII code sequence.
This rule contributes to make software which
handles text messages to be simple and
transparent in terms of internationalising
because a function to find a control character
can transparently be defined.

Single byte Kana code There are another code set
for representing Japanese character in a single
byte; JIS X0201. In this code, only Kana
characters are represented. This code set used
to be used in mainframes because Japanising of
software was easy. Since we now have Kanji
code set anyway and all the Kana
representations are included ijn JIS X 0208
using 2 bytes, we eliminate usage of JIS X 0201
to avoid the complexity caused from handling
of three different code sets at a time.

Network SoftwareIn order to provide an
environment for Japanese text message
capabilities in JUNET, we have modified the
following software to adopt the above
strategies:

« Bnews!"”! was modified to pass the escape

sequences which used to be stripped off in
the original version. In the standard
implementation, the articles spooled are still
represented in network code and the
conversion functions to major internal Kanji
codes are added. Other network npews




MURAI

interfaces such as m and vn have been
modified, too.

o MH" has been added the code conversion
facility between the network standard code
and the local code.

e GNUemacs and MicroEmacs were modified
to handle Kanji codes so that we can edit
Japanese mail and news articles.

e X Window System was also modified to
represent Kanji characters on X.VI0R3 and
X.VIOR4. Unfortunately, there were
several different approaches to the
modifications and offered us no
interoperability. In order to establish an
interoperability for X.V11. a group of
researchers is organised with a mailing list
in JUNET™ for the purpose, and the recent
discussions on the list have been very
active. The actual work on X. V11 has been
completed and is now in the distribution
tape of X Window System as a contributed
software.

Level one Kanji fonts have been hand-made
and posted to JUNET so that a user can read
and write Kanji characters without special
Kanji terminals.

An example to show the example JUNET
environment of Japanese character handling is
shown in Figure 4.

Jus NFEEBE

[P

BEUNIXa—¥g

Figure 4: Example of JUNET Kanji Environment

Dial-up Links
Fast UUCP Links

The Primary goal of the development of JUNET as
the first step was to construct a network providing

JUNET

functions for text message exchange over research
communities in Japan. Since JUNET is a volunteer
project to provide basis of researches on network
communication, UUCP protocol over dial-up links
was our choice to start the network because of the
popular, easy to set-up and inexpensive features of
UUCP technology. The dial-up modems used have
been upgraded from V.21 300bps to V.22bis
2400bps and we have almost succeeded in
eliminating the V.21 and V.22 1200bps modems.

However, UUCP over 2400bps communication links
is not practical as the size of the network has grown
and traffic has increased. One of the problems is its
slow speed, and it can be reduced by using the high
speed modems such as Telebit’s Trailblazer or
Microcom’s AX/9624c. In order to make use of
those high speed modems, the flow control
mechanism between the modems and the hosts is
required and f-protocol UUCP is well known for
Xon/Xoff flow control which is one of the popular
flow control mechanisms. It is good for X.25 links
but is not efficient for the high speed modems
because f-protocol UUCP does 7-bit encoding.
Instead of f-protocol UUCP, j-protocol UUCP which
assumes 8-bit transparent link with Xon/Xoff flow
control has been developed. To reduce the overhead
in the tty device driver, a new line discipline called
UTTYDISC which handles only flow control has
also been developed. With the combination of j-
protocol UUCP and UTTYDISC, we can get more
than 13Kbps of transmission rate using TrailBlazers
or AX/9624c’s. The advantage of new UUCP is not
only its high performance but also reduction of the
tty port occupation,

Dial-up Links — Motivation

The UUCP link is intended for file transfer in batch
mode and the file systems at the destination
machines are liable to overflow. This problem is
serious; when a file system overflows, many new
articles and even mails are lost. Therefore, reliable
datalink protocols which replace UUCP efficiently
are preferable.

As JUNET is a volunteer based network and as we do
not have enough funds to get dedicated lines
between organisations, we have to make use of the
dial-up lines at least for several months. X.25 packet
switching network is one of the candidates. We can
pass the IP datagrams over X.25 links as defined in
[15], however, it is not practical for the small
organisations and for the newly coming
organisations because of its cost. Another candidate
is to pass the IP datagrams over the dial-up links.

EUUGN Vol8 No2 Summer 1968 9




JUNET

Providing this facility, we can make the network
more reliable without any additional hardware. We
have developed a serial KIP module for dial-up
links, called DL, derived from Rick Adams’ SLIP.

Dial-up IP Link — Structure

IP connections over a dial-up link have been usuall}r
considered for personal computers at home!'®),
however, they are still effective for easy
construction of an internetworking among
universities, especially on the achieved performance
with the high-speed modems. The system for dial-up
IP link thus was designed and developed on Sun OS

version 3.2 which is compatible with 4.2BSD UNIX.

The system consists of three modules. The dldriver
resides in the kemel and it receives and sends IP
datagrams with the IP module which also exists in
the kernel space. It has communication entities as a
‘special file’ in the UNIX file space called
/dev/dlx.

The major portion of the system, didaemon, is a
permanent user process which reads information
from the dldriver and controls it through
/dev/dlz. The dldaemon is invoked at a boot
time and resides on the system permanently. As soon
as the process is initiated, it registers a network
interface (if) called dlz and sets up the routing
information in the kemel space so that the IP module
can pass IP fragments with addresses routed toward
the link to the didriver.

The didriver includes a tty line discipline called
DLIPDISC, which does character mapping to
escape DC1/DC3 and other control characters.
Another module called dlattach, which is a user
command, is invoked at login time to pass the
information about the serial port to the didaemon.
Figure 5 illustrates the structure of the system.

user space ¢ H

dldaemon

/dev/dlz /dev/ ttyzz

tty | |to modem
(DLIPDISC) g

IP |«

dldriver e

Y
A

kernel space

Figure 5: Structure of the DL

A connection established with the DL is a point-to-

10 EvUGN Vvoi8 No2 Summer 1988

MURAI

point connection between a master system which
initiates the connection and a slave system. The
following example of sequence shows an overview
of the procedure and the functions of the system:

1. When an IP fragment is selected to the dl1z
interface by the routing function in the IP
module, the didriver passes the fragment to
the attached tty line if the link has already
been established. Otherwise, the dldriver
requests the dldaemon to initiate dialing to the
remote site.

2. The master dldaemon logs-in to the slave site
and invokes the dlattach command.

3. 'The diattach provides the dldaemon residing
on the slave site with the information about
the serial port and about the caller’s name, as
shown in the dotted line of Figure 5.

4. Then, each of the dldaemons at the both
systems issues a system call to switch a line
discipline to DLIPDISC. Finally, they
complete establishment of a dial-up link ready
for IP communication between the systems.

5. A connection is terminated by the dldaemon
when it detects that 60 seconds has passed
without any IP fragment transmissions.

The measured performance of the system with two
TrailBlazers is approximately 7.5Kbps and two
AX/9624c is approximately 8Kbps for end-to-end
data transmission by ftp. Furthermore, we can
obtain the performance of more than 10Kbps with an
UDP-based file transfer protocol whose window size
is large enough to cover the delay originated from
the internal protocol of the modems.

Discussions

The DL have the following characteristics compared
to other media:

1. Link is usually dead and activated by requests.

2. Dialing takes 20 — 60 seconds. The first
datagram takes this long delay before reaching
the destination.

3. Link speed is not so high. The propagation
delay is relatively large because of the
modems’ internal protocol.

4. Link cost depends on the connection time
rather than the amount of the traffic.




MURAI

DL as a replacement of UUCP

The primary usage of DL is a replacement of UUCP.
The messages are transferred in batched manner,
however, each IP fragment is carried over the DL as
in the dedicated lines. More precisely, uucp and uux
replacements receive the file transfer requests and
put the data once onto the spool directory. When the
connection is successfully established, the processes
which talk to the remote daemon with SMTP or
NNTP are invoked. We have modified version of
nnipd and a client process named sendnntp, and we
can prevent the file system from overflowing.

The timing when the dial operation is initiated may
be determined by an evaluation function depending
on the amount of the data spooled for a particular
destination, the elapsed time since last connection,
and so on. The didaemon executes such a function
periodically, and determines whether it should
initiate dialing.

Advanced usage of DL

For the DL as a replacement of UUCP, the existence
of the link do not have be to inform to other sites.
But the processes on the host other than the
gateways want to send/receive the IP datagrams
while the link is established. For this requirement,
the gateways should propagate the routing
information when the DL is established or closed.

Unlike the permanent network links, the DL is
usually closed and initiated by the amrival of the IP
datagram to the remote network. This means that the
DL should be handled as ‘active’ in the routing
information even the actual connection is not
established. A process on a site other than gateway
can issue a TCP connection request according to
‘active’ state in the routing information, however, it
may time out because the dial operation may take
20-60 seconds. In such a case, the DL connections is
established, while the TCP has been timed out and no
actual data transmission is carried out.

We use the high speed modems for the DL to obtain
good performance, however, those modems have
relatively large delay time and we cannot expect the
maximum performance with the ordinal TCP
window size. Using a file transfer protocol with
large window size over UDP, the performance of the
DL exceeds 10Kbps, whereas 8Kbps with ftp.

In order to solve these problems and achieve the best
use of the DL, a pew routing procedure and
congestion control technique suitable for the DL is
now developing. The routing information should
contain whether the path to a destination includes the

JUNET

DL or not. The time out mechanism and the window
size determination mechanism in the TCP module are
affected to such a information in the routing
information. Apart from the efficiency problems, the
researches on the security issue should also be
worked to use the DL practically.

Conclusion

Development of JUNET started in October 1984,
Since then various researches on computer
networking and distributed environment have been
actively done as the rapid growth in the size of the
network, Among them, name management functions
to construct a hierarchical domain name space,
Japanese character handling, and communication
technologies using the high-speed modems have
been focused as primary research concerns.

The actual work for the addressing and routing of
JUNET text messages is achieved by a name server
concept and its implementation. This system
receives control messages to specify the information
about logical domain name, connections and
methods to deliver messages, and generates a
sendmail rule set. This software provides an
environment where the logical naming definitions
and physical routing issues are clearly separated so
that reliability, efficiency, extensibility and
flexibility of communication in the network are
simultaneously achieved.

Internationalisation of computer software is one of
the most important issues in JUNET and its
communication software. The clear separation of
network Kanji code and internal operating system
code employed in JUNET software provides a
transparent environment on Japanese character
handling in computer networks. Availability of
Japenese messages obviously encourages JUNET
users very much to exchange messages over the
network.

A new UUCP protocol and tty driver enhancement
are developed for the requirements of higher
transmission rate over the dial-up lines. As the
result, more than 13Kbps UUCP transmission rate is
achieved. This encouraged us to migrate onto TCP/IP
suite using dial-up lines as well as using leased lines.
Performance of the implementation of the dial-up IP
link is about 8Kbps which is practical enough to
construct a distributed environment over a widely
interconnected network environment.

Progresses of JUNET technologies discussed in this
paper lead us to many topics of future studies such

EUUGN Vol8 No2 Summer 1988 11




JUNET

as:

o Enhancement of name servers which handles
general distributed resources.

» Establishment of gateway technologies such as
optimal routing strategies based upon
constructions of IP-based network using the
dial-up IP link and IP over leased lines.

o Supports of multi-media message exchanges
enhances the environment with multi-language
supports currently achieved.

The technologies developed in JUNET can generally
be used to construct a network interconnection with
inexpensive cost.

Acknowledgements

The authors would like to thank Youichi Shinoda,
Keisuke Tanaka and Hiroshi Tachibana for their
efforts in developing software. The dial-up IP link
was achieved as a result of discussions with
members of the JUNET project, especially with
Susumu Sano.

References

1] Jun Murai and Akira Kato. Researches in
Netwotk Development of JUNET. In
Proceedings of SIGCOMM '87 Workshop,
ACM, 1987.

[2) J. Murai and T. Asami. A network for
research and development communications
in Japan — JUNET —. In Proceedings of
First Pacific Computer Communications
Symposium, 1985.

[3] J.S. Quaterman and J.C. Hoskins. Notable
Computer Networks. CACM, 29(10),
October 1986.

[4] D.A. Nowitz and M.E. Lesk.. A Dial-Up
Network of UNIX Systems. Technical Report,
Bell Telephone Laboratories, August 1987.

[5S1 Elic Allman. Sendmail —  An
Interconnecting Mail Rerouter, Version 4.2,
In UNIX Programmer's Manual, 4.2
Berkeley Sofiware Distribution, Univ. of
California, Berkeley, 1983.

[6] J. Postel (ed.). Internet Protocol — DARPA
Internet Program Protocol Specification. RFC
791. 1980.

[7] J. Postel (ed.). Transmission Control Protocol
— DARPA cInternet Program Protocol

12 EUUGN Voi8 No2 Summer 1988

(8]

91

(10]

[11y

[12]

(13}

[14]

(15]

(16]

MURAI

Specification. RFC 793. 1981.

D. Comer. The computer science research
network CSNET: A history and status report.
CACM, 26(10), October 1983.

ISO. Codes for the Representation of Names
of Countries. 1SO 3116. 1981.

J. Postel. Domain requirements. RFC 920.
1984,

Hiromichi Kogure and Richard McGowan. A
UNIX System V  STREAMS TTY
Implementation for Multiple Language
Processing. In USENIX Summer Conference
Processings, USENIX, 1987.

S.L. Emerson. USENET: A bulletin board for
UNIX users. BYTE, September 1983,

R.S. Gaines, S. Borden and N.Z. Shapiro.
The MH Message Handling System: User’'s
Manual. Rand Corporation, 1979.

Hiroshi Tachibana. PD Kanji font (tools and
ascii fonts). Network news posted to
fj.sources as
<1676Qrika.cs.titech.JUNET>,
July 1987.

J.T. Korb. A Standard for the transmission of
IP Datagrams Over Public Data Networks.
RFC 877. 1983.

D.J. Farber, G.S. Delp and TM. Conte. A
Thinwire Protocol for conpecting personal
computers to the INETERNET. REC 914,
1984,




SOMOGYI1

CAKE

Cake: a Fifth Generation Version of make

Zoltan Somogyi
UUCP: {uunet,mcvax,ukc}!munnari.oz!zs
zs@mulga.oz.au, zs@mulga.uucp
ARPA: zs%munnari.oz@uunet.uu.net
CSNET: zs%munnari.oz@australia

Department of Computer Science
University of Melbourne
Parkville, 3052 Victoria, Australia

Zohan is a grad stude hacker droid who haunts the night corridors of the
University of Melbourne. He is interested in Life, the Universe, and
Everything, His main research interest is in parallel logic programming, but
be sometimes cobbles together useful software in his spare time.

Zoltan lives in Australia.

Abstract

Make is a standard UNIX utility for maintaining computer programs. Cake is a rewrite of make from the
ground up. The main difference is one of attitude: cake is considerably more general and flexible, and can be
extended and customised to a much greater extent. It is applicable to a wide range of domains, not just program

development.

Introduction

The UNIX utility make (Feldman, *79) was written
to automate the compilation and recompilation of C
programs. People have found make so successful in
this domain that they do not wish to be without its
services even when they are working in other
domains. Since make was not designed with these
domains in mind (some of which, e.g., VLSI design,
did not even exist when make was wiitten), this
causes problems and complaints. Nevertheless,
implied in these complaints is an enormous
compliment to the designers of make; one does not
hear many grumbles about programs with only a few
users.

The version of make described in (Feldman, ’79) is
the standard utility. AT&T modified it in several
respects for distribution with System V under the

name augmented make (AT&T, '84). We know
of two complete rewrites: enhanced make
(Hirgelt, '83) and fourth generation make
(Fowler, ’85). All these versions remain oriented
towards program maintenance’.

Here at Melbourne we wanted something we could
use for text processing. We had access only to
standard make and spent a lot of time wrestling
with makefiles that kept on getting bigger and
bigger. For a while we thought about modifying the
make source, but then decided to write something
completely new. The basic problem was the

1. Since this paper was written, two other rewrites have come
along: mk (Hume, '87) and nmake.

EUUGN Vol8 No2 Summer 1988 13




CAKE

inflexibility of make’s search algorithm, and this
algorithm is too embedded in the make source to be
changed easily.

The name cake is an historical accident. Cake
follows two other programs whose names were also
puns on make. One was bake, a variant of make
with built-in rules for VLSI designs instead of C
programs (Gedye, ’'84). The other was David
Morley’s shell script fake. Written at a time when
disc space on our machine was extremely scarce,
and full file systems frequently caused write failures,
it copied the contents of a directory to /tmp and
invoked make there.

The structure of the paper is as follows. Section 2
shows how cake solves the main problems with
make, while section 3 describes the most important
new features of cake. The topics of section 4 are
portability and efficiency. The paper assumes that
you have some knowledge of make.

The problems with make
Make has three principal problems. These are:
1. It supports only suffix-based rules.
2. Its search algorithm is not flexible enough.

3. It has no provisions for the sharing of new
make rules.

These problems are built deep into make. To solve
them we had to start again from scratch. We had to
abandon backward compatibility because the make
syntax is not rich enough to represent the complex
relationships among the components of large
systems. Nevertheless, the cake user interface is
deliberately based on make’s; this helps users to
transfer their skills from make to cake. The
Sunctionalities of the two systems are sufficiently
different that the risk of confusion is minimal?,

Probably the biggest single difference between
make and cake lies in their general attitudes.
Make is focused on one domain: the maintenance
of compiled programs. It has a lot of code specific
to this domain (especially the later versions). And it
crams all its functionality into some tight syntax that
treats all sorts of special things (e.g., . SUFFIXES)
as if they were files.

2. This problem, called cognitive dissonance, is discussed in
Weinberg’s delightful book (Weinberg, '71).

14 EUUGN Voi8 No2 Summer 1988

SOMOGYI

Cake, on the other hand, uses different syntax for
different things, and keeps the number of its
mechanisms to the minimum consistent with
generality and flexibility. This attitude throws a lot
of the functionality of make over the fence into the
provinces of other programs. For example, where
make has its own macro processor, cake uses the
C preprocessor; and where make has special code to
handle archives, cake has a general mechanism
that just happens to be able to do substantially the
same job.

Only suffix-based rules

All entries in a makefile have the same syntax.
They do not, however, have the same semantics.
The main division is between entries which describe
simple dependencies (how to make file a from file
b), and those which describe rules (how to make
files with suffix .x from files with suffix .y)’.
Make distinguishes the two cases by treating as a
rule any dependency whose target is a concatenation
of two suffixes.

For this scheme to work, make must assume three
things. The first is that all interesting files have
suffixes; the second is that suffixes always begin
with a period; the third is that prefixes are not
important. All three assumptions are violated in
fairly common situations. Standard make cannot
express the relationship between file and
file.c (executable and source) because of
assumption 1, between file and file,v
(working file and RCS file) because of assumption 2,
and between file.o and ../src/file.c
(object and source) because of assumption 3.
Enhanced make and fourth generation
make have special forms for some of these cases,
but these cannot be considered solutions because
special forms will always lag behind demand for
them (they are embedded in the make source, and
are therefore harder to change than even the built-in
rules).

Cake’s solution is to do away with make-style
rules altogether and instead to allow ordinary
dependencies to function as rules by permitting them
to contain variables. For example, a possible rule
for compiling C programs is

3. For the moment we ignore entries whose targets are special
entities like . IGNORE, .PRECIOUS, etc.




SOMOGYI

$.0: %.c
cc -¢c %.c

where the % is the variable symbol. This rule is
actually a template for an infinite number of
dependencies, each of which is obtained by
consistently substituting a string for the variable %.

The way this works is as follows. First, as cake
seeks to update a file, it matches the name of that file
against all the targets in the description file. This
matching process gives values to the variables in the
target. These values are then substituted in the rest
of the rule®. (The matching operation is a form of
unification, the process at the heart of logic
programming; this is the reason for the fifth
generation bit in the title.)

Cake actually supports 11 variables: % and %0 to
%9. A majority of rules in practice have only one
variable (canonically called %), and most of the
other rules have two (canonically called %1 and
%2). These variables are local to their rules.
Named variables are therefore not needed, though it
would be easy to modify the cake source to allow
them.

Example

If cake wanted to update prog. o, it would match
prog.o against %.o, substitule prog for %
throughout the entry, and then proceed as if the
cakefile contained the entry

Prog.o: prog.c
cc -c prog.c

This arrangement has a number of advantages. One
can write

$.0: RCS/%.c,v
co -u %.c
cec -¢c %.c

without worrying about the fact that one of the files
in the rule was in a different directory and that its
suffix started with a nonstandard character. Another
advantage is that rules are not restricted to having
one source and one target file. This is useful in
VLSI, where one frequently needs rules like

4. After this the ruke should have no unexpanded variables in it.
If it does, cake reports an error, as it has no way of finding
out what the values of those variables should be.

CAKE

$.out: %.in %.circuit
simulator %.circuit < %.in > %.out

and it can also be useful to describe the full
consequences of running yacc

%.c $.h: %.y
yacc -d %.y
mv y.tab.c %.c
mv y.tab.h %.h

Inflexible search algorithm

In trying to write a makefile for a domain other
than program development, the biggest problem one
faces is usually make ’s search algorithm. The basis
of this algorithm is a special list of suffixes. When
looking for ways to update a target file.x, make
searches along this list from left to right. It uses the
first suffix .y for which it has a rule .y .x and for
which file.y exists.

The problem with this algorithm manifests itself
when a problem divides naturally into a number of
stages. Suppose that you have two rules .c.b and
.b.a, that file.c exists and you want to issue
the command make| file.a. Make will tell
you that it doesn’t know how to make file.a.
The problem is that for the suffix .b make has a
rule but no file, while for . c it has a file but no rule.
Make needs a transitive rule .c.a to go direct
from file.c to file.a.

The pumber of transitive rules increases as the
square of the number of processing stages. It
therefore  becomes  significant for program
development only when one adds processing stages
on either side of compilers. Under UNIX, these
stages are typically the link editor 1d and program
generators like yacc and lex. Half of standard
make’s built-in rules are transitive ones, there to
take care of these three programs. Even so, the
builtin rules do not form a closure: some rare
combinations of suffixes are missing (e.g., there is
no rule for going from yacc source to assembler).

For builtin rules a slop factor of two may be
acceptable. For rules supplied by the user it is not.
A general-purpose makefile for text processing
under UNIX needs at least six processing stages to
handle nroff/troff and their preprocessors
1bl, bib, pic, tbl, and eqn, to mention only
the ones in common use at Melbourne University.

Cake’s solution is simple: if £ilel can be made
from file2 but £ile2 does not exist, cake will
try to create £ile2. Perhaps file2 can be made
from f£ile3, which can be made from file4, and

EUUGN Vo8 No2 Summer 1988 15




CAKE

SOMOGY1

so on, until we come to a file which does exist.
Cake will give up only when there is absolutely no
way for it to generate a feasible update path.

Both the standard and later versions of make
consider missing files to be out of date. So if
filel depends on file2 which depends on
file3, and file2 is missing, then make will
remake first file2 and then filel, even if
filel ismore recent than file3.

When using yacc, we frequently remove generated
sources to prevent duplicate matches when we run
egrep ... *.[chyl]. If cake adopted
make s approach to missing files, it would do a lot
of unnecessary work, running yacc and cc to
generate the same parser object again and again®.

Cake solves this problem by associating dates even
with missing files. The theoretical update time of an
existing file is its modify time 7 given by stat(2)); the
theoretical update time of a missing file is the
theoretical update time of its youngest ancestor.
Suppose the yacc source parser.y is older than
the parser object parser.o, and parser.c is
missing. Cake will figure that if it recreated
parser.c it would get a parser.c which
theoretically was last modified at the same time as
parser.y was, and since parser.o is younger
than parser.y, theoretically it is younger than
parser.c as well, and therefore up-to-date.

No provisions for sharing rules

Imagine that you have just written a program that
would normally be invoked from a make rule, such
as a compiler for a new language. You want to
make both the program and the make rule widely
available. With standard make, you have two
choices. You can hand out copies of the rules and
get users to include it in their individual
makefiles; or you can modify the make source,
specifically, the file containing the built-in rules.
The first way is error-prone and quite inconvenient
(all those rules cluttering up your makefile when
you should never need to even look at them). The
second way can be impractical; in the development
stage because the rules can change frequently and
after that because you want to distribute your
program to sites that may lack the make source.

3. In this case make is rescued from this unnecessary work by
its built-in transitive rules, but as shown above this should not
be considered a general solution.

16 EUUGN Voi8 No2 Summer 1988

And of course two such modifications may conflict
with one another.

Logically, your rules belong in a place that is less
permanent than the make source but not as
transitory as individual makefiles. A library file
is such a place. The obvious way to access the
contents of library files is with #include, so
cake filters every cakefile through the C
preprocessor.

Cake relies on this mechanism to the extent of not
baving any built-in rules at all. The standard cake
rules live in files in a library directory (usually
/usr/lib/cake). Each of these files contains
rules about one tool or group of tools. Most user
cakefiles #define some macros and then
include some of these files. Given that the source
for program prog is distributed among prog.c,
auxl.c, aux2.c, and parser.y, all of which
depend on def.h, the following would be a
suitable cakefile:

#define MAIN prog
#define FILES prog auxl aux2 parser
#define HDR def

#include <Yacc>
#include <C>
#include <Main>

The standard cakefiles Yacc and C, as might
be expected, contain rules that invoke yacc and cc
respectively. They also provide some definitions for
the standard cakefile Main. This file contains
rules about programs in general, and is adaptable to
all compiled languages (e.g., it can handle NU-
Prolog programs). One entry in Main links the
object files together, another prints out all the
sources, a third creates a tags file if the language
has a command equivalent to ctags, and so on.

Make needs a specialised macro processor; without
one it cannot substitute the proper filenames in rule
bodies. Fourth generation make has not
solved this problem but it still wants the extra
functionality of the C preprocessor, so it grinds its
makefiles through both macro processors!
Cake solves the problem in another way, and can
thus rely on the C preprocessor exclusively.

Standard make’s macro facilities are quite
rudimentary, as admitted by (Feldman, ’79).
Unfortunately, the C preprocessor is not without
flaws either. The most annoying is that the bodies of
macro definitions may begin with blanks, and will if
the body is separated from the macro name and any




SOMOGYI

parameters by more than one blank (whether space
or tab). Cake is distributed with a fix to this
problem in the form of a one-line change to the
preprocessor source, but this change probably will
not work on all versions of UNIX and definitely will
not work for binary-only sites.

The new features of cake

The above solutions to make ’s problems are useful,
but they do not by themselves enable cake to
handle new domains. For this cake employs two
important new mechanisms: dynamic dependencies
and conditional rules.

Dynamic dependencies

In some situations it is not convenient to list in
advance the names of the files a target depends on.
For example, an object file depends not only on the
corresponding source file but also on the header files
referenced in the source.

Standard make requires all these dependencies to be
declared explicitly in the makefile. Since there
can be rather a lot of these, most people either
declare that all objects depend on all headers, which
is wasteful, or declare a subset of the true
dependencies, which is error-prone. A third
alternative is to use a program (probably an awk
script) to derive the dependencies and edit them into
the makefile. (Walden, ’'84) describes one
program that does both these things; there are others.
These systems are usually called makedepend or
some variation of this name.

The problems with this approach are that it is easy to
alter the automatically-derived dependencies by
mistake, and that if a new header dependency is
added the programmer must remember to run
makedepend again. The C preprocessor solves
the first problem; the second, however, is the more
important one. Its solution must involve scanning
though the source file, checking if the programmer
omitted to declare a header dependency. So why not
use this scan to find the header dependencies in the
first place?

Cake attacks this point directly by allowing parts of
rules to be specified at run-time. A command
enclosed in double square brackets® may appear in a
rule anywhere a filename or a list of filenames may
appear. For the example of the C header files, the

CAKE

rule would be

%$.0: $.c [[ccincl %.c]}
cc -c %.c

signifying that x.o depends on the files whose
names are listed in the output of the command
ccincl x.c ', as well as on x.c. The matching
process would convert this rule to

X.0: x.¢ [[ccinecl x.c]]
cc -¢ x.c

which in turn would be command expanded to

X.0: x.c hdr.h
cc -C x.cC

if hdr . h were the only header included in x. c.

Command pattemns provide replacements for
fourth generation make’s directory
searches and special macros.
[[£ind\ <dirs>\ -name\ <filename>\ -
print]) does as good a job as the special-purpose
make code in looking up source files scattered
among a number of directories.
[ [basename\ <filename>\ <suffix>]])
can do an even better job: make cannot extract the
base from the name of an RCS file.

A number of tools intended to be used in just such
contexts are distributed together with cake.
Ccincl is one. Sub is another: its purpose is to
perform substitutions. Its arguments are two
pattemns and some strings: it matches each string
against the first pattern, giving values to its
variables; then it applies those values to the second
pattern and prints out the result of this substitution.
For example, in the example of section 2.3 the
cakefile main would invoke the command
[[sub\ X\ X.o\ FILES]]® the value of
FILES being prog auxl aux2 parser, to
find that the object files it must link together to
create the executable prog are

6. Single square brackets (like most special characters) are
meaningful to csh: they denote character classes. However,
we are not aware of any legitimate contexts where two square
brackets must appear together. The order of members in such
classes is irrelevant, so if a bracket must be a member of such
a class it can be positioned away from the offending boundary
(unless the class is a singleton, in which case there is no need
for the class in the first place).

7. ccincl prints out the names of the files that are
#included in the file named by its argument. Since
ccincl does not evaluate any of the C preprocessor’s control
lines, it may report a superset of the files actually included.

EUUGN Vol8 No2 Summer 1988 17




CAKE

prog.o auxl.o aux2.o parser.o.

Cake allows commands to be nested inside one
another. For example, the command
[[sub\ X.h\ X\ [{ccincl\ file.c]}]]
would strip the suffix .h from the names of the
header files included in file.c ®.

Conditional rules

Sometimes it is natural to say that filel depends
on file2 if some condition holds. None of the
make variants provide for this, but it was not too
hard to incorporate conditional rules into cake.

A cake entry may have a condition associated with
it. This condition, which is introduced by the
reserved word if, is a boolean expression built up
with the operators and, or and not from primitive
conditions.

The most important primitive is a command
enclosed in double curly braces. Whenever cake
considers applying this rule, it will execute this
command after matching, substitution and command
expansion. The condition will return true if the
command’s exit status is zero. This runs counter to
the intuition of C programmers, but it conforms to
the UNIX convention of commands retuming zero
status when no abnormal conditions arise. For
example, ({{grep\ xyzzy\ file}} retums
zero (i.e., true) if xyzzy occurs in file and
nonzero (false) otherwise.

Conceptually, this one primitive is all one needs.
However, it has considerable overhead, so cake
includes other primitives to handle some special
cases. These test whether a filename occurs in a list
of filenames, whether a pattern matches another, and
whether a file with a given name exists. Three
others forms test the intemnal cake status of targets.
This status is ok if the file was up-to-date when
cake was invoked, cando if it wasn’t but cake
knows how to update it, and noway if cake does
not know how to update it.

As an example, consider the rule for RCS.

8. Sub uses X as the character denoting variables. It cannot use
%, as all %’s in the command will have been substituted for by
cake by the time sub is invoked.

9. As the outputs of commands are substituted for the commands
themselves, cake takes care not to scan the new text, lest it
find new double square brackets and go into an infinite loop.

18 EUUGN Vois Noz2 Summer 1988

SOMOGYI

%: RCS/%,v
co -u %

if exist RCS/%,v

Without the condition the rule would apply to all
files, even ones which were not controlled by RCS,
and even the RCS files themselves: there would be
no way to stop the infinite recursion (% depends on
RCS/%,v which depends on
RCS/RCS/%,v,v...).

Note that conditions are command expanded just like
other parts of entries, so it is possible to write

%: archive
ar x archive %

The implementation
Portability

Cake was developed on a Pyramid 90x under
4.2bsd. At Melbourne University it now runs on a
VAX under 4.3bsd, various Sun-3’s under SunOS
3.4, an Encore Multimax under Umax 4.2, a Perkin-
Elmer 3240 and an ELXSI 6400 under 4.2bsd, and
on the same ELXSI under System V. It has not been
tested on either System III or version 7.

Cake is written in standard C, with (hopefully) all
machine dependencies isolated in the makefile and a
header file. In a number of places it uses #ifdef
to choose between pieces of code appropriate to the
AT&T and Berkeley variants of UNIX (e.g., to
choose between time () and
gettimeofday () ). In fact, the biggest hassle we
have encountered in porting cake was caused by
the standard header files. Some files had different
locations on different machines (/usr/include
vs. /usr/include/sys), and the some versions
included other header files (typically types.h)
while others did not.

As distributed cake is set up to work with csh, but
it is a simple matter to specify another shell at
installation time. (In any case, users may substitute
their preferred shell by specifying a few options.)
Some of the auxiliary commands are implemented as
csh scripts, but these are small and it should be
trivial to convert them to another shell if necessary.

Efficiency

Fourth generation make has a very
effective optimisation system. First, it forks and
execs only once. It creates one shell, and thereafter,
it pipes commands to be executed to this shell and
gets back status information via another pipe.
Second, it compiles its makefiles into internal

if % in [[ar t archive]]




SOMOGYI

form, avoiding parsing except when the compiled
version is out of date with respect to the master.

The first of these optimisations is an absolute
winner. Cake does not have it for the simple reason
that it requires a shell which can transmit status
information back to its parent process, and we don’t
have access to one (this feature is provided by
neither of the standard shells, sh and csh).

Cake could possibly make use of the second
optimisation. It would involve keeping track of the
files the C preprocessor includes, so that the
makefile can be recompiled if one of them
changes; this must be done by fourth generation
make as well though (Fowler, '85) does not mention
it. However, the idea is not as big a win for cake
as it is for make. The reason is as follows.

The basic motivations for using cake rather than
make is that it allows one to express more complex
dependencies. This implies a bigger system, with
more and slower commands than the ones make
usually deals with. The times taken by cake and
the preprocessor are insignificant when compared to
the time taken by the programs it most often invokes
at Melbourne. These programs, ditroff and nc
(the NU-Prolog compiler that is itself written in NU-
Prolog), are notorious CPU hogs.

Here are some statistics to back up this argument.
The overhead ratio is given by the formula

cake process system time + children user time + children System time

cake process user time

This is justifiable given that the cake implementor
has direct control only over the denominator: the
kemel and the user’'s commands impose a lower
limit on the numerator.

We have collected statistics on every cake run on
two machines at Melbourne, mulga and munmurra'’.
These statistics show that the overhead ration on
mulga is 11 while on munmurra it is 86. This
suggests that the best way to lower total CPU time is
not to tune cake itself but to reduce the number of
child processes. To this end, cake caches the status
returned by all condition commands
{{command}} and the output of all command
pattems [ [command]]. The first cache has hit

10. On mulga (a Perkin-Elmer 3240), the main applications are
text processing and the maintenance of a big bibliography
(over 58000 references). On munmurra (an EXLSI 6400), the
main application is NU-Prolog compilation.

CAKE

ratios of 42 and 54 percent on munmurra and mulga
respectively, corresponding roughly to the typical
practice in which a condition and its negation select
one out of a pair of rules. The second cache has a
hit ratio of about 80 percent on both machines; these
hits are usually the second and later occurrences of
macros whose values contain commands.

Cake also uses a second optimisation. This one is
borrowed from standard make: when an action
contains no constructs requiring a shell, cake itself
will parse the action and invoke it through exec. We
have no statistics to show what percentage of actions
benefit from this, but a quick examination of the
standard cakefiles leads us to believe that it is
over 50 percent.

Overall, cake can do a lot more than make, but on
things which can be handled by make, cake is
slightly slower than standard make and a lot slower
than fourth generation make. Since the main goal of
cake is generality, not efficiency, this is
understandable. If efficiency is important, make or
one of its other successors is always available as a
fallback.

Availability

The cake distribution contains the cake source,
some auxiliary programs and shell scripts (many
useful in their own right), diffs for the lex driver
and the C preprocessor, library cakefiles, manual
entries, and an earlier version of this paper
(Somogyi, '87). It was posted to the Usenet
newsgroup comp.sources.unix in October of 1987.

Acknowledgements

John Shepherd, Paul Maisano, David Morley and
Jeff Schultz helped me to locate bugs by being brave
enough to use early versions of cake. I would like
to thank John for his comments on drafts of this

paper.
This research was supported by a Commonwealth

Postgraduate Research Award, the Australian
Computer Research Board, and Pyramid Australia.

References

(AT&T, '84) Augmented version of make, in: UNIX
System V - release 2.0 support tools guide,
AT&T, April 1984,

(Feldman, *79) Stuart L. Feldman, Make - a program
for maintaining computer programs, Software
- Practice and Experience, 9:4 (April 1979),
pp. 255-265.

EUUGN VoI8 No2 Summer 1983 19




CAKE

(Fowler, '85) Glenn S. Fowler, A fourth generation
make, Proceedings of the USENIX 1985
Summer Conference, Portland, Oregon, June
1985, pp. 159-174.

Gedye, '84 David Gedye, Cooking with CAD at
UNSW, Joint Microelectronics Research
Center, University of New South Wales,
Sydney, Australia, 1984.

(Hirgelt, ’83) Edward Hirgelt, Enhancing make or
re-inventing a rounder wheel, Proceedings of
the USENIX 1983 Summer Conference,
Toronto, Ontario, Canada, July 1983, pp.
45-58.

(Hume, ’87) Andrew Hume, Mk: a successor to
make, Proceedings of the USENIX 1987
Summer Conference, Phoenix, Arizona, June
1987, pp. 445-457.

(Somogyi, ’87) Zoltan Somogyi, Cake: a fifth
generation version of make, Australian UNIX
system User Group Newsletter, 7:6 (April
1987), pp. 22-31.

(Walden, '84) Kim Walden, Automatic generation of
make dependencies Software - Practice and
Experience, 14:6 (June 1984), pp. 575-585.

(Weinberg, ’71)Gerald M. Weinberg, The
psychology of computer programming, Van
Nostrand Reinhold, New York, 1971.

Thank you, Zoltan

Zoltan has agreed that the latest version of ‘cake’
can be put on the next EUUG conference tape. Thank
" you, Zoltan.

20 EVUGN Voi8 No2 Summer 1988

SOMOGYI




COMPETITIONS

LONDON CONFERENCE

Competitions at the London Conference

As is traditional at EUUG conferences a competition
was held. As is not traditional there were two
competitions.

The Signal Competition

The other competition was inspired by the excellent
replies generated by the errno competition a couple
of years ago. This time the task was to invent new

The winning entry was:
SIGTITANIC  Floating point exception
Submitted by Martyn Tovey from BRS Europe.

There were many other entries of high standard.

Here is a selection of the best:

signals and their meanings.

Signal Explanation

SIGHTSEEING Delegate lost

SIGTUBE Bus error

SIGINGINTHERAIN  Pipe overflow

SIGFERRY Data packet has crossed communication channel

SIGTUNNEL Reserved for future use — will replace SIGFERRY
SIGTUBE Attempt to pack 2 bits into a byte

SIGLT Double sigbus

SIGPEDESTRIAN Slow data packet is overwritten by expedited data
SIGSIGSIGSIG Excessive recursion depth

SIGBEKO Segregation violation

SIGNORINA 36-24-36

SIGNAB Tax evasion violation

SIGQUIT You chief programmer just joined another company
SIGSUN Processor superseded

SIGNAL Not another language !

SIGJEDI Use of ‘“The Force’’ required to continue process
SIGSHUTTLE Ring failure

SIGNEPHEW A process, not a child of yours, has died
SIGMUND Child process too close to motherboard
SIGPROC Your paper missed the proceedings deadline
SIGNIFICANT Too many digits

SIGILL Too much curry

SIGCIA Are we being bugged

SIGLIONS I don’t understand this

SIGBLAH Unexpected file recovery

SIGMIS5 Filename classified

SIG11 Last order (UK only)

SIGMAINSSPIKE Incoming signal on power supply

SIGBSD Your program is using too little memory
SIGCISC Instruction too complex

SIGPTO Page fault signal

SIGBLAH Comment (not) found

SIGGWR Train arrived on time

SIGMODEM Unexectd oss of car ier

SIGWESTEND American tourist looking for Harrods

SIGLHR Excessive aircraft noise

EUUGN Vo8 No2 Summer 1988 21




LONDON CONFERENCE

SIGNET
SIGNUTCRACKER
SIGAMNESIA
SIGSTAB
SIGHUME
SIGPANIC
SIGANSI
SIGIBM
SIGAPPLE
ISBGTYE
SIGISO
SIGHIC
SIGHUP

SIG

SIGQEI
SIGPLAN
SIGDOS
CIGARETTE
SIGCIA
SIGPUB
SIGLUXO
SIGDAS
SIGRISC
SIGFREID
SIGCAT
SIGCHEESE
SIGHIC
SIGMARTINI
SIGAT&T
SIGNORTH
SIGYAS
SIGEEC
SIGBLITZ
SIGH@$:
SIGHOTELFULL
SIGDAS
SIGASAPARROT
SIGBLUE
SIGNAL
SIGFINE
SIGHIC
SINGAL
SIGELBOW
SIGCHANGLING
SIGGURU
SIGBUS
SIGRA
SIGLUXO
SIGERy

Distributed system caught

Broken kemel

No more memory

Et tu IBM

Large noise source detected

Tilbrook has logged in

Language too large

Corporation too large

Program is too small

Byte swap error

Has yet to be defined

Program confused due to excess alcohol
Excess curry

Attempt to execute zero length program
Security violation

Unknown programming language
ENOTUNIX

ENOTOBACCO

Classified information

Sorry, we’re closing in 10 minutes
Waming -lamp enabled

You’'ve been Suniled

Unimplemented instruction

Beware the Valkyries

No mouse

Lost contact with mouse

Bottle empty

Received any time, any place, any where
Failed to acknowledge trademark
Security label violation

Yet another signal /* Dummy signal */
System deadlocked

Program bombed out

I’'m not going to tell you where the file is
No more space in process table

Name reference count overflow
Ill-eagle instruction

Unknown hardware

LAN running backwards

Speed trap —.caught breaking 1 MIP
Process beer overflow

Program made a spelling mistake
Wakeup (boring talk finished)

Child process has been replaced

You are not expected to understand this

Transport service failure — you have to walk home
Attempt to execute Pyramid code on a Sun

Your ball is flat
Message from foreign host

22 EUUGN Voi8 No2 Summer 1988

COMPETITIONS




COMPETITIONS

The Plate Competition

The second was a balloon competition. A plate
had been presented as a prize by HCR, this was of
the UNIX founding fathers: Dennis & Ken — but
what were they saying to each other at the time
that the plate was made?

The results were rather poor, however a picture of
the plate and the winning caption from Bob Gray
of Bucs can be found after the conference
proceedings, at the back of this newsletter.

The other entries of note are;

- D’you things UNIX will fly ?
- It will if we implement it on a frisbee

- Dennis, I’ve got this new operating system.
I call it Unix.
- Twenty years from now you’ll regret this

- Dennis, do you think that we are famous ?
- No Ken, we should have started in a garage

- What do you think they will eat today ?
- Inodes I hope. They don’t stick in beards

- You write the TTY driver.
- No. You write it

The Tie Breaker

Because it can be very difficult to judge a
competition with a high standard of entries (as is
found at an EUUG conference ©) it was decided
to have a ticbreaker.

What happened was that the tie breaker ended up
being judged as another competition. Yet another
first for London: the first conference with three
competitions.

Entrants were asked to complete, in no more than
20 words, the sentence:

I attend EUUG conferences because .....

Some of those replying assumed that the judges
were weak, vain creatures who could be swayed
by simple flattery; they claimed because:

The competition committee are such nice people
I think the competition judges are great

The competition judges are so intelligent

Sunil Das is my hero (crawl, crawl)

1 think Sunil Das is really wonderful

I have spared the authors of the above by not
printing their names, and would like to point out
that Sunil was not one the judges anyway.

LONDON CONFERENCE

Various other assorted reasons given were:

-I'm a Pratt — I’'m not arguing — ED

- I’'m waiting for an engineer to arrive and have
nothing better to do

- It’s fun

- It has funny films

- I want to meet other hackers

- I need a good laugh

- It’s the only way I’'ve found to visit London
- My boss told be to do so

- I'll do anything to get out of the office

- Booze, views, news and reviews

- They’re there

But the outstanding reason was given by Per
Holck of Bull (dk):

- I'want to ask if anybody has received my mail

A Challenge

In the past EUUG competitions have been taken up
and run by Usenix at their conferences. Opinions
differ on the quality of replies obtained in the
USA, they think that they are better. We disagree
and assert that all the good ones are from visiting
Europeans.

The EUUG hereby challenges Usenix to take up
the signal competition and to try and better us at
their summer conference in San Francisco.

EUUGN Vol8 No2 Summer 1988 23




AFUU REPORT

PEAKE

AFUU Report — Convention UNIX ’88

Philip Peake
philip@axis.uucp

Axis Digital
Boulogne
France

The most important event for the AFUU since the last
article was without doubt the Convention UNIX ’88.
This was the first exhibition/conference organised

| directly by the AFUU, the previous exhibitions being
organised by Network Events.

The preliminary information after the event gives the
following statistics:

|
i o Exhibition — 2100 square metres, with a
| hundred exhibitors.

)

o Visitors — 4700 people visited the conference,
and 500 more the technical conference which
was held in parallel.

» Conference and tutorials — obviously a success
with that number of visitors. Since this was our
first conference at a new conference centre, there
were one or two organisational problems, but
there will be resolved for next year.

24 EUUGN Voi8 No2 Summer 1988

For those interested, the proceedings of the
conference are available from the AFUU.

Another important event is that the AFUU is moving.
With 3 full time staff and two UNIX machines, the
current office space at SUPELEC was becoming
much too cramped. We are moving a little closer to
Paris, in fact, just a few hundred metres from the
Paris city boundary. The new address is:

AFUU

11 rue Camot

94270 Le Kremlin-Bicetre
+33 146709590

This will be much easier for visitors, since it is about
50m from the nearest metro.




PODOLSKI & DAS

The United Kingdom UNIX Users’ Group

Introduction

This memorandum is intended to describe the state
and activities of the UKUUG. It is a modified
document of that presented to the UKUUG Executive
Committee, and the EUUG Governing Board and
Executive Committee at the Governing Board
Meeting held prior to the EUUG Spring 1988
Conference.

Membership

The membership consists of institutional, individual
and honorary members. Our fees (ex VAT) are 105
pounds for the institutional membership, 50 pounds
for the individual and nothing for the honorary.

The membership figure has now finally stabilised
after the shocks of a couple of years ago. We would
like to increase the membership and have held
discussions with /usr/grp/UK about merging which
are covered later. One of the complications is that,
although we recognise the need for a low cost
individual membership, there needs to be control so
as to avoid the tendency of everyone becoming an
individual member. To encourage this, individual
membership is required to be accompanied by a
cheque drawn by a single person, not one drawn by a
company. We look to the EUUG for help in
checking at conferences etc that the person applying
is a bona fide member of an institution that is an
institutional member, or is an individual member in
their own right. We are interested in and would
support a differential charging structure, to reflect
that the individual can draw much less on the
services of the group than an institutional member.

The membership are very fee sensitive and we are
keeping the fees at the same level as last year. We
expect with a rising membership, fees can be held
under reasonable control in 1989,

Zdravko Podolski
Sunil K Das

sunil@nss.cs.ucl.ac.uk

Meetings

There were two meetings during 1987, one at
Newcastle in July and one at City University in
December. The format of two half days has been
successful, allowing people to travel to the meeting
in the first moming, attend one session, have the
evening to make and renew contacts and then have
another session in the moming.

The Newcastle meeting was a straight forward
technical event, with Michael Lesk as the keynote
speaker, while the City event was a UKUUG
workshop on computer networking in the UK
attended by over 200 delegates. The workshop was
closed to UKUUG members in recognition that only
institutional UKUUG members are allowed to join
UKNET.

The proceedings of the meetings have been
published as is our normal practice, and a copy has
been sent to the EUUG National Group contacts. We
welcome at our events any other EUUG National
Group member on the same terms as our own
members. At the City meeting, for the first time and
in recognition of the improving relations with
lusrigrp/UK, their members were invited to attend
the meeting,

Last month, the UKUUG were hosts to the EUUG’s
Spring Conference held in London. We are
collaborating with /usr/grp/UK about the ‘European
Unix Users’ Show’ in London in July and holding a
technical meeting in December in Cambridge. The
EUUG’s London meeting has consumed vast
amounts of the Committee’s and others’ effort. The
number of delegates, attendees and helpers reached a
record for EUUG by touching the 600 mark.

Contacts with other groups

During the year we have kept in touch with the UK
Sun Users’ Group. This group is funded mostly by
Sun, so it is naturally much influenced by Sun. The
contacts were started with a view to some sort of

EUUGN Vol8 No2 Summer 1988 25




UKUUG

collaboration, especially conceming meetings, but in
the event the most we could interest them in was to
avoid clashing with each others’ meeting dates. We
shall try harder to encourage them to cooperate with
us.

We have also held several meetings with
lusr/grp/UK with a view to merging the two groups.
The situation in the UK is anomalous, being the only
European country with two user groups. This is an
historical accident. With UKUUG/EUUG originally
being seen as mostly an academic user group, the
vendors started one of their own. The situation is
now less clear cut, with about half the UKUUG
institutional members being commercial users or
vendors, while /usr/grp/UK has been increasing the
ranks of users amongst their members. We all agree
on the desirability of ending this confused state of
affairs and presenting a single user group to the UK
UNIX users.

The structure of /usr/grp/UK is similar to that of the
UKUUG, with individual and institutional members,
and fees being 200 pounds and 50 pounds
respectively. However, the vast majority of their
members are individual. They mun a major
exhibition every year (contracted out to EMAP),
publish a newsletter and have various other activities
and relationships, most notably with /usr/grp in the
USA.

Possibly because of their greater advertising clout
they have a larger membership than us. If a merger
could be achieved, the combined membership would
then be in the region of 650 members. The merger
discussions have reached agreement on all points
except one: the EUUG fees. For a member of the
new combined group, the fees would be roughly the
current /usr/grp/UK fees (50 and 200 pounds
respectively) plus the EUUG 40 pounds. This would
virtually double the individual members’ fees
overnight. There is also a problem with doubling the
current UKUUG institutional fees. While savings can
undoubtedly be found because of the size of the
combined group, these are unlikely to be large, as
both the UKUUG and /usr/grp/UK run on a non profit
basis. Various possibilities exist for solving this
problem. It may be possible to reduce drastically the
individual membership fee, or unbundle the various
EUUG services so that those who want them just pay
extra for them, or have an ‘associate member’ who
does not get a member’s reduction for conferences.
We would welcome advice from the Governing
Board, the EUUG executive and our membership on
these points.

26 EUUGN Voi8 No2 Summer 1988

PODOLSKI & DAS

Another difficulty we had during our attempts to sell
EUUG affiliation to /usr/grp/UK was the lack of
EUUG publicity material. The visible activities of
the EUUG are well known, the conferences, the
Newsletter, EUnet. However there is a whole host of
efforts that can and should be loudly advertised.
Links with other groups outside Europe, input to
standardisation  bodies, European petworking
initiatives, etc, etc. Some obviously should be kept
quiet about until fruition, but mostly publicity would
be helpful. Otherwise the EUUG is seen as a body
with an expensive Newsletter and an even more
expensive bureaucracy, without tangible benefits.
We tried hard to disabuse them about this, and made
much headway, but the issue of cost still remains
unresolved.

We now need help from the EUUG to progress this
initiative, which would be of immense benefit to
users everywhere. The EUUG would gain many new
members at a stroke while at the same time
cementing the unity between users all over Europe.




FREY

USENIX NEWS

USENIX Association News for EUUG Members

Donnalyn Frey
donnalyn@uunet.uucp

press liaison.

The USENIX Association has grown significantly
over the last few years. Part of this growth has been
the expanding contact between the members of the
USENIX Association and the EUUG. This column
was created to help foster this contact. The column
will provide EUUG members with information on
current and upcoming activities of the USENIX
Association. Addresses and telephone numbers for
upcoming activities are included in the column to
assist EUUG members in contacting USENIX
Association representatives.

Summer 1988 Conference

Most EUUG members already know about the
Summer 1988 USENIX Conference and Technical
Exhibition to be held in San Francisco, California on
June 20—24. This is expected to be the largest
USENIX Association conference to date. Several new
tutorials will be presented this summer. The
technical sessions include papers on subjects such as
window  systems, file systems, security,
programming  languages, and  networking.
Approximately 100 exhibitors will be displaying
their wares at the technical exhibition. A reception
will be held at the Exploratorium, a hands-on
science museum in San Francisco.

Fairfax
Virginia, 22031
USA

Ms. Frey is the USENIX Association Press Liaison. She provides members of
the press, USENIX Association members, and EUUG members with
information on the activities of the USENIX Association. Ms. Frey has been a
UNIX technical writer for five years. She now writes journal and newspaper
articles on UNIX-related subjects, as well as working as the Association’s

The next USENIX Association Conference will be
held in San Diego, Califomia in early 1989. For
information on the technical conferences or any
other USENIX Association conference, contact the
USENIX Conference office at P.O. Box 385, Sunset
Beach, CA 90742, USA. The telephone number is +1
213 592 1381. The email address is
judy@usenix.uucp.

The Facesaver Project

The Facesaver Project will continue to record new
faces and registration information at the San
Francisco conference. The Facesaver combines
photographs and registration information onto a
sticky label that conference attendees can give to
exhibitors and other attendees to help them
remember each other. After the conference, the
attendee list mailed to conference attendees will
feature a postage stamp size portrait beside each
name and address.

The Facesaver portraits are captured via a video
camera using AT&T Targa M8 graphics boards
installed in Bell Technologies PC AT clones running
the SCO XENIX version of the UNIX operating
system. Portraits are printed using a Postscript laser
printer.

EUUGN Vol8 No2 Summer 1988 2T




USENIX NEWS

The Facesaver project is run by Lou Katz. It is
sponsored by the Association to aid in improving
altendee recognition at the conference. A sample
Facesaver label is reproduced below.

Donnalyn Frey
1703 764 9789
unet!donnalyn

P.O. Box 2051

Fairfax, VA 22031

FaceSaver 4/88

C++ Conference

The USENIX Association is about to embark on a
new series of conferences P the C++ Conferences.
The Association has held successful C++ workshops
in the past. However, the last workshop, in Santa Fe,
New Mexico, was so well-attended that the
Association decided to expand the format. The result
is the first open C++ conference, scheduled for
October 17—20, 1988 in Denver, Colorado. For
information on technical submissions for the
conference, contact Andrew Koenig at
ark@europa.att.com. For registration information on
this new conference, contact the USENIX
Conference office at P.O. Box 385, Sunset Beach,
CA, 90742, USA. The telephone number is +1 213
592 1381. The email address is judy@usenix.uucp.

EUUG members still trying to get copies of the
Proceedings of the 1987 Santa Fe, New Mexico C++
Workshop will be pleased to know that the
Proceedings have been reprinted and are again
available for purchase. For information on the
Proceedings, contact the USENIX Association office
at P.O. Box 2299, Berkeley, CA 94710, USA. The
telephone. number is +1 514 528 8649. The email
address is office@usenix.uucp.

Large Installation
System Administration I Workshop

The second Large Installation  System
Administration Workshop will be held November 17
& 18, 1988 in Monterey, California. The call for
papers will appear in the May-June and later issues
of the Association’s ;login: newsletter. For
information on submissions for the workshop,
contact Alix Vasilatos of MIT’s Project Athena at
alix@athena.mit.edu. For registration information,
contact the USENIX Conference office at P.O. Box
385, Sunset Beach, Califonia 90742, USA, by

28 EUUGN Voi8 No2 Summer 1988

USENIX Press Liaison

FREY

telephone at +1 213 592 1381, or by email at
judy@usenix.uucp.

UNIX Security Workshop

The UNIX Security Workshop will be held August
29 & 30, 1988 in Portland, Oregon. The workshop
will bring together researchers in UNIX computer
security and system administrators trying to use
UNIX in environments where security is of the
utmost importance.

Some topics to be included in the workshop include
password security, network security, and file system
security. For information on submissions for the
workshop, contact Matt Bishop at
bishop%bear.dartmouth.edu@relay.cs.net or at
{ihnp4,decvax }!dartvax!bear!bishop. For
registration information, contact the USENIX
Conference office at P.O. Box 385, Sunset Beach,
California 90742, USA, by telephone at +1 213 592
1381, or by email at judy@usenix.uucp.

Workshop on UNIX and Supercomputers

The Workshop on UNIX and Supercomputers will be
held September 26 & 27, 1988 in Pittsburgh,
Pennsylvania. The workshop will consider the
general problems of rnning UNIX on
supercomputers and will cover both practical and
abstract topics. Areas of interest will include system
administration, file systems, networking, monitoring
performance, shared memory management, and very
large files.

For information on technical submissions for the
workshop, contact Lori Grob at
grob@lori.ultranyuedu or Melinda Shore at
shore@reason.psc.edu. For registration information,
contact the USENIX Conference office at P.O. Box
385, Sunset Beach, California 90742 USA, by
telephone at +1 213 592 1381, or by email at
{ucbvax,uunet } lusenix!judy.

1988—1989 USENIX Association

Board of Directors

The USENIX Association recently held elections for
the 1988—1990 Board of Directors. The new board
is composed of:

Alan Nemeth President
Deborah Scherrer  Vice-President
Rob Kolstad Secretary




e

FREY

Steve Johnson Treasurer
Kirk McKusick Director
Michael O’Dell Director
John Quarterman  Director
Sharon Murrel Director.

Michael O’Dell and Sharon Murrel are new board
members. The new Board of Directors will take
office at the San Francisco USENIX Association
Conference in June.

2.10BSD Operating System

The USENIX Association is continuing to distribute
the 2.10BSD operating system. 2.10BSD is a UNIX
operating system for Digital Equipment Corporation
PDP-11 series computers. It was released in October
1987 by the Computer Systems Research Group
(CSRG) of the University of California at Berkeley.

2.10BSD is a basic port of 4.3BSD functionality to a
PDP-11. This release is most useful for sites that
have 4.3BSD programs or machines and who would
like consistency across the environment. It is also
useful for sites that want a faster, cleaner version of
2.9BSD.

2.10BSD is faster than 2.9BSD and includes 22-bit
Qbus support; 4.3BSD networking (TCP/IP, SLIP);
4.3BSD serial line drivers; 4.3BSD C library; most
4.3BSD applications programs; 4.3BSD system calls;
RAM disk; inode, core and swap caching; and the
conversion of the system to a 4.3BSD structure.

USENIX NEWS

This release is being handled by the USENIX
Association and is available to all UNIX V7, System
I, System V, and 2.9BSD licensees. The Association
will continue to maintain the non-profit price of
$200 plus shipping for overseas sites, as was
charged by CSRG. The release consists of two 2400
foot, 1600 bpi tapes (approximately 80 MB), bug
fixes, and approximately 80 pages of documentation.
If a site requires 800 bpi tapes, they should contact
the Association for further information.

The tapes that the USENIX Association is
distributing only support machines with split /D and
floating point hardware. At this time, the Interlan
Ethemmet, DEQNA, DEUNA and 3COM drivers have
been ported. 2.10BSD runs on the following
machines: PDP-11 /24 34 /44 /53 /60 /70 /83 /84 and
PDP-11/23

For information on the distribution of the 2.10BSD
release, contact the USENIX Association 2.10BSD,
P.O. Box 2299, Berkeley, CA 94710, USA. The
telephone number is +1 415 528 8649. The email
address is office@usenix.uucp.

More to Come...

This column will again appear in the Autumn EUUG
newsletter, providing EUUG members with more
news of the USENIX Association. Any (favourable)
comments on the column should be sent to me.

EUUGN Vol8 No2 Summer 1988 29




COMPUTING FOR THE 1990s

Computing for the 1990’s

Malcolm Stayner
malcolm@nezsidc.uucp

ICL New Zealand Ltd
Wellington

New Zealand

The forthcoming NZUSUGI (New Zealand UNIX
Systems User Group Inc.) Conference and
Exhibition at the Plaza International Hotel,
Wellington on 9—11th June promises to be the
biggest and best yet. With the sale of several large
UNIX systems marking the very definite arrival of
UNIX as an operating system for commercial
installations in New Zealand, interest from vendors
has been very high. All the exhibition space was
sold by early March and visitors to the exhibition
can expect to see some exciting developments in the
UNIX world. The deluxe exhibitors will be ICL,
NCR, NEC and Olivetti who will, no doubt, be
exhibiting their products to the utmost. Premium
stand holders are Altos, Phoenix, Unisys and STC.
Finally, also exhibiting will be Apple, Barson, CBA,
Northrop, Rakon, Today and Xact. The exhibition
will be open to the public on all three days.

‘Computing for the 1990’s’ is the theme for the
conference, chosen because UNIX is seen as
providing the vehicle for departmental computing, a
major growth area for the next decade. It is perhaps
worth pointing out that it is not envisaged that
departmental systems will oust PCs or mainframes
but rather form a worthy complement to these well
established areas of information processing. While
the individual will still require computing power on
his or her desk and corporations will still require
centralised data storage and processing, there is a
large middle ground where information has to be
shared amongst a work group. It is here that UNIX-
based systems are seen as providing a solution to a
pressing business need, which is the requirement for
two or more people with a common business
function (e.g., scheduling sales calls or ordering
supplies) to be able to communicate and operate
effectively, thereby increasing their contribution to
the organisation. As such, topics such as standards
and connectivity are major issues and the conference
will address these. This year the conference will

30 EUUGN Vol8 No2 Summer 1988

specifically target government departments as well
as our traditional audience, as NZUSUGI believes
that there is much scope for UNIX-based systems
amongst this community.

We are honoured to have Peter Dunne, Under
Secretary for Trade and Industry address the
conference on the opening day and formally open
the exhibition.

Once again, there is an excellent line-up of
international and local speakers. From overseas
there is Stuart Hooper, Director of The Santa Cruz
Operation, who will speak on the significance of the
merging of UNIX and XENIX; Jim Bennett of
Convergent Technology will speak on Windows
under UNIX and Network File Sharing and James
Clark of the Singapore UNIX Association will speak
on the Universality of UNIX in the Asian culture.

Our cast of overseas speakers will be complemented
by ten local speakers addressing various UNIX-
related issues, including electronic mail, office
automation and UNIX trends in govermnment
worldwide. Doug Marker of IBM will talk about
IBM’s UNIX strategy and the differences between
AIX and 0S/2. Keith hopper, a NZUSUGI stalwart,
will talk on POSIX, Mark II and beyond.

We are delighted to have as chairpersons for our
stream sessions this year Ian Howard and Roger
Hicks, co-directors of Rakon Independent Software
Division, and John Hine from the Department of
Computer Science of Victoria University,
Wellington.

Finally, the conference will be brought to a close by
what promises to be a very lively debate among a
panel of vendors and users. The topic for discussion
will be ‘Standards, are they effective?’ This will be
chaired by Gordon Hogg, former Chief Executive of
Databank.

&




P

STAYNER

The annual NZUSUGI conference provides a
valuable opportunity for NZUSUGI members and
those involved with UNIX to mix and mingle in a
convivial atmosphere. The conference dinner on the
evening of 9th June will be one of the social
highlights. Mike Dubrall, Director of the
Independent Software Marketing Division for the
Pacific Group of NCR, who has attended two past
NZUSUGI conferences said in UNIX/World (Oct’87)
that the NZUSUGI conference was ‘‘arguably one of

For further details contact:
Malcolm Stayner

COMPUTING FOR THE 1990s

the best UNIX gatherings in the world today’’. He
went on to say, ‘‘all in all, the New Zealand UNIX
Group is as vibrant as any in the world. UNIX
aficionados would do themselves a favour by
combining a vacation with the business of attending
the next NZUSUGI conference in Wellington’’. Such
an accolade from the United States is a fearsome one
indeed, and one that this year’s Conference
Committee will be endeavouring to surpass.

Malcolm Stayner
1988 NZUSUGI Conference Chairman

Technical Manager, Software Industry Development Centre

ICL New Zealand Ltd
P.O. Box 394
Wellington

New Zealand

Tel: +64 4 724-884
FAX: +64 4 726-737

For a registration form contact:

Jan Tonkin
CMS

P.O.Box 12-442
Auckland

Tel: +64 9 525 1240
FAX: +64 9 525 1243

EUUGN Vo8 No2 Summer 1988 31




WINTER CONFERENCE AUUG

CALL FOR PAPERS
AUUG ’88

Australian UNIX® systems User Group
Winter Conference and Exhibition 1988
September 13 — 15 1988, Melbourne, Australia

Summary

The 1988 Winter Conference and Exhibition of the Australian UNIX systems User Group will be held on
Tuesday 13th — Thursday 15th September 1988 at the Southern Cross Hotel in Melbourne, Australia. The
conference theme is

Networking — Linking the UNIX World.

AUUG is pleased to announce that the guest speakers will include:

Ken Thompson Bell Laboratories
Michael Lesk Bell Communications Research
Mike Karels University of California at Berkeley

Papers

Papers on topics related to computer networks and UNIX, and on non-networking aspects of the RNIX
system are now invited. Some suggested topics include but are not restricted to:

e Operating system and programming language support for networks
» Distributed file systems and their application
» Networked window systems
e ISO/OSI and UNIX
» Security aspects of computer networks
» Legal and social aspects of computer networks
» Protocol specification methods
» Hamnessing new technologies
» Network applications under UNIX
Papers on other (non-networking) aspects of the UNIX system are also sought.

Authors of papers presented at the conference will receive complimentary admission to the conference and
the dinner. AUUG will again hold a competition for the best paper by a full time student at an Australian
educational institution. The prize for this competition will be an expense paid return trip from within
Australia to the conference to present the winning paper. A cash prize in lieu of this may be paid at the
discretion of AUUG. Students should indicate with their abstract whether they wish to enter the

competition. AUUG reserves the right to not award the prize if no entries of a suitable standard are
forthcoming,

A special issue of the group’s newsletter AUUGN containing the conference proceedings will be printed for
distribution to attendees at the conference.

32 EUUGN Voi8 No2 Summer 1988




European UNIX® systems User Group

Autumn 1988
CONFERENCE

Tutorials and Showcase

New Directions for UNIX

Hotel Estoril-Sol

Cascais, Portugal

3-7 October 1988

The EUUG Autumn 88 Conference will be a truly European event giving a Forum for the
varied and interesting work on UNIX which is currently taking place in Europe. All the
lecturers will be recognised authorities on the various fields to be discussed.

The main conference is expected to cover such areas as Real Time; Security Issues;
Distributed Processing; Multi-processors and Parallelism; Supercomputing;
Internationalisation; Fault Tolerance; Transaction Processing; Virtual Memory; Object
Oriented Approaches; Videotext Applications; Standards and Conformance Tests.

The conference will be complemented by two days of Tutorials, on 3rd and 4th October,
which will cover the following subjects:

Users introduction to the X Window System; POSIX Implementation; and Curses (Day
1) plus Programming with the X Window System; Sendmail; and System Performance
& Management (Day 2).

For further details on this important event, including information on accommodation, please
contact:

European UNIX® systems User Group

Owles Hall, Buntingford, Herts SG9 9PL, UK
Tel: Royston (0763) 73039 + 44 763 73039 (overseas)
Facs: Royston (0763) 73255 +44 763 73255 (overseas)
Network address: euug@inset.uucp




pue ‘siawwei5o1d 1ua1adWod 3T qrellPPUPHE JRU} PALUNSSE 1 I[ "WaISAS MOPUIA) X 2Y) UO
paseq sauiun Jo suonesydde Suidojenap aq [jil-oym siewwelbold 10) papuajul st [elon] siy |

siayinie)) p uojua|) ‘uosiEp Ag — wmalsAg mopui X 243 yiim SuiwmweaBoag
LA R

"Alojepuew jou st Inq [njdjay 2q
p[nom 22eA pue xa[ jJo abpajmouy ‘[enuassa s ) jo abpajmouy] ‘swiajqoid pajejai-[[ed-wa)shs
pue — sasind [[e Yum Buleap pue [jays-mopuim ay} Buipjing uo 2)e1uadUOD [jim [elIoIN} dY |

"I2Ys-mopuim ayp
uf pasn ale [euiwiial a|buis e Yum Buijeap suonounj sasind [y pajoenxa aq
Ajisea ued jey) suoun[os siajjo pue suoyedydde pajuaLio-uaalds 10§ sBumes
wajqoud [eaidA) Auew Alan sarensnji [jays-mopuim ay] “djay auy-uo
1@ }{00[ 10 "3J}j © ‘P2 Ud210s-[|N} ‘[j2ys e se yons weiboid aapoeiaiul ue uni
"INdIno pueWWO) 10 S2[ij 1@ JOO[ ‘10]Je[Nd|ed %Sap J) B 25N URD dUO ‘MOopuim
© 2pISU[ "pazisai pue ‘panoul ‘pasold pue pauado aq Ued SMOPUIA
'$32IN0S O} 2Wod[am a1e sjuedpied — wayl usamiaq Bulyonms sywad
pue U2210s [eUIWId) 2UO U0 SMOpUlm [eIands sabeuew yoiym weiboid e “JlYS-mopui

‘wesboxd styl Buisn umoys a1e (saijilue)) SUOHOUNJ SNOLIRA 2} JO S102)]

$22In0s 0} aWod[am a1e sjuedonied

— AJaAloRI2IUL INO PaU] 2Q URD SUOTIIUNJ $25IND [[e 21aym weiboid e
:10je[no[e)-3sa(J-sasiny)

¢JeUIWLID) MU B 10} OJUlLLIa} )M | Op MOH ] ON
¢OJuIlLIB) ST 1Ry M
¢£525IND a1e 1’y :uoponpouf

1aUlIYIG [2XY “joid Ag — SBSAND

€N

TIPEX ISNV

pue z'e001d jo 1aquaw e osfe si ay ‘1 00 d Ul 3[od siy 03 uonippe uj ‘94 ‘1oquiaidag
ur Arejaadas ayj awedaq pue ‘GgET ul dnoib Buptiom [ 200 ayl pautof ap] ‘uogerodio)
buyndwoy) jeuoneonpy ejosauulpy ayj yim JsAjeuy/ SWajsAg e st UoLIB)Ip “d dueys

"@duepUajIR 10} JUaWalinbal asUDY| OU S| 212y ] *puURY>IOjaq Plepuels X[SOd
2y} peai1 aney pInoys saapuayy adepejul iay) ui oadxa siadojanap uoyeodde jeym mouy
0} juem oym siojuawaldwi adepaiul pue ‘sweiboid ajqepod Bungum ul X[SOd Jo abejueape

152 2%} 0} MOY Uled| 0} Juem Oym siaium uoyedydde padouauiadxa aq pjnoys seapuapy

"20URWIOJUOD

XISOd 10} painbai aie sjuawad’ueyua jeym puejsiapun o} paau oym siojuawajdwl waishs o}
asn Jo 2q Os[e [[Im i ‘suoyejuawaldwl Juaund pue X[SOd Usamiaq saduaiajjip ayj Jo Alewwins
© S UOISSaS 2y} 20Uls ‘Janamop “sadnoeid Suiwweifold Juaund 12y} 0 2)e[21 SUOILISI
250yl moy pue ‘X[SOd Aq paunbai suoyowsal Anjiqepod ay) jo Buipuejsiapun ue juem

oym siadojanap suonedijdde premo} pajuatio Ajuewud si [eUOIN SIY [ ‘dSg £ b pue ¢ aseapay
A\ WaisAg jo asoy) pue adepauUl X[SOd 24l Uaamlaq saduaiajjip ayi 0} pled st uojuaiy

"@oRLIPUI [PUIULIB)

ayi pue ‘s 414 pue sadid ‘sjeubis se yons ‘seale aWOS2|qNOI) JO J2qUUNU € Ul PlOAE O} Jeym
pue op 03 Jeym uo suoysabbns sapnjout j] ‘sadep@jul Yons 1ayjo o} a|qissod se ajqeitod se aq
pue uoyejuswalduwl BulIOjuod YISO © Uo uni [im jey; suoyedijdde juawajduwl o} Aressadau

[124s) 2 €001 Se yons ‘sprepuels yeip X|SOd Paie|a1 jo suofesydull yym spua J] ‘prepueig

D 651 °EX ISNV 24} pue ‘apmo Ayjiqeniod NIJO/ X 2Ys ‘prepuels dnoib/isn/ 1861

2y} se yons ‘spiepuejs 124J0 0} SUOHR[I S}l pUR pIepUR)s 2Y) JO AIOJSIY JaLiq @ Yim SHIR)S [eHOJN]
2y 'XISOd ‘piepuess adepajul Sugerado ajqenod 1°¢0QT 3] 24 INOqe st [euomy siy |,

Uewiiapieng) uyop  UoLB)IN d 2ueys Ag — uonpejuswajdw] X1SOd

(44

952 ‘synejepy” 'Y Buiziwoisnd pue Suunbyuo)) ¢

wmnuaui pue wmn ‘sebeuew mopuim Juediubis om| ¢

snuaw ‘siabeuew mopumm yim Buroersjur ‘sydeouod 1afeuew MOpPUIN @
pleogAay ‘asnow ‘suodt ‘smopuim ‘s)daouod 1anies Ae(dsi(] @

WRISAG MOPUIM X 2U} JO M3IAI2AO [RINPNLS @

X ut Aduaredsuey jiomjaN ‘sydaouod BunjiomjaN @

swiaishs Buimopuim jo s3daduod [erauag) @

rapnpoul

[l pa1anod soido | -pauinsse I0 AIessadau st Swalshs Bumopuim yym asuauadxa uo__wa _oZ

L Yim payIom Janau daey JaA se Jnq ‘walsAg mopulp X 2Y3 Yim Bunuweioid aq [[im oym
asoy} 0} ‘Janamoy ‘Jsa1ajul Jo aq Aew }j 'so1do} yons 1810 10 ‘sij[00} ‘sarelqy ‘Buruweibord
JO UOISSNOSIp OU 2q [jim X2y} ‘puny Aue o [euoin} BuiwwesSord e [ ON st “2[doad yons jo
s1abeuew 10§ pue ‘WaJSAG mopulp X 3y} Buisn aq [[im oym asoy} 10§ papuaiul si Jeuomny siy |

siaynie)) % Uojus|) ‘uosie/) ig — WIasSAG MOPUI X 24} O} UOHIONPOIIU] SI3S()
IN

112000 [[1m Ady) aulpno uj

Juawabeuepy wajysAg mopuip X ayl
29 20URWIOLD WISAS Jrewpuag yum bujwweiboly Yy Aepsan]

wajsAs mopuip X ayj
sasiny) uopeuawaldwy] X|SOJ oj uoponponui sias()  pag Aepuop

19q Iim sjeuom | oyl

(0€°60 e Hejs [jim pue Aep ajoym auo 0§ sjse| [eloin yoey)

‘8861 1snbny pugg 2105eq 10j pied pue
P@2)00q Ji s2j0U 2SIN0D pUR YoUuN| ‘spuauysaiyal Sulpniout [eHoin; Aep ajoym auo 10} 9/ 13 aq
[lim 3500 By “Ajuo sraquiau 0} uado aq [im INq 88T 12q0100 {7 18 € UO pJay aq |[im S[eLion |

sjelion |

“Jauutp Buiuana yjoj e[ed ayj je aduepuaje pue sBuipaadoid ayj jo Adod e ‘youn]

‘e2) ‘22}J0d apNOUL S30P 1 INq ‘Aj@jeredas 1oj pled pue pay0oq aq ISNW YoIYym UOHRPOWUWIOdIe
apnpout Jou sa0p 1507) ‘g1 1Snbny pugg 210jeq 1o} pled pue payooq Ji slequiau

-uou 10§ )8z3 pPue ON(7 JO slaquidwl 10} OHZF 29 [|im 20UI2JU0d a3 Butpuane jo 1507




‘Juaunuioddesip pioae 0} papudWiLIOddX
s1 Bunjooq Ajres "pa¥ooq A[nj st [210Y 2A0QR dY} 22UO UOHRPOWIOIIR dafRUI)R 1s288ns ued
pue uonepowwodde deaydp Buuajjo s[21oy ym yono} ui sajedalap ind osje ued jene}a1d2G Y]

Go3 Aep 12d uosiad yoea wool 2BuUIg
LE3 fep 1ad uosiad yoea woo1 d|qnoJ
TOS TIHOLS3 TALOH

-Bupjooq jo awy auy Je ysodap e saxnbai [210Y 213 Jey} 2J0u 2se3|]

:SMOJ[0}
se sy uosiad yoea oy 221 "paplaoid dijs Burjooq ays Buisn Aq ‘pjey Buraq st 20ua12ju0d
ay} a1aym “TOS-TIHOLST 1els anlj ay} Yiim J0a1p payooq aq fewl UoepOolWoy
uonepowImoddIy

‘1oBeurW SWIJSAS [RIDIBWIWOD Y} 10} PaPaau Sapijioe} JusWabeuew

a3 apinoid o} pasn aq ued A3y} MOY pue ‘papaau a1e AaL} AYm ‘S|O0} 253U} UO 2JeIjuadu0d
[ [euoIny siyy jo 1red puodas ay ] "paau siy} Jamsue 0} Buibrauia s|00} Jo aBuel e st 212y}
0s pue ajqela s3] sawo2aq yoeoidde st} aoe|diasrew [elRWIWOD 2y} sajeawrad XIN( SY

11003 XIN(] 24} JO INO S|00] Alessadau ay} asiadp O3 J0JeNSIUILPY WajsAg
ay} Jo s 2y} uo Buifja1 ‘s|oo} JusWwabeURW SWaJSAS JO Aem ay} Ut a[)| A2 s1ajjo auole XIN()

‘SJUBLUIUOIIAUR dWIRIJUleW
ojur Aem Jiay) puy stutwzadns se pasnjuod A|buiseaiout awodaq wiwradns pue aweyurew
se yons swiia | ‘juawabeuew waishs jo swajqoid ayj op os ‘sasealdul swialshs jo ramod ayi sy

‘uoleINByuod arempley s} pue wajshs Buluuni 3y} uo peoj ay} o}
a1eax Aay) moy Bujuiuiexa pue sjoo} asay} woly mndino ay; Buluiwexa juads aq [[im awy) 2WOG

-aoe|djayiew

[e1012WIW0D aY) Wyim a[qe[reae Buiwiodaq sponpoid ay} auiwexa osfe pue ‘a5 |00}

YINQ [ewIou ayj jo ued se a[qe[ieat S[O0} JuaaInseall aouewiopad ay} Jo malaai [N} e o
Axxed [[im ] “Juswabeuew swalsAs pue juawaInseaw 2ouewiopad Ujoq Yum sjeap [elomy siy |

juepodunt AjBuiseasout aul0d2q
sey aoueuniopad swajsAs ayy abeuew pue ssasse 0} Aypqe ay) ‘sjuauiuoiaua suoyedidde
JUBIBHIp JO aBuel BpIM B 10] B[dIYaA AlaAlPp  PrRpUES, B Se AfIqIpaId sureB XINQ SV

‘SwiaIshAs
paseq XN @51e| Jo s1aBeurw ay} 03 5212}l JO SEdIR OM] UO S2JRIJU2OUO0D [PLOI SIY ],

ABojouyoa] prueild ‘yre)) p-g ueug Ag
— yuswaBeue)y ) aouLMIOJIdJ WIISAG

9L

BuibBnqap pue saul woy paaeday ¢ ‘woy-Apuateddy ‘g ‘NOWAVA-YITIVIN ‘T
‘sase|[e pue s1apeay [epadg "0) ‘oidew ul-)[ing e Jo anfea ay} Suipuy ‘§; ‘suoyeinbyuod Bulisa)

‘¢ p- Buisn *g ‘a- Buisn " :spupy BuibBnqa(g “ 4 ‘njasn are sauo Yoiym pue suondo Jojrew

" ‘suonoajoxd [l ‘¢ ‘sepow A12aKR(] 'g ‘A1anlap 10a21p snsian Buenany) T syuly Buiun |

‘ ‘sas xa[dwoo ab1e] “¢ ‘1soy o[bulg 'z 'says [ewg | :sfemayed pue sfejax jrew dn Bumag
"9 ‘jusiuoNAUR N © Ul saselje Bulteyg ‘¢ {[ed0] sauiyoew [[e Bunjew pue Buissaippe
[eI2UDC) " ‘J2ISN|D UOHRISHION T :SuoneInByuod 1ajsn|) g 11024100 die s19pedy 2ins Buieg 'z
‘swiajqod Buiser[e pue sawieu [eajuoue)) | :JdaRSaWERU J2UIRIU] VYV U} PUR [[lRUPUSS Y

sHqpy pue sy [l

IB[rew JONN O Heew NS 'q -iapew

[ed0] ‘e :suonINByUOD JBje]y “G ‘Bunumal 1epeay — 33 Z T 2 WO} [eduouRd — ¢ °q
‘re[rewt JyBU ay) puy — (0122) () e :s12s2|n1 [eradg “§ 's)asajni pue sajni Bugumay ¢ ‘sassed
pue soxew pauyap Jas() ‘q {sasse]o pue somew [epadg ‘e :abenbue| o10RW BY] “Z ‘SHIOM
Sunumai moH ‘T :Bunumai 1epeay pue ssaippy "D s ajejdisjiog ‘g {X2)ufis pue jewio] 'y
ajij uogeindyuo) I

fiepai rew xajdwo)) "
‘ayis JowIRU] YAHY 2/dung ‘¢ ‘as DN 2idwig ‘g t2uofe pueig " suoyejeisul [eadAy D

AXRATPP JLNS 2 'XNn/uiq/isn/ ‘q ‘lew/uiq/ e :s1eianyap Jrew [eadA] p
Boshis o ‘brew “q ‘sasele mau e :suoyoun; pue sweiboid poddng ‘¢

[rew Burpremio] 6 ‘Buyooq °} fis [rRWpULS "2 Y [lRWPUIS
'p ‘sasey[e 0 tananb [rew *q ‘O [lEWPUAS 29 JO"[lRWIPURS "B :$2U0}dRAIP pue safy oddng g

‘Ja12A1R(] "2 ‘uowaep JLINS 'q ‘uoweep anany) "e ‘weiboid [leWwpuag ‘T 12IndoNydlY ‘g
‘Busseny *G ‘A1aalep [le]y p ‘Bumang) "¢ {Bunumay] ssaIppy ‘g :Bunnoy ‘1 :uopoung 'y
mainianQ) |

Buynsuo)
Jaulajuy sexa | jo Iaujleq Suibeuejy ‘[JaYdHN — [18)) JOOWS JSa110] Ag — [rewpuag

SL

+ + D Ul B{[001 pa1ualio 102[q0 ‘sSmalAIR] @
anpeualje rejndod A1an e ‘AeiX @

w00}  prepuels, aU) ‘X @

SIBfjoo] —

S2ULNOI UOWIWOD JO UonRUILIRX? P2[iele( @
wnjax pue Buissed juawinbie ‘suoguaAuUOd BuiweN @

aoepaUI QI —

sainyonis ‘sedAielep X @

¥ Ut pasn spafqo [enidaouo)) @

UO102UUO0D Bjep Weal)s a1iq ay] e

SWIa}sAS 2JeulpIoo)) @

wajsAg mopuipy X dyi jo spdaduod BurnwweiSoid ojseg —

:apnpul [im pa1anod saido] "auo siy) Buipuaye a10j2q sse|o snolnaid ayj Buipuaye
woy Apea1b jpuaq pnom adualiadxa Yons Jnoynm asoy] “renomped ut waisAg mopuim X 243
jo Ajqeajaid pue ‘[erauab ul swalshs Buimopuim jo aBpajmouy] [ejuaWEPUN] 2WOS daRY [lIM




g

Jaj1a50) Ajdde sajebajap a1ow 1o ¢ ji sajdde osje aay paonpai ayy

00€3 .0823 uosiad | @dua12ju0d fep ¢

SIaQUIAW-UON]

S613 9L13 uosizad | [eHoIng Aep |
0923 0vZ3 uosiad | adua1juod Aep ¢

1sn8ny puggz iaye snbny pugg a104aq
10} pred pue paxooq Ji 1500

siaquiaW 1o2.[p 10 dnoo [euoieu O g

$3S0)

'8861 lequiaidag yigz si sButjooq [je 10§ ayep Buisor)) 1 LON
‘w0 Bunjoog ay; uo Suueadde sjiejap pied yim ‘ygiA 4G '€

‘anp
junowie [Inj ay} 2A12921 [[im HNNJ Jey} 0s sabireypd [je Aed [im nOA Jeyy yueq INoA [jo} asealq

dr¢ THd pueposs

yBnquipg
0G-1€-08 2PoD Buniog sjueg JesrewsseIs) 19
L66E1900 12qUInN JUNodY puepodg Jo yjueg 2y

SLYDIYm ‘yueq s ONNTF 2ys 0} Juswhed 10au( Ag g

'$83] 10 ()13 2q Isnw anbayd yoea inq ‘ajqeidadde aie sanbaydoing
jueq M @ uo umelp pue ‘97 o3 2jqefed apew ‘yei(] siasyuey 1o anbay)) yn Ag T

‘sfem ¢ Jo U0 Ul peW 2q Aew spuBWARY

"(3) buiias spunod ui apew aq jsnw sjuawihed iy

‘uonensibai 10} s[tejap 12Y1NJ ylim 12yjaboy asoaul

paidi@dai e nof Buipuas Aq Bun{ooq oA aBpaimousde im Jeleja1deg O1g 2y "paidadoe

2q jou [lim sBupjooq auoydaje | “juswdied Aq paluedwodoe uaym pajdadde aq Ajuo ued
sBunjooq jey) ajou asea|q ‘uosiad [euonippe yoea 10§ Wi} Bu{ooq ayj jo Adosojoyd e as()

Bnnajesuroynjxeadw; 10 N “1d6 69S 2ayspiopiaH
donn-jesui@bnna  :jrewe projbunung ‘[reH seimQ
GGZEL €91 v + ‘xej dnolg) 1as) swalshs YN ueadoinyg

6£0CL 9L PV + 1o jeHRjaoeG By |

10} @dURHIWAL [N} 2Y} YJim } uinjax pue uosiad
Uyoea 10} w110} Bui{ooq auo 232jdwod ‘20uaiajuoy) 10/pue sferon ] ayj je adejd e y00q o |

joog 0} MmOl

‘waog Burjooq pue sjielap [y 10§ jeuelaidag OMNNJ 2y 1oRIU0D
PINoys yqiyxa 03 Sulysim saiuedwo?) ‘Juana ay3 Buunp uado aq [im uonIqIYXJ aseomoys y

uonIqIYxy

‘uoyepowWIodde

JUBPMyS 2]qeHNs puy NoA djay ued jeur}a10ag Y | *WIO) SWIRP 2y} YHm papnjou aq Isnuwi sjjiq
[euiBuo ‘Juana ay) 1Yy "9YI] 2y} Jo pIed uoyexysiBal Juapnys piea e jo Adod e Aq pajuawinoop
2q Ose Jsnu ‘snjejs Buiniasap JaY1o 10 SnyelS JUIPNIS 'S[RAW 10§ JOU INq ‘523) 20UB12JU0))
pue uogepowwodoe ‘adoiny ul [2aey 10 sasuadxa jo aberanod ([erted) 1oy Ajdde ues nox

‘SJuapNJs Ydreasal ayi| sased Bulniasap oy g

sjuapnig ‘¢
dnoig [euoyeN e 10 H()()F 2Y3 10} 3iom Buiop spuapnig ‘g
20UaIBJUOD) aY) Je y[e} e BuiAlb sjusprg 1

10} uanIb 2q [iim Ajuouy

"« INTFANI4IA LNVHD,, :Wi0j Bupjooq mos jo doy ay) uo apim asea|d
‘Jueib ay} Buruiejqo uo juspuadap si Bulo0q INOA j] ‘WO 12Y}0 34} UO 20UIBJU0D) 3y} 10§
Bun{ooq e yum 12412503 ‘12]00q SIy} JO 30Bq BY) Je ULIO} BY} UO DLW 2q PINOYS suoneoyddy

‘Butwooyiog aq [im Jueib ays yeyy abpajmous| ay) ur paadoid o} ajqe 2q [jim Juedydde

24} Inq 20Ua12JU07) 2y} 1a3je [UN apew aq Jou [m Juawhed ‘jueib e 1oj sayienb uoyeoydde
e Jayjaym Juana ayj 210§2q dpewl aq [[Im UOISIAP | “20UI2JU0T) 2} JO 29URADPE UL [[2M apew
2qisnu uogedydde uy '20uaiBjU0]) 3Y) puale o} sjuapNjs Jsisse O} paiajjo Buiaq ate sjueis)

sjueI JUIPMIG

"saoueInsul ypeay
pue [anex [2uosiad umo 12y} Joj abuelie 0} papuaWWodal aie sjueddiied JuaAd a1jUR a4}
Buunp suosiad o} Am(ur 1o Apsdoid o) aBewep 1o Ajpiqisuodsal Aue jdadde Jou '™ ©oNNF 2y

fynqery

"papinoid aq [jim uole[suen o YsyBug aq [jim 20uaIJUOD) BY} JO aBenbuey [eoyyo ay |

abenbue]

‘Buum ut jeuejainag HNNJ Y3 04 uas st 3 ssajun pajdaooe aq [im
uoye[[2ouRd ON "20U212JUO07) U} JO eI 2] 210J2q YJUOL 2UO URY) 2I0W dPRW S| UOE[[20URd
3y} ssajun ‘uoye|jpoued Jo ased u 2qissod aq [jin $22§ JO pUNJaI OU Jey) papaiBal st |

suonejjasue)



ae( paubig

Andx7 jo 21eg ‘ON JUnodYy pie)

Jap|oypIed JO $S2IPPY

(sfended y20|q) pred ayy uo steadde ji se aweN

vsianfqa [
sy} yueq ayj [ja3 aseajd — O a2y} jou pue nof Aq auloq aq jsnw sabieyo yueq
............................. JUMOUIY #7777 oo PaJURAE) 7+ o ()T PRAIORY [V “pasopua 2q jsnw Juawifed jo ajep pue sjrejap Bumoys 2jou adlape jueq a4 ‘Juawed a1 O
AINO 350 301440 "pasojoua 2q 1snw anbayd 2y "anbaydoing 1o jei( skexuey ‘anbay) N O
.................................................................................................................. aameubig
AOHLIN LNINAVd
.......................................................................................................................... areq
«~HO00™ OL MOH,, Uouo2s 2y} peal ased|q
............................................................................................................ junowe jejol
[OJoN [seA dnoib [jeuoneu areudoidde ayy
......................................................................................................... 22§ 20ua12JU0D) elr HNJF jo Tequiawt [euoyniysul ue se auwl |oiua aseald
. onna
...................................................................................................... e T 3 WIOL
[JoN [Jsen s[eaw ueueiabop aanbainof og
........................................................................................................................ joaeay
3 12010 Uiy ‘Aepsen] uo™ON [eHOIN] 1o} adeld e aW 219521 a52d
:(Aressadau a1aym djewilsa 15aq aAI0) pawleda1/pajsanbal sasuadxy — 3 e 18q01Q) PIE ‘ARPUCN U0 ON [eHOIN 0} aoeld © W an1BS21 25E3]]

. (fijuo srequizw) STVIHOLNL
ax1] ayj Jo

pred uonensibai juapnis pyjea e jo Adod e Aq pajuawnd0op aq SN sniels Buintasap 1ay}0 10 SNye}s JUpMNIg 3 ‘suolssag [ealuyda] 2y} Joj aoe[d fiep ¢ e dW 2A12521 352

areudoxdde se sy [ :1oyi0 [ uepmig [ :edpy [ 1eyeadg smeyg FONIHIINOD

"(3) Builaajs spunod uf apew aq jsnw sjuawified [y

.......................................................................................... -Avmu.ﬂﬂm-ﬂmho\hﬁmohﬁ\—mﬂp -Aauow sanes mc_v_oo.u‘wun_ Jey) Jaquiawal pue :w.-;mco.. UO SUOID2s 2y} peal asea|d
.................................................................................................................... uonisoq JoN [JsoA uopNIS D oN D sox s1pquaWw ONNT
.......................................................................................................... ssaippe jaug -mﬂam\%ﬂ—ﬂ.—.\%ﬂh\OEQ-— 50—0.—.
................................................................................................................. auoydaja] apo) diz/1s0d Anuno)
................................................................................................................................. ssaIppY

uonesiueBig/Auedmo)

$S21ppPV awreu }siij jens( aweuIng
........................................................................................................................ swey (oseaid sendes 100[) () “Td6 6OS SMPH ‘ProjBupUNG ‘IIEH MO
(aseald sendeD saoig) “eueja1dag 9N O} Husuwled jo 22uapirz 10 2NDaYD Yum ‘Y Puss PUe WO} SIL ajadwod aseajd

3N “1d6 69S S132| ‘piojbunung ‘JjeH saImQ ‘Jelie}ardag 9N o Wnay

sjelzonj
L L | =°muWom_a.-< juery juapm§ pue 22uaiajuo)) 10j wioj Hurjoog




PRODUCT ANNOUNCEMENT
Miranda - release one

Miranda™ is a new functional programming
language designed by Professor David Turner of
the University of Kent. It is based on the earlier
languages SASL, KRC, and ML. A program in
Miranda is a set of equations describing the
functions and data structures which the user wishes
to compute. A program written in Miranda is typically
10 to 20 times shorter than the corresponding
program in C or PASCAL. The main features of
Miranda are:

Purely functional - no side effects

Higher order - functions as values

Fully lazy - infinite data structures

Concise notation for sequences

Polymorphic strong typing

* * o * *

The basic types of the language are numbers
(integer and double precision floating point),
characters, booleans, lists, tuples, and functions. In
addition a rich variety of user-defined types may be
introduced by writing appropriate equations. There
is a mechanism for abstract data types, and a simple
but powerful module system with separate
compilation and full type security across module
boundaries. A more detailed discussion of the
language can be found in "Miranda: a non-strict
functional language with polymorphic types”, in
Springer Lecture Notes in Computer Science, vol
201.

The Miranda system provides an interactive
programming environment, running under UNIX™,
The Miranda compiler works in conjunction with a
screen editor (normally this is vi, but it is easy to
arrange for this to be another editor if required).
Programs are automatically recompiled after edits
and any syntax or type errors signalled immediately.
The polymorphic type system enables a high
proportion of programming errors to be trapped at
compile time. There is an online reference manual,
which documents all aspects of the Miranda system.
Execution is by a fast interpreter, using an
intermediate code based on combinatory logic.
There is a built-in ‘make* feature which keeps object
tiles up-to-date with their sources.

release information

The Miranda™ system has been developed by
Research Software Ltd, a company formed in 1983
to develop and bring to market advanced functional
programming systems. The Miranda system has
been extensively tested and is now running at
over 200 sites. Release one is a major new release
incorporating separate compilation, numerous
enhancements and a revised version of the Miranda
language.

The Miranda system is currently available for the
following machines - VAX/microVAX under
Berkeley UNIX or ULTRIX, SUN 2, SUN 3 and
Apollo workstations, GOULD and ORION
superminicomputers, AT&T 3B series (3B2 and
upwards) under system V. Ports to several other
UNIX based machines are planned in the near
future.

The license fee, per cpu, is £400 for an educational
license and £1400 for a commercial license. (US
prices $640 educational, $2450 commercial.)
These prices are valid to 31 January 1989. Network
licensing terms available on request.

To find out more about the Miranda system, fill in the
following form and mail it to:

Research Software Ltd

23, St Augustines Road

Canterbury, Kent CT1 1XP

ENGLAND

telephone (+44) 227-471844

email mevax!ukc!mira-request

| may be interested in obtaining a copy of the
Miranda system - please send further information.
Name:

Position:

Organisation:

Address:

Machine type:

Miranda is a trademark of Research Software Ltd.
UNIX is a trademark of AT&T.

{
i
/\-—

5




AUUG (EUUG] WINTER CONFERENCE

Acceptance of papers will be based on an extended abstract and will be subject to receipt of the final paper
by the due date.
The format of final papers will be specified with the letter of acceptance.

Abstracts and final papers should be submitted to the programme committee chair:

Tim Roper Phone: International +61 3 5871444
AUUG 88 National: 03 5871444
Labtam Limited Fax: International: +61 3 5805581
PO Box 297 National: 03 5805581
Mordialloc Telex: LABTAM AA33550

Victoria 3195 ACSnet: timr@labtam.oz

Australia UUCP: uunet!munnari!labtam.oz!timr

ARPA: timr%]labtam.oz@ uunet.uu.net

Final papers may be sent via electronic mail and formatted using ¢roff and any of the standard UNIX macro
and preprocessor packages (—ms, —me, —_mm, pic, tbl, eqn) or with TeX or LaTeX. Alternatively, final
papers may be submitted as camera ready copy on A4 paper with 35mm margins left at the top and bottom.
Intending authors unable to produce either of these forms are requested to contact the programme
committee chair.

Timetable
Receipt of Extended Abstracts Monday 13th June
Letters of Acceptance Sent Monday 4th July
Receipt of Final Papers Monday 8th August
Conference and Exhibition 13th—~15th September
Ten Years Ago ...

At the DECUS conference held at Bath University the UNIX Sig held its first technical meeting. Amongst
others Peter Gray, Alistair Kilgour, Emrys Jones and Zdravko Podolski gave papers.

Hot topics of discussion:

The ‘new’ VAX11/780

Putting frequently used commands in /bin and rest in /usr/bin
A program to rearrange files on disk to avoid fragmentation
The Glasgow tty driver

Conference dinner in the Pump Room, after a civic reception in the old Roman Baths. The water was truly
awful, but the dinner was great. Maybe we should consider it for an EUUG/UKUUG meeting?

Thank you for this, Zdravko. Does anybody else have long memories that they would be willing to
share with the rest of us? Please mail items to the editor.

EUUGN Vol8 No2 Summer 1988 33




BRUSSELS CONFERENCE 1989 EUUG

European UNIX® systems User Group
Owles Hall, Buntingford, Herts. SG9 9PL, UK

Tel (+44) 763 73039

PRELIMINARY ANNOUNCEMENT
and

CALL FOR PAPERS

EUUG SPRING ’89 CONFERENCE
Brussels, 10 -14 April 1989

UNIX: EUROPEAN CHALLENGES

Preliminary Announcement

The BUUG will host the Spring *89 European UNIX systems User Group Technical Conference in Brussels,
Belgium.

Technical tutorials on UNIX and closely related subjects will be held on Monday 10th and Tuesday 11th
April, followed by the three day conference with commercial exhibition finishing on Friday 14th April.

A pre-conference registration pack containing detailed information will be issued in early December 1988.
Call for Papers

The EUUG invite abstracts from those wishing to present their work. All submitted papers will be refereed
to be judged with respect to their quality, originality and relevance.

Suggested subject areas include:

e  Real time ¢  Fault tolerance

e Networking e  New architectures

e  Security issues e  Transaction processing

e  Graphics e  Window systems and environments
¢ Internationalisation e  Supercomputing

¢  Distributed processing e  Standards and conformance tests

Submissions from students are particularly encouraged under the EUUG Student Encouragement Scheme,
details of which are available from the EUUG Secretariat.

Important Dates
Abstract deadline November 30th, 1988
Acceptance notification ~ January 15th, 1989
Final paper received February 1st, 1989

Method of submission

Abstracts must be submitted by post to the EUUG Secretariat. All submissions will be acknowledged by
return of post.

34 £uUGN voi8 Noz summer 1988




EUUG BRUSSELS CONFERENCE 1989

Papers may be submitted electronically to Prof Nyssen, but this is not the formal method of submission.
Tutorial Solicitation

Tutorials are an important part of the EUUG’s biannual events providing detailed coverage of a number of
topics. Past tutorials have been taught by leading experts. Those interested in offering a tutorial should
contact the EUUG Tutorial Officer as soon as possible.

Additional Information

The Programme Chair, Prof Marc Nyssen, will be pleased to provide advice to potential speakers.
Prof Nyssen may be contacted at the address below.

If you wish to receive a personal copy of any further information about this, and future EUUG events,
please write, or send electronic mail, to the Secretariat.

Useful Addresses
Secretariat Tutorial Officer Programme Chair
EUUG Neil Todd Prof Marc Nyssen
Owles Hall IST Medical Informaticas Dept
Owles Lane 60 Albert Court Vrije Universiteit Brussel
BUNTINGFORD Prince Consort Road  Laarbeeklaan 103
Herts LONDON B-1090 JETTE
SG9 9PL SW72BH B-1090
UK UK BELGIUM
Phone: (+44) 763 73039  (+44) 1 581 8155 (+32)247744 24
Fax: (+44) 763 73255 (+44) 1 581 5147 (+32) 24774000
Telex: 928476 ISTECH G
Email: evug@inset.uucp  neil@ist.co.uk marc@minf.vub.uucp

EUUGN Vol8 No2 Summer 1988 35




ANSI/ISO C MACRO EXPANSION [EU UG ] BOLDYREFF

Macro Expansion as Defined by the ANSI/ISO C Draft Standard

Cornelia Boldyreff
Cornelia Boldyreff@brunel.ac.uk

PRACTITIONER PROJECT
Department of Computer Science
Brunel University

Comelia Boldyreff is a member of the British Standards Institution technical
committee on Application Systems, Environments and Programming
Languages. She acts as Convenor and Chairman of the BSI C Language
Panel; and is one of the UK Principal Experts on the ISO Working Group on
C. She is also Convenor and Chairman of the BSI POSIX Panel; and is one of
the UK Principal Experts on the ISO Working Group on POSIX.

Introduction

The ANSIISO C Draft Standard contains a definition of the C Preprocessing Directives in Section 3.8. As the
standard is not a tutorial, it simply aims to provide a definitive guide for implementors and programmers.
Occasionally examples are included in the text of the standard as illustrations; however, the non-tutorial
character of the document precludes any detailed explanation of these examples. In this note, the examples given
to illustrate aspects of macro expansion are discussed in more detail.

This note arose out of explanations prepared in response to comments submitted to ISO purporting to have found

an inconsistency and an error in the preprocessing examples. Examples 1 and la: IHustrations of macro-
replaced #include directives

Example 1 found in section 3.8.2 is unlikely to surprise current users of C; under the proposed ANSI/ISO C
standard, the preprocessing tokens following the #include are subject to processing, that is any macro names
found will be subject to replacement. The result must be a header name as defined in section 3.1.7: basically, a

header name is a sequence of characters delimited by either angle brackets (<>) or double quotes with some
restrictions on allowable characters.

In the example given, one of a series of macro definitions is selected on the basis of a nested set of conditional
inclusions. This macro name following the #include is then replaced by the replacement list in the selected
definition; and the result forms a valid header name as required.

36 EUUGN Voi8 No2 Summer 1988




BOLDYREFF (EVUG] ANSI/ISO C MACRO EXPANSION

#if VERSION ==

#define INCFILE "versl.h"
#elif VERSION ==

#define INCFILE "vers2.h"
#else

#define INCFILE "versN.h"
#endif
#include INCFILE

/* Example 1 */

An example with a similar effect can be extracted from those given in the draft to illustrate rules for creating
character string literals and concatenating tokens; it is given below.

#define str(s) # s

#define xstr(s) str(s)

#define INCFILE (n) vers ## n

#include xstr (INCFILE (2) .h)
/* Example la */

This example works because an argument may consist of any number of (but at least one) preprocessor tokens;
and any argument not corresponding to a parameter that is an operand of either the # operator or the ##
operator is subject to complete macro replacement before substitution. By invoking the macro str through the
macro xstr, this example ensures that any macros in the argument of st xr have been completely replaced.

A similar effect may achieved by explicitly invoking a paste macro either directly or through another macro,
e.g.

#define paste(a,b) a ## b

#define xpaste(a,b) paste(a,b)

#define str(s) # s

#define xstr(s) str(s)

#$include xstr (xpaste (paste(vers, 2), .h))

This explicit form is more general as Example la only works where the macro invocation can be clearly
distinguished in the argument. The following would not succeed:

#define str(s) # s

#define xstr(s) str(s)
#define INCFILE vers2
#include xstr (INCFILEheader)

Example 2: Illustrations of Redefinition and Re-examination

This example is best considered as several smaller examples. The directives given define a series of macros;
these are listed below:

#define x 3
#define f(a) £(x * (a))

#undef x
#define x 2
#define g £
#define z z[0]

#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

The scope of the initial definition of x [line 1] extends to the corresponding #undef directive [line 3]; as there
are no relevant occurrences of x in this section of the file, these two lines may be ignored. The expression given

EUUGN Vol8 No2 Summer 1988 31




ANSI/ISO C MACRO EXPANSION BOLDYREFF

in the text:

E(y+1l) + £(£(z)) % t(t(g) (0) + t) (1);
g(x+(3,4)-w) | h 5) &m
(f) "m(m) ;

yields the result:

£(2 * (y+1)) + £(2 * (£(2 * (2[0])))) % £(2 * (0)) + t(1);
£(2 * (24(3,4)-0,1)) | £(2 * (= 5)) & £(2 * (0,1))"m(0,1);

To clarify how this result is obtained, consider the expansion of the following terms:

Number Term Result

1 £ (y+1) f(2 * (y+1))

2 f(£(2)) (2 * (62 * (z[01))))
3 t(t(g) (0) + t) f(2 *(0)) +t

4 g (2 * (2+3,4)-0,1))
5 h f(2 * (°5))

6 m(£f) f(2 *(0,1))

7 m (m) m(0,1)

The two key phrases to note are:

— Before substitution, each argument’s preprocessing tokens are completely macro replaced as if they formed
the rest of the source file; no other preprocessing tokens are available. [section 3.8.3.1]

and

— [Under 3.8.3.4 Rescanning and further replacement] If the name of the macro being replaced is found during
this scan of the replacement list [i.e., the scan after substitution] (not including ...), it is not replaced.
Further, if any nested replacements encounter the name of the macro being replaced, it is not replaced. These
non-replaced macro name preprocessing tokens are no longer available for further replacement ... [This
effectively rules out recursion. See note in Rationale. ]

The processing of term 1 is simply an expansion of macro £ with argument y+1. As the argument contains no
macros, after substitution £ (y+1) becomes: £(x * (y+1)) and x is replaced by 2 on the rescan giving:
£(2 * (y+1)).

The expansion of macro £ in term 2 is as follows: Parameter a matches argument £ (z) . Before substitution,
f (z) is expanded with a matching z; and then z in turn is expanded to z [0] and this z is not subject to any
further replacement. Thus after substitution, £ (z) becomes: £ (x * (z[0] ) ) and x is replaced by 2 on the
rescan giving: £(2 * (z[0])). So the original expression f (f(z)) becomes: £(x * (£(2 *
(z[0])))) after substitution. Macro x is replaced by 2 on rescan giving the following as the final result:
£(2 * (£(2 * (2[0])))).

The expansion of term 3 is as follows: parameter a matches argument t (g) (0) + t which requires further
expansion of t (g) before substitution. So t (g) is expanded with parameter a matching g; and g is further
expanded to £; so on substitution, t (g) becomes £. On substitution in the original expression, the
replacement list becomes £ (0) + t which on rescan results in expansion of £ (0) and no expansion of t as
it is ruled out by section 3.8.3.4. The subexpression £ (0) expands to £(x * (0)) and with x being
replaced by 2 becomes £ (2 * (0)). Thus, the final result is £ (2 * (0) ) + t.

Term 4 is simply a replacement of the macro g by the replacement list £. This token is followed by a left
parenthesis so the following tokens are interpreted as the argument to an invocation of the macro £. The result
of invoking £ with the argument x+ (3, 4) -w is given by replacing the x and w macros, and then substituting
the result in £. The argument before substitution is 2+ (3,4)-0,1 and after substitution and replacement of
x with 2, the final result is: £(2 * (2+ (3, 4) -0,1)).

38 EUUGN Vois Noz2 Summer 1988




BOLDYREFF (EUU G ANSI/ISO C MACRO EXPANSION

In term 5, h is replaced by g (~; on rescan g is replaced by £ and on the next rescan £ followed by a left
parenthesis is recognised as an invocation of the macro £ with argument ~5. After substitution and
replacement of x with, the resultis: £(2 * (~5)).

The sixth term, m (£) , is an invocation of macro m; after substitution, the result is: £ (w) . Note the intervening
newline in the source is simply interpreted as white space which is lost during replacement. On the rescan, this
recognised as an invocation of £ with argument w which expands to 0, 1 before substitution; and £ (x *
(0,1)) after substitution. After replacement of x by 2, the final resultis: £(2 * (0,1)).

The last term is quite straight forward to explain; this is an invocation of macro m with argument m matching
parameter a. After substitution, the result is: m (w) . On rescan, the m is not subject to further replacement by
the rule given in 3.8.3.4; and the w is replaced by 0, 1 giving the final result: m(0,1).

Examples 3, 4 and 5: Illustration of rules for creating character string literals and concatenating tokens

The series of definitions listed here can be separated into four separate examples; one has already been discussed
as la above. The relevant definition for example 3 are:

#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
x ¥+ s, x ## t)

and the term to be processed consists of: debug (1, 2). After substitution, the result is:
print £ ("x" "1" "=%d, x" "2" "=%3", x1, x2).

Example 4 illustrates the special handling required for producing the spelling of string literals and character
constants. The relevant definition is:

#define str(s) # s
and the terms to be expanded are:

str(strcmp ("abc\0d", "abc", "\4’) == 0)
str(: @\n)

Only in the first case does the argument receive special handling to deal with string literals and character
constants; in the latter case, there are none. Thus str (: @\n) simply expands to ": @\n". In the first case, a
backslash is placed before each double quote and \ character of a character constant or string literal before this
argument is transformed into a single character string literal which replaces the list # s. Thus, the result after
replacement is:

"stremp (\"abc\\0d\", \"abc\", "\\4/ == Q)"

The fifth example simply illustrates the difference between invoking the paste operation directly and
indirectly. The relevant definitions are:

#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

The two terms to be expanded are: glue (HIGH, LOW) and xglue (HIGH, LOW). The first simply results
in HIGHLOW after substitution; and on the rescan, HIGHLOW is replaced by "hello".

The second requires the expansion of the argument LOW to LOW ", world" before substitution. After
substitution of HIGH for parameter a and LOW ", world" for parameter b, the resultis: HIGH ## LOW
", world" and before the rescan, the ## is deleted and tokens HIGH and LOW are concatenated giving:
HIGHLOW ", world". After rescan, this becomes: "hello™ ", world".

Summary

The preprocessing examples given in the draft standard illustrate some of the new facilities introduced by the
draft. This note has given a fuller explanation of these examples for new readers of the draft.

EUUGN Vol8 No2 Summer 1988 39




POSIX REPORT

BOLDYREFF

Report on POSIX Meeting: 2-4 March 1988, London

Cornelia Boldyreﬁ”
Cornelia.Boldyreff@brunel.ac.uk

PRACTITIONER PROJECT
Department of Computer Science
Brunel University

Introduction

This was the inaugural meeting of WG15. It was
attended by delegates from Canada, Denmark, the
UK and the USA; as well as several observers and
representatives from SC18/WG9 (User Interfaces)
and SC21/WGS5 (OSCRL). Jim Isaak, the IEEE P1003
Chairman and convenor of WG15, chaired the
meeting; and Roger Martin of the NBS acted as
secretary to the meeting. The meeting was held over
three days.

Liaison Activities and Status Reports

The first day consisted of establishment of liaison
activities with related standards work such as
OSCRL, C language, Ada, and liaison activities with
related organisations such as NBS, X/OPEN and
{usrigroup. Brief reports were made of the status of
related standards and the progress of associated IEEE
activities. The table below summarises these:

Standard Status
1003.1 - POSIX Balloting
1003.2 - Shell and Utilities 1Q88
X3111°C 2Q88
1003.3 - Test Methods 3Q388
1003.4 - Real Time 1Q90
1003.5 - Ada 2Q89
1003.6 - Security 1Q90
1003.0 - Guide to POSIX Based Systems 1Q89

With respect to the work of 1003.3, Roger Martin of
the National Bureau of Standards spoke on their aim
of defining what must be tested, i.e., test assertions
and not how testing must be done. He mentioned the
recent NBS POSIX FIPS indicating that this was an
interim document, and that NBS intended to move to
a FIPS based on the full use version of the POSIX
standard when it was available. In conjunction with
the FIPS, the NBS has developed the PCTS — POSIX
Conformance Test Suite. The PCTS is based on the

40 EUUGN Voi8 Noz Summer 1988

SVVS Subset from ATT. It will be available in
source code form in the public domain; it will be
distributed by the National Technical Information
Service. NBS will maintain the test suite as the
standard evolves. They aim to encourage use of the
test suite by third party testing services.

The remainder of the first day was taken up with an
introduction to work on User Interfaces. by
SCI18/WG9 and SC21/WG5 OSCRL. Although the
former work is not directly relevant to the current
POSIX work; it was acknowledged that some
elements of the OSCRL work placed constraints (e.g.,
security) on POSIX applications. The OSCRL work
presents the user with a different system view and as
such is complementary to POSIX. It was agreed that
the WG would express a willingness to accept the
OSCRL work item; this would allow the current
OSCRL documents to be accepted as technical
reports for consideration in the future work of WG15.

Main Items of Business on Days 2 and 3

The most pressing business of the meeting was to
review the results of the SC22 Ballot and coordinate
a response. The Ballot results consisted of only two
votes of disapproval from Canada and Japan. The
issues raised by Canada were resolved at the
meeting; unfortunately, the Japanese comments were
not available during the meeting. All other
comments accompanying votes of approval from
Denmark, France, Germany and the UK were
processed. A Disposition of Comments document
was drafted.

The WG discussed future work including a division
of the work item (see Resolution 9 below); and the
following dates of future biannual meetings were
agreed:




BOLDYREFF (EUUG ]

20-21 Oct 88 -Tokyo
~ Apr 89 - Ottowa, Canada
Oct 89 - Brussels
Apr 90 - Paris
Oct 90 - USA

It was agreed that subject to satisfactory resolution
of the Japanese comments, the WG should put
forward DP9945 for registration as a DIS. It is
anticipated that if DP9945 is registered as a DIS in
June or July this year, the six-month ISO Ballot will
have closed in good time before the WG meeting
planned in the spring of 1989,

Resolutions of WG15

The text below is taken from my own notes; and
may appear in a revised form in the official minutes.

Resolution 1

JTC1/SC22/WG15 requests that the US member body
incorporate the recommendations made in and
resolve the outstanding issues in
JTC1/SC22/WG15/N___, “‘Disposition of Comments
on DP9945”’ into the revised POSIX document.

Resolution 2

JTC1/SC22/WG1S requests that the US member body
take into consideration recommendations made in
JTC1/SC22/WG15/N___, ‘‘Disposition of Comments
on DP9945’, including the UK and French member
bodies comments on language independent
specifications when developing future versions.

Resolution 3

JTC1/SC22/WG15 recommends that the revised
document adopted by the IEEE which incorporates
responses to SC22 comments be registered as a DIS.

Resolution 4

JTC1/SC22/WG15 requests that the SC22 Secretariat
coordinate determination of the proper document
format and forward that information to the POSIX
document editor as soon as possible.

Resolution 5

The following comments shall be submitted to the
SC22 Secretariat regarding recommendations made
in TC97/N1935:

1. The work item scope has been modified as
proposed. JTC1/SC33/WGI1S is committed to
the development of a language independent
specification of POSIX.

POSIX REPORT

2. JTC1/SC22/WG15 met representations of the
OSCRL committee and issues resolutions
pertaining thereto.

3. The POSIX trademark has been dropped by
IEEE.

Resolution 6

JTC1/SC22/WG15 requests that the US member body
develop a single interchange format that resolves the
concerns raised regarding CPIO and TAR, and
provide such format for inclusion in a future version
of the POSIX document. The existing definitions of
both CPIO and TAR formats in POSIX should be
retained until a new, single interchange format
definition is available.

Resolution 7

JTC1/SC22/WG15 wishes to express its thanks to the
SWG on POSIX, SSI and Related Issues. Following
the recommendations of the SWG (TC97 N1935, Att.
D.), the definition of the scope of work was clarified,
and the POSIX work item was accepted and assigned
to SC22 for development.

The WG also wishes to thank SC22 for its prompt
action on the POSIX NWI in Sept 1987. By
unanimously voting to accept registration of DP9945
allowing WG15 to proceed immediately to a DP
Ballot, work on this standard has been greatly
expedited.

Resolution 8 — Regarding OSCRL

JTC1/SC22/WG15 expresses to the the SC22
Secretariat its willingness to accept the OSCRL work
item. If OSCRL is assigned to WGIS, the current
OSCRL documents would be accepted as technical
reports for consideration in the future work of WG15.

Resolution 9

JTC1/SC22/WG15 instructs the WG15 Convenor to
initiate a division of the work item, and submit this
to the SC22 Secretariat for action. Said division
should reflect the following WG15 activities:

1. Continued work beyond 9945 to address:
— Language Independent Bindings
— Ada and C Bindings

— Additional  Service Definitions  for
Terminal Control, Data Interchange, etc

2. A separate standard document pertaining to
the Operating System Environment based on
the IEEE 1003.2 work shall be initiated.

EUUGN Vol8 No2 Summer 1988 41




POSIX REPORT

3. Formation of a Rapatour Group on Security to
do preliminary investigations of the scope and
requirements for work in this area, and to
coordinate with the IEEE 1003.6 effort.

WG15 will also need complementary work to be

BOLDYREFF

Resolution 10

JTC1/SC22/WG15 instructs the WG15 convenor to
respond to the Japanese Comments on DP9945 in
consultation with WG15 experts and prepare an
addendum to the Disposition of Comments

done in the areas of -— testing, windows, document.
application/human interfaces, systems
administration, distributed systems, and network
interfaces.
More Obfuscated C Code
Mick Farmer
mick@cs.bbk.ac.uk

Here’s a program we wrote recently. It originated in a discussion I had with Dave Tilbrook and my seeing
the winners of the ‘Obfuscated C Code Contest’ for 1986.

AAKAAAAAAAAAKAAKAAARAARAKRAAAAAAAARAARARKRAAARNAKRAARARAARA A A A AR A A AR A Ahhrk
#define 1000 char

#define 1001 mess

#define 1010 [

#define 1011 13

#define 1100 }

#define 1101 =

#define 1110 {

#define 1111 ’'H’

#define 1001 ,

#define 1010 ‘e’

#define 1011 71’

#define 1100 ’of

#define 1101 ’ '

#define 1110 ’"w’

#define 1111 "r’

#define 1011 ’d’

#define 1011 ’0

#define 1101 7

#define 1101 }

#define 1110 ;

#define 1110 main

#define 1111 (

#define 1111 )

#define 1111 printf

1000 1001 1010 1011 1100 1101 1110 1111 1001 1010 1001
1011 1001 1011 1001 1100 1001 1101 1001 1110 1001 1100
1001 1111 1001 1011 1001 1011 1001 1011 1001 1101 1101
1110 1110 1111 1111 1110 1111 1111 1001 1111 1110 1101

42 EUUGN Voi8 No2 Summer 1988




COLSTON UNIX CLINIC

UNIX Clinic

Colston Sanger
olibcl!colston@olgbl .oliv.co.uk

Olivetti International Education Centre

Colston Sanger is a lecturer at the Olivetti International Education Centre, Haslemere, UK and a visiting lecturer
in the Faculty of Engineering, Science and Mathematics at Middlesex Polytechnic, London.
He is not the Musical Director of the Pangboume & District Silver Band...

About this column

At the recent EUUG conference in London Alain Williams asked if I would like take over this column. I said
“OK”’, so — here goes.

About this column: I see it as being primarily for the post—1984, UNIX System V generation. That’s to say, I see
it as being for users who want or need to use the UNIX System to accomplish practical, real-world tasks. Most
of you (or us — because I'm also one of the post—1984 generation) are working in the commercial rather than
academic world, and have UNIX binary as opposed to source licences. In short, then, it’s for beginners rather
than people who use cat to write device—drivers.

As to the flavour of UNIX, the emphasis is likely to be on System V: not only because that’s ‘‘The Right
Choice’’ (as the advertisement says), but also because that’s the kit available to me. Where I work — at the
Olivetti International Education Centre — we have a Starlan network of Olivetti-AT&T 3B2’s running UNIX
System V Release 3.1 and RFS, together with various Olivetti PC’s running MS-DOS and the AT&T DOS Server
package, but that’s all. Sorry, but I just don’t have a VAX.

That said — the introductory stuff, I mean — let’s get into it.

Screen management in shell

There’s been a lot of talk lately about user interfaces: News, X, Andrew, Open Look and so on. I thought it
might be interesting to look at what can be done using plain old /bin/sh.

The basics — echo and read

First a quick review of the basics: echo and read. You know what echo does, but the System V shell
built-in echo also takes a set of special escape characters:

\b backspace

\¢ do not append a newline
\f formfeed

\r carriage return

\t tab

\v vertical tab

A\ backslash

\On  where n is the eight-bit character whose ASCII code is the one—, two— or three—digit octal
number representing that character.

For example:

EUUGN Vo8 No2 Summer 1988 43




UNIX CLINIC COLSTON
$ echo "\n\tPlease enter name: \c¢"

Please enter name: _
(The underscore here is meant to be the cursor on your terminal screen.) Berkeley people will have to use
$ echo -n "\n\tPlease enter name: "
instead of the quoted \c.
read is pretty simple too. Within a shell script, just:

echo "\n\tPlease enter name: \c"
read NAME

where NAME is a shell variable.
Using screen attributes — tput

Suppose you want to use screen attributes such as reverse video, blink, underlining and so on? This is where it
gets interesting — and also where the System V tput command comes in.

Try:

$ tput blink
$ echo Hello world

OK, if you can’t stand it any longer, type:
$ tput sgr0

There’s a complete list of terminal attributes (and potential arguments to t put — depending on the capabilities
of your terminal) under terminfo(4) in the UNIX System V Programmer’s Reference Manual. For now, some
useful attributes are:

clear clear the screen and leave the cursor at the top—left (home) position
bold turn on bold (extra—bright) mode

smso begin standout (reverse—video) mode

rmso end standout mode

smul begin underscore mode

rmul end underscore mode

blink turn on blinking

dim turn on dim (half-bright) mode

bel ring the terminal bell

sgr0 turn off all attributes.

Note for Berkeley people: I don’t think you have an equivalent to the System V tput command, although there
are public—domain versions of tput around that use the termcap database.

A note of style

It’s good style to assign screen attributes to shell variables (by command substitution) at the beginning of your
shell script as in this example — a companion for the classic phone, everybody’s first shell script:

44 EUUGN Voi8 No2 Summer 1988




COLSTON (EUUG] UNIX CLINIC
# phone.add - enter phone nos in $HOME/lib/phone.nos
CLEAR=‘/usr/bin/tput clear®

STANDOUT ON=‘/usr/bin/tput smso‘
STANDOUT OFF=‘/usr/bin/tput rmso‘

YN=YES
while [ "${YN}" = "YES" ]
do
echo "${CLEAR}Ohone.add v1.0\n"
NAME=
echo "\t${STANDOUT ON} Name: ${STANDOUT OFF} \c"
read NAME
echo "\n\t${STANDOUT_ON} Address: ${STANDOUT OFF} \c"
ADDRESS=
while read A
do
echo "\t\t \c"
case ${A} in
rry # blank line ends address
break ;;
*) ADDRESS="$ {ADDRESS} ${A}" ;;
esac
done
echo "\n\t${STANDOUT ON} Phone: ${STANDOUT OFF} \c"
read PHONE
echo "${NAME}\t${ADDRESS}\t${PHONE}" >> S{HOME}/lib/phone.nos
echo "\n\tAdd another name (Y/N) ? \c"
read YN
case ${¥YN} in
[Yy]*) CONTINUE=YES ;;
*) CONTINUE=NO ;;
esac
done

sort -u ${HOME}/lib/phone.nos -o ${HOME}/lib/phone.nos

Why is it good style? Well, first, it parameterises things: if you want to use underline instead of reverse—video
for highlighting you only need to change two lines at the top. Second, it’s more efficient than

echo "\t ‘tput smso‘ Name: ‘tput rmso‘\c"

because you’re not spawning an extra process for every tput command: just echoing a shell variable.

Making menus

Given echo, read and tput, it’s easy to make menus — though it has to be said that genuinely
‘user—friendly’ menus are quite hard to do. Here is the outline of a fairly traditional menu:

# monitor - main menu
# trap interrupts
trap ¥ 7/ 1 2 3

# set standard variables

MACHINE='‘/bin/uname‘ # machine name
BIN=$ {HOME } /monitor/bin # dir where progs are

EUUGN Vo8 No2 Summer 1988 45




UNIX CLINIC (EUUG] COLSTON
export MACHINE BIN

# set screen attributes

CLEAR=‘/usr/bin/tput clear®
STANDOUT_ON=‘/usr/bin/tput smso’

STANDOUT OFF=‘/usr/bin/tput rmso}
NORMAL='‘/usr/bin/tput sgr0:‘

BELL=‘/usr/bin/tput bel?

export CLEAR STANDOUT_ON STANDOUT_OFF NORMAL BELL

HEADER="$ {CLEAR}$ { STANDOUT ON} ${MACHINE} monitor
‘/bin/date‘ ${STANDOUT OFF}"
export HEADER

while :
do echo "${HEADER}\n\n\n"
echo "\t\t\tl - Usage monitoring"

echo "\t\t\t (whodo, who -u, ps -ef.)\n"
echo "\t\t\t2 - Performance monitoring”
echo "\t\t\t (Run sar, print or "

echo "\t\t\t display results.)O0

echo "\t\t\t3 - System accounting"”

echo "\t\t\t (Print daily/monthly"

echo "\t\t\t reports.)\n"

echo "\t\t\tg - Quit.\n\n"
echo "\tPlease type the number of your selection"
echo "\tand press the RETURN key > \c"
read SELECTION
case ${SELECTION} in
1) S${BIN}/monitor.1l
2) ${BIN}/monitor.2
3) ${BIN}/monitor.3
[Qql*) exit ;;
!*) COMMAND=‘echo ${SELECTION} | cut -c2-1
eval ${COMMAND }
echo "\n\tPress return to continue > \c"
read RESPONSE ;;
*) echo "\n\t${BELL}Unknown option - please try again."
echo "\n\tPress return to continue > \c"
read RESPONSE ;;
esac
done
exit 0

Form-filling

Another style of interface that is sometimes called for is form—filling. Here, for example, is an outline for a
form—filling front—end to pr, the draft formatter:

# fpr - form-filling front-end to pr
CLEAR=‘/usr/bin/tput clear®
REVERSE=‘/usr/bin/tput smso‘

UL=‘/usr/bin/tput smul®
NORMAL=‘/usr/bin/tput sgr0‘

46 EUUGN Voi8 No2 Summer 1988




COLSTON {EU UG UNIX CLINIC

COMMAND=/bin/pr
trap "echo $CLEAR ; exit’ 0 1 2 3

echo "${CLEAR}\n${REVERSE} pr - draft \
formatter ${NORMAL}\n\n"

echo "${LINE}"

while test -z "${FILE}"

do
echo "\n\t${UL}Please enter \
filename$S{NORMAL}.....vvveeneu... \c"
read FILE
case ${FILE} in
rr) /usr/bin/tput bel
/usr/bin/tput cuul
/usr/bin/tput cuul ;;
*) break ;;
esac
done

echo "\n\t${UL}Title to use (RETURN for \
filename) $ {NORMAL}... \c"

read TITLE

case ${TITLE} in

) ?; # default is filename+date+page-no
*) COMMAND="$ {COMMAND} -h ${TITLE}" ;;
esac
echo "\n\t${UL}Page length (66)${NORMAL}...... \
............... \c"

read P_LNGTH
case ${P_LNGTH} in
) ;; # default is 66 lines per page

*) COMMAND="$ { COMMAND } —l$(P_LNGTH}" HH
esac
echo "\n\t${UL}Line length (72)${NORMAL}...... \
............... \c"

read L LNGTH
case ${L_LNGTH} in

rr) ;; # default is 72

*) COMMAND="$ { COMMAND } —w${L_LNGTH}“ 77
esac

echo "\n\t$(UL}Single or double-spaced \
(S/D) ${NORMAL}........ \c"
read SPACING
case ${SPACING} in
[Dd] *) COMMAND="35 {COMMAND} -d" ;;
*) i

EUUGN Vol8 No2 Summer 1988 4T




UNIX CLINIC COLSTON
esac

echo "\n\t${UL}Send output to \
(Terminal) S{NORMAL}...vo0ovveunn \c"
read PRINTER
case ${PRINTER} in
# default is the terminal
A
# pipe the output to PRINTER
*) PRINTER=" | 1lp -d${PRINTER}" ;;
esac

echo "\n${LINE}"

echo "\n${REVERSE} Command is:\
${NORMAL}${COMMAND} ${FILE} ${PRINTER}"
echo "\n\t${UL}Execute (Y/N)${NORMAL}? \c"
read X
case ${X} in
[Yyl*) eval "${COMMAND} ${FILE} ${PRINTER}"™ ;;
*) HH
esac
exit O

This is no more than an outline. Obviously, it would be helpful to know early on that the file to be formatted
exists and is readable.
Cursor addressing
In UNIX System V Release 3 you can type:
$ tput cup 10 5
to move the cursor to row 10, column 5. In UNIX System V Release 2 it’s not quite 5o easy.

There are two ways of doing cursor addressing in UNIX System V Release 2. The first way is fast, but not really
to be recommended because you have to hardcode the terminfo cup (cursor addressing) capability within your
shell script. The second way is to call a C program.

The first way (in System V Release 2)
Here is an example of the first way, the hard way:

# cursor_pos - cursor addressing the hard way

# parameterised cup capability
case $STERM in
vt100) begin="[[; mid=’;’; end=H ;;
50) begin="[a; mid=R; end=C ;;
esac
tput clear
echo "\n\tPlease enter ROW: \c"

read ROW

echo "\tPlease enter COL: \c"

read COL

echo "${begin}${ROW}${mid}${COL}S${end}Hi there! \c"
exit O

48 EUUGN Voi8 No2 Summer 1988




COLSTON UNIX CLINIC

What this means is that to move the cursor to a selected row and column on a vt100 (for instance), you have to
send the terminal:

ESC [

followed by the row number
(in decimal)

followed by a ;

followed by the column number
(in decimal)

followed by an H

How do you know this? Because you have looked it up in the terminal manual, or because you have tried typing

$ tput -Tvtl1l00 cup | cat -v
“[[%$i%pl%d; $p2%dH

And to find out what that means, you’ll have look up terminfo(4) in the UNIX System V Programmer’s
Reference Manual.

The second way (in System V Release 2)
The second way is to call a C program. For example:

# del _reg - delegate registration
# cursor addressing example

PSl=

CURSOR=‘/usr/bin/tput cup®
CLEAR=‘/usr/bin/tput clear®
UL=‘/usr/bin/tput smul‘
REVERSE='‘/usr/bin/tput smso‘
NORMAL="'/usr/bin/tput sgrQ®
BEL="‘/usr/bin/tput bel‘
export CURSOR

# display screen form
echo "${CLEAR}"

cursor 1 25 ; echo "${UL} Delegate Registration\

$ {NORMAL} "

cursor 65 ; echo "‘/bin/date ’+%d %m. %y’ ‘"

cursor 5 ; echo "First Name: ............... "

cursor 35 ; echo "Last Name: .......evevennnnnnn. ——
cursor

[« )TN N ]

.............

cursor 7 24 ; echo M. ...t e, "
cursor 8 24 ; echo M. .. ittt e e e, "
cursor 10 10 ;

cursor 10 46 ; echo "Tel. Nno: .........c.... "

cursor 13 10 ; echo "Car reg. no: ......... "

cursor 16 5 ; echo "CoOmpPany: .......eueeeunrennenennnn.. \

cursor 19 5 ; echo "Course: "

EUUGN Vo8 No2 Summer 1988 49




UNIX CLINIC COLSTON
cursor 19 46 ; echo "Room no: ...."

# read input

cursor is the C program.

Speeding things up

If you try del_regq as itis, it will run quite slowly. However, one simple trick will make it much faster:
$ del reg > dr2.scr_vtl100

So now, here is version 2 of the del_reg script:

# del reg2 - delegate registration (version 2)

# cursor addressing example

PS1=
CURSOR="‘/usr/bin/tput cup’
BELL=‘/usr/bin/tput bel‘
export CURSOR

LIB=${HOME}/lib

# trap interrupts
trap 7 7 1 2 3

# display screen form
if [ "${TERM}" = "vt100" ]
then
cat ${LIB}/ dr2.scr_vt100
elif [ "S${TERM}" = "50" ]

then
cat ${LIB}/ dr2.scr_50

else
echo "Sorry, this example only works with vt100"
echo " or Wyse 50 terminals™ 1>&2 ; exit 1

fi

# read input
cursor 4 17 ; echo "${BELL}\c" ; read F_NAME

Finally, here is cursor.c. Istole it, then modified it slightly from Rod Manis and Mark H.Meyer’s The UNIX
Shell Programming Language, Howard W.Sams, 1986 (ISBN: (0-672-22497-6), which I think is the best of the
four books about the shell (sh, csh and ksh) published in the last eighteen months. The good news for
Berkeley people is that it should also run on your system.

/*

*

cursor.c - move the cursor to a specified
line and column on the screen.

cursor is intended to be used within a
shell script to provide cursor addressing.
So it’s very handy for constructing
prototype data-entry screens.

Normal usage would be (within a shell script):

* % 0 % F * % %

50 EUUGN Voi8 No2 Summer 1988




COLSTON [ EUUG] UNIX CLINIC
* PS1=

* CURSOR="‘tput cup’®

* . e o

* cursor 5 10 ; echo "Please enter your name: \c"

*

* Alternatively (from the command line) :

*

* cursor 5 10 ‘tput cup®

*

*

* Compile as: cc -O -s -o S$SHOME/bin/cursor cursor.c -lcurses
*

* or (for Berkeley systems)

*

*/

cc -0 -s -o SHOME/bin/cursor cursor.c -ltermlib

#include <curses.h>
#include <term.h>

#define
#define
#define

#define
#define
#define
#define

USAGE "Usage: cursor line col0

EUSAGE 1

NOCURSOR "$%s: no CURSOR argument or \
SCURSOR shell variable.0

ENOCURSOR 2

LINE 1

COL 2

CURSOR 3

char *tgoto();
char *getenv();
main (argc, argv)
int argc;

char *argv][];

{

char *cup;

setupterm(0,1,0);

if (argec < 3) {
fprintf (stderr, USAGE);
exit (EUSAGE) ;

}

else if (argc == 3) {

if (cup = getenv ("CURSOR")) {
/*
* tgoto is an old function, included for
* compatibility with termcap.
*/
printf ("$s", tgoto(cup, atoi (argv[COL]),
atoi (argv[LINE])));
} else {
fprintf (stderr, NOCURSOR, argv([0]);
exit (ENOCURSOR) ;

EUUGN Vo8 No2 Summer 1988 51




UNIX CLINIC COLSTON

}
} else {

printf ("$s", tgoto(argv[CURSOR], atoi (argv[COL}),
atoi (argv{LINE])));
}

reset _shell mode();
resetterm() ;
exit (0);

In the next issue

That’s it for this column. Let me know (by e—mail) whether you find this stuff interesting or useful. In the next
issue, unless anyone suggests a better topic, I'm planning to write about efficiency considerations and shell
functions in the System V shell.

Found on the Floor ...

Found by Mick Farmer on the floor of the QEII conference centre ...

/WELL DONE SUNIL. AN EXCELLENT CONFERENCE |
I 0 0 0 Doo ooo 0 0 000 00 |
I 00 o0 oo 10 op o o0 040 I
i 0o 0 0 I
/111111111111111111111111112111111111111111311111§
12222222222[12222222222222222222222222222222222222 |
13300333333333300333333013003303033333331333333333}
144444[14444404444444444444444444444444444444444944
1505555500 5550555550 50 550 5500 55550 50 500 50 55555555 |
11666660 666666666666666666666666[] 6[] 66666666666666 |
17777777777777777777770777777777177777777777777777 |
1888888888888888[8888888888888888888[1888888888888|
19999999999999[1 9999999999999999999999999999999999 |

52 EUUGN Voi8 No2 Summer 1988




CAROLAN

C++ IN PRINT

C++ In Print

John Carolan
John@puschi.uucp

In March ’88, the only book you could buy on C++
was Bjamne Stroustrup’s.

Come April, you’re not exactly spoilt for choice, but
cleatly the deluge is beginning.

First of all, there’s conference proceedings.

The Santa Fe conference on C++, I reviewed last
issue. Also included in the conference proceedings
are a few really good papers that the editor thought
would interest people...

Experience in Using C++ for Software
System Development

by Bill Hopkins

An excellent paper by a real end-user of C++. Bill’s
team at AT&T in Denver built a very large software
product in C++ before anyone had heard of C++.
The paper describes C++ concisely and enumerates
the benefits that accrued from using it. We badly
need more papers like this from practitioners of
object-oriented programming.

Possible Directions for C++
by Bjarne Stroustrup

Catalogues the opportunities which the Perpetrator

sees for improving the language. Top of the list are
- ‘parameterised types’ (which would give to C++
classes a functionality similar to generics in Ada)

Glockenspiel Ltd.
Dublin

Jobn Carolan is the current chairperson of the Irish UUG. He is also
managing director of Glockenspiel Ltd. of Dublin. Glockenspiel has been
using C++ since 1985, and John has presented several technical papers on
C++. His present work includes the development of C++ class libraries
common between OS/2 and X-Windows on UNIX.

and ‘exception handling’ (which would improve the
interaction of setjmp/longjmp constructs with
scoped operations such as destructor invocation).

A Set of C++ Classes for Co-Routine Style
Programming

by Stroustrup & Shopiro

Describes a working implementation from the Labs.
Rumor: release 2.0 of AT&T’s C++ will have a better
‘tasks’ library.

C++ vs. Lisp

by Howard Trickey

Compares by code-size, compile-time and various
similar metrics the same slightly expert graphics
software done in C++ and LISP. In my opinion, it is
totally worthless because:

1. The LISP used was an obscure deviant from
Common LISP;

2. The architecture of the program was preserved
instead of being redesigned to use inheritance
and polymorphism Despite the unreasonable
basis for comparison, the paper comes out
strongly in favor of C++.

Several other papers included are of the general
form ‘‘Let’s hack on the C++ language to do X'’
For the present, I believe the only guys who should

EUUGN VoI8 No2 Summer 1988 53




C++ IN PRINT

hack on the language are Bell Labs — otherwise we
will end up with a disaster instead of a standard
language.

Next, on the subject of conferences, the EUUG
conference in London included many papers
describing projects implemented in C++. The
proceedings include three papers ostensibly about
CH+.

Yacc Meets C++
by Steve Johnson

This paper presents an extension to yacc to allow
inheritance in yacc grammars.

Formatted I/O in C++
by Mark Rafter

This paper illustrates magnificently how you can add
functionality to C++ by elegant extension of an
existing class library — in this case ‘streams’.

Software Re-Engineering using C++
by Anderson & Gossain

Compares the same program in C and C++. The
approach here was to redesign a graphics
presentation program in an object-oriented way and
implement it in C++. The comparison consists of
both qualitative issues such as re-usability and
metrics such as a count of magic numbers present in
the code.

Now, on to the first text-book on C++ since 1986.

An Introduction to Object-Oriented
Programming and C++

by Wiener & Pinson
Addison-Wesley
ISBN 0-201-15413-7

The book presents a good introduction to the jargon
of OOP, at least until it gets to page 8. On page 8 it
presents the first of many serious mis-
understandings. The book tries to describe the
process of designing an inheritance hierarchy. It uses
for an example an automobile with components such
as engine and gear-box. It implies that engine and
spark-plug should be derived from automobile,
which misses the following point: Functional
decomposition of a problem and class derivation are
orthogonal design processes. Both processes must be
pursued to achieve a good solution. The book also
confuses bottom-up design with specialisation.
Apart from the view of OO design being seriously

54 £vuGh Vo8 No2 Summer 1988

CAROLAN

damaged, the book does not consider that OOP
should extend to human interface issues at all. Most
of the worked examples come from older books on
algorithmic programming. Hoare’s QuickSort
algorithm and much list-processing code occur in the
book. Why I object to these examples is that they
dissipate the reader’s energy on following the
algorithms. It must be possible to choose examples
which illustrate the OO approach to design without
so much implementation details. Examples which
deal with human interface to some extent would be
more interesting and could show how OOP assists
consistency in the human interface.

As a textbook on C++, W&P has serious flaws. 1
counted over twenty errors. Here’s an example from
page 126:

‘“The public qualifier in the derived class definition
indicates that objects of the derived class can use all
the methods of the parent class, unless these methods
have been redefined in the derived class.”

Stroustrup’s book may be hard going, but at least it
is accurate. Nowhere does W&P offer a Rosetta
Stone for translating between C++ terminology and
OOP terminology. It calls all data members of
classes ‘fields’, for example. Now, in C and C++,
only members with the form:

< declarator : constant-expression >

are called fields. It confuses objects with classes and
declarations with definitions in several places. For
example, on page 21:

*“The operators in the cin, cout and cerr classes can be
overloaded within a programmer-defined class.”’

W&P is very misleading on the interaction between
typedef, in built types and classes. The book
omits several important features of C++. The most
poticeable  being  programmed  assignment,
programmed conversion, coercions and pointers to
member functions.

The last chapter contains three example programs.
The first is a spelling checker. In it, there is a class
‘word’ which has a member function
‘open_file()’. Now, how can a word have a
behaviour such as open file? In a book which
attempts to instruct people on OOP, this is
unacceptable. There should be a class such as
WordFile on which Word is not dependent. The
second example is a golden oldie from Simula which
does an event-driven simulation of queues in a bank.
The book follows the OOP approach nicely until it
comes to the human interface. Then ZAP!, objects
are nowhere to be seen. The output from the




CAROLAN

program is very difficult to interpret simply because
the OOP paradigm gets dropped. The third example
is a simple function Interpreter. It parses a calculator
language using an expression tree and it does syntax
checking using a finite state machine. The syntax
checker does not re-use any of the code in the parser.
However, the program is riddled with friend
declarations, which weaken the abstractions
unnecessarily. The finite state machine declares each
state as a separate class with one instance, which
immediately rings wamning bells. Well, the warning
bells are correct. It is simpler to code this particular
FSM in a table-driven form. The classes should be
state transition tables, not states. If you are in any
doubt about my criticism of this example, then

C++ INPRINT

repeat the following exercise: Add a unary minus
operator to the Function Interpreter and count in how
many places you have to change the code. Lastly,
this example restricts the user interface just because
W&P want to use operator overloading in a place
where it is not appropriate. The user of the program
types a formula where the arguments are mentioned
explicitly. Each invocation of the formula asks the
user to say how many arguments again. Not a good
user interface.

In summary, the book covers neither nor C++ very
well. It peeds a lot more proof reading by
practitioners of C++ before I would recommend it to
someone learning C++.

Tech Tip

Here is a posting from Jonathan Shopiro which describes the usage of assignment and initialisation
operators very neatly...

If a copy-initialiser is not supplied by the programmer, the compiler generates the default version, which
looks like the following for a class with arbitrary base classes and members:

class D : Bl, B2 ... {
T1 ml;
T2 m2;

// ml is a data member, Tl is a type

}:

D;:D(const D& d) : Bl(d.Bl), B2(d.B2) . ml(d.ml), m2(d.m2) ... {}

Each initialisation is the copy-initialisation for the appropriate type. They are executed left to right. Of
course, such copy-initialisation is usually optimised to ‘‘blast the bits from the source to the target’’. If you
leave the const specification out, you won’t be able to copy a constant object. Following the same

principles, the default assignment function is:

D&
D::operator=(const D& d)

{

*(Bl *)this = (Bl &)d;
*(B2 *)this = (B2 &)d;
ml = d.ml;
m2 = d.m2;

return *this;
}
It too is usually optimised to ‘blast the bits.”’

EUUGN Vol8 No2 Summer 1988 55




C++ IN PRINT CAROLAN

STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS ST
OP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS

This year’s C++ conference will be in Denver, Colorado October 17 to 20. If you would like to submit a
paper then send a 2 to 4 page abstract to:

Andy Koenig
fax: +1 201 580 4127
uucp: ....!researchlark

before June 14th

STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS ST
OP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS STOP PRESS
Price for proceedings

The Santa Fe conference proceedings are available from the EUUG secretariat (Owles Hall) at a price of
£30 includings postage & taxes.

This is the best read around on C++ that you will find in Europe. There are only a limited number of
copies — don’t be disappointed.

56 EUUGN Voi8 No2 Summer 1988




KUIPER

TAPES

EUUG Tape Distributions

Once again the announcement of a new tape. This
tape, the ‘London’ or EUUGDI13 tape, so
meticulously composed by Bjom Ericson, did not
reach London in time to be copied for the
conference. Stuart McRobert did a fine job in
assembling a tape which looked just as it should
have been, and managed to make 130 copies. We
had more requests for a conference tape than ever
before.

A problem with the tapes seems to be their alleged
non-readability. It has been suggested that the
electro-magnetic security gates in the QEII-
conference centre were the blame for this. So far I
have had some five tapes returned, but if any of you
are also having problems reading the conference
tape, please retumn it to me (at the above address),
and I will supply you with a new copy.

Due to the fact that the original tape did not reach
London in time, there now are more or less two
London tapes. So as not to make life to complicated,
I will use the original tape as being the official
London tape. The differences in contents are not
that big. Anyone who received the tape issued at the
conference, and who insists to obtain the official
tape, can send me their conference tape, and I will
supply them with a copy of the official tape. This is
a one-time-only offer, and due to handling and
shipping, I'm afraid I have to charge DFl 50,- for
this service.

This brings me to another small problem that I
encountered. Some people who order tapes from
me, supply a cheque with their order for what they
think is the right amount of money. Though the
amount on the cheque often is near to the real price
of the ordered goods, most of the time it isn’t.

Frank Kuiper
mcvax!euug-tapes
euug-tapes@cwi.nl

Centre for Mathematics and
Computer Science,
Amsterdam

Therefore 1 would strongly ask you not to send me
any cheques, bank-orders or what ever. The moment
that I send the tapes off to you, I inform the financial
department of my institute, and they will, in time,
send you an invoice for the goods. Especially since
now that I also provide distributions on 1/4"
cartridge streamer tape, prices for tapes differ
widely. This is due to the higher price of cartridges.

One last remark. Due to the nature of my regular job,
I am not always able to handle requests for tapes
immediately. I admit that the introduction of the
cartridge streamer tape as a new medium for the
EUUG software distributions has slowed me down in
handling orders. I regret any inconveniences that the
late delivery of tapes may have caused or will cause.

The rest of this article consists of the well known list
of distributions that are now available on both 1600
bpi reel-tapes, and QIC-24 format streamer-tapes.

As always, anyone is invited to make their own
tools, games, etc. available for publication on an
EUUG tape. Please contact me for more details.
Don’t hesitate, just put the results of many nights of
serious programming and hacking in the public
domain, and you might even become famous!

This is a list of all the current (April 1988) EUUG
distributions. It is a short description of the
available tapes. Any changes to the contents of the
tapes, as well as announcements of new tapes, will
be placed in the EUUG Newsletter.

Prices of the tapes are in Dutch guilders (DF1), and
do not include VAT-taxes or postage. The first price
listed is for reel-tapes, the second one is for
distributions on cartridge tapes.

Note that you have to be an EUUG member (or a
member of a local UUG) to obtain tapes at list prices.

EUUGN Vo8 No2 Summer 1988 87




TAPES

arre -~ KUIPER

Non-members will have to pay an extra DFl 300,-

per tape.
EUUGD! Ré6:

EUUGD2:

EUUGD?3 R3:

EUUGDA4:

EUUGDS:

EUUGDE6:

EUUGD?7:

EUUGDS:

EUUGD?9:

EUUGDI10:

EUUGDL11:

EUUGD12:

EUUGD13:

UNIX V7 system, specially made for small DEC PDPs (11723, 11/34, etc). The Kernel
supports the UK terminal driver. V7 source licence minimum.
Price: DH 120,-/180,-

Early Pascal compiler of the Free University of Amsterdam. V7 source licen
Price: DF1 120,-/180,-
Currently under not available.

Software tools, sampled by the Software Tools Users Group. Most of the software is
written in Ratfor, for which a Fortran support tool is included. This tape is available in
different formats: DEC RSX, DEC VMS, UNIVAC, IBM MVS, UNIX tar, MIT line feed
format, and MIT card format (80 columns).

Price: DFl 150,-/130,-

A collection of benchmark programs made up by EUUG.
Price: DF1 60,-/120,-

USENIX tape, containing contributions from various UNIX System Group Members.
This is a licence dependent distribution: V7, V32, SIII, V6 or no licence disclosure
available.

Price: DF1 240,-/300,-

UNIXISTAT Version 5.2. A collection of about 25 data manipulation and analysis
programs written in C by Gery Perlman.
Price: DFI 60,-/120,-

A collection of useful software, based on the so-called Copenhagen tape (EUUG UNIX
conference Autumn 1985).

A collection of useful software, based on the so-called Florence tape (EUUG UNIX
conference Spring 1986).
Price: D1 150,-/210,-

MMDFIIb. Multichannel Memo Distribution Facility (version IIb). This is a powerful,
domain oriented mail system with access control and the ability to communicate over a
variety of network systems including TCP/IP, JANET, UUCP, PHONENET, etc. It has
been ported to a variety of UNIXs including but not limited to 4.[123]BSD, 2.9BSD,
System III/V on a variety of different hardware. You should first obtain a licence
agreement by sending a message to euug-tapes@mcvax. Return the signed licence with
your order.

Price: DF1 90,-/150,-

This is the ‘Boat’ tape; the Helsinki EUUG 1987 spring conference. It contains about 25
Megabytes of programs, games, etc. Including: jove, less, nag, news, m, pEmacs,
uuencode and larn.

Price: DFI 120,-/180,-

This is the Dublin EUUG 1987 autumn conference tape. It contains about 26 Megabytes
of programs, games, etc. Including: copytape, crc_plot, fastgrep, jove, kermit, notes,
uupc, nethack, cron, sendmail, mh, Recipes, brl-gw, isode, pcip, pctelnet.

Price : DFI 120,-/180,-

The latest conference tape for the London EUUG 1988 spring conference tape. A table
of contents follows:

58 EUUGN Voi8 Noz Summer 1988




KUIPER

TAPES

EUUG.D13 TABLE OF CONTENTS

Commands and Application Programs

X

afio
cake
calctool
changed
chat
config
copytape
cpmod
gt+

gawk

gcc

gdb+
gemacs
graphedit
isode
kermit
lem
little-st
magtapetools
mcc
modemcap
mstools
mush
news
nrofftab
pd-diff
pdtar
perl
postscript
psfig
pshalf
ptc
gsubst
gterm
revgrep
ru

sc

semex
sets
shar
shsem
substr
vmail

w

System Calls

X-window 11 release 2

manipulate archives and files

maintain groups of related files like make

window based calculator.

looks for files that have changed after given date
Chat in real-time with other users (System V)

print details of machine and C compiler configuration
copy magtapes on systems with only one tape drive
copy modes, ownerships and times of file

GNU c++ compiler

GNU awk

GNU C compiler 1.18

GNU debugger

GNU emacs editor version 18.50

a general purpose graphic editor

ISO Development Environment

The Kermit file transfer program version 4E(067)
interactive package for editing simple graphics
little Smalltalk system

magtape handling package

merge C compiler

a modem independent dial(3) package.

read and write MSDOS formatted diskettes from Unix
The Mail User’s Shell for electronic mail.

the netnews system

nroff driver table compiler/de-compiler utility
public domain diff with the -b and -c options

tape (or other media) file archiver

Practical Extraction and Report Language (C,awk,sed,sh)
PostScript interpreter

a troff preprocessor for PostScript figures

produce PostScript pages two to a (paper) page
Pascal to C translator

gsubst - query/substitute strings in files

query a terminal to determine its name

search a file for a pattern backwards, provide tails
compact list of users on all

spread sheet calculator

interactive exerciser for System V semaphore operations
performs set operations on its arguments

create shell archive file for extraction by /bin/sh
Utilize System V semaphores from the shell
extract a substring from the input arguments

tty interface to MH

display users and processes (for System V)

EUUGN Vo8 No2 Summer 1988 59




TAPES KUIPER

3. C Library Subroutines

pc-curses screen/window management library
regexp regular expression handler
rpc library routines for remote procedure calls
syslog logging routines
4. Special Files
pty pseudo tty driver for system V machines
5. File Formats
Games
moria 4.85, a dungeon adventure game in the manner of rogue
omega another adventure game
Miscellaneous
8. System Maintenance
arc a general archive utility
autobaud terminal speed detection
backup perform tape backups
enable enable, disable getty on tty lines
smail UUCP mailer with routing
survey generate simple plot of system load and # of users
sush restricted shell to grant specific limited privileges
watcher system monitoring program

Price : DF1 120,-/180,-

Ordering EUUG Tapes

If you want to order a tape, please write to:

EUUG Distributions

c/o Frank Kuiper

Centrum voor Wiskunde en Informatica
Kruislaan 413

1098 SJ Amsterdam

The Netherlands

For information only:

Tel: +31 20 5924056 (or: +31 20 5929333)
Telex: 12571 mactr nl
Internet: euug-tapes@mcvax.uucp (or: frankk@mcvax.uucp)

Please note that for distributions D1, D2, D3 and D4 (and in some cases also for D8) a copy of your source
licence agreement with AT&T for at least UNIX version 7 should be enclosed.

Note also that you have to be an EUUG member (or a member of a national UUG) to obtain tapes at list
prices. Non-members will have to pay an extra HFI 300,- per tape as a handling fee.

Please enclose a copy of your membership or contribution payment form when ordering.

Do not send any money or cheques, you will be invoiced. Tapes and bill will be sent separately.

All reel-tapes come in tar format, 1600 bpi. 800 bpi is possible on request. Cartridge tapes come as tar
image, written with dd, with a blocking of 126b. This is a so-called QIC-24 format. QIC-11 is available on
request.

60 EUUGN Voi8 No2 Summer 1988




KUIPER (EUUG ] TAPES

EUUG Tape Distributions Order Form
This page may be photocopied for use.

.
Name: . ceeresenseces Ceterasatesnisrnsatcenserrssnsentarttsserersisrasesee

.
Company. aasasessssssrssssaansaeanansses seesessrnsnssnsesetserersrnsssrsensiseretsstsarsresace ssesassnesanesanasssssnssessasssns P e
A .
. eereesesesciranersaserserinateatorrarentersnsenss veerese veerresanirisinenee seressssrsecrssrsrsanesessssessesssestanssnsseanses vernen
ceersrsersarenrarsnsarensensnes sesenceses seearsressiessssrsserssesersseesassennsan 4ss8es8tassesacsnsass sesanssassansensresssee resrsrssrsriarsaaenes

erecsssesserasecensesrstarerersesrsrcrssacane sescessesressesce sseseseracetersssssrartcscsrsrctcene PRTRTRTTRS sessssans sosssscacescsacs tecssaccescrsvene

I would like to order the following:

$000600000000000000000000000000000000000000400000000000et0rosetstetststresecsesistetcecscscsrsssrase seseses aseresevencassarersestatatorenatans sessseas
0080000000000000000000000800000000000000000000000080000000000000000060¢0600000000000008080000¢000000000000000000000000000000s0asasersrorsre sesescssne
B T P Ry P PP T PP Y YT TP YPY TR PR P) . sesessrscscscsreccnae sssessesce seseessessacscan esseesrssesnanan seasassnssnesns
sesecsssrenane B T T Y TR YRR seserscnsrse. erevseseses sesecessceseres seesesscesssecenes seseanae sesessessrsssrsranans csesrae

EUUG (or national UUG) membership form enclosed? Yes /No

Copy of AT&T source license enclosed? Yes / No

“I declare to indemnify the European UNIX systems User Group for any
liability concerning the rights to this software, and I accept that EUUG takes no
responsibilities concerning the contents and proper function of the software.’’

.
1gnature:
S eeeene ceesrecnncsnes ceerseetenstttttttttestsereterentrettsaseraansenesarsanen ceenserrenresnceresnane

.

EUUGN Vol8 No2 Summer 1988 61




EUNET

HOULDER

EUnet in Finland

Peter Houlder
uknet@ukc.ac.uk

Computing Laboratory,
University of Kent

Introduction

This time we are grateful to Finland for this article. Juha Heinanen has provided a clear interesting account of
the Finnish network. We now have had details on Finland, France, The Netherlands, Sweden, The United
Kingdom and West Germany along with details of the overall network structure. Hopefully the other missing

EUnet countries will soon fill in gaps, but other articles on:

Type of Mailers

Mail Interfaces

File Transfer

X400

News Software

Local and Wide Area Networks

and any other aspect of networking would be very welcome. Please send all contributions to the above
(uknet@ukc).

Juha Heinanen

Jh@tut fi

Tampere University of Technology
Finland

Juha Heinanen is currently an associate professor in computer science at
Tampere University of Technology in Finland. Networking has been his
hobby since 1983 when we established the EUNET link from University of
Tampere to Enea Data Ab in Sweden. Juha is also member of the steering

committee of the Finnish University and Research Network Project (Funet).

EUnet in Finland
History

This all began in 1983 when a UUCP mail link was
established from University of Tampere to Enea
Data Ab in Sweden. The first UUCP machine was a

62 EUUGN Voi8 No2 Summer 1988

PDP 11/34 and, of course, its address/disk space was
too small to run the news software.

In 1984 Helsinki University of Technology (HUT)
got a link to mcvax and the enea link was transferred
from Tampere University to the neighbouring




HEINANEN (EUUG]

Tampere University of Technology (TUT). The
news was received by TUT from enea while HUT
handled mail with mcvax. In 1985 FUUG (Finnish
UNIX Users’ Group) established Finland’s first
official EUnet backbone at Pepetron Oy, which in
1986 also started to receive the news directly from
mcvax. Mainly because of shortage of ‘free’
manpower at Penetron, the official backbone was
moved in the beginning of 1987 to TUT.

TUT now handles international connections and
serves the ‘rural’ parts of the country. The sites in
the Helsinki area are served by HUT that has taken
the responsibility of a second backbone.

Rate of Growth

During the five years of existence, EUnet in Finland
(SFNET) now consists of 46 sites 11 of which
receive the news. The main reason for the low
number of news sites is the high cost, which
currently is around $200/month.

The number of sites has grown steadily at the rate of
some 10 sitesfyear. The new sites are almost
exclusively commercial companies, typically
software houses, since almost all of the universities
are already subscribing to SFNET.

A new development at universities has been the
installation of Internet domain naming in computer
centre mainframes running VMS and VM operating
systems, This has increased the international through
traffic at TUT considerably, since earlier SFNET
services were mainly used by computer science
departments.

At the time of writing, 25 organisations have
registered an Internet subdomain under .fi.

Backbone Personnel

At TUT, the mail and news service is now in practice
run by Vesa Keinanen and I'm proud how fast he
has become a real guru, mastering the mysteries of
sendmail and other networking software. As a
backup, we have Hannu-Matti Jarvinen who has
several years’ SFNET experience. At HUT, the work
is done by Jukka Virtanen who runs a machine
called santra. Jukka also maintains the EARN and
CSNet gateways. Currently SENET is totally
uncommesrcial, i.e., we don’t charge the sites for any
of the salaries or other overhead. If such costs were
added on top of already high news costs, the network
would probably become too expensive for some of
our current subscribers.

EUNET

Links with Other Networks

SFNET has direct gateways to FUNET’s (Finnish
University and Research Network) TCP/IP and
DECNet networks, EARN, CSNet, and the RARE
experimental X.400 network. All other networks are
reached via mcvax or enea.

Future Plans and Problems

All the universities in Finland will soon by linked by
64Kb leased lines managed by FUNET. For SFNET
this means division of the sites into two quite
different groups: the commercial companies running
UUCP over X.25 or telephone lines, and the
academia running LAN-protocols over the fast
backbone.

So far all SFNET traffic has been allowed free of
charge on the FUNET backbone. In the future, some
kind of formal agreement might be needed between
SFNET and FUNET concemning the through traffic.
The relations between SFNET and FUNET are very
good and there has been no pressure from either side
to take over other’s operations or compete with
them.

For the future benefit of SENET, it might be desirable
to find a wealthy commercial company that would
take responsibility to develop further the non-
academic part of SENET. An ideal site would be one
that has a large research department with a lot of
contacts with both universities and software
companies.

At the time of writing there are very interesting
developments going on internationally, which
hopefully will lead to a better and cheaper EUNET
infrastructure  within Scandinavian countries and
also to Central Europe. The next report will tell how
this all worked out.

EUUGN Vol8 No2 Summer 1988 63




X/OPEN MIDTERM REPORT (EVU G

TOTMAN

X/Open Midterm Report

John Totman

Director of European Program

X/Open Company Ltd.
Lovelace Rd
Southern Industrial Estate
Bracknell
Berks RG12 4SN
UK
+44 344 424842 Extn 2748

John Totman is an electronics development engineer who has been involved

in the engineering support, development and marketing of operating systems

since the early 1970’s.

He more recently strayed into UNIX when managing the development of
commercial applications for departmental users and became a convert to the
cause of standards and applications portability.

John is now a full time employee of the X/Open company and is responsible
for European marketing activities.

Opening wide the X/Open Door

As we planned, X/Open has now widened its
industry influence and involvement in two ways: by
increased share holder memberships and by the
establishment, in 1987, of our User and ISV
Advisory Councils.

In terms of shareholders, NCR and Sun
Microsystems joined in January 1988 bringing out
total membership to 13 of the world’s largest
computer vendors. Our continuing growth in
membership is acknowledgement of theé unstoppable
market trend towards - vendor independent
computing.

Our advisory councils, formed from major users
such as General Motors, Eastman Kodak, British
Airways, Daimler Benz, and software vendors such
as Uniplex, Informix, Oracle, Quatratron, and
Multihouse give direct advice to X/Open on the
future development and expansion of the Common
Applications Environment. Both these Councils
meet regularly with X/Open and have already
provided valuable input to our future plans and
strategies.

64 EUUGN Voi8 No2 Summer 1988

In addition to the ISV Council, which can only be a
small group to be fast moving and responsive, we
have also established a programme of wider
software vendor participations in X/Open by means
of our Software Partnership scheme. This scheme is
designed to give direct support to software vendors
though out Europe and the USA who wish to produce
and market software to the X/Open standard.

Software vendors wishing to take part in the scheme
should contact me at the above address.

Technical ‘‘Hot Spots”’

On the technical front, POSIX has been a major area
of activity for the X/Open Technical Committees.
By the time that this is published, we expect POSIX
(i.e., P1003.1) to be formally endorsed as the official
full use IEEE standard. On this basis X/Open will be
incorporating POSIX functionality into the 1988
edition of the Portability Guide.

In addition to POSIX convergence X/Open has also
developed a standard transport interface definition
for networking (XTI) which provides a protocol
independent system program transport interface; a
user interface (a windowing standard based on X-




TOTMAN

Window); the COBOL definition has been updated
from a COBOL 74 to a COBOL 85 base; and the the
GSA standard ADA has been adopted. All these will
be published in the 1988 edition of the Portability
Guide.

1988 will also be the year that verified X/Open
conforming systems will be available in the market.
Although compliant systems from X/Open members
have been available since early last year it is only
now that formally verified and branded systems will
be available. This has been made possible by the
formulation of conformance guidelines,
establishment of public verification centres, and,
later in the year, licencing of the X/Open system
supplier to test for compliance to the X/Open
standards and to brand compliant products.

X/OPEN MIDTERM REPORT

1988 Outlook

An aggressive marketing activity in the USA,
coupled with the establishment of the X/Open
Software Partners programme, is now attracting a
wide base of industry support for X/Open standards.
It is out expectations that by the end of 1988 major
users, both in the US and Europe, will be specifying
the X/Open Common Applications Environment as a
procurement standard, confident that compliant
products will be available from many suppliers.

Open Comments

X/Open now publishes a quarterly magazine. This is
called Open Comments and is for those who wish to
know more about developments within X/Open and
its standards. If you would like to receive a copy
please contact me.

EUUGN Vol8 No2 Summer 1988 65




RECEIVING NEWS DUNLOP

Receiving News at a Small Commercial Site: Is It Worth It?

Dominic Dunlop
domo@sphinx.co.uk

Sphinx Ltd.
Maidenhead
United Kingdom

Dominic Dunlop is the Research and Development director of Sphinx Ltd, a
UK software distribution and services company he co-founded in 1983, after
experience in supporting Zilog’s range of super-micro computers. Sphinx
centers its operations around non-proprietary operating environments, selling
in a variety of third-party and self-written software products across hardware
from name different vendors.

Dominic’s current r6le is that of bringing complex new products into Sphinx’
offering by first understanding the technical and marketing issues involved,
then working to address them in the context of the company’s current
capabilities and activities.

My company, Sphinx Ltd., subscribes to Usenet, the 2. The net keeps us well informed of what’s

UNIX world’s distributed bulletin board system!. In
the past, the net’s user base has been dominated
mainly by academic institutions, and by large,
technically-oriented commercial companies. Today,
however, more and more small companies are
subscribing, even though the subscription involves
significant costs, both in hard cash and in staff
commitment.

Why is this? Trying to answer this question — in
response to a query which had appeared on the net
— I came up with the following summary of the
benefits, the costs — and the traumas — of bringing
news into a young, marketing-based company.

Justification

1. Access to the net keeps technical people
happy. Considered this way, it’s as much a
pertk as the coffee machine (and about as
expensive to run — see below).

1. Strictly speaking, we subscribe to uknet, the Britsh part of
eunet, which, in turn, links to the US Usenet,

66 EUUGN Voi8 No2 Summer 1988

happening in the UNIX world, and, to a
slightly lesser extent, in the industry at large.
As a consultant, I find this knowledge
increases my worth and the usefulness of my
services to others, both inside and outside the
company. And the non-computer-related
postings broaden my mind!

As my company sells software products, it is
very useful for us to learn of the good and bad
experiences of existing users of software we
already carry, which we may carry in the
future, which is competitive to products we
carry, or to which we may have to interface.
Receiving this information from US sites,
which tend to get product ahead of Europe, is
an added bonus. Similar arguments
undoubtedly hold for suppliers of computers
and peripheral hardware.

My company runs what has come to be called
a heterogeneous installation: we have many
types of computer system from many different
suppliers.  Administration is a constant
problem, as no standard tools yet exist for this
task in such an environment. Sources and
hints from the net have helped us on a number
of occasions, the most recent being when the




DUNLOP

public domain tar was distributed late last
year. We now use this program, which has
compiled without problem for us in several
environments, for cross-machine back-up as a
matter of course. On its own, this program
would justify many months of petwork
charges.

The net is an educational tool: it can teach
readers much about many aspects of

programming.

Problems

1.

You can spend a lot of time reading news —
time when you ought, perhaps, to be doing
other things. An intelligent browser, such as
rn, is de rigeur. Even then, users have to
spend the time to learn how it can best help
them to cut down the volume of the news they
see to a manageable level.

You can also spend a lot of time replying to
news? (although surveys indicate that the vast
majority of news readers are passive, and
don’t post followups).

Getting the news service running can be like
searching for the light switch in a strange and
totally dark room, involving a lot of groping
around, and falling over things you didn’t
know were in your way. The situation getting
better, however — see below.

News needs maintenance. I’d estimate that it
costs us between two and four man-hours per
week.

Good references and ‘how-to’ information are
hard to find. Of course, user guides are posted
to the net, but, firstly, you can’t see them until
the news service is running — the classic
bootstrap problem; and secondly, they don’t
address the issues of administration and
management at all. I can recommend two
Nutshell handbooks published by O’Reilly and
Associates: Managing uucp and usenet (ISBN
0-937175-09-9), and Using uucp and usenet
(ISBN 0-937175-10-2). They are obtainable
from specialist UNIX book stores>.

2. For example, I spent a morning writing this article in response
to a news posting...

3. And also (quick commercial) from Sphinx Ltd.

-

RECEIVING NEWS

News uses a lot of disk space, and quite a lot
of CPU cycles and memory. The latter can be
noticeable if several users are reading news at
busy times of day. (The CPU costs of
receiving news generally occur at night, and
so don’t cause problems.)

News is distributed on a ‘best efforts’ basis:
failures at points throughout the network are
commonplace, and can result in degradation or
total loss of service for indefinite periods. To
put it another way, the net is not a reliable
medium. The level of service delivered would
not be acceptable were it provided on a
commercial basis. For a non-profit co-
operative venture, it’s what one might expect.
The USA, until recently badly overloaded and
disorganised, is getting a lot better as result of
the commissioning of the central site, uuner.
Europe, on the other hand, was running very
smoothly until recently, but is beginning to
creak a bit. (Plans are afoot to address these
problems on short order.)

Practicalities

1.

My company acts as a leaf node: we get our
feed by polling Reading university (reading),
which is a local telephone call away, at 1200
baud, and feed no other sites. The feed is
compressed, giving a ‘worthwhile’ saving in
transmission times, and, consequently, line
charges.

We run news on an Olivetti/AT&T 3B2/400,
and, following disk overflow problems on
shared file systems, have dedicated a 17 MB
file system to /usr/spool/news. This is
marginal: we keep the volume of news held
on-line in check by not having a number of
groups delivered to us, and by expiring a
number of groups after one week rather than
two. I'd estimate that 30 MB would be needed
to have enough headroom to meet all
eventualities. This is a lot of space on a
comparatively small shared system. In
addition, at least 2 MB of spool space are
needed under /usr/spoolluucp as temporary
storage for incoming news. (For non-leaf
sites, the situation is worse: they also need
uucp spool space for outgoing files, which can
quickly mount up if leaf sites fail to poll or
respond to calls from their feed for any
reason.)

EUUGN Vol8 No2 Summer 1988 07




RECEIVING NEWS

3.

Apart from machine costs, which we do not
budget, news costs us about $300 per quarter,
split evenly between phone charges and our
share of uknet’s costs. These cash costs
include some modem usage other than that
required solely for news — in particular,
UNIX mail, and cu and kermit dial-out
connections to other sites. Uknet would
charge us less if we provided primary news
feeds to other sites. However, this would
require us to dedicate to news more machine
resources and more administration time than
we do at present.

Getting news running was a real game, not
least because it was all done in people’s spare
time, and not project-managed in any way. We
obtained the source code from EUUG’s 1986
public-domain software distribution tape (fine
if you have a nine-track tape drive...), and
compiled for our target by trial and error. (By
the way, compiling rn was no problem at all:
the program has one of the best installation
scripts that I've ever seen.) Initial set-up was
also a problem: the Nutshell books can help a
lot here. Users of SCO XENIX and some other
variants of UNIX may be able to get
unsupported netnews binaries through the
organisation which provides their operating
system support. This should help quite a bit,
but still leaves a fair amount of work to be
done. All in all, I'd estimate the cost of
getting our site reliably connected to others
over dial-up links (including the reception of
news) at approaching a man-month —
decidedly non-trivial. This time could have
been reduced had we not been so ambitious
(for example, we spent a fair amount of time
creating a script to drive a multi-standard
smart modem bidirectionally).

Getting a news feed was quite easy, because I
knew who to ask. Officially, you go to the
central site in your country (note the bootstrap
problem again), and they refer you to likely
local feed sites, leaving you to take it from
there. We know uucp well, and it took us
about a week to bed down our connection to
Reading. Again, the Nutshell books can take
some of the pain out of this process.

The mailers delivered with systems are either
dumb, or have a dumb default configuration.
We’ve had to install a public-domain mailer
(smail) on our 3B2 so as to handle domain

68 EUUGN Voi8 No2 Summer 1988

DUNLOP

addressing, and to make a reasonable attempt
at handling the weird return addresses and
paths that pop out of news postings. Even
now, we’re relying on reading and ukc to do
most of the hard routing work. I anticipate
any site that is serious about the news service
and Usenet will find that the configuration job
involves in similar work. (Happily, more and
more systems are being delivered with
sendmail these days, so you merely have to
edit the configuration file.) (A touch of satire
there...)

So, then, have the benefits of the news service
outweighed the effort and expense of getting it
running at our site?

I’d say that they have.

If you don’t yet subscribe to news but want to, I
hope this article has either given you some positive
arguments to take to your management — or has
spurred you towards presenting a fait accompli after
you'’ve got news up and running!




DAVIS (EUUG

UNIFICATION & OPENNESS

Unification and Openness

AT&T announced plans for the next major release of
UNIX System V and reaffirmed the openness of the
operating system at UniForum in Dallas, Texas, in
February of this year.

As statistics show more computers users are moving
to UNIX Systems, In the last year the number of
shipments of computers based on the UNIX
Operating System increased by 60% and the
International Data Corporation estimate that this
growth will continue at an annual rate of 30% over
the next three years.

ALt

UNIX*SYSTEM V MARKET GROWTH

WORLDWIDE CUMULATIVE 7
NUMBER OF UNITS SHIPPED 7
1,000K —

800K
600K —
400K —

200K —

1 ]
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

MTBABOPL1.00 ™= === == SOURCE: INTERNATIONAL DATA CORPORATION

AT&T’s plans for the next release of UNIX System V
will support the growth of the UNIX Systems-based
market. Two critical factors behind the success of
UNIX Systems have been the move towards
standardisation and the openness of UNIX System V.

Janet Davis
janet@uel.uucp

AT&T UNIX Europe

AT&T’s continuing commitment to both these areas
will be backed up by a number of activities. AT&T
will continue to provide both customers and the
industry with information on the direction of UNIX
System V. Seminars, such as the series planned for
this summer covering UNIX System V Release 4.0,
will be held on both technical and business issues.
AT&T will also establish a UNIX System V OEM
Licensee Group, open to all licensed commercial
vendors. This group will meet regularly to share
up-to-date  information on UNIX System V
developments and ideas for promoting the use of
open systems. The aim behind all of these activities
is to support the introduction of UNIX System V
Release 4.0, and underscores AT&T’s commitment
to open systems.

Unification

Another major factor in the growth of the UNIX
Systems market over the last year has been the move
towards the unification of the major UNIX System
derivatives, a move that will be of increasing
importance over the next few years as the industry
looks to a consolidation of the UNIX Systems
market.

In 1987 the move towards unification occurred on
two fronts. One being an alliance with Microsoft
whereby XENIX System V compatibility would be
consolidated into UNIX System V, the other being an
alliance with Sun Microsystems whereby features of

the Berkeley 4.2 and 4.3 systems (BSD) and Sun OS
would be consolidated into UNIX System V.

EUUGN Vol8 No2 Summer 1988 69




UNIFICATION & OPENNESS (E U UG

\\
(=)=

SYSTEM V SYSTEM V SYSTEM V SYSTEM V
RELEASE 3.0 RELEASE 3.1 RELEASE3.2 RELEASE4.0

-
()
(=)~

a move that will be of increasing importance over
the next few years as the industry looks to a
consolidation of the UNIX Systems market.

In 1987 the move towards unification occurred on
two fronts. One being an alliance with Microsoft
whereby XENIX System V compatibility would be
consolidated into UNIX System V, the other being an
alliance with Sun Microsystems whereby features of
the Berkeley 4.2 and 4.3 systems (BSD) and Sun OS
would be consolidated into UNIX System V.

Application Binary Interface

As part of the strategy of unification AT&T have
established a standard Application Binary Interface
(ABI) for both the Intel 80386 and SPARC chip.
Similar work is being carried out elsewhere for the
Motorola 68000 chips. The ABI defines the binary
interface just as the System V Interface Definition
(SVID) defines the source code interface.

By providing application binary portability within an
architecture, the ABI offers the type of portability
normally associated only with PC applications which
in turn will enlarge the market ,for software
applications and preserve customers investments.
Associated with the ABIs will be a Trademark
Licensing Program allowing licensees to use the
trademark UNIX to identify their sublicensed
products.

Release 3.2

The first aspects of this unification work were seen
at UniForum this year when AT&T demonstrated
UNIX System V/386 Release 3.2. This is the first
version of UNIX System V to incorporate XENIX
System V compatibility and is expected to become
the preferred multi-user, multi-tasking operating

70 EUUGN Vois No2 Summer 1988

DAVIS

system for 80386-based computers. Running a wide
selection of software, including software packages
written for UNIX System V and XENIX System V for
the Intel 80286 and 80386 chips, UNIX System
V/386 Release 3.2 will also work with AT&T’s
Simul-Task software to allow users to run multiple
MS DOS applications simultaneously. Licensing of
UNIX System V, Release 3.2 will begin in mid-1988
with Release 3.2 for the 3B2 followed by the 80386
version. Sub-Licensees of the binary UNIX System
V/386 Release 3.2 will have an option to license and
use the trademark UNIX. Where the trademark is
used the product must conform to AT&T’s product
and trademark usage specifications. For end-users
this will mean that when they purchase an 80386-
based system running UNIX System V they will be
assured of the binary portability of applications.

Release 4.0

Release 4.0, the next major release of UNIX System
V, will broaden the market for UNIX System
software by further unifying the major derivatives of
the UNIX Operating System. As well as
incorporating features of XENIX and BSD and Sun
0S, new features such as real-time capabilities,
improvements to systems operations, administration
and management, enhanced networking and features
designed for international markets will be included.

The merging of BSD and Sun OS features into UNIX
System V will take place in three phases. Phase 1
will see Sun OS 4.1 developed to comply with the
SVID. In Phase 2 AT&T will merge Berkeley
features into UNIX System V, Release 4.0 and add
new AT&T features. This version will comply with
the IEEE POSIX standard and will be consistent with
the operating system specifications of X/Open. The
third and final phase will see the restructuring of the
kemnel.

BSD and Sun OS features widely used in the industry
will be incorporated into Release 4.0 so that users
familiar with these features will find it easy to
migrate to a single common UNIX System V base.
Along with RFS, NFS will provide distributed access
and operations on UNIX System file system objects.
RFS and NFS will each be supported as an
independent package with an administrative
interface that will give an administrator a single,
consistent view of distributed file access. Remote
Procedure Call (RPC), a tool for developing
distributed processing applications for a variety of
manufacturers’ hardware will also be incorporated.
RPC lets a process executing on one machine issue

S




DAVIS

service requests to a process on another machine.

Significant enhancements are also planned in the
areas of system operations, administration and
maintenance will include backup and restore,
configuration management software installation and
distribution, message handling facility and remote
operation. Real time ephancements include a
scheduler, general events mechanism and
asynchronous /O while internationalisation features
such as a C compiler that conforms to the ANSI
X3J11 intemational standards and a message
handling facility will be included.

Conformance to Industry Standards

With Release 4.0 AT&T reaffirms its commitment to
supporting industry standards. Release 4.0 will
conform to the forthcoming IEEE POSIX standard,
which is due to be published and adopted in 1988.
Release 4.0 will also be consistent with the operating
system specifications of X/Open in line with AT&T’s
commitment of providing the industry with products
that are compatible with the X/Open Common
Application Environment.

When Will All This Happen?

In preparation for the introduction of Release 4.0,
AT&T will be holding briefing seminars on Release
4,0 for computer manufacturers and software
developers during 1988.

1 1988 [] 1989
I 1
pd AN
| DRAFT_SPARC _ ABI FINAL |
N\
e seamars |
P A
lisv seminars |
P Y
lbraAFT svip  FiNAL]
P N
[BETA svvs aal

[BETA 4.0/3B2 GA I

———\
IBETA 4.0/SPARC GA I

) AR
IBETA 40/386 GA |

This year will also see the OEM Licensee Group
established to set up a channel of communication
and input on the development and direction of UNIX
System V. As well as preparing much of the
groundwork for Release 4.0, AT&T will bring UNIX

UNIFICATION & OPENNESS

System V Release 3.2 to the market in 1988. This
release will first be delivered on the 3B2 and then on
the 80386 chip. 1988 will also see work commence
on a draft update of the ABI for the SPARC chip,
work which will be completed some time in 1989.
During 1989 AT&T will update the SVID and prepare
a version of the System V Verification Suite for beta
release to customers wanting to test their systems
conformance to the SVID. Finally the move towards
the unification of UNIX Systems will culminate in
1989 when beta versions of Release 4.0 will be made
available first for the 3B2 followed by the 80386 and
SPARC chips.

UNIX System V has been successful in the
marketplace because of its consistency, openness,
widespread availability and powerful capabilities.
The next two years will see AT&T expand its open
systems policy and continue to develop and enhance
UNIX System V.

OPEN LOOK

AT&T have announced the OPEN LOOK user
interface, it employs commonsense graphic symbols
instead of written commands to help users work
more efficiently with their UNIX System V-based
computers.

““OPEN LOOK will change the way the industry
thinks of the UNIX system,’’ said Vittorio Cassoni,
president of AT&T’s Data Systems Group. ‘‘This
interface brings the benefits of the UNIX system to a
whole new group of users who otherwise might
never have taken advantage of the power of a UNIX
system-based computer.”’

The OPEN LOOK technology was designed for AT&T
by Sun Microsystems Inc. of Mountain View, Calif.
Sun’s design is based on original work, contributions
from AT&T, and on technology licensed from Xerox
Corporation, which originated many of the concepts
present in today’s computer interfaces.

The OPEN LOOK interface’s graphic symbols
include push pins to ‘pin’ important menus to the
screen for further reference and an elevator to move
up or down in the text. To print or store files, users
move a hand-held mouse to push labeled buttons
designed to look like those on a household
appliance.

As the name implies the OPEN LOOK user interface
supports AT&T’s commitment to open systems and
the need for a standard user interface. Scott
McNealy, president of Sun Microsystems, says that

EUUGN Vol8 No2 Summer 1988 11




UNIFICATION & OPENNESS

it represents the next critical step in truly expanding
the UNIX marketplace. Applications developed with
the OPEN LOOK interface can vie for a larger market
because the interface is standard.

The interface has already generated endorsements
from key computer system suppliers, PC and
workstation software suppliers and system suppliers.

OPEN LOOK combined with ABI, will provide a
common application platform which has, until now,
only been found on MS-DOS machines. Because of
this OPEN LOOK has been endorsed by some of the
big names in the PC world, these include: Lotus,
Ashton-Tate, and Xerox.

In addition to being easy for them to leamn, the OPEN
LOOK interface will make users more productive
because it allows them to create multiple ‘windows’
on their computer screens, each of which can
perform a different task simultaneously.

Programmers will find that the various Application
Programmer Interface (API) Toolkits AT&T plans to
release will give them a set of tools — or pre-
programmed components — to make it more
efficient to write new applications by reducing the
amount of code that needs to be written per function.
As OPEN LOOK will have a defined program
interface, software portability will be increased.

AT&T will circulate OPEN LOOK specifications for
comment this summer and will make them available
in the third quarter of this year. These will include a
specification of the common style for applications —
The Applications Style Guide — as well as
descriptions of the programming interface for OPEN
LOOK under two toolkits, both of which AT&T will
support via a single graphics system platform. They
are the XT toolkit based on the X Windows and the
NDE toolkit based on NeWsS.

The first availability of OPEN LOOK features in an
AT&T product will be this summer in a window
manager for the 6386 workstation, followed by an
XT toolkit in the first quarter 1989.

In keeping with its commitment to support standards,
AT&T said that as they become accepted, the
company would support API's for emerging standard
interfaces. AT&T also will license source code for
the various toolkits supporting the OPEN LOOK user
interface.

The OPEN LOOK user interface toolkits are
scheduled to be available in source form in early
1989.

T2 EUUGN Voi8 No2 Summer 1988

DAVIS

The OPEN LOOK user interface is designed to be
useful into the 1990’s. For instance, unlike some
graphical interfaces, the OPEN LOOK interface is
designed for a wide range of applications from
simple document processing to much more
sophisticated computer-aided engineering (CAE). In
addition, the graphics perform well whether they
appear on a PC or a high resolution engineering
workstation. Also, the interface will support a
variety of terminals accessing different applications.

AT&T today also announced it will co-sponsor with
Sun Microsystem a series of eight, three-day
conferences around the world beginning in
September to give independent software vendors,
value-added resellers and large corporate users a
preview of the key technical features of UNIX
System V Release 4.0, including the newly
announced OPEN LOOK interface.

Al Zachment 2

UNIX®" SYSTEM STANDARDIZATION
NB8S/FIPS
IEEE-POSIX
SVvVsS /

UNIX SYSTEM V SsviD

X/OPEN-CAE UNIX SYSTEM V

MTBABOPL1.002 TIME




MACPHERSON

BOOKS ON ANSIC

Book Review: 2 Books on ANSI C (Draft)

Reviewed by
Andrew Macpherson
andrew@stl.stc.co.uk

STC Technology Ltd.

The ANSI Draft standard has been out for public
comment for almost a year, and we are now seeing
the books which will guide us through the exact
formal definitions to a working appreciation of
where the language has gone.

There is an attitude which says that once a language
is set in a standard it becomes useless. C shows little
signs of this failing, but those who subscribe to this
viewpoint can take heart: in both cases C++ was
used to check the code!

The C Book

Featuring the draft ANSI C Standard.

Mike Banahan, The Instruction Set Series —
Addison Wesley, 1988, ISBN 0-201-17370-0.
(U.K.) price 15.95, Soft Back, 268 pp, Size 23.5
cm x 15.5 cm.

To many the acronym X3J11 is just so much
gibberish. To the C programming community
however, the J11 committee of ANSI’s X3 secretariat
is a medium term source of fairly fundamental
change to the language. Mike Banahan’s early
involvement in that committee, and his well-known
skills as a communicator, make him an ideal
candidate to present the changes and the rationale
for some of the apparent inconsistencies introduced
or addressed by the Draft Standard.

Not content with this, The C Book is more than just a
catalogue of changes and how they will affect the
practice of programming and porting C. Its scope
also encompasses a balanced tutorial on C for
practising programmers who wish to become
familiar with the language.

The format is very much an informal tutorial style —
the difficult concepts are reserved for the later
stages, and each pew concept has an illustrative
fragment of code to demonstrate its use. In fact the
code fragments are usually complete working
programs, all of which have been tested from the
text (with one exception, noted in the text on page

207). Significantly, Mike recognises that some of the
working of C is best reserved until one has
experience of the language, and recommends that
portions of the book be skipped, or at least skimmed,
on first reading, and only returned to when the reader
has six months familiarity with the language. Each
chapter has, at the end, a review exercise to test the
reader’s understanding and full answers are given at
the end of the book.

It works well. The first six chapters deal with the
language per se, with only a few difficult points
reserved for chapter 8. The style is easy to follow,
and the occasional wry wit helps make points while
improving the readability. Chapter 7, the pre-
processor, becomes clear on a second reading, but I
would advise skipping past the informal discussion
of tokens at the bottom of page 158 as it tends to
cloud the issue, only coming back to it if you have
to. The abuse of the second language — the pre-
processor — is well warmed against:

‘“The urge to maim the author of a piece of code
becomes very strong when you suddenly come
across

#else

}
#endif

with no #if or whatever immediately visible
above.”’

Also don’t be confused by the missing __ DATE
on page 166, it is explained on the opposite page.

Chapter 8 is a discussion of many things which are
not, in general, needed to make use of the language,
in particular the new and unfamiliar storage
qualifiers const and volatile, along with a
discussion of linkage, sequence points (where side-
effects are resolved) and typedefs. This last is
put in the realm of system header files, rather than a
useful tool to the application programmer’s hand,
and may reflect, in part, the same historical

EUUGN Vol8 No2 Summer 1988 T3




BOOKS ON ANSIC

perspective that led to the explanation that enums
did not exist when Mike learned the language.

The discussion of the standard libraries is divided by
function (or header file), and quickly establishes that
the UNIX interface has not been taken up in toto.
Goodbye creat, goodbye unlink, hello
delete. I expect this to be the most useful section
of the book for me in the long-term.

This is not a book for the computer novice. It does
not pretend to be. It is certainly suitable as a course-
book both for home-study and formal instruction. I
would rate it as essential reading for someone
contemplating their first C language project, who
needs to know what C will and will not do for them,
the limits of the automatic error detection at compile
time, and what is left to the programmer.

The C Programming Language

Second Edition, Based on Draft-Proposed ANSI C.
Brian W Kernighan and Dennis M Ritchie,
Prentice-Hall Software Series, 1988, ISBN
0-13-110362-8. (U.K.) Price 24.95, Soft Back,
272 pp, Size 23.5 cm x 17.7 cm.

Available — Real Soon Now

The White Book, K&R, the C programmer’s bible —
a book so deeply engrained into one’s working
environment for the past ten years that it is nigh on
impossible to look objectively at it, and here it isin a
revised second edition with the emphasis shifted to
what may be.

This is not a new book, but it will be a best-seller in
the UNIX community. It is a rewrite of the 1978 C
book, with new examples, a C—declaration translator
dcl, a new chapter on the ANSI standard libraries,
and the benefit of improved diagrams (pic).

Saying it like that gives the wrong impression,
however. The first edition of this book has for so
long been the standard for the language, a
sufficiently usable standard that compilers could be
written and tested against the text, that every
working C programmer must have had a copy. This
second edition is a major revision of text, order,
examples; it gives credibility to the ANSI standard.

How then does the new book differ from the old?
Other than the new typesetting, and the
unacknowledged font used in chapter and section
headings, the text has been thoroughly revised. No
more is it a tutorial and reference manual for C,
rather a tutorial and reference manual for ANSI
Standard C. All the new features that have been
added to the language are dealt with, and

T4 EUUGN Voi8 No2 Summer 1988

MACPHERSON

considerable emphasis is placed on the standard
libraries.

For those who want a quick introduction to the new
language, Appendix C is a summary of the changes
introduced by the standard, while Appendix A is the
language reference manual. The reference manual
contains the bones of a yacc parser for the new
grammar, but otherwise follows the format of the
first edition. Appendix B deals with the standard
library, it is equivalent to chapter 9 of The C Book,
with slightly less explanatory text, but is a more
useful quick reference.

While usable as a study document, this, like the
previous edition, is a working programmers book.
Anyone seriously using ANSI C, particularly on
UNIX, should have a copy.




BAMFORD [EUUG ] UNIX FOR THE OFFICE
Book Review: UNIX Products for the Office
Reviewed by
Tony Bamford
afb@phcomp.co.uk
Parliament Hill Computers Ltd.
UNIX Products for the Office much it costs to buy or, where applicable, rent and

The National Centre for Information Technology,
Published by The National Computing Centre
Ltd., 1988, ISBN 0-85012-701-7. Price (UK) 45,
Soft back, 266 pp.

Its all very well knowing where your next GNU
EMACS update is coming from but what do you do
when you want a prospect tracking system to run on
your UNIX box? Never fear, NCC have the answer.

UNIX Products for the Office is a catalogue of UNIX
products available within the UK that are designed
and intended specifically for the office environment.

It is divided into 4 main parts, an introduction, a
detailed description of products, an index by
description and an index by supplier.

The introduction deals with what UNIX is, why
UNIX is wonderful for office applications and how to
choose a UNIX system if you don’t have one already.
The product description forms the major part of the
handbook and consists of about 200 pages, each
product getting half an A4 page. The half page of
information gives a few lines describing what the
product does, a list of applications for which the
product is suitable, a list of users the product
addresses and some details of the type of hardware
needed to run it. Then come financial matters, how

how much annual maintenance costs. Finally a UK
supplier of the product is named.

This book is a great idea, a guide to UNIX products
in the marketplace is long overdue.

However, there are some problems with the
catalogue, a fair proportion of the entries don’t
mention prices. Also, only one supplier is listed per
product, this is to be expected for software written
by small software houses, but one UK supplier for
INFORMIX? Other problems appear when the
catalogue is used and suppliers say ‘sorry, we don’t
deal with that product any more’’.

The key to the problem is outlined in the
introduction to the catalogue, which states:

Any volume of this type is absolutely dependent
on the good will of the product suppliers in
completing the questionnaires ...

This implies that many suppliers returned half-
completed questionnaires. Thus, we can only hope
that the book becomes popular and suppliers are
encouraged to provide the NCC with complete
information.

So my conclusion is good as far as it goes, but the
second edition should be more useful.

EUUGN Vo8 No2 Summer 1988 15




EUUG CONFERENCE

PROCEEDINGS

EUUG Conference Proceedings

Here are the abstracts of the papers delivered at
the EUUG 10th Anniversary Conference (Part II)
in London this April. Please contact the authors if
you would like a copy of a paper.

Thanks are due to Stwart Mc Robert
(sm@doc.ic.ac.uk) who also typeset the
proceedings.

OFS — an Optical View of a UNIX File System
Paulo Amaral

GIPSI-SM90!
c/o INRIA
BP105
78153 LE CHESNAY CEDEX
FRANCE
mcvaxlinrial gipsilpaulo

Abstract
The design and implementation of the Optical File System
(OFS) is described. It was conceived to run under UNIX and to
deal with Optical Disks. We explain our view on how to
develop a file system, at UNIX user level, with a WORM (Write
Once—Read Many) device. OFS manipulates multiple file
versions'automatically. It also works upon an implementation
of atomic transactions: fault tolerance implications are studied.
Finally, we describe our experience using the OFS by means of
a backup utility, that has been used by our software research
team since October 1987,

Software Re-engineering using C++

Bruce Anderson
Sanjiv Gossain

Electronic Systems Engineering
University of Essex
bruce@ese.essex.ac.uk,
goss@ese.essex.ac.uk

The plan for our experiment was to take a piece of software
and rewrite it in C++. We wanted the program in question to
be locally-generated, written in C, widely used and to be a
generic program, one which was typical of a class of programs
that were cither actually written or likely to be needed. Our
idea was to proceed in small steps and to reflect on each step.

Measuring File System Activity
in the UNIX System

Maurice J. Bach?
Ron Gomes

1. GIPSI-SM90 is sponsored by the French Ministry of Research and Technology
under the contracts 83-B1032 84-E0651 85-B0524

2. Author’s current address: IBM lsracl Scientific Center, Technion City, Haifa,
Tsrael.

76 EUUGN Voi8 No2 Summer 1988

AT&T Information Systems
190 River Road, Summit, NJ 07901

Abstract

We describe an analysis of system call activity (particularly file
system activity) made on several UNIX systems in a software
development lab. The measurements were motivated by design
work in support of distributed file systems; the intent was to
characterise such things as system call frequencics, file system
access patterns, and caching behaviour, and to identify
performance bottlenecks which might have been missed by
existing measurcment tools. Among the more important
results of the study:

» Most system call activity is file system activity.

» Most reads and writes are not matched to the file system
block size.

o Most terminal /O is done a single character at a time

» Operations on directorics dominate buffer cache activity
cven though only a small part of the cache contains
directory data.

» Most buffer cache hits result from repeated access by a
single process.

A UNIX Environment for the GOTHIC Kernel

Pascale Le Certen,
Béeatrice Michel,
Bull Recherche.

Gilles Muller,
IRISA-INRIA
Campus de Beaulicu, 35042 Rennes-CEDEX

Creating an operating system on an open machine, implies the
use of development methods. This report describes the way
chosen to implement the kernel of the GOTHIC distributed
system and a well suited environment. Our goal is to design a
development system which can run on the successive versions
of the kemnecl. The major advantage of that method is to
intensively test the kernel for programming and design errors.

UNIX Around the World
Sunil K Das

City University London,
Computer Science Department
London EC1V OHB, UK
sunil@cs.city.ac.uk

Abstract
In the Preface to the Eighth and Ninth Editions of the
Programmer’s Manual for the UNIX Time-Sharing System,
Doug Mcllroy says that the volumes describe the lincal descent
of the original operating system pioneered by Ken Thompson
and Dennis Ritchie. Distributed computing proved to be the
distinctive theme of the landmark Eighth Edition: Dennis
Ritchie’s coroutine-based stream IO system, and the Datakit
virtual circuit switch realisation by Lee McMahon and Bill
Marshall, provided the basis for networking, Peter
Weinberger’s remote file systems made it painless, and Rob
Pike’s software for the Teletype 5620 moved system action




EUUG CONFERENCE

right out to the terminal.

Users distributed around the world is the theme of the Spring
1988 EUUG Conference. The Conference Chairman discusses
here why users around the world have demanded to use UNIX,
why UNIX has proved successful around the world, and the
future of the UNIX system in the world marketplace.

The paper finishes with a citation of the original and
innovatory contributions made by many of the speakers who
travelled from all over the world to be at the the EUUG’s
Conference held at the Queen Elizabeth II Conference Centre,
London in April 1988.

UNO: USENET News on Optical Disk

A. Garibbo,
L. Regoli,
G. Succi

University of Genoa
Italy

Introduction

The size of a WORM optical disk is greater than a Gbyte and it
is likely to grow fast within few years; moreover storing and
retrieving USENET news is becoming tedious and difficult: at
present time a user has easy access to news if he knows exactly
which ones he wants to consult; besides reading daily news
takes little time using standard read-news tools.

Troubles arise when onc wants to find some news only
knowing few features because the help he has is merely a
hierarchical organisation of the news supplied by the USENET
system: actually, such a tree-shaped framework seems to be
quite unsuitable as long as:

i. the structure is not strongly enforced
ii. quite different leaves lie in the same directory

Owing to the high rate of news traffic, lots of space is needed,
and usually each local network connected with USENET either
devotes too much space to archiving or it needs frequent
backup on tape.

UNO - USENET News on Optical disk ~ attempts to solve this
kind of problems, since more than four years of full news, at
the present rate, can be archived on a WORM disk.

All facilities provided by standard readnews tools are enclosed
in UNO; moreover it supports an incremental knowledge driven
search, which allows interactive data retrieving without either
knowing exactly the wanted news or having to deal with all the
news of a USENET directory.

UNO provides easy interaction through a smart query language,
remote query and intelligent programmable selection of
relevant news.

UNO was developed an a workstation named Arianna, based on
a National 32032 processor, which runs UNIX System V.3. A
WORM disk is fully integrated in the global file system; UNO is
designed in C++ according to object oriented programming and
software engincering criteria.

Evolution of the SunOS
Programming Environment

Robert A. Gingell

PROCEEDINGS

Sun Microsystems, Inc.
2550 Garcia Ave.
Mountain View, CA 94043 USA

Abstract

Recent changes to Sun’s implementation of the UNIX operating
system (SunOS) have provided new functionality, primarily file
mapping and shared libraries. These capabilitics, and the
mechanisms used to build them, have made significant changes
to the programming environment the system offers.
Assimilating these new facilities presents many opportunities
and challenges to the application programmer, and these are
explored in this paper.

The new mechanisms also provide the application programmer
with a flexibility comparable to that previously reserved for the
operating system devecloper. Much of this flexibility is based
on mechanisms for dynamic linking that support interposition.
The future developments and ramifications of these
mechanisms, as well as other areas for similar system
refinements, are also explored.

Multiprocessor UNIX:
Separate Processing of 1/0

AJ. van de Goor,

Delft University of Technology,
Department of Electrical Engineering,
Mckelweg 4,

P.O. Box 5031,

2600 GA Delft,

The Netherlands.
vdgoor@dutesta. UUCP

A. Moolenaar,
Oce Nederland B.V.,
St. Urbanusweg 126,

P.O. Box 101,

5900 MA Venlo,
The Netherlands.
mool@oce.nl. UUCP

J.M. Mulder,
Delft University of Technology,
hansm@dutesta. UUCP

Abstract

Making UNIX suitable for a multiprocessor system is a logical
step because of the wide acceptance of UNIX and the
decreasing cost of hardware. The multiprocessor adaptation,
however, is not trivial because of some of the assumptions the
UNIX kernel is based on. This paper illustrates, on a high level,
the performance considerations which guided the design of a
UNIX multiprocessor, and it describes specifically the
modifications required to implement the 1O kernel layers on
dedicated I/O processors. This implementation was based on
the concepts of horizontal and vertical data sharing.

System V Release 3,
Diskless Workstations and NFS

Robert Cranmer-Gordon,
Bill Fraser-Campbell,
Mike Kelly,

Peter Tyrrell

The Instruction Set
rob@inset.co.uk,
bill@inset.co.uk,

EUUGN Vo8 No2 Summer 1988 17




EUUG CONFERENCE

wot@inset.co.uk,

petet@inset.co.uk
Abstract
Diskless UNIX workstations are becoming a fashionable way of
providing users with high levels of facilitics and performance
at low cost. To date, most implementations of UNIX for
diskless computers have been based on 4.2BSD. This paper
describes some major modifications made to Motorola System
V/68 to produce a version of System V Release 3 capable of
supporting diskless machines.

To make diskless operation possible using Sun’s Network File
System (NES over Ethernet, the File System Switch feature of
System V Release 3 has been replaced with the Sun Virtual
File System (VFS) switching arrangement. However, the
Release 3 STREAMS architecture has been retained as a
framework for Internet protocol software to permit a
(comparatively) easy switch to OSI protocols in the future. The
BOOTP (RFC 951) and TFIP protocols are used for
bootstrapping diskless machines.

The paper presents details of the method used to marry NFS
and STREAMS, performance enhancements to the Sun
distributed record locking and experiences with BOOTP. It also
lists those awkward places where the requirements of NFS and
the System V Interface Definition (SVID) conflict.

Implementation of X.25 PLP
in ISO 8802 LAN Environments

S.A. Hussain,
J. Olnes,
T. Grimstad

Norsk Regnesentral,
Blindern
0314 Oslo 3
anwar%vax.nr.uninett@tor.nta.no

Abstract

The X.25 Packet Layer (ISO 8208) and Class II of LLC (ISO
8802/2) are both implemented in the kernel of Berkeley UNIX
4.2BSD on a VAX 11/750 as a new communication domain
(AF_XLAN). It is accessible using the IPC primitives provided
by 4.2BSD. X.25 PLP’s stream scrvices are accessible via
stream sockets. Class II of the LLC's datagram services are
accessible via raw datagram sockets and strcam services via
raw stream sockets.

General Purpose Transaction Support Features
for the UNIX Operating System

S. G. Marcie
R. L. Holt

NCR Corporation
E&M Cohimbia
W. Columbia, South Carolina 29169

Abstract
This paper describes the features of NCR’s General Purpose
Transaction Facility (GPTF), an extension to NCR’s
implement-ation of UNIX System V for the TOWER
supermicrocomputer.  Timer signals with  millisecond
resolution are  presented. Performance of process
synchronisation and interprocess communication is improved
via a set of semaphore primitives which executes in the user
program environment and operates on structures which exist in
standard UNIX System V shared memory. A scheduler is

18 EUUGN Voi8 No2 Summer 1988

PROCEEDINGS

described which reduces process switching latency and
provides process scheduling among both realtime and
timesharing priority classes.

Additionally, a mechanism is provided to lock a process in
memory so that it is immune to paging. Scheduling latency is
reduced through voluntary preemption within the kernel. A
novel disk I/O scheduler provides the ability to schedule disk
requests according to process priority, seek distance, or some
configurable combination of both parameters.

User access to the transaction processing facilities is provided
via a set of system calls and shell commands. A user friendly
interface is provided to allow a superuser to control such
access.

Grep Wars
Andrew Hume

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
researchlandrew

Abstract

Subsequent to the Sixth Edition of the UNIX system there have
been different versions of the searching tool grep using
different algorithms tuned for different types of search patterns.
Friendly competition between the tools has yielded a
succession of performance enhancements.

We describe the latest round of improvements, based on the fio
fast /O library and incorporating the Boyer-Moore algorithm.
Although grep is now 3—4 times faster than it was, egrep is
now typically 8—10 (for some common patterns 30—40) times
faster than the new grep.

Yacc Meets C++
Stephen C. Johnson

Ardent Computer Corp.®
880 W. Maude Ave.
Sunnyvale, CA, USA, 94086

Abstract

The fundamental notion of attribute grammars is that values are
associated with the components of a grammar rule; thesc
values may be computed by synthesising the values of the left
component from those of the right components, or inheriting
the values of the right components from those of the left
component.

The yacc parser generator, in use for over 15 years, allows
attributes to be synthesised; in fact, arbitrary segments of code
can be executed as parsing takes place. For the last decade,
yacc has supported arbitrary data types as synthesised values
and performed type checking on these synthesised values. It is
natural to think of this synthesis as associating a value of a
particular type to a grammar symbol when a grammar rule
deriving that symbol is recognised.

Languages such as C++ support abstract data types that permit
functions as well as values to be associated with objects of a
given type. In this framework, it appears natural to extend the

3. Much of this work was done when the author was employed by ATAT
Information Systems




EUUG CONFERENCE

idea of computing a value at a grammar rule to that of defining
a function at a rule. The definition of the function for a given
object of a given type depends on the rule used to construct
that object.

In fact, this notion can be used to generalise both inherited and
synthesised attributes, unifying them and allowing even more
expressive power.

This paper explores these notions, and shows how this rule-
based definition of functions allows for easier definitions and
much more flexibility in some cases. Several examples are
given that are hard to express using traditional techniques, but
are naturally expressed using this framework.

Software Tools for Music
- Qr =
Communications Standard Works!

David Keeffe

Siemens Ltd., Systems Development Group,
Woodley, Reading, UK
ukc!siesoft!dk

Introduction

Described here is the evolution of a small suite of programs for
the composition and performance of music. They started life
as a personal interest, inspired in part by Peter Langston’s work
[Langston 86]. As they developed, however, a use for the
programs was seen as an unusual and illustrative aid for
exhibiting computing equipment.

At the Systems Development Group, we are involved variously
in developing systems which address the problems of UNIX and
DOS communication, in developing software for a graphics
workstation, and generally in improving the flexibility and
usability of Siemens range of UNIX and DOS machines. Would
it not then be a good idea if an ‘carcatching’ package could be
built which combined all this?

As such a system is to receive close scrutiny, the musical ideas
must have a reasonable foundation: the computer should not
be seen as simply a glorified tape machine.

The aim of this paper, then, is to present several facets of the
music system: of course, the musical ideas are central, but
there are also other lessons to be learnt. There are two central
foundations of the design of the system: the first is the Musical
Instrument Digital Interface, or MIDI: there will not be much
said about it, as there isn’t much to say — the standard itself is
only about one-third the length of this paper! What should
become clear is not only the way MIDI allows the system to
function but also how such a useful standard can make writing
other music programs so much easier and more effective. The
second foundation is the legacy of the UNIX operating system:
it is that legacy which makes the whole thing fit together.

‘Why music? The composition of music is generally thought of
as one of the most abstract of human activities. While not ever
hoping to replace the human musician, the computer can be
used to experiment with music, as well as providing a base for
a diverting exercise in analysis and programming. Also,
computer music is strangely attractive, like high-quality
intelligent speech systems.

An Overview of the Gothix Distributed System

PROCEEDINGS

Alain Kermarrec

IRISA — Campus de Beaulieu -
35042 RENNES-CEDEX - FRANCE -
kermarre@irisa.irisa fr

Introduction

Currently under development at the IRISA/INRIA, GOTHIC is
intended to be an integrated distributed system implemented on
a network of multi-processor machine BULL SPS7. Since the
development of the GOTHIC kernel is assumed to take a rather
long time, it was decided to build on UNIX machines (a
Network of SUN running under UNIX 4.2BSD) a system which
provides the same interface as GOTHIC in order to start the
development of applications. The first release of this system
called GOTHIX is currently under test. This paper first
describes the concepts developed in both systems and then
discusses some implementation details of GOTHIX.

A Tool-based 3-D Modelling
and Animation Workstation

Samuel J. Leffler
Eben F. Ostby
William T. Reeves

Animation Research and Development Group
Pixar
3240 Kemner Blvd,
San Rafael, CA. 94901

Abstract

A tool-based system for 3-D modelling and animation is
presented. Each fool is a separate program that operates as an
independent UNIX process. Tools utilise a window-oriented
display package, an event-based input system, and a large
graphics database that resides in shared memory in providing
interactive and non-interactive functions. The system
described here is being developed for use in the production of
3-D animated sequences and as a testbed for research in 3-D
modelling and animation. The architecture of the system and
the motivation behind the tool-based approach is described.

Word Manipulation in Online Catalog Searching:
Using the UNIX System for Library Experiments

Michael Lesk

Department of Computer Science
University College London
Gower St
London WCIE 6BT

Bellcore
435 South St
Morristown, NJ 07960

Abstract

Online public access catalogs are often plagued with very short
queries and very short document descriptions. As a result
performance may be poor and the users are dissatisfied. To
improve recall, in particular to deal with query terms not found
in the collection, a machine-readable dictionary can be used to
identify related terms by overlap of defining words. To
improve precision, phrases can be retrieved and the user asked
to pick the appropriate ones. A demonstration system is
running on 72,000 records from the British Library Eighteenth
Century Short Title Catalog.

EUUGN Vol8 No2 Summer 1988 19




EUUG CONFERENCE

A UNIX system is a good way to implement this software,
because of its advantages of easy programming, availability on
small machines, and advanced data base routines.

Help! I’'m Losing My Files!
John Lions

University of New South Wales
Kensington 2033
Australia

Abstract

Managing large collections of miscellancous files can present a
problem for individual users of a UNIX system. Keeping track
of files that are still wanted and useful, finding and eliminating
files that are no longer nceded, and reorganising the file
hicrarchy from time to time may not be trivial if the set of files
is large. Outlines are drawn for a partial solution involving
index files, embedded keyword lists, a procedure for revising
file pathnames and the implementation of a daemon secretary
to keep everything tidy.

A Toolkit for Software Configuration Management

Axel Mahler,
Andreas Lampen

Technische Universitit Berlin

Abstract

For almost ten years, make has been a most important tool for
development and maintenance of software systems. Its general
usefulness and the simple formalism of the makefile made
make one of the most popular UNIX tools. However, with the
increased upcoming of software production environments,
there is a growing awarencss for the matter of sofiware
configuration management which unveiled a number of
shortcomings of make. Particularly the lack of support for
version control and project organisation imposed a hard limit
on the suitability of make for more complex development and
maintenance applications.

Recently, several programs have been developed to tackle
some of the problems not sufficiently solved by make.
Shape, the system described in this paper, integrates a
sophisticated version control system with a significantly
improved make functionality, while retaining full upward
compatibility with makefiles. Shape’s procedure of
identifying appropriate component versions that together form
a meaningful system configuration, may be completely
controlled by user-supplied configuration selection rules.
Seclection rules arc placed in the shapefile, shape’s
counterpart to the makefile.

The shape system consists of commands for version control
and the shape program itself. It is implemented on top of the
Attribute File System (AFS) interface. The AFS is an
abstraction from an underlying data storage facility, such as the
UNIX filesystem. The AFS allows to attach any number of
attributes to document instances (c.g., one particular version)
and to retrieve them by specifying a set of desired attributes
rather than giving just a (path-) name. This approach gives an
application transparent access to all instances of a document
without the need to know anything about their representation.
So, it is also possible to employ different data storage facilitics,
as for instance dedicated software engineering databases.

The project organisation scheme of shape provides support
for small (onc man), medium, and large projects (multiple

80 Evuch vois Noz summer 1985

PROCEEDINGS
programmers/workstation network).

Design of and Experience with
a Software Documentation Tool

José A. Mafias
Tomds de Miguel

Dept. Ingenicria Telemética
E.T.S.L. Telecomunicacién
Ciudad Universitaria
E-28040 MADRID
SPAIN
Jjmanas@goya.uucp

tmiguel@goya.uucp
Abstract

A UNIX tool is presented that permits to write documented
code in a text oriented fashion, looking for humans that have to
read, understand, and maintain it, rather than thinking for
language processors that have to compile it. The tool permits
handling any text processing system, as well as any target
language. Several files may be documented and maintained as
a single unit, thus helping in keeping them coherent. The tool
may easily and productively interact with standard UNIX tools.
The design criteria, basic features, and some real examples of
utilisation are presented.

UNIX Past, Present, and Future:
Changing Roles, Changing Technologies
John R. Mashey

MIPS Computer Systems
Sunnyvale, CA 94086

Introduction

The UNIX operating system scems to defy the laws of physics
by remaining in perpetual motion. This paper takes a brief
look at where it's been, where it is, and where it might be
going. In particular, UNIX stands as a major beneficiary of the
the current developments in RISC microprocessors.

Multilevel Security with Fewer Fetters

M. D. Mcllroy
J. A. Reeds

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract

We have built an experimental UNIX system that provides
security labels (document classifications), where the security
labels are calculated dynamically at the granularity of kernel
activity, namely, at each data transfer between files and
processes. Labels follow data through the system and maintain
the lowest possible classification level consistent with the
requirement that the labels of outputs dominate the labels of
inputs from which they were computed. More rigid control is
exerted over the labels of data passing out of reach of the
system to and from tapes, communication lines, terminals, and
the like. Necessary exceptions to the security rules (as for
system administration, user authentication, or document
declassification) arc handled by a simple, but general, privilege
mechanism that can restrict the exceptions to trusted programs
run by ‘licensed’ users. Privileges are subdivided; there is no
omnipotent superuser. Carefully arranged data structures and
checking algorithms accomplish this finc-grained security




EUUG CONFERENCE

control at a cost of only a few percent in running time.

Dynamic labels should help mitigate the suffocating tendencies
of multilevel security. At the same time dynamic labels admit
covert channels by which dishonest, but authorised, users can
leak data to unauthorised places at modest rates. The system is
still highly resistant to other kinds of threat: intrusion,
comruption of data by unauthorised users, Trojan horses,
administrative mistakes, and joyriding superusers. In most real
settings, we believe, worrics about potential leaks will be far
outweighed by these latter concerns and by the overriding
consideration of utility.

Directly Mapped Files
Andreas Meyer

Stollmann GmbH,
Max Brauer Allee 81
D-2000 Hamburg 50
West Germany

Abstract
Directly Mapped Files is a file ‘access method implemented
under UNIX System V Release 3.
The entire file appears to the user process like a large byte
array in the virtual address space and may be accessed without
any read, write or seck operations. Thus, many programs,
especially those working on data bases, intermediate files, or
complex data structures, may be written much more casily and
run faster. The paper describes the implementation in the UNIX
kernel and its direct relationship to the demand paging
algorithms. An example (ar) demonstrates the issues for user
programs.

SunOS Virtual Memory Implementation
Joseph P. Moran

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043 USA

Abstract
The implementation of a new virtual memory (VM) system for
Sun’s implementation of the UNIX operating system (SunOS*)
is described. The new VM system was designed for
extensibility and portability using an object-oriented design
carefully constructed to not compromise efficiency. The basic
implementation abstractions of the new VM system and how
they are managed are described. Some of the more interesting

blems encountered with a system based on mapped objects
and the resolution taken to these problems are described.

Adventures in UNIX Arithmetic
Robert Morris

National Computer Security Center
Fort George Meade
Maryland 20755
USA
RMorris@dockmaster.arpa

4. SunOS$ is a trademark of Sun Mi

Y

PROCEEDINGS

The problems of writing mathematical software under UNIX
are described. This comes about as the accuracy of standard
mathematical functions (e.g., sin, or log is something rarely
considered important by the supplier of a computer system, the
guru that docs the port will probably comment that ‘floating
point is for users’ and forget this important issue.

This paper is a plea to manufacturers to provide something that
works to the accuracy that the hardware can support.

The JUNET Environment
Jun Murai

Computer Centre
University of Tokyo
Japan

jun@u-tokyo.junet
Abstract
The JUNET environment consists of various Kanjified public
domain utilities and some original tools providing Kanji
capabilitics. The design and implementation of this
environment will be described, as well as the current status of
JUNET itself.

POSIX — A Standard Interface
Jim R Oldroyd

The Instruction Set
jr@inset.co.uk
Abstract
There is a bewilderingly large number of UNIX systems in
existence today. Most are derived from one of two main
‘flavours’ of the operating system — System V and 4.*BSD.

However, these derivatives vary considerably in a variety of
ways, both expected and unexpected. Differences exist in the
behaviour of functions, their types, the type and number of
arguments, location and contents of header files, etc; also the
commands and utilities may differ or take different options,
etc.

These differences provide headaches to authors of portable
applications. Although it is possible to write software that will
compile without modification and run cormrectly on a large
number of existing systems, considerable expertise and
knowledge of the different systems is required to do this.
Acquisition of this expertise can be a time-consuming and
costly overhead.

Developing software which is portable across different UNIX
operating systems suffers from a major problem: the software
is still likely to need modification when another new
implementation of the system appears.

The POSIX System has been developed to ease this problem.
The interfaces (system calls, libraries and commands)
described in POSIX have evolved from those on existing UNIX
systems and, where things differ on existing systems, the
POSIX interfaces represent a compromise or an improvement.

The POSIX interface can be implemented on all existing UNIX
systems (and, in fact on non-UNIX systems too). Porting
applications to new systems will be considerably simplified, if
both source and target systems are POSIX compatible.

This paper presents a technical overview of POSIX and looks at
arcas which differ from existing systems. The paper takes the
view of an Applications Writer, but in so doing, highlights

EUUGN Vol8 No2 Summer 1988 81




EUUG CONFERENCE PROCEEDINGS

arcas which will be of interest to those responsible for making
asystem POSIX-compatible.

An overview of the position of POSIX and impact in the market
place is also given.

The Andrew Toolkit — an Overview

Andrew Palay
etal.

Camegie Mellon University

Abstract

The Andrew Toolkit is an object-orientated system designed to
provide a foundation on which a large number of diverse user-
interface applications can be developed. With the Toolkit, the
programmer can picce together components such as text,
buttons,and scroll bars to form more complex components. It
also allows for the embedding of components inside other
components, such as a table inside of text or a drawing inside
of a table, Some of the components included in the Toolkit arc
multi-font text, tables, spreadsheets, drawings, equation,
rasters, and simple animations. Using these components we
have built a multi-media editor, a mail-system, and a help
system. The Toolkit is written in C, using a simple
preprocessor to provide an object-oriented environment. That
environment also provides for the dynamic loading and linking
of code. The dynamic facility provides a powerful extension
mechanism and allows the set of components used by an
application to be virtually unlimited. The Andrew Toolkit has
been designed to be window-system independent. It currently
runs on two window systems, including X.11, and can be
ported easily to others.

Plan 9 from Bell Labs — The Network

David Leo Presotto

AT&T Bell Laboratories
Murray Hill, New jersey 07974

researchipresotto

presotto@att.arpa
Abstract
This paper describes a new computing environment and the
networking that underlies it. We expect the environment to
accommodate either a small group or a large organisation.
Although our initial implementation is targeted at 100
researchers, our goal is a system that can encompass all of
AT&T'’s research and development.

Our design runs countersto the popular trend in computing
environments, workstations connected by local area networks.
We have found this solution to be both expensive and
awkward. This is especially apparent in large organisations.
Instead, we propose a system based on clusters of file servers
and exccute servers connected by high speed networks. User
interfaces, similar to workstations, access the servers via lower
speed distribution networks. Among other things, this
simplifics administration and allows the home and work
computing environment to be the same.

Formatted /O in C++

Mark Rafter

Computer Science Department
Warwick University
Coventry

82 EvUGN Vois No2 summer 1988

England
Imevaxtwarwicklrafter

Abstract

The fmtio library extends C++ stream J/O to include formatted
1/0 in the style of stdio. This extension is layercd on top of
stream I/O, and only requires minor changes to <stream.h>.
The key traits of the original stream 1/O system, namely
extensibility and type-security, are retained. An example of its

use is:
cout[ "log of %d is:%9f\n" ] << 5 << log(5);
which prints
log of 5 is: 1.609438

The fmtio library is presented as a suitable framework in which
to conduct further experiments with formatted JJO systems.
The methods used in the library are sketched, and its overall
structure outlined. An example is given of how to equip a
datatype with formatted /O by interfacing it to the fmtio
library.

A Protocol for the Communication between Objects

R. Schragl
UNA EDV-Beratung GmbH, Miinchen
D. Lauber
Siemens AG, Miinchen

Abstract

In object-oriented systems objects communicate with each
other via messages. An object activates processing by sending
a message to another object and waiting for its termination.
Most of the existing implementations (e.g., SMALLTALK 80)
have chosen this procedure. Normally, they are available as
stand-alone systems, so that no specific protocols are required.
When offering an object-oriented user interface, integrated in a
conventional command-oriented system, and with tools
running in a local or distributed environment, application
protocols are required. This contribution defines a protocol
with a service, comparable to the session-layer of the ISO
reference model, suitable for this application. The
characteristics of the protocol are described, and an
implementation is shown within a UNIX system using the
programming language C. The concepts are validated in a
distributed software development environment, where system
software for mainframes is developed using connected
workstations based on UNIX.

UNIX V.3 and Beyond

Ian Stewartson

Data Logic Limited
System Software Development Group

Abstract

The object of this paper is to provide an overview of the
current state of the UNIX Operating System environment with
specific reference to the latest release (V.3) from AT&T. As
UNIX has been selected as the basis for a portable operating
system by a number of standards bodics, the work being donc
by these groups is also reviewed. Finally, the paper highlights
possible and likely future developments of UNIX that are
designed to improve its commercial viability.

An Overview of Miranda




EUUG CONFERENCE

David Turner

Computing Laboratory
University of Kent
Canterbury CT2 7NF
ENGLAND

Abstract
Miranda’ is an advanced functional programming system
which runs under the UNIX operating system. The aim of the
Miranda system is to provide a modemn functional
programming language, embedded in an ‘industrial quality’
programming environment. It is now being used at a growing
number of sites for teaching functional programming and as a
vehicle for the rapid prototyping of software.

5. Miranda is a trademark of R b Soff Ld.

PROCEEDINGS

EUUGN Vol8 No2 Summer 1988 83




ERRATUM IN PROCEEDINGS MAHLER & LAMPEN

Erratum in Conference Proceedings

A Toolkit for Software Configuration Management
Axel Mahler
Andreas Lampen

The authors of the above paper have informed us that there were a few mistakes in the text of the paper that they
supplied to be printed. Please apply these corrections in the appropriate appendices:

in Appendix A: A sample Makefile

# Transformation rule definitions and
# configuration management related rules and macros

.SUFFIXES: .h,v .c,v .h

.c,v.0:
@-if [ -s $(SRCDIR)/$*.c ] ; \
then \
aecho "WARNING: $*.c probably obsolete ! (RCS archive has changed)"; \

echo "$(CC) ~c $(CFLAGS) $*.c"; \

$(CC) -c $(CFLAGS) $*.c; \

else \

echo temporarily checking out $*.c --- §(VID); \

(cd §(SRCDIR); $(CO) $(COFLAGS) $*.c) > /dev/null; \
$(cc) -c $ (CFLAGS) $*.c; \

rm $*.¢; \

fi,;

.h,v.h .¢,v.c:
@-if [ -s $(SRCDIR)/$Q@ ] ; \
then \
echo "WARNING: $@ probably out of date ! (RCS archive has changed) "; \
else \
echo checking out $8; \
(cd $(SRCDIR); $(CO) §(COFLAGS) $@) > /dev/null; \
fi;

SRCDIR = /u/shape/apps

in Appendix B: A sample Shapefile

#% RULE-SECTION

fsexp:
af*.c, attrge (state, published), attrmax (version),
attrvar (unixfs), attrvar (debug) ;
*.c, attr (state, busy), attrvar (unixfs), attrvar (debug).
fsrelease:
*.c, attr (state, frozen), attrmax (version), attrvar (unixfs).
dbexp:

af*.c, attrge (state, published), attrmax (version),
attrvar (damokles), attrvar (debug) ;
*.c, attr (state, busy), attrvar (damokles), attrvar (debug) .

#% VARIANT-SECTION

84 EUUGN Vois Noz Summer 1988




Glossary
Here are the definitions of a few not-so-common English words that can be found in the newsletter. Where
a word has several meanings the way in which it is used in this issue is the one explained.
abbreviation A shortening of a word
abuse Use in a way not intended
accolade Praise
accrued Increase by growth or addition
acronym Short name made up from initial letters of long name
anticipate For see event and act on it
awkward Clumsy, difficult to use
celebrate Party because of pleasant event
cement Joing formly together
chat Talk
citation Writing on award
compact Fit tightly into small space
comply Obey rule
concept idea of way of doing ...
concise Complete but written in few words
convey Carry
convince Pususade totally in argument
culminate Final climax of big task
customer Altemative definition of "Panic’
das Variously defined - often implies movement or noise
debate Formal spoken argument/discussion
disclaimer Note showing that it’s not your fault :-)
disclose Tell other people about
dissipate Waste
endeavour Try, attempt
engrained An assumed part of ...
epilogue Speach/chapter at end of ...
evade Avoid
expound Explain at great length
extend To make cope with ..., to make longer
freebie Free gift
fun Something not done seriously
funded Paid for/by
gibberish Something impossible to understand
glue Sticky liquid used to join items
gossip Talk - often unfounded information about other people
indemnify Protect against
loaned Given for a (short ?) period & then returned
perk Freebie - often part of a job
pint Unit of measure of Beer (UK)
refuse Not accept
spotted Seen - often with difficulty
urge Try to persuade
utmost Greatest possible degree
utterance Word/saying from ...
yields Gives/produces

EUUGN Vol8 No2 Summer 1988 85




AUSTRIA - UUGA
Friedrich Kofler

c/o Austro Olivetti
Rennweg 9

A-1030 Vienna
AUSTRIA

FINALND - FUUG
Johan Helsingius
OY Penetron Ab
Box 21

02171 ESPOO
FINLAND

ICELAND - ICEUUG
Marius Olafsson

University Computer Center
Hjardarhaga 4

Reykjavik

ICELAND

NETHERLANDS - NLUUG
Patricia Otter

Xirion bv

World Trade Centre
Strawinskylaan 1135

1077 XX Amsterdam

THE NETHERLANDS

SWITZERLAND - UNIGS
Professor Wolfgang Fitchner

Institute for Integrated Systems

ETH Zentrum
CH-8092 Zurich
SWITZERLAND

BELGIUM - BUUG

Marc Nyssen

Department of Medical Informatics
VUB, Laarbeeklaan 103

B-1090 Brussels

BELGIUM

FRANCE - AFUU

Miss Ann Garnery

AFUU

11 Rue Camot

94270 Le Kremlin-Bicetre
FRANCE

IRELAND - IUUG
John Carolan
Glockenspiel Ltd
19 Belvedere Place
Dublin 1
IRELAND

NORWAY - NUUG
Jan Brandt Jensen
Unisoft A.S.
Enebakkvn 154
N-0680 Oslo 6
NORWAY

UNITED KINGDOM - UKUUG
Bill Barrett

Owles Hall

Buntingford

Hertfordshire SG9 9PL
UNITED KINGDOM

The European UNIX systems User Group

Owles Hall
Buntingford
Hertfordshire SG9 9PL
UK

+44 763 73039

DENMARK - DKUUG
Mogens Bubhelt
Kabbelejevej 27B
DK-2700

Bronshoj

DENMARK

GERMANY - GUUG
Mr Laengle

GUUG

Mozartstrasse 3
D-8000 Munich 2
WEST GERMANY

ITALY -i2u

Ing Carlo Mortarino
i2u

Viale Monza 347
20126 Milano
ITALY

SWEDEN - EUUG-S
Hans Johansson
NCR Svenska AB
Box 4204

17104 Solna
SWEDEN




