Dansk Data Elektronik A/S ;

SUPERMAX
System V, Release 3.1
RISC SWD Reference Manual
Section 2 and 3
Version 4.1

©Copyright 1993 by
Dansk Data Elektronik A/S and AT&T

©1986 AT&T, USA
©1993 Dansk Data Elektronik A/S, Denmark U
Version 4.1, published March 1993 '

All Rights Reserved
Printed in Denmark

Stock no.: 94306411

NOTICE

The information in this document is subject to change without notice.
AT&T or Dansk Data Elektronik A/S, Denmark assumes no responsi-
bility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T in the USA and other coun-

tries.

SUPERMAX is a registered trademark of Dansk Data Elektronik

A/S, Denmark. u

Permuted Index

This is a permuted index of all the articles found in the Supermax
System V, SWD RISC Reference Manual, Version 4.1.

The ”"Permuted Index” is a list of keywords, given in the second of
three columns, together with the context in which each keyword is
found.

Keywords are either topical keywords or the names of manual entries.
Entries are identified with their section numbers shown in
parentheses. This is important because there is considerable duplica-
tion of names among the sections, arising principally from commands
and functions that exist only to exercise a particular system call. The
right column lists the name of the manual page on which each key-
word may be found. The left column contains useful information
about the keyword.

Column 1) A possibly empty "head’ field.
Column 2) A ’key’ field, followed by a number of periods.

Column 3) A ’reference’ field.

The index is sorted alphabetically by the key field.

Most lines in the index are taken directly from the 'NAME’ section of
each article. Each word of that short description of the article is used
as a key in the key field.

The head field contains the part of the description preceding the key.
The reference field tells the reader where to find the article.

As an example consider the article about the Is in Section 1 of the
Reference Manuals. The purpose of Is is to ’list contents of directory’.
Therefore Is may be found in the permuted index in four places,
namely under /s, under list, under contents, and under directory, thus:

SUPERMAX SWD RISC REFERENCE MANUAL PI-1

Permuted Index

ls: list contents of directory.................. Is(D

Is: list of contents directoryoccevveeveeeeiciei e, ls(D
Is: ‘ list contents of directory............ Is(1)

. ls: list contents of directory...... Is(1)

LI}

The most common words, such as ’a’, 'the’, 'of’, etc., are not used as
keys.

PI-2 Permuted Index, Version 4.1

Permuted Index

13tol: 1tol3 convert between
between long integer and base-64
as:

cflow: generate

cpp: the

cb:

lint: a

cxref: generate

ctrace:

clist: list

object file list: produce

clock: report

cc:

set process group ID for Job
intro: Introduction to Software
hypot:

mkfifo: create a new

help: SCCS Utility Help

help: SCCS Utility

par_cho: change owner

setpgid: set process group
change owner ID and group
effective or real user and group
setpgrp: set process group

set real and effective group
setsid: set session
supplementary group access list
process group, and parent process
real group, and effective group
set real and effective user
setuid: setgid set user and group
Development Utilities intro:
setpgid: set process group ID for
mcumask: set and get

process group ID for Job Control
isnan: test for

tas: test and set an

help:

m change the delta commentary of an
comb: combine

make a delta (change) to an

™

SUPERMAX SWD RISC REFERENCE MANUAL

3-byte integers and long integersccocceeeene 13tol(3C)
ASCII string a64l: 164a convertccccoceen.eee. a641(3C)
Assembler ... as(1)
C flowgraphccccvvveeneen. ... cflow(1)
C language preprocessorcovcecennienveenieeenns cpp(l)
C program beautifiercooceiveveerenevieninnieninnnnns cb(1)
C program checker e lint(1)
C program cross-reference cxref(1)
C program debugger ctrace(1)
C PrOZTAMS .ovcveeeereeieeeeiceee e e seeeeesces e sae s clist(1)
C source list from a commoncccceevecvereecerrrennnn. list(1)
CPU time usedccccoevvvvenennee. clock(3C)
C-COMPIIET ..o ce(1)
Control (NOT SUPPORTED) setpgid: ... setpgid(2)
Development Utilitiescccccceveevevveriecieeieenns intro(1)
Euclidean distance functionccc.ccceeene, hypot(3M)
FIFO oot mkfifo(3C)
Facilityccoooovvivieieeneccceneeec e help(1)
Help Facilityccooiiminiiiniiineccie e help(1)

ID and group ID of a partition par_cho(2X)

ID for Job Control (NOT/cccoomenvcnnicienn setpgid(2)
ID of a partition par cho:cccoovriernene par_cho(2X)
ID /setruid, setegid, setrgid set seteuid(3X)
I e setpgrp(2)
ID setregid:cccoovmevrmevererirernreeereeeevenes setregid(2X)
ID e, setsid(3)
IDs getgroups: getcccccevmvevernnenvrnnnenne getgroups(2)
IDs /getppid get process,c.coccecvrevmieieenns getpid(2)
IDs /real user, effective user,c.ccccoevvennen. getuid(2)
ID’s setreuid:ccccoeevrrrnenn. . setreuid(2X)
IDs e .. setuid(2)
Introduction to Softwareccccoecvecieviiineenennen, intro(1)
Job Control (NOT SUPPORTED) setpgid(2)
MCU mMask .ccoeeveeieieeeieesiecereseresve s mcumask(2X)
(NOT SUPPORTED) setpgid: set setpgid(2)
NAN e isnan(3M)
Operandcoccoeeiiiiiie e e tas(2x)
SCCS Utility Help Facility help(1)
SCCS delta cde: .ovvveeeecieeeicieieceeeiee e cde(1)
SCCS deltasc.cocvveeveervrerererreerrrse e comb(1)
SCCS file delta: ...cccccoovevecveeeiieieeeeeeeec e delta(1)

PI-3

de

Permuted Index

sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
scesfile: format of

unget: undo a previous get of an
val: validate

admin: create and administer
what: identify

poll:

group ID for Job Control (NOT
intro: Introduction to

getpw: get name from

to Software Development

help: SCCS

integer and base-64 ASCII string
abort: generate an

program termination

value

abs: return integer

fabs floor, ceiling, remainder,
t_accept:

utime: set file

of a file

get supplementary group
machine-independent/ sputl: sgetl
par_chm: change

ldfcn: common object file
/setutent, endutent, utmpname
access: determine

acct: enable or disable process
acct: per-process

accounnting

format

release indication t rcvrel:
trig: sin, cos, tan, asin,

print current SCCS file editing
pixie:

atexit:

putenv: change or

set_parm: define

t_bind: bind an

files

Pl-4

SCCS file editing activity sact(1)
SCCS file ..cccovvivrrvrriirienane. o get(l)
SCCS file ovivieeieeirice et prs(1)
SCCS flle oottt rmdel(1)
. scesdiff(1)
scesfile(4)
unget(1)
SCCS file ..ot val(l)
SCCS files admin(1)
SCCS files oo ... what(1)
STREAMS input/output multiplexing poll(2) u
SUPPORTED) setpgid: set process setpgid(2)
Software Development Utilities intro(1)
UID ettt getpw(3C)
Utilities intro: Introductioncccocenreieniene. intro(1)
Utility Help Facilitycoocooveniiiiiiinneiiennn, help(1)
a64l: 164a convert between longcoceevveeneenee. a641(3C)
abnormal program termination abort(3C)
abort: generate an abnormalccccceceiien. abort(3C)
abs: return integer absoluteccccoeivieinennne abs(3C)
absolute value ... abs(3C)
absolute value functions /fmod,ccccocenenne. floor(3M)
accept a connect requestcooccceeinennnnn. t_accept(3N)
access and modification timesc.ccooeoiieene utime(2)
access: determine accessibility access(2)
access list IDs getgroups: getgroups(2)
access long integer data in @ccceccennvenennne. sputl(3X)
access rights to a partitioncccceeeeenen. par_chm(2X)
ACCESS FOULINES ..oooveineiiiiiiiinicie et ldfen(4)
access utmp file entryccccooenceiiicnnnniieees getut(3C) w
accessibility of a filecccoevvniiiniveiiiceneenne access(2)
ACCOUNNEINEG .ot acct(2)
accounting file format ..o acct(4)
acct: enable or disable process acct(2)
acct: per-process accounting file acct(4)
acknowledge receipt of an orderly t_rcvrel(3N)
acos, atan, atan2 trigonometric/cccccerennenn trig(3M)
activity Sact: ..o sact(1)
add profiling code to a programccceecveurnnne pixie(1)
add program termination routine atexit(3C)
add value to environmentcccccerieeeninnnen. putenv(3C)
additional system call parameters set_parm(2X) X
address to a transport endpointc.cc....... t_bind(3N) u
admin: create and administer SCCS admin(1)

Permuted Index, Version 4.1

admin: create and

uadmin:

compile/ regexp: compile, step,
alarm: set a process

t_alloc:

sbrk change data segment space
free, realloc, calloc main memory
mallinfo fast main memory
/strnnaorder to perform
operations

regular expression compile and
pixstats:

editor output

maintainer for portable archives

for portable archives ar:

ar: common

archive header of a member of an
archive file ldahread: read the
library maintainer for portable

varargs: handle variable
formatted output of a varargs
getopt: get option letter from

string strftime: cftime,

time/ ctime: localtime, gmtime,
trig: sin, cos, tan,

asuspend:

a.out: common

assert: verify program
setbuf: setvbuf

amsgop:

aread:

awrite:

trig: sin, cos, tan, asin, acos,
/sin, cos, tan, asin, acos, atan,
routine

double-precision number strtod:
strtol: atol,

integer strtol:

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted index

administer SCCS filescoevcermineniiicnniiiiinnns admin(1)
administrative control ... uadmin(2)
advance regular expression ..., regexp(3)
alarm clock ..o alarm(2)
alarm: set a process alarm clock ... alarm(2)
allocate a library structureccccocevenene t_ailoc(3N)

allocation brk: ..., brk(2)
allocator malloc: malloc(3C)
allocator /calloc, mallopt,c..cccoviiiniinnne malloc(3X)
alphabetic comparison of strings straorder(3X)
amsgop: asynchronous messagec........ amsgop(2X)
amtch routines regexp: ..o regexp(5)
analyze program execution pixstats(1)

. a.out(4)

a.out: common assembler and link ..
ar: archive and library
ar: common archive file format
archive and library maintainerccccovviennnes ar(1)

archive file format ... ar(4)
archive file ldahread: read the ldahread(3X)
archive header of a member of an . . ldahread(3X)
archives ar: archive and ..o ar(l)
aread: asynchronous read aread(2X)
argument HSt ... varargs)5)
argument list /vsprintf print ... vprintf(3S)
argument vector getopt(3C)
as: Assembler ... as(1)
ascftime convert date and time to strftime(3C)
asctime, tzset convert data and ... ctime(3C)
asin, acos, atan, atan2/ ... trig(3M)
asoynchronous suspend ... asuspend(2X)
assembler and link editor output a.out(4)
assert: verify program assertion assert(3)
ASSErtionccocecervncriniininns ... assert(3)
assign buffering to a stream setbuf(3S)
asuspend: asoynchronous suspend asuspend(2X)
asynchronous message operations amsgop(2X)
asynchronous read ..., aread(2X)
asynchronous writeccccvveeiiiiininnnnens awrite(2X)
atan, atan2 trigonometric/o trig(3M)
atan2 trigonometric functions ... we trig(3M)
atexit: add program termination . atexit(3C)
atof convert string to strtod(3C)
atoi convert string to integer . . strtol(3C)
atol, atoi convert string toccceieiiiiiiinn strtol(3C)
PI-5

Permuted Index

par_att:

convert between long integer and
ch: C program

bessel:

fread: fwrite

bsearch:

tfind, tdelete, twalk manage
endpoint t_bind:

sync: update super

examine signals that are
space allocation

table

stdio: standard

setbuf: setvbuf assign

size; print section sizes in
swab: swap

converts a tm structure to a
define additional system

data returned by stat system
malloc: free, realloc,

main/ malloc: free, realloc,
/to libraries, functions, system
catopen: open/close a message

catalogue

of an SCCS delta

remainder, absolute value/ floor:
floor: ceil, fmod, fabs floor,
/tcflush, teflow,cfgetospeed,

/teflow,cfgetospeed, cfgetispeed,
/cfgetispeed, cfsetispeed,

| time to string strftime:
partition par_chm:

allocation brk: sbrk

chmod:

environment putenv:

sigprocmask:

partition par_cho:

chown:

PI-6

attach a memory partitionc.ccccoecevvvecreenn. par_att(2X)
awrite: asynchronous writeccccccovvvverinnene awrite(2X)

base-64 ASCII string a64l: 164a .. a641(3C)
beautifierccceeoeiieiiiererc s cb(1)
bessel: bessel functionsccccocereeicneriennnnn. bessel(3M)
bessel functions bessel(3M)
binary input/outputc..ccccecenenieniennienenninnen. fread(3S)
binary search a sorted table bsearch(3C)
binary search trees tsearch:c..ccoecenenne tsearch(3C)
bind an address to a transportc.ccoecene t_bind(3N)
DIOCK ..ottt e e naens sync(2)
blocked and pending sigpending: . sigpending(2)
brk: sbrk change data segmentcccconeieencne. brk(2)
bsearch: binary search a sorted ... bsearch(3C)

buffered input/output packageccccoccoeerennnne stdio(3S)
buffering to a stream .. setbuf(3S)
bytes of common object filescocveeveeriinciecrinnnen size(1)
BYLES covvreiiiecrenceirer e srres e ss e s s s rene e swab(3C)
calendar time mKktime:cccoveeevevverieennenn. mktime(3C)

call parameters set_parm:c.c.o... set_parm(2X)
call Stat: .o stat(5)
calloc main memory allocatorcc.occeuee. malloc(3C)
calloc, mallopt, mallinfo fastc...cccceeeeenn. malloc(3X)
calls and error numbersccccocrcvevieerinenne. intro(2&3)

catalogueccovvivvieiienreninee e catopen(3C)
catgets: read a program messagec........ catgets(3C)
catopen: open/close a message catopen(3C)

cb: C program beautifierccococveciiemieeccennnnncn, cb(1)

cC: C-COMPIET ...ooiiiiiiiiiiee et cc(l)
cdc: change the delta commentaryccoccoce... cde(l)
ceil, fmod, fabs floor, ceiling,ccccccrmvencnnne floor(3M)
ceiling, remainder, absolute/cc.ccoeevvennnnne floor(3M)
cfgetispeed, cfsetispeed,/ termios(2)
cflow: generate C flowgraphcccooeeininennce. cflow(1)
cfsetispeed, cfsetospeed,/cccccovvrenecicenncnennes termios(2)
cfsetospeed, tegetpgrp,/ . ..ceevevcereennicenenennes termios(2)
cftime, ascftime convert date and strftime(3C)
change access rights to a par_chm(2X)
change data segment Spacecccccceeeerevcernnuenns brk(2)

change mode of fileccccceeiiiiniinniiiiccee chmod(2)
change or add value tocccceevrevincinnne. putenv(3C)
change or examine signal mask sigprocmask(2)
change owner ID and group ID of a par_cho(2X)
change owner and group of a file chown(2)

Permuted Index, Version 4.1

B SRR RS

nice:

chroot:

wait for child process to
SCCS delta cdc:

rename:

delta: make a delta

chdir:

pipe: cretae an interprocess
ungetc: push

_tolower, toascii translate
isgraph, isascii, setchrclass
cuserid: get

getc: getchar, fgete, getw get
pute: putchar, fpute, putw put

run chklicense:

lint: a C program

times: get process and
waitpid: wait for
terminate wait: wait for
terminate waitx: wait for
license to run

a file
inquiries ferror: feof,
alarm: set a process alarm

ldclose:
close:
t_close:

fclose: flush
/telldir, seekdir, rewinddir,
streoll: string

comb:

system: issue a shell

mcs: manipulate the object file
cde: change the delta

ar:

output a.out:

routines ldfen:

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

change priority of a processcceececceveenencenne nice(2)
change root directoryccoceevevenineiinninnnnnnn, chroot(2)
change state waitpid:cccccevenns . waitpid(2)
change the delta commentary of ancc...ccoene. cde(1)
change the name of a fileccoccvvvvivvinirnnnn, rename(2)
(change) to an SCCS file ... delta(l)
change working directorycccceceviicnncrecnnnn. chdir(2)
channelccocvvviieiice e pipe(2)
character back into input stream ungete(3S)
character /tolower, toupper, ... conv(3C)
character handling /isprint, ctype(3C)
character login name of the user cuserid(3S)
character or word from a stream getc(3S5)
character or word on a stream pute(3S)
chdir: change working directoryccoeeu.e. chdir(2)
check if program has license to ... chklicense(2)
ChECKEr ..ot lint(1)
child process timescccococeeeieieeerieece e times(2)
child process to change state . . waitpid(2)
child process to Stop Orccccoeviveveecirieieiee, wait(2)
child process to StOp OFcccccevvevievievieciienenne, waitx(2X)
chklicense: check if program has chklicense(2)
chmod: change mode of filecccocoerverrcnnnnns chmod(2)
chown: change owner and group of .. chown(2)
chroot: change root directoryccocceeevenenn.. chroot(2)
cleaerr, fileno stream statusc....cccoeeunenne. ferror(3S)
clist: list C programs clist(1)
CloCk oo alarm(2)
clock: report CPU time usedcccoovvcverennen, clock(3C)
close a common object file ldclose(3X)
close a file descriptorccccoeveeeivevecineeiens close(2)
close a transport endpoint t_close(3N)
close: close a file descriptorccoeceevieeienieennnn. close(2)
close or flush a streamcccovvevieicnirrinnnnnn, fclose(3S)
closedir — directory operations . directory(3C)
collation ..o streoll(3C)
comb: combine SCCS deltascccoovevrerrrennene. comb(1)
combine SCCS deltas comb(1)
command system(3S)
comment SeCtiONccccccvveeeiinreeneirence e, mes(1)
commentary of an SCCS deltac.ccevvvervennnn, cde(1)
common archive file formatc.ccoceveviirevrenennnnn. ar(4)
common assembler and link editor a.out(4)
common object file access ldfen(4)
PI-7

Permuted Index

cprs: compress a

ldopen: ldaopen open a

/line number entries of a
Idclose: close a

read the file header of a

number entries of a section of a
to the optional file header of a
entries of a section of a
indexed/named section header of a
to an indexed/name section of a
of a symbol table entry of a
indexed symbol table entry of a
seek to the symbol table of a
produce C source list from a

nm: print name list of

relocation information for a
scnhdr: section header for a

line number information from a
entry /retrieve symbol name for
filehdr: file header for

1d: link editor for

print section sizes in bytes of
ftok standard interprocess

file sccsdiff:

/strnnaorder to perform alphabetic
regexp: regular expression
expression regemp: regex

/step, advance regular expression
regemp: regular expression
expression compile and/ regexp:
yacc: yet another

erf: erfc error function and

cprs:

table entry of a/ ldtbindex:
_tolower, toascii translate/
fpathconf: get

sysconf: get

t_rcveconnect: receive the
t_accept: accept a

t_listen: listen for a

receive the confirmation from a
an out-going terminal line

or expedited data sent over a
data or expedited data over a

Pi-8

common object filecccooeiiiriiiiiiniiirieee, cprs(l)
common object file for readingcooeeven. ldopen(3X)
common object file function .. ldlread(3X)
common object file ..o ldclose(3X)
common object file ldfhread: ldfhread(3X)
common object file /seek to line ldlseek(3X)
common object file /seek ldohseek(3X)
common object file /to relocation ldrseek(3X)
common object file /read an ldshread(3X)
common object file /ldnsseek seek ldsseek(3X)
common object file /the index ldtbindex(3X)
common object file /read an ldtbread(3X)
common object file ldthseek: ... ldtbseek(3X)
common object file list:ccoooviiiiiiiieiiiiceinn, list(1)
common object file ..o nm(1)
common object file reloc(4)
common object fileccocevieiiiiicenie e, scnhdr(4)
common object file /symbol andccccovvereenene strip(1)
common object file symbol table .. ldgetname(3X)
common object files filehdr(4)
common object filescoevviriiiiiiiiniin e 1d@)

common object files size:cccceoiiiiiieeiine size(1)
communication package stdipc: ..o stdipe(3C)

compare two versions of an SCCS .. scesdiff(1)
comparison of stringscccccvceeniecenninnns straorder(3X)
compile and amtch routinescccceovenninni regexp(5)
compile and execute regular .. . regemp(3X)
compile and match routines regexp(3)
compilecoceviiiiiiiiiiiiiiiies . regemp(1)
compile, step, advance regularccccveene regexp(3)
compiler-compilerccccocviniiiiiininiene, yace(1)

complementary error function .. . erf(3M)
compress a common object file cprs(l)
compute the index of a symbol ldtbindex(3X)

conf: toupper, tolower, _toupper,ce. conv(3C)
configurable pathname variables fpathconf(2)
configurable system variables sysconf(3C)

confirmation from a connect/ t_rcvconnect(3N)
€CoONNECct TeQUESteocveevuiereeiiienienee e t_accept(3N)
CONNECt TEQUESEvoveeererrecnereererreerrnceesenseenes t_listen(3N)
connect request t rcvconnect: . .. t_rcvconnect(3N)

.............. dial(3X)

connection dial: establish
connection t_rcv: receive datac.coeenene t_rev(3N)
connection t_snd: send ... t_snd(3N)

Permuted Index, Version 4.1

user t_connect: establish a
langinfo: language information
for implementation-specific
math: math functions and
ioctl:

fentl: file

msgctl: message

semctl: semaphore

shmectl: shared memory

fentl: file

uadmin: administrative

ve: version

and long integers 13tol: 1tol3
base-64 ASCII string a64l: 164a
/localtime, gmtime, asctime, tzset
strftime: cftime, ascftime
string ecvt: fevt, gevt

scanf: fscanf, sscanf
double-precision/ strtod: atof
strtol: atol, atoi

calendar time mktime:

™

H

core: format of
trigonometric/ trig: sin,
sinh:

millisec: get millisecond

file

rewrite an existing one
par_cre:

file tmpnam: tempnam
mkfifo:

existing one creat:

fork:

tmpfile:

admin;

umask: set and get file
pipe:

cxref: generate C program
hashing encryption
terminal

asctime, tzset convert data and/

islower, isupper, isalpha,/

SUPERMAX SWD RISC REFERENCE MANUAL

e A T LS S SR

Permuted Index

connection with another transport t_connect(3N)

constantscoocceiveenienneencecene .. langinfo(5)
constants limits: file header limits(4)
conStantscocceevveecenieennnn . math(5)
control device loctl(2)
CONEFOL eviiiiiii e e fentl(2)
control Operationsccccoieecivireneeneenennneen msgetl(2)
control operationscccceceienieenienieenenn, semctl(2)
control operationsccccevevevveveenniennenneennen shmetl(2)
control Optionscccccnmevecimicmncn e fentl(5)
control uadmin(2)

€ontrol ve(l)
convert between 3-byte integers 13tol(3C)
convert between long integer and a641(3C)
convert data and time to stringc..ccocee.... ctime(3C)
convert date and time to string strftime(3C)
convert floating-point number toc..cccoevenee, ecvt(3C)
convert formatted input scanf(3S)
convert string to strtod(3C)
convert string to integer . strtol(3C)

converts a tm structure to accooceveennnaen. mktime(3C)

core: format of core image file ..o, core(4)
core image file ..o core(4)
cos, tan, asin, acos, atan, atan2cccceeeeeunn. trig(3M)
cosh, tanh hyperbolic functionsccccoeeeu.en.. sinh(3M)
COUNLEr .ooiiiiiiieiee e . millisec(2X)
cpp: the C language preprocessor ..o, cpp(1)
cprs: compress a common objectccceeeeeenennn, cprs(1)
creat: create a new file or ..., creat(2)
create a memory partition ... par_cre(2X)
create a name for a temporary tmpnam(3S)
create a new FIFO mkfifo(3C)
create a new file or rewrite an creat(2)

Create & NEW PrOCESScccveecverereeieriieseeeseeereesneennns fork(2)

create a temporary fileccocoviviiiiinnniienins tmpfile(3S)
create and administer SCCS filesc..c........ admin(1)
creation Maskcccooiiviiivieiiiiie e umask(2)
cretae an interprocess channelcccoccoieeean pipe(2)
Cross-referenceccoccooevivivieeeceneeeeeen cxref(1)

crypt: setkey, encrypt generate .. . erypt(3C)

. ctermid(3S)

ctermid: generate file name for

ctime: localtime, gmtime,ccccermrvrrecvnreiannns ctime(3C)

ctrace: C program debuggerccccoveeveennn. ctrace(1)

ctype: isdigit, isxdigit,cccoooriiiiiriiiniiininn, ctype(3C)
PI-9

Permuted Index

activity sact: print

endpoint t_look: look at the
uname: get name of
t_getstate: get the

the slot in the utmp file of the
getcwd: get path-name of
scr_dump: format of

and optimization package

of the user

cross-reference

/gmtime, asctime, tzset convert
t_rcvuderr: receive a unit
sputl: sgetl access long integer
plock: lock process, text, or
connection t snd: send

a connection t_rcv: receive
t_snd: send data or expedited
prof: display profile

- stat:

brk: sbrk change

t_rcv: receive data or expedited
nl types: native language
types: primitive system
t_rcvudata: receive a
t_sndudata: send a

/cftime, ascftime convert

ctrace: C program

dbx: source-levet

timezone: set

parameters set_parm:
par_del:

the delta commentary of an SCCS
delta: make a

cdc: change the

rmdel: remove a

an SCCS file

comb: combine SCCS

close: close a file

dup: duplicate an open file
dup2: duplicate an open file
par_det:

sigaction:

access:

PI-10

current SCCS file editingc..ccoveeevverveniecvninennn. sact(1)
current event on a transport ... t_look(3N)
current operating systemc...ccccoccenecnnene. uname(2)
current state t_getstate(3N)
current user ttyslot: findcc.ceeeveevieenrnrnen. ttyslot(3C)
current working directoryc.eecevreveeone getewd(3C)
curses screen image filecccveeiennnnnn. scr_dump(4)
curses: terminal screen handling curses(3X)
cuserid: get character login name cuserid(3S)

cxref: generate C programccccocceernecevcnnnnnnecenn. cxref(1)

data and time to stringccocceenniccninnienne ctime(3C)
data error indicationc..c.c... .. t_revuderr(3N)
data in a machine-independent/ sputl(3X)

data in MeMOTYcccceevevvierieeeeeereeeereereeserenns plock(2)
data or expedited data over accceeneneenn. t_snd(3N)
data or expedited data sent over . .. t_rev(3N)
data over a connectionccceeeeierienienee. t_snd(3N)
data oo prof(1)
data returned by stat system call stat(5)
.... brk(2)

data segment space allocation ..

data sent over a connectionccoeveeeirnnee t_rev(3N)
data tYPeScccceviueieiierieieee et nl_types(5)
data LYPES .cecevireriireeieiirt ettt et types(5)
data unit t_revudata(3N)

............................ t_sndudata(3N)

data unit

date and time to stringc..cccevecenivceninnns strftime(3C)
dbx: source-levet debuggercccooecrvriivinnceinenee. dbx(1)
debUgEer ...oooociiiiecceecee e ctrace(l)
debuggerccccvveienienne dbx(1)
default system time zonecccccviiiniinnn timezone(4)
define additional system callc........... set_parm(2X)
delete a named partition par_del(2X)
delta cdc: changeocooieviccnneniniineeneine cdc(1)
delta (change) to an SCCS fileccocnvvreniniencnnne delta(1)
delta commentary of an SCCS deltaccccceeenene. ede(l)
delta from an SCCS file rmdel(1)
delta: make a delta (change) toccccooevinieeen. delta(l)
deltas ..o comb(1)
dESCTIPLOT .oviiivieeeeieeece et et eee oo seeeennene close(2)
deSCrIPLOr ..oocieiiiiiieieiicrtecc e dup(2)
descriptorcccceeee. ... dup2(3C)
detach a memory partition par_det(2X)
detailed signal managementcceenie sigaction(2)
determine accessibility of a filec..cececennane. access(2)

Permuted Index, Version 4.1

W/

™

~

ioctl: control
terminal line connection

dir: format of

chdir: change working

chroot: change root

file system/ getdents: read
dirent: file system independent
unlink: remove

get path-name of current working
mkdir: make a

telldir, seekdir, rewinddir,/
seekdir, rewinddir, closedir —
ordinary file mknod: make a
rmdir: remove a

directory entry

t_unbind:

acct: enable or

dis:

t_snddis: send user-initiated
retrieve information from

prof:

hypot: Euclidean

/lcong48 generate uniformly
strtod: atof convert string to
Irand48, nrand48, mrand48,/
object file

file dump:

file odump:

descriptor

descriptor

dup:

dup2:

floating-point number to string
end: etext,

a terminal

sact: print current SCCS file
1d: link

uld: ucode link

a.out: common assembler and link
setregid: set real and

effective user, real group, and
ID /setruid, setegid, setrgid set

Permuted Index

dEVICE e e ioctl(2)
dial: establish an out-goingcocovvireceriecnnnencne dial(3X)
dir: format of directories ... dir(4)
direCtOTIES ...ovvcueeneiiiieieer et e eee v dir(4)
dIreCtOTY ..oovoviiiriieiceeccrec e chdir(2)
directoryc.ccccovvenireecnninen. chroot(2)
directory entries and put in accoveerenneene getdents(2)
directory entry dirent(4)
directory entry unlink(2)
directory getewd:cooveeeiiiiiececee getewd(3C)
dIrectory ...ccoveveireieirire e mkdir(2)
directory: opendir, readdir, directory(3C)
directory operations /telldir, directory(3C)
directory, or a special OFccooverieeriirecreinns mknod(2)
directorycccceevivrevieneeeceneen rmdir(2)
dirent: file system independentc.ccceunee. dirent(4)
dis: disassemble an object fileccoeorerevirieriinnnnee. dis(1)
disable a transport endpoint t_unbind(3N)
disable process accounntingcccoeveeveieiinein. acct(2)
disassemble an object filecoveierniiiirieeicne, dis(1)
disconnect request t_snddis(3N)
disconnect t revdis: ... t_rcvdis(3N)
display profile dataccccovreniiiiniciiiiccrn prof(1)
distance functionc.cceeveeiveeeeineneeeienns hypot(3M)
distributed pseudo-random numbers drand48(3C)
double-precision numbercccccecvvrererinennns strtod(3C)
drand48: erand48, jrand48, drand48(3C)
dump: dump selected parts of anccce.. dump(1)
dump selected parts of an objectccceeeeene. dump(1)
dump selected parts of an object .. odump(1)
dup: duplicate an open filec.ccooevvvvieirnennne. dup(2)
dup?2: duplicate an open file dup2(3C)
duplicate an open file deseriptorccceen.... dup(2)
duplicate an open file descriptor ... v dup2(3C)
ecvt: fevt, gevt convert ..., ecvt(3C)
edata last locations in program end(3C)
edit: update a line of text from edit(2X)
editing actiVItycccevevveveveeerieieeeeee e sact(1)
editor for common object files . e 1)
€AILOT .ot 1d(1)
editor QULPULoccvvvvvrerrere e a.out(4)
effective group ID ..o, .. setregid(2X)
effective group IDs /real user, getuid(2)
effective or real user and group seteuid(3X)

SUPERMAX SWD RISC REFERENCE MANUAL PI-11

—J db

Permuted Index

setreuid: set real and

/getgid, getegid get real user,
accounnting acct:

encryption crypt: setkey,
setkey, encrypt generate hashing
in program

/getgrgid, getgrnam, setgrent,
seteof: set

bind an address to a transport
t_close: close a transport

the current event on a transport
t_open: establish a transport
manage options for a transport
t_unbind: disable a transport
/getpwuid, getpwnam, setpwent,
/getutline, pututline, setutent,
getdents: read directory

nlist: get

linenum: line number

/1dlitem manipulate line number
/ldnlseek seek to line number
/ldnrseek seek to relocation

file system independent directory
fgetgrent get group file
fgetpwent get password file
utmpname access utmp file
common object file symbol table
/the index of a symbol table
/read an indexed symbol table
putpwent: write password file
unlink: remove directory
getenv: return value for

putenv: change or add value to
nrand48, mrand48,/ drand48:
complementary error function
complementary error/ erf:
system error messages perror:
error function erf: erfc

error function and complementary
t_rcvuderr: receive a unit data
strerror: get

t_error: produce

sys_errlist, sys_nerr system
functions, system calls and

Pl-12

effective user ID’scoceoccecminiviiininciinnnne setreuid(2X)
effective user, real group, and/ getuid(2)
enable or disable processc.cccccecvvceniniiiiinninin acct(2)
encrypt generate hashingcoccoveveicccnannine crypt(3C)
encryption crypt:c..... .. crypt(3C)
end: etext, edata last locations ... end(3C)
endgrent, fgetgrent get group/ getgrent(3C)
end-of-filecccooeevvereirieiinece e seteof(2X)
endpoint t bind: ..o t_bind(3N)
endpoint ... t_close(3N)
endpoint t look: look atc.ccccveiiiiniiininns t_look(3N)
NAPOINE .veeieeieieicieee e et t_open(3N)

endpoint t_optmgmt: .. t_optmgmt(3N)
endpointceceeviieiiinnnnne s .. t_unbind(3N)
endpwent, fgetpwent get password/ getpwent(3C)
endutent, utmpname access utmp;/ceoe.e. getut(3C)
entries and put in a file system/c..o.... getdents(2)
entries from name list nlist(3X)

entries in an object file ... linenum(4)

entries of a common object file/ ldlread(3X)
entries of a section of a common/ ldlseek(3X)
entries of a section of a common/ ldrseek(3X)
entry dirent:occceceiieereneeene e dirent(4)
entry /setgrent, endgrent,c...ccceenene getgrent(3C)

entry /setpwent, endpwent, ... getpwent(3C)

entry /setutent, endutent,coceoiieenins getut(3C)
entry /retrieve symbol name for ... ldgetname(3X)
entry of a common object file 1dtbindex(3X)
entry of a common object file ldtbread(3X)
ENETY cooiiiiiiciee e .. putpwent(3C)
13 417 o 20RO PP PU ORI unlink(2)
eNVIronment NAMEcoceeveveirceeeenneerrvessnnnnes getenv(3C)
ENVIFONMENL ...ocvvvenvreireiiienreeee e eeerrseee e eeeenens putenv(3C)
erand48, jrand48, Irand48, ... drand48(3C)

erf: erfc error function andccccoeeiiiceiccenicas erf(3M)
erfe error function and ... eevvenenieccneninecns erf(3M)

errno, sys_errlist, sys_nerr ... perror(3C)
error function and complementarycccceueee. erf(3M)
error function erf: erfccccceevnininniiiiininn erf(3M)
error indicationcniiiiineien t_rcvuderr(3N)
error message String ..., strerror(3C)

€ITOT MESSAZE ..oeevevneeeriervensennns .. t_error(3N)
error messages perror: errno, perror(3C)
error numbers /to libraries, ..o, intro(2&3)

Permuted Index, Version 4.1

matherr:

another transport/ t_connect:
t_open:

line connection dial:

program end:

t_look: look at the current
sigprocmask: change or

and pending sigpending:
execve, execlp, execvp execute a/
execlp, execvp execute a/ exec:
execute a/ exec: execl, execv,
/execl, execv, execle, execve,
execle, execve, execlp, execvp
regcmp: regex compile and
sleep: suspend

pixstats: analyze program
monitor: prepare

resume: resume process
suspend: suspend process
profil:

execvp execute a/ exec: execl,
file exec: execl, execv, execle,
execv, execle, execve, execlp,
create a new file or rewrite an

exit:

exponential, logarithm power,/
t_snd: send data or

t_rcv: receive data or

exp: log, logl0, pow, sqrt
routines regexp: regular
/compile, step, advance regular
regcmp: regular

regex compile and execute regular
absolute/ floor: ceil, fmod,
data in a machine-independent
/calloc, mallopt, mallinfo
stream

number to string ecvt:

fopen: freopen,
status inquiries ferror:
stream status inquiries

SUPERMAX SWD RISC REFERENCE MANUAL

SRS NRRR S TS TR e

Permuted Index

error-handling functionc.ccoevevreevenenn. matherr(3M)
establish a connection withc.ccccco...... t_connect(3N)
establish a transport endpoint t_open(3N)

establish an out-going terminalcccooveeee dial(3X)
etext, edata last locations inccooeeeeereevuennn.n. end(3C)
event on a transport endpoint t_look(3N)
examine signal maskc.ccocoocoveiinnnn. sigprocmask(2)
examine signals that are blocked sigpending(2)

exec(2)
exec(2)
. exec(2)

exec: execl, execv, execle,
execl, execv, execle, execve, ..
execle, execve, execlp, execvp ..

execlp, execvp execute a file exec(2)
execute a file /execl, execy, exec(2)
execute regular expressiono...... regemp(3X)
execution for interval ..., sleep(3C)
execution pixstats(1)
execution profile . .. monitor(3C)
execution resume(2X)
EXECULION .oiiiicciiincieccieerecet e suspend(2X)
execution time profileccoeiciiiriviiiiiinn. profil(2)
execv, execle, execve, execlp,ccccoeovveeennnen. exec(2)
execve, execlp, execvp execute @occoeueenn.nn. exec(2)

execvp execute a file /execl, exec(2)
existing one creat: creat(2)
exit: _exit terminate process . .. exit(2)
_exit terminate processccococeevicivveerenininnnns exit(2)
exp: log, logl0, pow, sqrtccccccveiirieverininnnnan, exp(3M)
expedited data over a connection t_snd(3N)
expedited data sent over a/c.cccccoceoonnnnn. t_rev(3N)
exponential, logarithm power,/ exp(3M)
expression compile and amtch regexp(5)

expression compile and match/ regexp(3)
expression compile ..., regemp(1)
€XPression TegCmP: ...cc.ccovcvveeeevreereieereeneeneenane regemp(3X)
fabs floor, ceiling, remainder,c.cccocoeenon... floor(3M)
fashion /access long integercccooeeeenn.. sputl(3X)
fast main memory allocator .. . malloc(3X)
fclose: fllush close or flush a .. . fclose(3S)

.... fentl(2)

fentl: file control

fentl: file control options ... fentl(5)

fevt, gevt convert floating-pointccoceveveeennne.. ecvt(3C)

fdopen open a streamccocoeieeiieernrenenn, fopen(3S)

feof, cleaerr, fileno streamcccoeveevnenn.... ferror(3S)

ferror: feof, cleaerr, filenoccccovereeemnennn.. ferror(3S)
PI1-13

de

Permuted Index

fclose:

from a stream getc: getchar,
/getgrnam, setgrent, endgrent,
/getpwnam, setpwent, endpwent,
gets:

times utime: set

ldfen: common object

determine accessibility of a
chmod: change mode of

change owner and group of a
mes: manipulate the object

fentl:

fentl:

core: format of core image

cprs: compress a common object
umask: set and get

make a delta (change) to an SCCS
close: close a

dup: duplicate an open

dup2: duplicate an open

dis: disassemble an object

dump selected parts of an object
sact: print current SCCS
endgrent, fgetgrent get group
endpwent, fgetpwent get password
endutent, utmpname access utmp
putpwent: write password

execve, execlp, execvp execute a
ldaopen open a common object
acct: per-process accounting

ar: common archive

intro: introduction to

number entries of a common object
get: get a version of an SCCS
files filehdr:
implementation-specific/ limits:
file ldfhread: read the

ldohseek: seek to the optional
header of a member of an archive
Idclose: close a common object
file header of a common object

of a section of a common object
file header of a common object

of a section of a common object

PI-14

fllush close or flush a stream

... felose(38)

fgete, getw get character or wordcceceenn. gete(3S)
fgetgrent get group file entry getgrent(3C)
fgetpwent get password file entry getpwent(3C)

fgets get a string from a stream
file access and modification
file access routines

gets(3S)
.. utime(2)
.... ldfen(4)

file ACCESS: .ocevevreereeerirrerireeeiceenrirenteeereb s access(2)
file e chmod(2)
file chown: chown(2)
file comment Sectionccccceeeiieciimnneeniinieennes mes(1)
file controlcccceerrccennn. fentl(2)
file control options fentl(5)
BIE 1ottt baes core(4)
BIlE oot s cprs(1)
file creation maskccceceviiiiiiconnnnn umask(2)
file delta: delta(1)
file descriptor close(2)
file deSCriptorcccoveeververnrcneiniee e dup(2)
file descriptor dup2(3C)
e oottt dis(1)
file dump: dump(1)
file editing activity ..., sact(1)
file entry /getgrnam, setgrent, getgrent(3C)
file entry /getpwnam, setpwent, getpwent(3C)
file entry /pututline, setutent,ccocoeees getut(3C)
file entrycccceeeimieecnreniiiinininnes . putpwent(3C)
file exec: execl, execv, execle,c.cccoviiieiiininnn exec(2)
file for reading ldopen: 1dopen(3X)
file fOrmatcccccerveverecnnceecer s acct(4)
file fOrmatcccovevcererierenceere s ar(4)
file fOrmatsccovveerrecemcmeiininirees intro(4)
file function /manipulate line . .. 1dlread(3X)
fIlE .voeeriierenr et rer bt e e ste e sr e a e n e get(1)
file header for common object . filehdr(4)
file header forccocoeevimiiieercernininiireens limits(4)
file header of a common object ldfhread(3X)
file header of a common object/ 1dohseek(3X)
file ldahread: read the archive ldahread(3X)
fle e ldclose(3X)
file ldfhread: read the .. 1dfhread(3X)
file /seek to line number entries ldiseek(3X)
file /seek to the optionalcccoeeeennin. ldohseek(3X)
file /seek to relocation entries ldrseek(3X)

Permuted Index, Version 4.1

section header of a common object
section of a common object

table entry of a common object
table entry of a common object
symbol table of a common object
line number entries in an object
link: link to a

source list from a common object
or a special or ordinary

ctermid: generate

mktemp: make a unique

print name list of common object
dump selected parts of an object
/find the slot in the utmp

creat: create a new

rewind, ftell resposition a

Iseek: move read/write

prs: print an SCCS

read: read from

information for a common object
remove: remove

rename: change the name of a
remove a delta from an SCCS
compare two versions of an SCCS
scesfile: format of SCCS

‘ header for a common object
| format of curses screen image
| stat: Istat, fstat get
| information from a common object
| m symbol name for common object
| symlink: make symbolic link to a
volume fs:

entry dirent:

/directory entries and put in a
statfs: fstatfs get

| mount: mount a
| ustat: get
‘ mnttab: mounted
umount: unmount a

tmpfile: create a temporary
create a name for a temporary
ftw: walk a

undo a previous get of an SCCS
val: validate SCCS

m

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted index

file /read an indexed/named ldshread(3X)
file /seek to an indexed/name ldsseek(3X)
file /the index of a symbol ldtbindex(3X)
file /read an indexed symbol ldtbread(3X)

. ldtbseek(3X)
. linenum(4)

file ldtbseek: seek to the
file linenum:

fle oo link(2)
file list: produce Cccoooviiiiiiecccce list(1)
file mknod: make a directory, mknod(2)
file name for terminal ... ctermid(3S)
file name ...ocooviii mktemp(3C)
file nm: o nm(1)
file odump: odump(1)
file of the current user ttyslot(3C)
file or rewrite an existing one ... creat(2)
file pointer in a stream fseek: fseek(3S)
file pointercoociviiiiiiii 1seek(2)
Ale e prstl)
file .o . read(2)
file reloc: relocationccccooieiiiiiiiiiiii, reloct 4)
Ble oo removet3C)
Ale o renamei2)
file rindel: ... rmdel: 1
file scesdiff: scesdiffi 1
file .o scesfilet 4
file senhdr: section ... senhdri4:
file ser_dump: ... scr_dumpt4)
file SLALUS .ooooiiiieieieee e stati2:
file /symbol and line numberccccecoo strip' 1+
file symbol table entry /retrieve ldgetname: 3X:
Al oo symlink(2)
file system format of systemccooceiieiiiiiinn, fs(4)
file system independent directory dirent(4)
file system independent format getdents(2)
file system informationcoccecenvcnincnicnnne. statfs(2)
file SYStemcooeoverieiie e mount(2)
file system statiSticscccoevecreiiincneinnrecnene ustat(2)
file system table mnttabt4)
file SYStemooveeveieie e umount(2)
file ..o tmpfile(3S)
file tmpnam: tempnamc.c.cooceennnn tmpnam(3S)
file treeoccoovveieii e ftw(3C)
file unget: ... unget(1)
Bl e val(1)
PI-15

Permuted Index

write: write on a

write_t: write on a

object files

ferror: feof, cleaerr,

admin: create and administer SCCS
file header for common object
on the/ fsync: synchronize a
1d: link editor for common object
lockf: record locking on

sizes in bytes of common object
what: identify SCCS

tyyname: isatty

object library lorder:

the current user ttyslot:

ecvt: fevt, gevt convert

ldexp, modf manipulate parts of
ceiling, remainder, absolute/
absolute/ floor: ceil, fmod, fabs
cflow: generate C

fclose: fllush close or

remainder, absolute/ floor: ceil,
stream

acct: per-process accounting file
ar: common archive file

put in a file system independent
scesfile:

inode:

core:

file scr_dump:

dir:

fs: file system

syms: symbol table

intro: introduction to file

scanf: fscanf, sscanf convert
vprintf: vfprintf, vsprintf print
printf: fprintf, sprintf print
localeconv: get numeric
pathname variables

output printf:

on a stream putc: putchar,
puts:

t_free:

Pl-16

W/

BlE et write(2)

file write_t(2X)
filehdr: file header for common ... filehdr(4)
fileno stream status inquiries ferror(3S)
BlES oottt admin(1)
files filehdr: . filehdr(4)
file’s in-memory state with thatc.coennenee. fsyne(2)
fIlES oottt s naene 1d(1)
files ... lockf(3c)
files size: print sectionccccecoeeieivivereiieceennenne. size(1)
IS et et what(1)
find name of a terminal ... ttyname(3C) u
find ordering realtion for ancccccceevvrvnennnn lorder(1)
find the slot in the utmp file ofc..cc.cc.... ttyslot(3C)
floating-point number to string ecvt(3C)
floating-point numbers frexp:ccvicceiennn frexp(3C)
floor: ceil, fmod, fabs floor,ccecvveviennnnnen. floor(3M)
floor, ceiling, remainder, floor(3M)
flowgraph ... cflow(1)
flush a streamc.cocoeiiinrceceincnne e fclose(3S)
fmod, fabs floor, ceiling, ... floor(3M)
fopen: freopen, fdopen open acccceevceeicnnn. fopen(3S)
fork: create a NeW Processc.cccerrcercrreenrrccennns fork(2)
formatccccoervreririnnns .. acct(4)
fOrmatoooeevieiiiiice e ar(4)
format /directory entries andc.c.ccoeenee getdents(2)
format of SCCS fileccccceeneee .. scesfile(4)
format of an i-nodeccoomreiicieiniccrnieneennee inode(4)
format of core image fileccccocevvinniiiiiinninns core(4)
format of curses screen image ... scr_dump(4) u
format of directoriesccooccvcinveccininnienneene. dir(4)
format of system volumec.ccoorviniccriciinicnnnne fs(4)
formatcccoveciieeireenene syms(4)
formats ..o intro(4)
formatted Inputccceeiiiiinence scanf(3S)
formatted output of a varargs/ . . vprintf(3S)
formatted outputcccvviiviiiniinininie printf(3S)
formatting informationcccccccovveeenneee. localeconv(3C)
fpathconf: get configurable fpathconf(2)
fprintf, sprintf print formattedcc.ceuce. printf(3S)
fpute, putw put character or word ... pute(3S)
fputs put a string on a stream .. puts(38)
fread: fwrite binary input/outputcccocccooee fread(3S) w
free a library structurecccceceviiencencnene t_free(3N)

Permuted Index, Version 4.1

allocator malloc:

mallinfo fast main/ malloc:

fopen:

parts of floating-point numbers

volume

input scanf:

a file pointer in a stream

stat: lstat,

information statfs:

in-memory state with that on the/

m in a stream fseek: rewind,
’ communication package stdipc:

function erf: erfc error
function and complementary error
gamma: lgamma log gamma
hypot: Euclidean distance
entries of a common object file
matherr: error-handling

math: math

bessel: bessel

logarithm power, square root
remainder, absolute value
sinh: cosh, tanh hyperbolic
smsys: machine specific

intro: introduction to libraries,
acos, atan, atan2 trigonometric
fread:

m gamma: lgamma log

number to string ecvt: fevt,
/tegetpgrp, tesetpgrp, tegetsid

cflow:

cross-reference cxref:

termination abort:

ctermid:

crypt: setkey, encrypt

lexical tasks lex:

/mrand48, srand48, seed48, lcong48
rand: srand simple random-number

file

- character or word from a stream
ﬂ character or word from a/ gete:
working directory

Permuted index

free, realloc, calloc main memory malloc(3C)
free, realloc, calloc, mallopt,c.ccccconviininne malloc(3X)
freopen, fdopen open a stream fopen(3S)

frexp: ldexp, modf manipulate frexp(3C)
fs: file system format of systemc..c..ccceveeiiinne fs(4)
facanf, sscanf convert formatted scanf(3S)
fseek: rewind, ftell respositioncccconieeninee fseek(3S)
fstat get file statuscccooveeiiriinic stat(2)
fstatfs get file system ..., statfs(2)
fsync: synchronize a file’s ..., fsync(2)
ftell resposition a file pointer ... fseek(3S)
ftok standard interprocess ... stdipe(3C)

ftw: walk a file treeoccoiiiniii ftw(3C)
function and complementary error . erf(3M)
function erf: erfc errorcccvviveivvvvcereierene erf(3M)
functionccooevvrreeie e gammal(3M)
fUnCLion ..o hypot(3M)
function /manipulate line number ldIread(3X)
functionccocevevieinri e .. matherr(3M)
functions and constantsc..ccceevieniiniinncnn. math(5)
functionsccocooveriiiiie e bessel(3M)
functions /pow, sqrt exponential, exp(3M)
functions /fabs floor, ceiling,cccccovvevennen. floor(3M)
fUnctionsoccooieieiiiii e sinh(3M)
functionscoccooeeeeieiicee e smsys(2X)
functions, system calls and error/ . intro(2&3)
functions /sin, cos, tan, asin,cceeeienne. trig(3M)
fwrite binary input/outputc.cecoeeviiieninn. fread(3S)
gamma function ..o, gamma(3M)
gamma: lgamma log gamma function gamma(3M)
gevt convert floating-pointccoeeeveveeiiiieeeiiienns ecvt(3C)
general terminal interface . . termios(2)
generate C flowgraph cflow(1)
generate C programc..cceeoceeieeeiieeeiieennnn. cxref(1)
generate an abnormal program abort(3C)
generate file name for terminal ctermid(3S)
generate hashing encryptionc.ccccocrveernn.nn. crypt(3C)
generate programs for simpleccccoooeiviiiinienn, lex(1)
generate uniformly distributed/ drand48(3C)
BENETALOT ...oveieiiieieiiie et rand(3C)
get: get a version of an SCCS ..ol get(l)
getc: getchar, fgete, getw get ..o gete(3S)
getchar, fgetc, getw getocooeeveeveeeniiieicc e getc(38)
getcwd: get path-name of current getewd(3C)

SUPERMAX SWD RISC REFERENCE MANUAL PI-17

AP R TR

]
I —

Permuted Index

and put in a file system/

user,/ getuid: geteuid, getgid,
environment name

user, effective user,/ getuid:
effective user,/ getuid: geteuid,
setgrent, endgrent, fgetgrent/
endgrent, fgetgrent/ getgrent:
fgetgrent/ getgrent: getgrgid,
group access list IDs

stream
argument vector

process group, and/ getpid:
process, process group, and/
group, and/ getpid: getpgrp,

setpwent, endpwent, fgetpwent/
fgetpwent/ getpwent: getpwuid,
endpwent, fgetpwent/ getpwent:

stream

get real user, effective user,/

getutline, pututline, setutent,/
pututline, setutent,/ getut:

setutent,/ getut: getutent,

getut: getutent, getutid,

stream getc: getchar, fgetc,

data and time/ ctime: localtime,
setjmp: longjmp non-local

sigsetjmp: siglongjmp a non-local
SUPPORTED) setpgid: set process
par_cho: change owner ID and

‘ set effective or real user and
| setpgrp: set process
| setregid: set real and effective
user, real group, and effective

setuid: setgid set user and

getgroups: get supplementary

/real user, effective user, real

/getppid get process, process

setgrent, endgrent, fgetgrent get
chown: change owner and

send a signal to a process or a

PI-18

getdents: read directory entriesc......... getdents(2)

getegid get real user, effective getuid(2)
getenv: return value for getenv(3C)
geteuid, getgid, getegid get realccoceinnn getuid(2)
getgid, getegid get real user, ... getuid(2)
getgrent: getgrgid, getgrnam, getgrent(3C)
getgrgid, getgrnam, setgrent, getgrent(3C)

getgrnam, setgrent, endgrent, getgrent(3C)

getgroups: get supplementary getgroups(2)
getlogin: get login name getlogin(3C)
getmsg: get next message off accceriins getmsg(2)
getopt: get option letter fromcccoevieinns getopt(3C)
getpass: read a password ... getpass(3C)
getpgrp, getppid get process, getpid(2)
getpid: getpgrp, getppid get getpid(2)
getppid get process, process ... getpid(2)
getpw: get name from UID getpw(3C)
getpwent: getpwuid, getpwnam, getpwent(3C)
getpwnam, setpwent, endpwent, getpwent(3C)
getpwuid, getpwnam, setpwent, getpwent(3C)

gets: fgets get a string froma ...l gets(3S)
gettxt: retrieve a text string gettxt(3C)
getuid: geteuid, getgid, getegid getuid(2)

getut: getutent, getutid, getut(3C)
getutent, getutid, getutline,cccooeveviinnnn, getut(3C)
getutid, getutline, pututline,c.ccovvvinnine getut(3C)
getutline, pututline, setutent,/ ... getut(3C)
getw get character or word from acceeenne gete(3S)
gmtime, asctime, tzset convert ctime(3C)
BOLO vttt ... setjmp(3C)
goto with signal state ... sigsetjmp(3C)

group ID for Job Control (NOT ...t setpgid(2)

group ID of a partition ...t .. par_cho(2X)
group ID /setegid, setrgid ... seteuid(3X)
group ID .. setpgrp(2)
group ID .. setregid(2X)
group IDs /real user, effectivecccoeecl getuid(2)
group IDS ..o ... setuid(2)
group access list IDs ..., . getgroups(2)
group, and effective group IDsccccceeis getuid(2)
group, and parent process IDscoeeinn. getpid(2)
group file entry /getgrnam, ... getgrent(3C)
group of a filecccovereeiecene chown(2)
group of processes kill: ..o kill(2)

Permuted Index, Version 4.1

maintain, update, and regenerate
ssignal:

varargs:

curses: terminal screen

isascii, setchrclass character
hsearch: hcreate, hdestroy manage
crypt: setkey, encrypt generate
search tables hsearch:

tables hsearch: hcreate,

scnhdr: section

filehdr: file

limits: file

ldfhread: read the file

/seek to the optional file

/read an indexed/named section
file ldahread: read the archive

hash search tables
sinh: cosh, tanh
function

shmget: get shared memory segment

what:

core: format of core

scr_dump: format of curses screen
limits: file header for

dirent: file system

entries and put in a file system

a common,/ ldtbindex: compute the
common object/ ldtbread: read an
ldsseek: ldnsseek seek to an
ldshread: ldnshread read an
receipt of an orderly release

" receive a unit data error
langinfo: language

file reloc: relocation

/strip symbol and line number
t_rcvdis: retrieve

get numeric formatting
nl_langinfo: language

statfs: fstatfs get file system

get protocol-specific service
t_sndrel:

popen: pclose

fsync: synchronize a file’s

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

groups of programs make:ccceeininiinen, make(1)
gsignal software signals ... ssignal(3C)
handle variable argument list .i......ccccooccrienee varargs)5)
handling and optimization package . curses(3X)
handling /isprint, isgraph,cccccimiennenen. ctype(3C)
hash search tablesccocooevinniiiecnninn hsearch(3C)
hashing encryptioncccccccinviiiiinniiiinen. crypt(3C)
hcreate, hdestroy manage hash hsearch(3C)
hdestroy manage hash search hsearch(3C)
header for a common object file scnhdr(4)
header for common object filesc.ccccccrnnenne. filehdr(4)

header for/ccooviivivii e limits(4)
header of a common object file ldfhread(3X)
header of a common object file ldohseek(3X)
header of a common object file ldshread(3X)
header of a member of an archive ldahread(3X)

help: SCCS Utility Help Facility help(1)

hsearch: hcreate, hdestroy manage hsearch(3C)
hyperbolic functionsccoooevveeiiieiieciiaiens sinh(3M)
hypot: Euclidean distanceccccccoevieenne. hypot(3M)
Identifierocoooiviiieeee e shmget(2)
identify SCCS files . what(1)
image file ... core(4)
image file ..., ser_dump(4)
implementation-specific constants limits(4)
independent directory entrycccceviiieinnenne dirent(4)
independent format /directory getdents(2)
index of a symbol table entry of ldtbindex(3X)
indexed symbol table entry of a ldtbread(3X)
indexed/name section of a common/ . ldsseek(3X)
indexed/named section header of a/ ldshread(3X)

indication t_rcvrel: acknowledge

indication t_rcvuderr:
information constants
information for a common object

t_revrel(3N)
t_revuderr(3N)
langinfo(5)
reloc(4)

information from a common object/ strip(1)
information from disconnect t_revdis(3N)
information localeconv: localeconv(3C)
informationcccccoveveirieneeneneenns nl langinfo(3C)
INfOrmationccooeevciiinecinnc e statfs(2)

information t_getinfo: ...
initiate an orderly release

.. t_getinfo(3N)
. t_sndrel(3N)

initiate pipe to/from a process popen{3S)
in-memory state with that on the/ fsync(2)
PI-19

Permuted Index

inode: format of an

fscanf, sscanf convert formatted
ungetc: push character back into
fread: fwrite binary

poll: STREAMS

stdio: standard buffered

cleaerr, fileno stream status
process until signal sigsuspend:
abs: return

a64l: 164a convert between long
sputl: sgetl access long

atol, atoi convert string to
/1tol3 convert between 3-byte
between 3-byte integers and long
tcgetsid general terminal

pipe: cretae an

package stdipc: ftok standard
sleep: suspend execution for
Development Utilities

formats

functions, system calls and/
intro:

functions, system calls/ intro:

/islower, isupper, isalpha,
isxdigit, islower, isupper,
/ispunct, isprint, isgraph,
tyyname:

isupper, isalpha,/ ctype:
character/ /ispunct, isprint,
ctype: isdigit, isxdigit,

/isspace,iscntrl, ispunct,
/isalnum, isspace,iscntrl,
/isupper, isalpha, isalnum,
system:

/isdigit, isxdigit, islower,
isalpha,/ ctype: isdigit,
mrand48,/ drand48: erand48,
or a group of processes

3-byte integers and long/

and base-64 ASCII string a64l:
constants

Pl-20

.. inode(4)
.................................. .. inode(4)
.. scanf(3S)
ungetc(3S)

inode: format of an i-node .
i-node
input scanf:
input stream

input/output ... fread(3S)
input/output multiplexingc.cccervvcnnieiiinnn poll(2)
input/output packagec.cccecrereeerrveerenceeennes stdio(38)
inquiries ferror: feof,ccccvcermiimrnieerncrnncns ferror(3S)
install s signal mask and suspend . .. sigsuspend(2)
integer absolute valueccoceiiininiicenins abs(3C)
integer and base-64 ASCII stringccceeeeeee. a641(3C)
integer data in a/cocooceriniicccinccereen sputl(3X)
integer strtol: strtol(3C)
integers and long INtegersc..ccovervcveecencenenns 13tol(3C)
integers 13tol: 1tol3 convertccocvvnenenn. 13tol(3C)
interface /tegetpgrp, tesetpgrp, ..ooocveeveceenees termios(2)

interprocess channelc....cccccomirvnncininnnccnennn. pipe(2)

interprocess communication . .. stdipe(3C)
INEETVAL oo sleep(3C)
intro: Introduction to Softwareccccecee..c.. intro(1)
intro: introduction to fileccccocoeiiiieieiiniineen. intro(4)
intro: introduction to libraries, intro(2&3)
introduction to file formatsccccceevvreirieninenne intro(4)
introduction to libraries,ccceceviiiriienenns intro(2&3)

ioctl: control deviceocoeciiiiiiiiiciiiiiiee e ioctl(2)
isalnum, isspace,isentrl,/ . ctype(3C)

isalpha, isalnum,/ /isdigit, ctype(3C)
isascii, setchrelass character/c.covvceiceens ctype(3C)
isatty find name of a terminal . . ttyname(3C)

isdigit, isxdigit, islower,
isgraph, isascii, setchrclass ctype(3C)
islower, isupper, isalpha,/cccoeniniiiinens ctype(3C)

isnan: test for NaNcooovveiineicconcnnccceenes isnan(3M)
isprint, isgraph, isascii,/ .. ctype(3C)
ispunct, isprint, isgraph,/ ctype(3C)
isspace,iscntrl, ispunct,/ ctype(3C)
issue a shell command system(3S)
isupper, isalpha, isalnum,/ ctype(3C)
isxdigit, islower, isupper, ..., ctype(3C)
jrand48, lrand48, nrand48,c.cecee. drand48(3C)
kill: send a signal to a processccccoeeevivinnnne kill(2)
13tol: ltol3 convert between 13tol(3C)
164a convert between long integerc.......... a641(3C)
langinfo: language informationc......... langinfo(5)

Permuted Index, Version 4.1

...... ctype(3C) u

nl_types: native

langinfo:

nl_langinfo:

cpp: the C

strftime:

/mrand48, srand48, seed48,
files

of a member of an archive file

for reading ldopen:

file

floating-point numbers frexp:
routines

a common object file

for common object file symbol/
number entries of a/ ldlread:
entries of a/ ldlread: 1dlinit,
manipulate line number entries/
number entries of a section of a/
entries of a section of/ ldlseek:
entries of a section of/ ldrseek:
section header of a/ ldshread:
section of a common/ ldsseek:
file header of a common object/
object file for reading

relocation entries of a section/
indexed/named section header of/
indexed/name section of a common/
symbol table entry of a common/

ﬂ table entry of a common object/
J table of a common object file
getopt: get option

lexical tasks

lex: generate programs for simple
Isearch:

gamma:

calls and/ intro: introduction to
ordering realtion for an object
archives ar: archive and

t_alloc: allocate a

t_free: free a

t_sync: synchronize transport
chklicense: check if program has
implementation-specific/

ulimit: get and set user

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

language data typesccccccocmeinnccenennen nl types(5)
language information constants langinfo(5)
language informationc..coccccereniennn. nl_langinfo(3C)
language preprocessor cppll)
language specific stringsc.cccoeviieviiinnenn, strftime(4)

lcong48 generate uniformly/ drand48(3C)

1d: link editor for common object 1d(1)
ldahread: read the archive header ldahread(3X)
ldaopen open a common object file ldopen{3X)
Idclose: close a common object ldclose(3X)
Idexp, modf manipulate parts ofc............ frexp(3C)
ldfen: common object file accesscccoeeviennnn. ldfen(4)
ldfhread: read the file header of ldfhread(3X)
ldgetname: retrieve symbol name ldgetname(3X)
ldlinit, ldlitem manipulate line ldlread(3X)
ldlitem manipulate line number ldlread(3X)
ldlread: Idlinit, Idlitemcccocooiveiin, ldlreadi3X)
ldlseek: ldnlseek seek to linecocec....... ldlseek(3X)
ldnlseek seek to line number ldlseek(3X)
ldnrseek seek to relocationc..cccceeernen. ldrseek(3X
ldnshread read an indexed/named ldshread(3X)
ldnsseek seek to an indexed/name ... ldsseek(3X)

ldohseek: seek to the optional ldohseek(3X)
Idopen: ldaopen open a commonc..ocece.e.. ldopen(3X)
ldrseek: ldnrseek seek to ldrseek(3X)
ldshread: ldnshread read an ldshread(3X)
ldsseek: ldnsseek seek to an ... ldsseek(3X)
Idtbindex: compute the index of a . ldtbindex(3X)
ldtbread: read an indexed symbol ldtbread(3X)

Idthseek: seek to the symbol ldthseek(3X)
letter from argument vector getopt(3C)
lex: generate programs for simplec.ccoceevenne. lext1)
lexical taskscccovioiiiiiiiic e lexi1)
Ifind linear search and update Isearch(3C)
lgamma log gamma function gammai(3M)

libraries, functions, systemccccccoeeennen. intro(2&3)

library lorder: find lorder(1)
library maintainer for portableccccccocevininn ar(l)
library structurecccccoevvrieiiecenresiecreenene t_alloc(3N)
library structure ... t_freet3N)
Iibrary ... t_sync(3N)
license to runccoceeiiieiiiee chklicense(2)
limits: file header for .. limits(4)
BMIES .oviiieniicii e ulimit(2)
Pi-21

Permuted Index

establish an out-going terminal
file linenum:

/1dlinit, ldlitem manipulate

of a/ ldlseek: ldnlseek seek to
common/ strip: strip symbol and
edit: update a

Isearch: Ilfind

an object file

files 1d:

uld: ucode

a.out: common assembler and

read value of a symbolic
link:
symlink: make symbolic

clist:

get supplementary group access
list: produce C source

nlist: get entries from name

nm: print name

a common object file

varargs: handle variable argument
output of a varargs argument
t_listen:

modify and query a program'’s
formatting information

convert data and time to/ ctime:
end: etext, edata last

memory plock:

lockf: record
gamma: lgamma

exponential, logarithm/ exp:
logarithm power,/ exp: log,
/logl0, pow, sqrt exponential,
getlogin: get

cuserid: get character
logname: return

user

setjmp:

transport endpoint t_look:
for an object library

drand48: erand48, jrand48,

Pl-22

line connection dial:ccoccovvreeniceniiennnienne dial(3X)
line number entries in an object linenum(4)
line number entries of a common/ .. ldIread(3X)
line number entries of a sectioncc......... 1dlseek(3X)
line number information from acccccevivninniinn strip(1)

line of text from a terminal edit(2X)

linear search and updatecoociecninnns Isearch(3C)
linenum: line number entries incc.cceoevnin linenum(4)
link editor for common object 1d(1)
HDK @dIEOT ..ovoerieeirieeeerecreeesreserssee e eneee s e neeensanees 1d(1)
link editor oULPUL ...cccooceomminriciciiiiis a.out(4)
link: link to a file ... link(2)
link readlink:ccccoiiiicniiicninniiiee readlink(2)
lnk t0 @ file ..covvievreceieecerieeee et link(2)
link to a file .. symlink(2)
lint: a C program checkerccccocmeniniiicnnnnenen. lint(1)
list C ProOgramsccccveveveenieneecrerncermrcenmeerenenne clist(1)
list IDs getgroups: getgroups(2)
list from a common object filecccooniniiinnnenns list(1)
LISE veuieeeeeveersremrenereesrestesssressseemasresee st ea b aanesnenes nlist(3X)
list of common object file nm(1)
list: produce C source list fromccccovvveimincnnns list(1)
HSE vieieieeeeeeereetr et cn e e eeere e sa e ene e enen varargs)5)
list /vsprintf print formatted ... vprintf(3S)
listen for a connect requestcccccoveenne t_listen(3N)
locale setlocalecccccccecvvciniiniiininiinnninn setlocale(3C)
localeconv: get numeric localeconv(3C)
localtime, gmtime, asctime, tzsetc...... ctime(3C)
locations in Program ..., end(3C)
lock process, text, or data in plock(2}
lockf: record locking on filescocceviiniinnn. lockf(3c)
locking on filesccccceevervcerenccnnininiiie lockf(3c)
log gamma function .. gamma(3M)
log, 10gl10, POW, SQrt ..c.cccocermrneniiiniiieniiieicnans exp(3M)
logl0, pow, sqrt exponential, exp(3M)
logarithm power, square root/ ... exp(3M)
login namecccceceeuene ... getlogin(3C)
login name of the user ... cuserid(3S)
login name of userc.oeeeuee ... logname(3X)
logname: return login name of . .. logname(3X)

longjmp non-local gotoccccoeeereeereceerecannnnns setjmp(3C)

look at the current event on a t_look(3N)
lorder: find ordering realtioncccocooverninnnen. lorder(1)
Irand48, nrand48, mrand48,/cccccceun drand48(3C)

Permuted Index, Version 4.1

update

pointer

stat:

integers and long/ 13tol:

Smsys:
values:

/access long integer data in a
m4:

malloc: free, realloc, calloc
calloc, mallopt, mallinfo fast
groups of programs make:

ar: archive and library
regenerate groups of programs
/free, realloc, calloc, mallopt,
main memory allocator
mallopt, mallinfo fast main/
malloc: free, realloc, calloc,
tsearch: tfind, tdelete, twalk
hsearch: hcreate, hdestroy
endpoint t_optmgmt:
sigaction: detailed signal
sigignore, sigpause signal

a/ ldlread: 1dlinit, ldlitem
frexp: ldexp, modf

/sigaddset, sigdelset, sigismember
comment section mcs:
sigsuspend: install s signal
mcumask: set and get MCU
change or examine signal
umask: set and get file creation
regular expression compile and
math:

constants

comment section

state with that on the physical
shmop: shmat, shmdt shared
/read the archive header of a
memory:

memory: memccpy,
operations memory:

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

lsearch: 1find linear search and lsearch(3C)
lseek: move read/write file ... Iseek(2)
Istat, fstat get file status ..o, stat(2)
1tol3 convert between 3-byte ... 13tol(3C)
M4: MACIO PrOCESSOT ...oooieiiiiiiiiniiiiiiaineeee e e e m4(l)
machine specific functions ... smsys(2X)
machine-dependent values ... values(5)
machine-independent fashion ... sputl(3X)
MACTO PrOCESSOT .o..veieiriieieeannssiressianasieneaniassreeaaaneeans m4(l)
main memory allocator ... malloc(3C)
main memory allocator /realloc, ... malloc(3X)
maintain, update, and regenerate ... make(1)
maintainer for portable archives ... ar(l)
make: maintain, update, and ..o make(1)
mallinfo fast main memory/ ... malloc(3X)
malloc: free, realloc, callocc...ccccoe i malloc(3C)
malloc: free, realloc, calloc, ... malloc(3X)
mallopt, mallinfo fast main/ ... malloc(3X)
manage binary search trees ... tsearch(3C)
manage hash search tables ... hsearch(3C)
manage options for a transport ... t_optmgmt(3N)
MANAZEMNENL ..ooiviiiiiiiiiiaiiee e een e sigaction(2)
management /sighold, sigrelse, ... sigset(2)
manipulate line number entries of ldlread(3X)
manipulate parts of/ ... frexpt3C)
manipulate sets of signals ... sigsetops(3C)
manipulate the object file ... mesily
mask and suspend process until/ ... sigsuspend(2)
MASK it mcumask(2X;
mask sigprocmask: ... sigprocmask(2)
TOASK oevveiiie e umask(2)
match routines /step, advance regexp(3)

math functions and constants math(3)
math: math functions and ... math(5)
matherr: error-handling function .. matherr(3M)
mcs: manipulate the object file ... mes(1)
mcumask: set and get MCU mask mcumask(2X)
medium /a file’s in-memory ... fsync(2)
mem operations shmop(2)
member of an archive file . ldahread(3X)
memecpy, memchr memory operations

.. memory(3C)
memchr memory operations memory(3C)

memcmp, memcpy, memset Memory memory(3C)

PI1-23

Permuted Index

memory: memcmp,
free, realloc, calloc main
mallopt, mallinfo fast main
shmctl: shared

operations

memory operations
memory: memccpy, memchr
memory: memcmp, memcpy, memset
par_att: attach a

par_cre: create a

par_det: detach a

lock process, text, or data in
shmget: get shared

memory: memecmp, memcpy,
catopen: open/close a
catgets: read a program
msgctl:

getmsg: get next

putmsg: send a

amsgop: asynchronous
msgop: msgsnd, msgrev
msgget: get

strerror: get error

t_error: produce error
sys_nerr system error

millisec: get

special or ordinary file
to a calendar time

chmod: change
floating-point/ frexp: ldexp,
utime: set file access and
locale setlocale

profile

mount:

mnttab:

Iseek:

/jrand48, lIrand48, nrand48,
operations

Pl-24

memcpy, memset memory operations memory(3C)
memory allocator malloc:ccccveeeveriennnnne. malloc(3C)
memory allocator /calloc, malloc(3X)

memory control operationsccccecveiieenen shmetl(2)
memory: memccpy, memchr memory .. . memory(3C)

memory: memcmp, memcpy, memset memory(3C)
memory operations memory(3C)
memory operations memory(3C)
memory partition par_att(2X)
memory partition ..., par_cre(2X)
memory partition par_det(2X)
memory Plock:ccocovicricnienicnce e plock(2)
memory segment identifier ... shmget(2)
memset Memory operationscceeeeeeenes memory(3C)
message cataloguecovveviiniecninieenn. catopen(3C)
IMESSAZE .ooovvvevenrarenrieeenennnns ... catgets(3C)
message control operationscceceveivcinnee. msgetl(2)
message off a streamcoceovceeriiennniininnn. getmsg(2)
message ON & SETeaIMNccceviiirriemncenreesnnsannss putmsg(2)
message operations amsgop(2X)
message OPerationsccc..cccminveiinnecnnenn msgop(2)
MESSAZE QUEUEL ..oeevvenierriiiosienreessiesessnreassneasaronsens msgget(2)
message Stringc...occoevivnvnnennienrecee strerror(3C)
INESSAZE ..eeovneeenrirensienreriiensaenes .. t_error(3N)

perror(3C)
................... millisec(2X)
. millisec(2X)
.... mkdir(2)
. mkfifo(3C)

messages /errno, sys_errlist,
millisec: get millisecond counter
millisecond counter
mkdir: make a directory

mkfifo: create a new FIFO

mknod: make a directory, or ac..ccceeereeeccenne mknod(2)
mktemp: make a unique file name mktemp(3C)
mktime: converts a tm structure mktime(3C)
mnttab: mounted file system table mnttab(4)
mode Of filecccveeireei e chmod(2)
modf manipulate parts ofccccoeerverccriniinnene frexp(3C)
modification timesc..cocecrrerieeneccenrnnernnnene utime(2)
modify and query a program’s . setlocale(3C)
monitor: prepare execution ... monitor(3C)
mount a file system ... mount(2)
mount: mount a file systemccccceciviniininnns mount(2)
mounted file system tableccceviiiiiiinnnns mnttab(4)
move read/write file pointer lseek(2)
mrand48, srand48, seed48, lcong48/ drand48(3C)
msgetl: message controlcoceviniiiiinninnnnnn, msgctl(2)

Permuted Index, Version 4.1

W/

v

v/

operations
msgop: msgsnd,

msgop:

poll: STREAMS input/output
tmpnam: tempnam create a
ldgetname: retrieve symbol
ctermid: generate file

getpw: get

return value for environment
getlogin: get login

nlist: get entries from

nm: print

mktemp: make a unique file
rename: change the
tyyname: isatty find

uname: get

cuserid: get character login
logname: return login
par_del: delete a

nl types:

getmsg: get

process

types

object file

setymp: longjmp

sigsetjmp: siglongjmp a
/erand48, jrand48, lrand48,
linenum: line

/1dlinit, 1dlitem manipulate line
ldlseek: ldnlseek seek to line
strip: strip symbol and line
string to double-precision

fevt, gevt convert floating-point
distributed pseudo-random
parts of floating-point
functions, system calls and error
localeconv: get

ldfen: common

mcs: manipulate the

cprs: compress a common

dis: disassemble an

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

msgget: get message qUEUEcocoiiiieiinin msgget(2)
msgop: msgsnd, MSErev MeSSaAZe .o.veceerveeencennns msgop(2)
msgrev message operations msgop(2)
msgsnd, msgrev message operations . .. msgop(2)
mMUltipleXingcccccvemmnrnini poll(2)
name for a temporary file ... tmpnam(38)
name for common object file/ ldgetname(3X)
name for terminalccoooecvenneniiii ctermid(3S)
name from UID ... getpw(3C)
name ZeLeNV:ccccmmeermiiiiiinieniin e getenv(3C)
NAME .ooveereveereeeereneeeecisssasenennees . getlogin(3C)
name LSt .ooovecveeierece e nlist(3X)
name list of common object file ... nm(1)
NAME .oeeeiiiiiieeieere et eeeesitebe s sene e ereasreens mktemp(3C)
name of a fileccoocoeiiiinii rename(2)
name of a terminal ... ttyname(3C)
name of current operating system uname(2)
name of the user cuserid(3S)
name of user logname(3X)

named partition ... par_del(2X)

native language data types ..o nl_types(5)
next message off a stream ... getmsg(2)
nice: change priority of @ccocciviiininiian nice(2)

............ nlist(3X)
... nl_langinfo(3C)
........ nl_types(5)

nlist: get entries from name list ...
nl_langinfo: language information ...
nl_types: native language data

nm: print name list of common ... nm(1)
non-local g0t0 ..o setjmp{3C)
non-local goto with signal state sigsetjmp(3C)

nrand48, mrand48, srand48,/ ... drand48(3C)

number entries in an object file linenum(4)
number entries of a common object/ .. ldlread(3X)
number entries of a sectionof a/ 1dlseek(3X)
number information from a common/ strip(1)
number strtod: atof convert ... strtod(3C)
number to string ecvt: ... ecvt(3C)
numbers /generate uniformly ... drand48(3C)
numbers /ldexp, modf manipulate frexp(3C)
numbers /to libraries, ..., intro(2&3)
numeric formatting information localeconv(3C)
object file access routines ..., ldfen(4)
object file comment section ... mes(1)
object file ..o cprs(l)
ObJECt fIle ..oiiviiiecee e dis(1)
Pi-25

Permuted Index

dump: dump selected parts of an
Idopen: ldaopen open a common
line number entries of a common
Idclose: close a common

read the file header of a common
entries of a section of a common
optional file header of a common
entries of a section of a common
section header of a common
indexed/name section of a common
a symbol table entry of a common
symbol table entry of a common
to the symbol table of a common
line number entries in an

C source list from a common

nm: print name list of common
odump: dump selected parts of an
information for a common

section header for a common
number information from a common
/retrieve symbol name for common
filehdr: file header for common
1d: link editor for common

section sizes in bytes of common
find ordering realtion for an
object file

reading ldopen: ldaopen

fopen: freopen, fdopen

dup: duplicate an

dup?2: duplicate an

open:

catopen:

seekdir, rewinddir,/ directory:
uname: get name of current
amsgop: asynchronous message
rewinddir, closedir — directory
memory: memccpy, memchr memory
memcmp, memcpy, memset memory
msgctl: message control

msgop: msgsnd, msgrcv message
semctl: semaphore control

semop: semaphore

shmetl: shared memory control

Pl-26

object fileccocveniicinire et dump(1)
object file for reading ldopen(3X)
object file function /manipulate ldlread(3X)
object fileccceeevenens ... ldclose(3X)
object file ldfhread: ldfhread(3X)
object file /seek to line numbercccueen. 1diseek(3X)
object file /seek to thecoccricenniceniccens ldohseek(3X)
object file /seek to relocationccceennee. ldrseek(3X)
object file /an indexed/named ldshread(3X)
object file /ldnsseek seek to an ldsseek(3X)
object file /compute the index of ldtbindex(3X)
object file /read an indexedccoveennne. ldtbread(3X)
object file ldtbseek: seek ldtbseek(3X)
object file linenum:c.cococcoiviieciiniiiiianne linenum(4)
object file list: producecccovcmrconiiriiiiincenis list(1)

object file ..o nm(1)
object file .ocniieeiiien . odump(1)
object file reloc: relocationcccocoeciiniennnee. reloc(4)
object file senhdr:ccccooviiiinniie scnhdr(4)
object file /symbol and linecccoconinininnn strip(1)
object file symbol table entry ldgetname(3X)
object filesocveeiiiie e filehdr(4)
object filesccooiiiieiiii e 1d(1)
object files size: print size(1)
object library lorder: lorder(1)

odump: dump selected parts of anccc... odump(1)
open a common object file forcocoieis ldopen(3X)
Open A SLFEAMcccevieeiiiiiieicceneee e fopen(3S)

open file descriptor ... dup(2)
open file descriptor ... dup2(3C)
open for reading or writingc...ccovniiiiiinnnnne. open(2)
open: open for reading or writing ... open(2)
open/close a message catalogue catopen(3C)
opendir, readdir, telldir, directory(3C)
Operating SYStEMcocevevereererincceeneerenierennenes uname(2)
OPErationscccccevecerveeriieninnieiiiririieeiereenes amsgop(2X)
operations .. directory(3C)
operations memory(3C)
operations memory(3C)
operations msgctl(2)
operations msgop(2)
operations semctl(2)
operations semop(2)
operations shmctl(2)

Permuted Index, Version 4.1

W/

w

M

shmop: shmat, shmdt shared mem
strespn, strtok, strstr string
terminal screen handling and
vector getopt: get

object/ ldohseek: seek to the
fentl: file control

t_optmgmt: manage

library lorder: find
/acknowledge receipt of an
t_sndrel: initiate an

make a directory, or a special or
connection dial: establish an
common assembler and link editor
/vsprintf print formatted

fprintf, sprintf print formatted
partition par_cho: change
chown: change

screen handling and optimization
standard buffered input/output
interprocess communication
define additional system call
partition

a partition

group ID of a partition

partition

partition

get process, process group, and
par_att: attach a memory

change access rights to a

change owner ID and group ID of a
par_cre: create a memory

par_del: delete a named

par_det: detach a memory

dump: dump selected

odump: dump selected

frexp: 1dexp, modf manipulate
setpwent, endpwent, fgetpwent get
putpwent: write

getpass: read a

directory getcwd: get

fpathconf: get configurable

signal

process popen:

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

OPETALIONS .ueoviieceeieerenieieraeiesre e saesbeseseesesseees shmop(2)
operations /strpbrk, strspn,cccene. string(3C)
optimization package curses: .:_curses(3X)
option letter from argument getopt(3C)
optional file header of a common ldohseek(3X)
OPLIONS .oiiuiiiiiireeeieere e ceterireercee e s ean s esaeaees fentl(5)
options for a transport endpoint . t_optmgmt(3N)
ordering realtion for an objectcc.ccoveurnnne. lorder(1)

. t_rcvrel(3N)
t_sndrel(3N)

orderly release indication
orderly release

ordinary file mknod:c.occoeiiiiiniiiinne, mknod(2)
out-going terminal line ... dial(3X)
output a.out: ... a.out(4)
output of a varargs argument list vprintf(3S)
output printf: ... printf(3S)
owner ID and group ID of a .. . par_cho(2X)
owner and group of a fileccoeeeeiiiiinnnn, chown(2)
package curses: terminalccccoccoeivnienninenna curses(3X)

package stdio:ccccoieiiiiiiriieee e, stdio(3S)
package stdipc: ftok standard . stdipe(3C)
parameters set parm: set_parm(2X)
par_att: attach a memory par_att(2X)
par_chm: change access rights to par_chm(2X)
par_cho: change owner ID and par_cho(2X)
par_cre: create a memory par_cre(2X)
par_del: delete a named partition par_del(2X)
par_det: detach a memory par_det(2X)
parent process IDs /getppid . getpid(2)
partition
partition par_chm:
partition par _cho: .
partition .

... par_att(2X)
. par_chm(2X)
par_cho(2X)
par_cre(2X)

PATLItION ..ooiiiiiiiniieiiiecec e par_del(2X)
partition ... par_det(2X)
parts of an object filec.ccooeceriiiiiiiiiii dump(1)
parts of an object file odump(1)
parts of floating-point numbers frexp(3C)
password file entry /getpwnam, getpwent(3C)
password file entryccoocveiiiiinnininnn. putpwent(3C)
PASSWOId ...ocovveeiiiiiiiienceee v getpass(3C)
path-name of current working .. getewd(3C)
pathname variablesc..coovvieiieciaiennn, fpathconf(2)
pause: suspend process until ..., pause(2)
pclose initiate pipe to/from acceviirinenne popen(3S)
PI-27

Permuted Index

signals that are blocked and
/strnaorder, strnnaorder to
format acct:

sys_nerr system error messages
in-memory state with that on the
channel

popen: pclose initiate

program

execution

data in memory

rewind, ftell resposition a file
Iseek: move read/write file
multiplexing

to/from a process

and library maintainer for
power, square/ exp: log, logl0,
/pow, sqrt exponential, logarithm
monitor:

cpp: the C language

unget: undo a

types:

prs:

activity sact:

vprintf: vfprintf, vsprintf
printf: fprintf, sprintf

file nm:

common object files size:
formatted output

nice: change

process group, and parent

acct: enable or disable

alarm: set a

times: get

resume: resume

suspend: suspend

exit: _exit terminate

fork: create a new

(NOT SUPPORTED) setpgid: set
setpgrp: set

/getpgrp, getppid get process,
nice: change priority of a

kill: send a signal to a

pelose initiate pipe to/from a

getpid: getpgrp, getppid get

Pl-28

pending sigpending: examine sigpending(2)
perform alphabetic comparison of/ straorder(3X)
per-process accounting file acct(4)

perror: errno, sys_errlist, ... perror(3C)

physical medium /a file’scccoeveeriiivinininninnens fsync(2)
pipe: cretae an interprocesscocccocrinnnin pipe(2)
pipe to/from a process popen(3S)
pixie: add profiling code t0 8 ...c.coceevirreeerieccneininne pixie(1)

pixstats: analyze programc.c.coverinenes pixstats(1)

plock: lock process, text, OFccccocceceevcernenenns plock(2)
pointer in a stream fseek: fseek(3S)
POINLET eovviicieeieeiereeereever e ssneesseaeseece e sesseeaestssanns lseek(2)
poll: STREAMS input/outputcccccevrvvvivurnuvncnnns poll(2)
popen: pclose initiate pipec.cccccvineiininnn. popen(3S)
portable archives ar: archive ... ar(l)
pow, sqrt exponential, logarithm .. exp(3M)
power, square root functions ... exp(3M)
prepare execution profileccccvveernenns monitor(3C)
PTEPTOCESSOT ...vevriiineiiieiiisseeiaeesnressreeseruesrniensssnesssens cpp(l)
previous get of an SCCS file unget(1)
primitive system data types . .. types(5)
print an SCCS filec..covvveeeivieccnccenererreene prs(1)
print current SCCS file editingccecvrvenennces sact(1)
print formatted output of a/ vprintf(3S)
print formatted output printf(3S)
print name list of common objectccoceirninine nm(1)
print section sizes in bytes of ... size(1)
printf: fprintf, sprintf print printf(3S)
PTiOrity 0f @ ProCesscccecericeverrimrennreeernsvniienins nice(2)
process IDs /getppid get process, getpid(2)
Process accounntingcccccceevvivverinennerenienennieens acct(2)
process alarm clock . alarm(2)
process and child process timescccceviinne times(2)
process executionccceeicciinnniniiniinninnn, resume(2X)
process execution suspend(2X)
PTrOCESS .coeereveeeenrecnrennns .. exit(2)
PrOCESS eouerniieiieenieneecnrineeenaseesanans ... fork(2)
process group ID for Job Control setpgid(2)
process group ID ... setpgrp(2)
process group, and parent process/ getpid(2)
PTOCESS ..ocereeeerireriecenreetstesirssrsanseens nice(2)

Pprocess or a group of Processesc..eciennnns kill(2)
PTrOCESS POPEI ..cccuievmiaieierreeiisiissirnsieesessnaseenns popen(3S)
process, process group, and/ ... getpid(2)

Permuted Index, Version 4.1

plock: lock

times: get process and child
waitpid: wait for child

wait: wait for child

waitx: wait for child

ptrace:

pause: suspend

install s signal mask and suspend
signal to a process or a group of
m4: macro

common object file list:
t_error:

prof: display

monitor: prepare execution
profil: execution time

pixie: add

assert: verify

cb: C

lint: a C

cxref: generate C

ctrace: C

etext, edata last locations in
pixstats: analyze

chklicense: check if

catgets: read a

pixie: add profiling code to a
abort: generate an abnormal
atexit: add

clist: list C

lex: generate

setlocale modify and query a
update, and regenerate groups of
information t_getinfo: get

generate uniformly distributed

stream ungetc:

puts: fputs

pute: putchar, fputc, putw
/read directory entries and
character or word on a stream
character or word on a/ putc:

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

process, text, or data in memoryc..cc..... plock(2)
ProOCeSS LIIMES ...oeevvivvererreenieeitreniessrrereneresnseessans times(2)
process to change state waitpid(2)

process to stop or terminate wait(2)
process to stop or terminate waitx(2X)
Process traceccovvimiiiinnieeni ptrace(2)
process until signal ..o pause(2)
process until signal sigsuspend: sigsuspend(2)
processes kill: send acooccoiiiiiiiinn kill(2)
PTOCESSOT .coniiiiiiieiieeietieeeeaibreerenbeeeenenecraesnaebneaeeenane m4(1)

........... list(1)
. t_errort3N)

produce C source list from a ...
produce error message

prof: display profile datac.ccoeeiiiecnninn, proftl)
profil: execution time profileccococeiin. profil(2)
profile datacccccoiiiiniiiie e prof(1)
Profileoocoiiiiiii e monitor(3C)
PrOfile .ooviieiiiee e s profil(2)
profiling code to a programcccoovieerinnnnn, pixie(1)
program assertion assert(3)

program beautifiercccniiiiiiii chbil)

program checker lint(1)
program cross-referenceccoeeiieeiiiiinen, cxrefil)
program debuggerccooceiiiiniiiiiniiiie ctrace(l)

Program end:cccocociinieiiiiieneeree e end(3C)
ProOgram €XeCULiONcccccovieeiiiiinianriaaannans pixstats(1)
program has license to run chklicense(2)
.......................... catgets(3C)

program message

PTOZTAITL ..ottt iceta e e bt st ene pixie(1)
program terminationoeeenrniinninens abort(3C)
program termination routine atexit(3C)
PTOBTAINS eeoiiirericeaeereeeerrereneresasnranseeesseennneeaineeens clist(1)
programs for simple lexical tasks lex(1)
program’s localecccoeeeiinn. setlocale(3C)
programs make: maintain, ... maket(1)
protocol-specific servicecoccoceeeeiieinnn t_getinfo(3N)
prs: print an SCCS filecccooovviviviiiniecieee prsil)
pseudo-random numbers /lcong48 drand48(3C)
ptrace: process tracecoccceeicciicriieinenen, ptrace(2)
push character back into input ungete(3S)
put a string on a streamcccoceevreieriennnnns puts(3S)
put character or word on a stream putc(33)
put in a file system independent/ getdents(2)
putc: putchar, fpute, putw put ... putc(3S)
putchar, fpute, putw put ..o putct3S)

P1-29

Permuted Index

environment

stream

entry

stream

/getutent, getutid, getutline,
stream putc: putchar, fputc,

setlocale modify and

msgget: get message

gsort:

generator

rand: srand simple

getpass:

catgets:

entry of a common/ ldtbread:
header of a/ ldshread: ldnshread
aread: asynchronous

a file system/ getdents:

read:

member of an archive/ ldahread:
object file ldfhread:

readlink:

rewinddir,/ directory: opendir,
open a common object file for
open: open for

symbolic link

Iseek: move

setregid: set

setreuid: set

/get real user, effective user,
setegid, setrgid set effective or
/geteuid, getgid, getegid get
allocator malloc: free,

mallinfo fast main/ malloc: free,
lorder: find ordering

signal: specify what to do upon
indication t_rcvrel: acknowledge
t_rcvudata:

indication t_rcvuderr:

sent over a connection t_rev:
connect request t_rcvconnect:
lockf:

regular expression

PI-30

putenv: change or add value to ...
putmsg: send a messageon a
putpwent: write password file ..

.. putenv(3C)
....... putmsg(2)
. putpwent(3C)

puts: fputs put a string on a puts(3S)
pututline, setutent, endutent,/ getut(3C)
putw put character or word on a pute(3S)
gsort: quicker 80Ttccocvvvceverceiinieeniecenenieaes gsort(3C)
query a program’s locale ... setlocale(3C)
QUEBUE eveeiietiimreeeneeereeenseeaerenasureeasseeeensecenseesasesns msgget(2)
QUICKETr SOTt oottt gsort(3C)
rand: srand simple random-number rand(3C)
random-number generator ... rand(3C)
read a passwordccc.cccceecererereenenceninnnennnnes getpass(3C)
read a program mesSageocceeeevrerueriennens catgets(3C)
read an indexed symbol table ldtbread(3X)
read an indexed/named section ldshread(3X)
TEAA eoiiceccirceceierent et aread(2X)
read directory entries and put in .. getdents(2)

read from filecccooiiiiiiieiiceeea, read(2)
read: read from filecccoevieniinieiiianiecinienieenne read(2)
read the archive header of accccuc....... ldahread(3X)
read the file header of a common ldfhread(3X)

read value of a symbolic link readlink(2)
readdir, telldir, seekdir,ccoooericiniennnns directory(3C)
reading ldopen: ldaopenccocceviveennnnne. ldopen(3X)

reading or writing open(2)
readlink: read value of acccccovvveievevercenenen. readlink(2)
read/write file pointerccceceneecnecicccnnene lseek(2)

real and effective group ID setregid(2X)
real and effective user ID’s ... setreuid(2X)
real group, and effective group/cocveveeenenne getuid(2)
real user and group ID /setruid, . seteuid(3X)

real user, effective user, real/cccoceveeeeeis getuid(2)
realloc, calloc main memoryccccceeeenee malloc(3C)
realloc, calloc, mallopt, .. malloc(3X)
realtion for an object librarycccecovvvevnnea. lorder(1)
receipt of a signalcccocevvicvinienninnrecee signal(2)

receipt of an orderly release t_rcvrel(3N)
receive a data unitcccocecevvervrercecrennens t_rcvudata(3N)
receive a unit data errorcceeeee. t_rcvuderr(3N)
receive data or expedited data t_rcv(3N)
receive the confirmation froma t_rcveonnect(3N)
record locking on filescccocenirevecicnnrniencenene lockf(3c)
regcmp: regex compile and execute regemp(3X)

Permuted Index, Version 4.1

v

compile

make: maintain, update, and
expression regemp:

regular expression compile and/
compile and amtch routines
amtch routines regexp:
regexp: compile, step, advance
regemp:

regemp: regex compile and execute

acknowledge receipt of an orderly
t_sndrel: initiate an orderly

a common object file

of a/ ldrseek: ldnrseek seek to
common object file reloc:

ceil, fmod, fabs floor, ceiling,
rmdel:

rmdir:

unlink:

remove:

clock:

t_accept: accept a connect
t_listen: listen for a connect

the confirmation from a connect
send user-initiated disconnect
stream fseek: rewind, ftell
resume:

gettxt:

disconnect t_rcvdis:

object file symbol/ ldgetname:
abs:

logname:

getenv:

stat: data

pointer in a stream fseek:
/readdir, telldir, seekdir,
creat: create a new file or

SCCS file

chroot: change
logarithm power, square
atexit: add program termination

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

regemp: regular expression ... regemp(1)
regenerate groups of programs ... make(1)
regex compile and execute regular regemp(3X)
regexp: compile, step, advance ... regexp(3)
regexp: regular expression regexp(5)
regular expression compile and .. . regexp(5)
regular expression compile and/ . regexp(3)
regular expression compile ..., regemp(1)
regular expression ..., regemp(3X)
release indication t_revrel: ... t_revrel(3N)
Teledsecoccovveverceieciiecc e t_sndrel(3N)
reloc: relocation information for reloc(4)
relocation entries of a section . ldrseek(3X)
relocation information for a ... reloc(4)

remainder, absolute value/ floor: floor(3M)
remove a delta from an SCCS file rmdel(1)

remove a directory ..., rmdir{2)
remove directory entry ..., unlink(2)
remove file remove(3C)
remove: remove file .. remove(3C)
rename: change the name of a file rename(2)
report CPU time usedcococvniciiiiniinnn clock(3C)
FEQUESE oeeiteeniieiiienieeeeiceee et s t_accept(3N)
FEQUESE wovveerirrieimicccriiiie st t_listen(3N)
request t_rcvconnect: receive ... t_revconnect(3N)
request t_snddis: ...l t_snddis(3N)
resposition a file pointer ina ... fseek(3S)
resume process execution resume(2X)
resume: resume process execution resume(2X)
retrieve a text Stringcccoverenninienannns gettxt(3C)
retrieve information from ... t_revdis(3N)
retrieve symbol name for common ldgetname(3X)
return integer absolute value abs(3C)
return login name of user ... logname(3X)
return value for environment name getenv(3C)
returned by stat system callccoceeeriiieeiiene stat(5)
rewind, ftell resposition a filec..ccccveennnne. fseek(3S)
rewinddir, closedir — directory/ . . directory(3C)
rewrite an existing one creat(2)
rmdel: remove a delta from an ... rmdel(1)
rmdir: remove a directorycoeiviiiiniinns rmdir(2)
r0Ot dir€CtOrY ...ooveieeeeeieieieeeeree et chroot(2)
root functions /sqrt exponential,c......... exp(3M)
FOULINE .viieiiiieiiciteteiee et atexit(3C)
PI-31

Permuted Index

ldfen: common object file access
expression compile and match
expression compile and amtch
check if program has license to
until signal sigsuspend: install
editing activity

allocation brk:

formatted input

an SCCS file

common object file

image file

package curses: terminal
scr_dump: format of curses
bsearch: binary

Isearch: lfind linear

hcreate, hdestroy manage hash
tdelete, twalk manage binary
object file scnhdr:

/ldnshread read an indexed/named
the object file comment

/seek to line number entries of a
/seek to relocation entries of a
/ldnsseek seek to an indexed/name
object files size: print

/nrand48, mrand48, srand48,

of a common/ Idsseek: ldnsseek
section of a/ ldlseek: ldnlseek
section of a/ ldrseek: ldnrseek

of a common object/ ldohseek:
common object file ldtbseek:
/opendir, readdir, telldir,

shmget: get shared memory

brk: sbrk change data

dump: dump

; odump: dump
| semctl:
semop:

semget: get set of

operations

t_sndudata:
putmsg:

Pi-32

TOULINES ooveeeeievecrenienineeceeneeraesiessesinennssneanenssrnene ldfen(4)
routines /step, advance regular regexp(3)
routines regexp: regular ... regexp(5)
run chklicense:viiiiieicnninnn chklicense(2)
s signal mask and suspend process sigsuspend(2)

sact: print current SCCS file sact(1)
sbrk change data segment spaceccccoceemnnieens brk(2)

scanf: fscanf, sscanf convert scanf(3S)
scesdiff: compare two versions of scesdiff(1)
scesfile: format of SCCS file sccsfile(4)
scnhdr: section header for a scnhdr(4)
scr_dump: format of curses screen scr_dump(4)
screen handling and optimization curses(3X)
screen image file ..o scr_dump(4)
search a sorted table bsearch(3C)
search and updatecccccniininiiiiennninnn. Isearch(3C)
search tables hsearch: hsearch(3C)
search trees tsearch: tfind, tsearch(3C)
section header for a commoncoccoceeviviniinnen. senhdr(4)
section header of a common object/ ldshread(3X)
section mcs: manipulatec........ mes(1)
section of a common object file ldlseek(3X)
section of a common object file ldrseek(3X)
section of a common object file ldsseek(3X)
section sizes in bytes of common ..o size(1)
seed48, lcong48 generate/cceviiieinns drand48(3C)
seek to an indexed/name section ldsseek(3X)

seek to line number entriesof acccoeunenn ldiseek(3X)
seek to relocation entries of @cccooeiniinns ldrseek(3X)

seek to the optional file header .. ldohseek(3X)
seek to the symbol table of accceeveennns ldthseek(3X)
seekdir, rewinddir, closedir—/cccoceeuee. directory(3C)
segment identifier ... shmget(2)
segment space allocation ... brk(2)
selected parts of an object filecccooeevieennen dump(1)
selected parts of an object file 0odump(1)

semaphore control operationsccceneeeee semctl(2)
semaphore operationscccccovveeienienieniiennee semop(2)
semaphorescccceeenivene .. semget(2)
semctl: semaphore controlcccooeiiinnin, semctl(2)
semget: get set of semaphores semget(2)
semop: semaphore operationscccccceeiene semop(2)
send a data unit t_sndudata(3N)
send a message on a streamcccoieecinienn putmsg(2)

Permuted Index, Version 4.1

group of processes kill:

a connection t_snd:

request t snddis:

receive data or expedited data
t_getinfo: get protocol-specific
setsid: set

alarm:

tas: test and

mcumask:

umask:

timezone:

group/ /setruid, setegid, setrgid
seteof:

times utime:

semget: get

Control (NOT SUPPORTED) setpgid:
setpgrp:

setregid:

setreuid:

setsid:

stime:

setuid: setgid

ulimit: get and

to a stream

/isprint, isgraph, isascii,

real user and/ seteuid: setruid,

setrgid set effective or real/
setuid:

getgrent: getgrgid, getgrnam,

encryption crypt:

program’s locale

system call parameters

Job Control (NOT SUPPORTED)

getpwent: getpwuid, getpwnam,
group ID

user ID’s

user/ seteuid: setruid, setegid,
effective or real user/ seteuid:
sigdelset, sigismember manipulate

IDs

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted index

send a signal to @ process or @cccevevirrenieninnees kill(2)
send data or expedited data over t_snd(3N)
send user-initiated disconnect t_snddis(3N)
sent over a connection t_rev: .. t_rev(3N)
service information ..., t_getinfo(3N)
$e8S10N ID ..o setsid(3)
set a process alarm clock alarm(2)
set an Operand ... tas(2x)
set and get MCU mask mcumask(2X)

set and get file creation mask ... umask(2)
set default system time zone timezone(4)
set effective or real user and . .. seteuid(3X)
set end-of-fileccoooieiiniii seteof(2X)

set file access and modification ... utime(2)
set of semaphoresc..cccovevennn semget(2)
set process group ID for Job setpgid(2)
set process group ID setpgrp(2)
set real and effective group ID setregid(2X)
set real and effective user ID’s ... setreuid(2X)
set session ID ... setsid(3)
set time stime(2)
set user and group IDsccoiiiin setuid(2)
set user limitsccoocconvnciiiiinns ... ulimit(2)
setbuf: setvbuf assign buffering .. . setbuf(3S)
setchrelass character handling ... ctype(3C)
setegid, setrgid set effective orc..oe seteuid(3X)
seteof: set end-of-fileccoeeeiniiiniiiniinn seteof(2X)
seteuid: setruid, setegid, seteuid(3X)
setgid set user and group IDscooeiiiiinnn setuid(2)
setgrent, endgrent, fgetgrent get/ getgrent(3C)
setjmp: longjmp non-local goto ... setymp(3C)

setkey, encrypt generate hashing crypt(3C)

setlocale modify and query a . setlocale(3C)
set_parm: define additional set_parm(2X)
setpgid: set process group ID for ... setpgid(2)
setpgrp: set process group ID ... setpgrp(2)

setpwent, endpwent, fgetpwent get/ . . getpwent(3C)

setregid: set real and effective setregid(2X)
setreuid: set real and effectivec......... setreuid(2X)
setrgid set effective or real ... seteuid(3X)
setruid, setegid, setrgid setccccceereinn. seteuid(3X)
sets of signals /sigaddset, sigsetops(3C)
setsid: set session ID ... setsid(3)
setuid: setgid set user and groupccccconeeee. setuid(2)
PI1-33

Permuted Index

/getutid, getutline, pututline,
stream setbuf:

a machine-independent/ sputl:
shmop: shmat, shmdt

shmetl:

shmget: get

system: issue a

operations shmop:

operations

shmop: shmat,

identifier

operations

management

/sigemptyset, sigfillset,

sets of/ /sigfillset, sigaddset,
sigaddset, sigdelset,/ sigsetops:
sigsetops: sigemptyset,
sigpause signal/ sigset:

sigset: sighold, sigrelse,
/sigfillset, sigaddset, sigdelset,
signal state sigsetjmp:
sigaction: detailed

sigrelse, sigignore, sigpause
until/ sigsuspend: install s
sigprocmask: change or examine
pause: suspend process until
what to do upon receipt of a
mask and suspend process until
receipt of a signal

siglongjmp a non-local goto with
processes kill: send a
sigismember manipulate sets of
ssignal: gsignal software
pending sigpending: examine
/sighold, sigrelse, sigignore,

are blocked and pending

signal mask

signal/ sigset: sighold,
sigignore, sigpause signal/

goto with signal state

sigfillset, sigaddset,/

and suspend process until signal
lex: generate programs for
rand: srand

PI-34

setutent, endutent, utmpname/c..corevcnnee getut(3C)
setvbuf assign bufferingtoa ... setbuf(3S)
sgetl access long integer data in sputl(3X)
shared mem operationsc..ccecceeenee ... shmop(2)

. shmetl(2)

shared memory control operations
shared memory segment identifier shmget(2)
shell commandc.ccovvviniiieeniiennee system(3S)

. shmop(2)

shmat, shmdt shared mem
. shmetl(2)

shmctl: shared memory control ..

shmdt shared mem operations shmop(2)
shmget: get shared memory segment shmget(2)
shmop: shmat, shmdt shared mem shmop(2)
sigaction: detailed signal .. sigaction(2)
sigaddset, sigdelset, sigismember/ sigsetops(3C)
sigdelset, sigismember manipulate sigsetops(3C)
sigemptyset, sigfillset, sigsetops(3C)
sigfillset, sigaddset, sigdelset,/ sigsetops(3C)
sighold, sigrelse, sigignore,c..ccovnieene sigset(2)
sigignore, sigpause signal/c.ccccvvniiinnnne. sigset(2)
sigismember manipulate sets of/ sigsetops(3C)
siglongjmp a non-local goto with sigsetjmp(3C)
signal managementccccovceenenniiiniennnenns sigaction(2)
signal management /sighold,coceviiiiiennnis sigset(2)
signal mask and suspend process ... sigsuspend(2)
signal mask sigprocmask(2)
SIZNAL oo pause(2)
signal signal: specifycccceininninnniiin, signal(2)
signal /install s signal ..o sigsuspend(2)
signal: specify what to do upon ...l signal(2)
signal state sigsetjmp: ... sigsetjmp(3C)
signal to a process or a group of ... kill(2)
signals /sigaddset, sigdelset, sigsetops(3C)
SIgnals ...ooeververeeeerinccreenenne ... ssignal(3C)
signals that are blocked and ... sigpending(2)
sigpause signal managementccccoeeiiiinnnnne sigset(2)
sigpending: examine signals that sigpending(2)
sigprocmask: change or examine ... sigprocmask(2)

sigrelse, sigignore, sigpause ... sigset(2)
sigset: sighold, sigrelse,cccccevmvcinninnnnnn sigset(2)
sigsetjmp: siglongijmp a non-local sigsetjmp(3C)
sigsetops: sigemptyset, ..., sigsetops(3C)
sigsuspend: install s signal mask ... sigsuspend(2)
simple lexical tasksccccoocevererieminnnncceneeceennes lex(1)
simple random-number generatorc........... rand(3C)

Permuted Index, Version 4.1

atan2 trigonometric/ trig:
functions

bytes of common object files
files size: print section
interval

current user ttyslot: find the

ssignal: gsignal

gsort: quicker

tsort: topological

bsearch: binary search a

dbx:

brk: sbrk change data segment
mknod: make a directory, or a
smsys: machine

strftime: language

of a signal signal:

printf: fprintf,

data in a machine-independent/
power,/ exp: log, logl0, pow,
exponential, logarithm power,
generator rand:

/lrand48, nrand48, mrand48,
scanf: fscanf,

package stdio:
communication/ stdipc: ftok
system call

status

stat: data returned by
information

ustat: get file system

feof, cleaerr, fileno stream
stat: Istat, fstat get file
wstat: wait

input/output package
interprocess communication/
compile and/ regexp: compile,

wait: wait for child process to
waitx: wait for child process to
strnnaorder to perform/
strnemp, strepy,/ string:
/strncmp, strepy, strncpy,strlen,

SUPERMAX SWD RISC REFERENCE MANUAL

A]

Permuted Index

sin, cos, tan, asin, acos, atan, ... trig(3M)
sinh: cosh, tanh hyperbolicccccconiveennceen. sinh(3M)
size: print section sizes in ...t size(1)

sizes in bytes of common object ... size(1l)
sleep: suspend execution for ... sleep(3C)
slot in the utmp file of thecccocconiiiins ttyslot(3C)
smsys: machine specific functions smsys(2X)
software signalscccceeveevvirecnvnnennnnenenas ssignal(3C)
sort gsort(3C)
BOTE e eceee ettt s e e st tsort(1)
sorted tableoveniiininiie s bsearch(3C)
source-levet debugger ... dbx(1)
space allocation ... brk(2)
special or ordinary file . .. mknod(2)
specific functionsccccveveeiinnniciinienieeen, smsys(2X)
SPecific SLrINES ..ocvvvevrveerieerceerer e strftime(4)
specify what to do upon receipt ... signal(2)
sprintf print formatted output .. printf(3S)
sputl: sgetl access long integer ... sputl(3X)
sqrt exponential, logarithmc..coociiiinnnnnnne. exp(3M)
square root functions /pow, sqrt exp(3M)
srand simple random-number rand(3C)
srand48, seed48, lcong48 generate/ drand48(3C)
sscanf convert formatted input ..o scanf(3S)
ssignal: gsignal software signals ssignal(3C)
standard buffered input/outputcccocuennnen. stdio(3S)
standard interprocess stdipe(3C)
stat: data returned by statccoeceeviiiiniinnn. stat(5)
stat: Istat, fstat get fileccocooeviveinieinie stat(2)
stat system call stat(5)
statfs: fstatfs get file systemccoooceiiiviiininnn statfs(2)
SEALISLICS .eooiiiiiiieii e ustat(2)
status inquiries ferror: . ferror(3S)
SEALUS toiiiiiiieeiee e e stat(2)
SEALUS .eieiiiieieeece e wstat(5)
stdio: standard bufferedccccccoveeiiirincnnn. stdio(3S)
stdipc: ftok standardccocoeoiiiiininie stdipe(3C)
step, advance regular expression . .. regexp(3)
stime: Set tIMeoccccvieieiiiinieciecteee e stime(2)
stop or terminatecccovieiniiine e wait(2)
stop or terminatecccoccviiiiiiniinnnee e waitx(2X)
straorder: strnaorder, straorder(3X)
strcat, strdup, strncat, stremp, string(3C)
strchr, strrchr, strpbrk, strspn,/ocooeeeee. string(3C)
PI-35

Permuted Index

string: strcat, strdup, strncat,

/strdup, strncat, stremp, strncmp,
/strchr, strrchr, strpbrk, strspn,
strepy,/ string: streat,

fclose: fllush close or flush a
fopen: freopen, fdopen open a
resposition a file pointer in a
getw get character or word from a
getmsg: get next message off a
gets: fgets get a string from a
putw put character or word on a
putmsg: send a message on a
puts: fputs put a string on a
setvbuf assign buffering to a
ferror: feof, cleaerr, fileno

push character back into input
string

convert date and time to string
strings

long integer and base-64 ASCIIL
strcoll:

tzset convert data and time to
convert floating-point number to
gets: fgets get a

gettxt: retrieve a text

puts: fputs put a

strspn, strespn, strtok, strstr
stremp, strnemp, strepy,/
strerror: get error message
ascftime convert date and time to
strtod: atof convert

strtol: atol, atoi convert

strxfrm:

perform alphabetic comparison of
strftime: language specific
number information from a common/
information from a common/ strip:
perform alphabetic/ straorder:
string: strecat, strdup,

/streat, strdup, strncat, stremp,
/strncat, stremp, strncmp, strepy,
straorder: strnaorder,
/strncpy,strlen, strchr, strrchr,

PI-36

................................. string(3C)
........... ... streoll(3C)
... string(3C)
........................... string(3C)

stremp, strncmp, strepy,/
streoll: string collation
strepy, strnepy,strlen, strchr,/

strespn, strtok, strstr string/

strdup, strncat, stremp, strnemp,ooeninne. string(3C)
SEFEAIN .vevvveiireieeiieee et eece st ere e fclose(3S)
SEIBAIMNL ..oovviiiiniiieiienic e e fopen(3S)

stream fseek: rewind, ftell fseek(3S)

stream getc: getchar, fgetc, ... gete(3S)
streamccccoeeiniinennns . getmsg(2)
SEPEAIMN ...covverrirerenrerienscnreentiteenests e srsssbesbessesaenans gets(3S)
stream putc: putchar, fpute, ..., pute(3S)
SEPEAIM ..oovveieveerirrercererenesrestss s e sresrnessasanns putmsg(2)
SEPEAIM .oovveeviieeieereeereeerrereeenereesee e eseesnessesseensrrennenas puts(3S)
stream setbuf: setbuf(3S)

. ferror(3S)

stream status inquiries ..
. ungetc(3S)

stream ungetc:

strerror: get error Messagecoeeeceeenenne strerror(3C)
strftime: cftime, ascftimecccccovceceeviniinnns strftime(3C)
strftime: language specificcocciinvncrininnins strftime(4)
string /164a convert betweencocceieinnne a641(3C)

. streoll(3C)

string collation .
. ctime(3C)

string /gmtime, asctime, .

string ecvt: fevt, gevt ecvt(3C)
string from a stream ... gets(3S5)
SEPINE 1oovreiiereereceetce e gettxt(3C)
string on a Stream ..o ... puts(3S)
string operations /strpbrk, string(3C)
string: strecat, strdup, strncat, ... string(3C)
SETINE 1ovieeeereireerreerecrese e s beaae strerror(3C)
string strftime: cftime,ccoovveiiiieninnnn. strftime(3C)
string to double-precision number strtod(3C)
string to integer ... strtol(3C)
string transformation strxfrm(3C)
strings /strnnaorder to . straorder(3X)
SEPINES coviviieeceiinii e strftime(4)
strip: strip symbol and line ... strip(1)
strip symbol and line number ..o strip(D)
strnaorder, strnnaorder toc..coceviennen. straorder(3X)
strncat, stremp, strnemp, strepy,/ oo string(3C)
strncmp, strepy, strncpy,strlen,/ string(3C)
strnepy,strlen, strchr, strrchr,/ ... string(3C)
strnnaorder to perform alphabetic/ . straorder(3X)
strpbrk, strspn, strespn, strtok,/ ... string(3C)

Permuted Index, Version 4.1

/strepy, strnepy,strien, strchr,
string/ /strchr, strrchr, strpbrk,
/strpbrk, strspn, strcspn, strtok,
double-precision number
/strpbrk, strspn, strespn,

to integer

t_alloc: allocate a library

t free: free a library

mktime: converts a tm

sync: update

IDs getgroups: get
asuspend: asoynchronous
sleep:

suspend:

pause:

/install s signal mask and
execution

swab:

information from a/ strip: strip
file symbol/ ldgetname: retrieve
name for common object file
ldtbindex: compute the index of a
object/ ldtbread: read an indexed
syms:

file ldtbseek: seek to the
readlink: read value of a
symlink: make

file

state with that on the/ fsync:
t_sync:

variables

error messages perror: errno,
perror: errno, sys_errlist,
set_parm: define additional
stat: data returned by stat

/to libraries, functions,

types: primitive

errno, sys_errlist, sys_nerr

fs: file

entry dirent: file

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

strrchr, strpbrk, strspn,/ string(3C)
strspn, strespn, strtok, strstr . . string(3C)
strstr string operations string(3C)
strtod: atof convert string to strtod(3C)
strtok, strstr string operationsc........ string(3C)
strtol: atol, atoi convert stringccoeeeenn. strtol(3C)
SEPUCLULe ..o .. t_alloc(3N)
SETUCLUTE .eovvciiiiiiiciiire e ... t free(8N)
structure to a calendar time . mktime(3C)
strxfrm: string transformation strxfrm(3C)
super block ..., sync(2)
supplementary group access list getgroups(2)
SUSPENd ..ociiii e asuspend(2X)
suspend execution for interval ... sleep(3C)
suspend process execution ..o suspend(2X)
suspend process until signal ... pause(2)
suspend process until signal .. . sigsuspend(2)
suspend: suspend process suspend(2X)
swab: swap bytes ... swab(3C)
SWAD DYLES .ovoiieirieiee e swab(3C)
symbol and line number ... strip(l)
symbol name for common object ldgetname(3X)
symbol table entry /symbol ldgetname(3X)
symbol table entry of a common/ ... ldtbindex(3X)
symbol table entry of a common ldtbread(3X)
symbol table format ... syms(4)
symbol table of a common object ldthseek(3X)
symbolic linkccooeiriiiini e readlink(2)
symbolic link to a fileocooriniiiiiiiine symlink(2)
symlink: make symbolic link to a symlink(2)
syms: symbol table format ... syms(4)
sync: update super block ... sync(2)
synchronize a file’s in-memoryccccoeevinnnn. fsync(2)
synchronize transport library ... t_sync(3N)
sysconf: get configurable system .. sysconf(3C)
sys_errlist, sys_nerr system perror(3C)
Sys_nerr system error messages ... perror(3C)
system call parameters ... set_parm(2X)
system call ... stat(5)
system calls and error numbers intro(2&3)
system data tyPescceccerveeierinineneneneneeeene types(5)
system error messages perror: ... perror(3C)
system format of system volume ... fs(4)
system independent directory ... dirent(4)

P1-37

dde

Permuted Index

/entries and put in a file
statfs: fstatfs get file

mount: mount a file

ustat: get file

mnttab: mounted file

timezone: set default

umount: unmount a file

get name of current operating
sysconf: get configurable

fs: file system format of
bsearch: binary search a sorted
for common object file symbol
/compute the index of a symbol
ldtbread: read an indexed symbol
syms: symbol

mnttab: mounted file system
ldtbseek: seek to the symbol
hdestroy manage hash search
request

structure

trigonometric/ trig: sin, cos,
sinh: cosh,

programs for simple lexical
transport endpoint

tesetattr, tcsendbreak,
/tesendbreak, tedrain, tcflush,
/tesetattr, tesendbreak, tedrain,
tesendbreak, tedrain,/ termios:
/cfsetispeed, cfsetospeed,
interface /tcgetpgrp, tcsetpgrp,
endpoint

with another transport user
termios: tegetattr, tesetattr,
teflush,/ termios: tegetattr,
terminal/ /cfsetospeed, tcgetpgrp,
search trees tsearch: tfind,
directory: opendir, readdir,
temporary file tmpnam:
tmpfile: create a

tempnam create a name for a
ctermid: generate file name for
update a line of text from a

Pi-38

system independent format getdents(2)

system informationccccoeeevnieniiinevnennenne, statfs(2)
system: issue a shell command system(3S)
SYSLEIM .oieiiiieiiieiiee ettt mount(2)
system statistics ustat(2)
system tablecccooiiiiiiniiiees mnttab(4)
system time zoneccccececeeveciieiieeneennen. timezone(4)
systemcccceccveunes .. umount(2)
System UNAME:cccccooriieeiieniiiieneciieieeseennens uname(2)
system variables sysconf(3C)
System VOIUIMEcccocoevviiicineeieceecr e fs(4)
tAble .o bsearch(3C)
table entry /retrieve symbol name . ldgetname(3X)
table entry of a common object/ ldtbindex(3X)
table entry of a common object/ «.. ldtbread(3X)
table formatcooveviiiiieeieeeee s syms(4)
table oot mnttab(4)
table of a common object file . ldtbseek(3X)
tables hsearch: hereate,cccveevvennnn. hsearch(3C)

t_accept: accept a connect
t_alloc: allocate a library
tan, asin, acos, atan, atan2 trig(3M)
tanh hyperbolic functions sinh(3M)
tas: test and set an Operandc.cccecvnerrecvennnnne tas(2x)

............................ t_accept(3N)
... t_alloe(3N)

tasks lex: generateccovevneineeiniennenien, lex(1)
t_bind: bind an address to a t_bind(3N)
tedrain, teflush,/ /tegetattr,ocoevevvvevvnnnnn. termios(2)
teflow,cfgetospeed, cfgetispeed,/ccocenenen. termios(2)
tcflush, teflow,cfgetospeed,/ termios(2)
tcgetattr, tesetattr, termios(2)
tegetpgrp, tesetpgrp, tegetsid/ termios(2)
tegetsid general terminalcccoceeevieeinennee. termios(2)
t_close: close a transportc.occecvvercenneniens t_close(3N)
t_connect: establish a connection t_connect(3N)
tesendbreak, tedrain, teflush,/ termios(2)
tesetattr, tecsendbreak, tedrain, termios(2)
tesetpgrp, tegetsid general ..., termios(2)
tdelete, twalk manage binaryc.cocevevrenne tsearch(3C)
telldir, seekdir, rewinddir,/ ... directory(3C)
tempnam create a name for ac.coceeennne tmpnam(3S)
temporary filecoccoecovieieeeeeceee tmpfile(3S)
temporary file tmpnam: . . tmpnam(3S)
terminal ctermid(3S)
terminal edit:cccocvieerriri e edit(2X)

Permuted Index, Version 4.1

>

tesetpgrp, tegetsid general

dial: establish an out-going
optimization package curses:
tyyname: isatty find name of a
exit: _exit

wait for child process to stop or
wait for child process to stop or
generate an abnormal program
atexit: add program
tesendbreak, tedrain, teflush,/

tas:

isnan:

edit: update a line of

plock: lock process,

gettxt: retrieve a

binary search trees tsearch:

service information

process times

get process and child process
set file access and modification
zone

request

on a transport endpoint
mktime: converts a

a temporary file

/tolower, toupper, tolower,
popen: pclose initiate pipe

conf: toupper, tolower, toupper,
toascii translate/ conf: toupper,
endpoint

tsort:

transport endpoint

conf: toupper, tolower,
_tolower, toascii/ conf:

ptrace: process

strxfrm: string

_toupper, _tolower, toascii
t_bind: bind an address to a
t_close: close a

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Index

terminal interface /tcgetpgrp, ..ccoveciriiiinns termios(2)
terminal line connection ... dial(3X)
terminal screen handling and curses(3X)
terminal ttyname(3C)
terminate ProCessoccccoovirverierceiniennieeneneeee exit(2)
terminate wait: ... wait(2)

terminate WaitxX:ccccooeoiiiiiiiiiieieiiieeeeeins waitx(2X)
termination abort: ... abort(3C)
termination routine .. . atexit(3C)
termios: tegetattr, tcsetattr, .. termios(2)
t_error: produce error message t_error(3N)
.. tas(2x)

test and set an Operand

test for NaN isnan(3M)
text from a terminal ... edit(2X)
text, or data in Memorycccceveverrviverieiennnnn, plock(2)
text StPiNg ..o, gettxt(3C)
tfind, tdelete, twalk manage tsearch(3C)
t_free: free a library structure ... t_free(3N)
t_getinfo: get protocol-specific t_getinfo(3N)
t_getstate: get the current state t_getstate(3N)
time: get time time(2)
times: get process and child ... times(2)

times times:ooocoieriiiiiiiiiii e timesi2)
times utime: F SR UUPU PR utimel2)
timezone: set default system time .. timezone!4)
t_listen: listen for a connect t_listent3N)
t_look: look at the current event t_look(3N,
tm structure to a calendar time mktime(3C)
tmpfile: create a temporary filec............. tmpfile(3S)

tmpnam: tempnam create a name for tmpnami3S)
toascii translate character convt3C)
to/from a processccoooiiiiiiiiiiieiieiin, popen(3S)
_tolower, toascii translate/c.c.ccociiiinn. convi3C)
tolower, _toupper, _tolower,c....... convi(3C)

t_open: establish a transport t_open(3N)

topological sort ... tsort(1)
t_optmgmt: manage options for a t_optmgmt(3N)
_toupper, _tolower, toascii/cccccoceneiiriannn, conv(3C)
toupper, tolower, _toupper, ... conv(3C),
trace ptrace(2)
transformation . strxfrm(3C)
translate character /tolower, conv(3C)
transport endpoint . . t_bind(3N)

transport endpointccocoeeeieieiniecienn. t_close(3N)

PI-39

Permuted Index

look at the current event on a
t_open: establish a

t_optmgmt: manage options for a
t_unbind: disable a

t_sync: synchronize

a connection with another

data sent over a connection
confirmation from a connect/
from disconnect

an orderly release indication

error indication

ftw: walk a file

twalk manage binary search
atan, atan2 trigonometric/

cos, tan, asin, acos, atan, atan2
manage binary search trees
data over a connection
disconnect request

release

library

utmp file of the current user
endpoint

tsearch: tfind, tdelete,
nl_types: native language data
types

types: primitive system data
terminal

/localtime, gmtime, asctime,

uld:

mask

operating system

file unget:

SCCS file

input stream

srand48, seed48, lcong48 generate
mktemp: make a

t rcvuderr: receive a

PI-40

transport endpoint t_look: ... t_look(3N)
transport endpoint ..., t_open(3N)
transport endpoint ... t_optmgmt(3N)
transport endpoint t_unbind(3N)

transport libraryocccceveenininnieniininnns t_sync(3N)
transport user /establish t_connect(3N)
t_rcv: receive data or expedited ..o t_rcv(3N)

t_rcvconnect: receive the t_rcvconnect(3N)
t_rcvdis: retrieve information ..o t_rcvdis(3N)
t_rcvrel: acknowledge receipt of t_rcvrel(3N)
t rcvudata: receive a data unit t_revudata(3N)
t_rcvuderr: receive a unit data t_rcvuderr(3N)
EFEE ittt ftw(3C)
trees tsearch: tfind, tdelete, tsearch(3C)

trig: sin, cos, tan, asin, acos, trig(8M)
trigonometric functions /sin, ... trig(3M)
tsearch: tfind, tdelete, twalkcccooeeeenennen. tsearch(3C)
t_snd: send data or expedited ..o t_snd(3N)

t_snddis: send user-initiated t_snddis(3N)
t_sndrel: initiate an orderly t_sndrel(3N)

t_sndudata: send a data unit t_sndudata(3N)
“tsort: topological SOtcccoiiiiiininiciiinininienene, tsort(1)
t_sync: synchronize transport t_sync(3N)
ttyslot: find the slot in the ttyslot(3C)

t_unbind: disable a transport t_unbind(3N)
twalk manage binary search trees tsearch(3C)
EYPES oevierrerrerererieninensenersesesseseeseseon ... nl_types(5)
types: primitive system datac..ccooerivnninns types(5)

EYPES eirrircieieiri ettt types(5)
tyyname: isatty find name of a ttyname(3C)
tzset convert data and time to/ ctime(3C)
uvadmin: administrative control uadmin(2)
ucode link editorcccovvienevnininnen e 1d(1)

uld: ucode link editor ... 1d(1)
ulimit: get and set user limits ulimit(2)
umask: set and get file creation umask(2)
umount: unmount a file system umount(2)

uname: get name of currentcccevniinninnnne uname(2)
undo a previous get of an SCCScccovivenne. unget(1)
unget: undo a previous get of an ... unget(1)

ungetc: push character back into ... ungetc(3S)

uniformly distributed/ /mrand48, drand48(3C)
unique file NAME ... mktemp(3C)
unit data error indicationcccouenes t_rcvuderr(3N)

Permuted Index, Version 4.1

t_rcvudata: receive a data
t_sndudata: send a data

umount:

pause: suspend process

s signal mask and suspend process
terminal edit:

programs make: maintain,
Isearch: 1lfind linear search and
sync:

signal: specify what to do
setreuid: set real and effective
setrgid set effective or real

setuid: setgid set

get character login name of the
/geteuid, getgid, getegid get real
ulimit: get and set

logname: return login name of
/getegid get real user, effective
connection with another transport
in the utmp file of the current
t_snddis: send

m

modification times

endutent, utmpname access
ttyslot: find the slot in the
/pututline, setutent, endutent,

ﬂ val
v abs: return integer absolute
getenv: return

ceiling, remainder, absolute

readlink: read

putenv: change or add

values: machine-dependent

print formatted output of a

list

varargs: handle

get configurable pathname

sysconf: get configurable system

ﬂ get option letter from argument
assert:

SUPERMAX SWD RISC REFERENCE MANUAL

Permuted Iindex

UNIE e t_rcvudata(3N)
UNIE i, . t_sndudata(3N)

unlink: remove directory entryccccoovverenn. unlink(2)
unmount a file system umount(2)
until signal ..o pause(2)
until signal sigsuspend: install sigsuspend(2)
update a line of text from acccocoeviiiiiicnnnnnne edit(2X)
update, and regenerate groups ofc......... make(1)
update ... Isearch(3C)

update super block ..o sync(2)
upon receipt of a signal ..., signal(2)
user ID’s ..o setreuid(2X)
user and group ID /setegid,cccccceeenee seteuid(3X)
user and group IDs ... setuid(2)
user CUSerid:cccccevvirieniiiienn e cuserid(3S)
user, effective user, real group,/cccoeiiinne getuid(2)

user limitsc.cooveniiicnienniens ... ulimit(2)
UBET covveeiirieeteeeireesseessreeesesessnnes logname(3X)
user, real group, and effective/cccocoeeeee. getuid(2)
user t connect: establisha ... t_connect(3N)
user ttyslot: find the slotccccccoieinne ttyslot(3C)

user-initiated disconnect request t_snddis(3N)

ustat: get file system statisticscccocceein. ustat(2)
utime: set file access and utime(2)
utmp file entry /setutent, getut(3C)
utmp file of the current user ... ttyslot(3C)
utmpname access utmp file entry getut(3C)
val: validate SCCS fileccooooeeiiiiinveiiiiiricien, val(l)
validate SCCS fileccocevvvinnnenerciineceee e val(1)
value ...coooeviiecce e abs(3C)
value for environment name getenv(3C)
value functions /fabs floor, ... floor(3M)
value of a symbolic linkcocoiii. readlink(2)
value to environmentcccooiiiiieiiin. putenv(3C)
values: machine-dependent values values(5)
VAIUES oottt values(5)
varargs argument list /vsprintf vprintf(3S)
varargs: handle variable argument .. . varargs)b)
variable argument list varargs)5)
variables fpathconf: ... fpathconf(2)
variables ..o sysconf(3C)
Ve VErsion cONtrol ..o ve(l)
vector getopt:cccceciiiiiiiii e getopt(3C)
verify program assertion ... assert(3)
PI-41

—] dk

Permuted Index

ve:

get: get a

scesdiff: compare two
formatted output of a/ vprintf:
fs: file system format of system
formatted output of a varargs/
of a varargs/ vprintf: viprintf,
state waitpid:

terminate wait:

terminate waitx:

wstat:

stop or terminate

to change state

stop or terminate

ftw:

fgetc, getw get character or
fputc, putw put character or
chdir: change

getewd: get path-name of current
awrite: asynchronous

write:

write_t:

putpwent:

open: open for reading or
compiler-compiler

yace:
timezone: set default system time

PI-42

version control
version of an SCCS file
versions of an SCCS file .
viprintf, vsprintf print ...
volume

... get(1)
... scesdiff(1)
.. vprintf(3S)
............. fs(4)

vprintf: vfprintf, vsprintf print ... vprintf(3S)
vsprintf print formatted outputccocceeeeeees vprintf(3S)
wait for child process to changeccc.coce... waitpid(2)
wait for child process to stop or ... wait(2)

wait for child process to stop or . . waitx(2X)

wait statusoccceeiiieinnn . wstat(5)
wait: wait for child process to ..o wait(2)
waitpid: wait for child processccconcenen. waitpid(2)
waitx: wait for child process toc.ccoeeiin waitx(2X)
walk a file treeccccooviiiiein, ftw(3C)
what: identify SCCS filescccccoooevevvvcinnninienans what(1)

word from a stream /getchar, gete(38)

word on a stream putc: putchar, pute(3S)
working directoryc.cccoevennean chdir(2)
working directoryoccoceeiieienniniinenene getewd(3C)
WEILE .ooreieiiieieie ettt s s awrite(2X)
write on a file ... write(2)
write on a file ... write_t(2X)
write password file entry putpwent(3C)
write: write on a filecoocoeeeeenicee write(2)
write_t: write on a file . write_t(2X)
WIILINE it open(2)
wstat: wait statusocociiieiini, wstat(5)
yacc: yet another yace(l)
yet another compiler-compilercccccevvvvennn yace(1)
ZOTIE .oeeeinieeiteie ettt ettt et e timezone(4)

Permuted Index, Version 4.1

INTRO (2&3) (Software Development Utilities) INTRO (2&3)

NAME
intro — introduction to libraries, functions, system calls and
error numbers

SYNOPSIS
#include <errno.h>
#include <smoserr.h>

GENERAL DESCRIPTION
Sections 2 and 3 of this reference manual describes the C-
language routines available in the Supermax Operating System
System V. The routines may be divided into the following
categories:

1 System calls. These routines are the low-level routines
that call on the operating system to perform certain
tasks. An example is the routine open, that opens a file.

2) Subroutines. Subroutines are auxiliary routines that
make programming easier. They may or may not use
system calls to perform their task.

DESCRIPTION
This section describes functions found in various libraries.
Certain major collections are identified by a letter after the sec-
tion number:

(3C) These functions, together with those of Section 2 and
those marked (3S), constitute the Standard C Library
libc, which is automatically loaded by the C compiler,
cc(l). (For this reason the (3C) and (3S) sections
together comprise one section of this manual.) The link
editor /d(1) searches this library under the —Ilc option.
Declarations for some of these functions may be obtained
from #include files indicated on the appropriate pages.

(38) These functions constitute the ‘‘standard 1/0 package”
[see stdio(3S)]. These functions are in the library libc,
already mentioned. Declarations for these functions may
be obtained from the #include file <stdio.h>.

Revised March 1993 RISC Version 4.1 Page 1

de

INTRO (2&3) " (Software Development Utilities) INTRO (2&3)

(3M) These functions constitute the Math Library, libm.
They are not automatically loaded by the C compiler,
cc(1); however, the link editor searches this library
under the —Im option. Declarations for these functions
may be obtained from the #include file <math.h>.
Several generally useful mathematical constants are also
defined there [see math (5)].

(8X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

DEFINITIONS -/
A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value 0,
represented in the C language as '\0’. A character array is a
sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character.
A string is a designation for a null-terminated character array.
The null string is a character array containing only the null
character. A NULL pointer is the value that is obtained by
casting 0 into a pointer. The C language guarantees that this
value will not match that of any legitimate pointer, so many
functions that return pointers return it to indicate an error.
NULL is defined as 0 in <stdio.h>; the user can include an
appropriate definition if not using <stdio.h>.

DESCRIPTION OF SYSTEMCALLS
Upon completion, a system call returns a value. If the system U
call fails for some reason, the value returned is —1, and addi-
tional error information is stored elsewhere. If, on the other
| hand, the system call succeeds, a value that is generally (but,
unfortunately, not always) different from —1 is returned.

If a system call fails, two additional integers containing error
information are stored in the program. In order to access
these error codes, the programmer should include one or both
of the following declarations in the C program:

extern int errno;
extern int smoserr; u

Page 2 RISC Version 4.1 Revised March 1993

—

INTRO(243) (Software Development Utllities) INTRO (2&3)

The variable errno will, upon execution of an unsuccessful sys-

tem call, contain the so-called System V error code. The vari- |
able smoserr will, upon execution of an unsuccessful system |
call, contain the so-called SMOS error code.

Neither of these error codes is changed when a successful sys-
tem call is executed, so they should only be inspected when an
unsuccessful system call has been detected.

The system call descriptions list most (but not necessarily all)
of the System V error codes that are likely to appear during
the execution of the system call. In the <errmo.h> header
file, the symbolic names for the System V errors codes are
defined.

\
\
\
1

The SMOS error code is included mainly for compatibility with

older versions of the Supermax Operating System. Normally,

programmers should not use the SMOS error code, although it

does frequently give a more precise description of the error

than the System V error code does. In the <smoserr.h>

header file, the symbolic names for the System V errors are

defined. This header file should not be included together with

the <errno.h> header file, because some of the symbolic
names are redefined.

The following is a list of all the available System V error codes
and the most common reason for their appearance:

1 EPERM Not owner
Typically this error indicates an attempt to modify a file
in some way forbidden except to its owner or super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the
file should exist but doesn’t, or when one of the direc-
tories in a path name does not exist.

Revised March 1993 Version 4.1 Page 3

3 ESRCH No such process
No process can be found corresponding to that specified
by pid in kill(2) or ptrace(2).

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit),
which the user has elected to catch, occurred during a
system call. If execution is resumed after processing the
signal, it will appear as if the interrupted system call
returned this error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may
in some cases occur on a call following the one to which
it actually applies.

6 ENXIO No such device or address
I/0 on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to
a member of the exec(2) family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it
has the appropriate permissions, does not start with a
valid magic number [see a.out(4)].

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read(2)
(respectively, write(2)] request is made to a file which is
open only for writing (respectively, reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or
unwaited-for child processes.

Page 4 Version 4.1 Revised March 1993

INTRO (2&3)

(Software Development Ulllities) INTRO (2&3)

11 EAGAIN No more processes

A fork failed because the system’s process table is full or
the user is not allowed to create any more processes. Or
a system call failed because of insufficient memory or
swap space.

12 ENOMEM Not enough space

During an exec(2), brk(2), or sbrk(2), a program asks for
more space than the system is able to supply. This may
not be a temporary condition; the maximum space size is
a system parameter. The error may also occur if the
arrangement of text, data, and stack segments requires
too many segmentation registers, or if there i8 not
enough swap space during a fork(2). If this error occurs
on a resource associated with Remote File Sharing (RFS),
it indicates a memory depletion wich may be temporary,
dependent on system activity at the time the call was
invoked.

13 EACCES Permission denied

An attempt was made to access a file in a way forbidden
by the protection system.

14 EFAULT Bad address

The system encountered a hardware fault in attempting
to use an argument of a system call.

15 ENOTBLK Block device required

A non-block file was mentioned where a block device was
required, e.g., in mount(2).

16 EBUSY Device or resource busy

An attempt was made to mount a device that was
already mounted or an attempt was made to dismount a
device on which there is an active file (open file, current
directory, mounted-on file, active text segment). It will
also occur if an attempt is made to enable accounting
when it is already enabled. The device or resource is
currently unavailable.

Revised March 1993 Version 4.1 Page 5

—

INTRO (2&3) (Software Development Utilities) INTRO (2&3)

17

18

19

20

21

22

23

25

Page 6

EEXIST File exists
An existing file was mentioned in an inappropriate con-
text, e.g., link(2).

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEYV No such device
An attempt was made to apply an inappropriate system
call to a device; e.g., read a write-only device.

ENOTDIR Not a directory
A non-directory was specified where a directory is
required, for example in a path prefix or as an argument
to chdir(2).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-
mounted device; mentioning an undefined signal in sig-
nal(2) or kill(2); reading or writing a file for which
lseek(2) has generated a negative pointer). Also set by
the math functions described in the (3M) entries of this
manual.

ENFILE File table overflow
The system file table is full, and temporarily no more
opens can be accepted.

EMFILE Too many open files

No process may have more than NOFILES (default 20)
descriptors open at a time.

ENOTTY Not a character device (or) Not a typewriter
An attempt was made to ioctl(2) a file that is not a spe-
cial character device.

Version 4.1 Revised March 1993

W/

INTRO (2&3) (Software Development Utilities) INTRO (2&3)

26

27

28

29

30

31

32

a3

34

ETXTBSY Text file busy
An attempt was made to execute a pure-procedure pro-
gram that is currently open for writing. Also an attempt
to open for writing or to remove a pure-procedure pro-
gram that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size or
ULIMIT [see ulimit(2)].

ENOSPC No space left on device
During a write(2) to an ordinary file, there is no free
space left on the device. In fcntl(2), the setting or
removing of record locks on a file cannot be accom-
plished because there are no more record entries left on
the system.

ESPIPE lllegal seek
An lseek(2) was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of
links (1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read
the data. This condition normally generates a signal; the
error is returned if the signal is ignored.

EDOM Math argument

The argument of a function in the math package (3M) is
out of the domain of the function.

ERANGE Result too large
The value of a function in the math package (3M) is not
representable within machine precision.

Revised March 1993 Version 4.1 Page 7

INTRO (2&3) (Software Development Utilities) INTRO (2&3)

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue [see
msgop(2)].

36 EIDRM Identifier removed
This error is returned to processes that resume execu-
tion due to the removal of an identifier from the file

system’s name space [see msgctl(2), semctl(2), and
shmcetl(2)).

37-44 Reserved numbers

45 EDEADLK Deadlock
A deadlock situation was detected and avoided. This
error pertains to file and record locking.

46 ENOLCK No lock
In fcntl(2) the setting or removing of record locks on a
file cannot be accomplished because there are no more
record entries left on the system.

60 ENOSTR Not a stream
A putmsg(2) or getmsg(2) system call was attempted on
a file descriptor that is not a STREAMS device.

62 ETIME Stream ioctl timeout
The timer set for a STREAMS ioctl(2) call has expired.
The cause of this error is device specific and could indi-
cate either a hardware or software failure, or perhaps a
timeout value that is too short for the specific operation.
The status of the ioctl/(2) operation is indeterminate.

63 ENOSR No stream resources
During a STREAMS open(2), either no STREAMS queues
or no STREAMS head data structures were available.

64 — 70 These errors are Remote File Sharing (RFS) specific.

Page 8 Version 4.1 Revised March 1993

INTRO (2&3) (Software Development Utilities) INTRO (2&3)

71 EPROTO Protocol error
Some protocol error occurred. This error is device
specific, but is generally not related to a hardware
failure.

74 EMULTIHOP This error is RFS specific

77 EBADMSG Bad message
During a read(2), getmsg(2), or iocti(2) I_RECVFD system
call to a STREAMS device, something has come to the
head of the queue that can’t be processed. That some-

thing depends on the system call:
read(2) - control information or a passed file
descriptor.
getmsg(2) — passed file descriptor.
ioctl(2) — control or data information.

101 EWOULDBLOCK Operation would block
An operation that would cause a process to block was
attempted on an object in non-blocking mode (see
fentl(2)).

102 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as

a connect(2)) was attempted on a non-blocking object
(see fentl(2)).

103 EALREADY Operation already in progress

An operation was attempted on a non-blocking object
that already had an operation in progress

104 ENOTSOCK Socket operation on non-socket
Self-explanatory.

105 EDESTADDRREQ Destination address required

A required address was omitted from an operation on a
socket.

Revised March 1993 Version 4.1 Page 9

INTRO(2&3) (Software Development Utilities) INTRO (243)

106

107

108

109

110

m

112

113

114

Page 10

EMSGSIZE Message too long
A message sent on a socket was larger than the internal
message buffer or some other network limit.

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the
semantics of the socket type requested. For example, you
cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ENOPROTOOPT Option not supported by protocol
A bad option or level was specified in a getsockopt(3N) or
getsockopt call.

EPROTONOSUPPORT Protocol not supported
The support for the socket type has not been configured
into the system or no implementation for it exists.

ESOCKTNOSUPPORT Socket type unsupported
The support for the socket type has not been configured
into the system or no implementation for it exists.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a
datagram socket.

EPRNOSUPPORT Protocol family unsupported
The protocol family has not been configured into the sys-
tem or no implementation for it exists.

EAFNOSUPPORT Address family unsupported by proto-
col family
An address incompatible with the requested protocol was
used. For example, you should not necessarily expect to
be able to use NS addresses with ARPA Internet proto-
cols.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

Version 4.1 Revised March 1993

INTRO(2&3) (Software Development Utilitles) INTRO (243)

115

116

117

118

119

120

121

122

123

124

EADDRNOTAVAIL Cannot assign requested address
Normally results from an attempt to create a socket with
an address not on this machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable net-
work.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host
machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This nor-
mally results from a loss of the connection on the remote
socket due to a timeout or a reboot.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed
because the system lacked sufficient buffer space or
because a queue was full.

EISCONN Socket is already connected
A connect request was made on an already connected
socket; or, a sendto or sendmsg request on a connected
socket specified a destination when already connected.

ENOTCONN Socket is unconnected
A request to send or receive data was disallowed because
the socket is not connected and (when sending on a
datagram socket) no address was supplied.

ESHUTDOWN Cannot send after socket shutdown
A request to send data was disallowed because the socket
had already been shut down with a previous shutdown(2)
call.

Revised March 1993 Version 4.1 Page 11

INTRO(283) (Software Development Utilities) INTRO (243)

126 ETIMEDOUT Connection timed out
A connect or send request failed because the connected
party did not properly respond after a period of time.
(The timeout period is dependent on the communication
protocol).

127 ECONNREFUSED Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to
connect to a service that is inactive on the foreign host.

128 EHOSTDOWN Host is down
A socket operation failed because the destination host
was down.

129 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable
host.

Note that shared libraries are currently not implemented in
the Supermax Operating System.

The following is a list of all the available SMOS error codes
and a short description of the most common reason for their
appearance:

1 EDATFUL OS data area (item area) is full
2 EPRIVIO Process must be super-user
3 EBADADDR Bad address
4 EBADDIR Bad system call number
5 ENOTIMP Facility not yet implemented
7 EBADPARM Bad value of argument to system call
50 EPARNX Partition does not exist
51 EPARAX Partition already exists
52 ESEGUSE Segment in use
63 EILSEGNO Illegal segment number
54 EPARNATT Partition not attached
656 EPARLONG Partition too long
56 ENOMEM No memory

Page 12 Version 4.1 Revised March 1993

w

INTRO (2&3) (Software Development Utilitles) INTRO (2&3)

57 EASEGUSE All segments in use

58 EMAXPAR All partition descriptors allocated

102 ENOASN No Address Space Number available

103 EBADLM Bad load module structure

104 EBADSER Bad serial number

106 EPROCNX Process does not exist

110 EPROCABO Process is being aborted

111 ERESUME Process was resumed by another
process

112 ENOTSUSP Process is not suspended

113 EMAXPNO The max. number of local process
descriptors exist

114 EDEADPNX There is no dead process

116 EBADEXNO Bad signal number

118 ESIGNAL A signal caused the system call to
abort

119 ESTSHORT The stack is too short to hold
parameters

120 ESYSPR The process is a system process

121 EMAXTD The maximum number of text
descriptors exist

126 EBPIPE Write on broken pipe

127 EMAXPG The max. number of global process
descriptors exist

128 EMAXATTENT No more attentions to a specific
terminal allowed

129 ENOTMCU The hardware unit is not an MCU

150 EPROTO Protocol error

151 EMAXSERVE Maximum number of RFS servers
exist

152 EADV Advertise error

153 EAADV Already advertised

154 EMAXADV Advertise table is full

155 EMAXRCVD Maximum number of receive
descriptors exist

Revised March 1993 Version 4.1 Page 13

—

INTRO (2&3)

156

157
160
161
162
163
164
200
201
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
219
220

221

222
223
224
225
226
228

Page 14

(Software Development Utilities)

EMAXSNDD

ENONET
ECOMM
ENOLINK
ERFS
EMULTIHOP
ESRMNT
EBADACC
EBUFLONG
EILDEVIC
EUNITAX
EUNITNX
EILMODE
EACCVIO
ETIMEOUT
EOPEN
ENOTOPEN
EILOP
EILPOSM
EILBUFL
EEXCDDSK
ENMOUNT
EAMOUNT
EOPENFIL
EMAXMOUNT
EISDI

EISNTDI

ENREADY
EHARD
EWRPROT
EILSECT
ENODATA
EFULLLOC

Version 4.1

INTRO (243)

Maximum number of send
descriptors exist

Machine is not on the network
Communication error on send
The link has been severed
Remote error, inspect errno
Multihop attempted

Server mount error

File not open for this access mode
Buffer is too long

Illegal device

File already exists

File does not exist

Illegal access mode

Access right violation

I/0 operation time out

File is already open

File is not open

Illegal operation on specified file
Illegal position mode

Illegal buffer length

Transfer exceeds disk

Disk not mounted

Disk already mounted

Files are open on the disk
Mount table is full

The file is already in direct input
mode

The file has not been put in direct
input

Disk not ready

Hard error on disk

Disk write protected

Illeganl sector number

No data (for no delay io)

The lock table is full

Revised March 1993

— m
ﬂ INTRO (2&3) (Software Development Utllities) INTRO (2&3)
229 EBADPOS Bad position on file
230 ELUSED The byte range is already locked
232 EILSIZE Illegal file size or file buffer size
233 EMAXIO The maximum number of files are
open
234 ENOTSIOC The hardware unit is not a SIOC
236 EDISK Internal DIOC error
236 ENOSDISK No sub-disks defined on physical disk
237 EMAXL1 The maximum number of file
openings in use
238 ENOREAD No one is reading from FIFO
239 EILSEEK Illegal seek on file
243 EFULLDSK The disk is full
244 EILVARI Illegal variable record
250 EILTYPE Illegal file type
254 EMAXL2 Full file table
258 EDEADLK Byte locking deadlock detected
259 EILFNAM Illegal file name
262 ENOINO No i-node available
264 EOLFIL Outside legal file
266 EMXNLINK More than 1000 links to a file
267 EMNTMISM Superblock inconsistency
268 EILMNT The disk does not contain a file
system
270 ESTREAM Generic streams error, inspect errno
271 EMAXMUX No multiplexer links available
272 EMAXBUF No streams buffer available
273 EMAXSTREV No streams events available
274 EMAXQ No queues available
275 EBADMSG Trying to read unreadable message
280 EMAXMSG The max. number of message
queues exist
281 EMAXSEM The max. number of semaphore
identifiers exist
282 EMAXSHM The max. number of shared memory
identifiers exist
Revised March 1993 Version 4.1 Page 15

INTRO (2&3) (Software Development Utilitles) INTRO (2&3)

283 EMSGAX Message queue already exists

284 EMSGNX Message queue does not exists

285 EMSQREM Message queue has been removed

286 ESEMAX Semaphore identifier already exists

287 ESEMNX Semaphore identifier does not exist

288 ESEMREM Semaphore identifier is removed

289 ESEMVBIG Semaphore value is too big

290 EUNDOFULL The undo table for the process is full

291 ESEMVAL The semaphore value would cause
the process to wait

292 ENOMSG No message on queue

293 EMSQFULL Message queue is full

DEFINITIONS

Process 1D

Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is
from 1 to 32,767.

Parent Process ID

A new process is created by a currently active process [see
fork(2)]. The parent process ID of a process is the process ID
of its creator.

Process Group ID

Each active process is a member of a process group that is
identified by a positive integer called the process group ID.
This ID is the process ID of the group leader. This grouping
permits the signaling of related processes [see kill(2)).

Tty Group ID

Each active process can be a member of a terminal group that
is identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related processes upon
termination of one of the processes in the group [see exit(2),
setpgrp(2), and signal(2)].

Page 16 Version 4.1 Revised March 1993

m=

INTRO(283) (Software Development Utilities) INTRO (2&3)

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive
integer (0 to 65535) called a real user ID.

Each user is also a member of a group. The group is identified
by a positive integer called the real group ID.

An active process has a real user ID and real group ID that are
set to the real user ID and real group ID, respectively, of the
user responsible for the creation of the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective
group ID that are used to determine file access permissions
(see below). The effective user ID and effective group ID are
equal to the process’s real user ID and real group ID respec-
tively, unless the process or one of its ancestors evolved from a
file that had the set-user-ID bit or set-group ID bit set [see
exec(2)].

Super-user

A process is recognized as a super-user process and is granted
special privileges, such as immunity from file permissions, if its
effective user ID is 0.

Special Processes

The processes with a process ID less than 80 are special
processes. They are used by the operating system itself. The
process with process ID 1 is the initialization process (f2init).
This process is the ancestor of every other process in the sys-
tem and is used to control the process structure.

File Descriptor

A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from 0 to (OPEN-MAX - 1). A pro-
cess may have no more than OPEN-MAX file descriptors open
simultaneously. The value of OPEN-MAX is a system
configuration parameter set by the chhw(1M) program. A file
descriptor is returned by system calls such as open(2), or

Revised March 1993 Version 4.1 Page 17

INTRO (2&3) (Software Development Utilitles) INTRO (2&3)

pipe(2). The file descriptor is used as an argument by calls such
as read(2), write(2), ioctl(2), and close(2).

File Name

Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file
names because of the special meaning attached to these charac-
ters by the shell [see sh(1)]. Although permitted, the use of
unprintable characters in file names should be avoided.

Path Name and Path Prefix

A path name is a null-terminated character string starting with
an optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

If a path name begins with a slash, the path search begins at
the root directory. Otherwise, the search begins from the
current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is
treated as if it named a non-existent file.

Directory

Directory entries are called links. By convention, a directory
contains at least two links, . and .., referred to as dot and dot-
dot respectively. Dot refers to the directory itself and dot-dot
refers to its parent directory.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root direc-
tory and a current working directory for the purpose of resolv-
ing path name searches. The root directory of a process need
not be the root directory of the root file system.

Page 18 Version 4.1 Revised March 1993

—

INTRO (2&3) (Software Development Utilities) INTRO (2&3)

~

File Access Permissions
Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are true:

The effective user ID of the process is super-
user.

The effective user ID of the process matches the

user ID of the owner of the file and the appropri-

ate access bit of the ‘‘owner” portion (0700) of
m the file mode is set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process matches the
group of the file and the appropriate access bit of
the “group” portion (0070) of the file mode is
set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process does not
match the group ID of the file, and the appropri-
ate access bit of the “other” portion (0007) of
the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier

A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data struc-
ture is referred to as msqid ds and is described in
Programmer’s Guide, Chapter 8.

Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer

created by a semget(2) system call. Each semid has a set of
ﬁ semaphores and a data structure associated with it. The data
' structure is referred to as semid_ds and is described in

Programmer’s Guide, Chapter 8.

Revised March 1993 Version 4.1 Page 19

mﬁ

INTRO (2&3) (Software Development Utilitles) INTRO (2&3)

Shared Memory Identifier

A shared memory identifier (shmid) is a unique positive integer
created by a shmget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a
data structure associated with it. (Note that these shared
memory segments must be explicitly removed by the user after
the last reference to them is removed). The data structure is
referred to a8 shmid_ds and is described in Programmer’s
Guide, Chapter 8.

STREAMS

are a set of kernel mechanisms that support the development
of network services and data communication drivers. It defines
interface standards for character input/output within the ker-
nel and between the kernel and user level processes. The
STREAMS mechanism is composed of utility routines, kernel
facilities and a set of data structures.

Stream

A stream is a full-duplex data path within the kernel between a
user process and driver routines. The primary components are
a stream head, a driver and zero or more modules between the
stream head and driver. A stream is analogous to a Shell pipe-
line except that data flow and processing are bidirectional.

Stream Head.

In a stream, the stream head is the end of the stream that pro-
vides the interface between the stream and a user process. The
principle functions of the stream head are processing
STREAMS-related system calls, and passing data and informa-
tion between a user process and the stream.

Driver

In a stream, the driver provides the interface between peri-
pheral hardware and the stream. A driver can also be a
pseudo-driver, such as a multiplexor, which is not associated
with a hardware device.

Page 20 Version 4.1 Revised March 1993

INTRO (2&3) (Software Development Utllitles) INTRO (2&3)

Module

A module is an entity containing processing routines for input
and output data. It always exists in the middle of a stream,
between the stream’s head and a driver. A module is the
STREAMS counterpart to the commands in a Shell pipeline
except that a module contains a pair of functions which allow
independent bidirectional (downstream and upstream) data flow
and processing.

Downstream
In a stream, the direction from stream head to driver.

Upstream
In a stream, the direction from driver to stream head.

Message

In a stream, one or more blocks of data or information, with
associated STREAMS control structures. Messages can be of
several defined types, which identify the message contents.
Messages are the only means of transferring data and commun-
icating within a stream.

Message Queue v
In a stream, a linked list of messages awaiting processing by a
module or driver.

Read Queue
In a stream, the message queue in 8 module or driver contain-
ing messages moving upstream.

Write Queue

In a stream, the message queue in a module or driver contain-
ing messages moving downstream.

Multiplexor

A multiplexor is a driver that allows streams associated with
several user processes to be connected to a single driver, or
several drivers to be connected to a single user process.

Revised March 1993 Version 4.1 Page 21

INTRO(283) (Software Development Utilities) INTRO (243)

STREAMS does not provide a general multiplexing driver, but
does provide the facilities for constructing them, and for con-
necting multiplexed configurations of streams.

FILES
/lib/libc.a
/lib/libm.a

SEE ALSO
ar(1), cc(1), 1d(1), lint(1), nm(1), stdio(3S), math(5).

DIAGNOSTICS

Functions in the C and Math Libraries (3C and 3M) may
return the conventional values 0 or *HUGE_VAL (the
largest-magnitude single-precision floating-point numbers;
HUGE_VAL is defined in the <math.h> header file) when
the function is undefined for the given arguments or when the
value is not representable. In these cases, the external variable
errno is set to the value EDOM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to other
functions and external variables described in this section. If a
program inadvertently defines a function or external variable
with the same name, the presumed library version of the func-
tion or external variable may not be loaded.

Page 22 Version 4.1 Revised March 1993

A64L (3C) (Standard C Library) A64L (3C)

a64l, 164a — convert between long integer and base-64 ASCIH
string

SYNOPSIS

long a64l (s)
char = s;

char =*164a (1)
long 1;

DESCRIPTION

These functions are used to maintain numbers stored in base-
64 ASCII characters. This is a notation by which long integers
can be represented by up to six characters; each character
represents a “‘digit’’ in a radix-64 notation.

The characters used to represent ‘‘digits’’ are . for 0, / for 1, 0
through 9 for 2—11, A through Z for 12—-37, and a through z
for 38 —63.

a64l takes a pointer to a null-terminated base-64 representa-
tion and returns a corresponding long value. If the string
pointed to by s contains more than six characters, a64!] will use
the first six.

ab4l scans the character string from left to right, decoding
each character as a 6 bit Radix 64 number.

l64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0,
164a returns a pointer to a null string.

CAVEAT

The value returned by /64a is a pointer into a static buffer, the
contents of which are overwritten by each call.

Revised March 1993 RISC Version 4.1 Page 1

A64L (3C) (Standard C Library) A64L (3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

ABORT (3C) (Standard C Library) ABORT (3C)

NAME
abort — generate an abnormal program termination

SYNOPSIS
#include <stdlib.h>
void abort ()
DESCRIPTION
abort does the work of exit(2), but instead of just exiting, abort
causes SIGABRT to be sent to the calling process. If SIGABRT

is neither caught nor ignored, all stdio(3S) streams are flushed
prior to the signal being sent, and a core dump results.

abort returns the value of the kill(2) system call.

SEE ALSO
sdb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current
directory is writable, a core dump is produced and the message
“Abort (coredump)” is written by the shell.

SIGABRT is not intended to be caught.

Revised March 1993 RISC Version 4.1 Page 1

ABORT (3C) (Standard C Library) ABORT(3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

ABS (3C) (Standard C Library) ABS (3C)

NAME
abs — return integer absolute value

SYNOPSIS
#include <stdlib.h>
int abs (i)
int i;
DESCRIPTION
abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

CAVEAT
In two’s-complement representation, the absolute value of the
negative integer with largest magnitude is undefined.

Revised March 1993 RISC Version 4.1 Page 1

ABS (3C) (Standard C Library) ABS (3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

W/

u

W/

A S R BT R e oA S R R R

ACCESS (2) (System Call) ACCESS (2)

NAME

access — determine accessibility of a file

SYNOPSIS

#include <unistd.h>

int access (path, amode)
char =+ path;
int amode;

DESCRIPTION

path points to a path name naming a file. access checks the
named file for accessibility according to the bit pattern con-
tained in amode, using the real user ID in place of the effective
user ID and the real group ID in place of the effective group ID.
The bit pattern contained in amode is constructed from sym-
bolic constants defined by the <unistd.h> header file. They
are as follows:

Name | Value | Description

R OK 04 test for read permission

W_OK 02 test for write permission

X OK 01 test for execute (search) permission
F OK 00 test for existence of file

amode is either the logical OR of the values of the symbolic
constants for R_OK, W OK, and X OK or is the value of the
symbolic constant F_OK.

Access to the file is denied if one or more of the following are
true:

[EACCES] Search permission is denied on a com-
ponent of the path prefix.
[EACCESS] Permission bits of the file mode do not

permit the requested access.

Revised March 1993 RISC Version 4.1 Page 1

ACCESS (2)

[(EFAULT]
[EINTR]
[EMULTIHOP]

[ENAMETOOLONG]

[ENOTDIR]
[ENOENT]

(ENOENT]
[ENOLINK]

[EROFS]

(System Call) ACCESS (2)

path points outside the allocated address
space for the process.

A signal was caught during the access
system call.

Components of path require hopping to
multiple remote machines.

The length of the path argument exceeds
{PATH_MAX]}, or the length of a path
component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

A component of the path prefix is not a
directory.

Read, write, or execute (search) permis-
sion is requested for a null path name.

The named file does not exist.

path points to a remote machine and the
link to that machine is no longer active.

Write access is requested for a file on a
read-only file system.

The owner of a file has permission checked with respect to the
“owner”’ read, write, and execute mode bits. Members of the
file’s group other than the owner have permissions checked
with respect to the “group’ mode bits, and all others have per-
missions checked with respect to the ‘“‘other’’ mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS

If the requested access is permitted, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to indi-

cate the error.

Page 2

RISC Version 4.1 Revised March 1993

R R

ACCT (2) (System Call) ACCT (2)

NAME

acct — enable or disable process accounting

SYNOPSIS

int acct (path)
char =* path;

DESCRIPTION

acct is used to enable or disable the system process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Termination can be caused by one of two things: an exit call or
a signal [see exit(2) and signal(2)]. The effective user ID of the
calling process must be superuser to use this call.

path points to a pathname naming the accounting file. The
accounting file format is given in acct(4).

The accounting routine is enabled if path is non-zero and no
errors occur during the system call. It is disabled if path is
zero and no errors occur during the system call.

acct will fail if one or more of the following are true:
[EACCESS] The file named path is not an ordinary file.

[EBUSY] An attempt is being made to enable accounting
when it is already enabled.

[EFAULT] path points to an illegal address.

[ENOTDIR] A component of the path prefix is not a direc-
tory.

[ENOENT] One or more components of the accounting file
pathname do not exist.

[EPERM] The effective user of the calling process is not
superuser.

[EROFS] The named file resides on a read-only file sys-
tem.

Revised March 1993 RISC Version 4.1 Page 1

ACCT(2)

(System Call) ACCT (2)

SEE ALSO
exit(2), signal(2), acct(4).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Other-

wise, a value of —1 is returned and errno is set to indicate the
error.

RISC Version 4.1 Revised March 1993

ALARM (2) (System Call) ALARM (2)

NAME
alarm — set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
alarm instructs the alarm clock of the calling process to send
the signal SIGALRM to the calling process after the number of
real time seconds specified by sec have elapsed [see signal(2)].

Alarm requests are not stacked; successive calls reset the alarm
clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

SEE ALSO
pause(2), signal(2), sigpause(2), sigset(2).

DIAGNOSTICS
alarm returns the amount of time previously remaining in the
alarm clock of the calling process.

Revised March 1993 RISC Version 4.1 Page 1

ALARM (2) (System Call) ALARM (2)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

AMSGOP (2X) (DDE Library) AMSGOP (2X)

NAME

amsgop — asynchronous message operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <aio.h>

int amsgsnd(resbuf, msqid, msgp, msgsz, msgflg)
struct a_res * resbuf;
int msqid;
struct mymsg * msgp;
int msgsz, msgfig;

int amsgrcv(resbuf,msqid, msgp,msgsz,msgtyp,msgflg)
struct a_res * resbuf;
int msqid;
struct mymsg * msgp;
int msgsz;
long msgtyp;
int msgfig;

DESCRIPTION

amsgsnd and amsgrcv initiate an asynchronous attempt to
send or receive a message via a message queue. The operation
performed by amsgsnd and amsgrev is identical to that per-
formed by msgsnd and msgrev, respectively, and the reader
should consult the manual page on msgop(2) for a description
of the arguments, msqid, msgp, msgsz, msgtyp, and msgflg, as
well as for a detailed description of the operation performed.

However, in contrast to msgsnd and msgrcv, the operation per-
formed by amsgsnd and amsgrcv is asynchronous, that is, the
operating system returns immediately to the calling process,
allowing this process to perform other computations while the
message operation is in progress. The details are as follows:

Revised March 1993 RISC Version 4.1 Page t

m _— — =

AMSGOP (2X) (DDE Library) AMSGOP (2X)

When amsgsnd or amsgrev is called, a child process of the cal-
ling process is created. This child process performs the actual
message operation, while the parent process continues execu-
tion. Once the message operation is completed, the child pro-
cess dies.

The parent process may inspect the result of the message
operation through the waitx(2X) routines. These routines
work as they always do, inspecting the state of dead child
processes; if, however, the child process is an asynchronous
message operation process, the wait(2) routine will cause status
information to be returned in the structure pointed to by the
resbuf argument of the amsgsnd or amsgrcv call.

The a_res structure is defined in the <aio.h> header file and
contains the following fields that will be set by the wait(2) rou-
tine:
long a_type; / * set to the symbolic constant
AMSGSND or AMSGRCV * /
long a res; / * the return value from
msgsnd or msgrcv * /[
long a_smoserr; /* smoserr error code of
message operation * /
long a _errno; /=* errno error code of
message operation * /

The errno error code of the message operation may also be
found as the exit code of the child process.

The name of the child process returned by the waitx routine
[see wait(2)] will be the name of the parent process with the
character ‘A’ appended.

No more than 256 bytes may be transferred at a time.

amsgsnd and amsgrcv will fail and no child process will be
created if one or more of the follwing are true:

Page 2 RISC Version 4.1 Revised March 1993

AMSGOP (2X) (DDE Library) AMSGOP (2X)

[EINVAL] msqid is not a valid message queue identifier; or
the value of msgsz is less than 0 or greater than
256.

[EACCES] The msg_perm.mode field of the data structure

associated with the message queue identifier
denies the necessary permission.

{[EFAULT] msgp or resbuf points to an illegal address.

[EAGAIN] The maximum number of processes on the MCU
or on the entire computer would be exceeded.
SEE ALSO
msgop(2), wait(2), waitx(2X).
DIAGNOSTICS

If the starting of the child process is successful, amsgsnd and
amsgrev will return the process ID of the child process; other-
wise they will return —1, no child process will be started, and
errno will indicate the error.

Note: If amsgsnd or amsgrcv do not return —1, the message
operation may still fail. In this case the error is indicated in
the a_res structure.

NOTE
The program must be loaded with the library libdde.a.

Revised March 1993 RISC Version 4.1 Page 3

AMSGOP (2X) (DDE Library) AMSGOP (2X)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

AREAD (2X) (DDE Library) AREAD (2X)

NAME
aread — asynchronous read

SYNOPSIS
#include <aio.h>

int aread (resbuf, fildes, buf, nbyte)
struct a_res = resbuf;
int fildes;
char = buf;
unsigned nbyte;

DESCRIPTION

aread initiates an asynchronous attempt to read nbyte bytes
from the file associated with fildes into the buffer pointed to by
buf. The operation performed by aread is identical to that per-
formed by read and the reader should consult the manual page
on this routine for a description of the arguments, fildes, buf,
and nbyte, as well as for a detailed description of the operation
performed.

However, in contrast to read, the operation performed by aread
is asynchronous, that is, the operating system returns immedi-
ately to the calling process, allowing this process to perform
other computations while the read operation is in progress.
The details are as follows:

When aread is called, a child process of the calling process is
created. This child process performs the actual read operation,
while the parent process continues execution. Once the read
operation is completed, the child process dies.

The parent process may inspect the result of the read operation
through the wait(2) routines. These routines work as they
always do, inspecting the state of dead child processes; if, how-
ever, the child process is an asynchronous I/O operation pro-
cess, the wait(2) routines will cause status information to be
returned in the structure pointed to by the resbuf argument of
the aread call.

Revised March 1993 RISC Version 4.1 Page 1

el B R T T SR
R, PREEIRETIAN IR, AT

AREAD (2X) (DDE Library) AREAD (2X)
The a_res structure is defined in the <aio.h> header file and
contains the following fields that will be set by the wait(2) rou-
tines:

long a_type; / * set to the symbolic constant
AREAD =*/
long a_res; / * the number of bytes actually read,
or —1 for error */
long a_smoserr; / * smoserr error code of
read operation * /
long a_errno; /* errno error code of
read operation * /
long a_curpos; /* cursor position at end of
terminal input * /
long a_funkey; /* key that terminated
terminal input */
The errno error code of the read operation may also be found
as the exit code of the child process.
The name of the child process returned by the waitx routine
[see wait(2)] will be the name of the parent process with the
character ‘A’ appended.
No more than 256 bytes may be read at a time.
aread will fail and no child process will be created if one or
more of the follwing are true:
[EBADF] fildes is not a valid file descriptor open for read-
ing.
{EINVAL] nbyte is greater than 256.
[EFAULT] buf or resbuf points to an illegal address.
[EAGAIN] The maximum number of processes on the MCU
or on the entire computer would be exceeded.
SEE ALSO

read(2), wait(2).

Page 2 RISC Version 4.1 Revised March 1993

AREAD (2X) (DDE Library) AREAD (2X)

DIAGNOSTICS
If the starting of the reading child process is successful, aread
will return the process ID of the child process; otherwise it will
return —1, no child process will be started, and errno will indi-
cate the error.

Note: If aread does not return —1, the read operation may still
fail. In this case the error is indicated in the a_res structure.

NOTE
The program must be loaded with the library libdde.a.

Revised March 1993 RISC Version 4.1 Page 3

AREAD (2X) (DDE Library) AREAD (2X)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

RS S B EIR R R DA AR RS

ASSERT (3) (Standard C Library) ASSERT (3)
NAME

assert — verify program assertion
SYNOPSIS

#include < assert.h>

assert (expression)
int expression;
DESCRIPTION

This macro is useful for putting diagnostics into programs.
When it is executed, if expression is false (zero), assert prints

“Assertion failed: expression, file xyz, line nnn”

on the standard error output and aborts. In the error message,
xyz is the name of the source file and nnn the source line
number of the assert statement.

Compiling with the preprocessor option —-DNDEBUG [see
cpp (1)], or with the preprocessor control statement “#define
NDEBUG” ahead of the “#include <assert.h>" statement,
will stop assertions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C).

CAVEAT
Since assert is implemented as a macro, the expression may not
contain any string literals.

Revised March 1993 RISC Version 4.1 Page 1

m e Dol R et g it L e R SR e e

ASSERT (3) (Standard C Library) ASSERT (3)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

ASUSPEND (2X) (DDE Library) ASUSPEND (2X)

NAME

asuspend — asynchronous suspend

SYNOPSIS

#include <aio.h>

int asuspend (resbuf, time)
struct a_res * resbuf;
long time;

m DESCRIPTION

asuspend performs an asynchronous suspension for time mil-
liseconds (with a resolution of 40 milliseconds).

When asuspend is called, a child process of the calling process
is created. This child suspends itself for the specified time,
while the parent process continues execution. Once the
suspend time has expired, the child process dies. The opera-
tion actually performed by the child process is a suspend(2)
system call with a pid argument of —1.

The parent process may inspect the result of the suspend
operation through the wait(2) routines. These routines work
as they always do, inspecting the state of dead child processes;
if, however, the child process is an asynchronous suspension,
the wait(2) routines will cause status information to be
returned in the structure pointed to by the resbuf argument of
the asuspend call.

The a_res structure is defined in the <aio.h> header file and
contains the following fields that will be set by the wait(2) rou-
tines:

Revised March 1993 RISC Version 4.1 Page 1

3 HA R i

ASUSPEND (2X) (DDE Library) ASUSPEND (2X)

long a_type; / * set to the symbolic constant
ASUSPEND * /

long a res; / * the return value from
suspend(2X) */

long a_smoserr; / * smoserr error code of
suspend operation #* /

long a_errno; /* errno error code of

~ suspend operation * /

The errno error code of the suspend operation may also be
found as the exit code of the child process.

The name of the child process returned by the waitx routine
[see waitx(2X)] will be the name of the parent process with the
character ‘A’ appended.

The asuspend function can be used in connection with other
asynchronous operations to ensure that a wait(2) routine will
return within a specified amount of time. The alarm(2) rou-
tine can also be used for this purpose, but asuspend has a finer
resolution.

asuspend will fail and no child process will be created if one or
more of the following are true:

[EAGAIN] The maximum number of processes on the MCU
or on the entire computer would be exceeded.
[EFAULT] resbuf points to an illegal address.
SEE ALSO
suspend(2X), waitx(2X).
DIAGNOSTICS

If the starting of the suspending child process is successful,
asuspend will return the process ID of the child process; other-
wise it will return —1, no child process will be started, and
errno will indicate the error.

NOTE
The program must be loaded with the library libdde.a.

Page 2 RISC Version 4.1 Revised March 1993

“w/

W/

ATEXIT (3C) (Standard C Library) ATEXIT (3C)

NAME
atexit — add program termination routine
SYNOPSIS
#include <stdlib.h>
int atexit (func)
void *func();
DESCRIPTION
atexit adds the function func to a list of functions to be called
without arguments on normal termination of the program.
Normal termination occurs by either a call to the exit system
call or a return from main. At most 32 functions may be

registered by atexit; the functions will be called in the reverse
order of their registration.

atexit returns 0 of the registration succeeds, nonzero if it fails.

SEE ALSO
exit(2).

Revised March 1993 RISC Version 4.1 Page 1

ATEXIT (3C)

Page 2

(Standard C Library) ATEXIT (3C)

This page is intentionally left blank

RISC Version 4.1 Revised March 1993

AWRITE (2X) (DDE Library) AWRITE (2X)

NAME
awrite — asynchronous write

SYNOPSIS
#include <aio.h>

int awrite (resbuf, fildes, buf, nbyte)
struct a_res * resbuf;
int fildes;
char = buf;
unsigned nbyte;

DESCRIPTION

awrite initiates an asynchronous attempt to write nbyte bytes
to the file associated with fildes from the buffer pointed to by
buf. The operation performed by awrite is identical to that per-
formed by write and the reader should consult the manual page
on this routine for a description of the arguments, fildes, buf,
and nbyte, as well as for a detailed description of the operation
performed.

However, in contrast to write, the operation performed by
awrite is asynchronous, that is, the operating system returns
immediately to the calling process, allowing this process to per-
form other computations while the write operation is in pro-
gress. The details are as follows:

When awrite is called, a child process of the calling process is
created. This child process performs the actual write opera-
tion, while the parent process continues execution. Once the
write operation is completed, the child process dies.

The parent process may inspect the result of the write opera-
tion through the waitx(2X) routines. These routines work as
they always do, inspecting the state of dead child processes; if,
however, the child process is an asynchronous I/O operation
process, the wait(2) routines will cause status information to be
returned in the structure pointed to by the resbuf argument of
the awrite call.

Revised March 1993 RISC Version 4.1 Page 1

AWRITE (2X) (DDE Library) AWRITE (2X)

The a_res structure is defined in the <aio.h> header file and
contains the following fields that will be set by the wai#(2) rou-
tines:

long a_type; / * set to the symbolic constant
AWRITE * /
long a_res; / * the number of bytes actually written,
or —1 for error */
long a_smoserr; / * smoserr error code of
write operation * /
long a errno; /* errno error code of
write operation * /

The errno error code of the write operation may also be found
as the exit code of the child process.

The name of the child process returned by the waitx routine
[see wait(2)] will be the name of the parent process with the
character ‘A’ appended.

No more than 256 bytes may be written at a time.

awrite will fail and no child process will be created if one or
more of the follwing are true:

[EAGAIN] The maximum number of processes on the MCU
or on the entire computer would be exceeded.

[EBADF] fildes is not a valid file descriptor open for writ-
ing.

{EFAULT] buf or resbuf points to an illegal address.

[(EINVAL] nbyte is greater than 256.

SEE ALSO

wait(2), waitx(2X), write(2).

DIAGNOSTICS

If the starting of the writing child process is successful, awrite
will return the process ID of the child process; otherwise it will
return —1, no child process will be started, and errno will indi-
cate the error.

Page 2 RISC Version 4.1 Revised March 1993

AWRITE (2X) (DDE Library) AWRITE (2X)

Note: If awrite does not return —1, the write operation may
still fail. In this case the error is indicated in the a_res struc-
ture.

NOTE
The program must be loaded with the library libdde.a.

Revised March 1993 RISC Version 4.1 Page 3

- . . SR E T
_ JECCERRE —

AWRITE (2X) (DDE Library) AWRITE (2X)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

BESSEL (3M) (Math Library) BESSEL (3M)

NAME
bessel: jO, j1, jn, y0, y1, yn — Bessel functions

SYNOPSIS
#include <math.h>
double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n;
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JjO and jI return Bessel functions of x of the first kind of orders
0 and 1 respectively. jn returns the Bessel function of x of the
first kind of order r.

y0 and yl return Bessel functions of x of the second kind of
orders 0 and 1 respectively. yn returns the Bessel function of x
of the second kind of order n.

DIAGNOSTICS
Non-positive arguments cause y0, yI and yn to return the value
—HUGE and to set errno to EDOM.

If x is NaN, NaN is returned and errno is set to EDOM.

Arguments too large in magnitude cause jO, jI, y0 and yI to
return zero and to set errno to ERANGE.

Revised March 1993 RISC Version 4.1 Page 1

BESSEL (3M) (Math Library) BESSEL (3M)

W

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

BRK (2) (System Cali) BRK (2)
NAME

brk, sbrk — change data segment space allocation
SYNOPSIS

int brk (endds)
char = endds;

char *sbrk (incr)
int incr;
" DESCRIPTION

m brk and sbrk are used to change dynamically the amount of
space allocated for the calling process’s data segment [see
exec(2)]. The change is made by resetting the process’s break
value and allocating the appropriate amount of space. The
break value is the address of the first location beyond the end
of the data segment. The amount of allocated space increases
as the break value increases. Newly allocated space is set to
zero. If, however, the same memory space is reallocated to the
same process its contents are undefined.

brk sets the break value to endds and changes the allocated
space accordingly.

sbrk adds incr bytes to the break value and changes the allo-
cated space accordingly. Incr can be negative, in which case
the amount of allocated space is decreased.

ﬁ brk and sbrk will fail without making any change in the allo-
cated space if one or more of the following are true:
[EINVAL] The address of the allocated memory would

conflict with the address of an already allocated
shared memory segment (a memory partition).

[ENOMEM] Such a change would result in more space being
allocated than is allowed by the system-imposed
maximum process size [see ulimit(2)].

[ENOSPC] The maximum number of available memory par-
m tition descriptors would be exceeded.

Revised March 1993 RISC Version 4.1 Page 1

BRK (2) (System Call) BRK (2)

SEE ALSO
exec(2), shmop(2), ulimit(2), end(3C), malloc(3C).

DIAGNOSTICS
Upon successful completion, brk returns a value of 0 and sbrk
returns the old break value. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

Page 2 RISC Version 4.1 Revised March 1993

ﬁ

d

BSEARCH (3C) (Standard C Library) BSEARCH (3C)
NAME

bsearch — binary search a sorted table
SYNOPSIS

#include <stdlib.h>

void *bsearch (key, base, nel, width, compar)
void *key, *base;

size_t nel, width;

int (*compar)();

DESCRIPTION

bsearch is a binary search routine generalized from Knuth
(6.2.1) Algorithm B. It returns a pointer into a table indicating
where a datum may be found. The table must be previously
sorted in increasing order according to a provided comparison
function. key points to a datum instance to be sought in the
table. base points to the element at the base of the table. rel is
the number of elements in the table. compar is the name of the
comparison function, which is called with two arguments that
point to the elements being compared. The function must
return an integer less than, equal to, or greater than zero
according to whether the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to
nodes consisting of a string and its length. The table is
ordered alphabetically on the string in the node pointed to by
each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its length, or
prints an error message.

#include <stdio.h>
#include <stdlib.h>

#define TABSIZE 1000

Revised March 1993 RISC Version 4.1 Page 1

BSEARCH (3C) (Standard C Library) BSEARCH (3C)

struct node {
/ * these are stored in the table * /
char = string;
int length;
b
struct node table[TABSIZE];
/ * table to be searched * /

struct node #* node ptr, node;
int node_compare();

/ * routine to compare 2 nodes * /
char str_space[20];

/ * space to read string into * /

node.string = str_space;
while (scanf(”%s”, node.string) ! = EOF) {
node_ptr = (struct node *)bsearch
((void *){(&node),
(void =)table, TABSIZE,
sizeof(struct node),
node_compare);
if (node_ptr != NULL) {
(void)printf("string = %20s,
length = %d\n”,
node_ptr — >string,
node_ptr — >length);
} else {
(void)printf("not found: %s\n”,
node.string);

Page 2 RISC Version 4.1 Revised March 1993

BSEARCH (3C) (Standard C Library) BSEARCH (3C)

/ *
This routine compares two nodes based on an
alphabetical ordering of the string field.

*/

int

node_compare(nodel, node2)
void * nodel, * node2;

{
return (stremp(
((struct node *)nodel)— >string,
((struct node *)node2)— >string));
}

NOTES
The pointers to the key and the element at the base of the
table should be of type pointer-to-element, and cast to type
pointer-to-void.
The comparison function need not compare every byte, so arbi-
trary data may be contained in the elements in addition to the
values being compared.
Although bsearch is declared as type pointer-to-character, the
value returned should be cast into type pointer-to-element.

SEE ALSO
hsearch(3C), Isearch(3C), gsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the

table.

Revised March 1993 RISC Version 4.1 Page 3

o R R e T S SO

BSEARCH (3C) (Standard C Library) BSEARCH (3C)

v/

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

de

CATGETS (3C) (Standard C Library) CATGETS (3C)
NAME

catgets — read a program message
SYNOPSIS

#include <nl_types.h>

char = catgets (catd, set_id, msg _id, s)
nl_catd catd;

int set_id, msg_id;

char =*s;

DESCRIPTION
catgets attempts to read message msg num, in set set_num,
from the message catalogue identified by catd. catd is a catalo-
gue descriptor returned from an earlier call to catopen. s points
to a default message string which will be returned by catgets if
the identified message catalogue is not currently available.

SEE ALSO
catopen(3C).

DIAGNOSTICS
If the identified message is retrieved successfully, catgets
returns a pointer to an internal buffer area containing the null
terminated message string. If the call is unsuccessful because
the message catalogue identified by catd is not currently avail-
able, a pointer to s is returned.

Revised March 1993 RISC Version 4.1 Page 1

CATGETS (3C) (Standard C Library) CATGETS (3C)

W

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

CATOPEN (3C) (Standard C Library) CATOPEN(3C)
NAME

catopen, catclose — open/close a message catalogue
SYNOPSIS

#include <nl_types.h>

nl_catd catopen (name, oflag)
char * name;
int oflag;

int catclose (catd)
nl_catd catd;

DESCRIPTION

catopen opens a message catalogue and returns a catalogue
descriptor. name specifies the name of the message catalogue
to be opened. If name contains a ‘/’ then name specifies a path-
name for the message catalogue. Otherwise, the environment
variable NLSPATH is used. If NLSPATH does not exist in the
environment, or if a message catalogue cannot be opened in
any of the paths specified by NLSPATH, then the default path
is used (see nl_types(5)).

The names of message catalogues, and their location in the
filestore, can vary from one system to another. Individual appli-
cations can choose to name or locate message catalogues
according to their own special needs. A mechanism is therefore
required to specify where the catalogue resides.

The NLSPATH variable provides both the location of message
catalogues, in the form of a search path, and the naming con-
ventions associated with message catalogue files. For example:

NLSPATH = /usr/lib/locale/%L/%N.cat:/usr/lib/locale/%N /%L

The metacharacter % introduces a substitution field, where %L
substitutes the current setting of the LANG environment vari-
able (see following section), and %N substitutes the value of
the name parameter passed to catopen. Thus, in the above
example, catopen will search in /$LANG/name.cat, then in
/name/$LANG, for the required message catalog.

Revised March 1993 Version 4.1 Page 1

CATOPEN (3C) (Standard C Library) CATOPEN (3C)

NLSPATH will normally be set up on a system wide basis (e.g.,
in /etc/profile) and thus makes the location and naming con-
ventions associated with message catalogues transparent to
both programs and users.

The full set of metacharacters is:
%N The value of the name parameter passed to catopen.
%L The value of LANG.
%l The value of the language element of LANG. V
%t The value of the territory element of LANG.
%c The value of the codeset element of LANG.
%% A single %.

The LANG environment variable provides the ability to specify
the users requirements for native languages, local customs and
character set, as an ASCII string in the form

LANG = language|_territoryl.codeset]]

A user who speaks German as it is spoken in Schwitzerland
and has a terminal which operates in ISO 8859/1 codeset,
would want the setting of the LANG variable to be

LANG =de_CH.88591

With this setting it should be possible for that user to find any
relevant catalogs should they exist. u

Should the LANG variable not be set then the value of
LC_MESSAGES as returned by setlocale is used. If this is
NULL then the default path as defined in nl_types is used.

oflag is reserved for future use and should be set to 0. The
results of setting this field to any other value are undefined.

catclose closes the message catalog identified by catd.

SEE ALSO
catgets(3C), setlocale(3C), environ(5), nl_types(5).

Page 2 Version 4.1 Revised March 1993

— m
~ CATOPEN (3C) (Standard C Library) CATOPEN (3C)
DIAGNOSTICS

If successful, catopen returns a message catalog descriptor for
use on subsequent calls to catgets and catclose. Otherwise cato-

pen returns (nl_catd) - 1. catclose returns 0 if successful, other-
wise —1.

Revised March 1993 Version 4.1 Page 3

m_—

CATOPEN(3C) -

Page 4

(Standard C Library)

CATOPEN (3C)

This page is intentionally left blank

Version 4.1

Revised March 1993

CHDIR (2) (System Call) CHDIR (2)

NAME
chdir — change working directory

SYNOPSIS
int chdir (path)
char * path;

DESCRIPTION
path points to the path name of a directory. chdir causes the
named directory to become the current working directory, that
m is the starting point for path searches for path names not
beginning with ”/” .
chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

[EACCES] Search permission is denied for any com-
ponent of the path name.

[EFAULT] path points outside the allocated address
space of the process.

{EINTR] A signal was caught during the chdir sys-
tem call.

[EMULTIHOP] Components of path require hopping to

multiple remote machines.

[ENAMETOOLONG] The length of the path argument exceeds

m {PATH_MAX]}, or the length of a path

‘ component exceeds {NAME MAX} while
_POSIX_NO_TRUNC is in effect.

[ENOENT] The named directory does not exist.
[ENOLINK] path points to a remeote machine and the
link to that machine is no longer active.
[ENOTDIR] A component of the path name is not a
directory.
SEE ALSO

. chroot(2).
m

Revised March 1993 RISC Version 4.1 Page 1

CHDIR (2) (System Call) CHDIR (2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

Page 2 RISC Version 4.1 Revised March 1993

CHKLICENSE (2) (System Call) CHKLICENSE (2)

NAME
chklicense — check if program has license to run

SYNOPSIS
#include <license.h>

int chklicense (stocknumber)
int stocknumber;

DESCRIPTION
chklicense checks if this program is allowed to run under the
m license conditions which are present on this installation. It is

called with the stock number of the calling program, and chkli-
cense will fail if one or more of the following are true:

[EACCESS] There are no licenses available for the specified
stock number, because they are all in use at
this time, or the date has expired.

[EINVAL] chklicense has been called before by this pro-
cess with a different stock number. This may
be used to check if the real call to chklicense
has been patched out.

[ENOEXEC] No licenses have been loaded for the given
stock number. (Done by /etc/loadlicense dur-
ing booting).

When chklicense is called the kernel will check if there are any

m more licenses left for the given stock number. If so, the kernel
will register the stock number of the program and when the
program terminates the license will be released.

EXAMPLE
The check of the license conditions on the host may look like:

if (chklicense(stocknumber) < 0){
if (errno = = EACCESS){
perror (”“Thisprogram”);
fprintf(stderr, “Licenses used up or
ﬁ nonexistent for %d”, stocknumber);

}

Revised March 1993 RISC Version 4.1 Page 1

CHKLICENSE (2) (System Call) CHKLICENSE (2)

if (errno = = ENOEXEC){
perror (“Thisprogram”);
fprintf(stderr, ”“No license for %d”, stocknumber);
}

if (errono == EINVAL){

perror (“Thisprogram”);

fprintf(stderr, ”“Chklicense called before with”);

fprintf(stderr, ” different stocknumber than

%d0, stocknumber);

} W/
exit(l);
}

SEE ALSO
instno(1), license(4).
DIAGNOSTICS

Upon successful completion, 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

Page 2 RISC Version 4.1 Revised March 1993

CHMOD (2) (System Call) CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int chmod (path, mode)
char = path;
mode_t mode;

DESCRIPTION
path points to a path name naming a file. chmod sets the
access permission portion of the named file’s mode according to
the bit pattern contained in mode.

Access permission bits are described in <sys/stat.h>, and are
interpreted as follows:

Name |Value|Description

S ISUID {04000 |Set user-ID on execution.

S ISGID (02000 |Set group-ID on execution.

S_ENFMT 02000 | Enable mandatory file/record locking.
01000 | Reserved.

S IRUSR {00400 |Read by owner.

S_IWUSR |00200 | Write by owner.

S_IXUSR |00100 | Execute (search if a directory) by owner.
S_IRGRP |00040|Read by group.

S IWGRP [00020 | Write by group.

S IXGRP |00010 | Execute (search) by group.

S IROTH {00004 | Read by others (that is, anyone else).
S IWOTH {00002 | Write by others.

S IXOTH |[00001 |Execute (search) by others.

Note that the value of S ISGID and S ENFMT have the same
value. That particular bit is interpreted as S_ISGID if S_IXGRP
is set; it is interpreted as S ENFMT if S_IXGRP is not set.

Revised March 1993 RISC Version 4.1 Page 1

CHMOD (2)

(System Call) CHMOD (2)

The effective user ID of the process must match the owner of
the file or be super-user to change the mode of a file.

If the effective user ID of the process is not super-user and the
effective group ID of the process does not match the group ID of
the file, mode bit S_ISGID is cleared.

chmod will fail and the file mode will be unchanged if one or
more of the following are true:

[EACCES]

[EFAULT]

[EINTR]

[EMULTIHOP]

[ENAMETOOLONG]

(ENOENT!]
[ENOLINK]

[ENOTDIR]

[EPERM]

[EROFS]

SEE ALSO

Search permission is denied on a com-
ponent of the path prefix.

path points outside the allocated address
space of the process.

A signal was caught during the chmod
system call.

Components of path require hopping to
multiple remote machines.

The length of the path argument exceeds
{PATH_MAX]}, or the length of a path
component exceeds {NAME_MAX} while
_POSIX_NO_TRUNC is in effect.

The named file does not exist.

pathpoints to a remote machine and the
link to that machine is no longer active.

A component of the path prefix is not a
directory.

The effective user ID does not match the
owner of the file and the effective user ID
is not super-user.

The named file resides on a read-only file
system.

chmod(1), chown(2), creat(2), fcntl(2), mknod(2), open(2),

read(2), write(2).

Page 2

RISC Version 4.1 Revised March 1993

CHMOD (2) (System Call) CHMOD (2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error,

Revised March 1993 RISC Version 4.1 Page 3

de

CHMOD (2) (System Call) CHMOD (2)

v

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

CHOWN (2) (System Call) CHOWN (2)

NAME
chown — change owner and group of a file
lchown — change owner and group of a symbolic link

SYNOPSIS
#include <sys/types.h>

int chown (path, owner, group)
char * path;
uid_t owner;
m gid_t group;
int lchown (path, owner, group)
char * path;
uid_t owner;
gid_t group;
DESCRIPTION
With chown path points to a path name naming a file. The
owner ID and group ID of the named file are set to the
numeric values contained in owner and group respectively. If
path is a symbolic link the owner (group) of the file pointed at
will be changed.

Ichown is similar to chown except for symbolic links where
the file containing the link will change owner (group).

Only processes with effective user ID equal to the file owner or
m super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-
user-ID and set-group-ID bits of the file mode, 04000 and
02000 respectively, will be cleared.

chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

[EACCES] Search permission is denied on a com-
ponent of the path prefix.
[EFAULT] path points outside the allocated address
m space of the process.

Revised March 1993 RISC Version 4.1 Page 1

= m : - : e TR R R .

CHOWN (2) (System Call) CHOWN (2)

[EINTR] A signal was caught during the chown
system call.

[EMULTIHOP] Components of path require hopping to

multiple remote machines.

[ENAMETOOLONG] The length of the path argument exceeds
{PATH MAX} or a pathname component
is longer than {NAME MAX} while
{ POSIX NO_TRUNC} is in effect.

[ENOENT] The named file does not exist.

[ENOLINK] path points to a remote machine and the
link to that machine is no longer active.

[ENOTDIR] A component of the path prefix is not a
directory.

[EPERM] The effective user ID does not match the

owner of the file and the effective user ID
is not super-user.

[EROFS] The named file resides on a read-only file
system.
SEE ALSO
chmod(2), chown(1).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

NOTE
The function Ichown must be loaded with the library libdde.a

Page 2 RISC Version 4.1 Revised March 1993

CHROOT (2) (System Call) CHROOT (2)

NAME

chroot — change root directory

SYNOPSIS

int chroot (path)
char = path;

DESCRIPTION

path points to a path name naming a directory. chroot causes
the named directory to become the root directory, the starting
point for path searches for path names beginning with /. The
user’s working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to
change the root directory.

The .. entry in the root directory is interpreted to mean the
root directory itself. Thus, .. cannot be used to access files
outside the subtree rooted at the root directory.

chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

[EACCES] Search permission is denied for a com-
ponent, of path.

[EFAULT] path points outside the allocated address
space of the process.

(EINTR] A signal was caught during the chroot
system call.

[EMULTIHOP] Components of path require hopping to

multiple remote machines.

[ENAMETOOLONG] The length of the path argument exceeds
{PATH MAX]} or a pathname component
is longer than {NAME MAX} while
{ POSIX NO TRUNC} is in effect.

[ENOENT] The named directory does not excist.

Revised March 1993 RISC Version 4.1 Page 1

CHROOT (2) (System Call) CHROOT (2)

[ENOLINK] path points to a remote machine and the
link to that machine is no longer active.
[ENOTDIR] Any component of the path
name is not a directory.

[EPERM] The effective user ID is not super-user.
SEE ALSO
chdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

Page 2 RISC Version 4.1 Revised March 1993

CLOCK (3C) (Standard C Library) CLOCK (3C)

NAME
clock — report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock ()

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of
m the user and system times of the calling process and its ter-
minated child processes for which it has executed wait(2),
pclose(3S), or system (3S).

The resolution of the clock is 40 milliseconds on Supermax
computers.

SEE ALSO
times(2), wait(2), popen(3S), system(3S).

BUGS
The value returned by clock is defined in microseconds for
compatibility with systems that have CPU clocks with much
higher resolution. Because of this, the value returned will
wrap around after accumulating only 2147 seconds of CPU time
(about 36 minutes).

Revised March 1993 RISC Version 4.1 Page 1

— m A R SR B SR R R

CLOCK(3C) (Standard C Library) CLOCK(3C)

¥

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

CLOSE (2) (System Call) CLOSE(2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from a creat, open, dup,
fentl, or pipe system call. close closes the file descriptor indi-
cated by fildes. All outstanding record locks owned by the pro-
cess (on the file indicated by fildes) are removed.

If a STREAMS [see intro(2)] file is closed, and the calling pro-
cess had previously registered to receive a SIGPOLL signal [see
signal(2) and sigset(2)] for events associated with that file [see
I SETSIG in streamio(7)], the calling process will be unre-
gistered for events associated with the file. The last close for a
stream causes the stream associated with fildes to be disman-
tled. If O NDELAY is not set and there have been no signals
posted for the stream, close waits up to 15 seconds, for each
module and driver, for any output to drain before dismantling
the stream. If the O NDELAY flag is set or if there are any
pending signals, close does not wait for output to drain, and
dismantles the stream immediately.

The named file is closed unless one or more of the following are

true:
[EBADF] fildes is not a valid open file descriptor.
[EINTR] A signal was caught during the close system

call.

[ENOLINK] fildes is on a remote machine and the link to
that machine is no longer ctive.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), intro(2), open(2), pipe(2), sig-
nal(2), sigset(2), streamio(7).

Revised March 1993 RISC Version 4.1 Page 1

CLOSE (2) (System Call) CLOSE (2)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

Page 2 RISC Version 4.1 Revised March 1993

CONV (3C) (Standard C Library) CONV (3C)

m

NAME
conv: toupper, tolower, toupper, _tolower, toascii — translate
characters

SYNOPSIS

#include <ctype.h>

int toupper (c¢)
int c;

int tolower (c)

ﬂ int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (¢)
int c;

DESCRIPTION
toupper and folower have as their domain the range of the
function getc(3S): all values represented in an unsigned char
and the value of the macro EOF as defined in stdio.h. If the
argument of toupper represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of tolower
represents an upper-case letter, the result is the corresponding
lower-case letter. All other arguments in the domain are
m returned unchanged.

The macros _toupper and _folower accomplish the same thing
as toupper and tolower, respectively, but have restricted
domains and are faster. _toupper requires a lower-case letter as
its argument; its result is the corresponding upper-case letter.
_tolower requires an upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments out-
side the domain cause undefined results.

The macro foascii yields its argument with all bits turned off
that are not part of a standard 7-bit ASCII character; it is
m intended for compatibility with other systems.

Revised March 1993 RISC Version 4.1 Page 1

=3

CONV (3C) (Standard C Library) CONV (3C)

toupper, tolower, toupper, and _tolower are affected by
L.C_CTYPE. In the C locale, or in a locale where shift informa-
tion is not defined, these functions determine the case of char-
acters according to the rules of the ASCII-coded character set.
Characters outside the ASCII range of characters are returned
unchanged.

SEE ALSO
ctype(3C), getc(3S), setlocale(3C), environ(5).

Page 2 RISC Version 4.1 Revised March 1993

CREAT (2) (System Call) CREAT (2)

NAME

creat — create a new file or rewrite an existing one

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

int creat (path, mode)
char # path;
mode_t mode;

DESCRIPTION

creat creates a new ordinary file or prepares to rewrite an
existing file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file’s owner ID is set to
the effective user ID, of the process the group ID of the process
is set to the effective group ID, of the process and the low-
order 12 bits of the file mode are set to the value of mode
modified as follows:

All bits set in the process’s file mode creation mask are
cleared [see umask(2)].

Upon successful completion, a write-only file descriptor is
returned and the file is open for writing, even if the mode does
not permit writing. The file pointer is set to the beginning of
the file. The file descriptor is set to remain open across exec
system calls [see fcntl(2)]. No process may have more than
OPEN MAX files open simultaneously. The value of
OPEN_ MAX is set by the chhw(1M) program. A new file may
be created with a mode that forbids writing.

creat fails if one or more of the following are true:

[EACCES] Search permission is denied on a component of
the path prefix.

Revised March 1993 RISC Version 4.1 Page 1

R e R T e D BN P A I s R e AR S S e s

CREAT (2) (System Call) CREAT (2)

[EACCES] The file does not exist and the directory in
which the file is to be created does not permit
writing.

[EACCES] The file exists and write permission is denied.

[EAGAIN] The file exists, mandatory file/record locking is
set, and there are outstanding record locks on
the file [see chmod(2)].

[EINTR] A signal was caught during the create system
call. U
(EISDIR The named file is an existing directory.
[EFAULT] path points outside the allocated address space
of the process.
[EMFILE] OPEN MAX file descriptors are currently
open.

[EMULTIHOP] Components of path require hopping to multi-
ple remote machines.

[ENFILE] The system file table is full.
(ENOENT] A component of the path prefix does not exist.
[ENOENT] The path name is null.

[ENOLINK] path points to a remote machine and the link
to that machine is no longer active.

‘ [ENOSPC] The file system is out of inodes. W/
(ENOTDIR] A component of the path prefix is not a direc-
tory.
[EROFS] The named file resides or would reside on a

read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file
that is being executed.

Page 2 RISC Version 4.1 Revised March 1993

ﬂ

CREAT(2) (System Call) CREAT (2)

SEE ALSO
chmod(2), close(2), dup(2), fentl(2), 1seek(2), open(2), read(2),
umask(2), write(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer, namely the
file descriptor, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Revised March 1993 RISC Version 4.1 Page 3

‘ CREAT (2) (System Call) CREAT (2)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

de

CRYPT(3C) (Standard C Library) CRYPT (3C)

NAME

crypt, setkey, encrypt — generate hashing encryption

SYNOPSIS

char =* crypt (key, salt)
char = key, *salt;

void setkey (key)
char = key;

void encrypt (block, ignored)
char block[64];
int ignored;

DESCRIPTION

crypt is the password encryption function. It is based on a one
way hashing encryption algorithm with variations intended
(among other things) to frustrate use of hardware implementa-
tions of a key search.

key is a user’s typed password. salt is a two-character string
chosen from the set [a-zA-Z0-9./]; this string is used to per-
turb the hashing algorithm in one of 4096 different ways, after
which the password is used as the key to encrypt repeatedly a
constant string. The returned value points to the encrypted
password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access
to the actual hashing algorithm. The argument of setkey is a
character array of length 64 containing only the characters
with numerical value 0 and 1. If this string is divided into
groups of 8, the low-order bit in each group is ignored; this
gives a 56-bit key which is set into the machine.

This is the key that will be used with the hashing algorithm to
encrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of
length 64 containing only the characters with numerical value
0 and 1. The argument array is modified in place to a similar
array representing the bits of the argument after having been
subjected to the hashing algorithm using the key set by setkey.
Ignored is unused by encrypt but it must be present.

Revised March 1993 RISC Version 4.1 Page 1

CRYPT (3C) (Standard C Library) CRYPT (3C)

SEE ALSO
login(1), passwd(1), getpass(3C) and passwd(4).

CAVEAT
The return value points to static data that are overwritten by
each call.

Page 2 RISC Version 4.1 Revised March 1993

CTERMID (3S) (Standard C Library) CTERMID (3S)

NAME

ctermid — generate file name for terminal

SYNOPSIS

#include <stdio.h>

char * ctermid (s)
char =*s;

DESCRIPTION

ctermid generates the path name of the controlling terminal for
the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to
ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid
elements; the path name is placed in this array and the value
of s is returned. The constant L_ctermid is defined in the
<stdio.h > header file.

NOTES

The difference between ctermid and ttyname(3C) is that
ttyname must be handed a file descriptor and returns the
actual name of the terminal associated with that file descriptor,
while ctermid returns a string (/dev/tty) that will refer to the
terminal if used as a file name. Thus #yname is useful only if
the process already has at least one file open to a terminal.

SEE ALSO

ttyname(3C).

Revised March 1993 RISC Version 4.1 Page 1

CTERMID (3S) (Standard C Library) CTERMID (3S)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

CTIME (3C) (Standard C Library) CTIME (3C)

NAME
ctime, localtime, gmtime, asctime, tzset — convert date and
time to string

SYNOPSIS

#include <time.h>
char = ctime (clock)
time_t * clock;
struct tm = localtime (clock)
time_t * clock;
struct tm * gmtime (clock)
time_t * clock;
char * asctime (tm)
struct tm *tm
extern time_t timezone, altzone;
extern int daylight;
extern char * tzname[];
void tzset ();

DESCRIPTION
ctime, localtime, and gmtime accept arguments of type time t,
pointed to by clock, representing the time in seconds since
00:00:00 UTC, January 1, 1970. ctime returns a pointer to a
26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated.
The fields are constant in width:

Fri Sep 13 00:00:00 1986\n\0

localtime and gmtime return pointers to ¢m structures,
described below. localtime corrects for the main time zone and
possible alternate (‘‘daylight saving”) time zone; gmtime con-
verts directly to Coordinated Universal Time (UTC), which is
the time the UNIX system uses internally.

Revised March 1993 RISC Version 4.1 Page 1

CTIME (3C) (Standard C Library) CTIME (3C)

asctime converts a tm structure to a 26-character string, as
shown in the above example, and returns a pointer to the
string.

Declarations of all the functions and externals, and the tm
structure, are in the <¢ime.h> header file. The structure
declaration is:

struct tm {

int tm sec; /* seconds after the minute — [0, 61] */

*/ for leap seconds */
int tm min; /* minutes after the hour — [0, 59] */
int tm hour; /* hour since midnight — [0, 23] */
int tm mday; /* day of the month — [1, 31] =/
int tm mon; /* months since January — [0, 11] */
int tm year; /* years since 1900 */
int tm wday; /* days since Sunday — [0, 6] */
int tm yday; /* days since January 1 — [0, 365] */
int tm isdst; /*+ flag for alternate daylight */
*/ saving time */
}i
The value of tm_isdst is positive if daylight saving time is in
effect, zero if daylight saving time is not in effect, and negative
if the information is not available. (Previously, the value of
tm_isdst was defined as non-zero if daylight saving time was in
effect.)

The external time_t variable altzone contains the difference, in
seconds, between Coordinated Universal Time and the alter-
nate time zone. The external variable timezone contains the
difference, in seconds, between UTC and local standard time.
The external variable daylight indicates whether time should
reflect daylight savings time. Both timezone and altzone default
to 0 (UTC). The external variable daylight is non-zero if an
alternate time zone exists. The time zone names are contained
in the external variable fzname, which by default is set to:

char *tZl’laIT\E[Z] = { "GMT", ” ” };

Page 2 RISC Version 4.1 Revised March 1993

W

CTIME(3C) (Standard C Library) CTIME (3C)

These functions know about the peculiarities of this conversion
for various time periods for the U.S.A (specifically, the years
1974, 1975, and 1987). They will handle the new daylight sav-
ing time starting with the first Sunday in April, 1987.

tzset uses the contents of the environment variable TZ to over-
ride the value of the different external variables. The function
tzset is called by asctime and may also be called by the user.
See environ(5) for a description of the TZ environment vari-
able.

tzset scans the contents of the environment variable and
assigns the different fields to the respective variable. For exam-
ple, the most complete setting for New Jersey in 1986 could be

EST5EDT4,116/2:00:00,298 /2:00:00
or simply
ESTSEDT

An example of a southern hemisphere setting such as the Cook
Islands could be

KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ
tznamel0] is EST, timezone will be set to 5 = 60 = 60, tzname[1]
is EDT, altzone will be set to 4 * 60 * 60, the starting date of
the alternate time zone is the 117th day at 2 AM, the ending
date of the alternate time zone is the 299th day at 2 AM (using
zero-based Julian days), and daylight will be set positive. Start-
ing and ending times are relative to the alternate time zone. If
the alternate time zone start and end dates and the time are
not provided, the days for the United States that year will be
used and the time will be 2 AM. If the start and end dates are
provided but the time is not provided, the time will be 2 AM.
The effects of tzset are thus to change the values of the exter-
nal variables timezone, altzone, daylight and tzname. ctime,
localtime, mktime and strftime will also update these external
variables as if they had called tzset at the time specified by the
time_t or struct tm value that they are converting.

Revised March 1993 RISC Version 4.1 Page 3

CTIME (3C) (Standard C Library) CTIME (3C)

Note that on the Supermax, TZ is set to the correct value by
default when the user logs on, via the local /etc/profile file [see
profile(4) and timezone(4)].

FILES
Jusr/lib/locale/language/LC TIME - file containing locale
specific date and time information

SEE ALSO
time(2), getenv(3C), mktime(3C), putenv(3C), setlocale(3C),
strftime(3C), printf(3S), cftime(4), profile(4), timezone(4),
environ(5).

NOTES
The return values for ctime, localtime and gmtime point to
static data whose content is overwritten by each call.

Setting the time during the interval of change from timezone to
altzone or vice versa can produce unpredictable results. The
system administrator must change the Julian start and end
days annually.

Page 4 RISC Version 4.1 Revised March 1993

CTYPE (3C)

ctype: isdigit, isxdigit, islower,

(Standard C Library)

CTYPE (3C)

isalnum,

isspace, iscntrl, ispunct, isprint, isgraph, isascii, setchrclass —

character handling

SYNOPSIS

#include <ctype.h>
int isalpha (c¢)

int c;

int isupper (c¢)
int c;

int islower (c)
int ¢;

int isdigit (c¢)
int c;

int isxdigit (c)
int c;

int isalnum (¢)
int c;

int isspace (c)
int ¢;

int ispunct (c¢)
int c;

int isprint (c)
int c;

int isgraph (c¢)
int c;

int isentrl (c¢)
int c;
int isascii (c¢)
int c;
int setchrclass (chrelass)
char * chrclass;

Revised March 1993 RISC Version 4.1

Page 1

CTYPE (3C) (Standard C Library) CTYPE(3C)

DESCRIPTION

These macros classify character-coded integer values. Each is a
predicate returning non-zero for true, zero for false. The
behavior of these macros, except isascii, is affected by the
current locale [see setlocale(3C)].

To modify the behavior, change the LC_TYPE category in
setlocale(3C), that is, setlocale (LC_CTYPE, newlocale). In the
”C” locale, or in a locale where character type information is
not defined, characters are classified according to the rules of
the US-ASCII 7-bit coded character set.

The macro isascii is defined on all integer values; the rest are
defined only where the argument is an int, the value of which
is representable as an unsigned char, or EOF, which is defined
by the stdio.h header file and represents end-of-file.

isalnum tests for any character for which isalpha or
isdigit is true (letter or digit).

isalpha tests for any character for which isupper or
islower is true, or any character that is one of
an implementation-defined set of characters for
which none of iscntrl, isdigit, ispunct, or
isspace is true. In the ”C” locale, isalpha
returns true only for the characters for which
isupper or islower is true.

isascii tests for any ASCII character, code between 0
and 0177 inclusive.

iscntrl tests for any ”control character” as defined by
the character set.

isdigit tests for any decimal-digit character.

isgraph tests for any printing character, except space.

islower tests for any character that is a lower-case

letter or is one of an implementation-defined
set of characters for which none of iscntrl, isdi-
git, ispunct, isspace, or isupper is true. In the
”C” locale, islower returns true only for the

Page 2 RISC Version 4.1 Revised March 1993

v

CTYPE (3C) (Standard C Library) CTYPE (3C)
™

characters defined as lower-case ASCII charac-
ters.

isprint tests for any printing character, including
space (” 7).

ispunct tests for any printing character which is nei-
ther a space nor a character for which isalnum
is true.

isspace tests for any space, tab, carriage-return, new-
(@\ line, vertical-tab or form-feed (standard white-
space characters) or for one of an
implementation-defined set of characters for
which isalnum is false. In the ”C” locale,
isspace returns true only for the standard
white-space characters.

isupper tests for any character that is an upper-case
letter or is one of an implementation-defined
set of characters for which none of isentrl, isdi-
git, ispunct, isspace, or islower is true. In the
”C” locale, isupper returns true only for the
characters defined as upper-case ASCII charac-
ters.

isxdigit tests for any hexadecimal-digit character
([0-9], [A-F] or [a~f]).

setchreclass initializes the table used by these functions
and macros to a specific character classification
set. setchrclass uses the value of its argument
or the value of the environment variable
CHRCLASS as the name of the datafile con-
taining the information for the desired charac-
ter set. Thes edatafiles are searched for in the
special directory /lib/chrelass.

If chrelass is (char =)0, the value of the environment variable
CHRCLASS is used. If CHRCLASS is not set or is
ﬂ undefined, the table retains its current value, which at initiali-
zation time is is0.8859.1, which describes the ISO 8859/1

Revised March 1993 RISC Version 4.1 Page 3

CTYPE (3C) (Standard C Library) CTYPE (3C)

character set (see is0-8859/1(5)).

All the character classification macros and the conversion func-
tions and macros use a table lookup.

Functions exist for all the above defined macros. To get the
function form, the macro name must be undefined (e.g., #undef
isdigit).

FILES
/usr/lib/locale/locale/L.C_CTYPE
/lib/chrclass — directory containing the datafiles for
setchrclass

SEE ALSO
chrtbl(1M), setlocale(3C), stdio(3S), ascii(5), environ(5), iso-
8859/1(5).

DIAGNOSTICS

If the argument to any of the character handling macros is not
in the domain of the function, the result is undefined.

If setchrclass does not successfully fill the table, the table will
not change (initially "is0.8859.1”) and —1 is returned. If every-
thing works, setchrelass returns 0.

NOTE
setchrelass is provided for compatibility with older versions and
should not be used in new applications.

Page 4 RISC Version 4.1 Revised March 1993

—

CURSES (3X) (Specialized Library) CURSES (3X)

NAME
curses — terminal screen handling and optimization package

SYNOPSIS
The curses manual page is organized as follows:

In SYNOPSIS:

— compiling information

— summary of parameters used by curses routines

— alphabetical list of curses routines, showing their
m parameters

In DESCRIPTION:
— An overview of how curses routines should be used

In ROUTINES, descriptions of each curses routines, are
grouped under the appropriate topics:

- Overall Screen Manipulation
— Window and Pad Manipulation
= Output
- Input
— Output Options Setting
— Input Options Setting
- Environment Queries
— Soft Labels
— Low-level Curses Access
ﬁ = Terminfo-Level Manipulations
— Termcap Emulation
— Miscellaneous
- Use of curser

Then come sections on:

- ATTRIBUTES

-~ COLORS

- FUNCTION KEYS
- LINE GRAPHICS

Revised March 1993 Version 4.1 Page 1

CURSES (3X) (Specialized Library) CURSES (3X)

cc [flag ...] file ... —lcurses [library ...]

#include <curses.h> (automatically includes <stdio.h>,
<termio.h>, and <unctrlL.h>).

The parameters in the following list are not global variables,
but rather this is a summary of the parameters used by the
curses library routines. All routines return the int values ERR
or OK unless otherwise noted. Routines that return pointers
always return NULL on error. (ERR, OK, and NULL are all ,
defined in <curses.h>) U

bool bf

char ¢ »area, »boolnames(], * boolcodes[], * boolfnamesl 1,
* bp
char +cap, * capname, codename|[2), erasechar, + filename,
» fmt
char *keyname, killchar, # label, * longname
char +name, * numnames|], * numcodes[], * numfnames|]
char +slk_label, » str, +strnames(], * strcodes(],
= strfnames|(]
char »term, =tgetstr, = tigetstr, » tgoto, * tparm, *type
chtype attrs, ch, horch, vertch
FILE =infd, »outfd
int begin_x, begin_y, begline, bot, c, col, count ,
int dmaxcol, dmaxrow, dmincol, dminrow, * errret, fildes u
int (* init()), labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int p}, p2, p9, pmincol, pminrow, (* putc()), row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, y
short pair, f, b, color, r, g, b
SCREEN =+ new, » newterm, *set_term
TERMINAL =+ cur_term, * nterm, *oterm U
va_list varglist

Page 2 Version 4.1 Revised March 1993

CURSES (3X) (Speclalized Library) CURSES (3X)

WINDOW =+ curscr, *dstwin, *initscr, * newpad, * newwin,
s orig

WINDOW -« pad, »srcwin, #stdscr, » subpad, * subwin,
* win

addch(ch)

addstr(str)

attroff(attrs)

attron(attrs)

attrset (attrs)

baudrate()

beep()

box(win, vertch, horch)

can_change_color()

cbreak()

clear()

clearok(win, bf)

cirtobot()

clrtoeol()

color_content(color, &r, &g, &b)

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,
dmaxrow, dmaxcol, overlay)”

curs_set(visibility)

def_prog mode()

def_shell_mode()

del_curterm(oterm)

delay_output(ms)

delch()

deleteln()

delwin(win)

doupdate()

draino(ms)

echo()

echochar(ch)

endwin()

erase()

erasechar()

filter()

Revised March 1993 Version 4.1 Page 3

CURSES (3X) (Speclalized Library)

flash()

flushinp()
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()
getmaxyx(win, y, x)
getstr(str)

getsyx(y, x)

getyx(win, y, x)
halfdelay(tenths)
has_colors()

has_ic()

has_il()

idlok(win, bf)

inch()
init_color(color, r, g, b)
init_pair(pair, f, b)
initscr()

insch(ch)

insertln()

intrflush (win, bf)
isendwin()
keyname(c)

keypad (win, bf)
kilichar()
leaveok(win, bf)
longname()

meta(win, bf)

move(y, x)
mvaddch(y, x, ch)
mvaddstr(y, x, str)
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)
mvinsch(y, x, ch)
mvprintw(y, x, fmt [, arg...])

Page 4 Version 4.1

CURSES (3X)

Revised March 1993

ﬂ CURSES (3X) (Speclalized Library) CURSES (3X)

mvscanw(y, x, fimt [, arg...])
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)
mvwin(win, y, x)
mvwinch(win, y, x)
mvwinsch(win, y, x, ch)

ﬁ mvwprintw(win, y, x, fmt [, arg...])
mvwscanw(win, y, x, fmt [, arg...])
napms(ms)
newpad (nlines, ncols)
newterm (type, outfd, infd)
newwin(nlines, ncols, begin_y, begin_x)
nl()
nocbreak()
nodelay(win, bf)
noecho()
nonl()
noraw()
notimeout(win, bf)
overlay(srcwin, dstwin)
overwrite (srcwin, dstwin)

M pair_content(pair, &f, &b)

‘ pechochar(pad, ch)
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol,

smaxrow, smaxcol)”
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow,
smaxcol)”
printw(fmt [, arg...])
putp(str)
raw()
refresh()
reset_prog mode()

™ reset_shell_mode()
resetty()
restartterm (term, fildes, errret)

Revised March 1993 Version 4.1 Page 5

CURSES (3X) (Speclalized Library)

ripofline(line, init)
savetty()

scanw(fmt [, arg...])
scr_dump(filename)
scr_init(filename)
scr_restore(filename)
scroll(win)

scrollok(win, bf)
set_curterm(nterm)
set_term(new)
setscrreg(top, bot)
setsyx(y, x)

setupterm (term, fildes, errret)
slk_clear()

slk_init(fmt)
slk_label(labnum)
slk_noutrefresh()
slk_refresh()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()

standend()

standout()

start_color()

subpad (orig, nlines, ncols, begin_y, begin_x)
subwin (orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag(codename)
tgetnum(codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum (capname)
tigetstr(capname)
touchline(win, start, count)
touchwin(win)

tparm(str, pl, p2, ..., p9)
tputs(str, count, putc)

Page 6 Version 4.1

CURSES (3X)

Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

traceoff()

traceon()
typeahead(fildes)
unctrl(c)

ungetch(c)

vidattr(attrs)
vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear (win)

welrtobot (win)
weclrtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)

wgetch (win)

wgetstr(win, str)
winch(win)

winsch(win, ch)

winsertln (win)
wmove(win, y, x)
wnoutrefresh (win)
wprintw (win, fmt [, arg...])
wrefresh(win)
wscanw(win, fmt {, arg...])
weetscrreg(win, top, bot)
wstandend (win)
wstandout (win)

Revised March 1993 Version 4.1 Page 7

CURSES (3X) (Specialized Library) CURSES (3X)

DESCRIPTION

The curses routines give the user a terminal-independent
method of updating screens with reasonable optimization.

In order to initialize the routines properly, # include
<curses.h> must be included at the beginning of files that
use any curses routines. In addition, the routine initscr() or
newterm() must be called before any of the other routines
that deal with windows and screens are used. (Three exceptions
are noted where they apply.) The routine endwin() must be
called before exiting. To get character-at-a-time input without
echoing (most interactive, screen-oriented programs want this),
after calling initscr() you should call “cbreak(); noecho();"”
Most programs would additionally call “nonl(); intrflush
(stdscr, FALSE); keypad(stdscr, TRUE);”,

Before a curses program is run, a terminal’s tab stops should
be set and its initialization strings, if defined, must be output.
This can be done by executing the tput init command after
the shell environment variable TERM has been exported. For
further details, see profile(4), tput(1), and the "Tabs and Initial-
ization” subsection of ter info(4).

The curses library contains routines that manipulate data
structures called windows that can be thought of as two-
dimensional arrays of characters representing all or part of a
terminal screen. A default window called stdscr is supplied,
which is the size of the terminal screen. Others may be
created with newwin(). Windows are referred to by variables
declared as WINDOW ¢; the type WINDOW is defined in
<curses.h > to be a structure. These data structures are
manipulated with routines described below, among which the
most basic are move() and addch(). (More general versions
of these routines are included with names beginning with w,
allowing you to specify a window. The routines not beginning
with w.usually affect stdscr). Then refresh() is called, telling
the routines to make the user’s terminal screen look like
stdscr. The characters in a window are actually of type
chtype, so that other information about the character may
also be stored with each character.

Page 8 Version 4.1 Revised March 1993

CURSES (3X) (Speclalized Library) CURSES (3X)

Special windows called pads may also be manipulated. These
are windows which are not constrained to the size of the screen
and whose contents need not be displayed completely. See the
description of newpad() under "Window and Pad Manipula-
tion” for more information.

In addition to drawing characters on the screen, video attri-
butes may be included which cause the characters to show up
in modes such as underlined or in reverse video on terminals
that support such display enhancements. Line drawing charac-
ters may be specified to be output. On input, curses is also able
to translate arrow and function keys that transmit escape
sequences into single values. The video attributes, line drawing
characters, and input values use names, defined in
<curses.h>, such as A_REVERSE, ACS_HLINE, and
KEY_LEFT.

Routines that manipulate color on color alphanumeric termi-
nals are new in this release of curses. to use these routines
start_color() must be called, usually right after initscr().
Colors are always used in pairs (referred to as color-pairs. A
color-pairs consist of a foreground color (for characters) and a
background color (for the field the characters are displayed on).
A programmer initializes a color-pair with the routine
init_pair(). After it has been initialized, COLOR_PAIR(n), a
macro defined in <curses.h>, can be used in the same ways
other video attributes can be used. If a terminal is capable of
redefining colors the programmer can use the routine
init_color() to change the definition of a color. The routines
has_color() and can_change_color() return TRUE or
FALSE, depending on whether the terminal has color capabili-
ties and whether the user can change the colors. The routine
color_content() allows a user to identify the amounts of red,
green, and blue components in an initialized color. The routine
pair_content() allows a user to find out how a given color-
pair is currently defined.

Revised March 1993 Version 4.1 Page 9

CURSES (3X) (Specialized Library) CURSES (3X)

curses also defines the WINDOW * variable, curscr, which is
used only for certain low-level operations like clearing and
redrawing a garbaged screen. curscr can be used in only a few
routines. If the window argument to clearok() is curscr, the
next call to wrefresh() with any window will cause the screen
to be cleared and repainted from scratch. If the window argu-
ment to wrefresh() is curscr, the screen in immediately
cleared and repainted from scratch. This is how most pro-
grams would implement a ‘repaint-screen’’ function. More
information on using curscr is provided where its use is
appropriate.

The environment variables LINES and COLUMNS may be
set to override terminfo’s idea of how large a screen is. These
may be used in an AT&T Teletype 5620 layer, for example,
where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any pro-
gram using curses will check for a local terminal definition
before checking in the standard place.

For example, if the environment variable TERM is set to
att4425, then the compiled terminal definition is found in
[usr/lib/terminfo/a/att4425. (The a is copied from the first
letter of att4425 to avoid creation of huge directories.) How-
ever, if TERMINFO is set to SHOME /myterms, curses will
first check HOME /myterms/a/att4425, and, if that fails, will
then check /usr/lib/terminfo/a/attd425. This is useful for
developing experimental definitions or when write permission
on /usr/lib/terminfo is not available.

The integer variables LINES and COLS are defined in
<curses.h >, and will be filled in by initsex() with the size of
the screen. (For more information, see the subsection
"Terminfo-Level Manipulations”.) The integer variables
COLORS and COLOR_PAIRS are also defined in
<curses.h> and contain, respectively, the maximum number
of colors and color_pairs the terminal can support. They are
initialized by start_color(). The constants TRUE and FALSE
have the values 1 and 0, respectively. The constants ERR and
OK are returned by routines to indicate whether the routine

Page 10 Version 4.1 Revised March 1993

1=

CURSES (3X) (Specialized Library) CURSES (3X)

successfully completed. These constants are also defined in
<curses.h>.

ROUTINES
Many of the following routines have two or more versions. The
routines prefixed with w require a window argument. The rou-
tines prefixed with p require a pad argument. Those without a
prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to
move to before performing the appropriate action. The mv()
routines imply a call to move() before the call to the other
routine. The window argument is always specified before the
coordinates. y always refers to the row (of the window), and x
always refers to the column. The upper left corner is always
(0,0), not (L,1). The routines prefixed with mvw take both a
window argument and y and x coordinates.

In each case, win is the window affected and pad is the pad
affected. (win and pad are always of type WINDOW *).
Option-setting routines require a boolean flag bf with the value
TRUE or FALSE. (bf is always of type bool.) The types
WINDOW, bool, and chtype are defined in < curses.h>.
See the SYNOPSIS for a summary of what types all variables
are.

All routines return either the integer ERR or the integer OK,
unless otherwise noted. Routines that return pointers always
return NULL on error.

Sometimes the description of a routine refers to a second rou-
tine. If the routine referred to is prefixed with a w, then you
should assume that other versions of the second routine behave
similarly. For example, the description of initscr() refers to
wrefresh(). This implies that the same result will occur if
refresh() is called.

Revised March 1993 Version 4.1 Page 1t

CURSES (3X)

(Specialized Library) CURSES (3X)

Overall Screen Manipulation
WINDOW + initscr() The first routine called should almost

endwin()

isendwin()

always be initecr().

(The exceptions are slk_init(), filter(),
and ripoffline().) This will determine
the terminal type and initialize all
curses data structures. initscr() also
arranges that the first call to
wrefresh() will clear the screen. If
errors occur, initscr() will write an
appropriate error message to standard
error and exit; otherwise, a pointer to
stdscr is returned. If the program
wants an indication of error conditions,
newterm() should be used instead of
initscr(). imitscr() should only be
called once per application.

A program should always call
endwin() before exiting or escaping
from curses mode temporarily, to do a
shell escape or system(3S) call, for
example. This routine will restore
tty(7) modes, move the cursor to the
lower left corner of the screen and
reset the terminal into the proper non-
visual mode. To resume after a tem-
porary escape, call wrefresh() or
doupdate().

Returns TRUE if endwin() has been
called without any subsequent calls to
wrefresh().

SCREEN * newterm(type, outfd, infd)

Page 12

A program that outputs to more than
one terminal must use newterm() for
each terminal instead of imitscr(). A
program that wants an indication of
error conditions, so that it may

Version 4.1 Revised March 1993

CURSES (3X)

(Specilalized Library) CURSES (3X)

continue to run in a line-oriented mode
if the terminal cannot support a
screen-oriented program, must also use
this routine. newterm() should be
called once for each terminal. It
returns a variable of type SCREEN =
that should be saved as a reference to
that terminal. The arguments are the
type of the terminal to be used in place
of the environment variable TERM;
outfd, a stdio(3S) file pointer for output
to the terminal; and infd, another file
pointer for input from the terminal.
When it is done running, the program
must also call endwin() for each ter-
minal being used. If newterm() is
called more than once for the same ter-
minal, the first terminal referred to
must be the last one for which
endwin() is called.

SCREEN + set_term(new)

This routine is used to switch between
different terminals. The screen refer-
ence new becomes the new current ter-
minal. A pointer to the screen of the
previous terminal is returned by the
routine. This is the only routine which
manipulates SCREEN pointers; all
other routines affect only the current
terminal.

Window and Pad Manipulation

refresh()
wrefresh (win)

Revised March 1993

These routines (or prefresh(),
pnoutrefresh(), wnoutrefresh(), or
doupdate()) must be called to write
output to the terminal, as most other
routines merely manipulate data

Version 4.1 Page 13

m—

CURSES (3X) (Specialized Library) CURSES (3X)

wnoutrefresh(win)

doupdate()

Page 14

structures. wrefresh() copies the
named window to the physical terminal
screen, taking into account what is
already there in order to minimize the
amount of information that's sent to
the terminal (called optimization).
refresh() does the same thing, except
it uses stdscr as a default window.
Unless leaveok() has been enabled,
the physical cursor of the terminal is
left at the location. The number of
characters output to the terminal is
returned.

Note that refresh() is a macro.

These two routines allow multiple
updates to the physical terminal screen
with more efficiency than wrefresh()
alone. How this is accomplished is
described in the next paragraph.

curses keeps two data structures
representing the terminal screen: a
physical terminal screen, describing
what is actually on the screen, and a
virtual terminal screen, describing what
the programmer wants to have on the
screen. wrefresh() works by first cal-
ling wnoutrefresh(), which copys the
named window to the virtual screen,
and then by calling doupdate(), which
compares the virtual screen to the phy-
sical screen and does the actual update.
If the programmer wishes to output
several windows at once, a series of
calis to wrefresh() will result in alter-
nating calls to wnoutrefresh() and

Version 4.1 Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

doupdate(), causing several bursts of
output to the screen. By first calling
wnoutrefresh() for each window, it is
then possible to call doupdate() once,
resulting in only one burst of output,
with probably fewer total characters
transmitted and certainly less processor
time used.

M WINDOW * newwin (nlines, ncols, begin_y, begin_x)

© Create and return a pointer to a new
window with the given number of lines
(or rows), nlines, and columns, ncols.
The upper left corner of the window is
at line begin_y, column begin_x. If
either nlines or ncols is 0, they will be
set to the value of lines—begin_y and
cols—begin_x. A new full-screen win-
dow is created by calling
newwin(0,0,0,0).

mvwin(win, y, x) Move the window so that the upper left
corner will be at position (y, x). If the
move would cause any portion of the
window to be moved off the screen, it is
M an error and the window is not moved.

WINDOW = subwin(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new
window with the given number of lines
{or rows), nlines, and columns, ncols.
The window is at position (begin_y,
begin_x) on the screen. (This position
is relative to the screen, and not to the
window orig.) The window is made in
the middle of the window orig, so that
changes made to one window will affect

ﬂ the character image of both windows.
When changing the image of a subwin-
dow, it will be necessary to call

Revised March 1993 Version 4.1 Page 15

CURSES (3X) (Specialized Library) CURSES (3X)

touchwin() or touchline() on orig
before calling wrefresh() on orig.

delwin (win) Delete the named window, freeing up
all memory associated with it. If you
try to delete a main window before all
of its subwindows have been deleted,
ERR will be returned.

WINDOW * newpad(nlines, ncols)

Create and return a pointer to a new u
pad data structure with the given
number of lines (or rows), nlines, and
columns, ncols. A pad is a window that
is not restricted by the screen size and
is not necessarily associated with a par-
ticular part of the screen. Pads can be
used when a large window is needed,
and only a part of the window will be
on the screen at one time. Automatic
refreshes of pads (e.g. from scrolling or
echoing of input) do not occur. It is
not legal to call wrefresh() with a pad
a8 an argument; the routines
prefresh() or pnoutrefresh() should
be called instead. Note that these rou-
tines require additional parameters to (g
specify the part of the pad to be
displayed and the location on the
screen to be used for display.

WINDOW = subpad (orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a
subwindow within a pad with the given
number of lines (or rows), nlines, and
columns, ncols. Unlike subwin(),
which uses screen coordinates, the win-
dow is at position (begin_y, begin_x) on u
the pad. The window is made in the
middle of the window orig, so that

Page 16 Version 4.1 Revised March 1993

ﬁ

CURSES (3X)

(Speclalized Library) CURSES (3X)

changes made to one window will affect
the character image of both windows.
When changing the image of a subwin-
dow, it will be necessary to call
touchwin() or touchline() on orig
before calling prefresh() on orig.

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow,

smaxcol)

pnoutrefresh(pad, pminrow, pmincol, sminrow, amincol,

Revised March 1993

smaxrow, smaxcol)

These routines are analogous to
wrefresh() and wmoutrefresh()
except that pads, instead of windows,
are involved. The additional parame-
ters are needed to indicate what part of
the pad and screen are involved. pmin-
row and pmincol specify the upper left
corner, in the pad, of the rectangle to
be displayed. sminrow, smincol, smax-
row, and smaxcol specify the edges, on
the screen, of the rectangle to be
displayed in. The lower right corner in
the pad of the rectangle to be displayed
is calculated from the screen coordi-
nates, since the rectangles must be the
same size. Both rectangles must be
entirely contained within their respec-
tive structures. Negative values of
pminrow, pmincol, sminrow, or smin-
col are treated as if they were zero.

Version 4.1 Page 17

CURSES (3X)

Output

(Speciaiized Library) CURSES (3X)

These routines are used to manipulate text in windows.

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)

mvwaddch (win, y, x, ch)

Page 18

The character ch is put into the win-
dow at the current cursor position of
the window and the position of the win-
dow cursor is advanced. Its function is
similar to that of putchar (see
putc(3S)). At the right margin, an
automatic newline is performed. At the
bottom of the scrolling region, if scrol-
lok() is enabled, the scrolling region
will be scrolled up one line.

If ch is a tab, newline, or backspace,
the cursor will be moved appropriately
within the window. A newline also
does a wclrtoeol() before moving.
Tabs are considered to be at every
eighth column. If ch is another control
character, it will be drawn in the *X
notation. (Calling winch() on a posi-
tion in the window containing a control
character will not return the control
character, but instead will return one
character of the representation of the
control character.)

Video attributes can be combined with
a character by or-ing them into the
parameter. This will result in these
attributes also being set. (The intent
here is that text, including attributes,

can be copied from one place to another
using winch() and waddch().) See

Version 4.1 Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

echochar(ch)
wechochar(win, ch)
pechochar(pad, ch)

addstr(str)
waddstr(win, str)

wstandout().

Note that ch is actually of type chtype,
not a character.

Note that addch(), mvaddch(), and
mvwaddch(), are macros.

These routines are functionally
equivalent to a call to addch(ch) fol-
lowed by a call to refresh(), a call to
waddch (win, ch) followed by a call to
wrefresh(win), or a «call to
waddch (pad, ch) followed by a call to
prefresh(pad). The knowledge that
only a single character is being output
is taken into consideration and a con-
siderable performance gain can be seen
by using these routines instead of their
equivalents. In the case of pecho-
char(), the last location of the pad on
the screen is reused for the arguments
to prefresh().

Note that ch is actually of type chtype,
not a character.

Note that echochar() is a macro.

mvwaddstr(win, y, x, str)

mvaddstr(y, x, str)

Revised March 1993

These routines write all the characters
of the null-terminated character string
str on the given window. This is
equivalent to calling waddch() once
for each character in the string.

Note that addstr(), mvaddstr(), and
mvwaddstr() are macros.

Version 4.1 Page 19

m—

CURSES (3X) (Specialized Library) CURSES (3X)

attroff(attrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend ()
wstandend(win)
standout()
wstandout (win)

Page 20

These routines manipulate the current
attributes of the named window. These
attributes can be any combination of
A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_BLINK, A_UNDERLINE,
and A_ALTCHARSET, as well as the
macro COLOR_PAIR(n). These attri-
butes are defined in < curses.h> and
can be combined with the C logical OR
(]) operator.

The current attributes of a window are
applied to all characters that are writ-
ten into the window with waddch().
Attributes are a property of the charac-
ter, and move with the character
through any scrolling and insert/delete
line/character operations. To the
extent possible on the particular termi-
nal, they will be displayed as the
graphic rendition of the characters put
on the screen.

wattrset(win, attrs) sets the current
attributes of the given window to attrs.
wattroff(win, attrs) turns off the
named attributes without turning on or
off any other attributes. wattron(win,
attrs) turns on the named attributes
without affecting any others.

Version 4.1 Revised March 1993

CURSES (3X)

beep()
flash()

(Speclalized Library) CURSES (3X)

wstandout(win, attrs) is the same as
wattron(win, A_ STANDOUT).
wstandend(win, attrs) is the same as
wattrset(win, 0), that is, it turns off
all attributes.

Note that wattroff(), wattron(), wat-
trset(), wstandend(), and wstan-
dout() return 1 at all times.

Note that attrs is actually of type
chtype, not a character.

Note that attroff(), attron(),
attrset(), standend(), and stan-
dout() are macros.

These routines are used to signal the
terminal user. beep() will sound the
audible alarm on the terminal, if possi-
ble, and if not, will flash the screen
(visible bell), if that is possible. flash()
will flash the screen, and if that is not
possible, will sound the audible signal.
If neither signal is possible, nothing
will happen. Nearly all terminals have
an audible signal (bell or beep) but only
some can flash the screen.

box(win, vertch, horch)

Revised March 1993

A box is drawn around the edge of the
window, win. vertch and horch are the
characters the box is to be drawn with.
If vertch and horch are 0, then
appropriate default characters,
ACS_VLINE and ACS_HLINE, will be
used.

Version 4.1 Page 21

B

m—

CURSES (3X) (Specialized Library) CURSES (3X)

erase()
werase(win)

clear()
wclear(win)

clrtobot()
wclrtobot(win)

clrtoeol()
wclrtoeol(win)

delay_output(ms)

Page 22

Note that vertch and horch are actually
of type chtype, not characters.

These routines copy blanks to every
position in the window.

Note that erase() is a macro.

These routines are like erase() and
werase(), but they also call clearok(),
arranging that the screen will be
cleared completely on the next call to
wrefresh() for that window, and
repainted from scratch.

Note that clear() is a macro.

All lines below the cursor in this win-
dow are erased. Also, the current line
to the right of the cursor, inclusive, is
erased.

Note that clrtobot() is a macro.

The current line to the right of the cur-
sor, inclusive, is erased.

Note that clrtoeol() is a macro.

Insert a ms millisecond pause in the
output. It is not recommended that
this routine be wused extensively,
because padding characters are used
rather than a processor pause.

Version 4.1 Revised March 1993

— m
CURSES (3X) (Specialized Library) CURSES (3X)

delch()

wdelch(win)

mvdelch(y, x)

mvwdelch(win, y, x) The character under the cursor in the
window is deleted. All characters to
the right on the same line are moved to
the left one position and the last char-
acter on the line is filled with a blank.
The cursor position does not change
(after moving to (y, x), if specified).
(This does not imply use of the
hardware ‘‘delete-character’’ feature.)

Note that delch(), mvdelch(), and
mvwdelch() are macros.

deleteln()

wdeleteln(win) The line under the cursor in the win-
dow is deleted. All lines below the
current line are moved up one line.
The bottom line of the window is
cleared. The cursor position does not
change. (This does not imply use of the
hardware ‘‘delete-line’’ feature.)

Note that deleteln() is a macro.

getyx(win, y, x) The cursor position of the window is
placed in the two integer variables y
and x.

Note that getyx() is a macro, so no
“&”’ is necessary before the variables y
and x.

getbegyx(win, y, x)

getmaxyx(win, y, x) The current beginning coordinates
(getbegyx()) or size (getmaxyx()) of
the specified window are placed in the
two integer variables y and x.

Revised March 1993 Version 4.1 Page 23

m —
CURSES (3X) (Specialized Library) CURSES (3X)

insch(ch)
winsch (win, ch)

Note that getbegyx() and getmaxyx()
are macros, s0 no “&’ is necessary
before the variables y and x.

mvwinsch(win, y, x, ch)

mvinsch(y, x, ch)

insertin()
winsertln (win)

move(y, x)
wmove(win, y, x)

Page 24

The character ch is inserted before the
character under the cursor. All charac-
ters to the right are moved one space to
the right, losing the rightmost charac-
ter of the line. The cursor position
does not change (after moving to (y, x),
if specified). (This does not imply use
of the hardware ‘‘insert-character”
feature.)

Note that ck is actually of type chtype,
not a character.

Note that insch(), mvinsch(), and
mvwinsch() are macros.

A blank line is inserted above the
current line and the bottom line is lost.
(This does not imply use of the
hardware “insert-line” feature.)

Note that insertin() is a macro.

The cursor associated with the window
is moved to line (row) y, column x.
This does not move the physical cursor
of the terminal until wrefresh() is
called. The position specified is relative
to the upper left corner of the window,
which is (0, 0).

Note that move() is a macro.

Version 4.1 Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

overlay(srcwin, dstwin)

overwrite(srcwin, dstwin)
These routines overlay text from srcwin
on top of text from dstwin wherever
the two windows overlap. The
difference is that overlay() is non-
destructive (blanks are not copied),
while overwrite() is destructive.

m copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,
dmaxrow, dmaxcol, overlay)
This routine provides finer control over
the overlay() and overwrite() rou-
tines. As in the prefresh() routine, a
rectangle is specified in the destination
window, (dminrow, dmincol) and
(dmaxrow, dmaxcol), and the upper-
left-corner coordinates of the source
window, (sminrow, smincol). If the
argument overlay is true, then copying
is non-destructive, as in overlay().

printw(fmt [, arg...])
wprintw(win, fmt [, arg...])
mvprintw(y, x, fmt [, arg...])

ﬂ mvwprintw(win, y, x, fmt [, arg...])

U3 These routines are analogous to
printf(3). The string which would be
output by printf(3) is instead output
using waddstr() on the given window.

vwprintw(win, fmt, varglist)
This routine corresponds to
vfprintf(3S). It performs a wprintw()
using a variable argument list. The
third argument is a va_list, a pointer to
a list of arguments, as defined in
ﬂ <varargs.h>. See the uvprintf(3S)
and varargs(5) manual pages for a

Revised March 1993 Version 4.1 Page 25

m—

CURSES (3X)

(Speclalized Library) CURSES (3X)

scroll(win)

touchwin(win)

detailed description on how to use vari-
able argument lists.

The window is scrolled up one line.
This involves moving the lines in the
window data structure.

touchline(win, start, count)

wgetch(win)
mvgetch(y, x)
mvwgetch(win, y, x)

Throw away all optimization informa-
tion about which parts of the window
have been touched, by pretending that
the entire window has been drawn on.
This is sometimes necessary when
using overlapping windows, since a
change to one window will affect the
other window, but the records of which
lines have been changed in the other
window will not reflect the change.
touchline() only pretends that count
lines have been changed, beginning
with line start .

A character is read from the terminal
associated with the window. In NODE-
LAY mode, if there is no input waiting,
the value ERR is returned. In DELAY
mode, the program will hang until the
system passes text through to the pro-
gram. Depending on the setting of
cbreak(), this will be after one charac-
ter (CBREAK mode), or after the first
newline (NOCBREAK mode). In HALF-
DELAY mode, the program will hang
until a character is typed or the

Version 4.1 Revised March 1993

~

CURSES (3X)

Revised March 1993

(Specialized Library) CURSES (3X)

specified timeout has been reached.
Unless moecho() has been set, the
character will also be echoed into the
designated window.

When wgetch() is called, before get-
ting a character, it will call wrefresh()
if anything in the window has changed
(for example, the cursor has moved or
text changed).

When using getch(), wgetch(),
mvgetch(), or mvwgetch(), do not
set both NOCBREAK mode (moc-
break()) and ECHO mode (echo()) at
the same time. Depending on the state
of the tty(7) driver when each character
is typed, the program may produce
undesirable results.

If wgetch() encounters a "D, it is
returned (unlike stdio routines, which
would return a null string and have a
return code of -1).

If keypad(win, TRUE) has been called,
and a function key is pressed, the token
for that function key will be returned
instead of the raw characters. (See
keypad() under "Input Options Set-
ting.”) Possible function keys are
defined in <curses.h > with integers
beginning with 0401, whose names
begin with KEY_ . If a character is
received that could be the beginning of
a function key (such as escape), curses
will set a timer. If the remainder of
the sequence is not received within the
designated time, the character will be
passed through, otherwise the function

Version 4.1 Page 27

m—

CURSES (3X) (Specialized Library) CURSES (3X)

key value will be returned. For this
reason, on many terminals, there will
be a delay after a user presses the
escape key before the escape is
returned to the program. (Use by a
programmer of the escape key for a gin-
gle character routine is discouraged.
Also see notimeout() below.)

Note that getch(), mvgetch(), and
mvwgetch() are macros.

getstr(str)

wgetstr(win, str)

mvgetstr(y, x, str)

mvwgetstr(win, y, x, str)
A series of calls to wgetch() is made,
until a newline, carriage return, or
enter key is received. The resulting
value (except for this terminating char-
acter) is placed in the area pointed at
by the character pointer str. The
user's erase and kill characters are
interpreted. See wgetch() for how it
handles characters differently from
stdio routines (especially "D).

Note that getstr(), mvgetstr(), and
mvwgetstr() are macros.

ungetch(c) Place ¢ onto the input queue, to be
returned by the next call to wgetch().
flushinp() Throws away any typeahead that has

been typed by the user and has not yet
been read by the program. Note that
flushinp() will not throw away any
characters supplied by ungetch().

Page 28 Version 4.1 Revised March 1993

m CURSES (3X) (Specialized Library) CURSES (3X)

inch()

winch(win)

mvinch(y, x)

mvwinch(win, y, x) The character, of type chtype, at the
current position in the named window
is returned. If any attributes are set
for that position, their values will be
OR’ed into the value returned. The

m predefined constants A_CHARTEXT and

A_ATTRIBUTES, defined in
< curses.h >, can be used with the C
logical AND (&) operator to extract the
character or attributes alone.

Note that inch(), winch(), mvinch(),
and mvwinch() are macros.

scanw(fmt [, arg...])
wsacanw(win, fmt [, arg...])
mvscanw(y, x, fmt [, arg...])
mvwscanw(win, y, x, fmt [, arg...])
These routines correspond to scanf(3S),
as do their arguments and return
values. wgetstr() is called on the win-
dow, and the resulting line is used as
ﬂ input for the scan. The return value
" for these routines is the number of arg
values that are converted by fmt. arg
values that are not converted are lost.
See wgetstr() for how it handles
strings differently than the stdio rou-
tines (especially “D).
vwscanw(win, fmt, ap)
This routine is similar to vwprintw()
in that it performs a wescanw() using a
m variable argument list. The third argu-
- ment is a va_list, a pointer to a list of
arguments, as defined in

Revised March 1993 Version 4.1 Page 29

m—

CURSES (3X) (Specialized Library) CURSES (3X)

<varargs.h>. See the uprintf(3S)
and varargs(5) manual pages for a
detailed description on how to use vari-
able argument lists.

Output Options Setting
These routines set options within curses that deal with output.
All options are initially FALSE, unless otherwise stated. It is

not necessary to turn these options off before calling
endwin().

clearok(win, bf) If enabled (bf is TRUE), the next call to
wrefresh () with this window will clear
the screen completely and redraw the
entire screen from scratch. This is use-
ful when the contents of the screen are
uncertain, or in some cases for a more
pleasing visual effect.

idlok(win, bf) If enabled (bf is TRUE), curses will con-
sider using the hardware
“insert/delete-line”’ feature of termi-
nals so equipped. If disabled (bf is
FALSE), curses will very seldom use this
feature. (The “insert/delete-character”
feature is always considered.) This
option should be enabled only if your
application needs “insert/delete-line”,
for example, for a screen editor. It is
disabled by default because
“insert/delete-line” tends to be visually
annoying when used in applications
where it isn't really needed. If
“ingert/delete-line” cannot be used,
curses will redraw the changed portions
of all lines. Not calling idlok() saves
approximately 5000 bytes of memory.

Page 30 Version 4.1 Revised March 1993

™

CURSES (3X) (Specialized Library) CURSES (3X)

leaveok(win, bf)

setscrreg(top, bot)

Normally, the hardware cursor is left at
the location of the window cursor being
refreshed. This option allows the cur-
sor to be left wherever the update hap-
pens to leave it. It is useful for applica-
tions where the cursor is not used,
since it reduces the need for cursor
motions. If possible, the cursor is made
invisible when this option is enabled.

weetscrreg(win, top, bot)

scrollok(win, bf)

Revised March 1993

These routines allow the user to set a
software scrolling region in a window.
top and bot are the line numbers of the
top and bottom margin of the scrolling
region. (Line O is the top line of the
window.) If this option and scrollok()
are enabled, an attempt to move off the
bottom margin line will cause all lines
in the scrolling region to scroll up one
line. (Note that this has nothing to do
with use of a physical scrolling region
capability in the terminal, like that in
the DEC VT100. Only the text of the
window is scrolled; if idlok() is
enabled and the terminal has either a
scrolling region or “insert/delete-line”
capability, they will probably be used
by the output routines.)

Note that setscrreg() is a macro.

This option controls what happens
when the cursor of a window is moved
off the edge of the window or scrolling
region, either from a newline on the
bottom line, or typing the last charac-
ter of the last line. If disabled (bf is

Version 4.1 Page 31

CURSES (3X) (Specialized Library) CURSES (3X)

Iinput Options Setting

FALSE), the cursor is left on the bot-
tom line at the location where the
offending character was entered. If
enabled (bf is TRUE), wrefresh() is
called on the window, and then the
physical terminal and window are
scrolled up one line. (Note that in
order to get the physical scrolling effect
on the terminal, it is also necessary to
call idlok().)

Note that scrollok() will always
return OK.

These routines set options within curses that deal with input.
The options involve using ioct!(2) and therefore interact with
curses routines. It is not necessary to turn these options off
before calling endwin().

For more information on these options, see the chapter of the
Programmer’s Guide that describes how to write curses pro-

grams.

cbreak()
nocbreak()

Page 32

These two routines put the terminal
into and out of CBREAK mode, respec-
tively. In CBREAK mode, characters
typed by the user are immediately
available to the program and erase/kill
character processing is not performed.
When in NOCBREAK mode, the tty
driver will buffer characters typed until
a newline or carriage return is typed.
Interrupt and flow-control characters
are unaffected by this mode (see ter-
mio(7)). Initially the terminal may or
may not be in CBREAK mode, as it is
inherited, therefore, a program should
call cbreak or nocbreak explicitly.

Version 4.1 Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

echo()
noecho()

nl()
nonl()

halfdelay(tenths)

Revised March 1993

Most interactive programs using curses
will set CBREAK mode.

Note that cbreak() performs a subset
of the functionality of raw(). See
wgetch() under "Input” for a discus-
sion of how these routines interact with
echo() and noecho().

These routines control whether charac-
ters typed by the user are echoed by
wgetch() as they are typed. Echoing
by the tty driver is always disabled, but
initially wgetch() is in ECHO mode, so
characters typed are echoed. Authors
of most interactive programs prefer to
do their own echoing in a controlled
area of the screen, or not to echo at all,
8o they disable echoing by calling noe-
cho(). See wgetch() under "Input”
for a discussion of how these routines
interact with cbreak() and noc-
break().

These routines control whether car-
riage return is translated into newline
on input by wgetch(). Initially, this
translation is done; monl() turns the
translation off. Note that translation
by the tty(7) driver is disabled in
CBREAK mode.

Half-delay mode is similar to CBREAK
mode in that characters typed by the
user are immediately available to the
program. However, after blocking for
tenths tenths of seconds, ERR will be
returned if nothing has been typed.

Version 4.1 Page 33

m—

CURSES (3X) (Speclalized Library) CURSES (3X)

intrflush (win, bf)

keypad(win, bf)

meta(win, bf)

Page 34

tenths must be a number between 1 and
255. Use nocbreak() to leave half-
delay mode.

If this option is enabled, when an inter-
rupt key is pressed on the keyboard
(interrupt, break, quit) all output in the
tty driver queue will be flushed, giving
the effect of faster response to the
interrupt, but causing curses to have
the wrong idea of what is on the
screen. Disabling the option prevents
the flush. The default for the option is
inherited from the tty driver settings.
The window argument is ignored.

This option enables curses to obtain
information from the keypad of the
user's terminal. If enabled, the user
can press a function key (such as an
arrow key) and wgetch() will return a
single value representing the function
key, as in KEY _LEFT. If disabled,
curses will not treat function keys spe-
cially and the program would have to
interpret the escape sequences itself. If
the keypad in the terminal can be
turned on (made to transmit), calling
keypad (win, TRUE) will turn it on.

Initially, whether the terminal returns
7 or 8 significant bits on input depends
on the control mode of the tty driver
(see termio(7)). To force 8 bits to be
returned, invoke meta (win, TRUE).
To force 7 bits to be returned, invoke
meta (win, FALSE). The window argu-
ment, win, is always ignored. If the
terminfo(4) capabilities smm (meta_on)
and rmm (meta_off) are defined for

Version 4.1 Revised March 1993

v

CURSES (3X) (Specialized Library) CURSES (3X)

the terminal, smm will be sent to the
terminal when meta (win, TRUE) is
called and rmm will be sent when
meta (win, FALSE) is called.

nodelay(win, bf) This option causes wgetch() to be a
non-blocking call. If no input is ready,
wgetch() will return ERR. If disabled,
wgetch() will hang until a key is
pressed.

notimeout(win, bf) While interpreting an input escape
sequence, wgetch() will set a timer
while waiting for the next character. If
notimeout(win, TRUE) is called, then
wgetch() will not set a timer. The
purpose of the timeout is to
differentiate between sequences
received from a function key and those

typed by a user.

raw()

noraw() The terminal is placed into or out of
RAW mode. RAW mode is similar to
CBREAK mode, in that characters typed
are passed through to the user pro-
gram; however, in RAW mode, the
interrupt, quit, suspend, and flow con-
trol characters are passed through
uninterpreted, instead of generating a
signal as they do in CBREAK mode.
The behavior of the BREAK key
depends on other bits in the ty(7)
driver that are not set by curses.

|
typeahead(fildes) curses does ‘“line-breakout optimiza- |
tion”’ by looking for typeahead periodi- |

cally while updating the screen. If

input is found, and it is coming from a

tty, the current wupdate will be

Revised March 1993 Version 4.1 Page 35

CURSES (3X) (Specialized Library) CURSES (3X)

Environment Queries
baudrate()

char erasechar()
has_ic()

has_il()

char killchar()

Page 38

postponed until wrefresh() or doup-
date() is called again. This allows fas-
ter response to commands typed in
advance. Normally, the file descriptor
for the input FILE pointer passed to
newterm(), or stdin in the case that
initscr() was used, will be used to do
this typeahead checking. The type-
ahead() routine specifies that the file
descriptor fildes is to be used to check
for typeahead instead. If fildes is -1,
then no typeahead checking will be
done.

Note that fildes is a file descriptor, not
a <stdio.h> FILE pointer.

Returns the output speed of the termi-
nal. The number returned is in bits
per second, for example, 9600, and is an
integer.

The user’s current erase character is
returned.

True if the terminal has insert- and
delete-character capabilities.

True if the terminal has insert- and
delete-line capabilities, or can simulate
them using scrolling regions. This
might be used to check to see if it
would be appropriate to turn on physi-
cal scrolling using scrollok() or
idlok().

The user’s current line-kill character is
returned.

Version 4.1 Revised March 1993

ﬂ CURSES (3X) (Specialized Library) CURSES (3X)

char + longname()

Color Manlipulation

This routine returns a pointer to a
static area containing a verbose descrip-
tion of the current terminal. The max-
imum length of a verbose description is
128 characters. It is defined only after
the call to initscr() or newterm().
The area is overwritten by each call to
newterm() and is not restored by
set_term(), so the value should be
saved between calls to newterm() if
longname() is going to be used with
multiple terminals.

This section describes the color manipulation routines intro-
duced in this release of curses.

can_change_color() This routine requires no arguments. It

returns TRUE if the terminal supports
colors and can change their definitions,
FALSE otherwise. This routine facili-
tates writing terminal-independent pro-
grams.

color_content(color, &r, &g, &b)

Revised March 1993

This routine gives users a way to find
the intensity of the red, green and blue
(RGB) components in a color. It
requires four arguments: the color
number, and three addresses of shorts
for storing the information about the
amounts of red, green, and blue com-
ponents in the given color. The value of
the first argument must be between 0
and COLORS —-1. The values that will
be stored at the addresses pointed to by
the last three arguments will be
between 0 (no component) and 1000
(maximum amount of component). This
routine returns ERR if the color does

Versilon 4.1 Page 37

CURSES (3X) (Speclalized Library) CURSES (3X)

has_color()

not exist (the first argument is outside
the valid range), or if the terminal can-
not change color definitions, OK other-
wise.

This routine requires no arguments. It
returns TRUE if the terminal can
manipulate colors, FALSE otherwise.
This routine facilitates writing
terminal-independent programs. For
example, a programmer can use it to
decide whether to use color or some
other video attribute.

init_color(color, r, g, b)

init_pair(pair, f, b)

Page 38

This routine changes the definition of a
color. It takes four arguments: the
number of the color to be changed fol-
lowed by three RGB values (for the
amounts of red, green, and blue com-
ponents). (See section COLOR for the
default color index). The value of the
first argument must be between 0 and
COLORS -1. The last three arguments
must each be a value between 0 and
1000. When init_color() is used, all
occurrences of that color on the screen
immediately change to the new
definition. It returns OK if it was able
to change the definition of the color,
ERR otherwise.

This routine changes the definition of a
color_pair. It takes three arguments:
the number of the color_pair to be
changed, the foreground color number,
and the background color number. The
value of the first argument must be
between 1 and COLOR_PAIRS-1.
The value of the second and third

Version 4.1 Revised March 1993

CURSES (3X)

(Specialized Library) CURSES (3X)

arguments must be between 0 and
COLORS - 1. If the color_pair was pre-
viously initialized, the screen will be
refreshed and all occurrences of that
color_pair will be changed to the new
definition. The routine returns OK if it
was able to change the definition of the
color_pair, ERR otherwise.

pair_content(pair, &f, &b)

start_color()

Revised March 1993

This routine allows users to find out
what colors a given color_pair consists
of. It requires three arguments: the
color_pair number, and two addresses
of shorts for storing the foreground
and the background color numbers.
The value of the first argument must
be between 1 and COLOR_PAIRS-1.
The values that will be stored at the
addresses pointed to by the second and
third arguments will be between 0 and
COLORS -1 The routine returns
ERR if the color_pair has not been ini-
tialized, OK otherwise.

This routine requires no arguments. It
must be called if the user wants to use
colors, and before any other color mani-
pulation routine is called. It is good
practice to call this routine right after
initscr(). start_color() initializes
eight basic colors (black, blue, green,
cyan, red, magenta, yellow, and white),
and two global variables. COLORS and
COLOR_PAIRS (respectively defining
the maximum number of colors and
color_pairs the terminal can support).
It also restores the terminal’s colors to
the values they had when the terminal

Version 4.1 Page 39

CURSES (3X) (Specialized Library) CURSES (3X)

was just turned on. It returns ERR if
the terminal does not support colors,
OK otherwise.

Soft Labels

If desired, curses will manipulate the set of soft function-key
labels that exist on many terminals. For those terminals that
do not have soft labels, if you want to simulate them, curses
will take over the bottom line of stdscr, reducing the size of
stdscr and the variable LINES. curses standardizes on 8
labels of 8 characters each. If a curses program changes the
values of the soft labels, it can restore them only to the default
settings for that terminal. Therefore, if before calling a curses
program a user changes the values of the soft labels, those
values cannot be reset when the curses program terminates.

slk_init (labfmt) In order to use soft labels, this routine
must be called before initscr() or
newterm() is called. If initscr()
winds up using a line from stdscr to
emulate the soft labels, then labfmt
determines how the labels are arranged
on the screen. Setting labfmt to 0 indi-
cates that the labels are to be arranged
in a 3-2-3 arrangement; 1 asks for a 4-4
arrangement.

slk_set (labnum, label, labfmt)

labnum is the label number, from 1 to
8. label is the string to be put on the
label, up to 8 characters in length. A
NULL string or a NULL pointer will
put up a blank label. labfmt is one of
0, 1 or 2, to indicate whether the label
is to be left-justified, centered, or
right-justified within the label.

Page 40 Version 4.1 Revised March 1993

CURSES (3X) (Specilalized Library) CURSES (3X)

slk_refresh()
slk_noutrefresh()

These routines correspond to the rou-
tines wrefresh() and
wnoutrefresh(). Most applications
would use slk_noutrefresh() because
a wrefresh() will most likely soon fol-
low.

char + slk_label(labnum)

slk_clear()
slk_restore()

slk_touch()

Low-Level curses Access

The current label for label number lab-
num is returned, in the same format as
it was in when it was passed to
slk_set(); that is, how it looked prior
to being justified according to the
labfmt argument of slk_set().

The soft labels are cleared from the
screen.

The soft labels are restored to the
screen after a slk_clear().

All of the soft labels are forced to be
output the next time a
slk_noutrefresh() is performed.

The following routines give low-level access to various curses
functionality. These routines typically would be used inside of

library routines.

def_prog mode()
def_shell_mode()

Revised March 1993

Save the current terminal modes as the
“program’’ (in curses) or ‘‘shell” (not
in curses) state for use by the
reset_prog_mode() and
reset_shell_mode() routines. This is
done automatically by initscr().

Version 4.1 Page 41

m —
CURSES (3X) (Specialized Library) CURSES (3X)

reset_prog_mode()

reset_shell mode() Restore the terminal to “program” (in
curses) or “shell” (out of curses) state.
These are done automatically by
endwin() and doupdate() after an
endwin(), so they normally would not
be called.

resetty()

savetty() These routines save and restore the
state of the terminal modes. savetty()
saves the current state of the terminal
in a buffer and resetty() restores the
state to what it was at the last call to
savetty().

getsyx(y, x) The current coordinates of the virtual
screen cursor are returned in y and x.
If leaveok() is currently TRUE, then
=1, -1 will be returned. If lines have
been removed from the top of the
screen using ripofline(), y and x
include these lines; therefore, y and x
should be used only as arguments for
setsyx().

Note that getsyx() is a macro, so no
“&" is necessary before the variables y
and x.

setsyx(y, x) The virtual screen cursor is set to y, x.
If y and x are both —1, then leaveok()
will be set. The two routines getsyx()
and setsyx() are designed to be used
by a library routine which manipulates
curses windows but does not want to
change the current position of the
program’s cursor. The library routine
would call getsyx() at the beginning,
do its manipulation of its own windows,

Page 42 Version 4.1 Revised March 1993

|
CURSES (3X) (Specialized Library) CURSES (3X)

do a wnoutrefresh() on its windows,
call setsyx(), and then call doup-
date().

ripoffline(line, init) This routine provides access to the
same facility that slk_init() uses to
reduce the size of the screen.
ripoffline() must be called before |
initscr() or newterm() is called. If
line is positive, a line will be removed
from the top of stdscr; if negative, a
line will be removed from the bottom.
When this is done inside initscr(), the
routine init() is called with two argu-
ments: a window pointer to the 1-line
window that has been allocated and an
integer with the number of columns in
the window. Inside this initialization
routine, the integer variables LINES
and COLS (defined in <curses.h>)
are not guaranteed to be accurate and
wrefresh() or doupdate() must not
be called. It is allowable to call
wnoutrefresh() during the initializa-
tion routine.

ripoffline() can be called up to five
times Dbefore calling initser() or
newterm().

scr_dump(filename) The current contents of the virtual
screen are written to the file filename.

scr_restore(filename) The virtual screen is set to the contents
of filename, which must have been
written using scr_dump(). ERR is
returned if the contents of filename are
not compatible with the current release
of curses software. The next call to
doupdate() will restore the screen to

Revised March 1993 Version 4.1 Page 43

CURSES (3X) (Specilalized Library) CURSES (3X)

what it looked like in the dump file.

scr_init(filename) The contents of filename are read in
and used to initialize the curses data
structures about what the terminal
currently has on its screen. If the data
is determined to be valid, curses will
base its next update of the screen on
this information rather than clearing
the screen and starting from scratch.
scr_init() would be used after
initscr() or a system(3S) call to share
the screen with another process which
has done a scr_dump() after its
endwin() call. The data will be
declared invalid if the terminfo(4) capa-
bility nrrmc is true or the time-stamp
of the tty is old. Note that keypad(),
meta(), slk_clear(), curs_set(),
filash(), and beep() do not affect the
contents of the screen, but will make
the tty’'s time-stamp old.

curs_set (visibility) The cursor state is set to invisible, nor-
mal, or very visible for visibility equal
to 0, 1 or 2. If the terminal supports
the visibility requested, the previous
cursor state is returned; otherwise,
ERR is returned.

draino(ms) Wait until the output has drained
enough that it will only take ms more
milliseconds to drain completely.

garbagedlines(win, begline, numlines)
This routine indicates to curses that a
screen line is garbaged and should be
thrown away before written over the
top of it. It could be used for programs
such as editors which want a command

Page 44 Version 4.1 Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

to redraw just a single line. Such a
command could be used in cases where
there is a noisy communications line
and redrawing the entire screen would
be subject to even more communication
noise. Just redrawing the single line
gives some semblance of hope that it
would show up unblemished. The
current location of the window is used
to determine which lines are to be
redrawn.

napms(ms) Sleep for ms milliseconds.

mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need
to deal directly with the terminfo(4) database to handle certain
terminal capabilities, such as programming function keys. For
all other functionality, curses routines are more suitable and
their use is recommended.

Initially, setupterm() should be called. (Note that setup-
term() is automatically called by initscr() and newterm().)
This will define the set of terminal-dependent variables defined
in the terminfo(4) database. The terminfo(4) variables lines
and columns (see terminfo(4)) are initialized by setupterm()
as follows: if the environment variables LINES and COLUMNS
exist, their values are used. If the above environment variables
do not exist and the program is running in a layer (see
layers(1)), the size of the current layer is used. Otherwise, the
values for lines and columns specified in the terminfo(4) data-
base are used.

The header files <curses.h> and <term.h> should be
included, in this order, to get the definitions for these strings,
numbers, and flags. Parameterized strings should be passed
through tparm() to instantiate them. All terminfo(4) strings
(including the output of tparm()) should be printed with

Revised March 1993 Version 4.1 Page 45

m—

CURSES (3X) (Specialized Library) CURSES (3X)

tputs() or putp(). Before exiting, reset_shell_mode()
should be called to restore the tty modes. Programs which use
cursor addressing should output enter_ca_mode upon startup
and should output exit ca_mode before exiting (see ter-
minfo(4)). (Programs desiring shell escapes should call
reset_shell mode() and output exit_ca_mode before the
shell is called and should output enter_ca_mode and call
reset_prog_mode() after returning from the shell. Note that
this is different from the curses routines (see endwin()).

setupterm(term, fildes, errret)

Reads in the terminfo(4) database, ini-
tializing the terminfo(4) structures, but
does not set up the output virtualiza-
tion structures used by curses. The
terminal type is in the character string
term; if term is NULL, the environment
variable TERM will be used. All output
is to the file descriptor fildes. If errret
is not NULL, then setupterm() will
return OK or ERR and store a status
value in the integer pointed to by
errret. A status of 1 in errret is normal,
0 means that the terminal could not be
found, and —1 means that the ter-
minfo(4) database could not be found.
If errret is NULL, setupterm() will
print an error message upon finding an
error and exit. Thus, the simplest call
is setupterm ((char +)0, 1, (int
*)0), which uses all the defaults.

The terminfo(4) boolean, numeric and
string variables are stored in a struc-
ture of type TERMINAL. After setup-
term() returns successfully, the vari-
able cur_term (of type TERMINAL +)
is initialized with all of the information
that the terminfo(4) boolean, numeric

Page 48 Version 4.1 Revised March 1993

ﬂ

CURSES (3X) (Specialized Library) CURSES (3X)

set_curterm(nterm)

del_curterm(oterm)

and string variables refer to. The
pointer may be saved before calling
setupterm() again. Further calls to
setupterm() will allocate new space
rather than reuse the space pointed to
by cur_term.

nterm is of type TERMINAL =*.
set_curterm() sets the variable
cur_term to nterm, and makes all of
the terminfo(4) boolean, numeric and
string variables use the values from
nterm.

oterm is of type TERMINAL =,
del_curterm() frees the space pointed
to by oterm and makes it available for
further use. If oterm is the same as
cur_term, then references to any of
the terminfo(4) boolean, numeric and
string variables thereafter may refer to
invalid memory locations until another
setupterm () has been called.

restartterm (term, fildes, errret)

Similar to setupterm(), except that it
is called after restoring memory to a
previous state; for example, after a call
to scr_restore(). It assumes that the
windows and the input and output
options are the same as when memory
was saved, but the terminal type and
baud rate may be different.

char + tparm(str, Pp Py oo P9)

Revised March 1993

Instantiate the string str with parms P;
A pointer is returned to the resuit of
str with the parameters applied.

Version 4.1 Page 47

CURSES (3X) (Specialized Library) CURSES (3X)

tputs(str, count, putc)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

Apply padding to the string str and out-
put it. str must be a terminfo(4) string
variable or the return value from
tparm(), tgetstr(), tigetstr() or
tgoto(). count is the number of lines
affected, or 1 if not applicable. putc is a
putchar(3S)-like routine to which the
characters are passed, one at a time.

A routine that calls tputs (str, 1,
putchar).

Output a string that puts the terminal
in the video attribute mode attrs, which
is any combination of the attributes
listed below. The characters are passed
to the putchar(3S)-like routine putc().

Similar to vidputs(), except that it
outputs through putchar(3S).

The following routines return the value of the capability
corresponding to the character string containing the ter-
minfo(4) capname passed to them. For example, r¢ =
tigetstr(”acsc”) causes the value of acsc to be returned in

re.
tigetflag(capname)

tigetnum (capname)

tigetstr(capname)

Page 48

The value —1 is returned if capname is
not a boolean capability. The value 0 is
returned if capname is not defined for
this terminal.

The value —2 is returned if caprame is
not a numeric capability. The value —1
is returned if capname is not defined
for this terminal.

The value (char *) -1 is returned if

capname i8 not a string capability. A .
null value is returned if capname is not

defined for this terminal.

Version 4.1 Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)

char » boolnames(]), *boolcodes(], * boolfnames|]
char * numnames(], * numcodes(], * numfnames{]
char *strnames|[], *strcodes[], *strfnames|]

Termcap Emulation

These null-terminated arrays contain
the capnames, the termcap codes, and
the full C names, for each of the ter-
minfo(4) variables.

These routines are included as a conversion aid for programs
that use the termcap library. Their parameters are the same
and the routines are emulated using the terminfo(4) database.

tgetent(bp, name)

tgetflag(codename)
tgetnum (codename)

Look up termcap entry for name. The
emulation ignores the buffer pointer
bp.

Get the boolean entry for codename.

Get numeric entry for codename.

char = tgetstr(codename, area)

Return the string entry for codename.
If area is not NULL, then also store it
in the buffer pointed to by area and
advance area. tputs() should be used
to output the returned string.

char + tgoto(cap, col, row)

tputs(str, affent, putc)

Miscellaneous
traceoff()
traceon()

Revised March 1993

Instantiate the parameters into the
given capability. The output from this
routine is to be passed to tputs().

See tputs() above, under "Terminfo-
Level Manipulations™.

Turn off and on debugging trace output
when using the debug version of the
curses library, /[usr/lib/libdcurses.a.
This facility is available only to

Version 4.1 Page 49

CURSES (3X) (Specialized Library) CURSES (3X)

customers with a source license.

unctrl(c) This macro expands to a character
string which is a printable representa-
tion of the character ¢. Control charac-
ters are displayed in the "X notation.
Printing characters are displayed as is.

unctrl() is a macro, defined in
<unctrl.h >, which is automatically
included by <curses.h>.

char s keyname(c) A character string corresponding to the
key ¢ is returned.

filter() This routine is one of the few that is to
be called before initser() or
newterm() is called. It arranges
things so that curses thinks that there
is a 1-line screen. curses will not use
any terminal capabilities that assume
that they know what line on the screen
the cursor is on.

Use of curscr

The special window curscr can be used in only a few routines.
If the window argument to clearok() is curscr, the next call
to wrefresh() with any window will cause the screen to be
cleared and repainted from scratch. If the window argument to
wrefresh() is curscr, the screen is immediately cleared and
repainted from scratch. (This is how most programs would
implement a ‘“‘repaint-screen” routine.) The source window
argument to overlay(), overwrite(), and copywin() may be
curscr, in which case the current contents of the virtual ter-
minal screen will be accessed.

Obsolete Calis
Various routines are provided to maintain compatibility in pro-
grams written for older versions of the curses library. These
routines are all emulated as indicated below.

Page 50 Version 4.1 Revised March 1993

CURSES (3X) (Speclalized Library) CURSES (3X)
crmode() Replaced by cbreak().
fixterm () Replaced by reset_prog_mode().
gettmode() A no-op. ‘
nocrmode() Replaced by nocbreak().
resetterm() Replaced by reset_shell_mode().
saveterm() Replaced by def_prog_mode().
setterm() Replaced by setupterm().

ATTRIBUTES

The following video attributes, defined in < curses.h >, can be
passed to the routines wattron(), wattroff(), and wat-
trset(), or OR’ed with the characters passed to waddch().

A_STANDOUT Terminal’s best highlighting mode
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A _BOLD Extra bright or bold
A_ALTCHARSET Alternate character set
COLOR_PAIR(n) Color_pair defined in n.
(Note that this is a macro).
A_CHARTEXT Bit-mask to extract character
(described under winch())
A_ATTRIBUTES Bit-mask to extract attributes
{described under winch())
A NORMAL Bit-mask to reset all attributes off
(for example: wattrset (win, A_NORMAL)
A_COLOR Bit-mask to extract color_pair field informati

PAIR_NUMBER(attrs) Returns the pair number associated with
the COLOR_PAIR(n) attribute
(Note that this is a macro).

Revised March 1993 Version 4.1 Page 51

m—

CURSES (3X) (Speclalized Library)

COLORS

CURSES (3X)

In <curses.h> the following macros are defined to have the
numeric value shown. These are the default colors. curses also
assumes that color 0 (zero) is the default background color for
all terminals.

COLOR_BLACK
COLOR_BLUE
COLOR_GREEN
COLOR_CYAN
COLOR_RED

COLOR_MAGENTA

COLOR_YELLOW
COLOR_WHITE

FUNCTION KEYS

SO WN-O

The following function keys, defined in < curses.h >, might be
returned by wgetch() if keypad() has been enabled. Note
that not all of these may be supported on a particular terminal
if the terminal does not transmit a unique code when the key is
pressed or the definition for the key is not present in the ter-
minfo(4) database.

Name

KEY_BREAK
KEY_DOWN

KEY _UP

KEY LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_FO

KEY _F(n)
KEY DL

Page 52

Value

0401
0402
0403
0404
0405
0406
0407
0410

(KEY_FO +(n))

0510

Version 4.1

Key name

break key (unreliable)
The four arrow keys ...

Home key (upward + left arrow)
backspace (unreliable)
Function keys.

Space for 64 keys is reserved.
Formula for f_.

Delete line

Revised March 1993

v

CURSES (3X) (Specialized Library) CURSES (3X)
KEY_IL 0511 Insert line
KEY DC 0512 Delete character
KEY IC 0513 Insert char or enter insert mode
KEY EIC 0514 Exit insert char mode
KEY CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY EOL 0517 Clear to end of line
KEY _SF 0520 Scroll 1 line forward
KEY SR 0521 Scroll 1 line backwards (reverse)
KEY NPAGE 0522 Next page
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY _ENTER 0527 Enter or send
KEY SRESET 0530 soft (partial) reset
KEY RESET 0531 reset or hard reset
KEY PRINT 05632 print or copy
KEY LL 0533 home down or bottom (lower left)
keypad is arranged like this:
Al up A3
let B2 right
Cl1 down C3
KEY Al 0534 Upper left of keypad
KEY A3 0535 Upper right of keypad
KEY B2 0536 Center of keypad
KEY C1 0537 Lower left of keypad
KEY C3 0540 Lower right of keypad
KEY_BTAB 0541 Back tab key
KEY BEG 0542 beg(inning) key
KEY_CANCEL 0543 cancel key
KEY CLOSE 0544 close key
KEY COMMAND 0545 cmd (command) key
KEY COPY 0546 copy key
KEY_CREATE 0547 create key
KEY_END 0550 end key

Revised March 1993 Version 4.1 Page 53

CURSES (3X)

KEY_EXIT
KEY_FIND
KEY_HELP
KEY MARK
KEY MESSAGE
KEY_MOVE
KEY_NEXT
KEY OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY REDO
KEY_REFERENCE
KEY_REFRESH
KEY REPLACE
KEY_RESTART
KEY_RESUME
KEY SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY _SCREATE
KEY _SDC
KEY_SDL
KEY_SELECT
KEY SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY SHELP
KEY SHOME
KEY_SIC

KEY SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT

Page 54

(Specialized Library) CURSES (3X)
0551 exit key
0552 find key
0553 help key
0554 mark key
05565 message key
0556 move key
0567 next object key
0560 open key
0561 options key
0562 previous object key
0563 redo key
0564 ref(erence) key
0565 refresh key
0566 replace key
0567 restart key
0570 resume key
0571 save key
0572 shifted beginning key
0573 shifted cancel key
0574 shifted command key
0575 shifted copy key
0576 shifted create key
0577 shifted delete char key
0600 shifted delete line key
0601 select key
0602 shifted end key
0603 shifted clear line key
0604 shifted exit key
0605 shifted find key
0606 shifted help key
0607 shifted home key
0610 shifted input key
o611 shifted left arrow key
0612 shifted message key
0613 shifted move key
0614 shifted next key

Revised March 1993

CURSES (3X) (Specialized Library) CURSES (3X)
KEY_SOPTIONS 0615 shifted options key
KEY SPREVIOUS 0616 shifted prev key
KEY_SPRINT 0617 shifted print key
KEY SREDO 0620 shifted redo key
KEY _SREPLACE 0621 shifted replace key
KEY SRIGHT 0622 shifted right arrow
KEY SRSUME 0623 shifted resume key
KEY_SSAVE 0624 shifted save key
KEY _SSUSPEND 0625 shifted suspend key
KEY SUNDO 0626 shifted undo key
KEY SUSPEND 0627 suspend key
KEY_UNDO 0630 undo key

LINE GRAPHICS

The following variables may be used to add line-drawing char-
acters to the screen with waddch(). When defined for the ter-
minal, the variable will have the A_ALTCHARSET bit turned
on. Otherwise, the default character listed below will be stored
in the variable. The names were chosen to be consistent with

the DEC VT100 nomenclature.
Name Default Glyph Description
ACS_ULCORNER + upper left corner
ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee (—|)
ACS_LTEE + left tee (|-)
ACS_BTEE + bottom tee (])
ACS_TTEE + top tee (T)
ACS_HLINE - horizontal line
ACS_VLINE ! vertical line
ACS_PLUS + plus
ACS _S1 - scan line 1
ACS_S9 _ scan line 9
ACS_DIAMOND + diamond

Revised March 1993 Version 4.1

Page 55

CURSES (3X) (Specialized Library) CURSES (3X)
W
ACS_CKBOARD : checker board (stipple)
ACS DEGREE ! degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET) bullet
ACS_LARROW < arrow pointing left
ACS RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW - arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol w
ACS_BLOCK # solid square block
DIAGNOSTICS

All routines return the integer OK upon successful completion
and the integer ERR upon failure, unless otherwise noted in
the preceding routine descriptions.

All macros return the value of their w version, except get-

syx(), getyx(), getbegyx(), getmaxyx(). For these macros,
no useful value is returned.

Routines that return pointers always return (type *) NULL
on error.

WARNINGS

To use the new f2curses features, use the Release 3.2 version of

curses on UNIX System V Release 3.1. All programs that ran w
with Release 2 or Release 3.0 or. Release 3.1 curses will also

run on UNIX System V Release 3.2. You can link applications

with object files based on Release 2 or Release 3.0 or Reelase

3.1 curses/terminfo with the Release 3.2 libcurses.a library;
however, you cannot link applications with object files based on
Release 3.2 curses/terminfo with the Release 2 or Release 3.0,

or Release 3.1 libcurses.a library.

Between the time a call to initscr() and endwin() has been

issued, use only the routines in the curses library to generate
output. Using system calls or the "standard 1/0 package” (see A
stdio(3S)) for output during that time can cause unpredictable W
results.

Page 56 Version 4.1 Revised March 1993

T
CURSES (3X) (Specialized Library) CURSES (3X)

~

If a pointer passed to a routine as a window argument is null
or out of range, the results are undefined (core may be

dumped).
SEE ALSO
cc(l), 1d(1),
ioctl(2),
putc(3S), scanf(3S), stdio(3S), system(3S), vprintf(3S),
profile(4), term(4), terminfo(4),
m varargs(5),
termio(7), tty(7).
curses/terminfo chapter of the Programmer’s Guide.

Revised March 1993 Version 4.1 Page 57

CURSES (3X)

Page 58

(Specialized Library) CURSES (3X)
This page is intentionally left blank
Version 4.1 Revised March 1993

CUSERID (3S) (Standard C Library) CUSERID (3S)
NAME

cuserid — get character login name of the user
SYNOPSIS

#include <stdio.h>

char = cuserid (s)
char =+s; |

DESCRIPTION |
cuserid generates a character-string representation of the asso- |
ciated with the effective user ID of the process. If s is a NULL |
pointer, this representation is generated in an internal static |
area, the address of which is returned. Otherwise, s is assumed
to point to an array of at least L_cuserid characters; the ;
representation is left in this array. The constant L_cuserid is |
defined in the <stdio.h> header file.

DIAGNOSTICS |
If the login name cannot be found, cuserid returns a NULL |
pointer; if s is not a NULL pointer, a null character (\0) will be
placed at s [0]

SEE ALSO |
getlogin(3C), getpwent(3C). ‘

Revised March 1993 Version 4.1 Page 1

CUSERID (3S) (Standard C Library) CUSERID (3S)

This page is intentionally left blank

Page 2 Version 4.1 Revised March 1993

DBX (1) (Software Development Utilities (RISC)) DBX (1)

NAME

dbx — source-level debugger

SYNOPSIS

dbx (-1 directory] [—c file] [~i) [—r) [object] [core]

DESCRIPTION

dbx is a source-level debugger for the Supermax RISC.

The object file used with the debugger is produced by specify-
ing an appropriate option (—g) to the compiler. The resulting
object file contains symbol table information, including the
names of all source files that the compiler translated to create
the object file. These source files are accessible from the
debugger. If — g is not specified, limited debugging is possible.

If a core file exists in the current directory or a coredump is
specified, dbx can be used to look at the state of the program
when it faulted. dbx does not support lines greater than 511.

Running dbx

If a .dbxinit file resides in the current directory or in the user’s
home directory, the commands in it are executed when dbx is
invoked.

When invoked, dbx recognizes these command line options:

- directory or —1directory
Tells dbx to look in the specified directory for source
files. Multiple directories can be specified by using
multiple —I options. dbx searches for source files in
the current directory and in the object file’s direc-
tory whether or not —1I is used.

Selects a command file other than .dbxinit.

Uses interactive mode. This option does not treat #s
as comments in a file. It prompts for source even
when it reads from a file. With this option, dbx also
has extra formatting as if for a terminal.

Issued May 1992 Version 4.0 (RISC)

m—#

DBX (1) (Software Development Utilities (RISC)) DBX (1)

-r Runs the object file immediately.

The dbx monitor offers powerful command line editing. For a
full description of these editing features, see csh(1).

Multiple commands can be specified on the same command line
by separating them with a semicolon (;). If the user types a
string and presses the stop character usually (“z; see stty(1),
dbx tries to complete a symbol name from the program that
matches the string.

The Montltor u
These commands control the dbx monitor:

l[string] (integer] [—integer]
Specifies a command from the history list.

help Prints a list of dbx commands, using the UNIX
system ‘more’ command to display the list.

history Prints the items from the history list. The
default is 20.

quit['] Exit dbx after verification. If ‘I’ is specified,

verification is not required.

Controlling dbx
alias [name(argl,...argN)"string”] :
Lists all existing aliases, or, if an argument is
specified, defines a new alias.
unalias alias command name u
Removes the specified alias.

delete expressionl,...expressionN

delete all Deletes the specified item from the status list.
The argument all deletes all items from the
status list.

playback input (file]
Replays commands that were saved with the
record input commands in a text file.

Page 2 Version 4.0 (RISC) Issued May 1992

DBX (1) (Software Development Utllitles (RISC)) DBX (1)

playback output [file]
Replays debugger output that was saved with
the record output command.

record input [file]
Records all commands typed to dbx.

record output [file]
Records all dbx output.

sh [shell command]
ﬁ Calls a shell from dbx or executes a shell com-
‘ mand.

status Lists currently set stop, record, and trace com-
mands.

tagvalue (tagname)
Returns the value of tagname. If the tags
extends to more than one line, or if it contains
arguments, an error occurs. tagvalue can be
used in any expression.

set (variable = expression)
Lists existing debugger variables and their
values. This command can also be used to
assign a new value to an existing variable or to
define a new variable.

i unset variable
Removes the setting of a specified debugger
variable.
Examining Source
/regular expression
Searches ahead in the source code for the regu-
lar expression.

?regular expression
Searches back in the source code for the regular
expression.

issued May 1992 Version 4.0 (RISC) Page 3

DBX (1)

—

(Software Development Utliities (RISC)) DBX (1)

edit [file] Calls an editor from dbx.
file [file] Prints the current file name, or, if a file name is

specified, this command changes the current file
to the specified file.

func [expression] [procedure]

Moves to the specified procedure (activation
level), or, if an expression or procedure is not
specified, prints the current activation level.

list lexpression:integer)

list [expression]

Lists the specified lines. The default is 10 lines.

tag tagname Sets the current file/line to the location

specified by tagname. Operations are similar to
tge tag operations in vi(1).

use [directoryl . . . directoryN]}

Lists source directories, or, if a directory name
is specified, this command substitutes the new
directories for the previous list.

whatis variable

Prints the type declaration for the specified
name.

which variable

Finds the variable name currently being used.

whereis variable

Prints all qualifications (the scopes) of the
specified variable name.

Céntrolllng Programs
assign expressionl = expression2

Page 4

Assigns the specified expression to a specified
program variable.

Version 4.0 (RISC) Issued May 1992

DBX (1) {Software Development Utilities (RISC)) DBX (1)

{n) cont [signal]
cont [signal] to line

cont [signal) in procedure
Continues executing a program after a break-
point. n breakpoints are ignored if n is specified
before stepping. IOIf specified, signal is
delivered to the processing being debugged.
goto line Goes to the specified line in the source.

next (integer] Steps over the specified number of lines. The
default is one. This command does not step into
procedures.

rerun [argl ... argN] [<filel] [> file2]

rerun [argl ... argN] [<filel] [> &file2]
Reruns the program, using the same arguments
that were specified to the run command. If new
arguments are specified, rerun uses those argu-
ments.

run [argl ... argN] [<filel] { > file2]

run (argl ... argN] [< filel] { > &file2]
Runs the program with the specified argu-
ments.

return [procedure]
Continues executing until the procedire
returns. If a procedure is not specified, dbx
assumes the next procedure.

step (integer] Steps the specified number of lines. This com-
mand steps into procedures. The default is one
line.
Setting Breakpoints
catch [signal]
Lists al signals that dbx catches, or, if an argu-
ment is specified, adds a new signal to the catch
list.

Issued May 1992 Version 4.0 (RISC)

m—

DBX (1) (Software Development Utilities (RISC)) DBX (1)

ignore [signal}
Lists all signals that dbx does not catch. If a
signal is specified, this command adds the sig-
nal to the ignore list.

stop [variable]
stop [variable] at line (if expression]
stop [variable] in procedure [if expression]

stop (variable] if expression
Sets the breakpoint at the specified point. W/

trace variable [at line] [if expression]

trace variable [in procedure] [if expression]
Traces the specified variable.

when [variable] (at line] {command list}

when [variable) [in procedure) {command list}
Executes the specified dbx comma separated
command list.

Examining Program State
| dump (procedure] [.]
1 Prints variable information about procedure. If
i a dot (.) is specified, this command prints global
variable information on all procedures in the
stack and the variables of those procedures. V

down [expression]
Moves down the specified number of activation
levels in the stack. The default is one level.

up [expression])
Moves up the specified number of activation
levels in the stack. The default is one level.

print expressionl, ... expressionN
Prints the value of the specified expression. If
expression is a dbx keyword, it must be v
enclosed in parantheses. For example, to print W/
out a variable called ‘output’ (which is also a

Page 6 Version 4.0 (RISC) lssued May 1992

DBX (1) (Software Development Utliities (RISC)) DBX (1)

variable in the playback and record commands)
you must type:

print (output)

printf "string”, expressionl, ... expressionN
Prints the value of the specified expression,
using C language string formatting. As in the
print command, if expression is a dbx keyword,
you must enclose it within parantheses.

ﬂ printregs Prints all register values.
‘ where Does a stack trace, which shows the current
activation levels.
where n Prints out only the top n levels of the stack.

Debugging at the Machine Level
[r] conti [signal]

conti [signal] to address

conti (signal] in procedure
Continues executing assembly code after a
breakpoint. n breakpoints are ignored if n is
specified before stepping. If specified, signal is
delivered to the processing being debugged.

nexti [integer]
ﬂ Steps over the specified number of machine
’ instructions. The default is one. This command
does not step into procedures.

stepi [integer]
Steps the specified number of machine instruc-
tions. This command steps into procedures. The
default is one instruction.

stopi [variable) at (address] [at address [if expression)
stopi [variable] in procedure [if expression]

issued May 1992 Version 4.0 (RISC) Page 7

DBX (1) (Software Development Utllities (RISC)) DBX (1)

stopi {variable] if expression
Sets the breakpoint in the machine code at the
specified point.

tracel variable at address [at address if expression]

tracei variable in procedure [at address if expression]
Traces the specified variable in machcine
instructions.

whenli [variable] (at address] {command}

|
|
| whenl [variable] [in procedure] {command} U
‘ Executes the specified dbx comma separated

| command list.

|

address[?}/ <count > <mode >

| Searching forward (or backward, if ? is
; specified), prints the contents address, or
i disassembles the code for the instruction
| address; count is the number of items to be
| printed at the specified address. mode is one of
the characters in the following table producing
the indicated result:

Print a short word in decimal.

Print a long word in decimal.

Print a short word in octal.

Print a long word in octal. .
Print a short word in hexadecimal. U
Print a long word in hexadecimal.

Print a byte in octal.

Print a bite as a character.

Print a string of characters that ends in a null.

Print a single precision real number.

Print a double precision real number.

Print machine instructions.

Prints data in typed format.

B "M ™Me o oK OO0 O

Page 8 Version 4.0 (RISC) Issued May 1992

DBX (1) (Software Development Utllities (RISC)) DBX (1)

ﬂ

address/ <countL > <value> <mask >

Searches for a 32-bit word starting at the
specified address; count specifies the number of
word to process in the search; an address is
printed when the word at address, after an
AND operation with mask, is equal to value.

Predefined dbx Variables:
The debugger has these predefined variables:

$addfmt

$bhyteaccess
$casesence

$curevent

$curline
$curscrline

$curpc

$datacache

$debugflag
$defin

Issued May 1992

Specifies the format for addresses. This can be
set to any specification that a C ‘printf’ state-
ment can format. The default is zero.

Same as $addrfmt.

When set to a nonzero value, specifies that
uppercase and lowercase letters be taken into
consideration during a search. When set to 0,
the case is ignored. The default i 0.

Shows the last even number as seen in the
status feature. Set only by dbx.

Specifies the current line. Set only by dbx.

Shows the last line listed plus 1. Set only by
dbx.

Specifies the current address. Used with the wi
and /i aliases.

Caches information from the data space so that
dbx must access data space only once. To debug
the operating system, set this variable to 0; oth-
erwise set it to a nonzero value. The default is
1

For internal use by dbx.
For internal use by dbx.

Version 4.0 (RISC)

m_—

DBX (1) (Software Development Utllities (RISC)) DBX (1)
$dispix For use when debugging pixie code. When set

to 0, machine code is showed while debugging.
When set to 1, pixie code is shown. The default
is 0.

$hexchars Output characters are printed in hexadecimal
format (set, unset).

$defout For internal use by dbx.
|
|
|

$hexin Specifies that inout constants are hexadecimal.

$hexints When set to a nonzero value, changes the u
default output constants toi hexadecimal. Over-
rides $octints.

$hexstrings When set to 1, specifies that all strings are
printed in hexadecimal; when set to 0, strings
are printed in character format.

$historyevent
Shows the current history line.
$lines Number of lines for history. The default is 20.
$listwindow Specifies how many lines the list command
prints.
$main Specifies the name of the procedure that dbx
will start with. This can be set to any pro-
cedure. The default is ‘main’. u

$maxstrlen Specifies how many characters of a string that
dbx prints for pointers to strings. The default is
128.

$octin When set to nonzero, changes the default input
constants to octal. When set, $hexint overrides
this setting.

$octints Output integers are printed octal format (set,
unset).

Page 10 Version 4.0 (RISC) Issued May 1992

DBX (1) (Software Development Utilities (RISC)) DBX (1)

$page

$pagewindow

$pdbxport

Specifies whether to page long information. A
nonzero value turns on paging; a 0 turns it off.
The default is 1.

Specifies how many lines print when informa-
tion runs longer than one screen. This can be
changed to match the number of lines on any
terminal. If set to 0, this variable assumes one
line. The default is 22, leaving space for con-
tinuation query.

Port name from /etc/remote(pdbx] used to con-
nect to target machine for pdbx.

$printwhilestep

$pimode

$printdata

$printwide

$prompt
$readtextfile

issued May 1992

For use with the step[n] and stepi[n] instruc-
tions. A nonzero integer specifies that all n
lines and/or instructions should be printed out.
A zero specifies that only the last line and/or
instruction should be printed out. The default
is zero.

Prints input when used with the playback input
command. The default is 0.

When set to a nonzero value, the contents of
registers used are printed next to each instruc-
tion displayed. The default is 0.

When set to a nonzero value, the contents of
variables are printed in a horizontal format.
The default is 0.

Sets the prompt for dbx.

When set to 1, dbx tries to read instructions
from the object file rather than the process. dbx
executes faster when debugging remotely using
the System Programmer’s Package. This vari-
able should always be set to 0 when the process
being debugged copies in code during the
debugging process. The default is 1.

Version 4.0 (RISC) Page 11

DBX (1) (Software Development Utilities (RISC)) DBX (1)

$regstyle A zero value causes registers to be printed out
in their normal r format (0rl, .. r3l). A
nonzero value causes the registers to be printed
out in a special format (zero, at, v0, v, ...) com-
monly used in debugging programs written in
assembly language.

$repeatmode

When set to a nonzero value, after pressing the
| RETURN key (for an empty line), the last com-
mand is repeated. The default is 1.

$rimode When set to a nonzero value, input is recorded
while recording output. The default is 0.

$sigtramp Tells dbx the name of the code called by the
system to invoke user signal handlers. This

varigble is set to sigtramp system running
under RISC/os.

$tagfile Contains a filename, indicating the file in which
the tag command and the tabvalue macro are to
search for tags.

Predefined dbx Allases
The debugger has these predefined aliases:

? Prints a list of all dbx commands.

a Assigns a value to a program variable.

b Sets a breakpoint at a specified line.

| bp Stops in a specified procedure.

| c Continues program execution after a breakpoint.

d Deletes the specified item from the status list.

e Looks at the specified line.

f Moves to the specified activation level on the stack.

Page 12 Version 4.0 (RISC) issued May 1992

(Software Development Utllities (RISC)) DBX (1)

g Goes to the specified line and begins executing the pro-
gram there.
Lists all items currently on the history list.

h

j Shows what items are on the status list.
1 Lists the next 10 lines of source code.

1] Lists the next 10 machine instructions.
n

or 8 Step over the specified number of lines without step-
ping into procedure calls.

ni or 8i
Step over the specified number of assembly code
instructions without stepping into procedure calls.

P Prints the value of the specified expression or variable.
pd Prints the value of the specified expression or variable
in decimal.
Replays dbx commands that were saved with the record
input format.

Prints the value of the specified expression or variable
in octal.

Prints values for all registers.

Prints the value for the specified variable or expression
in hexadecimal.

Ends the debugging session.

Runs the program again with the same arguments that
were specified with the ‘run’ command.

Records in a file every command typed.
Records all debugger output in the specified file.
Steps the next number of specified lines.

Steps the next number of specified lines of assembly
code instructions.

Issued May 1992 Version 4.0 (RISC)

DBX (1) (Software Development Utllities (RISC)) DBX (1)

i t Does a stack trace.
| u Lists the previous 10 lines.
w Lists the 5 lines preceding and following the current
line.
w Lists the 10 lines preceding and following the current
line.
Lists the 5§ machine instructions preceding and follow-
ing the machine instruction.
NOTE:

In order to use all facilities in dbx it is important that the word
LINEEDIT = is placed in the environment:

LINEEDIT=
export LINEEDIT

SEE ALSO
dbx in the Programmers Guide.

Page 14 Version 4.0 (RISC) issued May 1992

k3

DIAL (3X) (Dial Library) DIAL (3X)
NAME

dial — establish an out-going terminal line connection
SYNOPSIS

#include <dial.h>

int dial (call)
CALL call;

void undial (fd)

int fd;
DESCRIPTION

dial returns a file-descriptor for a terminal line open for

read/write. The argument to dial is a CALL structure (defined
in the <dial.h > header file).

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set dur-
ing the allocation of the terminal device.

The definition of CALL in the <dial.h > header file is:

typedef struct {
struct termio
*attr;/+ pointer to termio attribute struct */
int baud; /* transmission data rate */
int speed; /* 212A modem: low=300, high=1200 */
char #*line; /* device name for out-going line */
char #*telno; /* pointer to tel-no digits string =/
int modem; /* specify modem control for direct lines #/
char *device; /* unused %/
int dev_len; /* unused */

} CALL;

The CALL element speed is intended only for use with an out-
going dialed call, in which case its value should be either 300 or
1200 to identify the 113A modem, or the high- or low-speed set-
ting on the 212A modem. Note that the 113A modem or the
low-speed setting of the 212A modem will transmit at any rate
between 0 and 300 bits per second. However, the high-speed
setting of the 212A modem transmits and receives at 1200 bits
per second only. The CALL element baud is for the desired

Revised March 1993 RISC Version 4.1 Page 1

et

m T . PES SR e L PSR ¢ i
ﬁ

DIAL (3X) (Dial Library) DIAL (3X)

transmission baud rate. For example, one might set baud to
110 and speed to 300 (or 1200). However, if speed is set to
1200, baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to
its device-name should be placed in the line element in the
CALL structure. Legal values for such terminal device names
are kept in the Devices file. In this case, the value of the baud
element should be set to -1. This will cause dial to determine
the correct value from the Devices file.

The telno element is for a pointer to a character string
representing the telephone number to be dialed. Such
numbers may consist only of these characters:

0-9dial 0-9

* dial =*

dial

= wait for secondary dail tone

delay for approximately 4 seconds

The CALL element modem is used to specify modem control for
direct lines. This element should be non-zero if modem control
is required. The CALL element atir is a pointer to a termio
structure, as defined in the termio.k header file. A NULL value
for this pointer element may be passed to the dial function, but
if such a structure is included, the elements specified in it will
be set for the outgoing terminal line before the connection is
established. This is often important for certain attributes such
as parity and baud-rate.

The CALL elements device and dev len are no longer used.
They are retained in the CALL structure for compatibility rea-
sons.

Page 2 RISC Version 4.1 Revised March 1993

DIAL (3X)

FILES

NOTE

DIAL (3X)

(Dial Library)

/Jusr/lib/uucp/Devices
/usr/lib/uucp/Systems
/usr/lib/uucp/Sysfiles
/Jusr/lib/uucp/Dialers
/usr/lib/uucp/Devconfig
/usr/spool/uucp/LCK..tty-device

SEE ALSO
uucp(1C), alarm(2), read(2), write(2) and termio(7).

DIAGNOSTICS

On failure, a negative value indicating the reason for the
failure will be returned. Mnemonics for these negative indices
as listed here are defined in the <dial.h > header file.

INTRPT -1
D HUNG -2
NO ANS -3
ILLBD -4
APROB -5
L PROB -6
NO Ldv -7
DVNT A -8
DVNT K -9
NO BD A -10
NO BD K -11
DVNTE -12
BAD SYS —13

/ *
] *
/ *
/ *
/ *
/ *
/ *
[*
/ *
[*
] *
/ *
/ *

interrupt occurred * /

dialer hung (no return from write) * /
no answer within 10 seconds * /

illegal baud-rate * /

acu problem (open() failure) =/

line problem (open() failure) * /

can’t open Devices file * /

requested device not available = /
requested device not known * /

no device available at requested baud * /
no device known at requested baud * /
requested speed does not match * /
system not in Systems file * /

The program must be linked with the libdial.a archive; cc must
be called with the —1dial option.

WARNINGS
The R3000 version of the dial library function is not compati-
ble with Basic Networking Utilities on UNIX System V Release

2.0.

Including the <dial.h> header file automatically includes the
<termio.h > header file.

Revised March 1993

RISC Version 4.1 Page 3

s - S T B e e A e T T e e e D e R e s 1
]
] ﬁ

DIAL (3X) (Dial Library) DIAL (3X)

The above routine uses <stdio.h >, which causes it to increase
the size of programs, not otherwise using standard I/0, more
than might be expected.

BUGS

An alarm(2) system call for 3600 seconds is made (and caught)
within the dial module for the purpose of ‘“touching’’ the LCK..
file and constitutes the device allocation semaphore for the ter-
minal device. Otherwise, uucp(1C) may simply delete the LCK..
entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects
to be around for an hour or more, error returns from reads
should be checked for (errno= =EINTR), and the read possi-
bly reissued.

Page 4 RISC Version 4.1 Revised March 1993

DIRECTORY (3C) (Standard C Library) DIRECTORY (3C)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir
— directory operations

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

DIR * opendir (filename)
char = filename;

struct dirent * readdir (dirp)
DIR = dirp;

long telldir (dirp)
DIR =* dirp;

void seekdir (dirp, loc)
DIR = dirp;
long loc;
void rewinddir (dirp)
DIR *dirp;
int closedir (dirp)
DIR *dirp;
DESCRIPTION
opendir opens the directory named by filename and associates
a directory stream with it. opendir returns a pointer to be
used to identify the directory stream in subsequent operations.
The pointer NULL is returned if filename cannot be accessed or

is not a directory, or if it cannot malloc(3C) enough memory to
hold a DIR structure or a buffer for the directory entries.

readdir returns a pointer to the next active directory entry,
and positions the directory stream at the next entry. No inac-
tive entries are returned. It returns NULL upon reaching the
end of the directory or upon detecting an invalid location in the
directory.

Revised March 1993 RISC Version 4.1 Page 1

DIRECTORY (3C) (Standard C Library) DIRECTORY (3C)

telldir returns the current location associated with the named
directory stream.

seekdir sets the position of the next readdir operation on the
directory stream. The new position reverts to the one associ-
ated with the directory stream when the telldir operation from
which loc was obtained was performed.

rewinddir resets the position of the named directory stream to
the beginning of the directory.

closedir closes the named directory stream and frees the DIR
structure.

The following errors can occur as a result of these operations.

opendir:

[EACCES] A component of filename denies search
permission, or read permission is
denied for dirname.

[EFAULT) filename points outside the allocated
address space.

(EMFILE] The maximum number of file descrip-
tors are currently open.

[ENAMETOOLONG] The length of the filename argument
exceeds {PATH MAX]}, or the length
of a filename component exceeds
{NAME_MAX} while
{ POSIX_NO_TRUNC} is in effect.

[ENOENT!] The dirname argument points to the

name of a file which does not exist, or
to an empty string.

[ENOTDIR] A component of filename is not a
directory.

Page 2 RISC Version 4.1 Revised March 1993

\J

DIRECTORY (3C) (Standard C Library) DIRECTORY (3C)

readdir:

(EBADF] The file descriptor determined by the
DIR stream is no longer valid. This
results if the DIR stream has been
closed.

[ENOENT] The current file pointer for the direc-

tory is not located at a valid entry.

telldir, seekdir, and closedir:

[EBADF] The file descriptor determined by the
DIR stream is no longer valid. This
results if the DIR stream has been
closed.

EXAMPLE
Sample code which searches a directory for entry name:
dirp = opendir(".”);
while ((dp = readdir(dirp)) != NULL)
if (strcmp(dp->d name, name) ==)
{
closedir(dirp);
return FOUND;

}
closedir(dirp);
return NOT FOUND;

SEE ALSO
getdents(2), dirent(4).

WARNINGS
rewinddir is implemented as a macro, so its function address
cannot be taken.

Revised March 1993 RISC Version 4.1 Page 3

DIRECTORY (3C) (Standard C Library) DIRECTORY (3C)

‘ This page is intentionally left blank
|

Page 4 RISC Version 4.1 Revised March 1993

ﬂ

DRAND48 (3C) (Standard C Library) DRANDA48 (3C)

NAME
drand48, erand48, jrand48, Irand48, nrand48, mrand48,
srand48, seed48, lcong48 - generate uniformly distributed
pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubil3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
1 long seedval;

unsigned short *seed48 (seedl6v)
unsigned short seed16v([3];

void lcong48 (param)
unsigned short param|7];

DESCRIPTION
This family of functions generates pseudo-random numbers
using the well-known linear congruential algorithm and 48-bit
integer arithmetic.

Functions drand48 and erand48 return non-negative double-
precision floating-point values uniformly distributed over the
interval [0.0, 1.0).

Functions [rand48 and nrand48 return non-negative long
integers uniformly distributed over the interval [0, 23!).

Functions mrand48 and jrand48 return signed long integers
uniformly distributed over the interval [— 231, 23),

Revised March 1993 RISC Version 4.1 Page 1

DRANDA48 (3C) (Standard C Library) DRANDA48 (3C)

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand48,
lrand48 or mrand48 is called. (Although it is not recom-
mended practice, constant default initializer values will be sup-
plied automatically if drand48, lrand48 or mrand48 is called
without a prior call to an initialization entry point.)

Functions erand48, nrand48 and jrand48 do not require an
initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit f
integer values, X;, according to the linear congruential formula U

Xn+1 = (@X, + Omodm n=0.

The parameter m = 2%8; hence 48-bit integer arithmetic is
performed. Unless lcong48 has been invoked, the multiplier
value a and the addend value c are given by

a = S5DEECE66D ;3 = 273673163155 g
c = B16 = 13 8-

The value returned by any of the functions drand48, erand48,
lrand48, nrand48, mrand48 or jrand48 is computed by first
generating the next 48-bit X; in the sequence. Then the
appropriate number of bits, according to the type of data item
to be returned, are copied from the high-order (leftmost) bits of
X, and transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last V
48-bit X; generated in an internal buffer, and must be initial-

ized prior to being invoked. The functions erand48, nrand48

and jrand48 require the calling program to provide storage for

the successive X; values in the array specified as an argument

when the functions are invoked.

These routines do not have to be initialized; the calling pro-
gram must place the desired initial value of X; into the array
and pass it as an argument. By using different arguments,
functions erand48, nrand48 and jrand48 allow separate
modules of a large program to generate several independent
streams of pseudo-random numbers, i.e., the sequence of V
numbers in each stream will not depend upon how many times

Page 2 RISC Version 4.1 Revised March 1993

DRANDA48 (3C) (Standard C Library) DRANDA48 (3C)

~

the routines have been called to generate numbers for the
other streams.

The initializer function srand48 sets the high-order 32 bits of
X; to the 32 bits contained in its argument. The low-order 16
bits of X; are set to the arbitrary value 330E .

The initializer function seed48 sets the value of X; to the 48-
bit value specified in the argument array. In addition, the pre-
vious value of X; is copied into a 48-bit internal buffer, used
ﬂ only by seed48, and a pointer to this buffer is the value
’ returned by seed48. This returned pointer, which can just be
ignored if not needed, is useful if a program is to be restarted
from a given point at some future time — use the pointer to
get at and store the last X; value, and then use this value to
reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify
the initial X;, the multiplier value a, and the addend value c.
Argument array elements param{0-2] specify X;, param{3-5]
specify the multiplier a, and param/6] specifies the 16-bit
addend c. After lcong48 has been called, a subsequent call to
either srand48 or seed48 will restore the “standard” multiplier
and addend values, a and ¢, specified on the previous page.

SEE ALSO
rand(3C).

Revised March 1993 RISC Version 4.1 Page 3

de

DRANDA48 (3C) (Standard C Library) DRANDA8 (3C)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

DUP (2) (System Cail) DUP (2)

NAME
dup — duplicate an open file descriptor

SYNOPSIS
int dup(fildes)
int fildes;
DESCRIPTION
fildes is a file-descriptor obtained from a creat, dup, fentl, open

or pipe system call. dup returns a new file-descriptor having
the following in common with the original:

® Same open file (or pipe).

e Same file-pointer (that is, both file-descriptors share one
file-pointer).

e Same access mode (read, write, read/write etc.).

The new file-descriptor is set to remain open across calls to the
exec(2) routines [see fentl(2)].

The file-descriptor returned is the lowest one available.

RETURN VALUE
If successful, the function dup will return a non-negative
integer, namely the file-descriptor; otherwise, it will return —1
and errno will indicate the error.

ERRORS
Under the following conditions dup will fail and will set errno
to:
[EBADF] If fildes is not a valid open file-descriptor.

[EMFILE] If OPEN_MAX file-descriptors are currently
open in the calling process.

SEE ALSO
close(2), creat(2), exec(2), fentl(2), open(2), pipe(2), dup2(3C),
lockf(3C).

Revised March 1993 RISC Version 4.1 Page 1

DUP (2) (System Call) DUP (2)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

DUP2 (3C) {Standard C Library) DUP2 (3C)

NAME
dup2 — duplicate an open file descriptor

SYNOPSIS
int dup2 (fildes, fildes2)
int fildes, fildes2;
DESCRIPTION
fildes is a file descriptor referring to an open file, and fildes2 is
a non-negative integer less than OPEN MAX. dup2 causes

fildes2 to refer to the same file as fildes. If fildes2 already
referred to an open file, it is closed first.

dup2 will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.
[EMFILE] OPEN MAX file descriptors are currently
open.
SEE ALSO
close(2), creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2),
lockf(3C).
DIAGNOSTICS

Upon successful completion a non-negative integer, namely the
file descriptor, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Revised March 1993 RISC Version 4.1 Page 1

DUP2 (3C) (Standard C Library) DUP2 (3C)

w

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

ECVT (3C) (Standard C Library) ECVT (3C)

NAME
ecvt, fevt, gevt — convert floating-point number to string

SYNOPSIS
char * ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, = decpt, *sign;

char = fevt (value, ndigit, decpt, sign)
double value;
int ndigit, * decpt, *sign;

char = gevt (value, ndigit, buf)

double value;

int ndigit;

char =buf;

DESCRIPTION

ecut converts value to a null-terminated string of ndigit digits
and returns a pointer thereto. The high-order digit is non-
zero, unless the value is zero. The low-order digit is rounded.
The position of the decimal point relative to the beginning of
the string is stored indirectly through decpt (negative means to
the left of the returned digits). The decimal point is not
included in the returned string. If the sign of the result is
negative, the word pointed to by sign is non-zero, otherwise it
is zero.

feut is identical to ecut, except that the correct digit has been
rounded for printf “%f’ (FORTRAN F-format) output of the
number of digits specified by ndigit.

geut converts the value to a null-terminated string in the array
pointed to by buf and returns buf. It attempts to produce ndi-
git significant digits in FORTRAN F-format if possible, other-
wise E-format, ready for printing. A minus sign, if there is one,
or a decimal point will be included as part of the returned
string. Trailing zeros are suppressed.

Revised March 1993 RISC Version 4.1 Page 1

—E—

ECVT (3C) (Standard C Library) ECVT (3C)

v/

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fevt point to a single static
data array whose content is overwritten by each call.

Page 2 RISC Version 4.1 Revised March 1993

EDIT (2X) (DDE Libary) EDIT (2X)

NAME
edit — update a line of text from a terminal

SYNOPSIS
int edit (fildes, buf, nbyte, curoff)
int fildes;
char = buf;
unsigned nbyte, curoff;

DESCRIPTION
edit reads a line of text at most nbyte long (excluding the final
new-line character) from the file associated with fildes into the
buffer pointed to by buf.

The argument fildes is an open file-descriptor [see file-
descriptor in the introduction, intro(2&3)].

The function is primarily intended to be used on terminals.
When operating on a terminal, the contents of the character
buffer pointed to by buf will be output to the terminal, and the
cursor will be left at offset curoff from the first character in the
buffer. After this, the operator, using the normal line editing
commands, may change the contents of the buffer and ter-
minate input as with read(2). The operator is unable to move
the cursor beyond the end of the buffer, the size of which is

nbyte bytes.

edit will fail if one or more of the following are true:

[EBADF] fildes is not a valid file-descriptor.

[EINTR] A signal was caught during the operation.

[EIO] A physical I/0 error has occurred.

[ENXIO] The device associated with the file-descriptor is
a special file and the value of the file-pointer is
out of range.

[EAGAIN] The file is an ordinary file, enforcement-mode

file and record locking was set, O NDELAY was
set, and there was a blocking write-lock.

Revised March 1993 RISC Version 4.1 Page 1

EDIT (2X) (DDE Libary) EDIT (2X)

[EDEADLK] The read was going to sleep and cause a
deadlock situation to occur.

[ENOLCK] The system record-lock table was full, so that
the read could not go to sleep.

SEE ALSO
read(2).

DIAGNOSTICS
If successful, the functions edit will return a non-negative
integer indicating the number of bytes actually read (excluding
the final new-line character); if an end-of-file condition is met,
the functions will return —2; otherwise, they will return —1
and errno is set to indicate the error.

NOTE
| The program must be loaded with the library libdde.a.

Page 2 RISC Version 4.1 Revised March 1993

END (3C) (Standard C Library) END (3C)
NAME

end, etext, edata — last locations in program
SYNOPSIS

extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with
interesting contents. The address of efext is the first address
above the program text, edata above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break
may be reset by the routines of brk(2), malloc(3C), standard
input/output [stdio(3S)], the profile (—p) option of cc(1), and
so on. Thus, the current value of the program break should be
determined by sbrk (char *)(0) [see brk(2)].

SEE ALSO
ce(1), brk(2), malloe(3C), stdio(3S).

Revised March 1993 RISC Version 4.1 Page 1

END (3C) (Standard C Library) END (3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

ERF (3M) (Math Library) ERF (3M)

NAME

erf, erfc — error function and complementary error function
SYNOPSIS

#include <math.h>

double erf (x)
double x;

double erfec (x)
double x;
DESCRIPTION
2
™

erfc, which returns 1.0 — erf(x), is provided because of the
extreme loss of relative accuracy if erf(x) is called for large x
and the result subtracted from 1.0 (e.g., for x = 5, 12 places are
lost).

If x is NaN, NaN is returned and errno is set to EDOM.

SEE ALSO
exp(3M).

erf returns the error function of x, defined as

x
fe"zdt.
0

Revised March 1993 RISC Version 4.1 Page 1

ERF (3M) (Math Library) ERF (3M)

w/

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

—m

EXEC (2) (System Cail) EXEC(2)
NAME
exec: execl, execv, execle, execve, execlp, execvp — execute a
file
SYNOPSIS

extern char +« * environ
int execl (path, arg0, argl, ..., argn, 0)
char +path, » arg0, » argl, ..., * argn;
int execv (path, argv)
char »path, «argvl |;

int execle (path, arg0, argl, ..., argn, 0, envp)
char »path, *arg0, *argl, ..., «argn, *envp| };
int execve (path, argv, envp)
char *path, *argvl], «envp| };

int execlp (file, arg0, argl, ..., argn, 0)

char »file, * arg0, »argl, ..., * argn;
int execvp (file, argv)

char =+ file, » argv]];

DESCRIPTION

exec in all its forms transforms the calling process into a new
process. The new process is constructed from an ordinary, exe-
cutable file called the new process image file. There can be no
return from a successful exec because the calling process is
overlaid by the new process.

When a C program is executed, it is called as follows:
main (argc, argv, envp)
int argc;
char + «argv, » » envp;

where argc is the argument count, argv is an array of character
pointers to the arguments themselves, and enuvp is an array of
character pointers to the environment strings. As indicated,
arge is conventionally at least one and the first member of the
array points to a string containing the name of the file.

Revised March 1993 Version 4.1 Page 1

EXEC (2) (System Call) EXEC (2)

path points to a path name that identifies the new process
image file.

file points to the new process file. The path prefix for this file
is obtained by a search of the directories passed as the environ-
ment line "PATH =" [see environ(5)]. The environment is
supplied by the shell [see sh(1)].

If the process image file is not a valid executable object, the
execlp() and execup() functions use the contents of that file as
standard input to a command interpreter conforming to sys-
tem(). In this case the command interpreter becomes the new
process image.

arg0, argl, ..., argn are pointers to null-terminated character
strings. These strings constitute the argument list available to
the new process image. By convention, at least arg0 must be
present and point to a string that is the same as path (or its
last component).

argu is an array of character pointers to null-terminated
strings. These strings constitute the argument list available to
the new process image. By convention, argv must have at least
one member, and it must point to a string that is the same as
path (or its last component). argv is terminated by a null
pointer.

envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new
process image. enup is terminated by a null pointer. For execl
and execv, the C run-time start-off routine places a pointer to
the environment of the calling process in the global cell:

extern char + * environ;
and it is used to pass the environment of the calling process to
the new process image.

The operating system will choose an MCU on which the new
process will bee executed. The MCU chosen is the one that
numerically follows the MCU chosen by the last exec call, with
the following modifications: Only MCUs that are physically

Page 2 Version 4.1 Revised March 1993

EXEC(2) (System Call) EXEC(2)

™

present on the computer are chosen. Only the MCUs specified
in the calling process’ MCU-mask (see mcumask(2)] will be
chosen. The selection may be further restricted by preceding
the exec call by

set_parm(mask, -1, —1);

If mask is 0, the new process will run on the same MCU as the
calling process. Otherwise, mask is bitwise AND’ed with the
calling process’ MCU-mask to create a mask specifying which
MCUs the operating system may choose between.

File descriptors open in the calling process remain open in the
new process, except for those whose close-on-exec flag is set;
see fentl(2). For those file descriptors that remain open, the
file pointer is unchanged.

Signals set to terminate the calling process will be set to ter-
minate the new process. Signals set to be ignored by the cal-
ling process will be set to be ignored by the new process. Sig-
nals set to be caught by the calling process will be set to ter-
minate new process; see signal(2).

For signals set by sigset(2), exec will ensure that the new pro-
cess has the same system signal action for each signal type
whose action is SIG_DFL, SIG_IGN, or SIG_HOLD as the cal-
ling process. However, if the action is to catch the signal, then
the action will be reset to SIG_DFL, and any pending signal for
this type will be held.

If the set-user-ID mode bit of the new process file is set [see
chmod(2)), exec sets the effective user ID of the new process to
the owner ID of the new process file. Similarly, if the set-
group-ID mode bit of the new process file is set, the effective
group ID of the new process is set to the group ID of the new
process file. The real user ID and real group ID of the new pro-
cess remain the same as those of the calling process.

The shared memory segments attached to the calling process
will not be attached to the new process [see shmop(2) and
par_att(2)].

Revised March 1993 Version 4.1

EXEC (2) (System Call) EXEC (2)

Profiling is disabled for the new process; see profil(2).

All active asynchronous 1/0 operations started by the calling
process are aborted.

The new process also inherits the following attributes from the
calling process:

current working directory

file mode creation mask [see umask(2)]

file size limit [see ulimit(2)]

file-locks [see fentl(2) and lockf(30)] W
nice value [see nice(2)]

parent process ID

pending signal [see sigpending(2)]

process signal mask [see sigprogmask(2)]

process ID

process group ID

real group ID

real user ID

root directory

semadj values [see semop(2)]

time left until an alarm clock signal [see alarm(2)]
trace flag [see ptrace(2) request 0]

tty group ID [see exit(2) and signal(2)]

tms_utime, tms_stime, tms_cutime, and tms_cstime [see

times(2)] u
MCU mask [see mcumask(2)]

exec will fail and return to the calling process if one or more of

the following are true:

[E2BIG] The number of bytes in the new process’s
combined environment and argument list
is greater than the system-imposed limit
of {ARG_MAX]}.

{EACCES] Search permission is denied for a direc-
tory listed in the new process file’s path

prefix. U

Page 4 Version 4.1 Revised March 1993

EXEC (2)

[EACCES]
[EACCES]
(EAGAIN]
[(EFAULTI]
{EINTR]
[EINVAL]
{EMULTIHOP]

(ENAMETOOLONG]

{(ENOENTI

[ENOEXEC]

{(ENOLINK]

{ENOMEM]

Revised March 1993

(System Call) EXEC (2)

The new process file is not an ordinary
file.

The new process file is not an ordinary
file.

All local process control blocks on the
destination MCU are in use.

path, argv, or envp point to an illegal
address.

A signal was caught during the exec sys-
tem call.

The exec is preceded by a call to set_parm
with a mask that specifies no legal MCU.

Components of path require hopping to
multiple remote machines.

The length of the path or file arguments,
or an element of the environment vari-
able PATH prefixed to a file, exceeds
{PATH_MAX]}, or a pathname component
is longer than {NAME_MAX} and
{_POSIX_NO_TRUNC} is in effect for
that file.

One or more components of the new pro-
cess path name of the file do not exist.

The exec is not an execlp or execup, and
the new process file has the appropriate
access permission but an invalid magic
number in its header.

path points to a remote machine and the
link to that machine is no longer active.

The new process requires more memory
than is allowed by the system-imposed
maximum MAXMEM.

Version 4.1 Page 5

EXEC(2) (System Call) EXEC (2)
[ENOTDIR] A component of the new process path of

the file prefix is not a directory.
(ETXTBSY] The new process file is a pure procedure

(shared text) file that is currently open
for writing by some process.

If an error is detected after the calling process has disappeared,
the new process is terminated with a SIGKILL signal. A typical
error of this kind would be the inability to load the program
from the new process file.

SEE ALSO
sh(1l), alarm(2), exit(2), fentl(2), fork(2), nice(2), ptrace(2),
semop(2), signal(2), sigset(2), times(2), ulimit(2), umask(2),
lockf(3C), a.out(4), environ(5).

DIAGNOSTICS
If exec returns to the calling process an error has occurred; the
return value will be —1 and errno will be set to indicate the
error.

Page 6 Version 4.1 Revised March 1993

EXIT(2) (System Call) EXIT (2)

NAME

exit, exit — terminate process

SYNOPSIS

#include <stdlib.h>

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION

exit terminates the calling process with the following conse-
quences;

All of the file descriptors open in the calling process are closed.

All the active asynchronous 1/0O operations started by the cal-
ling process are aborted.

If the parent process of the calling process is executing a wait,
it is notified of the calling process’s termination and the low
order eight bits (i.e., bits 0xff) of status are made available to it
[see wait(2)].

If the parent process of the calling process is not executing a
wait, the calling process is transformed into a zombie process.
A zombie process is an incative process that has no space allo-
cated to it, and it will be deleted at some later time when its
parent executes a wait(2) routine or dies.

The parent process ID of all of the calling processes’ existing
child processes and zombie processes is set to 1. This means
the initialization process [see intro(2)] inherits each of these
processes.

Each attached shared memory segment is detached and the
value of shm_nattach in the data structure associated with its
shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a
semadj value [see semop(2)], that semadj value is added to the
semval of the specified semaphore.

Revised March 1993 RISC Version 4.1 Page 1

EXIT (2) (System Call) EXIT (2)

If the process has a process, text, or data lock, an unlock is
performed [see plock(2)].

An accounting record is written on the accounting file if the
system’s accounting routine is enabled [see acct (2)].

If the process ID, tty group ID, and process group ID of the cal-
ling process are equal, the SIGHUP signal is sent to each pro-
cess that has a process group ID equal to that of the calling
process.

A death of child signal is sent to the parent. u

The C function exit may cause cleanup actions before the pro-
| cess exits. The function exit circumvents all cleanup.

The C function exit(3C) calls any functions registered through
| the atexit function in the reverse order of their registration.
‘ The function _exit circumvents all such functions and cleanup.

The symbols EXIT SUCCESS and EXIT FAILURE are defined
in stdlib.h and may be used as the value of status to indicate
successful or unsuccessful termination, respectively.

SEE ALSO
acct(2), intro(2), plock(2), semop(2), signal(2), sigset(2), wait(2).

DIAGNOSTICS
None. There can be no return from an exit system call.

Page 2 RISC Version 4.1 Revised March 1993

EXP (3M) (Math Library) EXP (3M)

NAME
exp, log, logl0, pow, sqrt — exponential, logarithm, power,
square root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double logl0 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
exp returns e*.

log returns the natural logarithm of x. The value of x must be
positive.

logl0 returns the logarithm base ten of x. The value of x must
be positive.

pow returns x’. If x is zero, y must be positive. If x is nega-
tive, y must be an integer.

sqrt returns the non-negative square root of x. The value of x
may not be negative.

SEE ALSO
hypot(3M), sinh(3M).

DIAGNOSTICS
exp returns HUGE_VAL when the correct value would

overflow, or 0 when the correct value would underflow, and
sets errno to ERANGE.

Revised March 1993 RISC Version 4.1 Page 1

EXP (3M) (Math Library) EXP (3M)

For all functions, if x is NaN, NaN is returned and errno is set
to EDOM.

log and logl0 return —HUGE_VAL and set errno to EDOM
when x is non-positive.

pow returns 1.0 if x and y is zero. pow returns 0 and sets errno
to EDOM when x is 0 and y is non-positive, or when x is nega-
tive and y is not an integer. When the correct value for pow
would overflow or underflow, pow returns *HUGE_VAL or 0
respectively, and sets errno to ERANGE.

sqrt returns 0 and sets errno to EDOM when x is negative.

Page 2 RISC Version 4.1 Revised March 1993

FCLOSE (3S) (Standard C Library) FCLOSE (3S)

NAME
fclose, flush — close or flush a stream

SYNOPSIS
#include <stdio.h>

int felose (stream)
FILE = stream;

int flush (stream)
FILE =*stream;

DESCRIPTION
felose causes any buffered data for the named stream to be
written out, and the stream to be closed. It marks for update
the st_ctime and st_mtime fields of the underlaying file, if the
stream was writable, and if buffered data had not been written
to the file yet.

fclose is performed automatically for all open files upon calling
exit(2).

fflush causes any buffered data for the named stream to be
written to that file. The stream remains open. The st_ctime and
st_mtime fields are marked for update.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
These functions return 0 for success, and EOF if any error is
detected and errno is set to:

[EAGAIN] The O _NONBLOCK flag is set for the file
descriptor underlaying stream andhe process
would be delayed in the write operation.

(EBADF] The file descriptor underlaying stream is not
valid.
[EFBIG] An attempt was made to write a file that

exceeds the process’s file size limit or the max-
imum file size. (See ulimit(2)).

Revised March 1993 RISC Version 4.1 Page 1

de

FCLOSE (3S)

[EINTR]

(EIO]

[ENOSPC]

[EPIPE]

Page 2

(Standard C Library) FCLOSE (3S)

The fflush(2) function was interrupted by a sig-
nal.

The implementation supports job control, the
process is a member of a background process
group attempting to write to its controlling ter-
minal, TOSTOP is set, the process is neither
ignoring nor blocking SIGTTOU and the pro-
cess group of the process is orphaned. This
error may also be returned under implementa-
tion defined conditions.

There was no free space remaining on the
device containing the file.

An attempt is made to write to a pipe or FIFO
that is not open for reading by any process. A
SIGPIPE signal will also be sent to the pro-
cess.

RISC Version 4.1 Revised March 1993

FCNTL (2) (System Call) FCNTL(2)

NAME
fentl — file control
SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

int fentl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
fentl provides for control over open files. Fildes is an open file
descriptor obtained from a creat, open, dup, fcntl, or pipe sys-
tem call.

The commands available are:
F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor
greater than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both
file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new
file descriptor is set to remain open across
exec(2) system calls.

F_GETFD Get the close-on-exec flag FD_CLOEXEC associ-
ated with the file descriptor fildes. If the low-
order bit is 0 the file will remain open across
exec, otherwise the file will be closed upon exe-
cution of exec.

Revised March 1993 Version 4.1 Page 1

m_

FCNTL(2)

F_SETFD

F GETFL
F_SETFL

(System Call) FCNTL (2)

Set the close-on-exec FD_CLOEXEC Rag associ-
ated with fildes to the low-order bit of arg (0
or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags
can be set [see fentl(5)].

The following commands are used for file locking and record
locking (byte locking). Locks may be placed on an entire file or
segments of a file. If enforcement-mode file and record locking
is in effect [see chmod(2)] a lock will prevent read and write
operations that are incompatible with the lock, and the file can-
not be truncated.

F GETLK

F_SETLK

F_SETLKW

Page 2

Get the first lock which blocks the lock descrip-
tion given by the variable of type struct flock
(see below) pointed to by arg. The information
retrieved overwrites the information passed to
fentl in the structure flock. If no lock is found
that would prevent this lock from being
created, the structure is passed back unchanged
except for the lock type which will be set to
F_UNLCK.

Set or clear a file segment lock according to the
variable of type struct flock (see below) pointed
to by arg. F_SETLK is used to establish read
(F_RDLCK) and write (F_ WRLCK) locks, as well
as remove either type of lock (F_UNLCK).
F RDLCK, F WRLCK, and F_UNLCK are defined
by the <fentlh> header file. If a read or
write lock cannot be set, fcntl will return
immediately with a return value of —1.

This command is the same as F_SETLK except
that if a read or write lock is blocked by other
locks, the process will sleep until the segment is
free to be locked.

Version 4.1 Revised March 1993

FCNTL(2) (System Call) FCNTL (2)

The structure flock defined by the <fcntl.h> header file
describes a lock. It describes the type (I_type), starting offset
(I_whence), relative offset (I_start), size (I_len), RFS system ID,
and process ID (I_pid) of the lock. The structure contains the
following fields:

short 1 type; / * F_RDLCK, F_WRLCK, or F_UNLCK =*/

short 1 whence; /» SEEK SET, SEEK_CUR, SEEK END +/

long 1 start; / » Relative offset in bytes =» /

long 1len; / * Length, if O then until EOF » /

short 1 _sysid; / * RFS system ID of process owning lock,
returned with F_ GETLK * /

short 1 pid; / * Process ID of process owning lock,
returned with F_ GETLK # /

When a read lock has been set on a segment of a file, other
processes may also set read locks on that segment or a portion
of it; and even if enforcement-mode record locking is in effect,
other processes may read the locked segment. A read lock
prevents any other process from setting a write lock on any
portion of the protected area; and if enforcement-mode record
locking is in effect, other processes may not write to any por-
tion of the protected area. The file descriptor on which a read
lock is being placed must have been opened with read access.

A write lock prevents any other process from setting a read
lock or a write lock on any portion of the protected area; and if
enforcement-mode record locking is in effect, other processes
may neither read nor write any portion of the protected area.
The file descriptor on which a write lock is being placed must
have been opened with write access.

The value of [_whence is SEEK_SET, SEEK_CUR, or SEEK_END
0, 1, or 2, respectively) to indicate that the relative offset
I_start will be measured from the start of the file, the current
position, or the end of the file, respectively. These symbolic
values are defined in the <unistd.h> header file.

Revised March 1993 Version 4.1 Page 3

m—

FCNTL(2) (System Call) FCNTL(2)

The value of I_len is the number of consecutive bytes to be
locked. The process ID I_pid field is only used with F_ GETLK
to return the value for a blocking lock.

Locks may start and extend beyond the end of a file, but may
not be negative relative to the beginning of the file. A lock
may be set always to extend to the end of file by setting I_len
to zero. If such a lock also has !_start set to zero and I_whence
set to SEEK_SET, the whole file will be locked.

Changing or unlocking a segment from the middle of a larger
locked segment leaves two smaller segments locked at each end
of the originally locked segment. Locking a segment that is
already locked by the calling process causes the old lock type to
be removed and the new lock type to take effect.

All locks associated with a file for a given process are removed
when a file descriptor for that file is closed by that process or
the process holding that file descriptor terminates. Locks are
not inherited by a child process after executing the fork(2) rou-
tine.

fentl will fail if one or more of the following are true:

(EAGAIN] cmd is F_SETLK the type of lock (I_type) is a
read (F RDLCK) lock and the segment of a file
to be locked is already write locked by another
process or the type is a write (F_WRLCK) lock
and the segment of a file to be locked is already
read or write locked by another process.

[EBADF] The fildes argument is not a valid open file
descriptor, or the argument cmd is F_SETLK
or F_SETLKW, the type of lock, I_type, is a
shared lock (F_RDLCK), and fildes is not a
valid file descriptor open for reading, or the
type of lock I type, is an exclusive lock
(F_WRLCK), and files is not a valid file
descriptor open for writing.

Page 4 Version 4.1 Revised March 1993

ﬂ

FCNTL(2)

(EDEADLK]

(EFAULTI
[EINTR]

[EINVAL]
(EINVAL)

(ENOLCK]

[ENOLINK]

SEE ALSO

(System Call) FCNTL (2)

cmd is F_SETLKW, the lock is blocked by
some lock from another process, and putting
the calling-process to sleep, waiting for that
lock to become free, would cause a deadlock.

cmd is F_SETLK, arg points outside the pro-
gram address space.

A signal was caught during the fcntl system
call.

cmd is F_DUPFD. arg is either negative, or
greater than or equal to OPEN_MAX.

cmd is F_GETLK, F_SETLK, or SETLKW and
arg or the data it points to is not valid.

emd is F_SETLK or F_SETLKW, the type of
lock is a read or write lock, and there are no
more record locks available (too many file seg-
ments locked) because the system maximum
has been exceeded.

fildes is on a remote machine and the link to
that machine is no longer active.

close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2),

fentl(5).

DIAGNOSTICS
Upon successfu
cmd as follows:
F_DUPFD
F_GETFD

F SETFD
F_GETFL
F SETFL
F GETLK

Revised March 1993

| completion, the value returned depends on

A new file descriptor.

Value of flag (only the low-order bit is
defined).

Value other than —1.

Value of file flags.

Value other than —1.

Value other than —1.

Version 4.1 Page 5

m—

FCNTL (2) (System Call) FCNTL (2)

v/

| F_SETLK Value other than -1.
F_SETLKW Value other than - 1.
‘ Otherwise, a value of —1 is returned and errno is set to indi-
cate the error.

Page 6 Version 4.1 Revised March 1993

FERROR (3S) (Standard C Library) FERROR (3S)

NAME
ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (stream)
FILE = stream;

int feof (stream)
FILE =*stream;

void clearerr (stream)
FILE = stream;

int fileno (stream)
FILE = stream;

DESCRIPTION
ferror returns non-zero when an I/O error has previously
occurred reading from or writing to the named stream, other-
wise zero.

feof returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

clearerr resets the error indicator and EOF indicator to zero on
the named stream.

fileno returns the integer file descriptor associated with the
named stream; see open(2).

NOTES
All these functions are implemented as macros; they cannot be
declared or redeclared.

SEE ALSO
open(2), fopen(3S), stdio(3S).

DIAGNOSTICS
ferror, fileno and feof fails if:

[EBADF] The file descriptor underlying stream is not
valid.

Revised March 1993 RISC Version 4.1 Page 1

FERROR (3S) (Standard C Library) FERROR (3S)

W/

This page is intentionally left blank U

Page 2 RISC Version 4.1 Revised March 1993

FLOOR (3M) (Math Library) FLOOR (3M)

NAME
floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value
functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;
double ceil (x)
double x;
double fmod (x, y)
double x, y;
double fabs (x)
double x;

DESCRIPTION
floor returns the largest integer (as a double-precision number)
not greater than x.

ceil returns the smallest integer not less than x.

fmod returns the floating-point remainder of the division of x
by y: x if y is zero or if x/y would overflow; otherwise the
number f with the same sign as x, such that x = iy + f for
some integer i,and | f| < |y |.

fabs returns the absolute value of x, | x |.

If x (or y) is NaN, NaN is returned and errno is set to EDOM

SEE ALSO
abs(30).
DIAGNOSTICS
The routines will fail if:
[EDOM] x (or y) is NaN.
[ERANGE] The result would overflow.

Revised March 1993 RISC Version 4.1 Page 1

SRR AR S R RS

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

FLOOR (3M) (Math Library) FLOOR (3M)

W/

FOPEN (3S) (Standard C Library) FOPEN (3S)

NAME
fopen, freopen, fdopen — open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE +freopen (filename, type, stream)

char +filename, * type;
m FILE = stream;

FILE =*fdopen (fildes, type)
int fildes;
char =* type;

DESCRIPTION
fopen opens the file named by filename and associates a stream

with it. fopen returns a pointer to the FILE structure associ-
ated with the stream.

filename points to a character string that contains the name of
the file to be opened.

type is a character string having one of the following values:

7r” open for reading
”"w” truncate or create for writing
f 5 7a” append; open for writing at end of file, or create
for writing

r+” open for update (reading and writing)
"w+” truncate or create for update
“a+” append; open or create for update at end-of-file

freopen substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the open
ultimately succeeds. freopen returns a pointer to the FILE
structure associated with stream.

Revised March 1993 RISC Version 4.1 Page 1

R
I

FOPEN (3S) (Standard C Library) FOPEN (3S)

freopen is typically used to attach the preopened streams asso-
ciated with stdin, stdout and stderr to other files.

fdopen associates a stream with a file descriptor. File descrip-
tors are obtained from open, dup, creat, or pipe(2), which open
files but do not return pointers to a FILE structure stream.
Streams are necessary input for many of the Section 3S library
routines. The type of stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or
rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation
which encounters end-of-file.

»,”

When a file is opened for append (i.e., when Zype is "a” or
”a+7), it is impossible to overwrite information already in the
file. fseek may be used to reposition the file pointer to any
position in the file, but when output is written to the file, the
current file pointer is disregarded. All output is written at the
end of the file and causes the file pointer to be repositioned at
the end of the output. If two separate processes open the same
file for append, each process may write freely to the file
without fear of destroying output being written by the other.
The output from the two processes will be intermixed in the
file in the order in which it is written.

If mode is ”w”, ”a”, "w+” or "a+” and the file did not previ-
ously exist, upon successful completion the fopen(2) function
will mark for update the st_atime, st_ctime and st_mtime fields
of the file and the st ctime and st mtime fields of the parent
directory.

» ”

If mode is "w” or "w+” and the file did previously exist, upon
successful completion the fopen(2) function will mark for
update the st_ctime and st_mtime fields of the file. The fopen(2)
function will allocate a file descriptor as open(2) does.

Page 2 RISC Version 4.1 Revised March 1993

=

FOPEN (3S) (Standard C Library) FOPEN (3S)
SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S),
stdio(39).
DIAGNOSTICS

fopen, fdopen, and freopen return a NULL pointer on failure.

The fdopen() function may fail if:

[EBADF] The fildes argument is not a valid file
descriptor.
ﬁ [EINVAL] The mode argument is not a valid mode.
[ENOMEM] Insufficient space to allocate a buffer.
The fopen() (freopen()) will fail if:
{EACCES] Search permission is denied on a com-

ponent of the path prefix, or the file
exists and the permissions specified by
mode are denied, or the file does not exist
and write permission is denied for the
parent directory of the file to be created.

[EINTR] A signal was caught during the fopen()
(freopen()) function.
[EISDIR] The named file is a directory and mode
requires write access.
m [EMFILE] FOPEN MAX file descriptors, directories

and message catalogues are currently
open in the calling process.

[ENAMETOOLONG] The length of the filename string exceeds
PATH MAX or a pathname component is
longer than NAME MAX while
_POSIX NO TRUNC is in effect.

[ENFILE] The system file table is full.

[ENOENT] The named file does not exist or the
ﬂ filename argument points to an empty
’ string.

Revised March 1993 RISC Version 4.1 Page 3

ke

FOPEN (3S) (Standa!'d C Library) FOPEN (3S)

[ENOSPC] The directory or file system that would
contain the new file cannot be expanded,
the file does not exist, and it was to be

created.
[ENOTDIR] A component of the path prefix is not a
directory.

[ENXIO] The named file is a character special or
| block special file, and the device associ-
ated with this special file does not exist.

[EROFS] The named file resides on a read-only file u
system and mode requires write access.

The fopen() function may fail if:

[EINVAL] The value of the mode argument is not
valid.

[ENOMEM] Insufficient storage space is available.

[ETXTBSY] The file is a pure procedure (shared text)

file that is being executed and mode
requires write access.

Page 4 RISC Version 4.1 Revised March 1993

ﬁ

FORK (2)

NAME

(System Call) FORK (2)

fork — create a new process

SYNOPSIS

#include <sys/types.h>
pid_t fork ()

DESCRIPTION
fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process).
This means the child process inherits the following attributes
from the parent process:

environment

close-on-exec flag {see exec(2)]

signal handling settings (i.e.,SIG_DFL, SIG_IGN,
SIG_HOLD, function address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value [see nice(2)]

all attached shared memory segments [see shmop(2)]
process group 1D

tty group ID [see exit(2)]

current working directory

root directory

file mode creation mask [see umask(2)]

file size limit [see ulimit(2)]

MCU mask [see mcumask(2)]

The child process differs from the parent process in the follow-
ing ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e.,
the process ID of the parent process).

The child process has its own copy of the parent’s file
descriptors. Each of the child’s file descriptors shares a
a common file pointer with the corresponding file
descriptor of the parent.

Revised March 1993 RISC Version 4.1 Page 1

FORK (2) (System Call) FORK (2)

All semadj values are cleared [see semop(2)].

Process locks, text locks and data locks are not inherited
by the child [see plock(2)].

The child process’s utime, stime, cutime, and cstime are
set to 0. The time left until an alarm clock signal is reset
to 0.

The child process will be running on the same MCU as
the parent process.

There is a mechanism that enables the calling process to con- u
trol the position of the new process in the process hierarchy.
Normally, the new process becomes a child of the calling pro-
cess. If, however, the fork call is preceded by the following call:

set_parm(biology, ~1, —1);

the situation changes. The argument biology controls the rela-
tionship between the new process and the calling process. If
biology is 0, the situation is the same as above: The new pro-
cess becomes a child of the calling process. If biology is 1, the
new process becomes a child of process number 1. If biology is
2, the new process becomes a sibling of the calling process, that
is, the parent process ID of the new process is set to the parent
process ID of the calling process.

fork will fail and no child process will be created if one or more

of the following are true: V
[EAGAIN] The system-imposed limit on the total number
of processes under execution would be
exceeded.

[ENOMEM] The process requires more space than the sys-
tem is able to supply.

SEE ALSO .
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), sig-
nal(2), sigset(2), times(2), ulimit(2), umask(2), wait(2).

Page 2 RISC Version 4.1 Revised March 1993

Y=

FORK (2) (System Call) FORK (2)

DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the
child process and returns the process ID of the child process to
the parent process. Otherwise, a value of —1 is returned to the

parent process, no child process is created, and errno is set to
indicate the error.

Revised March 1993 RISC Version 4.1 Page 3

FORK (2) (System Call) FORK (2)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

m

FPATHCONF (2) (System Call) FPATHCONF (2)

fpathconf, pathconf — get configurable pathname variables

SYNOPSIS

#include <unistd.h>

long fpathconf (fildes, name)
int fildes, name;

long pathconf (path, name)
char *path;
int name;

DESCRIPTION

The functions fpathconf and pathconf return the current value
of a configurable limit or option associated with a file or direc-
tory. The path argument points to the pathname of a file or
directory; fildes is an open file descriptor; and name is the sym-
bolic constant (defined in <wunistd.h>) representing the
configurable system limit or option to be returned.

Value of name See Note
_PC_LINK MAX 1
_PC_MAX_CANNON 2
_PC_MAX_INPUT 2
_PC_NAME_MAX 3,4
_PC_PATH_MAX 4,5
_PC_PIPE BUF 6
_PC_CHOWN_RESTRICTED 7
_PC_NO_TRUNC 3,4
_PC_VDISABLE 2

Revised March 1993 RISC Version 4.1 Page 1

FPATHCONF (2) (System Call) FPATHCONF (2)

The values returned by pathconf and fpathconf depend on the
type of file specified by path or fildes. The table contains the
symbolic constants supported by pathconf and fpathconf along
with the POSIX defined return value. The return value is
based on the type of file specified by path or fildes.

Notes:

1 If path or fildes refers to a directory, the value returned
applies to the directory itself.

2 The behavior is undefined if path or fildes does not refer
to a terminal file.

3 If path or fildes refers to a directory, the value returned
applies to the filenames within the directory.

4 The behavior is undefined if path or fildes does not refer
to a directory.

5 If path or fildes refers to a directory, the value returned
is the maximum length of a relative pathname when the
specified directory is the working directory.

6 If path or fildes refers to a pipe or FIFQO, the value
returned applies to the FIFO itself. If path or fildes
refers to a directory, the value returned applies to any
FIFOs that exist or can be created within the directory.
If path or fildes refer to any other type of file, the
behavior is undefined.

7 If path or fildes refers to a directory, the value returned
applies to any files, other than directories, that exist or
can be created within the directory.

The value of the configurable system limit or option specified
by name does not change during the lifetime of the calling pro-
cess.

Page 2 RISC Version 4.1 Revised March 1993

k3

FPATHCONF (2) (System Call) FPATHCONF (2)

{pathconf fails if the following is true:
[EBADF] fildes is not a valid file descriptor.

pathconf fails if one or more of the following are true:

[EACCES] Search permission is denied for a com-
ponent of the path prefix.

[ELOOP] Too many symbolic links are encountered
while translating path.

[EMULTIHOP] Components of path require hopping to
multiple remote machines and file system
type does not allow it.

[ENAMETOOLONG] The length of a pathname exceeds
{PATH_MAX}, or pathname component
is longer than {NAME MAX} while
{_POSIX_NO_TRUNC} is in effect.

[ENOENT] path is needed for the command specified
and the named file does not exist or if the
path argument points to an empty string.

[ENOLINK] path points to a remote machine and the
link to that machine is no longer active.

[ENOTDIR] a component of the path prefix is not a
directory.

Both fpathconf and pathconf fail if the following is true:
[EINVAL] if name is an invalid value.

SEE ALSO
sysconf(3C), limits(4).

DIAGNOSTICS
If fpathconf or pathconf are invoked with an invalid symbolic
constant or the symbolic constant corresponds to a configurable
system limit or option not supported on the system, a value of
—1 is returned to the invoking process.

Revised March 1993 RISC Version 41 . Page 3

FPATHCONF (2) (System Call) FPATHCONF (2)

If the function fails because the configurable system limit or
option corresponding to name is not supported on the system
the value of errno is not changed.

Page 4 RISC Version 4.1 Revised March 1993

FREAD (3S) (Standard C Library) FREAD (3S)

NAME

fread, fwrite — binary input/output

SYNOPSIS

#include <stdio.h>
#include <sys/types.h>

size_t fread (ptr, size, nitems, stream)
void * ptr;
size_t size, nitems;
FILE =+ stream;

size_t fwrite (ptr, size, nitems, stream)
void # ptr;
size_t size, nitems;
FILE =*stream;

DESCRIPTION

fread copies, into an array pointed to by pir, nitems items of
data from the named input stream, where an item of data is a
sequence of bytes (not necessarily terminated by a null byte) of
length size. fread stops appending bytes if an end-of-file or
error condition is encountered while reading stream, or if
nitems items have been read. fread leaves the file pointer in
stream, if defined, pointing to the byte following the last byte
read if there is one. fread does not change the contents of
stream.

fwrite appends at most nitems items of data from the array
pointed to by ptr to the named output stream. fwrite stops
appending when it has appended nitems items of data or if an
error condition is encountered on stream. fwrite does not
change the contents of the array pointed to by ptr.

The argument size is typically sizeofl * ptr) where the pseudo-
function sizeof specifies the length of an item pointed to by pir.
If ptr points to a data type other than char it should be cast
into a pointer to char.

Revised March 1993 RISC Version 4.1 Page 1

FREAD (3S) (Standard C Library) FREAD (3S)

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S),
putc(3S), puts(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
fread and fwrite return the number of items read or written. If
nitems is non-positive, no characters are read or written and 0
is returned by both fread and fwrite.

Page 2 RISC Version 4.1 Revised March 1993

ﬂ

FREXP (3C) (Standard C Library) FREXP (3C)

NAME
frexp, ldexp, modf — manipulate parts of floating-point
numbers

SYNOPSIS

#include <math.h>

double frexp (value, eptr)
double value;
int * eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, * iptr;

DESCRIPTION

Every non-zero number can be written uniquely as x * 2",
where the “mantissa’ (fraction) x is in the range 0.5 < |x| <
1.0, and the “exponent” n is an integer. frexp returns the
mantissa of a double value, and stores the exponent indirectly
in the location pointed to by eptr. If value is zero, both results
returned by frexp are zero.

ldexp returns the quantity value » 2°7.

modf returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS

If Idexp would cause overflow, + HUGE_VAL (defined in
<math.h>) is returned (according to the sign of value), and
errno is set to ERANGE.

If ldexp would cause underflow, zero is returned and errno is
set to ERANGE.

If these functions are called with a value equal to NaN, NaN is
returned and errno is set to EDOM.

Revised March 1993 RISC Version 4.1 Page 1

FREXP (3C) (Standard C Library) FREXP (3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

FSEEK (3S) (Standard C Library) FSEEK (3S)

NAME

fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE = stream;
long offset;
int ptrname;

void rewind (stream)
FILE + stream;

long ftell (stream)
FILE + stream;

DESCRIPTION

fseek sets the position of the next input or output operation on
the stream. The new position is at the signed distance offset
bytes from the beginning, from the current position, or from
the end of the file, according as pirname has the value
SEEK_SET, SEEK_CUR, or SEEK_END.

rewind(stream) is equivalent to fseek (stream, 0L, SEEK SET),
except that no value is returned and the error indicator is
cleared.

fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for
update may be either input or output.

ftell returns the offset of the current byte relative to the begin-
ning of the file associated with the named stream.

SEE ALSO

Iseek(2), fopen(3S), popen(8S), stdio(3S), ungetc(3S).

DIAGNOSTICS

fseek returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file that
has not been opened via fopen; in particular, fseek may not be
used on a terminal, or on a file opened via popen (3S).

Revised March 1993 RISC Version 4.1 Page 1

R o e TR s e o L R R iy L e Do sESn el 00, wad T DT e

FSEEK (3S) (Standard C Library) FSEEK (3S)

WARNING
Although on the UNIX system an offset returned by ftell is
measured in bytes, and it is permissible to seek to positions
relative to that offset, portability to non-UNIX systems
requires that an offset be used by fseek directly. Arithmetic
may not meaningfully be performed on such an offset, which is
not necessarily measured in bytes.

Page 2 RISC Version 4.1 Revised March 1993

de

FSYNC (2) (System Call) FSYNC (2)

NAME
fsync — synchronize a file’s in-memory state with that on the
physical medium

SYNOPSIS
#include <unistd.h>

int fsync(fildes)
int fildes;

DESCRIPTION
fsync moves all modified data and attributes of fildes to a
storage device. When fsync returns, all in-memory modified
copies of buffers associated with fildes have been written to the
physical medium. fsync is different from sync, which schedules
disk I/0 for all files but returns before the I/O completes.

fsync should be used by programs that require that a file be in
a known state. For example, a program that contains a simple
transaction facility might use fsync to ensure that all changes
to a file or files caused by a given transaction were recorded on
a storage medium.

fsync fails if one or more of the following are true:

[EBADF] fildes is not a valid file descriptor open for
writing.
[EINTR] A signal was caught during execution of the

fsync system call.

(EIO] An I/0O error occurred while reading from or
writing to the file system.

[ENOLINK] fildes is on a remote machine and the link on
that machine is no longer active.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

Revised March 1993 RISC Version 4.1 Page 1

FSYNC (2) (System Call) FSYNC (2)

NOTES
The way the data reach the physical medium depends on both
implementation and hardware. fsync returns when the device
driver tells it that the write has taken place.
SEE ALSO
sync(2)
W/
W/

Page 2 RISC Version 4.1 Revised March 1993

~

FTW (3C) (Standard C Library) FTW (3C)

NAME

ftw — walk a file tree

SYNOPSIS

#include < ftw.h>

int ftw (path, fn, depth)
char * path;
int (*xfn) ();
int depth;

DESCRIPTION

ftw recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw calls fn, passing it a
pointer to a null-terminated character string containing the
name of the object, a pointer to a stat structure [see stat(2)]
containing information about the object, and an integer. Possi-
ble values of the integer, defined in the <ftw.h> header file,
are FTW_F for a file, FTW_D for a directory, FTW_DNR for a
directory that cannot be read, and FTW_NS for an object for
which stat could not successfully be executed. If the integer is
FTW_DNR, descendants of that directory will not be processed.
If the integer is FTW_NS, the stat structure will contain gar-
bage. An example of an object that would cause FTW_NS to be
passed to fn would be a file in a directory with read but
without execute (search) permission.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an
invocation of fn returns a nonzero value, or some error is
detected within fiw (such as an I/O error). If the tree is
exhausted, ftw returns zero. If fn returns a nonzero value, fiw
stops its tree traversal and returns whatever value was
returned by fn. If fiw detects an error, it returns —1, and sets
the error type in errno.

ftw uses one file descriptor for each level in the tree. The
depth argument limits the number of file descriptors so used.
If depth is zero or negative, the effect is the same as if it were
1. Depth must not be greater than the number of file

Revised March 1993 RISC Version 4.1 Page 1

FTW (3C) (Standard C Library) FTW (3C)

descriptors currently available for use. ftw will run more
quickly if depth is at least as large as the number of levels in
the tree.

SEE ALSO
stat(2), malloc(3C).

BUGS
Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.

CAVEAT

fiw uses malloc(3C) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by longjmp
being executed by fn or an interrupt routine, ftw will not have
a chance to free that storage, so it will remain permanently
allocated. A safe way to handle interrupts is to store the fact
that an interrupt has occurred, and arrange to have frn return
a nonzero value at its next invocation.

DIAGNOSTICS

The ftw() function will fail if:

[EACCES] Search permission is denied for any com-
ponent of path or read permission is
denied for path.

[EINVAL} The value of the ndirs argument is

invalid.

[ENAMETOOLONG] The length of the path string exceeds
{PATH_MAX]}, or a pathname component
is longer than {NAME_MAX} while
{_POSIX NO_TRUNC} is in effect.

[ENOENT] The path argument points to the name of
a file which does not exist or points to an
empty string.

[ENOTDIR] A component of path is not a directory.

Page 2 RISC Version 4.1 Revised March 1993

m

GAMMA (3M) (Math Library) GAMMA (3M)

NAME
gamma — log gamma function

SYNOPSIS
#include <math.h>
double gamma (x)
double x;
double lgamma (x)
double x;
extern int signgam;

DESCRIPTION
gamma and lgamma returns In(|{I'(x)|), where I'(x) is

defined as [e~t* ~'dt. The sign of I'(x) is returned in the
0

external integer signgam. The argument x may not be a non-
positive integer.

The following C program fragment might be used to calculate
I:

if ((y = gamma(x)) > LN_MAXDOUBLE)

error();

y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes exp(3M)
to return a range error, and is defined in the <values.h>
header file.

SEE ALSO
exp(3M), values(5).

DIAGNOSTICS
For non-negative integer arguments HUGE_VAL is returned,
and errno is set to EDOM. A message indicating SING error is
printed on the standard error output.

If the correct value would overflow, gamma returns
HUGE_VAL and sets errno to ERANGE.

If x is NaN, NaN is returned and errno is set to EDOM.

Revised March 1993 RISC Version 4.1 Page 1

GAMMA (3M) (Math Library) GAMMA (3M)

? v

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

GETC (3S) (Standard C Library) GETC (3S)

NAME

getc, getchar, fgetc, getw — get character or word from a
stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE = stream;

int getchar ()

int fgetc (stream)
FILE * stream;

int getw (stream)
FILE + stream;

DESCRIPTION

getc returns the next character (i.e., byte) from the named
input stream, as an integer. It also moves the file pointer, if
defined, ahead one character in stream. getchar is defined as
gete(stdin). getc and getchar are macros.

fgetc behaves like getc, but is a function rather than a macro.
fgetc runs more slowly than getc, but it takes less space per
invocation and its name can be passed as an argument to a
function.

getw returns the next word (i.e., integer) from the named input
stream. getw increments the associated file pointer, if defined,
to point to the next word. The size of a word is the size of an
integer and varies from machine to machine. getw assumes no
special alignment in the file.

The functions may mark the st_atime fields of the file associ-
ated with stream for update. The st_atime field will be marked
for update by the first successful execution of fgetc(), fgets(),
fread(), getc(), getchar(), gets() or fscanf() using stream that
returns data not supplied by a prior call to ungetc().

Revised March 1993 RISC Version 4.1 Page 1

GETC (3S)

SEE ALSO

(Standard C Library) GETC (3S)

1 fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), pute(3S),
| scanf(3S), stdio(3S).

| DIAGNOSTICS

These functions return the constant EQF at end-of-file or upon

an error. Because EOF is a valid integer, ferror(3S) should be
used to detect getw errors.

The functions will fail if:

(EAGAIN]

[EBADF]

[EINTR]

{EIO]

[ENOMEM]
[ENXIO]

WARNING

The O_NONBLOCK flag is set for the file
descriptor underlaying stream and the process
would be delayed in the fgetc() operation.

The file descriptor underlaying stream is not a
valid file descriptor open for reading.

The read operation was terminated due to the
receipt of a signal, and either no data was
transferred or the implementation does not
report partial transfer for this file.

The implementation supports job control, the
process is a member of a background process
attempting to read from its controlling termi-
nal, the process is either ignoring or blocking
the SIGTTIN signal or the process group is
orphaned. This error may also be generated for
implementation-defined reasons.

Insufficient storage space is available.

A request was made of a non-existent device,
or the request was outside the capabilities of
the device.

If the integer value returned by getc, getchar, or fgetc is stored
into a character variable and then compared against the
integer constant EOF, the comparison may never succeed,
because sign-extension of a character on widening to integer is
machine-dependent.

Page 2

RISC Version 4.1 Revised March 1993

W

GETC (3S) (Standard C Library) GETC (3S)
CAVEATS
Because it is implemented as a macro, gefc evaluates a stream

argument more than once. In particular, gete(= f+ +) does
not work sensibly. fgetc should be used instead.

Because of possible differences in word length and byte order-

ing, files written using putw are machine-dependent, and may
not be read using getw on a different processor.

Revised March 1993 RISC Version 4.1 Page 3

GETC (3S) (Standard C Library) GETC (3S)

W

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

GETCWD (3C) (Standard C Library) GETCWD (3C)

NAME
getcewd — get path-name of current working directory

SYNOPSIS
char * getcwd (buf, size)
char = buf;
int size;
DESCRIPTION
getcwd returns a pointer to the current directory path name.
The value of size must be at least two greater than the length
of the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space
using malloc(3C). In this case, the pointer returned by getcwd
may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the
output of the pwd (1) command into the specified string space.

EXAMPLE
void exit(), perror();

if ((cwd = getewd((char *)NULL, 64)) = = NULL) {
perror("pwd”);
exit(2);

printf(*%s\n”, cwd);

SEE ALSO
malloc(3C), popen(3S), pwd(1).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if
an error occurs in a lower-level function.

Revised March 1993 RISC Version 4.1 Page 1

GETCWD (3C) (Standard C Library) GETCWD (3C)

The getcwd() function will fail if:

[EACCES] Read or search permission was denied for a
component of the pathname.

[EINVAL] The size argument is zero or negative.
[ENOMEM] Insufficient storage space is available.

[ERANGE] The size argument is greater than zero, but is
smaller than the length of the pathname +1.

Page 2 RISC Version 4.1 Revised March 1993

GETDENTS (2) (System Call) GETDENTS (2)

NAME
getdents — read directory entries and put in a file system
independent format

SYNOPSIS

#include <sys/dirent.h>

int getdents (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
fildes is a file descriptor obtained from an opern(2) or dup(2)
system call.

getdents attempts to read nbyte bytes from the directory associ-
ated with fildes and to format them as file system independent
directory entries in the buffer pointed to by buf. Since the file
system independent directory entries are of variable length, in
most cases the actual number of bytes returned will be strictly
less than nbyte.

The file system independent directory entry is specified by the
dirent structure. For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in
the file given by the file pointer associated with fildes. Upon
return from getdents, the file pointer is incremented to point to
the next directory entry.

This system call was developed in order to implement the
readdir(3X) routine [for a description see directory(3C)], and
should not be used for other purposes.

getdents will fail if one or more of the following are true:

[EBADF] fildes is not a valid file descriptor open for
reading.
[EFAULT] Buf points outside the allocated address space.

Revised March 1993 RISC Version 4.1 Page 1

GETDENTS (2)

(System Call) GETDENTS (2)

[EINVAL]

(EIO]

[ENOENT!]

[ENOLINK]

[ENOTDIR]
SEE ALSO

nbyte is not large enough for one directory
entry.

An I/O error occurred while accessing the file
system.

The current file pointer for the directory is not
located at a valid entry.

fildes points to a remote machine and the link
to that machine is no longer active.

fildes is not a directory.

directory(3C), dirent(4).

DIAGNOSTICS

Upon successful completion a non-negative integer is returned
indicating the number of bytes actually read. A value of 0 indi-
cates the end of the directory has been reached. If the system
call failed, a —1 is returned and errno is set to indicate the

error.

Page 2

RISC Version 4.1 Revised March 1993

GETENV (3C) (Standard C Library) GETENV (3C)

NAME
getenv — return value for environment name

SYNOPSIS
#include <stdlib.h>

char * getenv (name)
char *name;

DESCRIPTION
getenv searches the environment list [see environ(5)] for a
string of the form name=value, and returns a pointer to the
value in the current environment if such a string is present,
otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C) and environ(5).

Revised March 1993 RISC Version 4.1 Page 1

GETENV (3C) (Standard C Library) GETENV (3C)

v

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

,ﬁs

GETGRENT (3C) (Standard C Library) GETGRENT (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent —
get group file entry

SYNOPSIS
#include <grp.h>

struct group * getgrent ()

struct group * getgrgid (gid)
gid_t gid;

struct group * getgrnam (name)
char * name;

void setgrent ()

void endgrent ()

struct group =* fgetgrent (f)
FILE =f;

DESCRIPTION
getgrent, getgrgid and getgrnam each return pointers to an
object with the following structure containing the broken-out
fields of a line in the /etc/group file. Each line contains a
“group’’ structure, defined in the <grp.h > header file.

struct group {

char *gr_name; /* the name of the group */

char *gr_passwd; /* the encrypted group password */

int gr_gid; /* the numerical group ID */

char **gr_mem; /* vector of pointers to member names */
}:

getgrent when first called returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next
group structure in the file; so, successive calls may be used to
search the entire file. getgrgid searches from the beginning of
the file until a numerical group id matching gid is found and
returns a pointer to the particular structure in which it was
found. getgrnam searches from the beginning of the file until a
group name matching name is found and returns a pointer to
the particular structure in which it was found. If an end-of-file

Revised March 1993 RISC Version 4.1 Page 1

i N I S . Saditane i A
’ m — — ‘ 4 ——

GETGRENT (3C) (Standard C Library) GETGRENT (3C)

or an error is encountered on reading, these functions return a
NULL pointer.

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. endgrent may be called to close the
group file when processing is complete.

fgetgrent returns a pointer to the next group structure in the
stream f, which matches the format of /etc/group.

FILES

/ete/group u
SEE ALSO

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to
increase the size of programs, not otherwise using standard
I/0, more than might be expected.

CAVEAT
All information is contained in a static area, so it must be
copied if it is to be saved.

Page 2 RISC Version 4.1 Revised March 1993

GETGROUPS (2) (System Call) GETGROUPS (2)

NAME
getgroups — get supplementary group access list IDs

SYNOPSIS
#include <unistd.h>

int getgroups(gidsetsize, grouplist)
int gidgetsize;
gid_t grouplist|];

DESCRIPTION

ﬁ getgroups gets the current supplemental group access list of the
calling process and stores the result in the array of group IDs
specified by grouplist. This array has gidsetsize entries and
must be large enough to contain the entire list. This list cannot
be greater than {NGROUPS MAX}. If gidsetsize equals 0, get-
groups will return the number of groups to which the calling
process belongs without modifying the array pointed to by
grouplist.

getgroups will fail if:

[EFAULT] A referenced part of the array pointed to by
grouplist is outside of the allocated address
space of the process.

[EINVAL] The value of gidsetsize is non-zero and less
than the number of supplementary group IDs
ﬁ set for the calling process.
SEE ALSO
chown(2), getuid(2), setuid(2), initgroups(3C).
DIAGNOSTICS

Upon successful completion, getgroups returns the number of
supplementary group IDs set for the calling process and set-
groups returns the value 0. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

Revised March 1993 RISC Version 4.1 Page 1

GETGROUPS (2) (System Call) GETGROUPS (2)

W/

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

GETLOGIN (3C) (Standard C Library) GETLOGIN (3C)

NAME

getlogin — get login name
SYNOPSIS

char = getlogin ()
DESCRIPTION

getlogin returns a pointer to the login name as found in
/ete/utmp. It may be used in conjunction with getpwnam to
locate the correct password file entry when the same user ID is
shared by several login names.

If getlogin is called within a process that is not attached to a
terminal, it returns a NULL pointer. The correct procedure for
determining the login name is to call cuserid, or to call getlogin
and if it fails to call getpwuid.

FILES

/etc/utmp
SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).
DIAGNOSTICS

Returns the NULL pointer if name is not found.

CAVEAT
The return values point to static data whose content is
overwritten by each call.

Revised March 1993 RISC Version 4.1 Page 1

GETLOGIN (3C) (Standard C Library) GETLOGIN (3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

GETMSG (2) (System Call) GETMSG (2)

NAME
getmsg — get next message off a stream

SYNOPSIS
#include <stropts.h>

int getmsg(fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

DESCRIPTION

getmsg retrieves the contents of a message [see intro(2)]
located at the stream head read queue from a STREAMS file,
and places the contents into user specified buffer(s). The mes-
sage must contain either a data part, a control part or both.
The data and control parts of the message are placed into
separate buffers, as described below. The semantics of each
part is defined by the STREAMS module that generated the
message.

fd specifies a file descriptor referencing an open stream. ctiptr
and dataptr each point to a strbuf structure which contains the
following members:

int maxlen; /* maximum buffer length */
int len; /* length of data */
char *buf; /* ptr to buffer */

where buf points to a buffer in which the data or control infor-
mation is to be placed, and maxlen indicates the maximum
number of bytes this buffer can hold. On return, lern contains
the number of bytes of data or control information actually
received, or is O if there is a zero-length control or data part, or
is —1 if no data or control information is present in the mes-
sage. flags may be set to the values 0 or RS_HIPRI and is used
as described below.

Revised March 1993 RISC Version 4.1 Page 1

BT g A e SR Y WS T e e e L BN R e T

GETMSG (2) (System Call) GETMSG (2)

ctlptr is used to hold the control part from the message and
dataptr is used to hold the data part from the message. If
ctiptr (or dataptr) is NULL or the maxlen field is —1, the con-
trol (or data) part of the message is not processed and is left on
the stream head read queue and len is set to —1. If the maxlen
field is set to 0 and there is a zero-length control (or data) part,
that zero-length part is removed from the read queue and len
is set to 0. If the maxlen field is set to 0 and there are more
than zero bytes of control (or data) information, that informa-
; tion is left on the read queue and len is set to 0. If the maxlen
| field in ctlptr or dataptr is less than, respectively, the control or U
} data part of the message, maxlen bytes are retrieved. In this
| case, the remainder of the message is left on the stream head
read queue and a non-zero return value is provided, as
described below under DIAGNOSTICS. If information is
retrieved from a priority message, flags is set to RS HIPRI on
return.

By default, getmsg processes the first priority or non-priority
message available on the stream head read queue. However, a
user may choose to retrieve only priority messages by setting
flags to RS_HIPRI. In this case, getmsg will only process the
next message if it is a priority message.

If O_NDELAY has not been set, getmsg blocks until a message,

of the type(s) specified by flags (priority or either), is available

on the stream head read queue. If O NDELAY has been set and U
a message of the specified type(s) is not present on the read

queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the stream from which messages are to
be retrieved, getmsg will continue to operate normally, as
described above, until the stream head read queue is empty.
Thereafter, it will return 0 in the len fields of ctlptr and
dataptr.

Page 2 RISC Version 4.1 Revised March 1993

GETMSG (2)

(System Call) GETMSG (2)

getmsg fails if one or more of the following are true:

[EAGAIN]

[EBADF]

[EBADMSG]

[EFAULT]

[EINTR]

(EINVAL]

(ENOSTR]

The O_NDELAY flag is set, and no messages
are available. .

fd is not a valid file descriptor open for read-
ing.

Queued message to be read is not valid for
getmsg.

ctiptr, dataptr, or flags points to a location out-
side the allocated address space.

A signal was caught during the getmsg system
call.

An illegal value was specified in flags, or the
stream referenced by fd is linked under a mul-
tiplexor.

A stream is not associated with fd.

A getmsg can also fail if a STREAMS error message had been
received at the stream head before the call to getmsg.

SEE ALSO

intro(2), poll(2), putmsg(2), read(2), write(2).

DIAGNOSTICS

Upon successful completion, a non-negative value is returned.
A value of 0 indicates that a full message was read successfully.
A return value of MORECTL indicates that more control infor-
mation is waiting for retrieval. A return value of MOREDATA
indicates that more data is waiting for retrieval. A return value
of MORECTL | MOREDATA indicates that both types of infor-

mation remain.

Subsequent getmsg calls will retrieve the

remainder of the message.

Revised March 1993

RISC Version 4.1 Page 3

GETMSG (2) (System Call) GETMSG (2)

\ v

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

GETOPT (3C) (Standard C Library) GETOPT (3C)

NAME
getopt — get option letter from argument vector

SYNOPSIS
#include <stdio.h>

int getopt (argc, argv, optstring)
int argc;
char * = argv, * opstring;
extern char = optarg;
extern int optind, opterr;

DESCRIPTION
getopt returns the next option letter in argv that matches a
letter in optstring. It supports all the rules of the command
syntax standard (see intro(1)). So all new commands will
adhere to the command syntax standard, they should use
getopts (1) or getopt (3C) to parse positional parameters and
check for options that are legal for that command.

optstring must contain the option letters the command using
getopt will recognize; if a letter is followed by a colon, the
option is expected to have an argument, or group of arguments,
which must be separated from it by white space.

optarg is set to point to the start of the option-argument on
return from getopt.

getopt places in optind the argv index of the next argument to
be processed. optind is external and is initialized to 1 before
the first call to getopt.

When all options have been processed (i.e., up to the first non-
option argument), getopt returns -—-1. The special option

¢ — — may be used to delimit the end of the options; when it
is encountered, —1 will be returned, and *“— —"" will be
skipped.

DIAGNOSTICS

getopt prints an error message on standard error and returns a
question mark (?) when it encounters an option letter not
included in optstring or no option-argument after an option

Revised March 1993 RISC Version 4.1 Page 1

GETOPT (3C) (Standard C Library) GETOPT (3C)

that expects one. This error message may be disabled by set-
ting opterr to 0.

EXAMPLE

The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the option o, which requires an option-
argument.:

#include < stdio.h>
#include <unistd.h>

main (argc, argv)

int argc;

char * *argv;

{
int c;
extern char * optarg;
extern int optind;

while ((c = getopt(arge, argv, ”abo:”)) ! = EOF)
switch (c) {
case ‘a’:
if (bflg)
errfig+ +;
else
aflg+ +;
break;
case 'b":
if (aflg)
errflg+ +;
else
bproc();
break;
case 0"
ofile = optarg;
break;
case '?':

Page 2 RISC Version 4.1 Revised March 1993

e R S T R

GETOPT (3C) (Standard C Library) GETOPT (3C)
errflg+ +;
}
if (errflg) {
(void)fprintf(stderr, "usage: . . . ”);
exit (2);

}
for (; optind < arge; optind + +) {
if (access(argvloptind], R OK)) {

) }

WARNING
Although the following command syntax rule (see intro(1))
relaxations are permitted under the current implementation,
they should not be used because they may not be supported in
future releases of the system. As in the EXAMPLE section
above, a and b are options, and the option o requires an
option-argument:

cmd - aboxxx file

(Rule 5 violation: options with option-arguments must not be

grouped with other options) |
cmd —ab —oxxx file

(Rule 6 violation: there must be white space after an option

that takes an option-argument)

ﬁ SEE ALSO
getopts(1), intro(1).

Revised March 1993 RISC Version 4.1 Page 3

GETOPT (3C) (Standard C Library) GETOPT (3C)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

GETPASS (3C) (Standard C Library) GETPASS (3C)

NAME
getpass — read a password

SYNOPSIS
char = getpass (prompt)
char * prompt;

DESCRIPTION

getpass reads up to a newline or EOF from the file /dev/tty,
after prompting on the standard error output with the null-
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most PASS_MAX
characters. If /dev/tty cannot be opened, a NULL pointer is
returned. An interrupt will terminate input and send an inter-
rupt signal to the calling program before returning.

The getpass() function marks for update the st_atime and
st_mtime fields of the file /dev/tty.

FILES
/dev/tty

WARNING
The above routine uses <stdio.h>, which causes it to increase
the size of programs not otherwise using standard I/0, more
than might be expected.

CAVEAT
The return value points to static data whose content is
overwritten by each call.

Revised March 1993 RISC Version 4.1 Page 1

GETPASS (3C)

Page 2

(Standard C Library) GETPASS (3C)

This page is intentionally left blank

RISC Version 4.1 Revised March 1993

GETPID (2) (System Call) GETPID (2)

NAME
getpid, getpgrp, getppid — get process, process group, and
parent process IDs

SYNOPSIS
#include <sys/types.h>

pid_t getpid ()
pid_t getpgrp ()
pid_t getppid ()

DESCRIPTION
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.
getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

Revised March 1993 RISC Version 4.1 Page 1

GETPID (2)

Page 2

(System Call)

This page is intentionally left blank

RISC Version 4.1

GETPID (2)

Revised March 1993

GETPW (3C) (Standard C Library) GETPW (3C)
NAME
getpw — get name from UID
SYNOPSIS
int getpw (uid, buf)
int uid;
char * buf;
DESCRIPTION

getpw searches the password file for a user id number that
equals uid, copies the line of the password file in which wuid
was found into the array pointed to by buf, and returns 0.
getpw returns non-zero if uid cannot be found.

This routine is included only for compatibility with prior sys-
tems and should not be used; see getpwent(3C) for routines to
use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to
increase, more than might be expected, the size of programs
not otherwise using standard I/0.

Revised March 1993 RISC Version 4.1 Page 1

GETPW (3C) (Standard C Library) GETPW (3C)

W/

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

GETPWENT (3C) (Standard C Library) GETPWENT (3C)
NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent
— get password file entry
SYNOPSIS

#include <pwd.h>

struct passwd * getpwent ()

struct passwd = getpwuid (uid)
uid_t uid;

struct passwd * getpwnam (name)
char * name;

void setpwent ()
void endpwent ()

struct passwd = fgetpwent (f)
FILE +f;

DESCRIPTION
getpwent, getpwuid and getpwnam each returns a pointer to an
object with the following structure containing the broken-out
fields of a line in the /etc/passwd file. Each line in the file
contains a ‘‘passwd” structure, declared in the <pwd.h>
header file:

struct passwd {
char «pw_name;
char +pw_passwd,
uid_t pw_uid;
gid_t pw_gid;
char +«pw_age;
char »pw_comment;
char «pw_gecos;
char +pw_dir;
char = pw_sghell;

Revised March 1993 Version 4.1 Page 1

E—ﬁ

GETPWENT (3C) (Standard C Library) GETPWENT (3C)

This structure is declared in <pwd.h> so it is not necessary to
redeclare it.

The fields have meanings described in passwd(4).

getpwent when first called returns a pointer to the first passwd
structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to
search the entire file. getpwuid searches from the beginning of
the file until a numerical user id matching uid is found and
returns a pointer to the particular structure in which it was
found. getpwnam searches from the beginning of the file until
a login name matching name is found, and returns a pointer to
the particular structure in which it was found. If an end-of-file
or an error is encountered on reading, these functions return a
NULL pointer.

A call to setpwent has the effect of rewinding the password file
to allow repeated searches. endpwent may be called to close
the password file when processing is complete.

fgetpwent returns a pointer to the next passwd structure in the
stream f, which matches the format of /etc/passwd.
FILES
/etc/passwd
SEE ALSO
getgrent(3C), getlogin(3C), passwd(4).
DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to

increase the size of programs, not otherwise using standard
I/0, more than might be expected.

CAVEAT
All information is contained in a static area, so it must be
copied if it is to be saved.

Page 2 Version 4.1 Revised March 1993

GETS

NAME

(3S) (Standard C Library) GETS (3S)

gets, fgets — get a string from a stream

SYNOPSIS

#include <stdio.h>

char = gets (s)
char *s;
char = fgets (s, n, stream)
char =*s;
int n;
FILE = stream;

DESCRIPTION

gets reads characters from the standard input stream, stdin,
into the array pointed to by s, until a new-line character is
read or an end-of-file condition is encountered. The new-line
character is discarded and the string is terminated with a null
character.

fgets reads characters from the stream into the array pointed
to by s, until n —1 characters are read, or a new-line character
is read and transferred to s, or an end-of-file condition is
encountered. The string is then terminated with a null charac-
ter.

The gets() and fgets() functions may mark the st_atime field of
the file associated with stream for update. The st_atime field
will be marked update by the first successful execution of
faetc(), fgets(), fread(), getc(), getchar(), gets() or fscanf()
using stream that returns data not supplied by a prior call to
ungetc().

SEE ALSO

ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S), stdio(3S).

DIAGNOSTICS

If end-of-file is encountered and no characters have been read,
no characters are transferred to s and a NULL pointer is
returned. If a read error occurs, such as trying to use these
functions on a file that has not been opened for reading, a
NULL pointer is returned. Otherwise s is returned.

Revised March 1993 RISC Version 4.1 Page 1

GETS (3S)

(Standard C Library) GETS (3S)

gets and fgets will fail if:

[EAGAIN]

[EBADF]

[EINTR]

(EIO]

[ENOMEM]
[ENXIO]

Page 2

The O_NONBLOCK flag is set for the file
descriptor underlaying stream and the process
would be delayed in the gets() operation.

The file descriptor underlaying stream is not a
valid file descriptor open for reading.

The read operation was terminated due to the
receipt of a signal, and either no data was
transferred or the implementation does not
report partial transfer for this file.

The implementation supports job control, the
process is a memeber of a background process
attempting to read from its controlling termi-
nal, the process is either ignoring or blocking
the SIGTTIN signal or the process group is
orphaned. This error may also be generated for
implementation-defined reasons.

Insufficient storage space is available.

A request was made of a non-existent device,
or the request was outside the capabilities of
the device.

RISC Version 4.1 Revised March 1993

GETTXT (3C) (Standard C Library) GETTXT (3C)

NAME
gettxt — retrieve a text string

SYNOPSIS
#include <nl_types.h>

char * gettxt (const char * msgid, const char * dfit_str);

DESCRIPTION
getixt retrieves a text string from a message file. The argu-
ments to the function are a message identification msgid and a
default string dflt_str to be used if the retrieval fails.

The text strings are in files created by the mkmsgs utility (see
mkmsgs(1)) and installed in directories in

/usr/lib/locale/ < locale > /LC_MESSAGES.

The directory <locale> can be viewed as the language in
which the text strings are written. The user can request that
messages be displayed in a specific language by setting the
environment variable LC_MESSAGES. If LC_MESSAGES is
not set the environment variable LANG will be used. If
LANG is not set, the files containing the strings are in

Jusr/lib/locale/C/LC_MESSAGES]/ + .

The user can also change the language in which the messages
are displayed in by invoking the setlocale function with the
appropriate arguments.

If gettxt fails to retrieve a message in a specific language it will
try to retrieve the same message in U.S. English. On failure,
the processing depends on what the second argument dflt_str
points to. A pointer to the second argument is returned if the
second argument is not the null string. If dflt_str points to the
null string a pointer to the U.S. English text string "Message
not found!!\n” is returned.

The following depicts the acceptable syntax of msgid for a call
to getixt.

<msgid> = <msgfilename>:<msgnumber>

Issued Feb.1992 Version 3.5 Page 1

TS hE S e i R R R i

GETTXT (3C) (Standard C Library) GETTXT (3C)

The first field is used to indicate the file that contains the text
strings and must be limited to 14 characters. These characters
must be selected from the set of all character values excluding
\0 (null) and the ASCII code for / (slash) and : (colon). The
names of message files must be the same as the names of files
created by mkmsgs and installed in

Jusr/lib/locale/ <locale > [LC_MESSAGES/ * .

The numeric field indicates the sequence number of the string
in the file. The strings are numbered from 1 to n where » is
the number of strings in the file.

On failure to pass the correct msgid or a valid message number
to gettxt a pointer to the text string "Message not found!!\n”
is returned.

EXAMPLE
gettxt(”UX:10”, "hello world\n”)

gettxt("UX:10”,)

UX is the name of the file that contains the messages. 10 is the
message number.

FILES
Jusr/lib/locale/C/LC_MESSAGES/

contains default message files created by

mkmsgs.
/usr/lib/locale/locale/LC_MESSAGES/ *

contains message files for different languages

created by mkmsgs.

SEE ALSO
mkmsgs(1), setlocale(3C), environ(5) in the System V Reference
Manual.

Page 2 Version 3.5 Issued Feb.1992

GETUID (2) (System Call) GETUID (2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user,
real group, and effective group IDs

SYNOPSIS
#include <sys/types.h>

uid_t getuid ()

uid_t geteuid ()
ﬁ gid_t getgid ()

gid_t getegid ()

DESCRIPTION
getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.
getgid returns the real group ID of the calling process.
getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

Revised March 1993 RISC Version 4.1 Page 1

GETUID (2) (System Call) GETUID (2)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

GETUT (3C) (Standard C Library) GETUT (3C)

getut: getutent, getutid, getutline, pututline, setutent, endu-
tent, utmpname — access utmp file entry

SYNOPSIS

#include <sys/types.h>
#include <utmp.h>

struct utmp * getutent ()

struct utmp =* getutid (id)
struct utmp =* id;

struct utmp =* getutline (line)
struct utmp =*line;

void pututline (utmp)
struct utmp * utmp;

void setutent ()
void endutent ()

void utmpname (file)
char «file;

DESCRIPTION

getutent, getutid and getutline each return a pointer to a struc-
ture of the following type:

struct utmp {

char ut_user[8]; / * User login name * /

char ut_idf4]; / * /etc/inittab id (usually line #) =/
char ut_line[12]; / * device name (console, Inxx) * /
short ut_pid; / * process id * /

short ut_type; / * type of entry =/

struct exit_status {
short e_termination;/ * Process termination status =* /

short e_exit; / * Process exit status * /
} ut_exit; / * The exit status of a process
+ marked as DEAD PROCESS. * /
time_t ut_time; / * time entry was made * /

b

Revised March 1993 RISC Version 4.1 Page 1

GETUT(3C) (Standard C Library) GETUT(3C)

getutent reads in the next entry from a utmp-like file. If the
file is not already open, it opens it. If it reaches the end of the
file, it fails.

getutid searches forward from the current point in the utmp
file until it finds an entry with a ut type matching
id — >ut _type if the type specified is RUN_LVL, BOOT _TIME,
OLD _TIME or NEW_TIME.

If the type specified in id is INIT PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD PROCESS, then getutid will return a ;
pointer to the first entry whose type is one of these four and U
whose ut_id field matches id— >ut_id. If the end of file is

reached without a match, it fails.

getutline searches forward from the current point in the utmp

file until it finds an entry of the type LOGIN_PROCESS or

USER_PROCESS which also has a ut_line string matching the

line— >ut _line string. If the end of file is reached without a
| match, it fails.

pututline writes out the supplied utmp structure into the utmp
file. It uses getutid to search forward for the proper place if it
finds that it is not already at the proper place. It is expected
that normally the user of pututline will have searched for the
proper entry using one of the getut routines. If so, pututline
will not search. If pututline does not find a matching slot for
the new entry, it will add a new entry to the end of the file. w

setutent resets the input stream to the beginning of the file.
This should be done before each search for a new entry if it is
desired that the entire file be examined.

endutent closes the currently open file.

utmpname allows the user to change the name of the file exam-

ined, from /etc/utmp to any other file. It is most often

expected that this other file will be /etc/wtmp. If the file

does not exist, this will not be apparent until the first attempt

to reference the file is made. utmpname does not open the file. .
It just closes the old file if it is currently open and saves the w
new file name.

Page 2 RISC Version 4.1 Revised March 1993

GETUT (3C) (Standard C Library) GETUT (3C)

FILES
/ete/utmp
/ete/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for
permissions or having reached the end of file, or upon failure to
write.

NOTES

The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are
made. Each call to either getutid or getutline sees the routine
examine the static structure before performing more 1/0. If
the contents of the static structure match what it is searching
for, it looks no further. For this reason to use getutline to
search for multiple occurrences, it would be necessary to zero
out the static after each success, or getutline would just return
the same pointer over and over again. There is one exception
to the rule about removing the structure before further reads
are done. The implicit read done by pututline (if it finds that it
is not already at the correct place in the file) will not hurt the
contents of the static structure returned by the getutent, getu-
tid or getutline routines, if the user has just modified those
contents and passed the pointer back to pututline.

These routines use buffered standard 1/0 for input, but putut-
line uses an unbuffered non-standard write to avoid race condi-
tions between processes trying to modify the utmp and wtmp
files.

Revised March 1993 RISC Version 4.1 Page 3

GETUT (3C) (Standard C Library) GETUT (3C)

W/

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

HSEARCH (3C) (Standard C Library) HSEARCH (3C)

NAME

hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY * hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

hsearch is a hash-table search routine generalized from Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indi-
cating the location at which an entry can be found. item is a
structure of type ENTRY (defined in the <search.h > header
file) containing two pointers: item.key points to the comparison
key, and item.data points to any other data to be associated
with that key. (Pointers to types other than character should
be cast to pointer-to-character.) action is a member of an
enumeration type ACTION indicating the disposition of the
entry if it cannot be found in the table. ENTER indicates that
the item should be inserted in the table at an appropriate
point. FIND indicates that no entry should be made. Unsue-
cessful resolution is indicated by the return of a NULL pointer.

hcreate allocates sufficient space for the table, and must be
called before hsearch is used. nel is an estimate of the max-
imum number of entries that the table will contain. This
number may be adjusted upward by the algorithm in order to
obtain certain mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by
another call to hcreate.

NOTES

hsearch uses open addressing with a multiplicative hash func-
tion. However, its source code has many other options avail-
able which the user may select by compiling the hsearch source

Revised March 1993 RISC Version 4.1 Page 1

HSEARCH (3C) (Standard C Library) HSEARCH (3C)

with the following symbols defined to the preprocessor:

DIV Use the remainder modulo table size as the
hash function instead of the multiplicative
algorithm.

USCR Use a User Supplied Comparison Routine for
ascertaining table membership. The routine
should be named hcompar and should behave
in a mannner similar to stremp [see
string (3C)].

CHAINED
Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

START Place new entries at the beginning of
the linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN
Keep the linked list sorted by key in
descending order.

Additionally, there are preprocessor flags for obtaining debug-
ging printout (—DDEBUG) and for including a test driver in
the calling routine (—DDRIVER). The source code should be
consulted for further details.

EXAMPLE
The following example will read in strings followed by two
numbers and store them in a hash table, discarding duplicates.
It will then read in strings and find the matching entry in the
hash table and print it out.

Page 2 RISC Version 4.1 Revised March 1993

HSEARCH (3C) (Standard C Library) HSEARCH (3C)

#include <stdio.h>
#include <search.h>

struct info {
int age, room;

|5
#define NUM_EMPL

main()

{

/ * this is the info stored in the table * /
/ * other than the key. * /

5000 /= # of elements in search table */

/ * space to store strings * /

char string_

space[NUM_EMPL * 20];

/ * space to store employee info * /
struct info info_space[NUM_EMPLY];

/ * next avail space in string_space * /
char #*str_ptr = string_space;

/ * next avail space in info_space * /
struct info *info_ptr = info_space;
ENTRY item, * found_item, * hsearch();
/ * name to look for in table */

char name_to_find[30];

inti = 0;

/ * create table =/

(void) hereate(NUM_EMPL);

while (scanf("%s%d%d”, str_ptr, &info_ptr— > age,
&info_ptr— >room) != EOF && i+ + < NUM_EMPL) {
/ * put info in structure, and structure in item * /
item.key = str_ptr;
item.data = (char =)info_ ptr;
str_ptr + = strlen(str_ptr) + 1;
info_ptr+ +;
/ * put item into table */
(void) hsearch(item, ENTER);

}

/ * access table * /

item.key =

Revised March 1993

name_to_find;

RISC Version 4.1 Page 3

HSEARCH (3C) (Standard C Library) HSEARCH (3C)

while (scanf(”%s”, item.key) ! = EOF) {
if ((found_item = hsearch(item, FIND)) ! = NULL) {
/ * if item is in the table */
{void)printf("found %s, age = %d, room = %d\n”,
found_item — > key,
((struct info *)found_item — >data) — > age,
((struct info *)found_item — >data) — >room);
} else {
(void)printf("no such employee %s\n”,
name_to_find)
}
}
}

SEE ALSO
bsearch(3C), lIsearch(3C), malloc(3C), string(3C), tsearch(3C).

DIAGNOSTICS
hsearch returns a NULL pointer if either the action is FIND
and the item could not be found or the action is ENTER and
the table is full.

hcreate returns zero if it cannot allocate sufficient space for the
table.

WARNING
hsearch and hcreate use malloc(3C) to allocate space.

CAVEAT
Only one hash search table may be active at any given time.

Page 4 RISC Version 4.1 Revised March 1993

HYPOT (3M) (Math Library) HYPOT (3M)

NAME
hypot — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
hypot returns

sqrt(x * x + y * y),
taking precautions against unwarranted overflows.

DIAGNOSTICS
When the correct value would overflow, hypot returns
HUGE_VAL and sets errno to ERANGE.

If x or y is NaN, NaN is returned and errno is set to EDOM.

Revised March 1993 RISC Version 4.1 Page 1

HYPOT (3M) (Math Library) HYPOT (3M)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

C R R s R RE P R e

IOCTL (2) (System Call) IOCTL (2)

NAME

ioctl — control device

SYNOPSIS

int ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

ioctl performs a variety of control functions on devices and
STREAMS. For non-STREAMS files, the functions performed by
this call are device-specific control functions. The arguments
request and arg are passed to the file designated by fildes and
are interpreted by the device driver. This control is infre-
quently used on non-STREAMS devices, with the basic
input/output functions performed through the read(2) and
write(2) system calls.

For STREAMS files, specific functions are performed by the ioctl
call as described in streamio(7).

fildes is an open file descriptor that refers to a device. request
selects the control function to be performed and will depend on
the device being addressed. arg represents additional informa-
tion that is needed by this specific device to perform the
requested function. The data type of arg depends upon the
particular control request, but it is either an integer or a
pointer to a device-specific data structure.

In addition to device-specific and STREAMS functions, generic
functions are provided by more than one device driver, for
example, the general terminal interface [see termio(7)].

toctl will fail for any type of file if one or more of the following
are true:

[EACCES] Future error.

[EBADF] fildes is not a valid open file descriptor.

[EINTR] A signal was caught during the ioctl system
call.

Revised March 1993 RISC Version 4.1 Page 1

IOCTL (2) (System Call) IOCTL (2)

[ENOTTY] fildes is not associated with a device driver that
accepts control functions.

ioctl will also fail if the device driver detects an error. In this
case, the error is passed through ioct/ without change to the
caller. A particular driver might not have all of the following
error cases. Other requests to device drivers will fail if one or
more of the following are true:

(EFAULT] request requires a data transfer to or from a
; buffer pointed to by arg, but some part of the
| buffer is outside the process’s allocated space.

| (EINVAL] request or arg is not valid for this device.
| (EIO] Some physical I/O error has occurred.
[ENX10] The request and arg are valid for this device

driver, but the service requested can not be
performed on this particular subdevice.

[ENOLINK] fildes is on a remote machine and the link to
that machine is no longer active.

STREAMS errors are described in streamio(7).

SEE ALSO
streamio(7), termio(7).

DIAGNOSTICS
Upon successful completion, the value returned depends upon
the device control function, but must be a non-negative integer.
Otherwise, a value of —1 is returned and errno is set to indi-
cate the error.

Page 2 RISC Version 4.1 Revised March 1993

SR m BSOS

ISNAN (3M) (Math Library) ISNAN (3M)
NAME

isnan — test for NaN
SYNOPSIS

#include <math.h>
int isnan(x)
double x;

DESCRIPTION
The isnan() function tests whether x is NaN.

RETURN VALUE
The isnan() function returns non-zero if x is NaN. Otherwise,
zero is returned.

ERRORS
No errors are defined.

Revised March 1993 RISC Version 4.1 Page 1

ISNAN (3M) (Math Library) ISNAN (3M)

* v

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

KILL (2) (System Call) KILL (2)
NAME

kill — send a signal to a process or a group of processes
SYNOPSIS

#include <sys/types.h>
#include <signal.h>

int kill (pid, sig)
pid_t pid;
int sig
DESCRIPTION
kill sends a signal to a process or a group of processes. The
process or group of processes to which the signal is to be sent
is specified by pid. The signal that is to be sent is specified by
sig and is either one from the list given in signal(2), or 0. If
sig is 0 (the null signal), error checking is performed but no
signal is actually sent. This can be used to check the validity
of pid.

The real or effective user ID of the sending process must match
the real or effective user ID of the receiving process, unless the
effective user ID of the sending process is super-user.

If pid is greater than zero, sig will be sent to the process
whose process ID is equal to pid. pid may equal 1, but signals
may not be sent to other special processes [see intro(2)].

If pid is 0, sig will be sent to all processes (excluding special
processes) whose process group ID is equal to the process group
ID of the sender.

If pid is —1 and the effective user ID of the sender is not
super-user, sig will be sent to all processes (excluding special
processes) whose real user ID is equal to the effective user ID of
the sender.

If pid is —1 and the effective user ID of the sender is super-
user, sig will be sent to all processes (excluding special
processes).

Revised March 1993 RISC Version 4.1 Page 1

KILL (2) (Sytm Call) KILL (2)

If pid is negative but not —1, sig will be sént to all processes
whose process group ID is equal to the absolute value of pid.

kill will fail and no signal will be sent if one or more of the fol-
lowing are true:

[EINVAL] sig is not a valid signal number.

[EPERM] pid specifies a special process except process 1,
or sig is SIGKILL and pid is 1,

[EPERM] The user ID of the sending process is not

super-user, and its real or effective user ID
does not match the real or effective user ID of
the receiving process.

[ESRCH] No process can be found corresponding to that
specified by pid.
SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2), sigset(2).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

Page 2 RISC Version 4.1 Revised March 1993

\o/

/

L3TOL (3C) (Standard C Library) L3TOL (3C)

NAME
13tol, 1tol3 — convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (Ip, cp, n)
long = lp;
char * cp;
int n;
void 1tol3 (cp, Ip, n)
ﬂ char * cp;
s long *1p;
int n;
DESCRIPTION
13tol converts a list of n three-byte integers packed into a char-

acter string pointed to by cp into a list of long integers pointed
to by Ip.

ltol3 performs the reverse conversion from long integers (Ip) to
three-byte integers (cp).

These functions are useful for file-system maintenance where
the block numbers are three bytes long.

SEE ALSO
fs(4).

CAVEAT
m Because of possible differences in byte ordering, the numerical
' values of the long integers are machine-dependent.

Revised March 1993 RISC Version 4.1 Page 1

L3TOL (3C) (Standard C Library) L3TOL (3C)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDAHREAD (3X) (Link Library) LDAHREAD (3X)
NAME
Idahread — read the archive header of a member of an archive
file
SYNOPSIS

#include <ldfen.h>

int ldahread (ldptr, arhead)
LDFILE = ldptr;
ARCHDR =* arhead;

DESCRIPTION
If TYPE(/dptr) is the archive file magic number, ldahread
reads the archive header of the common object file currently
associated with Idptr into the area of memory beginning at
arhead.

ldahread returns SUCCESS or FAILURE. ldahread will fail if
TYPE(Idptr) does not represent an archive file, or if it cannot
read the archive header.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ar(4), 1dfen(4).

Revised March 1993 RISC Version 4.1 Page 1

LDAHREAD (3X) (Link Library) LDAHREAD (3X)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDCLOSE (3X) (Link Library) LDCLOSE (3X)

NAME
ldclose, ldaclose — close a common object file

SYNOPSIS
#include <ldfen.h >

int 1dclose (1dptr)
LDFILE = ldpir;

int ldaclose (1dptr)
LDFILE = ldptr;

DESCRIPTION
ldopen (3X) and Idclose are designed to provide uniform access
to both simple object files and object files that are members of
archive files. Thus an archive of common object files can be
processed as if it were a series of simple common object files.

If TYPE(/dptr) does not represent an archive file, ldclose will
close the file and free the memory allocated to the LDFILE
structure associated with Idpir. If TYPE(Idptr) is the magic
number of an archive file, and if there are any more files in the
archive, Idclose will reinitialize OFFSET(Ildptr) to the file
address of the next archive member and return FAILURE.
The LDFILE structure is prepared for a subsequent
{dopen (3X). In all other cases, ldclose returns SUCCESS.

ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with /dp¢r regardless of the value
of TYPE(ldptr). ldaclose always returns SUCCESS. The func-
tion is often used in conjunction with ldaopen.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fclose(3S), ldopen(3X), 1dfen(4).

Revised March 1993 RISC Version 4.1 Page 1

LDCLOSE (3X) (Link Library) LDCLOSE (3X)

W/

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDFHREAD (3X) (Link Library) LDFHREAD (3X)

NAME
ldfhread — read the file header of a common object file

SYNOPSIS
#include <ldfen.h>

int ldfhread (1dptr, filehead)
LDFILE = ldptr;
FILHDR = filehead;

DESCRIPTION
m ldfhread reads the file header of the common object file
‘ currently associated with ldp#r into the area of memory begin-
ning at filehead.

{dfhread returns SUCCESS or FAILURE. [dfhread will fail if
it cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER(I/dptr) defined in 1dfen.h [see 1dfen (4)]. The
information in any field, fieldname, of the file header may be
accessed using HEADER (ldptr).fieldname.

The program must be loaded with the object file access routine

library libld.a.
SEE ALSO
ldclose(3X), ldopen(3X), 1dfen(4).

Revised March 1993 RISC Version 4.1 Page 1

de

LDFHREAD (3X) (Link Library) LDFHREAD (3X)
|
|

W/

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDGETNAME (3X) (Link Library) LDGETNAME (3X)

NAME
ldgetname — retrieve symbol name for common object file sym-
bol table entry

SYNOPSIS
#include <ldfcn.h>

char *ldgetname (ldptr, symbol)
LDFILE = ldptr;
SYMENT * symbol;

DESCRIPTION
ldgetname returns a pointer to the name associated with sym-
bol as a string. The string is contained in a static buffer local
to ldgetname that is overwritten by each call to ldgetname, and
therefore must be copied by the caller if the name is to be
saved.

ldgetname can be used to retrieve names from object files
without any backward compatibility problems. Idgetname will
return NULL (defined in stdio.h) for an object file if the name
cannot be retrieved. This situation can occur:

° if the “‘string table” cannot be found,

] if not enough memory can be allocated for the string
table,

. if the string table appears not to be a string table (for

example, if an auxiliary entry is handed to Ildgetname
that looks like a reference to a name in a nonexistent
string table), or

. if the name’s offset into the string table is past the end
of the string table.

Typically, ldgetname will be called immediately after a success-
ful call to Idtbread to retrieve the name associated with the
symbol table entry filled by Idtbread.

The program must be loaded with the object file access routine
library libld.a.

Revised March 1993 RISC Version 4.1 Page 1

LDGETNAME (3X) (Link Library) LDGETNAME (3X)

u

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

Page 2 RISC Version 4.1 Revised March 1993

LDLREAD (3X) (Link Library) LDLREAD (3X)

NAME
ldiread, 1dlinit, ldlitem — manipulate line number entries of a

common object file function

SYNOPSIS
#include <ldfen.h>

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE = ldptr;
long fenindx;
unsigned short linenum;
LINENO = linent;

int ldlinit(ldptr, fenindx)
LDFILE = ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE = ldptr;
unsigned short linenum;
LINENO = linent;

DESCRIPTION

Idlread searches the line number entries of the common object
file currently associated with ldptr. ldlread begins its search
with the line number entry for the beginning of a function and
confines its search to the line numbers associated with a single
function. The function is identified by fenindx, the index of its
entry in the object file symbol table. [dlread reads the entry
with the smallest line number equal to or greater than linenum
into the memory beginning at linent.

ldlinit and Idlitem together perform exactly the same function
as Idlread. After an initial call to ldiread or Ildlinit, ldlitem
may be used to retrieve a series of line number entries associ-
ated with a single function. [dlinit simply locates the line
number entries for the function identified by fenindx. Idlitem
finds and reads the entry with the smallest line number equal
to or greater than linenum into the memory beginning at
linent.

Revised March 1993 RISC Version 4.1 Page 1

LDLREAD (3X) (Link Library) LDLREAD (3X)

j ldiread, Ildlinit, and Idlitem each return either SUCCESS or

‘ FAILURE. [diread will fail if there are no line number entries

‘ in the object file, if fcnindx does not index a function entry in

| the symbol table, or if it finds no line number equal to or

‘ greater than linenum. Idlinit will fail if there are no line
number entries in the object file or if fenindx does not index a
function entry in the symbol table. Idlitem will fail if it finds
no line number equal to or greater than linenum.

The programs must be loaded with the object file access routine
library libld.a. V

SEE ALSO
ldclose(3X), 1dopen(3X), ldtbindex(3X), ldfecn(4).

Page 2 RISC Version 4.1 Revised March 1993

LDLSEEK (3X) (Link Library) LDLSEEK (3X)

NAME
ldiseek, ldnlseek — seek to line number entries of a section of a
common object file

SYNOPSIS
#include <ldfen.h>

int ldlseek (1dptr, sectindx)
LDFILE = ldptr;
unsigned short sectindx;

int ldnlseek (1dptr, sectname)
LDFILE = ldptr;
char *sectname;

DESCRIPTION
l{diseek seeks to the line number entries of the section specified
by sectindx of the common object file currently associated with
ldptr.

ldnlseek seeks to the line number entries of the section
specified by sectname.

ldlseek and Ildnlseek return SUCCESS or FAILURE. [diseek
will fail if sectindx is greater than the number of sections in
the object file; Idniseek will fail if there is no section name
corresponding with * sectname. Either function will fail if the
specified section has no line number entries or if it cannot seek
to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfen(4).

Revised March 1993 RISC Version 4.1 Page 1

LDLSEEK (3X) (Link Library) LDLSEEK (3X)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDOHSEEK (3X) (Link Library) LDOHSEEK (3X)

NAME
ldohseek — seek to the optional file header of a common object
file
SYNOPSIS
#include <ldfen.h>
int ldohseek (1dptr)
LDFILE = ldptr;
DESCRIPTION

ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

ldohseek returns SUCCESS or FAILURE. [dohseek will fail if
the object file has no optional header or if it cannot seek to the
optional header.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), ldfhread(3X), ldopen(3X), ldfen(4).

Revised March 1993 RISC Version 4.1 Page 1

O TR e

‘ LDOHSEEK (3X) (Link Library) LDOHSEEK (3X)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

~

LDOPEN (3X) (Link Library) LDOPEN (3X)

NAME
ldopen, ldaopen — open a common object file for reading

SYNOPSIS
#include <ldfen.h >

LDFILE =*ldopen (filename, ldptr)
char = filename;
LDFILE * ldptr;

LDFILE =*ldaopen (filename, oldptr)
char *filename;
LDFILE = oldptr;

DESCRIPTION
ldopen and ldclose(3X) are designed to provide uniform access
to both simple object files and object files that are members of
archive files. Thus an archive of common object files can be
processed as if it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename
and allocate and initialize the LDFILE structure, and return a
pointer to the structure to the calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic
number, ldopen will reinitialize the LDFILE structure for the
next archive member of filename.

ldopen and Ildclose(3X) are designed to work in concert. [dclose
will return FAILURE only when TYPE(/dptr) is the archive
magic number and there is another file in the archive to be
processed. Only then should Idopen be called with the current
value of ldptr. In all other cases, in particular whenever a new
filename is opened, ldopen should be called with a NULL ldptr
argument.

The following is a prototype for the use of Idopen and
ldclose (3X).

Revised March 1993 RISC Version 4.1 Page 1

LDOPEN (3X) (Link Library) LDOPEN (3X)

/ * for each filename to be processed * /

ldptr = NULL;
do

if ((dptr = ldopen(filename, ldptr)) != NULL)
{

/ * check magic number =* /

/ * process the file */

} while (Idclose(ldptr) = = FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename
anew and allocate and initialize a new LDFILE structure, copy-
ing the TYPE, OFFSET, and HEADER” ” fields from oldptr.
ldaopen returns a pointer to the new LDFILE structure. This
new pointer is independent of the old pointer, oldptr. The two
pointers may be used concurrently to read separate parts of the
object file. For example, one pointer may be used to step
sequentially through the relocation information, while the
other is used to read indexed symbol table entries.

Both Idopen and ldaopen open filename for reading. Both func-
tions return NULL if filename cannot be opened, or if memory
for the LDFILE structure cannot be allocated. A successful
open does not insure that the given file is a common object file
or an archived object file.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fopen(3S), ldclose(3X), ldfen(4).

Page 2 RISC Version 4.1 Revised March 1993

LDRSEEK (3X) (Link Library) LDRSEEK (3X)

~
NAME

ldrseek, ldnrseek — seek to relocation entries of a section of a
common object file

SYNOPSIS
#include <ldfen.h>

int ldrseek (ldptr, sectindx)
LDFILE * ldptr;
unsigned short sectindx;

m int ldnrseek (ldptr, sectname)
' LDFILE = ldptr;
char *sectname;

DESCRIPTION
Idrseek seeks to the relocation entries of the section specified
by sectindx of the common object file currently associated with
ldptr.

Idnrseek seeks to the relocation entries of the section specified
by sectname.

ldrseek and ldnrseek return SUCCESS or FAILURE. [drseek

will fail if sectindx is greater than the number of sections in

the object file; ldnrseek will fail if there is no section name

corresponding with sectname. Either function will fail if the

specified section has no relocation entries or if it cannot seek to
ﬂ the specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), ldopen(3X), 1dshread(3X), ldfen(4).

Revised March 1993 RISC Version 4.1 Page 1

LDRSEEK (3X)

Page 2

(Link Library)

LDRSEEK (3X)

This page is intentionally left blank

RISC Version 4.1

Revised March 1993

LDSHREAD (3X) (Link Library) LDSHREAD (3X)

NAME
ldshread, ldnshread — read an indexed/named section header
of a common object file

SYNOPSIS
#include <ldfen.h>

int ldshread (ldptr, sectindx, secthead)
LDFILE = ldptr;
unsigned short sectindx;
SCNHDR = secthead;

int ldnshread (1dptr, sectname, secthead)
LDFILE * ldptr;
char * sectname;
SCNHDR = secthead;

DESCRIPTION
ldshread reads the section header specified by sectindx of the
common object file currently associated with /dptr into the area
of memory beginning at secthead.

ldnshread reads the section header specified by sectname into
the area of memory beginning at secthead.

ldshread and Idnshread return SUCCESS or FAILURE.
ldshread will fail if sectindx is greater than the number of sec-
tions in the object file; Idnshread will fail if there is no section
name corresponding with sectname. Either function will fail if
it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfen(4).

Revised March 1993 RISC Version 4.1 Page 1

LDSHREAD (3X) (Link Library) LDSHREAD (3X)

W/

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDSSEEK (3X) (Link Library) LDSSEEK (3X)

NAME
ldsseek, ldnsseek — seek to an indexed/named section of a
common object file

SYNOPSIS
#include <ldfen.h>

int ldsseek (1dptr, sectindx)
LDFILE = ldptr;
unsigned short sectindx;

int ldnsseek (1dptr, sectname)

LDFILE = ldptr;
char *sectname;

DESCRIPTION
ldsseek seeks to the section specified by sectindx of the common
object file currently associated with ldptr.

ldnsseek seeks to the section specified by sectname.

ldsseek and Idnsseek return SUCCESS or FAILURE. Idsseek
will fail if sectindx is greater than the number of sections in
the object file; Idnsseek will fail if there is no section name
corresponding with sectname. Either function will fail if there
is no section data for the specified section or if it cannot seek
to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), ldshread(3X), 1dfen(4).

Revised March 1993 RISC Version 4.1 Page 1

de

LDSSEEK (3X) (Link Library) LDSSEEK (3X)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDTBINDEX (3X) (Link Library) LDTBINDEX (3X)

NAME
ldtbindex — compute the index of a symbol table entry of a
common object file

SYNOPSIS
#include <ldfen.h>

long ldtbindex (1dptr)
LDFILE * ldptr;

DESCRIPTION
Idtbindex returns the (long) index of the symbol table entry at
the current position of the common object file associated with
ldptr.

The index returned by Ildtbindex may be used in subsequent
calls to Idtbread(3X). However, since ldtbindex returns the
index of the symbol table entry that begins at the current posi-
tion of the object file, if Idtbindex is called immediately after a
particular symbol table entry has been read, it will return the
index of the next entry.

ldtbindex will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol
table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), ldopen(8X), 1dtbread(3X), ldtbseek(3X), ldfcn(4).

Revised March 1993 RISC Version 4.1 Page 1

LDTBINDEX (3X) (Link Library) LDTBINDEX (3X)

v

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDTBREAD (3X) (Link Library) LDTBREAD (3X)

NAME
Idthread — read an indexed symbol table entry of a common
object file
SYNOPSIS
#include <ldfen.h>
int ldtbread (1dptr, symindex, symbol)
LDFILE = ldptr;
long symindex;
SYMENT = symbol;
DESCRIPTION
{dtbread reads the symbol table entry specified by symindex of
the common object file currently associated with Idptr into the
area of memory beginning at symbol.
ldtbread returns SUCCESS or FAILURE. Idtbread will fail if
symindex is greater than or equal to the number of symbols in
the object file, or if it cannot read the specified symbol table
entry.
Note that the first symbol in the symbol table has an index of
zero.
The program must be loaded with the object file access routine
library libld.a.
SEE ALSO

ldclose(3X), ldgetname(3x), ldopen(3X), 1dtbseek(3X), 1dfen(4).

Revised March 1993 RISC Version 4.1 Page 1

LDTBREAD (3X) (Link Library) LDTBREAD (3X)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LDTBSEEK (3X) (Link Library) LDTBSEEK (3X)

NAME
ldtbseek — seek to the symbol table of a common object file

SYNOPSIS
#include <ldfen.h>

int ldtbseek (1dptr)
LDFILE = ldptr;

DESCRIPTION
ldtbseek seeks to the symbol table of the common object file
currently associated with Idptr.

ldtbseek returns SUCCESS or FAILURE. [dtbseek will fail if
the symbol table has been stripped from the object file, or if it
cannot seek to the symbol table.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), l1dopen(3X), ldtbread(3X), ldfcn(4).

Revised March 1993 RISC Version 4.1 Page 1

=[]

LDTBSEEK (3X) (Link Library) LDTBSEEK (3X)

v

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LINK (2)

NAME
link — link to a file

SYNOPSIS

(System Call) LINK (2)

int link (pathl, path2)
char = pathl, * path2;

DESCRIPTION

pathl points to a path name naming an existing file. path2
points to a path name naming the new directory entry to be
created. link creates a new link (directory entry) for the exist-

ing file.

Upon successful completion, the link() function will mark for
update the st _ctime field of the file. Also, the st_ctime and
st_mtime fields of the directory that contains the new entry are

marked for update.

link will fail and no link will be created if one or more of the

following are true:
[EACCES]

(EACCES]
[EEXIST]
[EFAULT]
[EINTR]
[EMLINK]

{EMULTIHOP]

Revised March 1993

A component of either path prefix denies
search permission.

The requested link requires writing in a
directory with a mode that denies write
permission.

The link named by path2 exists.

path points outside the allocated address
space of the process.

A signal was caught during the link sys-
tem call.

The maximum number of links
LINK MAX to a file would be exceeded.

Components of path require hopping to
multiple remote machines.

RISC Version 4.1 Page 1

— m RN S RS R R

LINK (2)

[ENAMETOOLONG]

[ENOENT]

[ENOENT]
[ENOENT]
[ENOLINK]

[ENOTDIR]

[EPERM]

[EROFS]

[EXDEV]

SEE ALSO
unlink(2).

DIAGNOSTICS

(System Call) LINK (2)

The length of the pathl or path2 string
exceeds {PATH_MAX} or a pathname
component is longer than {NAME MAX}
and { POSIX NO_TRUNC} is in effect.

A component of either path prefix does
not exist.

The file named by pathl does not exist.
path2 points to a null path name.

path points to a remote machine and the
link to that machine is no longer active.

A component of either path prefix is not a
directory.
The file named by pathl is a directory

and the effective user ID is not super-
user.

The requested link requires writing in a
directory on a read-only file system.

The link named by path2 and the file
named by pathl are on different logical
devices (file systems).

Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the

error.

Page 2

RISC Version 4.1 Revised March 1993

LOCALECONV(3C) (Standard C Library) LOCALECONV (3C)

NAME
localeconv — get numeric formatting information

SYNOPSIS
#include <locale.h>

struct lconv + localeconv (void);

DESCRIPTION
localeconv sets the components of an object with type struct
lconv (defined in locale.h) with the values appropriate for the
formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale [see setlocale(3C)).

The definition of struct Iconv is given below (the values for the
fields in the "C” locale are given in comments):

char sdecimal point; /e "." of
char sthousands_sep; /* "" (zero length string) */
char sgrouping; Jr "7 %/
char sint _curr_symbol; [+ "" */
char scurrency symbol; [+ "" %/
char *mon_decimal point; /s "” */
char *mon_thousands_sep; /* "" */

char #mon_grouping; [* "7/

char *positive_sign; Je " %/

char snegative sign; Je " =/

char int_frac digits; /+ CHAR MAX */
char frac_digits; /* CHAR MAX s/
char p cs_precedes; /* CHAR MAX ¢/
char p_sep by space; [+ CHAR MAX #/
char n_cs_precedes; /* CHAR MAX »/
char n_sep by space; /* CHAR MAX s/
char p_sign_posn; /* CHAR MAX o/
char n_sign posn; /* CHAR MAX #/

The members of the structure with type char + are strings,
any of which (except decimal point) can point to ", to indi-
cate that the value is not available in the current locale or is of
zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in the

issued March 1993 Version 4.1 Page 1

LOCALECONV (3C) (Standard C Library) LOCALECONV (3C)

limits.h header file) to indicate that the value is not available
in the current locale. The members are the following:
char *decimal point
The decimal-point character used to format non-
monetary quantities.
char *thousands sep
The character used to separate groups of digits to the
left of the decimal-point character in formatted non-
monetary quantities. u
char *grouping

A string in which each element is taken as an integer
that indicates the number of digits that comprise the
current group in a formatted non-monetary quantity.
The elements of grouping are interpreted according to

the following:

CHAR-MAX No further grouping is to be performed.

0 The previous element is to be repeatedly
used for the remainder of the digits.

other The value is the number of digits that

comprise the current group. The next ele-
ment is examined to determine the size of
the next group of digits to the left of the

current group. u
char *int_curr_symbol
The international currency symbol applicable to the
current locale, left-justified within a four-character
space-padded field. The character sequences should
match with those specified in: ISO 4217 Codes for the
Representation of Currency and Funds.
char *currency_ symbol
The local currency symbol applicable to the current

locale. u

Page 2 Version 4.1 issued March 1993

LOCALECONV(3C) (Standard C Library) LOCALECONV (3C)

char *mon_decimal point
The decimal-point used to format monetary quantities.

char smon_thousands_sep .

The separator for groups of digits to the left of the
decimal-point in formatted monetary quantities.

char *mon_grouping
A string in which each element is taken as an integer
that indicates the number of digits that comprise the
current group in a formatted monetary quantity. The
elements of mon_grouping are interpreted according to
the rules described under grouping.

char spositive sign
The string used to indicate a nonnegative-valued for-
matted monetary quantity.

char *negative sign

The string used to indicate a negative-valued formatted
monetary quantity.

char int_frac digits
The number of fractional digits (those to the right of
the decimal-point) to be displayed in an internationally
formatted monetary quantity.

char frac_digits
The number of fractional digits (those to the right of
the decimal-point) to be displayed in a formatted mone-
tary quantity.

char p cs_precedes

Set to 1 or 0 if the currency symbol respectively pre-
cedes or succeeds the value for a nonnegative formatted
monetary quantity.

char p_sep by space

Set to 1 or 0 if the currency_ symbol respectively is or
is not separated by a space from the value for a nonne-
gative formatted monetary quantity.

issued March 1993 Version 4.1 Page 3

m—

LOCALECONV(3C) (Standard C Library) LOCALECONV (3C)

char n_cs_precedes
Set to 1 or 0 if the currency symbol respectively pre-
cedes or succeeds the value for a negative formatted
monetary quantity.

char n_sep by space
Set to 1 or 0 if the currency_symbol respectively is or
is not separated by a space from the value for a nega-
tive formatted monetary quantity.

char p_sign_posn v
Set to a value indicating the positioning of the
positive_sign for a nonnegative formatted monetary
quantity. The value of p sign posn is interpreted
according to the following:

0 Parentheses surround the quantity and
currency_symbol.
1 The sign string precedes the quantity and
currency_symbol.
2 The sign string succeeds the quantity and
currency_symbol.
3 The sign string immediately precedes the
currency_symbol.
4 The sign string immediately succeeds the u
currency_symbol.
char n_sign posn
Set to a value indicating the positioning of the
negative_sign for a negative formatted monetary
quantity. The value of n_sign posn is interpreted
. according to the rules described under p_sign_posn.
RETURNS
localeconv returns a pointer to the filled-in object. The struc-

ture pointed to by the return value may be overwritten by a
subsequent call to localeconv. u

Page 4 Version 4.1 issued March 1993

-

LOCALECONV(3C) (Standard C Library) LOCALECONV (3C)

EXAMPLES
The following table illustrates the rules used by four countries
to format monetary quantities.

FILES

Country Positive Negative
format format

Italy L.1.234 -L.1.234

Netherlands F 1.234,56 F -1.234,56

Norway krl.234,56 krl.234,56-

Switzerland SFrs.1,234.56 SFrs.l,234.56C

International
format

ITL.1.234

NLG 1.234,56
NOK 1.234,56
CHF 1,234.56

For these four countries, the respective values for the mone-
tary members of the structure returned by localeconv are as

follows:

int_curr_symbol
currency_symbol
mon_decimal point
mon_thousands sep
mon_grouping
positive sign
negative_sign
int_frac digits
frac_digits
p_cs_precedes
P_sep_by_space
n_cs_precedes
n_sep by space
p_sign posn
n_sign_posn

Italy Netherlands
*ITL.”~ "NIG "
IIL . L] 'Fn
n\3n u\3~

0 2

0 2

1 1

0 1

1 1

0 1

1 1

1 4

Norway
“NOK "
kr*
n\3~

N o= OO = NN

/usr/lib/locale/locale/LC_MONETARY
LC_MONETARY database for locale.
Jusr/lib/locale/locale/LC_NUMERIC
LC_NUMERIC database for locale.

issued March 1993

Version 4.1

Switzerland
.m -
~"SFrs.”

N = O = O = NN

Page S

LOCALECONV(3C) (Standard C Library) LOCALECONV (3C)

SEE ALSO
chrtbl(1M), montbl(1M), setlocale(3C) in the System V Refer-
ence Manual.
(™)

Page 6 Version 4.1 issued March 1993

LOCKF (3C) (Standard C Library) LOCKF (3C)

NAME

lockf — record locking on files

SYNOPSIS

#include <unistd.h>

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION

The lockf command will allow sections of a file to be locked;
advisory or mandatory write locks depending on the mode bits
of the file [see chmod(2)]. Locking calls from other processes
which attempt to lock the locked file section will either return
an error value or be put to sleep until the resource becomes
unlocked. All the locks for a process are removed when the
process terminates. [See fcntl(2) for more information about
record locking.]

fildes is an open file descriptor. The file descriptor must have
O_WRONLY or O_RDWR permission in order to establish lock
with this function call.

function is a control value which specifies the action to be
taken. The permissible values for function are defined in
<unistd.h> as follows:

#define F ULOCK 0/ * Unlock a previously locked section * /
#define F LOCK 1/ #* Lock a section for exclusive use */

#define F_TLOCK 2/ * Test and lock a section for exclusive use * /
#define F_TEST 3/ * Test section for other processes locks * /

All other values of function are reserved for future extensions and will
result in an error return if not implemented.

F_TEST is used to detect if a lock by another process is present

“on the specified section. F_ LOCK and F_TLOCK both lock a sec-

tion of a file if the section is available. F_ULOCK removes locks
from a section of the file.

Revised March 1993 RISC Version 4.1 Page 1

LOCKF (3C) (Standard C Library) LOCKEF (3C)

size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file
and extends forward for a positive size and backward for a
negative size (the preceding bytes up to but not including the
current offset). If size is zero, the section from the current
offset through the largest file offset is locked (i.e., from the
current offset through the present or any future end-of-file).
An area need not be allocated to the file in order to be locked
as such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or
in part, contain or be contained by a previously locked section
for the same process. When this occurs, or if adjacent sections
occur, the sections are combined into a single section. If the
request requires that a new element be added to the table of
active locks and this table is already full, an error is returned,
and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken
if the resource is not available. F_LOCK will cause the calling
process to sleep until the resource is available. F_TLOCK will
cause the function to return a —1 and set errno to [EACCES]
error if the section is already locked by another process.

F ULOCK requests may, in whole or in part, release one or
more locked sections controlled by the process. When sections
are not fully released, the remaining sections are still locked by
the process. Releasing the center section of a locked section
requires an additional element in the table of active locks. If
this table is full, an [EDEADLK] error is returned and the
requested section is not released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process’s locked
resource. Thus calls to lockf or fentl scan for a deadlock prior
to sleeping on a locked resource. An error return is made if
sleeping on the locked resource would cause a deadlock.

Page 2 RISC Version 4.1 Revised March 1993

LOCKF (3C) (Standard C Library) LOCKEF (3C)

™

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility in
applications which require this facility.

The lockf utility will fail if one or more of the following are

true:
[EACCES] cmd is F_TLOCK or F_TEST and the section is
already locked by another process.
[EBADF] fildes is not a valid open descriptor.
ﬂ [ECOMM] fildes is on a remote machine and the link to

that machine is no longer active.

[EDEADLK] cmd is F LOCK and a deadlock would occur.
Also the cmd is either F LOCK, F TLOCK, or
F ULOCK and the number of entries in the
lock table would exceed the number allocated
on the system.

SEE ALSO
chmod(2), close(2), creat(2), fentl(2), intro(2), open(2), read(2),
write(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the
error.

ﬂ WARNINGS
Unexpected results may occur in processes that do buffering in
the user address space. The process may later read/write data
which is/was locked. The standard I/O package is the most
common source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN
rather than EACCES when a section of a file is already locked
by another process, portable application programs should
expect and test for either value.

Revised March 1993 RISC Version 4.1 Page 3

LOCKEF (3C) (Standard C Library) LOCKF (3C)

W/

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

LOGNAME (3X) (PW Library) LOGNAME (3X)
NAME)
logname — return login name of user
SYNOPSIS
char *logname()
DESCRIPTION

logname returns a pointer to the null-terminated login name;
it extracts the LOGNAME environment variable from the user’s
environment.

This routine is kept in /lib/libPW.a.

The program must be loaded with the object file access routine
library libPW.a..

FILES
/ete/profile

SEE ALSO
env(l), login(1l), getenv(3C), profile(4), environ(5).
CAVEATS

The return values point to static data whose content is
overwritten by each call.

This method of determining a login name is subject to forgery.

Revised March 1993 RISC Version 4.1 Page 1

R AR
I
A

]

LOGNAME (3X) (PW Library) LOGNAME (3X)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LSEARCH (3C) (Standard C Library) LSEARCH (3C)

NAME

Isearch, lfind — linear search and update

SYNOPSIS

#include <search.h>

void *lsearch (key, base, nelp, width, compar)
void =* base, * key;

size_t width, * nelp;

int (* compar)();

void =* lfind (key, base, nelp, width, compar)
void * base, * key;

size_t width, * nelp;

int (* compar)();

DESCRIPTION

Isearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where
a datum may be found. If the datum does not occur, it is added
at the end of the table. key points to the datum to be sought in
the table. base points to the first element in the table.

nelp points to an integer containing the current number of ele-
ments in the table. The integer is incremented if the datum is
added to the table.

compar is the name of the comparison function which the user
must supply (strcmp, for example). It is called with two argu-
ments that point to the elements being compared. The function
must return zero if the elements are equal and non-zero other-
wise.

Ifind is the same as Isearch except that if the datum is not
found, it is not added to the table. Instead, a NULL pointer is
returned.

NOTES

The pointers to the key and the element at the base of the
table should be of type pointer-to-element, and cast to type
pointer-to-void. The comparison function need not compare
every byte, so arbitrary data may be contained in the elements
in addition to the values being compared. Although declared as

Revised March 1993 RISC Version 4.15 Page 1

T et a0 PRI R e e L R R e Y R R S ke
—
]

LSEARCH (3C) (Standard C Library) LSEARCH (3C)

type pointer-to-void, the value returned should be cast into
type pointer-to-element.

EXAMPLE
This fragment will read in less than TABSIZE strings of length
less than ELSIZE and store them in a table, eliminating dupli-
cates.

#include <stdio.h>
#include <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], * lsearch();
size_t nel = 0;

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) lsearch((void =)line, (void *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS
If the searched for datum is found, both Isearch and Ilfind
return a pointer to it. Otherwise, /find returns NULL and
Isearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the
table to add a new item.

Page 2 RISC Version 4.15 Revised March 1993

LSEEK (2) (System Call) LSEEK (2)

NAME
Iseek — move read/write file pointer

SYNOPSIS
#include <sys/types.h>
#include <unistd.h>

off _t Iseek (fildes, offset, whence)
int fildes;
off_t offset;
int whence;

DESCRIPTION
fildes is a file descriptor returned from a creat, open, dup, or

fentl system call. Iseek sets the file pointer associated with
fildes as follows:

If whence is SEEK SET (0), the pointer is set to offset
bytes.

If whence is SEEK CUR (1), the pointer is set to its
current location plus offset.

If whence is SEEK END (2), the pointer is set to the
size of the file plus offset.

The symbolic values of whence are found in the <unistd.h>
header file.

Upon successful completion, the resulting pointer location, as
measured in bytes from the beginning of the file, is returned.

Iseek will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF] fildes is not an open file descriptor.
[EINVAL] whence is not 0, 1, or 2.

[EINVAL] The resulting file pointer would be negative.
[ESPIPE] fildes is associated with a pipe or fifo.

Revised March 1993 RISC Version 4.1 Page 1

LSEEK (2) (System Call) LSEEK (2)

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

SEE ALSO
creat(2), dup(2), fentl(2), open(2).

DIAGNOSTICS
Upon successful completion, a non-negative integer indicating
the file pointer value is returned. Otherwise, a value of —1 is
returned and errno is set to indicate the error.

Page 2 RISC Version 4.1 Revised March 1993

ADMIN (1) (Software Development Utilities) ADMIN (1)

NAME
admin — create and administer SCCS files

SYNOPSIS :
admin [—-n] [—i[name]] [—rrel] [~ t[name]] [—fflag[flag-val]]
[— dflag[flag-val]] [— alogin] [- elogin] [—m[mrlist]]
[-ylcomment]] [—h] [—2] files

DESCRIPTION

admin is used to create new SCCS files and change parameters
of existing ones. Arguments to admin, which may appear in
any order, consist of keyletter arguments, which begin with —,
and named files (note that SCCS file names must begin with
the characters s.). If a named file does not exist, it is created,
and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter
argument are assigned a default value. If a named file does
exist, parameters corresponding to specified keyletter argu-
ments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in
the directory were specified as a named file, except that non-
SCCS files (last component of the path name does not begin
with s8.) and unreadable files are silently ignored. If a name of
— is given, the standard input is read; each line of the stan-
dard input is taken to be the name of an SCCS file to be pro-
cessed. Again, non-SCCS files and unreadable files are silently
ignored.

The keyletter arguments are as follows. Each is explained as
though only one named file is to be processed since the effects
of the arguments apply independently to each named file.

-n This keyletter indicates that a new SCCS
file is to be created.

—i/name] The name of a file from which the text
for a new SCCS file is to be taken. The
text constitutes the first delta of the file
(see —r keyletter for delta numbering
scheme). If the i keyletter is used, but

Revised March 1993 RISC Version 4.1 Page 1

Il

ADMIN (1)

Page 2

—rrel

—t/name]

(Software Development Utilities) ADMIN (1)

the file name is omitted, the text is
obtained by reading the standard input
until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is
created empty.

Only one SCCS file may be created by an
admin command on which the i keyletter
is supplied. Using a single admin to
create two or more SCCS files requires
that they be created empty (no -—i
keyletter). Note that the —1i keyletter
implies the —n keyletter.

The release into which the initial delta is
inserted. This keyletter may be used only
if the —1i keyletter is also used. If the —r
keyletter is not used, the initial delta is
inserted into release 1. The level of the
initial delta is always 1 (by default initial
deltas are named 1.1).

The name of a file from which descriptive
text for the SCCS file is to be taken. If
the —t keyletter is used and admin is
creating a new SCCS file (the —n and/or
—i keyletters also used), the descriptive
text file name must also be supplied.

In the case of existing SCCS files: (1) a —t
keyletter without a file name -causes
removal of descriptive text (if any)
currently in the SCCS file, and (2) a —t
keyletter with a file name causes text (if
any) in the named file to replace the
descriptive text (if any) currently in the
SCCS file.

RISC Version 4.1 Revised March 1993

ADMIN (1) (Software Development Utilities) ADMIN (1)

—fflag

Revised March 1993

This keyletter specifies a flag, and, possi-
bly, a value for the flag, to be placed in
the SCCS file.

Several f keyletters may be supplied on a
single admin command line. The allow-
able flags and their values are:

b Allows use of the —b keyletter
on a get(1) command to create
branch deltas.

cceil The highest release (i.e., “ceil-
ing’’), a number greater than 0
but less than or equal to 9999,
which may be retrieved by a
get(1) command for editing.
The default value for an
unspecified ¢ flag is 9999.

ffloor The lowest release (i.e,
“floor’’), a number greater
than 0 but less than 9999,
which may be retrieved by a
get(1) command for editing.
The default value for an
unspecified f flag is 1.

dSID The default delta number
(SID) to be used by a get(1)
command.

i/str] Causes the "No id keywords
(ge6)” message issued by get(1)
or delta(l) to be treated as a
fatal error. In the absence of
this flag, the message is only a
warning. The message is
issued if no SCCS identification
keywords [see get(1)] are found
in the text retrieved or stored

RISC Version 4.1 Page 3

(Software Development Utilities) ADMIN (1)

in the SCCS file. If a value is
supplied, the keywords must
exactly match the given string,
however the string must con-
tain a keyword, and no embed-
ded newlines.

j Allows concurrent get(l) com-
mands for editing on the same
SID of an SCCS file. This
allows multiple concurrent
updates to the same version of
the SCCS file.

List A list of releases to which del-
tas can no longer be made (get
—e against one of these
“locked” releases fails). The
list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ;= R | a
The character a in the list is
equivalent to specifying all

releases for the named SCCS
file.

n Causes delta(l) to create a
“null” delta in each of those
releases (if any) being skipped
when a delta is made in a new
release (e.g., in making delta
5.1 after delta 2.7, releases 3
and 4 are skipped). These null
deltas serve as ‘“‘anchor
points”’ so that branch deltas
may later be created from
them. The absence of this flag
causes skipped releases to be
non-existent in the SCCS file,

RISC Version 4.1 Revised March 1993

ADMIN (1) (Software Development Utilities) ADMIN (1)

~dflag

Revised March 1993

qtext

mmod

ttype

vpgm

preventing branch deltas from
being created from them in the
future.

User definable text substituted
for all occurrences of the %Q%
keyword in SCCS file text
retrieved by get(1).

Module name of the SCCS file
substituted for all occurrences
of the %M% keyword in SCCS
file text retrieved by get(1). If
the m flag is not specified, the
value assigned is the name of
the SCCS file with the leading
s. removed.

Type of module in the SCCS file
substituted for all occurrences
of %Y% keyword in SCCS file
text retrieved by get(1).

Causes delta(1) to prompt for
Modification Request (MR)
numbers as the reason for
creating a delta. The optional
value specifies the name of an
MR number validity checking
program [see delta(1)]. (If this
flag is set when creating an
SCCS file, the m keyletter must
also be used even if its value is
null).

Causes removal (deletion) of the specified
flag from an SCCS file. The —d keyletter
may be specified only when processing
existing SCCS files. Several —d keyletters
may be supplied on a single admin com-
mand. See the —f keyletter for allowable

RISC Version 4.1 Page 5

ADMIN (1)

Page 6

(Software Development Utilities) ADMIN (1)
flag names.
Uist A list of releases to be ‘“‘unlocked”. See

—alogin

—elogin

—m/mrlist]

the —f keyletter for a description of the 1
flag and the syntax of a list.

A login name, or numerical UNIX system
group ID, to be added to the list of users
which may make deltas (changes) to the
SCCs file. A group ID is equivalent to
specifying all login names common to
that group ID. Several a keyletters may
be used on a single admin command line.
As many logins, or numerical group IDs,
as desired may be on the list simultane-
ously. If the list of users is empty, then
anyone may add deltas. If login or group
ID is preceded by a ! they are to be
denied permission to make deltas.

A login name, or numerical group ID, to
be erased from the list of users allowed to
make deltas (changes) to the SCCS file.
Specifying a group ID is equivalent to
specifying all login names common to
that group ID. Several e keyletters may
be used on a single admin command line.

The list of Modification Requests (MR)
numbers is inserted into the SCCS file as
the reason for creating the initial delta in
a manner identical to delta(1). The v flag
must be set and the MR numbers are vali-
dated if the v flag has a value (the name
of an MR number validation program).
Diagnostics will occur if the v flag is not
set or MR validation fails.

RISC Version 4.1 Revised March 1993

W

ADMIN (1) (Software Development Utilities) ADMIN (1)

—ylcomment] The comment text is inserted into the
SCCS file as a comment for the initial
delta in a manner identical to that of
delta(1). Omission of the —y keyletter
results in a default comment line being
inserted in the form:

date and time created YY/MM/DD
HH:MM:S8S by login

m The —y keyletter is valid only if the —i
Y and/or —n keyletters are specified (i.e., a
new SCCS file is being created).

-h Causes admin to check the structure of
the SCCS file [see sccsfile(5)], and to com-
pare a newly computed check-sum (the
sum of all the characters in the SCCS file
except those in the first line) with the
check-sum that is stored in the first line
of the SCCS file. Appropriate error diag-
nostics are produced. This keyletter inhi-
bits writing on the file, so that it nullifies
the effect of any other keyletters supplied,
and is, therefore, only meaningful when
processing existing files.

ﬁ -z The SCCS file check-sum is recomputed
and stored in the first line of the SCCS
file (see —h, above).

Note that use of this keyletter on a truly
corrupted file may prevent future detec-
tion of the corruption.

The last component of all SCCS file names must be of the
form s.file-name. New SCCS files are given mode 444 [see
chmod(1)}. Write permission in the pertinent directory is,
of course, required to create a file. All writing done by
m admin is to a temporary x-file, called x.file-name, [see
get(1)], created with mode 444 if the admin command is

Revised March 1993 RISC Version 4.1 Page 7

ADMIN (1)

e e e e T

(Software Development Utilities) ADMIN (1)

creating a new SCCS file, or with the same mode as the
SCCS file if it exists. After successful execution of admin,
the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures
that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files
be mode 755 and that SCCS files themselves be mode 444.
The mode of the directories allows only the owner to
modify SCCS files contained in the directories. The mode
of the SCCS files prevents any modification at all except
by SCCS commands.

If it should be necessary to patch an SCCS file for any rea-
son, the mode may be changed to 644 by the owner allow-
ing use of ed(1). Care must be taken! The edited file
should always be processed by an admin —h to check for
corruption followed by an admin —z to generate a
proper check-sum. Another admin —h is recommended
to ensure the SCCS file is valid.

admin also makes use of a transient lock file (called
z.file-name), which is used to prevent simultaneous
updates to the SCCS file by different users. See get(1) for
further information.

FILES

g—file Existed before the execution of delta; removed
after completion of delta.

p —file Existed before the execution of delta; may
exist after completion of delta.

q—file Created during the execution of delta; removed
after completion of delta.

x —file Created during the execution of delta;
renamed to SCCS file after completion of delta.

z —file Created during the execution of delta; removed

Page 8

during the execution of delta.

RISC Version 4.1 Revised March 1993

W/

ADMIN (1) (Software Development Utilities) ADMIN (1)

d—file Created during the execution of delta; removed
after completion of delta.

/usr/bin/bdiff Program to compute differences between the
“gotten’’ file and the g-file.

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(4).

DIAGNOSTICS
Use help (1) for explanations.

Revised March 1993 RISC Version 4.1 Page 9

ADMIN (1) (Software Development Utilities) ADMIN (1)

This page is intentionally left blank

Page 10 RISC Version 4.1 Revised March 1993

™

AR (1) (Software Development Utilities) AR (1)

NAME
ar — archive and library maintainer for portable archives

SYNOPSIS
ar key [posname] afile [name] ...

DESCRIPTION
The ar command maintains groups of files combined into a sin-
gle archive file. Its main use is to create and update library
files as used by the link editor. It can be used, though, for any
similar purpose. The magic string and the file headers used by
ar consist of printable ASCII characters. If an archive is com-
posed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that
is portable across all machines. The portable archive format
and structure is described in detail in ar(4). The archive sym-
bol table [described in ar(4)] is used by the link editor [/d(1)]
to effect multiple passes over libraries of object files in an
efficient manner. An archive symbol table is only created and
maintained by ar when there is at least one object file in the
archive. The archive symbol table is in a specially named file
which is always the first file in the archive. This file is never
mentioned or accessible to the user.

Whenever the ar(l) command is used to create or update the
contents of such an archive, the symbol table is rebuilt. The s
option described below will force the symbol table to be rebuilt.

Unlike command options, the command key is a required part
of ar’s command line. The key (which may begin with a —) is
formed with one of the following letters: drqtpmx. Argu-
ments to the key, alternatively, are made with one of more of
the following set: vuaibcls.

posname is an archive member name used as a reference point
in positioning other files in the archive. afile is the archive file.
The name are constituent files in the archive file.

Revised March 1993 RISC Version 4.1 Page 1

AR (1)

(Software Development Utilities) AR (1)

The ar command determines the type of the inputfile, and will
only accept files of the same type. The possible filetypes are
text files, code files, and archives consisting of each file type
types (see intro(l)).

The meanings of the key characters are as follows:

d

r

-

Page 2

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional
character u is used with r, then only those files with dates
of modification later than the archive files are replaced. If
an optional positioning character from the set abi is used,
then the posname argument must be present and specifies
that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive
file. Optional positioning characters are invalid. The com-
mand does not check whether the added members are
already in the archive. This option is useful to avoid qua-
dratic behavior when creating a large archive piece-by-
piece. Unchecked, the file may grow exponentially up to
the second degree.

Print a table of contents of the archive file. If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a posi-
tioning character is present, then the posname argument
must be present and, as in r, specifies where the files are to
be moved.

Extract the named files. If no names are given, all files in
the archive are extracted. In neither case does x alter the
archive file.

RISC Version 4.1 Revised March 1993

e e R T

(Software Development Utilities) AR (1)

The meanings of the key arguments are as follows:

Specifies that the file goes after the existing file (afile). Use
this suboption with the m or r options.

Specifies that the file goes before the existing file (afile).
Use this suboption with the m or r options.

Suppress the message that is produced by default when
afile is created.

Specifies that the file goes before the existing file (afile).
Use this suboption with the m or r options.

Place temporary files in the loeal (current working) direc-
tory rather than in the default temporary directory
TMPDIR.

Makes a symbol definition (symdef file) as the first file of
an archive. If you specify ‘s’, the archiver creates the sym-
def file as its last action before finishing execution. You
must specify at least one other archive option (m, p, q, r,
or t) when you use the s option. Supermax RISC ar builds
the symbol table by default.

R3KMI- and R3KMO-type: Forces a newly created file to
have the ’last-modified’ date that it had before it was
extracted from the archive. Use this option with the x -
option.

Prevents the archiver from replacing an existing file unless
the replacement is newer than the existing file. This
option uses the UNIX system ‘last modified’ data for this
comparison. Use this suboption with the r option.

Give a verbose file-by-file description of the making of a
new archive file from the old archive and the constituent
files. When used with t, give a long listing of all informa-
tion about the files.

Suppress symbol table building.

Revised March 1993 RISC Version 4.1 Page 3

s | Lo PN S S R T R R R e e e

AR (1) (Software Development Utilities) AR (1)

FILES
/bin/ar The ar startup program.

/tmp/v* temporary files.

SEE ALSO
1d(1), lorder(1), odump(1), strip(1), ranhash(3X), a.out(4), ar(4).

NOTES
If the same file is mentioned twice in an argument list, it may
be put in the archive twice.

The o option does not change the ’last-modified’ date of a file
unless you own the extracted file or you are the super-user.

The s option is not operative as ar will always build the hash
table by default unless the z option is used.

Page 4 RISC Version 4.1 Revised March 1993

m

AS (1) (Software Development Utilities) AS (1)

NAME
as — Assembler

SYNOPSIS
as [options ...] file

DESCRIPTION
as assembles the named file. It is recommended that the input
source file ends with .s.

Before the input file is assembled it is processed by the C
preprocessor — cpp.

The macros LANGUAGE ASSEMBLY, mips, host_mips and
unix are defined.

If the environment variable TMPDIR is set, the value is used
as the directory to place any temporary files rather than the
default /tmp/.

The following options are recognized by as and have the
same meaning in cc(1):

—V This option gives current version number for the assem-
bler.

—g0 Have the assembler produce no symbol table information
for symbolic debugging. This is the default.

—gl Have the assembler produce additional symbol table
information for accurate but limited symbolic debugging
of partially optimized code.

—gor —g2
Have the assembler produce additional symbol table
information for full symbolic debugging and not do
optimizations that limit full symbolic debugging.

—g3 Have the assembler produce additional symbol table
information for full symbolic debugging for fully optim-
ized code. This option makes the debugger inaccurate.

Revised March 1993 RISC Version 4.1 Page 1

(Software Development Utilities) AS (1)

—o0 The default output file is a.out but can be overridden by
giving the ’— o’ option.

—w Suppress warning messages.

—P Run only the C macro preprocessor and put the result in
a file with the suffix of the source file changed to ‘.i’ or if
the file has no suffix then a ‘.i’ is added to the source file
name. The ‘.i’ file has no ‘#’ lines in it.

—E Run only the C macro preprocessor on the file and send
the result to the standard output. u

—Dname=def

—Dname
Define the name to the C macro preprocessor, as if by
‘#define’. If no definition is given, the name is defined as
”1”.

~Uname
Remove any initial definition of name.

-1dir
‘#include’ files whose names do not begin with ‘/’ are
always sought first in the directory of the file argument,
then in directories specified in —I options, and finally in
the standard directory (/usr/include).

-G num
Specify the maximum size, in bytes, of a data item that u
is to be accessed from the global pointer. num is
assumed to be a decimal number. If num is zero, no
data is accessed from the global pointer. The default
value for num is 8 bytes.

—v Print the passes as they execute with their arguments
and their input and output files.

—nocpp
Do not run the C macro preprocessor on assembly source
files before compiling.

Page 2 RISC Version 4.1 Revised March 1993

(Software Development Utilities) AS (1)

—m Apply the M4 preprocessor to the source file before
assembling it.

The options described below primarily aid .compiler develop-
ment and are not generally used:

—Hc Halt compiling after the pass specified by the character
¢, producing an intermediate file for the next pass. The
ccan be [a]. It selects the assembler pass in the same
way as the —t option. If this option is used, the symbol
table file produced and used by the passes, is the last
component of the source file with the suffix changed to
“T’, or a ‘T’ is added if the source file has no suffix.
This file is not removed.

—K Build and use intermediate file names with the last com-
ponent of the source file’s name replacing its suffix with
the conventional suffix for the type of file (for example
&’ file for binary assembly language). If the source file
has no suffix the conventional suffix is added to the
source file name. These intermediate files are never
removed even when a pass encounters a fatal error.

—Wclc...l,argll,arg2...]
Pass the argument([s] argi to the compiler pass[es] clc..].
The ¢’s are one of [pab]. The c’s selects the compiler
pass in the same way as the —t option.

The options —t[hpab], —hpath, and —Bstring select a name
to use for a particular pass. These arguments are processed
from left to right so their order is significant. When the —B
option is encountered, the selection of names takes place using
the last —h and —t options. Therefore, the —B option is
always required when using —h or —t. Sets of these options
can be used to select any combination of names.

—t[hpab]
Select the names. The names selected are those desig-
nated by the characters following the —t option accord-
ing to the following table:

Revised March 1993 RISC Version 4.1 Page 3

- o m T R L At B R EI T T St S SR L) 2000 T .

AS (1) (Software Development Utilities) AS (1)
Name Character
include h (see note below)
cpp p
as0 a
asl b

If the character ‘h’ is in the —t argument then a direc-
tory is added to the list of directories to be used in
searching for ‘#include’ files. This directory name has
the form /usr/includestring. The standard directory is
still searched.

—hpath
Use path rather than the directory where the name is
normally found.

—Bstring
Append string to all names specified by the —t option.
If no —t option has been processed before the —B, the
—t option is assumed to be “hpab”. This list designates
all names.

FILES

/bin/as

$COMP_HOST_ROOT /usr/lib/cmplrs/as0
Symbolic to binary assembly language
translator.

$COMP_HOST_ROOT /usr/lib/cmplrs/asl
Binary assembly language assembler
and reorganizer.

SEE ALSO
cc(1), 1d(3).

Page 4 RISC Version 4.1 Revised March 1993

CB(1) (Software Development Utilities) cB(1)

NAME

¢b — C program beautifier
SYNOPSIS

cb[—-s][~j][-1llengll[file..]
DESCRIPTION

The ¢b command reads C programs either from its arguments
or from the standard input, and writes them on the standard
output with spacing and indentation that displays the structure
of the code. During default options, cb preserves all user new-
lines.

cb accepts the following options.

-8 Canonicalizes the code to the style of Kernighan
and Ritchie in The C Programming Language.
-j Causes split lines to be put back together.
—1leng Causes cb to split lines that are longer than leng.
SEE ALSO
ce(D).
The C Programming Language. Prentice-Hall, 1978.

BUGS

Punctuation that is hidden in preprocessor statements will
cause indentation errors.

Revised March 1993 RISC Version 4.1 Page 1

de

CB (1) (Software Development Utilities) CB(1)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

cc(1) (Software Development Utilities (RISC)) CC(1)

NAME
" ¢¢ — Supermax RISC C—compiler

SYNOPSIS
cc [options] ... file

DESCRIPTION
cc is the C—compiler. Files whose names ends with .c are
taken to be C—source programs. They are compiled and an
object or executable file is produced. If an object file is pro-
ﬁ duced, the name of the object file is the same as on the source
file except that the .c is replaced with the deleted. If an execut-
able file is produced, the default file name is a.out, or if the
— o option is specified, the name is taken from the argument to
the —o option.

File parameters ending with .s are taken to be assembly source
code and are passed on to the assembler. File parameters end-
ing with .o are taken to be object files and are passed on to the
link editor.

The TARGETMC-environment controls the code generation
(see.intro(1)).

cc defines some default C preprocessor macros according to the
TARGETMC-evironment.

The following macros are defined:

ﬁ unix, mips, supermax, host_mips, MIPSEB,
SYSTYPE_SYSV, LANGUAGE C.

Following options are interpreted by ce.

—-c Produce an .o object file and suppress the link edit
phase rather than producing an executable program.

—g0 Have the compiler produce no symbol table informa-
tion for symbolic debugging. This is the default.

-gl Have the compiler produce additional symbol table
information for accurate but limited symbolic debug-
m ging of partially optimized code.

Revised March 1993 RISC Version 4.1 Page 1

cC

(1)

(Software Development Utilities (RISC)) cCc(1)

-gor —g2
Have the compiler produce additional symbol table
information for full symbolic debugging and not do
optimizations that limit full symbolic debugging.

—~g3 Have the compiler produce additional symbol table
information for full symbolic debugging for fully
optimized code. This option makes the debugger inac-
curate.

=0 output
Name the final output file output. If this option is
used, the file ‘a.out’ is undisturbed.

-v Verbose. Print the name of each subprocess as it is
executing.

-E Run only the C preprocessor, cpp, on the named files
and send the output to the standard output.

-P Same as E option but leave the output on a file
suffixed .i

-S Generate assembly source code file rather than an
object or an executable file. The compiled C - program
assembly file is suffixed .s.

-V Print current version number.

The following options are passed by cc (with their asso-
ciated arguments) to the preprocessor phase:

-C By default, the preprocessor strips C-—language style
comments. If the C—options is specified, all comments
(except those found on preprocessor directive lines) are
passed along.

—Dname =def

—Dname

=D name=def

—D name
Define the name to the C macro preprocessor, as if by
‘#define’. If no definition is given, the name is defined
as ”1”.

Page 2 RISC Version 4.1 Revised March 1993

cc(1) (Software Development Utilities (RISC)) cc(1)

—Uname

—U name
Remove any initial definition of name.

—1Idir

—1 dir Change the algorithm for searching for #include files
whose names do not begin with / to look in dir before
looking in the directories on the standard list. Thus,
#include files whose names are enclosed in double
quotes are searched for first in the directory of the file
argument, then in directories names in —I options,
and last in directories on a standard list. For #include
files whose names are enclosed in < >, the directory
of the file argument is not searched.

-Ldir

—L dir Change the algorithm for searching for the library xxx
to look in dir before looking in the default library
directories. This option is only effective if it precedes
the —1 option on the command line, (see Id(1)).

-w Suppress warning messages.

—00 Turn off all optimizations.

—01 Turn on all optimizations that can be done quickly.
This is the default.

—Oor -02
Invoke the global ucode optimizer.

—03 Do all optimizations, including global register alloca-

tion. This option must precede all source file argu-
ments. With this option, a ucode object file is created
for each C source file and left in a ‘.u’ file. The newly
created ucode object files, the ucode object files
specified on the command line and the runtime startup
routine and all the runtime libraries are ucode linked.
Optimization is done on the resulting ucode linked file
and then it is linked as normal producing an ‘“a.out”
file. No resulting ‘.0’ file is left from the ucode linked
result as in previous releases. In fact —¢ can no longer
be specified with —03.

Revised March 1993 RISC Version 4.1 Page 3

LRk AT

cc() (Software Development Utilities (RISC)) cc(1)

—Olimit num

Specify the maximum size, in basic blocks, of a routine
that will be optimized by the global optimizer. If a
routine has more than this number of basic blocks it
will not be optimized and a message will be printed.
An option specifying that the global optimizer is to be
run (—0, —02, or —03) must also be specified. num
is assumed to be a decimal number. The default value
for num is 500 basic blocks.

—edit[0-9] ' u
Invoke the editor of choice (as defined by the environ-
ment variable EDITOR), or vi(1) (if EDITOR is not
defined) when syntax or semantic errors are detected
by the compiler’s frontend. When compiling on a char-
acter based terminal, the compile job has to be in the
foreground for this option to take effect. For compile
jobs done on a window based terminal/workstation,
this option would always take effect whether it is in
the foreground or background. The editor is invoked
with two files: the error message file and the source
file. First use the error message file to locate the line
numbers of all the errors, the switch to the source file
to make corrections. Once you exit out of the editor,
the compile job is restarted. This process can be
repeated up to 9 times, depending on the single digit ‘
number specified in the option. If no number is U
specified in the option, this compile-edit-compile pro-
cess repeats indefinitely until all errors are corrected.
—edit0 turns off this edit feature.

—trapuv

Force all un-initialized stack, automatic and dynami-

cally allocated variables to be initialized with
OxFFFASASA. When this value is used as a floating

point variable, it is treated as a floating point NaN and

it will cause a floating point trap. When it is used as a

pointer, an address or segmentation violation will most w
likely occur.

Page 4 RISC Version 4.1 Revised March 1993

cc(1) (Software Development Utilities (RISC)) cc(1)
-j Compile the specified source programs, and leave the
ucode object file output in corresponding files suffixed
with ‘u’.
—ko output

Name the output file created by the ucode loader as
output. This file is not removed. If this file is compiled,
the object file is left in a file whose name consists of
output with the suffix changed to a ‘.0’. If output has
no suffix, a ‘.0’ suffix is appended to output.

ﬁ -k Pass options that start with a —k to the ucode loader.
This option is used to specify ucode libraries (with
—Kl x) and other ucode loader options.

—G num
Specify the maximum size, in bytes, of a data item
that is to be accessed from the global pointer. num is
assumed to be a decimal number. If num is zero, no
data is accessed from the global pointer. The default
value for num is 8 bytes.

—std Have the compiler produce warnings for things that
are not standard in the language.

—nocpp
Do not run the C macro preprocessor on C and assem-
m bly source files before compiling.
' —signed
Cause all char declarations to be signed char declara-

tions, the default is to treat them as unsigned char
declarations.

—volatile
Causes all variables to be treated as volatile.
—varargs
Prints warnings for lines that may require the
varargs.h macros.

Revised March 1993 RISC Version 4.1 Page 5

cc(1) (Software Development Utilities (RISC)) CC(1)

—float

Cause the compiler to never promote expressions of
type float to type double.

The options described below primarily aid compiler develop-
ment and are not generally used:

-He

-Wele...

Page 6

Halt compiling after the pass specified by the charac-
ter ¢, producing an intermediate file for the next pass.
The ¢ can be [fjusmoca]. It selects the compiler pass
in the same way as the —t option. If this option is
used, the symbol table file produced and used by the
passes, is the last component of the source file with
the suffix changed to ‘T’ and is not removed.

Build and use intermediate file names with the last
component of the source file’s name replacing its
suffix with the conventional suffix for the type of file
(for example ‘B’ file for binary ucode, produced by the
front end). These intermediate files are never
removed even when a pass encounters a fatal error.
When ucode linking is performed and the —K option
is specified the base name of the files created after the
ucode link is ‘u.out’ by default. If —ko output is
specified, the base name of the object file is output
without the suffix if it exists or suffixes are appended
to output if it has no suffix.

Converts binary ucode files (‘B’) or optimized binary
ucode files (‘.0’) to symbolic ucode (a ‘U’ file) using
btou(l). If a symbolic ucode file is to be produced by
converting the binary ucode from the C compiler front
end then the front end option —Xu is used instead of
btou(l).

largll,arg2...]

Pass the argument[s] argi to the compiler passles]
cle..]. The ¢’s are one of [pfjusmocablyz]. The c¢’s
selects the compiler pass in the same way as the —t
option.

RISC Version 4.1 Revised March 1993

CcCc(1) (Software Development Utilities (RISC)) CC(1)

The options —t [hpfjusmocablyzrnt }, —h path, and -B
string select a name to use for a particular pass, startup rou-
tine, or standard library. These arguments are processed from
left to right so their order is significant. When the —B option
is encountered, the selection of names takes place using the
last —h and -t options. Therefore, the —B option is always
required when using —h or —t. Sets of these options can be
used to select any combination of names.

—t [hpfjusmocablyzrnt]
Select the names. The names selected are those desig-
nated by the characters following the -t option
. according to the following table:

Name Character

include h (see note below)
cpp

ccom

ujoin

uld

usplit
umerge
uopt

ugen

as0

asl

1d

ftoc

cord
[m]ert[ln].o
libprofl.a
btou, utob

SRR NY oo Oog®BE— ST

If the character ‘h’ is in the —t argument then a
directory is added to the list of directories to be used
in searching for ‘#include’ files. This directory name
has the form /usr/includestring . The standard direc-
tory is still searched.

Revised March 1993 RISC Version 4.1 Page 7

de

cc(1) (Software Development Utilities (RISC)) cc(1)

W/

~hpath
Use path rather than the directory where the name is
normally found.

—Bstring
Append string to all names specified by the —t option.
If no —t option has been processed before the —B, the
—t option is assumed to be ‘“hpfjusmocablyzrnt”. This
list designates all names. If no —t argument has been
processed before the —B then a —B string is passed
to the loader to use with its —1 x arguments. V

If the environment variable TMPDIR is set, the value is used as
the directory to place any temporary files rather than the

default /tmp/.
file.o Input file
file.o Object file
a.out Loaded output
/bin/cc
/bin/as
/bin/ld
$COMP_HOST_ROOT /usr/lib/cmplrs/ld
The link editor start up program. U
/lib/cpp

$COMP_HOST _ROOT /usr/lib/cmplrs/oldc/cpp
The C-preprocessor.

Jusr/include Standard directory for ‘#include’ files.

Jusr/include2.20 Include directory for this version’s
‘#include’ files.

$COMP_HOST_ROOT/usr/lib/cmplrs/oldc/ccom
C front end.

Page 8 RISC Version 4.1 Revised March 1993

cc()

(Software Development Utilities (RISC)) cc(1)

$COMP_HOST_ROOT /usr/lib/cmplrs/ujoin

Binary ucode and symbol table joiner.
$COMP_HOST_ROOT /usr/lib/cmplrs/uld

Ucode loader.
$COMP_HOST_ROOT /usr/lib/cmplrs/usplit

Binary ucode and symbol table splitter
$COMP_HOST_ROOT/usr/lib/cmplrs/umerge

Procedure intergrator
$COMP_HOST_ROOT/usr/lib/cmplrs/uopt

Optional global ucode optimizer
$COMP_HOST_ROOT/usr/lib/cmplrs/ugen

Code generator
$COMP_HOST _ROOT /usr/lib/cmplrs/as0

Symbolic to binary assembly language

translator.
$COMP_HOST_ROOT /usr/lib/cmplrs/asl

Binary assembly language assembler

and reorganizer.
$COMP_HOST_ROOT/usr/lib/cmplrs/ld

The link editor.
$COMP_HOST_ROOT/usr/lib/emplrs/btou

Binary to symbolic ucode translator

$COMP_HOST _ROOT/usr/lib/cmplrs/utob
Symbolic to binary ucode translator

/lib/libec.a Standard library.
/lib/crtl.o C runtime startup module.
SEE ALSO

as(1), cpp(1), 1d(1).
”The C Programmer’s Handbook” by M. I. Bolsky, Prentice-
Hall and AT&T, 1985, ISBN 0-13-110073-4.

”The C Programming Language” by B. W. Kernighan and D.
M. Ritchie, Prentice-Hall, 1978, ISBN 0-13-110163-3.

Revised March 1993 RISC Version 4.1 Page 9

cc(1) (Software Development Utilities (RISC)) ccQ)

"Programming in C — A Tutorial” by B. W. Kernighan.
”C Reference Manual” by D. M. Ritchie.
”C Language” in the Programming Guide.

WARNING
By default, the return value from a C program is completely
random. The only two guaranteed ways to return a specific
value are to explicitly call exit(2) or to leave the function
main(1l) with a return expression; construct.

NOTICE
Profiling is not yet supported.

Page 10 RISC Version 4.1 Revised March 1993

CcDC(1) (Software Development Utilities) CcDC (1)
NAME

cde — change the delta commentary of an SCCS delta
SYNOPSIS

ede —rSID [—m[mrlist]] [— y[comment]] files
DESCRIPTION

cdc changes the delta commentary, for the SID (SCCS
IDentification) string specified by the —r keyletter, of each
named SCCS file.

ﬁ delta commentary is defined to be the Modification Request
‘ (MR) and comment information normally specified via the
delta(1) command (—m and -y keyletters).

If a directory is named, cdc behaves as though each file in the
directory were specified as a named file, except that non-SCCS
files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of — is
given, the standard input is read (see WARNINGS) and each
line of the standard input is taken to be the name of an SCCS
file to be processed.

Arguments to cdc, which may appear in any order, consist of
keyletter arguments and file names.

All the described keyletter arguments apply independently to
each named file:

ﬁ -rSID Used to specify the SCCS IDentification
(SID) string of a delta for which the delta
commentary is to be changed.

—mmrlist If the SCCS file has the v flag set [see
admin(1)] then a list of MR numbers to be
added and/or deleted in the delta commen-
tary of the SID specified by the -r
keyletter may be supplied. A null MR list
has no effect.

Revised March 1993 RISC Version 4.1 Page 1

CcDC(1) (Software Development Utilities) CDC(1)

MR entries are added to the list of MRs in
the same manner as that of delta(l). In
order to delete an MR, precede the MR
number with the character ! (see EXAM-
PLES). If the MR to be deleted is
currently in the list of MRs, it is removed
and changed into a ‘“‘comment’ line. A list
of all deleted MRs is placed in the com-
ment section of the delta commentary and
preceded by a comment line stating that .
they were deleted. V

If —m is not used and the standard input
| is a terminal, the prompt MRs? is issued
on the standard output before the stan-
dard input is read; if the standard input is
not a terminal, no prompt is issued. The
MRs? prompt always precedes the com-
ments? prompt (see —y keyletter).

MRs in a list are separated by blanks
and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value [see
admin(1)], it is taken to be the name of a
program (or shell procedure) which vali- o
dates the correctness of the MR numbers. w
If a non-zero exit status is returned from

the MR number validation program, cdc
terminates and the delta commentary

remains unchanged.

—ylcomment] Arbitrary text used to replace the
comment(s) already existing for the delta
specified by the —r keyletter. The previ-
ous comments are kept and preceded by a
comment line stating that they were
changed. A null comment has no effect. w

Page 2 RISC Version 4.1 Revised March 1993

de

CDC(1) (Software Development Utilities) CDC (1)

If —y is not specified and the standard
input is a terminal, the prompt com-
ments? is issued on the standard output
before the standard input is read; if the
standard input is not a terminal, no
prompt is issued. An unescaped new-line
character terminates the comment text.

Simply stated, the keyletter arguments are either (1) if you
made the delta, you can change its delta commentary; or (2) if
you own the file and directory you can modify the delta com-
mentary.

EXAMPLES
cdc -rl.6 -m”"bl78-12345 !'bl77-54321 \
b179-00001" -ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-
54321 from the MR list, and adds the comment trouble to
delta 1.6 of s.file.

cdc -rl.6 s.file
MRs? !bl77-54321 bl78-12345 bl179-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdc command via the
standard input (— on the command line), then the —m and
—y keyletters must also be used.

FILES
x-file [see delta(1)]
z-file {see delta(1)]

SEE ALSO
admin(1), delta(1), get(1), prs(1), sccsfile(4).

Revised March 1993 RISC Version 4.1 Page 3

m s Do e i e o e B R R RS e

CDC (1) (Software Development Utilities) CDC(1)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

CFLOW (1) (Software Development Utilities) CFLOW (1)

cflow — generate C flowgraph

SYNOPSIS

cflow [—r] [—ix] [—i_] [—dnum)] files

DESCRIPTION

The cflow command analyzes a collection of C, yace, lex, assem-
bler, and object files and attempts to build a graph charting the
external references. Files suffixed with .y, .1, and .c are yacced,
lexed, and C-preprocessed as appropriate. The results of the
preprocessed files, and files suffixed with .i, are then run
through the first pass of lint(1). Files suffixed with .s are
assembled. Assembled files, and files suffixed with .0, have
information extracted from their symbol tables. The results
are collected and turned into a graph of external references
which is displayed upon the standard output.

Each line of output begins with a reference number, followed
by a suitable number of tabs indicating the level, then the
name of the global symbol followed by a colon and its
definition. Normally only function names that do not begin
with an underscore are listed (see the —i options below). For
information extracted from C source, the definition consists of
an abstract type declaration (e.g., char =), and, delimited by
angle brackets, the name of the source file and the line number
where the definition was found. Definitions extracted from
object files indicate the file name and location counter under
which the symbol appeared (e.g., text). Leading underscores in
C-style external names are deleted.

Once a definition of a name has been printed, subsequent refer-
ences to that name contain only the reference number of the
line where the definition may be found. For undefined refer-
ences, only < > is printed.

Revised March 1993 RISC Version 4.1 Page 1

m . - e

CFLOW(1) (Software Development Utilities) CFLOW (1)

As an example, given the following in file.c:

int i
main()

f0;

g0);

fO;
}
fO
{

i = hQ);
}

the command
cflow —ix file.c
produces the output

main: int(), <file.c 4>
f: int(), <file.c 11>
h: <>
i: int, <file.c 1>
g <>

DU O DN

When the nesting level becomes too deep, the output of cflow
can be piped to pr(1), using the —e option, to compress the tab
expansion to something less than every eight spaces.

In addition to the —D, —1I, and —U options [which are inter-
preted just' as they are by cc(1) and cpp(1)], the following
options are interpreted by cflow:

Page 2 RISC Version 4.1 Revised March 1993

ﬁ

CFLOW(1) (Software Development Utilities) CFLOW (1)

-r Reverse the “caller:callee” relationship producing an
' inverted listing showing the callers of each function.
The listing is also sorted in lexicographical order by

callee.

—-ix Include external and static data symbols. The default
is to include only functions in the flowgraph.

—i_ Include names that begin with an underscore. The
default is to exclude these functions (and data if —ix
is used).

—dnum The num decimal integer indicates the depth at which
the flowgraph is cut off. By default this is a very
large number. Attempts to set the cutoff depth to a
nonpositive integer will be ignored.

DIAGNOSTICS
Complains about bad options. Complains about multiple
definitions and only believes the first. Other messages may
come from the various programs used (e.g.,, the C-
preprocessor).

SEE ALSO
as(1), ce(1), epp(l), lex(1), lint(1), nm(1), pr(1), yacc(1).

BUGS
Files produced by lex(1) and yacc(1) cause the reordering of line
number declarations which can confuse cflow. To get proper
results, feed cflow the yacc or lex input.

Revised March 1993 RISC Version 4.1 Page 3

CFLOW (1) (Software Development Utilities) CFLOW (1)

w

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

CLIST(1) (Software Development Utilities) CLIST(1)

NAME
clist — list C programs

SYNOPSIS
clist files

DESCRIPTION
clist produces a listing of the specified files on the standard
output device.

clist will print 60 lines on a page. A line number is printed in
front of each line. Each page has a heading containing the file
name, the time of the last modification of the file, and the
page number. The pages are numbered individually for each

file.
A line containing only the characters of
/*$P*/
starting in column 1 will not be printed, instead the page will
be ejected.
SEE ALSO
pr(1).

Revised March 1993 RISC Version 4.1 Page 1

CLIST(1) (Software Development Utilities) CLIST (1)

W

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

COMB (1) (Software Development Utilities) COMB (1)

comb — combine SCCS deltas

SYNOPSIS

comb[—-o][—s][—psid][—clist] files

DESCRIPTION

comb generates a shell procedure [see sh(1)] which, when run,
will reconstruct the given SCCS files. The reconstructed files
will, hopefully, be smaller than the original files. The argu-
ments may be specified in any order, but all keyletter argu-
ments apply to all named SCCS files. If a directory is named,
comb behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last com-
ponent of the path name does not begin with s.) and unread-
able files are silently ignored. If a name of — is given, the
standard input is read; each line of the input is taken to be the
name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored. The generated shell pro-
cedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as
though only one named file is to be processed, but the effects of
any keyletter argument apply independently to each named file.

-0 For each get —e generated, this argument causes the
reconstructed file to be accessed at the release of the
delta to be created, otherwise the reconstructed file
would be accessed at the most recent ancestor. Use
of the —o keyletter may decrease the size of the
reconstructed SCCS file. It may also alter the shape
of the delta tree of the original file.

-8 This argument causes comb to generate a shell pro-
cedure which, when run, will produce a report giv-
ing, for each file: the file name, size (in blocks) after
combining, original size (also in blocks), and percen-
tage change computed by:

100 * (original — combined) / original

It is recommended that before any SCCS files are

Revised March 1993 RISC Version 4.1 Page 1

COMB (1) (Software Development Utilities) COMB (1)

actually combined, one should use this option to
determine exactly how much space is saved by the
combining process.

—-pSID The SCCS I[Dentification string (SID) of the oldest

delta to be preserved. All older deltas are discarded
in the reconstructed file.

~clist A list (see get(1) for the syntax of a list) of deltas to
be preserved. All other deltas are discarded.

If no keyletter arguments are specified, comb will preserve only
leaf deltas and the minimal number of ancestors needed to
preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.
SEE ALSO
admin(1), delta(l), get(1), help(1), prs(1), sh(1), scesfile(4).
DIAGNOSTICS
Use help(1) for explanations.
BUGS

comb may rearrange the shape of the tree of deltas. It may not
save any space; in fact, it is possible for the reconstructed file
to actually be larger than the original.

Page 2 RISC Version 4.1 Revised March 1993

CPP (1) (Software Development Utilities) CPP (1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/lib/cpp [option ...][ifile [ofile]]
DESCRIPTION

cpp is the C language preprocessor which is invoked as the first
pass of any C compilation using the cc(1) command. The output
of cpp is designed to be in a form acceptable as input to the
next pass of the C compiler. As the C language evolves, cpp
and the rest of the C compilation package will be modified to
follow these changes. Therefore, the use of cpp other than in
this framework is not suggested. The preferred way to invoke
cpp is through the cc(l) command since the functionality of cpp
may someday be moved elsewhere. See m4(1) for a general
MAacro processor.

cpp optionally accepts two filenames as arguments. ifile is the
input and ofile is the output for the preprocessor. They default
to standard input and standard output if not supplied.

The following options to ¢pp are recognized:
—V Print the version of cpp.

—P Preprocess the input without producing the line control
information used by the next pass of the C compiler.

—C Pass along all comments except those found on cpp
directive lines. By default, \f2cpp strips C-style com-
ments.

—Uname
Remove any initial definition of name , where name is a
reserved symbol that is predefined by the particular
preprocessor.

—Dname

—Dname =def
Define name as if by a #define directive. If no =def is
given, name is defined as 1.

Revised March 1993 RISC Version 4.1 Page 1

CPP(1) (Software Development Utilities) CPP (1)

! —Idir Change the algorithm for searching for #include files

whose names do not begin with / to look in dir before

| looking in the directories on the standard list. When
this option is used, #include files whose names are
enclosed in ” ” are searched for first in the directory of
the ifile argument, then in directories named in —1I
options, and last in directories on a standard list. For
#include files whose names are enclosed in < >, the
directory of the ifile argument is not searched.

-a No white spaces allowed before # in cpp directives (see V

below).
-p Don’t replace #param in replacement-strings.
—d4 Print the number of bytes allocated by cpp.
-E Ignored
-v Ignored

Four special names are understood by cpp. The name _LINE_
is defined as the current line number (as a decimal integer) as
known by cpp, _FILE_ is defined as the current filename (as a
C string) as known by cpp, _DATE_ is defined as the current
date (as a C-string), and _TIME_ is defined as the current time
(as a C-string in the form "hh:mm:ss”). They can be used any-
where (including in macros) just as any other defined name.

All cpp directives start with lines begun by # optionally after V
white spaces. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string
Notice that there can be no space between name and the
(. Replace subsequent instances of name followed by a (,
a list’ of comma-separated tokens, and a) by token-string
where each occurrence of an arg in the foken-string is
replaced by the corresponding token in the comma-
separated list. _ w

Page 2 RISC Version 4.1 Revised March 1993

B e B DA R m

CPP(1) (Software Development Utilities) CPP(1)

#undef name
Cause the definition of name (if any) to be forgotten
from now on.

#include ”filename”

#include < filename >
Include at this point the contents of filename (which will
then be run through cpp). When the < filename > nota-
tion is used, filename is only searched for in the stan-
dard places. See the —1I option above for more detail.

#line integer-constant “filename”
Causes cpp to generate line control information for the
next pass of the C compiler. integer-constant is the line
number of the next line and filename is the file where it
comes from. If “filename” is not given, the current
filename is unchanged.

#error info
Causes cpp to generate a message including info on stan-
dard output.

#pragma info
Causes cpp to generate ’#p info’.

The empty cpp-directive has no effect.

#endif
Ends a section of lines begun by a test directive (#if,
#ifdef, or #ifndef). Each test directive must have a
matching #endif.

#ifdef name
The lines following appear in the output if and only if
name has been the subject of a previous #define
without being the subject of an intervening #undef.

#ifndef name
The lines following do not appear in the output if and
only if name has been the subject of a previous #define
without being the subject of an intervening #undef.

Revised March 1993 RISC Version 4.1 Page 3

GEFra B

CPP(1) (Software Development Utilities) CPP (1)

#if constant-expression

Lines following appear in the output if and only if the
constant-expression evaluates to non-zero. All binary
non-assignment C operators, the ?: operator, the unary
—, 1, and ~ operators are all legal in constant-expression.
The precedence of the operators is the same as defined
by the C language. There is also a unary operator
defined, which can be used in constant-expression in
these two forms: defined (name) or defined name.
This allows the utility of #ifdef and #ifndef in a #if
directive. Only these operators, integer constants, and
names which are known by cpp should be used in
constant-expression. In particular, the sizeof operator is
not available.

#else
Reverses the notion of the test directive that matches
this directive. If lines previous to this directive are
ignored, the following lines appear in the output. If lines
previous to this directive are not ignored, the following
lines do not appear in the output.

#elif
Like #else #if but does not need an #endif.

The test directives and the possible #else directives can be
nested.

FILES
/usr/include standard directory for #include files

SEE ALSO
cc(1), m4(Q1).

DIAGNOSTICS
The error messages produced by cpp are self-explanatory. The
line number and filename where the error occurred are printed
along with the diagnostic.

Page 4 RISC Version 4.1 Revised March 1993

w

W/

CPP(1) (Software Development Utilities) cPP (1)

NOTES
When newline characters were found in argument lists for mac-
ros to be expanded, previous versions of cpp put out the new-
lines as they were found and expanded. The current version of
cpp replaces these newlines with blanks to alleviate problems
that the previous versions had when this occurred.

Unlike when using ec command the _ STDC__ macro is not
default defined for /lib/cpp.

Revised March 1993 RISC Version 4.1 Page 5

CPP(1) (Software Development Utilities) CPP(1)

This page is intentionally left blank

Page 6 RISC Version 4.1 Revised March 1993

CPRS (1) (Software Development Utilities) CPRS (1)

NAME
cprs — compress a common object file

SYNOPSIS
cprs [—p] filel file2

DESCRIPTION
The cprs command reduces the size of a common object file,
filel, by removing duplicate structure and union descriptors.
The reduced file, file2, is produced as output.

The sole option to cprs is:

—p Print statistical messages including: total number of
tags, total duplicate tags, and total reduction of filel.

SEE ALSO
strip(1), a.out(4), syms(4).

Revised March 1993 RISC Version 4.1 Page 1

CPRS (1)

Page 2

(Software Development Utilities) CPRS (1)

This page is intentionally left blank

RISC Version 4.1 Revised March 1993

CTRACE(1) (Software Development Utilities) CTRACE (1)

NAME

ctrace — C program debugger
SYNOPSIS

ctrace [options] [file]
DESCRIPTION

The ctrace command allows you to follow the execution of a C
program, statement-by-statement. The effect is similar to exe-
cuting a shell procedure with the —x option. ctrace reads the
C program in file (or from standard input if you do not specify
file), inserts statements to print the text of each executable
statement and the values of all variables referenced or
modified, and writes the modified program to the standard out-
put. You must put the output of ctrace into a temporary file
because the cc(l1) command does not allow the use of a pipe.
You then compile and execute this file.

As each statement in the program executes it will be listed at
the terminal, followed by the name and value of any variables
referenced or modified in the statement, followed by any output
from the statement. Loops in the trace output are detected
and tracing is stopped until the loop is exited or a different
sequence of statements within the loop is executed. A warning
message is printed every 1000 times through the loop to help
you detect infinite loops. The trace output goes to the standard
output so you can put it into a file for examination with an edi-
tor or the bfs(1) or tail(1) commands.

The options commonly used are:

—f functions Trace only these functions
—vV functions Trace all but these functions

You may want to add to the default formats for printing vari-
ables. Long and pointer variables are always printed as signed
integers. Pointers to character arrays are also printed as
strings if appropriate. Char, short, and int variables are also
printed as signed integers and, if appropriate, as characters.
Double variables are printed as floating point numbers in
scientific notation. You can request that variables be printed

Revised March 1993 RISC Version 4.1 Page 1

CTRACE (1)

(Software Development Utilities) CTRACE (1)

in additional formats, if appropriate, with these options:

-0
-X
! |
—e

Octal
Hexadecimal
Unsigned
Floating point

These options are used only in special circumstances:

—1n

Check n consecutively executed statements for loop-
ing trace output, instead of the default of 20. Use 0
to get all the trace output from loops.

Suppress redundant trace output from simple
assignment statements and string copy function
calls. This option can hide a bug caused by use of
the = operator in place of the = = operator.

Trace n variables per statement instead of the
default of 10 (the maximum number is 20). The
Diagnostics section explains when to use this option.
Run the C preprocessor on the input before tracing
it. You can also use the —D, —I, and —-U ¢pp(1)
options.

These options are used to tailor the run-time trace package
when the traced program will run in a non-UNIX System
environment:

-b

—p string

Page 2

Use only basic functions in the trace code, that is,
those in ctype(3C), printf(3S), and string (3C). These
are usually available even in cross-compilers for
microprocessors. In particular, this option is needed
when the traced program runs under an operating
system that does not have signal(2), fflush(3S),
longimp (3C), or setjimp (3C).

Change the trace print function from the default of

’printfC. For example, 'fprintf(stderr,” would send
the trace to the standard error output.

RISC Version 4.1 " Revised March 1993

i e R o S i S S R S m

CTRACE (1) (Software Development Utilities) CTRACE (1)

-rf Use file f in place of the runtime.c trace function
package. This lets you change the entire print func-
tion, instead of just the name and leading arguments
(see the —p option).

EXAMPLE
If the file lc.c contains this C program:

1 #include <stdio.h>
2 main()/ * count lines in input * /

34

4 int ¢, nl;
5

6 nl = 0;

7 while ({¢ = getchar()) != EOF)

8if (c = ’\n")

9 + +nl;

10 printf(”%d\n”, nl);

1}
and you enter these commands and test data:

cc le.c

a.out

1

(cntl-d)
the program will be compiled and executed. The output of the
program will be the number 2, which is not correct because
there is only one line in the test data. The error in this pro-
gram is common, but subtle. If you invoke ctrace with these
commands:

ctrace lc.c >temp.c

cc temp.c

a.out
the output will be:

2 main()

6 nl = 0;

/*nl==20 %/

7 while ((¢ = getchar()) != EOF)

The program is now waiting for input. If you enter the same

Revised March 1993 RISC Version 4.1 Page 3

sty m ST S e A e e B S e heai A A,
—

CTRACE (1) (Software Development Utilities) CTRACE (1)

test data as before, the output will be:
/*c==490r’l */

8 if (¢ = "\n")
/*c==100or'\n’ =/
; 9 + +nl;
1 [*nl==1%

7 while ((¢ = getchar()) != EOF)
/*c==100r"\n’ */
8 if (¢ = ’\n")
/* c==100r’\n’ =/
9 + +nl, U
/*nl==2 %/
7 while ((c = getchar()) != EOF)
If you now enter an end of file character (cntl-d) the final out-
put will be:
[*e==-1%/
10 printf(*%d\n”, nl);
/*nl==2 /2
return
Note that the program output printed at the end of the trace
line for the nl variable. Also note the return comment added
by ctrace at the end of the trace output. This shows the impli-
cit return at the terminating brace in the function.

The trace output shows that variable ¢ is assigned the value "1’

in line 7, but in line 8 it has the value \n’. Once your atten- _
tion is drawn to this if statement, you will probably realize W
that you used the assignment operator (=) in place of the

equality operator (= =). You can easily miss this error during

code reading.

EXECUTION-TIME TRACE CONTROL
The default operation for ctrace is to trace the entire program
file, unless you use the —f or —v options to trace specific func-
tions. This does not give you statement-by-statement control
of the tracing, nor does it let you turn the tracing off and on
when executing the traced program.

Page 4 RISC Version 4.1 Revised March 1993

CTRACE (1) (Software Development Utilities) CTRACE (1)

~

You can do both of these by adding ctroff() and ctron() function
calls to your program to turn the tracing off and on, respec-
tively, at execution time. Thus, you can code arbitrarily com-
plex criteria for trace control with if statements, and you can
even conditionally include this code because ctrace defines the
CTRACE preprocessor variable. For example:

#ifdef CTRACE
if (¢ =="" &&i > 1000)
m ctron();
: #endif

You can also call these functions from sdb(1) if you compile
with the —g option. For example, to trace all but lines 7 to 10
in the main function, enter:

sdb a.out
main:7b ctroff()
main:11b ctron()
r

You can also turn the trace off and on by setting static variable
tr_ct_to 0 and 1, respectively. This is useful if you are using a
debugger that cannot call these functions directly.

ﬁ DIAGNOSTICS

‘ This section contains diagnostic messages from both ctrace and
cc(1), since the traced code often gets some cc warning mes-
sages. You can get cc error messages in some rare cases, all of
which can be avoided.

ctrace Diagnostics
warning: some variables are not traced in this statement
Only 10 variables are traced in a statement to prevent
the C compiler ”out of tree space; simplify expression”
error. Use the —t option to increase this number.

Revised March 1993 RISC Version 4.1 Page 5

I
]

CTRACE (1) (Software Development Utilities) CTRACE (1)

warning: statement too long to trace
This statement is over 400 characters long. Make sure
that you are using tabs to indent your code, not spaces.

cannot handle preprocessor code, use — P option
This is usually caused by #ifdef/#endif preprocessor
statements in the middle of a C statement, or by a semi-
colon at the end of a #define preprocessor statement.

if ... else if” sequence too long
Split the sequence by removing an else from the middle.

possible syntax error, try — P option
Use the —P option to preprocess the ctrace input, along
with any appropriate —D, —I, and —-U preprocessor
options. If you still get the error message, check the
Warnings section below.

Cc Diagnostics
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0
Ignore these messages.

compiler takes size of function
See the ctrace ”possible syntax error” message above.

yacc stack overflow
See the ctrace ”’if ... else if” sequence too long” message
above.

out of tree space; simplify expression
Use the —t option to reduce the number of traced vari-
ables per statement from the default of 10. Ignore the
“ctrace: too many variables to trace” warnings you will
now get.

redeclaration of signal
Either correct this declaration of signal(2), or remove it
and #include <signalh>.

Page 6 RISC Version 4.1 Revised March 1993

CTRACE(1) (Software Development Utilities) CTRACE (1)

SEE ALSO
bfs(1), tail(1), signal(2), ctype(3C), setjmp(3C), string(3C),
fclose(3S), printf(3S).

WARNINGS
You will get a ctrace syntax error if you omit the semicolon at
the end of the last element declaration in a structure or union,
just before the right brace (}). This is optional in some C com-

pilers.
. Defining a function with the same name as a system function
m may cause a syntax error if the number of arguments is

changed. Just use a different name.

ctrace assumes that BADMAG is a preprocessor macro, and
that EOF and NULL are #defined constants. Declaring any of
these to be variables, e.g., ”int EOF;”, will cause a syntax
error.

BUGS

ctrace does not know about the components of aggregates like
structures, unions, and arrays. It cannot choose a format to
print all the components of an aggregate when an assignment
is made to the entire aggregate. ctrace may choose to print the
address of an aggregate or use the wrong format (e.g.,
3.149050e-311 for a structure with two integer members) when
printing the value of an aggregate.

ﬁ Pointer values are always treated as pointers to character
strings.

The loop trace output elimination is done separately for each
file of a multi-file program. This can result in functions called
from a loop still being traced, or the elimination of trace output
from one function in a file until another in the same file is
called.

FILES
/usr/lib/ctrace/runtime.crun-time trace package

Revised March 1993 RISC Version 4.1 Page 7

CTRACE (1)

Page 8

(Software Development Utilities) CTRACE (1)
This page is intentionally left blank
RISC Version 4.1 Revised March 1993

el

SRR SRR

CXREF (1) (Software Development Utilities) CXREF (1)

™

NAME
cxref — generate C program cross-reference

SYNOPSIS
cxref [options] files

DESCRIPTION

The cxref command analyzes a collection of C files and

attempts to build a cross-reference table. cxref uses a special

version of c¢pp to include #define’d information in its symbol
m table. It produces a listing on standard output of all symbols
: (auto, static, and global) in each file separately, or, with the —¢

option, in combination. Each symbol contains an asterisk (*)

before the declaring reference.

In addition to the —D, —I and —U options [which are inter-
preted just as they are by cc(l) and cpp(1)], the following
options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

—w<num>
Width option which formats output no wider than
<num> (decimal) columns. This option will
default to 80 if <num> is not specified or is less

than 51.
—o file Direct output to file.
ﬂ -8 Operate silently; do not print input file names.
-t Format listing for 80-column width.
FILES
LLIBDIR usually /usr/lib
LLIBDIR/xcpp special version of the C preprocessor.
SEE ALSO
ce(1), cpp(D).
DIAGNOSTICS
. Error messages are unusually cryptic, but usually mean that
ﬂ you cannot compile these files.

Revised March 1993 RISC Version 4.1 Page 1

de

T e R R R R SRR

CXREF (1) (Software Development Utilities) CXREF (1)

BUGS

Page 2

cxref considers a formal argument in a #define macro definition
to be a declaration of that symbol. For example, a program that

#includes ctype.h, will contain many declarations of the vari-
able c.

RISC Version 4.1 Revised March 1993

SR R e

DBX (1) (Software Development Utilities) DBX (1)

NAME

dbx — source-level debugger

SYNOPSIS

dbx [-1 directory] [—c file] [—i] [—r] [object] [core]

DESCRIPTION

dbx is a source-level debugger for the Supermax RISC.

The object file used with the debugger is produced by specify-
ing an appropriate option (—g) to the compiler. The resulting
object file contains symbol table information, including the
names of all source files that the compiler translated to create
the object file. These source files are accessible from the
debugger. If — g is not specified, limited debugging is possible.

If a core file exists in the current directory or a coredump is
specified, dbx can be used to look at the state of the program
when it faulted. dbx does not support lines greater than 511.

Running dbx

If a .dbxinit file resides in the current directory or in the user’s
home directory, the commands in it are executed when dbx is
invoked.

When invoked, dbx recognizes these command line options:

—1I directory or —Idirectory
Tells dbx to look in the specified directory for source
files. Multiple directories can be specified by using
multiple —I options. dbx searches for source files in
the current directory and in the object file’s direc-
tory whether or not —1 is used.

—cfile Selects a command file other than .dbxinit.

—i Uses interactive mode. This option does not treat #s
as comments in a file. It prompts for source even
when it reads from a file. With this option, dbx also
has extra formatting as if for a terminal.

Revised March 1993 RISC Version 4.1 Page 1

DBX (1) (Software Development Utilities) DBX (1)

-r Runs the object file immediately.

The dbx monitor offers powerful command line editing. For a
full description of these editing features, see csh(1).

Multiple commands can be specified on the same command line
by separating them with a semicolon (;). If the user types a
string and presses the stop character usually ("z; see stty(1),
dbx tries to complete a symbol name from the program that
matches the string.

The Monitor

These commands control the dbx monitor:

string] [integer] [—integer]
Specifies a command from the history list.

help Prints a list of dbx commands, using the UNIX
system ‘more’ command to display the list.

history Prints the items from the history list. The
default is 20.

quit!!] Exit dbx after verification. If ‘!’ is specified,

verification is not required.

Controlling dbx

alias [name(argl,...argN)”string”]
Lists all existing aliases, or, if an argument is
specified, defines a new alias.

unalias alias command name
Removes the specified alias.

delete expressionl,...expressionN

delete all Deletes the specified item from the status list.
The argument all deletes all items from the
status list.

playback input [file]
Replays commands that were saved with the
record input commands in a text file.

Page 2 RISC Version 4.1 Revised March 1993

DBX (1) (Software Development Utilities) DBX (1)

playback output [file]
Replays debugger output that was saved with
the record output command.

record input [file]
Records all commands typed to dbx.

record output [file]
Records all dbx output.

sh [shell command]
Calls a shell from dbx or executes a shell com-
mand.

status Lists currently set stop, record, and trace com-
mands.

tagvalue (tagname)
Returns the value of tagname. If the tags
extends to more than one line, or if it contains
arguments, an error occurs. faguvalue can be
used in any expression.

set [variable = expression]
Lists existing debugger variables and their
values. This command can also be used to
assign a new value to an existing variable or to
define a new variable.

unset variable
Removes the setting of a specified debugger
variable.

Examining Source
/regular expression
Searches ahead in the source code for the regu-
lar expression.

?regular expression
Searches back in the source code for the regular
expression.

Revised March 1993 RISC Version 4.1 Page 3

DBX (1) (Software Development Utilities)

edit [file] Calls an editor from dbx.

file [file] Prints the current file name, or, if a file name is
specified, this command changes the current file
to the specified file.

func [expression] [procedure]
Moves to the specified procedure (activation
level), or, if an expression or procedure is not
specified, prints the current activation level.

list [expression:integer] u

list [expression]
Lists the specified lines. The default is 10 lines.

|

\

|

tag tagname Sets the current file/line to the location
| specified by tagname. Operations are similar to
} tge tag operations in vi(1).

|

use [directoryl . . . directoryN]
Lists source directories, or, if a directory name
is specified, this command substitutes the new
directories for the previous list.

j whatis variable
Prints the type declaration for the specified
name.

| which variable
‘ Finds the variable name currently being used. u

| whereis variable
Prints all qualifications (the scopes) of the
specified variable name.

Controlling Programs
assign expressionl = expression2
Assigns the specified expression to a specified
program variable.

Page 4 RISC Verslon 4.1 Revised March 1993

DBX (1) (Software Development Utilities) DBX(1)

[n] cont [signall

cont [signal] to line

cont [signal] in procedure

goto line

next [integer]

rerun [argl ...

rerun [argl ...

Continues executing a program after a break-
point. n breakpoints are ignored if n is specified
before stepping. IOIf specified, signal is
delivered to the processing being debugged.

Goes to the specified line in the source.

Steps over the specified number of lines. The
default is one. This command does not step into
procedures.

argN1 [<filel] [> file2]

argN] [<filel] [> &file2]

Reruns the program, using the same arguments
that were specified to the run command. If new
arguments are specified, rerun uses those argu-
ments.

run [argl ... argN] [<filel] [> file2]
run [argl ... argN] [<filel] [> &file2]

Runs the program with the specified argu-
ments.

return [procedure]

step [integer]

Setting Breakpoints
catch [signal]

Revised March 1993

Continues executing until the procedire
returns. If a procedure is not specified, dbx
assumes the next procedure.

Steps the specified number of lines. This com-
mand steps into procedures. The default is one
line.

Lists al signals that dbx catches, or, if an argu-
ment is specified, adds a new signal to the catch
list.

RISC Version 4.1 Page 5

DBX (1) (Software Development Utilities) DBX (1)

Lists all signals that dbx does not catch. If a
signal is specified, this command adds the sig-

ignore [signal]
‘ nal to the ignore list.
|

stop [variable]
stop [variable] at line [if expression]
stop [variable] in procedure [if expression]

stop [variable] if expression v
Sets the breakpoint at the specified point. U

trace variable [at line] [if expression]

trace variable [in procedure] [if expression]
Traces the specified variable.

when [variable] [at line] {command list}

when [variable] [in procedure] {command list}
Executes the specified dbx comma separated
command list.

Examining Program State
dump [procedure] {.]
Prints variable information about procedure. If
a dot (.) is specified, this command prints global
variable information on all procedures in the
stack and the variables of those procedures. u

down [expression]
Moves down the specified number of activation
levels in the stack. The default is one level.

up lexpression]
Moves up the specified number of activation
levels in the stack. The default is one level.

print expressionl, ... expressionN
Prints the value of the specified expression. If
expression is a dbx keyword, it must be
enclosed in parantheses. For example, to print U
out a variable called ‘output’ (which is also a

Page 6 RISC Version 4.1 Revised March 1993

DBX (1) (Software Development Utilities) DBX (1)

variable in the playback and record commands)
you must type:

print (output)

printf "string”, expressionl, ... expressionN
Prints the value of the specified expression,
using C language string formatting. As in the
print command, if expression is a dbx keyword,
you must enclose it within parantheses.

printregs Prints all register values.

where Does a stack trace, which shows the current
activation levels.

where n Prints out only the top n levels of the stack.

Debugging at the Machine Level

[n] conti [signal]
conti [signal] to address

conti [signal] in peocedure
Continues executing assembly code after a
breakpoint. n breakpoints are ignored if n is
specified before stepping. If specified, signal is
delivered to the processing being debugged.

nexti [integer]
Steps over the specified number of machine
instructions. The default is one. This command
does not step into procedures.

stepi [integer]
Steps the specified number of machine instruc-
tions. This command steps into procedures. The
default is one instruction.

stopi [variable] at [address] [at address [if expression]

stopi [variable] in procedure [if expression]

Revised March 1993 RISC Version 4.1 Page 7

DBX (1) (Software Development Utilities) DBX (1)

stopi [variable] if expression
Sets the breakpoint in the machine code at the
specified point.

tracei variable at address [at address if expression]

tracei variable in procedure [at address if expression]
Traces the specified variable in machcine
instructions.

wheni [variable] [at address] {command}

wheni [variable] [in procedure] {command}
Executes the specified dbx comma separated
command list.

address[?]/ < count > <mode >

Searching forward (or backward, if ? is
specified), prints the contents address, or
disassembles the code for the instruction
address; count is the number of items to be
printed at the specified address. mode is one of
the characters in the following table producing
the indicated result:

Print a short word in decimal.
Print a long word in decimal.
Print a short word in octal.

Print a long word in octal.

Print a short word in hexadecimal.
Print a long word in hexadecimal.
Print a byte in octal.

Print a bite as a character.

Print a single precision real number.
Print a double precision real number.
Print machine instructions.
Prints data in typed format.

B Me 6 TMY OO0 DA

Page 8 RISC Version 4.1 Revised March 1993

Print a string of characters that ends in a null.

DBX(1) (Software Development Utilities) DBX(1)

address/ <countL > <value > <mask >

Searches for a 32-bit word starting at the
specified address; count specifies the number of
word to process in the search; an address is
printed when the word at address, after an
AND operation with mask, is equal to value.

Predefined dbx Variables:
The debugger has these predefined variables:

$addfmt

$byteaccess

$casesence

$curevent

$curline

$curscrline

$curpe

$datacache

$debugflag
$defin

Revised March 1993

Specifies the format for addresses. This can be
set to any specification that a C ‘printf’ state-
ment can format. The default is zero.

Same as $addrfmt.

When set to a nonzero value, specifies that
uppercase and lowercase letters be taken into
consideration during a search. When set to O,
the case is ignored. The default i 0.

Shows the last even number as seen in the
status feature. Set only by dbx.

Specifies the current line. Set only by dbx.

Shows the last line listed plus 1. Set only by
dbx.

Specifies the current address. Used with the wi
and Ii aliases.

Caches information from the data space so that
dbx must access data space only once. To debug
the operating system, set this variable to 0; oth-
erwise set it to a nonzero value. The default is
1.

For internal use by dbx.
For internal use by dbx.

RISC Version 4.1 Page 9

SRS SRR R aE

DBX (1) (Software Development Utilities) DBX (1)
$defout For internal use by dbx.
$dispix For use when debugging pixie code. When set

to 0, machine code is showed while debugging.
When set to 1, pixie code is shown. The default
is 0.

$hexchars Output characters are printed in hexadecimal
format (set, unset).

$hexin Specifies that inout constants are hexadecimal.

$hexints When set to a nonzero value, changes the
default output constants toi hexadecimal. Over-
rides $octints.

$hexstrings When set to 1, specifies that all strings are
printed in hexadecimal; when set to 0, strings
are printed in character format.

$historyevent
Shows the current history line.

$lines Number of lines for history. The default is 20.

$listwindow Specifies how many lines the list command
prints.

$main Specifies the name of the procedure that dbx
will start with. This can be set to any pro-
cedure. The default is ‘main’.

$maxstrlen Specifies how many characters of a string that
dbx prints for pointers to strings. The default is
128.

$octin When set to nonzero, changes the default input
constants to octal. When set, $hexint overrides
this setting.

$octints Output integers are printed octal format (set,
unset).

Page 10 RISC Version 4.1 Revised March 1993

DBX (1) (Software Development Utilities) DBX (1)

$page

$pagewindow

$pdbxport

Specifies whether to page long information. A
nonzero value turns on paging; a 0 turns it off.
The default is 1.

Specifies how many lines print when informa-
tion runs longer than one screen. This can be
changed to match the number of lines on any
terminal. If set to 0, this variable assumes one
line. The default is 22, leaving space for con-
tinuation query.

Port name from /etc/remotel.pdbx] used to con-
nect to target machine for pdbx.

$printwhilestep

$pimode

$printdata

$printwide

$prompt
$readtextfile

Revised March 1993

For use with the stepln] and stepi[rn] instruc-
tions. A nonzero integer specifies that all n
lines and/or instructions should be printed out.
A zero specifies that only the last line and/or
instruction should be printed out. The default
is zero.

Prints input when used with the playback input
command. The default is 0.

When set to a nonzero value, the contents of
registers used are printed next to each instruc-
tion displayed. The default is 0.

When set to a nonzero value, the contents of
variables are printed in a horizontal format.
The default is 0.

Sets the prompt for dbx.

When set to 1, dbx tries to read instructions
from the object file rather than the process. dbx
executes faster when debugging remotely using
the System Programmer’s Package. This vari-
able should always be set to 0 when the process
being debugged copies in code during the
debugging process. The default is 1.

RISC Version 4.1 Page 11

Fai m AR S R R RS N T R R TR TR

DBX(1) (Software Development Utilities) DBX (1)

$regstyle A zero value causes registers to be printed out
in their normal r format (+O,r1, .. r31). A
nonzero value causes the registers to be printed
out in a special format (zero, at, v0, vl, ...) com-
monly used in debugging programs written in
assembly language.

$repeatmode
When set to a nonzero value, after pressing the
RETURN key (for an empty line), the last com-
mand is repeated. The default is 1.

$rimode When set to a nonzero value, input will is ????
recorded while recording output. The default is
0.

$sigtramp Tells dbx the name of the code called by the
system to invoke user signal handlers. This
variable is set to sigtramp system running
under RISC/os.

$tagfile Contains a filename, indicating the file in which
the tag command and the tabvalue macro are to
search for tags.

Predefined dbx Aliases
The debugger has these predefined aliases:

? Prints a list of all dbx commands.
a Assigns a value to a program variable.
b Sets a breakpoint at a specified line.

bp Stops in a specified procedure.

Continues program execution after a breakpoint.
Deletes the specified item from the status list.
Looks at the specified line.

Moves to the specified activation level on the stack.

- o A 6

Page 12 RISC Version 4.1 Revised March 1993

ﬁ

DBX (1) (Software Development Utilities) DBX (1)

g Goes to the specified line and begins executing the pro-
gram there.

h Lists all items currently on the history list.

j Shows what items are on the status list.

1 Lists the next 10 lines of source code.

1i Lists the next 10 machine instructions.

nor S Step over the specified number of lines without step-
ping into procedure calls.

ni or Si
Step over the specified number of assembly code
instructions without stepping into procedure calls.

P Prints the value of the specified expression or variable.

pd Prints the value of the specified expression or variable
in decimal.

pi Replays dbx commands that were saved with the record
input format.

po Prints the value of the specified expression or variable
in octal.

pr Prints values for all registers.

px Prints the value for the specified variable or expression
in hexadecimal.

q Ends the debugging session.

r Runs the program again with the same arguments that
were specified with the ‘run’ command.

ri Records in a file every command typed.

ro Records all debugger output in the specified file.

s Steps the next number of specified lines.

si Steps the next number of specified lines of assembly
code instructions.

Revised March 1993 RISC Version 4.1 Page 13

DBX (1) (Software Development Utilities) DBX (1)

t Does a stack trace.

u Lists the previous 10 lines.

w Lists the 5 lines preceding and following the current
line.

w Lists the 10 lines preceding and following the current

line.

wi Lists the 5 machine instructions preceding and follow-
ing the machine instruction.

NOTE:

In order to use all facilities in dbx it is important that the word
LINEEDIT = is placed in the environment:

LINEEDIT=

export LINEEDIT

SEE ALSO
dbx in the Programmers Guide.

Page 14 RISC Version 4.1 Revised March 1993

TR A '&ﬁ%ﬂ&%{ﬁ&m& m i ece)

DELTA (1) (Software Development Utilities) DELTA (1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [-rSID] [-s] [—-n] [—glist] [-m[mrlist]]
[—ylecomment]] [—p] files

DESCRIPTION
delta is used to permanently introduce into the named SCCS
file changes that were made to the file retrieved by get(1)
{called the g-file, or generated file).

delta makes a delta to each named SCCS file. If a directory is
named, delta behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last com-
ponent of the path name does not begin with s.) and unread-
able files are silently ignored. If a name of — is given, the
standard input is read (see WARNINGS); each line of the stan-
dard input is taken to be the name of an SCCS file to be pro-
cessed.

delta may issue prompts on the standard output depending
upon certain keyletters specified and flags [see admin(1)] that
may be present in the SCCS file (see —m and —y keyletters
below).

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is to be made
to the SCCS file. The use of this keyletter is
necessary only if two or more outstanding gets
for editing (get —e) on the same SCCS file
were done by the same person (login name).
The SID value specified with the —r keyletter
can be either the SID specified on the get com-
mand line or the SID to be made as reported by
the get command [see get(1)]. A diagnostic
results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

Revised March 1993 RISC Version 4.1 Page 1

DELTA (1)

Page 2

—glist

R R A R R L i e s

B E iR AT

(Software Development Utilities) DELTA (1)

Suppresses the issue, on the standard output,
of the created delta’s SID, as well as the
number of lines inserted, deleted and
unchanged in the SCCS file.

Specifies retention of the edited g-file (nor-
mally removed at completion of delta process-
ing).

a list (see get(1) for the definition of list) of del-
tas which are to be ignored when the file is
accessed at the change level (SID) created by
this delta.

—m/mrlist]

If the SCCS file has the v flag set [see
admin(1)] then a Modification Request (MR)
number must be supplied as the reason for
creating the new delta.

If —m is not used and the standard input is a
terminal, the prompt MRs? is issued on the
standard output before the standard input is
read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see
-y keyletter).

MRs in a list are separated by blanks and/or
tab characters. An unescaped new-line charac-
ter terminates the MR list.

Note that if the v flag has a value [see
admin(1)], it is taken to be the name of a pro-
gram (or shell procedure) which will validate
the correctness of the MR numbers. If a non-
zero exit status is returned from the MR
number validation program, delta terminates.
(It is assumed that the MR numbers were not
all valid.)

RISC Version 4.1 Revised March 1993

DELTA (1) (Software Development Utilities) DELTA (1)

—y/comment]

FILES
g-file

p-file
q-file
x-file
z-file
d-file

Jusr/bin/bdiff

WARNINGS

Arbitrary text used to describe the reason for
making the delta. A null string is considered a
valid comment.

If —y is not specified and the standard input is
a terminal, the prompt comments? is issued
on the standard output before the standard
input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped
new-line character terminates the comment
text.

Causes delta to print (on the standard output)
the SCCS file differences before and after the
delta is applied in a diff (1) format.

Existed before the execution of delta; removed
after completion of delta.

Existed before the execution of delta; may
exist after completion of delta.

Created during the execution of delta; removed
after completion of delta.

Created during the execution of delta;
renamed to SCCS file after completion of delta.
Created during the execution of delta; removed
during the execution of delta.

Created during the execution of delta; removed
after completion of delta.

Program to compute differences between the
“gotten” file and the g-file.

Lines beginning with an SOH ASCII character (binary 001) can-
not be placed in the SCCS file unless the SOH is escaped. This
character has special meaning to SCCS [see sccsfile(4) (5)] and
will cause an error.

Revised March 1993

RISC Version 4.1 Page 3

DELTA (1) (Software Development Utilities) DELTA (1)

A get of many SCCS files, followed by a delta of those files,
should be avoided when the get generates a large amount of
data. Instead, multiple get/delta sequences should be used.

If the standard input (—) is specified on the delta command
line, the —m (if necessary) and —y keyletters must also be
present. Omission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO
admin(1), bdiff(1), cdc(1), get(1), help(l), prs(l), rmdel(d),
sccsfile(4).

DIAGNOSTICS
Use help(1) for explanations.

Page 4 RISC Version 4.1 Revised March 1993

DIS (1) (Software Development Utilities) DIS(1)

NAME
dis — disassemble an object file.

SYNOPSIS
dis [options] files

DESCRIPTION
dis disassembles object files into machine instructions. Please
note that assembler code and machine code can differ on this
machine.

-h Print the general register names rather than
the software register names.

—p procedure Disassembles only the specified procedure
from the object file.

-S Causes source lisitings to be listed. Other-
wise, only instructions are listed.
SEE ALSO N
as (1), ce (1), 1d (1).
DIAGNOSTICS

The self-explanatory diagnostics indicate errors in the com-
mand line or problems encountered with the specified files.

Revised March 1993 RISC Version 4.1 Page 1

]

oo~ — ST e e, e
% SRS m B S o e e R T

DIS (1) (Software Development Utilities) DIS(1)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

DUMP (1)

NAME

(Software Development Utilities) DUMP (1)

dump — dump selected parts of an object file

SYNOPSIS

dump [options] files

DESCRIPTION

The pdump command dumps selected parts of each of its object
file arguments.

This command will accept both object files and archives of
object files, but will only accept files of the same code-type, i.e
code generated with the same values of the TARGETMC
environment — see intro(l).

It processes each file argument according to one or more of the
following options:

—a

-8

-f

Revised March 1993

Dump the archive header of each member of
each archive file argument.

Dump the global symbols in the symbol table of
an archive.

Dump each file header.

Dump each optional header.
Dump section headers.

Dump section contents.

Dump relocation information.
Dump line number information.
Dump symbol table entries.

Dump line number entries for the named func-
tion.

Dump the string table.

Interpret and print the contents of the .lib sec-
tions.

RISC Version 4.1 Page 1

DUMP (1) (Software Development Utilities) DUMP (1)

The following modifiers are used in conjunction with the
options listed above to modify their capabilities.

—d number

+d number

—n name

-p
—t index

+1t index

Dump the section number, number, or the range
of sections starting at number and ending at the
number specified by +d.

Dump sections in the range either beginning
with first section or beginning with section
specified by —d.

Dump information pertaining only to the named
entity. This modifier applies to —h, —s, —r, —1,
and -t.

Suppress printing of the headers.

Dump only the indexed symbol table entry. The
—t used in conjunction with +t, specifies a
range of symbol table entries.

Dump the symbol table entries in the range end-
ing with the indexed entry. The range begins at
the first symbol table entry or at the entry
specified by the —t option.

Underline the name of the file for emphasis.

Dump information in symbolic representation
rather than numeric (e.g., C_STATIC instead of
0X02). This modifier can be used with all the
above options except —s and —o options of
pdump.

—z name,number

+ 2z number

Page 2

Dump line number entry or range of line
numbers starting at number for the named func-
tion.

Dump line numbers starting at either function
name or number specified by —z, up to number
specified by +z.

RISC Version 4.1 Revised March 1993

\/

R R A s

DUMP (1) (Software Development Utilities)

—i Dumps the symbolic information header.
—F Dump the file descriptor table.

—P Dump the procedure descriptor table.
—R Dump the relative file index table.

DUMP (1)

Blanks separating an option and its modifier are optional. The
comma separating the name from the number modifying the

—z option may be replaced by a blank.

The dump command attempts to format the information it
dumps in a meaningful way, printing certain information in
character, hex, octal or decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4).

Revised March 1993 RISC Version 4.1

Page 3

DUMP (1) (Software Development Utilities) DUMP (1)

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

GET(1) (Software Development Utilities) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [-rSID] [—ccutoff] [—ilist] [—xlist] [—wstring] [—aseq-
no.] [—-k] [—e]l [-1[p] [-p] [-m] [-n] [—s] [-b] [—-g] [—t]
file ...

DESCRIPTION
get generates an ASCII text file from each named SCCS file
ﬁ according to the specifications given by its keyletter arguments,
Lo which begin with —. The arguments may be specified in any
order, but all keyletter arguments apply to all named SCCS
files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-
SCCS files (last component of the path name does not begin
with s.) and unreadable files are silently ignored. If a name of
— 1is given, the standard input is read; each line of the stan-
dard input is taken to be the name of an SCCS file to be pro-
cessed. Again, non-SCCS files and unreadable files are silently
ignored.

The generated text is normally written into a file called the g-
file whose name is derived from the SCCS file name by simply
removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though
m only one SCCS file is to be processed, but the effects of any
‘ keyletter argument applies independently to each named file.

-rSID The SCCS IDentification string (SID) of the ver-
sion (delta) of an SCCS file to be retrieved. Table 1
below shows, for the most useful cases, what ver-
sion of an SCCS file is retrieved (as well as the SID
of the version to be eventually created by delta(1)
if the —e keyletter is also used), as a function of
the SID specified.

Revised March 1993 RISC Version 4.1 Page 1

GET (1)

—ccutoff

—ilist

—xlist

Page 2

(Software Development Utilities) GET (1)

Cutoff date-time, in the form:
YY(MM[DD{HH[MM[SS]I]1]

No changes (deltas) to the SCCS file which were
created after the specified cutoff date-time are
included in the generated ASCII text file. Units
omitted from the date-time default to their max-
imum possible values; that is, —-¢7502 is
equivalent to —c750228235959. Any number of
non-numeric characters may separate the various
2-digit pieces of the cutoff date-time. This feature
allows one to specify a cutoff date in the form:
7 —e77/2/2 9:22:25”. Note that this implies that
one may use the %E% and %U% identification key-
words (see below) for nested gets within, say the
input to a send(1C) command:

“lget " —c%E% %U%” s.file

A list of deltas to be included (forced to be applied)
in the creation of the generated file. The list has
the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID - SID

SID, the SCCS Identification of a delta, may be in
any form shown in the ‘“‘SID Specified” column of
Table 1.

A list of deltas to be excluded in the creation of the
generated file. See the —i keyletter for the lisz
format.

Indicates that the get is for the purpose of editing
or making a change (delta) to the SCCS file via a
subsequent use of delta(l). The —e keyletter used
in a get for a particular version (SID) of the SCCS
file prevents further gets for editing on the same
SID until delta is executed or the j (joint edit) flag
is set in the SCCS file [see admin(1)]. Concurrent
use of get —e for different SIDs is always allowed.

RISC Version 4.1 Revised March 1993

W/

GET (1) (Software Development Utilities) GET (1)

Revised March 1993

If the g-file generated by get with an —e keyletter
is accidentally ruined in the process of editing it, it
may be regenerated by re-executing the get com-
mand with the —k keyletter in place of the —e
keyletter.

SCCS file protection specified via the ceiling, floor,
and authorized user list stored in the SCCS file [see
admin(1)] are enforced when the —e keyletter is
used.

Used with the —e keyletter to indicate that the
new delta should have an SID in a new branch as
shown in Table 1. This keyletter is ignored if the
b flag is not present in the file [see admin(1)] or if
the retrieved delta is not a leaf delta. (A leaf delta
is one that has no successors on the SCCS file tree.)
Note: A branch delta may always be created from
a non-leaf delta. Partial SIDs are interpreted as
shown in the “SID Retrieved” column of Table 1.

Suppresses replacement of identification keywords
(see below) in the retrieved text by their value.
The —k keyletter is implied by the —e keyletter.

Causes a delta summary to be written into an [-
file. If —lp is used then an l-file is not created;
the delta summary is written on the standard out-
put instead. See FILES for the format of the I-file.

Causes the text retrieved from the SCCS file to be
written on the standard output. No g-file is
created. All output which normally goes to the
standard output goes to file descriptor 2 instead,
unless the —s keyletter is used, in which case it
disappears.

Suppresses all output normally written on the
standard output. However, fatal error messages
(which always go to file descriptor 2) remain
unaffected.

RISC Version 4.1 Page 3

GET (1)

—-w string

—aseg-no.

SN R R R i T e

(Software Development Utilities) GET (1)

Causes each text line retrieved from the SCCS file
to be preceded by the SID of the delta that inserted
the text line in the SCCS file. The format is: SID,
followed by a horizontal tab, followed by the text
line.

Causes each generated text line to be preceded
with the %M% identification keyword value (see
below). The format is: %M% value, followed by a
horizontal tab, followed by the text line. When
both the —m and —n keyletters are used, the for-
mat is: %M% value, followed by a horizontal tab,
followed by the —m keyletter generated format.

Suppresses the actual retrieval of text from the
SCCS file. It is primarily used to generate an I-file,
or to verify the existence of a particular SID.

Used to access the most recently created delta in a
given release (e.g., —rl), or release and level (e.g.,
-rl1.2).

Substitute string for all occurrences of %W% when
getting the file.

The delta sequence number of the SCCS file delta
(version) to be retrieved [see sccsfile(5)]. This
keyletter is used by the comb(1) command; it is not
a generally useful keyletter. If both the —r and
—a keyletters are specified, only the —a keyletter
is used. Care should be taken when using the —a
keyletter in conjunction with the —e keyletter, as
the SID of the delta to be created may not be what
one expects. The —r keyletter can be used with
the —a and —e keyletters to control the naming
of the SID of the delta to be created.

For each file processed, get responds (on the standard output)
with the SID being accessed and with the number of lines
retrieved from the SCCS file.

Page 4

RISC Version 4.1 Revised March 1993

‘ GET (1) (Software Development Utilities) GET (1)

If the —e keyletter is used, the SID of the delta to be made
appears after the SID accessed and before the number of lines
generated. If there is more than one named file or if a direc-
tory or standard input is named, each file name is printed (pre-
ceded by a new-line) before it is processed. If the —i keyletter
is used included deltas are listed following the notation
“Included’’; if the —x keyletter is used, excluded deltas are
listed following the notation ‘“Excluded’.

Revised March 1993 RISC Version 4.1 Page 5

{dk

GET (1)

(Software Development Utilities) GET (1)

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Used? Conditions Retrieved to be Created
nonei no R defaults to mR mR.mLL. mR.(mL +1)
nonei yes R defaults to mR mR.mI.. mR.mL.(mB +1).1
R no R > mR mR.mL R.1***

R no R = mR mR.mL mR.(mL+1)

R yes R > mR mR.mL mRmL.(mB+1).1

R yes R = mR mR.mLL. mR.mL.(mB +1).1

R - g ;)e‘:fzo’:‘;iist hR.mL** hR.mL.(mB +1).1
Trunk sucec.#

R - in release > R R.mL R.mL.(mB +1).1
and R exists

R.L no No trunk suce. R.L R.(L+1)

R.L yes No trunk suce. R.L R.L.(mB +1).1
Trunk succ.

R.L - in release > R R.L R.L(mB+1).1

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS +1)

R.LB yes No branch succ. R.L.BmS R.L.(mB+1).1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)

R.LB.S yes No branch suce. R.L.B.S R.L.(mB+1).1

R.LB.S - Branch succ. RLBS RL(mB+1.1

Page 6

“R”, “L”, “B”, and “S” are the ‘‘release’, “level”,
“branch”, and ‘“‘sequence” components of the SID, respec-
tively; “m’ means “maximum’. Thus, for example,
“R.mL” means ‘“‘the maximum level number within
release R”’; “R.L.(mB+1).1” means “the first sequence
number on the new branch (i.e., maximum branch
number plus one) of level L. within release R”’. Note that
if the SID specified is of the form “R.L”’, “R.L.B”, or
“R.L.B.S”, each of the specified components must exist.

RISC Version 4.1 Revised March 1993

W

GET (1) (Software Development Utilities) GET (1)

** “hR” is the highest existing release that is lower than the
specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new
release.

Successor.

t The —b keyletter is effective only if the b flag [see
admin (1)] is present in the file. An entry of — means
“irrelevant’.

i This case applies if the d (default SID) flag is not present
in the file. If the d flag is present in the file, then the SID
obtained from the d flag is interpreted as if it had been
specified on the command line. Thus, one of the other
cases in this table applies.

IDENTIFICATION KEYWORDS
Identifying information is inserted into the text retrieved from
the SCCS file by replacing identification keywords with their
value wherever they occur. The following keywords may be
used in the text stored in an SCCS file:

Keyword Value

%M% Module name: either the value of the m flag in the
file [see admin(1)], or if absent, the name of the
SCCS file with the leading s. removed.

%1% SCCS identification (SID) (%R%.%L%.%B%.%S%) of
the retrieved text.

%R % Release.

%1% Level.

%B % Branch.

%S % Sequence.

%D % Current date (YY/MM/DD).

%H% Current date (MM/DD/YY).

%'T % Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

% G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applied delta was created (HH:MM:SS).

Revised March 1993 RISC Version 4.1 Page 7

GET (1) (Software Development Utilities) GET (1)

%Y % Module type: value of the t flag in the SCCS file [see
admin(1)].

%¥F % SCCS file name.

%P % Fully qualified SCCS file name.

% Q% The value of the q flag in the file [see admin (1)].

9% C % Current line number. This keyword is intended for
identifying messages output by the program such as
“this should not have happened’ type errors. It is
not intended to be used on every line to provide
sequence numbers.

%Z% The 4-character string @(#) recognizable by
what(1).

%W % A shorthand notation for constructing what(1)
strings for UNIX system program files.
%W% = %ZL%%M% < horizontal-tab > %1%

% A% Another shorthand notation for constructing
what(1) strings for non-UNIX system program files.
%A% = %L9%%Y% %M% %l%%Z%

Several auxiliary files may be created by get. These files are
known generically as the g-file, l-file, p-file, and z-file. The
letter before the hyphen is called the tag. An auxiliary file
name is formed from the SCCS file name: the last component of
all SCCS file names must be of the form s.module-name, the
auxiliary files are named by replacing the leading s with the
tag. The g-file is an exception to this scheme: the g-file is
named by removing the s. prefix. For example, s.xyz.c, the
auxiliary file names would be xyz.c, l.xyz.c, p.xXyz.c, and
Z.Xyz.c, respectively.

The g-file, which contains the generated text, is created in the
current directory (unless the —p keyletter is used). A g-file is
created in all cases, whether or not any lines of text were gen-
erated by the get. If the —k keyletter is used or implied its
mode is 644; otherwise its mode is 444. Only the real user
need have write permission in the current directory.

Page 8 RISC Version 4.1 Revised March 1993

GET (1) (Software Development Utilities) GET(1)

The I-file contains a table showing which deltas were applied in
generating the retrieved text. The [-file is created in the
current directory if the —1 keyletter is used; its mode is 444
and it is owned by the real user. Only the real user need have
write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was
not applied and ignored,;
+ if the delta was not applied and was not

ignored.
c. A code indicating a ‘‘special”’ reason why the delta
was or was not applied:
“I”: Included.
“X”’: Excluded.
“C”: Cut off (by a —c keyletter).
Blank.

SCCS identification (SID).

Tab character.

Date and time (in the form

YY/MM/DD HH:MM:SS) of creation.
Blank.

Login name of person who created delta.

FE W@ A

The comments and MR data follow on subsequent lines,
indented one horizontal tab character. A blank line ter-
minates each entry.

The p-file is used to pass information resulting from a get with
an —e keyletter along to delta. Its contents are also used to
prevent a subsequent execution of get with an —e keyletter for
the same SID until delta is executed or the joint edit flag, j,
[see admin(1)] is set in the SCCS file. The p-file is created in
the directory containing the SCCS file and the effective user
must have write permission in that directory. Its mode is 644
and it is owned by the effective user. The format of the p-file
is: the gotten SID, followed by a blank, followed by the SID that

Revised March 1993 RISC Version 4.1 Page 9

GET (1) (Software Development Utilities) GET (1)

the new delta will have when it is made, followed by a blank,
followed by the login name of the real user, followed by a
blank, followed by the date-time the get was executed, followed
by a blank and the -1 keyletter argument if it was present, fol-
lowed by a blank and the —x keyletter argument if it was
present, followed by a new-line. There can be an arbitrary
number of lines in the p-file at any time; no two lines can have
the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous
updates. Its contents are the binary (2 bytes) process ID of the
command (i.e., get) that created it. The z-file is created in the
directory containing the SCCS file for the duration of get. The
same protection restrictions as those for the p-file apply for the
z-file. The z-file is created mode 444.

FILES
g-file Existed before the execution of delta; removed
after completion of delta.
p-file Existed before the execution of delta; may
exist after completion of delta.
g-file Created during the execution of delta; removed
after completion of delta.
x-file Created during the execution of delta;
renamed to SCCS file after completion of delta.
z-file Created during the execution of delta; removed
during the execution of delta.
d-file Created during the execution of delta; removed
after completion of delta.
/usr/bin/bdiff Program to compute differences between the
“gotten’’ file and the g-file.
SEE ALSO
admin(1), delta(1), help(1), prs(1), what(1).
DIAGNOSTICS

Page

Use help (1) for explanations.

10 RISC Version 4.1 Revised March 1993

GET(1) (Software Development Utilities) GET (1)

BUGS
If the effective user has write permission (either explicitly or
implicitly) in the directory containing the SCCS files, but the
real user does not, then only one file may be named when the
— e keyletter is used.

Revised March 1993 RISC Version 4.1 Page 11

FEe ey Lo RIS
]
]

GET(1) (Software Development Utilities) GET (1)

This page is intentionally left blank

Page 12 RISC Version 4.1 Revised March 1993

HELP (1) (Software Development Utilities) HELP (1)

NAME
help — SCCS Utility Help Facility

SYNOPSIS
help arg ...

DESCRIPTION
The Source Code Control System (SCCS) help provides assist-
ance for use of SCCS commands and bdiff.

An argument can be a SCCS command name or an error code
ﬁ returned from one of the SCCS programs.

If the argument is a SCCS command name (e.g. get) or bdiff
then help shows the synopsis for the command.

If the argument is an error code then help shows some expla-
nation of this error code. The error codes consists of two letters
followed by a number (e.g. ge3).

SEE ALSO
admin(1), bdiff(1), cde(l), comb(l), delta(l), get(l), prs(l),
rmdel(1), sact(1), scesdiff(1), unget(1), val(1), ve(l), what(l),
scesfile(4).

Revised March 1993 RISC Version 4.1 Page 1

HELP (1) (Software Development Utilities) HELP (1)

This page is intentionally left blank

Page 2 RISC Version 4.1 Revised March 1993

LD (1)

NAME

SYNOPSIS

DESCRIPTION

(Software Development Utilities)

Id - link editor for common object files
uld — ucode link editor

Id [option]...file...
uld [option]...file...

The Id command combines several object files into one, per-
forms relocation, resolves external symbols, and supports sym-
bol table information for symbolic debugging. In the simplest
case, the names of several object files are given. Id combines
them, producing an object module that can be executed or used
as input for a subsequent /d run. (In the latter case, the —r
option must be given to preserve the relocation entries.) The
output of Id is left in a.out. By default, this file is executable
if no errors occurred during the load.

The argument object files are concatenated in the order
specified. The entry point of the output is the beginning of the
text segment (unless the —e option is specified).

If any argument is a library, it is searched exactly once at the
point it is encountered in the argument list. Only those rou-
tines defining an unresolved external reference are loaded. The
library (archive) symbol table (see ar(4)) is searched to resolve
external references that can be satisfied by library members.
Thus, the ordering of library members is unimportant.

When searching for libraries the default directories searched
are /lib, /usr/lib/cmplrs/cc and /usr/local/lib.

The uld command combines several ucode object files and
libraries into one ucode object file. It “‘hides’ external symbols
for better optimizations by subsequent compiler passes. The
symbol tables of coff object files loaded with ucode object files
are used to determine what external symbols not to ‘“hide”
along with files specified by the user that contain lists of sym-
bol names.

Revised March 1993 RISC Version 4.1 Page 1

b m oo L e R s i e

LD (1) (Software Development Utilities) LD (1)

All options are recognized by both Id and uld . Those options
used by one and not the other are ignored. Any option can be
preceded by a ‘k’ (for example —ko outfile) and except for
—klx have the same meaning with or without the preceding
‘k’. This is done so that these options can be passed to both
link editors through compiler drivers.

The symbols ‘etext’, ‘edata’, ‘end’, ‘_ftext’, ‘ fdata’, ‘ fbss’,
‘ gp’, ‘ procedure_table’, ‘_procedure_table_size’ and
‘_procedure_string table’ are reserved. These loader defined
symbols if referred to, are set their values as described in
end(3). It is erroneous to define these symbols.

—e epsym Set the default entry point address for the
output file to be that of the symbol epsym .

—1x Search a library libx.a, where x is up to
seven characters. A library is searched when
its name is encountered, so the placement of
a —1 is significant.

—klx Search a library lib x .b, where x is a string.
These libraries are intended to be ucode
object libraries. In all other ways, this option
is like the —Ix option.

-m Produce a map or listing of the input/output
sections on the standard output.

— o outfile Produce an output object file by the name
outfile. The name of the default object file is
a.out.

-r Retain relocation entries in the output

object file. Relocation entries must be saved
if the output file is to become an input file in
a subsequent I/d run. Unless —a is also
given, the link editor does not complain
about unresolved references.

Page 2 RISC Version 4.1 Revised March 1993

e R

LD (1) (Software Development Utilities) LD (1)

—u symname

-L dir

-VS num

-Kdir

Revised March 1993

Strip the symbol table information from the
output object file.

Enter symname as an undefined symbol in
the symbol table.

This is useful for loading entirely from a
library, since initially the symbol table is
empty and an unresolved reference is needed
to force the loading of the first routine.

Change the algorithm of searching for libx.a
to look in dir before looking in /lib and
Jusr/lib.

This option is effective only if it precedes the
—1 option on the command line.

Change the algorithm of searching for libx.a
or libx.b to never look in the default direc-
tories.

This is useful when the default directories
for libraries should not be searched and only
the directories specified by —Ldir are to be
searched.

Put the data section immediately following
the text in the output file.

Output a message giving information about
the version of Id being used.

Use num as a decimal version stamp identi-
fying the a.out file that is produced. The ver-
sion stamp is stored in the optional header.

Change the default directories to the single
directory dir. This option is only intended
to be used by the compiler driver. Users
should use the —L and - Ldir options to get
the effect they desire.

RISC Version 4.1 Page 3

LD(1) (Software Development Utilities) LD (1)

—Bstring Append string to the library names created
for the —lx and —klx when searching for
library names. For each directory to be
searched the name is first created with the
string and if it is not found it is created
without the string.

—p file Preserve (don’t ‘“hide”’) the symbol names
listed in file when loading ucode object files.
The symbol names in the file are separated
by blanks, tabs, or newlines. v

| -x Do not preserve local (non—.globl) symbols

| in the output symbol table; enter external

| and static symbols only. This option saves
some space in the output file.

|
| -d Force definition of common storage and
} define loader defined symbols even if —r is
present.
—For -z Arrange for the process to be loaded on

demand from the resulting executable file
(413 format) rather than preloaded, a
ZMAGIC file. This is the default.

-n Arrange (by giving the output file a 0410
”magic number”) that when the output file
is executed, the text portion will be read- W/
only and shared among all users executing
the file, an NMAGIC file.

The default text segment address is
0x00400000 and the default data segment
address is 0x10000000.

-nM arrange (by giving the output file a 0410
"magic number”) that when the output file
is executed, the text portion will be read-
only and shared among all users executing
the file, an NMAGIC file. This involves mov- u
ing the data areas up to the first possible

Page 4 RISC Version 4.1 Revised March 1993

LD (1) (Software Development Utilities) LD (1)

—T num

—D num

—B num

—ysym

—f fill

—G num

Revised March 1993

pagesize byte boundary following the end of
the text.

Place the data section immediately after the
text and do not make the text portion read
only or sharable, an OMAGIC file. (Use
"magic number” 0407.)

Set the text segment origin. The argument
num is a hexadecimal number.

Set the data segment origin. The argument
num is a hexadecimal number. See the
NOTES section for restrictions.

Set the bss segment origin. The argument
num is a hexadecimal number. This option
can be used only if the final object is an
OMAGIC file.

Set silent mode and suppress non-fatal
errors.

Set verbose mode. Print the name of each
file as it is processed.

Indicate each file in which sym appears,
sym’s type and whether the file defines or
references sym. Many such options may be
given to trace many symbols.

Set the fill pattern for ‘‘holes” within an
output section. The argument fill is a four-
byte hexadecimal constant.

The argument num is taken to be a decimal
number that is the largest size in bytes of a
.comm item or literal that is to be allocated
in the small bss section for reference off the
global pointer. The default is 8 bytes.

RISC Version 4.1 Page 5

R R R Ry R B i PR

LD (1) (Software Development Utilities) LD (1)

—bestGnum

Calculate the best —G num to use when
compiling and linking the files which pro-
duced the objects being linked. Using too
large a number with the —G num option
may cause the gp (global-pointer) data area
to overflow; using too small a number may
reduce your program’s execution speed.

—count, —nocount, —countall

Page 6

These options control which objects are
counted as recompilable for the best —G
num calculation. By default, the —bestG-
num option assumes you can recompile
everything with a different — G num option.
If you cannot recompile certain object files
or libraries (because, for example, you have
no sources for them), use these options to
tell the link editor to take this into account
in calculating the best —G num value.
—nocount says that object files appearing
after it on the command line cannot be
recompiled; —count says that object files
appearing after it on the command line can
be recompiled; you can alternate the use of
—nocount and —count. —countall over-
rides any —nocount options appearing after
it on the command line.

Do not merge the symbolic information
entries for the same file into one entry for
that file. This is only needed when the sym-
bolic information from the same file appears
differently in any of the objects to be linked.
This can occur when object files are com-
piled, by means of conditional compilation,
with an apparently different version of an
include file.

RISC Version 4.1 Revised March 1993

LD (1) (Software Development Utilities) LD (1)

—~jmpopt and —nojmpopt

-g or —gl[0123]

—A file

Revised March 1993

Fill or don’t fill the delay slots of jump
instructions with the target of the jump and
adjust the jump offset to jump past that
instruction. This always is disabled for
debugging (when the —gl, —g2 or —g flag
is present). When this option is enabled it
requires that all of the loaded program’s text
be in memory and could cause the loader to
run out of memory. The default is
—nojmpopt.

These options are accepted and except for
—-gl, —g2 or —g disabling the —jmpopt
have no other effect.

This option specifies incremental loading, i.e.
linking is to be done in a manner so that the
resulting object may be read into an already
executing program. The next argument, file,
is the name of a file whose symbol table will
be taken as a basis on which to define addi-
tional symbols. Only newly linked material
will be entered into the text and data por-
tions of a.out, but the new symbol table will
reflect every symbol defined before and after
the incremental load. This argument must
appear before any other object file in the
argument list. The —T option may be used
as well, and will be taken to mean that the
newly linked segment will commence at the
corresponding address (which must be a
correct multiple for the resulting object
type). The default resulting object type is an
OMAGIC file and the default starting
address of the text is the old value of end
rounded to SCNROUND as defined in the
include file <scnhdr.h>. Using the
defaults, when this file is read into an

RISC Version 4.1 Page 7

LD (1)

FILES

(Software Development Utilities) LD (1)

already executing program the initial value
of the break must also be rounded. All other
objects except the argument to the -—-A
option must be compiled —G 0 and this sets
—G 0 for linking.

—EL and —EB Are ignored. Big Endian is default.

/bin/1d The linker driver.

$COMP_HOST_ROOT /usr/lib/cmplrs/ld
The linker for TARGETMC R3KML

/lib/lib*.a,

/usr/lib*.a

/usr/local/lib/lib*.a Libraries.

a.out output file
SEE ALSO

as(1), cc(1), a.out(4), ar(4).

NOTES

Page

The segments must not overlap.

All addresses must be less than 0x80000000. The stack starts
below 0x80000000 and grows through lower addresses so space
should be left for it.

For ZMAGIC and NMAGIC files the default text segment
address is 0x00400000 and the default data segment is
0x10000000. For OMAGIC files the default text segment
address is 0x10000000 with the data segment following the
text segment.

The default for all types of files is that the bss segment follows
the data segment.

For OMAGIC files to be run under the operating system the
—B flag should not be used because the bss segment must fol-
low the data segment which is the default.

8 RISC Version 4.1 Revised March 1993

™

LD(1) (Software Development Utilities) LD (1)

For OMAGIC files, the —B flag should not be used because the
bss segment must follow the data segment which is default.

WARNINGS
Through its options and input directives, the common link edi-
tor gives users great flexibility; however, those who use the
input directives must assume some added responsibilities.
Input directives should insure the following properties for pro-
grams:

— C defines a zero pointer as null. A pointer to which zero
has been assigned must not point to any object. To satisfy
this, users must not place any object at virtual address
zero in the data space.

— When the link editor is called through cc(1), a startup
routine is linked with the user’s program. This routine
calls exit () (see exit(2)) after execution of the main pro-
gram. If the user calls the link editor directly, then the
user must insure that the program always calls exit()
rather than falling through the end of the entry routine.

Revised March 1993 RISC Version 4.1 Page 9

LD (1) (Software Development Utilities) LD (1)

This page is intentionally left blank

Page 10 RISC Version 4.1 Revised March 1993

LEX (1) (Software Development Utilities) LEX (1)

NAME

lex — generate programs for simple lexical tasks

SYNOPSIS

lex[—rctvn] [file] ...

DESCRIPTION

Revised March 1993 RISC Version 4.1

The lex command generates programs to be used in simple lexi-
cal analysis of text.

The input files (standard input default) contain strings and
expressions to be searched for, and C text to be executed when
strings are found.

A file lex.yy.c is generated which, when loaded with the
library, copies the input to the output except when a string
specified in the file is found; then the corresponding program
text is executed. The actual string matched is left in yytext, an
external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to
indicate character classes, as in [abx—z] to indicate a, b, x,
y, and z; and the operators *, +, and ? mean respectively
any non-negative number of, any positive number of, and
either zero or one occurrence of, the previous character or
character class. The character . is the class of all ASCII char-
acters except new-line. Parentheses for grouping and vertical
bar for alternation are also supported. The notation r{d,e} in
a rule indicates between d and e instances of regular expres-
sion r. It has higher precedence than |, but lower than =*, 2,
+, and concatenation. Thus [a—zA —Z]+ matches a string of
letters. The character ~ at the beginning of an expression per-
mits a successful match only immediately after a new-line, and
the character $ at the end of an expression requires a trailing
new-line. The character / in an expression indicates trailing
context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must
follow in the input stream. An operator character may be used
as an ordinary symbol if it is within ” symbols or preceded by

\.

LEX (1) (Software Development Utilities) LEX (1)

Three subroutines defined as macros are expected: input() to
read a character; unput(c) to replace a character read; and
output(c) to place an output character. They are defined in
terms of the standard streams, but you can override them.
The program generated is named yylex(), and the library con-
tains a main() which calls it. The action REJECT on the right
side of the rule causes this match to be rejected and the next
suitable match executed; the function yymore() accumulates
additional characters into the same yytext; and the function
yyless(p) pushes back the portion of the string matched begin-
ning at p, which should be between yytext and yytext + yyleng.
The macros input and output use files yyin and yyout to read
from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C
text and is copied; if it precedes %% it is copied into the exter-
nal definition area of the lex.yy.c file. All rules should follow a
%%, as in YACC. Lines preceding %% which begin with a non-
blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding
it with {}. Note that curly brackets do not imply parentheses;
only string substitution is done.

EXAMPLE

D [0-9]
%%
if printf(”IF statement\n”);

[a—z] + printf(”tag, value %s\n”,yytext);
0{D}+ printf("octal number %s\n” yytext);
{D}+ printf("decimal number %s\n” yytext);
74+ +” printf("unary op\n”);

” 4 printf("binary op\n”);

A skipcommnts();
%%
skipcommnts()

for (;;)

{

while (input() !'= "% ")

Page 2 RISC Version 4.1 Revised March 1993

R ienlsnd o e

LEX (1) (Software Development Utilities) LEX (1)

if (input() !'= '/")
unput(yytext[yyleng-1]);
else
return;

}

The external names generated by lex all begin with the prefix
yy or YY.

RATFOR actions, — ¢ indicates C actions and is the default, —t
causes the lex.yy.c program to be written instead to standard
output, —v provides a one-line summary of statistics, —n will
not print out the —v summary. Multiple files are treated as a

\

ﬂ The flags must appear before any files. The flag —r indicates
|

| single file. If no files are specified, standard input is used.

Certain table sizes for the resulting finite state machine can be
set in the definitions section:

%p n number of positions is n (default 2500)

%n n number of states is n (500)
%e n number of parse tree nodes is n (1000)
%a n number of transitions is n (2000)
m %k n number of packed character classes is n (1000)
%0 n size of output array is n (3000)

The use of one or more of the above automatically implies the
— v option, unless the —n option is used.

SEE ALSO
yacc(1).
Programmer’s Guide.

BUGS
The —r option is not yet fully operational.

Revised March 1993 RISC Version 4.1 Page 3

This page is intentionally left blank

Page 4 RISC Version 4.1 Revised March 1993

LINT (1) (Software Development Utilities) LINT (1)

NAME

lint — a C program checker
SYNOPSIS

lint [option] ... file ...
DESCRIPTION

The lint command attempts to detect features of the C pro-

gram files that are likely to be bugs, non-portable, or wasteful.

It also checks type usage more strictly than the compilers.

m Among the things that are currently detected are unreachable

‘ ' statements, loops not entered at the top, automatic variables

declared and not used, and logical expressions whose value is

constant. Moreover, the usage of functions is checked to find

functions that return values in some places and not in others,

functions called with varying numbers or types of arguments,

and functions whose values are not used or whose values are
used but none returned.

Arguments whose names end with .c are taken to be C source
files. Arguments whose names end with .In are taken to be the
result of an earlier invocation of lint with either the —¢ or the
—o option used. The .In files are analogous to .o (object) files
that are produced by the cc(1) command when given a .c file as
input. Files with other suffixes are warned about and ignored.

lint will take all the .¢, .In, and llib-lx.In (specified by —1x)

m files and process them in their command line order. By
default, lint appends the standard C lint library (llib-le.In) to
the end of the list of files. However, if the —p option is used,
the portable C lint library (llib-port.In) is appended instead.
When the —c option is not used, the second pass of lint checks
this list of files for mutual compatibility. When the —e¢ option
is used, the .In and the llib-1x.In files are ignored.

Any number of lint options may be used, in any order, inter-
mixed with file-name arguments. The following options are
used to suppress certain kinds of complaints:

;

Revised March 1993 RISC Version 4.1 Page 1

Suppress complaints about assignments of long values
to variables that are not long.

Suppress complaints about break statements that can-
not be reached. (Programs produced by lex or yacc
will often result in many such complaints).

Do not apply heuristic tests that attempt to intuit
bugs, improve style, and reduce waste.

Suppress complaints about functions and external vari-
ables used and not defined, or defined and not used.
(This option is suitable for running lint on a subset of
files of a larger program).

Suppress complaints about unused arguments in func-
tions.

Do not report variables referred to by external declara-
tions but never used.

The following arguments alter /int’s behavior:

~1x

Page 2

Include additional lint library llib-1x.In. For example,
you can include a lint version of the math library 1lib-
Im.Iln by inserting —lm on the command line. This
argument does not suppress the default use of 1lib-
le.n. These lint libraries must be in the assumed
directory. This option can be used to reference local
lint libraries and is useful in the development of
multi-file projects.

Do not check compatibility against either the standard
or the portable lint library.

Attempt to check portability to other dialects (IBM and
GCOS) of C. Along with stricter checking, this option
causes all non-external names to be truncated to eight
characters and all external names to be truncated to
six characters and one case.

RISC Version 4.1 Revised March 1993

e I R e SR R i R A R R IR R R m —

LINT (1) (Software Development Utilities) LINT (1)
-c Cause lint to produce a .In file for every .c file on the
command line. These .In files are the product of lint’s

first pass only, and are not checked for inter-function
compatibility.

—o lib Cause lint to create a lint library with the name 1lib-
llib.In. The —c option nullifies any use of the —o
option. The lint library produced is the input that is
given to lint’s second pass. The —o option simply
causes this file to be saved in the named lint library.

ﬂ To produce a Hib-l/ib.n without extraneous mes-
sages, use of the —x option is suggested. The -v
option is useful if the source file(s) for the lint library
are just external interfaces (for example, the way the
file llib-lc is written). These option settings are also
available through the use of “lint comments’ (see
below).

The —D, —U, and -1 options of cpp(1) and the —g and —O
options of cc(1) are also recognized as separate arguments. The
—g and —O options are ignored, but, by recognizing these
options, lint’s behavior is closer to that of the cc(1) command.

Other options are warned about and ignored. The pre-
processor symbol “lint”’ is defined to allow certain questionable
code to be altered or removed for lint. Therefore, the symbol

m “lint” should be thought of as a reserved word for all code that
is planned to be checked by lint.

Certain conventional comments in the C source will change the
behavior of lint:

/ * NOTREACHED * / at appropriate points stops comments
about unreachable code. [This com-
ment is typically placed just after calls
to functions like exit(2)].

Revised March 1993 RISC Version 4.1 Page 3

LINT (1) (Software Development Utilities) LINT (1)

it T SR W e PSR SN R R R R

/ * VARARGSn * / suppresses the usual checking for vari-
able numbers of arguments in the fol-
lowing function declaration. The data
types of the first n arguments are
checked; a missing r is taken to be 0.

/ * ARGSUSED * / turns on the —v option for the next
function.

/ * LINTLIBRARY * / at the beginning of a file shuts off com-
plaints about unused functions and
function arguments in this file. This is
equivalent to using the —v and —-x
options.

lint produces its first output on a per-source-file basis. Com-
plaints regarding included files are collected and printed after
all source files have been processed. Finally, if the —e¢ option
is not used, information gathered from all input files is col-
lected and checked for consistency. At this point, if it is not
clear whether a complaint stems from a given source file or
from one of its included files, the source file name will be
printed followed by a question mark.

The behavior of the —¢ and the —o options allows for incre-
mental use of lint on a set of C source files. Generally, one
invokes lint once for each source file with the —¢ option. Each
of these invocations produces a .In file which corresponds to
the .c file, and prints all messages that are about just that
source file. After all the source files have been separately run
through lint, it is invoked once more (without the —c¢ option),
listing all the .In files with the needed —1lx options. This will
print all the inter-file inconsistencies. This scheme works well
with make(1); it allows make to be used to lint only the source
files that have been modified since the last time the set of
source files ‘were lint’ed.

Page 4 RISC Version 4.1 Revised March 1993

LINT (1) (Software Development Utilities) LINT (1)

~

FILES
LLIBDIR the directory where the lint libraries
specified by the —lx option must exist,
usually /usr/lib
LLIBDIR/lint[12] first and second passes
LLIBDIR /llib-lc.In declarations for C Library functions
(binary format; source is in
LLIBDIR /1lib-lc)
LLIBDIR/llib-port.In declarations for portable functions
ﬂ (binary format; source is in
LLIBDIR /1lib-port)
LLIBDIR/lNlib-lm.In declarations for Math Library functions
(binary format; source is in
LLIBDIR/llib-lm)
TMPDIR/ * lint * temporaries
TMPDIR usually /usr/tmp but can be redefined
by setting the environment variable
TMPDIR [see tempnam() in
tmpnam(3S)].

SEE ALSO
cc(1), epp(1), make(1).

BUGS
exit(2), setyjmp(3C), and other functions that do not return are
not understood; this causes various lies.

Revised March 1993 RISC Version 4.1 Page 5

LINT (1) (Software Development Utilities) LINT (1)

W

This page is intentionally left blank

Page 6 RISC Version 4.1 Revised March 1993

LIST (1) (Software Development Utilities) LIST (1)

ﬂ

NAME
list — produce C source listing from a common object file
SYNOPSIS
list [=V 1[—h] [—-F function] source-file . . .
[object-file]
DESCRIPTION

The list command produces a C source listing with line number
information attached. If multiple C source files were used to
ﬂ create the object file, list will accept multiple file names. The
. object file is taken to be the last non-C source file argument. If
no object file is specified, the default object file, a.out, will be
used.

Line numbers will be printed for each line marked as break-
point inserted by the compiler (generally, each executable C
statement that begins a new line of source). Line numbering
begins anew for each function. Line number 1 is always the
line containing the left curly brace ({) that begins the function
body. Line numbers will also be supplied for inner block rede-
clarations of local variables so that they can be distinguished
by the symbolic debugger.

The following options are interpreted by list and may be given
in any order:

ﬂ -V Print, on standard error, the version number
of the list command executing.

-h Suppress heading output.

—Ffunction List only the named function. The —F option
may be specified multiple times on the com-
mand line.

SEE ALSO
as(1), ce(1), 1d(1).

CAVEATS
Object files given to list must have been compiled with the — g
ﬂ option of cc(1).

Revised March 1993 RISC Version 4.1 Page 1

LIST (1) (Software Development Utilities) LIST (1)

Since list does not use the C preprocessor, it may be unable to
recognize function definitions whose syntax has been distorted
by the use of C preprocessor macro substitutions.

DIAGNOSTICS

list will produce the error message "list: name: cannot open” if
name cannot be read. If the source file names do not end in .c
, the message is ”list: name: invalid C source name”. An
invalid object file will cause the message ”list: name: bad
magic” to be produced. If some or all of the symbolic debug-
ging information is missing, one of the following messages will
be printed: “list: name: symbols have been stripped, cannot
proceed”, “list: name: cannot read line numbers”, and ”list:
name: not in symbol table”. The following messages are pro-
duced when list has become confused by #ifdef’s in the source
file: ”list: name: cannot find function in symbol table”, ”list:
name: out of sync: too many }”, and ”list: name: unexpected
end-of-file”. The error message ”list: name: missing or inap-
propriate line numbers” means that either symbol debugging
information is missing, or list has been confused by C prepro-
cessor statements.

Page 2 RISC Version 4.1 Revised March 1993

LORDER (1) (Software Development Utilities) LORDER (1)

NAME

lorder — find ordering relation for an object library
SYNOPSIS

lorder file ...
DESCRIPTION

The input is one or more object or library archive files (see
ar(l)). The standard output is a list of pairs of object file or
archive member names, meaning that the first file of the pair
ﬂ refers to external identifiers defined in the second. The output |
; may be processed by tsort(l) to find an ordering of a library
suitable for one-pass access by /d(1). Note that the link editor
ld(1) is capable of multiple passes over an archive in the port-
able archive format (see ar(4)) and does not require that
lorder(1) be used when building an archive. The usage of the
lorder(1) command may, however, allow for a slightly more
efficient access of the archive during the link edit process.

If more than one filename are specified the files must be of the
same code-type, i.e code generated with the same values of the
TARGETMC environment — see intro(1).

The following example builds a new library from existing .o
files.

ar —cr library lorder * .o | tsort

TMPDIR/ * symref temporary files

\ M FLES

TMPDIR/ » symdef temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting
the environment variable TMPDIR (see tempnam() in
tmpnam(3S)).

SEE ALSO
ar(1), 1d(1), tsort(1), ar(4).

Revised March 1993 RISC Version 4.1 Page 1

TR S B S e B

LORDER (1) (Software Development Utilities) LORDER (1)

CAVEAT
lorder will accept as input any object or archive file, regardless

of its suffix, provided there is more than one input file. If there
is but a single input file, its suffix must be .o.

Page 2 RISC Version 4.1 Revised March 1993

