REGNECENTRALEN ; SUBROUTINE
DANSK INSTITUT FOR MATEMATIKMASKINER f S e
UNOFFICIAL SUBROUTINE i Arthur Evans No, 1
| 6 May 1960
L
| Interpolation, DASK-tal, in a
itable with unevenly spaced arguments
Entrance Entry Conditions é Exit Conditions
BT v AL — - = = e
Normal entry | Normal exit
0 A8 16 C(AR) = w . £(w) in AR and MR
| (B) A 35 . !
(n) A 00 Table of y[1] = f(x[i]),
(p) A 00 as follows:
(alarm return)
(normal return) B x[0
B+2 yiO
i B+l bt
| B+l (n-1) x[n-1 !
B+li(n-1)+2 y[n-1
| The x[i] must be increasing. |
B must be even. !
n must be > p. {
Alarm reentry Alarm exit
58 A8 10 IRD must still have the Will occur if w is out
same value it had on of range of the table.,
the original entry.
d t gy R i
Length: 112+lp Sub-subroutines: Wone
Beginning address: Even Working storage: 10LA8 to (111+l4p)a8
Internal parameters: None Permanent constants: (2039), (2041)
Program parameters: See above. Alarm stop: 103A83%0, in location 103A8.

page 1 of 8

page 2/8

1. General
A function y = f(x) is given by a set of n pairs (x[i], y[i]), where

y[i] = £(x[1]). An argument w is given, and f(w) is to be calculated by
p-point interpolation in the table.

2. Storage of the table

The table is to be stored as full-length DASK-tal words with arguments
and function values alternating, as follows:

B x|0
B+2 y|0
B+l x(1
B+6 yl1

B+i(n-1) xfn—l}
B+i(n-1)+2 y[n-1

That is, x[i] is to be stored in location B+4i and y[i] is to be
in location B+L4i+2 . B is the first location of the table (and, of
course, it must be even), and there are n pairs of points in the table.

The x[i] must be increasing; i.e., it must be the case that
x[i+1] > x[i]} for each i. Further, each argument must be less than 1/2
in magnitude, and the first and last arguments must differ by no more
than 1/2,

3. Calling the routine

The subroutine is to be called by putting w as a DASK-tal into AR, and
giving the following sequence of commands: :

us O A8 16 Index jump to the subroutine.
utl: (B) A 35 Table base to IRB.
u+2: (n) A 00 Number of pairs of points in the table.
u+3: (p) A" 00 Order of interpolation desired.
utl: (alarm return) Used if w is outside the range.

u+5: (normal return)

The effect of the subroutine will be to put the desired value into both
AR and MR. The three index registers will be left unaltered.

The instruction in location u+l must be exactly as shown and may
not be a 37 opcode, since its address is used in one place and it is
executed by a 37 opccde in another.

The action of the subroutine is not defined if p > n, or if the
table is not increasing in x.

4. Argument, ocutside of range

If w is outside the range of the table (i.e., if w < x[0! or
if w > x[n-1}), then the routine will go to the alarm return in
location uth, If this location contains a transfer to location 58 of
the subroutine, the desired p-point extrapolation will be performed.
If the alarm return occurs, IRB will have been altered. Its former

page 3/8

value may be restored by executing the instruction in location 100
of the subroutine (100A83%7). If the alarm return leads to a routine
which, eventually, leads back to 58A8, this routine must leave IRD
at the same value it had on the original entrance to the subroutine,
although IRB and IRC may be changed. Note, however, that on the
final (normal) exit from the subroutine, IRB and IRC will have the
values they had on the original jump to the subroutine - not the
value they may have been given after the alarm exit.

When the alarm exit occurs, AR will be zero if w < x[0], and
will contain L4(n-p) if w > xtn—l].

5. Alarm stops

There is one alarm stop in the subroutine, the instruction 103A830
located in 103A8. This stop will occur in case of an overflow or improper
division in the double precision calculation corresponding to the last
box on the flow chart. For reasonably small values of p - say, less than
about 8 - this stop should not usually occur,

6. Accurac

The most critical part of the routine, the calculation of a
new extrapolation from two previous ones, is done in double precision
(80 bits). See the instructions in 7348 to 95A8.

T. Methced used

The method is Neville's variation of Aitken's interpolating method,
and is described in detail on page 73 of Numerical Calculus, by W. E. Milne.
The details of the algorithm may be determined from the flow chart and
Algol program, which are part of this write up. See particularly the
comments in the Algol program. Essentially, for p-point interpolation
a (p-1)-st degree polynomial is passed through the p points surrounding
the given argument, and the value of the polynomial at w 1is obtained.
The algorithm gives f(w) without explicitly determining the polynomial.

8. Flow chart

On page U4 of this writeup is given a flow chart of the subroutine.

9. Algol program

On page 5 of this writeup is given an Algol 60 procedure whose effect
will be exactly that of the subroutine (although, of course, the calling
sequence is different). Since an Algol procedure may have only one entrance
the effect of the Alarm entrance to 58A8 is provided by switch, a
Boolean variable, used to indicate whether to extrapolate or return
to the alarm return if the argument w is outside the range of the table.

The identifiers used in the Algol program for variables are the same
ones used above in the subroutine description and below in the flow chart.

page 4/8

10. Listing

On pages 6 to 8 of this writeup is given a listing of the subroutine.
The following information may be of some help to the interested user.
(A1l variable names correspond to those in the flow chart.) The quantity
i is kept in IRB, and k is in IRC. T[i] is in location (110+41)A8, and
I[k] is in (112+44k)A8. The calculation corresponding to the box on the
bottom of the flow chart is done double precision, in that 80-bit
products are kept for the two multiplications, and the division is
with the 80-bit difference as a numerator.

Flow chart of the subroutine

START

——

‘w > x[0]no--sL :=0
w”y"éé‘""') SRR

hid

e e A, S

;A . R
(W< x[n-1]lno-» L :=n-p __”,_w
s i)
; ALARM RETURN

T
fk =0
SR 2R i
X < x[k]) yes ———>(wr = x[K]) yes
it fio
Cl::] W+
k:=k+1 (® is even) no--{x[k] - w < w - x[k—lD
] yes
et

3> display y[k]

yes no
. \J/ i
Ls=k-p=+2 ..w,..Jk;=k_1
!L_>:O!no--——---
yes
1
[&-—no0 ‘L_gn-p

k :=k -1 L%gm 1[0]

* :
SR

page 5/8

Algol 60 version of the Neville interpolation subroutine:

real procedure Neville (w, X, ¥, n, p, Alarm, switch) 3 value w, n, p ;
array X, y ; Zreal w ; integer n, p 3 label Alarm 3 500 ga:n swi’cch

comment: Yy is a tabulated function of x, -w:Lth y[i] = £(x[1]), and there
are n pairs of points. For an x-value w, Neville will perform p-point
interpolation by the Neville variation of Aitken's method to get an
approximation to f(w). The x[l] need not be evenly spaced, but they
must be monoctone increecsing. =

If w is outside the range of the x[i], (that is, if w < x[O]
or if w > x[n-1]), switch will be cvamined. If it is true the
desired ex*rupolation will be performed, while if switeh is false
an exit will be made to Alarm,

Exact equality of w and x[L] for some L 1is treated as
a special case, and the answer y[I] is given irmediately.

*'111 be chosen so that the interpolation, performed using the
points erﬂ x[L+1] evo , X[L4p-1), will be arcund the best possible
point, If p is even, the interpolation will be centered about w. If
P is odd, thre center point will be the one nearest tow. If w is too
close to (or beyond) the end of the table, a suitable adjustment will
be made to L, '

Restrictions: 1) x[i+1] > x[i], for all i.
Z) n20p,.
The effect is undefined if the above two restrictions are not met.
Tae I[k] of this program will, for a given i, contain the value
of the Aitken polynomizl I[k, k+1, ... , i]. 3

begin intecer L

if w < x[0] then L :=0
else if w > x[n-1] then L :=n -1p
else g0 to start

Af switch then go to loop else go to Alarm

start: L :=0 3
x

AA: if w > X[L} then begin L := L +1 3 go to AA end 3
if w = x[L] then begin UNeville t= y[L] 3 go to done end 3
b b g e :L 2x(p: ”) then
begin 1f‘ x[L]- > w > w—x[L-1] then L :=L -1 end ;
:= L - pe2

9
f LCO then L := 0 elecif L>n-p then L :=n-p 3

~iiClL AT LS ¥ 5 ?

loop: begin integer 1
for i := O step

1 until p-1 do
begin T/ } i= x[L+ij -V 3
I[i] == y[L+i] ;
for k := i-1 step ~1 wuntil O do
I[k] = (I[x]xT[i] - I[k+1]=T[k]) / (T[i]-7[k])
endih. b

Neville := I[0] =
end main computation block
done:
end Neville

b R

Neville Interpolation Subroutine - Listing:

page 6/8

LOCAT | FROM ADRES |[LOC | INSTRUCTION| COMMENTS
START w 0 104 A8 08 save argument in w
1 3D 61 fetch p, negative
2 2039 A 20
3 2 A OC - bx(p-1)
pl L 98 A8 29
DIF 5 107 A8 28
6 2D 60 fetch n
71 2039 A 21
8 2 A OC bx(n-1)
PA 9 18 A8 29
DIF 10 107 A8 26 DIF := hx(n—p)
XB 11 100 A8 34 save IRB
XC 3 b2 101 A8 sk save IRC
W 13 104 A8 4O
1L 1D 37 table base to IRB
15 0B 0L | w - x[0]
PA 16 18 A8 11 jump if w > first argument
PB 17 22 A8 50
PA 16,9 (nk) 18 (0) B 4O | fetch x[n-1]
W 19 104 A8 01
PC 20 24 A8 11 Jump if w £ last argument
DIF 23 107 A8 60
PB 17 L 22 9k A8 29 L := zero or kx(n-p)
23 LD 10 ALARM RETURN -
PC 20 PE 24 27 A8 34 set address of PE to table base
25 | 204k A 55 k = -1
PD 29 26 Lc 55 k:=k+1
PE 33,39,2k (B) 27 (0) ¢ Lk | fetch x[k] to AR and MR
W 28 104 A8 01
PD 29 26 A8 51 | cycle back if w > x[k]
30 | 2041 A O1 now check for exact equality of
PF 31 35 A8 11 x[k] and w
32 2ECREEh yes: so fetch function value
PE 33 27 A8 37 and return
XB 3l 100 A8 10
PF 31 35 3D 60 fetch p
36 11 4 low order bit of p to sign
PI 37 L7 A8 11 jump if p is even
PG 38 41 A8 34 set address to table base
PE 39 27 A8 37 | fetch x[k]

page 7/8

INSTRUCTION

LOCAT | FROM | ADRES |10C COMMENTS
Lo | 20Lk ¢ 55
PG 38 (B) L1 (0) ¢ 00 |x[k-1]
w L2 104 A8 01
w 43 104 A8 01 set k correctly
PH Lh 46 A8 11
L5 Lc s5
PH Ly 46 | 2039 A 60
PI 37 L7 3D 21 for even p: -p; for odd p: -(p-1)
48 1A OC —(p=2) xlt
L 49 9L A8 54
L 50 oL A8 26 L :=k - (ps2)
PJ 51 53 A8 11 -
PK 52 57 A8 50 for L < 0, set AR to zero and jump
PJ 51 DIF 53 107 A8 60
L 54 9L A8 21
ENTER 55 58 A8 11 Jump if L < bx(n-p)
DIF 56 107 A8 60
PK 52 L 57 ok A8 29 set L to O or Lx(n-p)
ENTER | 55 58 1D 60 table base to AR
L 59 g9k A8 20
QA 60 65 A8 29 set address to B+L (first point
QB 61 68 A8 29 to be used)
QB 62 68 A8 66 set address to B+L+2
63 | 204k A 35 i= -1
LOOPA | 99 64 4B 35 is=1+1
QA 60 (B+L) 65 (0) B Lo
w 66 104 A8 o1
: 8 67 | 11088 08 |T[i] := x[1+i] - w
QB 61,62 | (B+L+2) | 68 | (0) B k4o
I 69 112 B8 08 [1I[1i] := y[1+i]
70 OB 55 k :=1
TEST 7t 96 A8 10 skip to end of inner loop
100PB | 96 72 | 204k ¢ 55 kKe=k-1
S - 73 110 B8 4O
/o Th 110 ¢8 o1
D 75 108 A8 08 |D := T[i] - T[k]
I 76 112 c8 Lk
T & 110 B8 ko | 1[k] x T[1], 80 bit product
N 78 106 A8 C8
79 04 0]

page 8/8

| COMMENTS

LOCAT |FROM |ADRES !10OC | INSTRUCTION
I | 80 | 112 c8 08
T+l 81 116 Cc8 L5
T 82 i 110 ¢8 4a | I[x+1] x T[k], 80 bit product
N 83 | 106 A8 06 left half of difference
ALARM 84 103 A8 12
' 85 0A O7
N 86 106 A8 00 right half of difference to MR
87 39 A LF
N 88 106 A8 06 add left half
ALARM | 89 103 A8 12
D 90 108 A8 4B divide, 80 bit numerator
D 91 108 A8 k2
N 92 106 A8 03 abs(D) - abs(N)
ALARM 93 103 A8 51 alarm for -improper division
L ol (0) A O7 | temp: 22, L9 50, 54 57, 59
I 95 | 112 €8 08 | store quotient in I[k]
TEST 71 LOOPB | 96 72 A8 53
i 97 O-Br=55 for k=0, test end of outer loop
pht b . (pkt) i 98 (0) ¢ 55 IRC := IRB - Ux(p-1)
IOOPA | 99 64 A8 53 | cycle on outer loop if i $ p-1
XB 34 11 100 (0) A 35 restore IRB
Xc 12 101 (0) A 55 restore IRC
102 5D 10 RETURN -
ALARM ALARM 103 103 A8 30 | alarm-halt: 84, 89, 93, 103
W 104 temp 0, 13, 19, 28, L2, 43 66
1105 : :
N 1106 | temp 78, 8%, 86, 88, 92
DIF 1107 | temp 21, 53, 56
D |108 | temp 75, 90, 91
109
i l : -
Gy 1110 | temp | 67, 13, T, 71, 82
111 ‘ 3
temp 69, 76, 80, 81, 95

	Interpolation, DASK-tal, in a table with unevenly spaced arguments

