
M6809BASICM (D2)

JUNE 1982

BASIC-M

INTERPRETER / COMPILER

User’s Guide

The information in this document has been carefully
checked and is believed to be entirely reliable. No
responsibility, however, is assumed for inaccuracies.
Furthermore, such information does not convey to the

purchaser of the product described any license under the
patent rights of Motorola, Inc. or others.

Motorola reserves the right to change’ specifications
without notice.

EXORset, EXORbug, EXORciser, EXORterm, EXBUG, MDOS and

XDOS are trademarks of Motorola, Inc.

Second Edition
Copyright 1979 by Motorola, Inc.

TABLE OF CONTENTS Page

1. INTRODUCTION . 2. 2. 2. 6 2 © © © © © © oe © oe we we ew we ew ww ew we ew 01-01

1.1 BASIC-M - Introductione.. “ e © ® - « 01-01
1.2 BASIC-M unique features «6 © «© © © © «© © © © © «© « O1-O1

1.2.1 Implementation . . . 1... 6 2 es © © eo ew ew we ew ew ew se O1-O1
1.2.1.1 Compiler / Interpreter .. . $ ee - © e 01-01
1.2.1.2 Object code and runtime characteristics - © »« O1-O01
1.2.1.3 Edit capabilities and error detection 01-01

1.2.2 Data types and address assignment control. 01-02
1.2.2.1 Variable names « « © « « © © e e e O1-02
1.2.2.2 Data types 2. 2 6 © © © ew » © © « « O1-02
1.2.2.3 Data structures 2... 6 6 © «© © «© «© « « O1-02
1.2.2.4 Address assignment eo 28 6 © oe ew ww lh wlhUcelUwlhUc*wl€ OLH03

1.2.3 Language extensions-e««-e © © © « e 01-03
1.2.3.1 Interrupt and condition monitoring oe © « 6 O1-03

1.2.3.1.1 Interrupt monitoring 01-03
1.2.3.1.2 Condition monitoring 01-04

1.2.3.2 Data formatting eo 2 © e ew © es O1L-04
1.2.3.2.1 Formatting output data e © © © © © © 01-04
1.2.3.2.2 Editing memory-resident data... . 01-06

1.2.4 Matrix operationsee. © 6 © © © © «© O1-06
de@e® DISK T/O «es 2 oe te ee ew hh hhh hUhhUmhUhhUuhhUhhlUrhlUh hhh} OL-O7
1.2.6 Built-in functions . . . 1... 6 6 © © © © © © ew ew ee « O1L-07
1.2.7 User-defined functions / procedures . e 6 © © © «© « 01-08
1.2.8 Assembly-language interfacee..-. O1-08

2. PROGRAM ORGANIZATION AND ELEMENTS 6 6 © © «© © « « « « 02-01

2.1 Statement lines «ec © © © « « © © © © © «© O2-O1
2.2 Statement types o © © © © © © © © 6 © ew ew wl hw: O2-02

2.2.1 Input/output statements. ss © ww ee oe hUelUelUhlUuwhlUrlUuw! UCODHOD
2.2.2 Arithmetic and string processing Statements 02-03
2.2.3 Control statements « . « «© © «© © © © © © ee 02-03
2.2.4 Nonexecutable statements 2. 6 © © «© © © © «© «© « 02-03

2.3 Statement composition . a @ 2 |
2.3.1 Character set . . . 1. 6 6 «© © © © © © © © © ew ew ew ww 02-04
2.3.2 Keywords 1. %® © we w & o 6 © © © © © © ew ow wl lw hel wl O2-06
2.3.3 Variable / procedure names 0 7 0 6)
2.3.4 Constants ... e @ a i 0 701 0

2.3.4.1 Literal constants 2. © © © © © 8 ew le leh tl tlw lh wl O2-07
2.3.4.2 Numeric constants . ‘ oe «© « ws «© « «© « » 02-08

2.3.4.2.1 Decimal constants os « « «© »@ » « » OZ08
2.3.4.2.2 Hexadecimal constants 02-08

2.3.5 Expressions . . 2. 2. 6 © «© © © © © © © © © © © © © ew « 02-09
2.3.5.1 Arithmetic expressions «+. © « « « 02-09
2.3.5.2 Literal expressions ce ew we ee wh celUwlhUel hw 6 OZ—10
2.3.5.3 Relational expressions «© « « « 02-10
2.3.5.4 Logical expressions «2. «© « © «© © « « O21

2.3.6 Codes . . «6 «© © © « «© 2 e« eo 8 © © © © ew ew whl whl whl wd O2—-12

3. DATA TYPES AND STRUCTURES . . 8 8 ee oe et eh! hUhhlUh!hU!hU!hUrhUrhUwhCUmhCUmC CUO KOL

3.1 Standard BASIC data types «2. 6 «© «© © © © «© © @ ow ee 03-01
3.1.1 Character data . . . 2... 6 © © © «© © © © © © © ew ew e 03-01
3.1.2 Real data e e ry ° e ° ° e e e ° ry ° e e e e e ry e e ° 03-02

BASIC-M 3.0 User’s Guide

TABLE OF CONTENTS

7.

3.2 Non-standard BASIC data sae 2
3.2.1 Byte data oe w
3.2.2 Integer data... « @

3.3 Access to individual bits. «8 “
3.4 Mixing data types in expressions .
3.5 Data structure the array»

3.5.1 General description ..
3.5.2 Array declaration ..

3.5.2.1 Declaring byte and integer arrays .
3.5.2.2 Declaring real and character arrays

3.5.3 Arrangement of arrays in storage .
3.5.4 Matrix-oriented statements
3.5.5 Matrix re-sizing >

3.6 Variable and array address control. Equivalence .

EXPRESSIONS . . 2. 6 © © © © © © © © «

4.1 Rules for writing arithmetic expressions
4.1.1 Separation of constants and variables ..
4.1.2 Separation of arithmetic operators

Literal expressions»
Evaluation of logical expressions

- BASIC-M SIMPLE STATEMENTS

The LET statement... .. « «© »

The REM statement... . 6 © «© »

HP

E
F
O
D
I
D
N
A
W
N
E

The console INPUT statement... .

The PRINT statement - simple form
The DIGITS and LINE statements . .

The GOTO statement . . ’ -»

The conditional GOTO ptatement
The GOSUB and RETURN statements. .

The conditional GOSUB statement

The IF statement « «

The FOR and NEXT statements ...

e
oO

e

a
)

U
V
N
N
N
U
N
M
M
K
A
K
H
A
M
N
M
U
M

e
e

e
e

e
e

P
e

W
n

ol

i

>
 Illustrative examples»

PRINT USING 2. « «© « © © «© © @

6.1 General description
6.2 Format descriptors« «

6.2.1 The integer descriptor . .
The string descriptor.
The hexadecimal descriptor ;

The fixed-point descriptor
The exponential descriptor .
The commercial descriptor .

DECLARATION STATEMENTS . . 2 6 «© «© © «@

7.1 Declaring byte variables
7.2 Declaring integer variables ...

BASIC-M 3.0 User’s Guide

The STOP , PAUSE , and END statements

2.2
2.3 .
2.4 The horizontal spacing descriptor
2.5 The vertical spacing descriptor

2.6
2e7
2.8

e

The READ , DATA , and RESTORE statements

2 Order of evaluation of arithmetic expressions a ‘
3 Mixed-mode arithmetic expressions. Impact on size and speed.

-4 Data types produced by arithmetic expressions ..
5
6

Page

03-03
03-03
03-04
03-04
03-05
03-06
03-06
03-07
03-07
03-08
03-09
03-09
03-09
03-10

04-01

04-01
04-01
04-01
04-02
04-03
04-04
04-05
04-06

05-01

05-01
05-01
05-02
05-03
05-06
05-08
05-09
05-10
05-11
05-11
05-11
05-12
05-14
05-15

06-01

06-01
06-03
06-03
06-03
06-04
06-05
06-05
06-05
06-06
06-07

07-01

07-01
07-02

TABLE OF CONTENTS

9.

10.

ll.

12s

7.3
724
7.5

The DIM statement

Declaring external subroutines
Runtime initialization

REAL-TIME MONITORING

W
w
M
W
D
D
D
A
D

N
D
O
P
F
W
N
 E
H The ON interrupt THEN statements

The ON KEY statement

The WHEN ... THEN statement...
The ON ERROR statement

The NEVER statements

More about the RETURN statement

MATRIX OPERATIONS © « «

w
o
v
V
v
n
V
v
n
V
n
V
N
n
N
N
u
O
V
N
n
w
w

e
e

e
@

W
O
O
M
O
N
H
D
U

P
W
N

EE

10 The MAT SET statement... .

The classical approach
The MAT READ statement... .

The console MAT INPUT statement
The MAT PRINT statement... .

Copying @ Matrix « « « =» ww «

Matrix addition and subtraction

Matrix multiplication
Scalar operations
identity matrix « « « « » «© w

4 11 The MAT ZER and MAT CON statemen

9.12 Matrix transposition
9.13 Matrix inversion

FUNCTIONS AND PROCEDURES«

10.
10.
10

l User-defined functions

2 Procedures ee e
-3 Assembly-language interface .

BUILT-IN FUNCTIONS

11

11
Ld.

-l1 Trigonometric functions ..
Ll:
ll.

2 Other mathematical functions
3 Logical functions

5 Miscellaneous functions ..

-4 String functions se vw & @ ®

11.6 Default type of the argument
ll. 7 Tllustrative examples

DISK FILE INPUT / OUTPUT

12

12.
12.
12
12.
12

-l General description .. .

-4 The end of file test... ‘
5 Output transfer to file via the

12.1.1 File types
2 The OPEN statement . . F

3 The file INPUT statement é

-6 The REWIND statement... .
12.

12.

12.

7 The CLOSE statement... .

8 Alphanumeric access key .. .
9 Array input/output with disk files .

12.9.1 Input of an array from a disk file
12.9.2 Output of an array to a disk file .

BASIC-M 3.0 User’s Guide

e
e

e
c

eo
e

e@
e@

«©

atement

e
e

©
@

@
©

©

Page

07-02
07-03
07-04

08-01

08-01
08-03
08-04
08-09
08-10
08-11

09-01

09-01
09-02
09-02
09-04
09-05
09-07
09-08
09-09
09-10
09-11
09-11
09-12
09-12

10-01

10-02
10-05
10-08

11-01

11-01
11-01
11-02
11-02
11-03
11-03
11-05

12-01

12-01
12-01
12-05
12-06
12-09
12-11
12-12
12-12
12-13
12-14
12-14
12-15

TABLE OF CONTENTS

13. SYSTEM COMMANDS © «© © © © © © © © © © © © © © e«

13.1 Operating Modes © © «© © © © «© © © © © © ©
13.2 Invoking BASIC-M . . 2. 2. «© © «© © «© «© © © © © © © © © © «
13.3 Interpreter Mode... . 7 . 6 se ew wm 8 8 me ee

13.3.1 Creating the source program c * 6 wm oe 8 oe ee
13.3.2 Auto line-numbering «© «© « °
13.3.3 RESEQuence ° o 0 8 ° °
13.3.4 LIST and LIST Erroneous statement lines commands
13.3.5 FLAGON and FLAGOFF commands ae ee ee ee ee ee ee
13.3.6 The DELete Command © © «© © «© « « e
13.3.7 The RENAME command ‘ oom &
13.3.8 Returning to the disk- -operating system ee ww &
13.3.9 The RUN command e < ee we we HF & Qe
13.3.10 The TRON and TROFF commands oe me we 8 ww H
13.3.11 The PATCH command 6 © © © © © © «© e
13.3.12 The NEW command »« « © © © © © © © e%e
13.3.13 The COMPILE command © © « © © « « e

13.4 Compiler Mode. . . 2. 2. . « « «© © © «© © «© © © © © © © © e
13.5 The BLOAD Utility. . 2... 1 1 2 © © 2 0 oe we we ew we ws

14. PERFORMANCE CHARACTERISTICS . . 2... © © « © © © © © © © © e

14.1 Requirements . . . 2. . « © © © © © © «© © © © © © © © © «
14.2 Space estimates 1. « © © «© « © «© © © © © © © @ e
14.3 Speed estimates «© © © © © © © © © © © © © «

APPENDICES

A. ASCII Character Set . . 2. 2. « © © © «© © «© © © © © © © © «© © «©

B. Syntax Error Codes / MessageS . 2... . © «© © «© © «© «© © © «

C. Compilation Error Codes / Messages +. © « © © © « »

D. Runtime Error Codes / MessageS © «© © © © «© © «© © © «

E. Summary of BASIC-M Statements and Functions
F. Chaining the Execution of Disk Resident Overlays
G. Partitioning a BASIC-M Source Program o 8 6 ee ee ww ew
H. Supplementary Manual: Kernel Requirements-«..
I. Minimum Kernel for MM19: Program Listing « .« «
J. BASIC-M Example Program for MM19

Page

13-01

13-01
13-01
13-04
13-04
13-04
13-05
13-05
13-06
13-06
13-07
13-07
13-08
13-08
13-09
13-09
13-09
13-11
13-13
14-01

14-01
14-01
14-02

CHAPTER 1

1.1 INTRODUCTION

This chapter is an introduction to BASIC-M. It gives an
overview of the language and its implementation
characteristics. The reader already acquainted with BASIC is
especially invited to read through this section.

1.2 BASIC-M unique features

In interpreter mode, the operator interacts with his
source program which is held in the system RAM. The "RUN"
command causes the source to be compiled into an object code
which is immediately executed (high-speed compilation :
approximately 50 lines/second) under control of the Runtime
Package.

In compiler mode, the object data can overwrite the
compiler and possibly the BASIC source program; thus no
further interaction is possible, but more memory space is
available at execution time.

In either mode, an option exists to force the compiler
to produce a compact code (five bytes less per statement
line); this option however, precludes further tracing or
monitoring (see "WHEN ...THEN" and "ON ERROR THEN"
statements).

1.2.1.2 Object code and Runtime Package

Both the Runtime Package and the code produced by the
compiler are position-independent, a powerful feature derived
from the MC6809 processor. The Runtime installation address
in the end system can be specified at compilation time.

The scratchpad RAM allocated to the BASIC variables and
stacks can also be easily controlled, either by type

declaration statements, or when invoking the compiler.

1.2.1.3 Edit capabilities and error detection

Several system commands exist for automatic line
numbering, resequencing and for renaming variables or
user-defined functions or procedures.

Errors are detected at three levels :

BASIC-M 3.0 User”s Guide Page 01-01

INTRODUCTION 1.2 -- BASIC-M unique features

- when entering the source (Syntax errors)
- when compiling (compile-time errors)
- when executing the compiled code (runtime
errors ; these may be optionally processed by
the user program).

1.2.2 Data types and address assignement control

Unlike standard BASIC, BASIC-M accepts multicharacter
variable and user-defined function or procedure names. This
allows better readability and program maintenance. The
"RENAME" system command provides a means to upgrade standard
BASIC variable names. Thus, for instance, M$ may be easily
changed to Month$, T(2) to Time_of the day(2), ... and so on.

1.2.2.2 Data types

The following four types are supported

Real : 5-byte data in a format allowing
a dynamic range of E+38 to E-38,
with an accuracy of over 9 digits.

- String : 31-character variables.

- Byte : unsigned 8-bit data.

- Integer : signed 16-bit data.

A variable is assigned one of the above types either
implicitly (real. and string variables conform to BASIC
conventions), or explicitly (type declaration via the BYTE or

. INTEGER statements).
In addition, a single bit can be easily accessed within

a byte or integer, just by specifying its position within the
variable. Thus the testing or setting of one bit in
high-level language becomes a simple matter, as illustrated
below.

Examp le 1.0

10 BYTE Pia ADDRESS $8008 \ 8008 is an hex constant
20 REM reset bit #0 if bit #7 is set
30 IF Pia[7]=l1 THEN Pia[0]=0

1.2.2.3 Data structures

BASIC-M supports one and two-dimensional arrays that may

BASIC-M 3.0 User’s Guide Page 01-02

INTRODUCTION 1.2 -- BASIC-M unique features

contain elements of either of the four data types mentioned
before.

1.2.2.4 Address assignment

Unless otherwise notified, the compiler takes care of
allocating storage to the program variables. However, the
user may force the assignment of absolute base addresses to
some of his program variables or procedures (external
assembly language subroutines). This is achieved via _ the
ADDRESS keyword. For instance, the following statements will

define a two-dimensional byte matrix based at the hexadecimal
location $C000, and a_ subroutine starting at hex address
SFO24.

Example 1.1

12 BYTE Alpha_memory (22,80) ADDRESS $C000
15 EXTERNAL Pdata ADDRESS SF024

18 INTEGER Graphic(22,40) ADDRESS Alpha_memory

The possibility of achieving the effect of the FORTRAN
"EQUIVALENCE" statement is also illustrated in the previous
example : the arrays labelled Alpha_memory and _ Graphic
respectively, occupy the same memory space, although they are
not of the same type.

1.2.3 Language extensions

BASIC-M permits the user to work at a "low level", i.e
close to the machine environment.

The data types and addressing, as described in the
previous paragraph, are ae first step to meet this
requirement. The statements that are briefly discussed next

take it a step .further. They all allow for an easy monitoring
of external events or conditions.

1.2.3.1.1 Interrupt monitoring

Eight statements are provided for processing interrupt
reguests 3;

ON NMI THEN ...

ON IRQ THEN ...
ON FIRQ THEN ...

ON KEY key list THEN ...

and their counterparts :

NEVER NMI

BASIC-M 3.0 User’s Guide Page 01-03

INTRODUCTION 1.2 -- BASIC-M unique features

NEVER IRQ

NEVER FIRQ

NEVER KEY key list

The first three statements of each series refer to the
MC6809 interrupt sources, while "ON KEY" and "NEVER KEY"
refer to the management of function keys. Below are examples
to be described in more detail further on in this manual.

Example 1.2

100 ON NMI THEN Update_time \ Real-time clock
320 ON FIRQ THEN GOSUB 480
480 NEVER KEY 3,5,12

1.2.3.1.2 Condition monitoring

One of the nicest statements in BASIC-M is the:

"WHEN condition THEN action" statement.

It differs in many respects from the standard "IF ...
THEN" statement. The "IF ... THEN" is used to test a
particular condition on execution, at a given time : when the
statement is encountered.

"WHEN ... THEN" does also test a condition but the test,
rather than being done at a given instant, is performed prior
to executing each and every statement of the program. The
condition specified in the WHEN clause is continuously
monitored until another "WHEN ... THEN" statement is
encountered, or until a WHEN request is cancelled by the

associated "NEVER WHEN" statement.
Not surprisingly, this statement results in some

downgrading, as far as speed is concerned, but its advantages
far outweigh this drawback. An example of WHEN usage follows:

Example 1.3

125 WHEN Valve_1=0 AND Pressure > 200 THEN Led[3]=1l1

1.2.3.2 Data formatting

Another strength of BASIC-M is that provision is made
for formatting both output data and memory-resident data.

1.2.3.2.1 Formatting output data

Before data is transmitted from internal storage to an
output device (console, disk, line printer), it goes through
an editing process which cannot be easily controlled in

BASIC-M 3.0 User”s Guide Page 01-04

INTRODUCTION 1.2 -- BASIC-M unique features

standard BASIC. BASIC-M however offers flexible facilities
for specifying the format of the data to be output. The PRINT

USING statement actually tells the computer to output data
contained in its operand list in a format described in its
USING clause. BASIC-M provides eight format descriptors that
make the language well suited for a wide variety of
applications where a versatile formatting of data is at a
premium. These descriptors which feature both COBOL and
FORTRAN formatting capabilities are fully detailed in chapter
6. The output format can be specified in a literal constant
Or at execution time; in this latter case, the descriptors

are contained in a string variable (see example 1.6).
The three examples below illustrate the type of results

that can be achieved.

Example 1.4

40 AS="Motorola Semiconductors"

100 PRINT USING "[64,C] [/5] [X31]",AS,"!"

The string "Motorola Semiconductors" is output
centered in a 64-column field, followed by 5 empty lines, 31
horizontal spaces and an exclamation mark.

Example 1.5

10 DATE 40579
20 BOOK 2.19025075E+6
30 PRINT #2 USING 90, DATE, BOOK
90 IMAGE "Date : [C2/2/2][X10]Bookings = [C($)1,3,3(.)2]"

The following printout occurs on the line printer :

Date : 04/05/79 Bookings = $2,190,250.75

Example 1.6

10 INPUT Angle, Model$
20 PRINT USING Model$, Angle*PI/180

RUN

? 360
? [1,3,2] radians
6.283E+0 radians

BASIC-M 3.0 User’s Guide Page 01-05

INTRODUCTION 1.2 -- BASIC-M unique features

1.2.3.2.2 Editing memory-resident data

Most of the format descriptors that apply to the PRINT
USING statement are also available for editing
memory-resident numeric data, a very valuable feature when

working on video RAM. For this purpose, the STR$ built-in
function has been enhanced so as to support a second argument
which precisely specifies the format descriptors. The STR$ (X)
function normally converts a numeric value X to a string. A
sample program, although not complete, is shown below which
causes the string "04/05/79" to be displayed in the _ top
left-hand side corner of a CRT whose video RAM would start at
location $4000.

Example 1.7

22 DIM Alpha$(16,2) ADDR $4000 \ 16x64 video RAM
24 DATE = 40579

26 Alpha$(1,1) = STRS(DATE, "[C2/2/2]")

As in the PRINT USING, the second argument of STRS$ which
in the above example is a literal constant, may well be a
literal variable, thus allowing the user to format data at
execution time.

1.2.4 Matrix operations

A a already mentioned under 1.2.2.3, BASIC-M supports

arrays that can be either one- or two-dimensional. Data items
of the same type (byte, integer, real or string) are grouped

together to form an array or matrix that can be referred to
by a single name. There exists several powerful statements
which allow an array to be regarded as a single quantity.
This approach results in shorter and faster programs, for it
obviates the use of the conventional FOR-NEXT loops operating
on every element of the array. The following examples
highlight the usefulness of some matrix-oriented statements.

Example 1.8 : initialize a 5x4 matrix A to the value PI

10 DIM A(5,4)
20 MAT A = SET [PT]

Example 1.9 : a FOR-NEXT loop is used to achieve the
SSS sos same results as in example 1.8

10 DIM A(5,4)
20 FORI=1705
30 FOR J =1 70 4
40 A(I,Jd) = PI

BASIC-M 3.0 User’s Guide Page 01-06

INTRODUCTION 1.2 -- BASIC-M unique features

50 NEXT J
60 NEXT I

Example 1.10 : input the elements of a 2x2 matrix B
pa oe et from the console (data typed in on the

same line).

10 DIM B(2,2)
20 MAT INPUT B

Example 1.11 : problem definition equivalent to above
wooo oe example (1.10).

A standard BASIC statement is used.

10 DIM B(2,2)
20 INPUT B(1,1), B(1,2), B(2,1), B(2,2)

Example 1.12 : matrix multiplication

10 DIM A(2,4), B(2,3), C(3,4)
20 MAT A = BC

Example 1.13 : matrix inversion

10 DIM A(3,3)
20 MAT A = INV(A)

1.2.5 Disk I/0

BASIC-M provides versatile statements for exchanging
data with a mass-storage media (disk or mini-disk). The
following file organizations and access are supported

1/ sequential organization :
- fixed-length records : sequential or random access.
- variable-length records : sequential access only.

2/ indexed organization :
- fixed-length records : indexed access to a particular
record by means of keys.

1.2.6 Built-in functions

BASIC-M includes over 30 intrinsic functions : those
commonly found in most BASIC’s , plus several unique ones
that considerably ease string processing or mathematical
problem solving. Below is a brief list of some advanced
functions ;

BASIC-M 3.0 User”s Guide Page 01-07

INTRODUCTION

BASIC-M 3.0 User’s Guide

1.2 -- BASIC-M unique features

ASN (X) arcSine of X
_ LOG (X) natural logarithm of X

DCLOG (X) decimal logarithm of X

LOC (X) absolute address of X

SUBSTR(SS$,X$) return position of substring X$ in S$

TRIMS (SS) strip trailing blanks off S$

1.2.7 User-defined functions / procedures

As in the standards, BASIC-M makes provision for

user-definition of single-line arithmetic functions, such as
the one shown in example 1.14.

Example 1.14

10 DEF SURFACE(X) = PI * X%*2

20 INPUT "cylinder height and radius ", H, R

30 PRINT "Volume = “: H * SURFACE (R)

More interesting is the fact that BASIC-M supports also
multi-line user-defined procedures similar to PASCAL’s.
Unlike functions, procedures do not return a single value to
the calling program; rather they cause the execution of a
pre-defined sequence of statements. The sequence is activated
by writing the name of the procedure, possibly followed by a
list of arguments.

The idea behind user-defined procedures is to improve
the overall program structure, thus making it both more
readable and secure.

An example of a very simple procedure definition and
call follows.

Example 1.15

70 GOTO 100
75 DEF DELAY (X) \ procedure definition

80 FOR BB = 1 TO X \ software delay
85 NEXT BB
90 RETURN \ end of procedure definition
95 REM

100 WHEN Pia[3]=l THEN DELAY (Z)

1.2.8 Assembly language interface

In some cases , it might be desirable to perform some
time-critical tasks in assembly language. BASIC-M interfaces
very easily to user-written assembly language subroutines
thereafter referred to as external procedures ; The EXTERNAL

Page 01-08

INTRODUCTION

statement allows to declare these latter along with their
absolute address.

The address of the arguments involved in the external
procedures , if any, are passed in a table pointed to by the
MC6809 index register.

The external subroutines can also be called as functions
returning a value to the calling program.

Below is an example of an external subroutine call and
definition; the passing of argument (the address of a string)
is illustrated in this sample program.

Example 1.16 : echo an input string by calling
a laaieniieaienieietentonien the monitor PDATA subroutine

15 EXTERNAL ASM ADDR $8000 \ uSer-written routine
18 INPUT TEXTS \ vead input string
21 TEXTS = TEXTS + CHRS(4) \ append terminator
24 CALL ASM(TEXTS) \ invoke assembly routine

User-written assembly program :

NAM ASM

ORG $8000
ASM LDX ,Y read argument address

LEAX 1,X skip string length byte
JMP PDATA call monitor (sub) routine
END

1.2 -- BASIC-M unique features

Page 01-09

CHAPTER 2

A BASIC-M source program consists of a series of
instructions which directs the computer to perform a certain
task. Each instruction is called a statement.

BASIC-M has some 30 different kinds of statements’ and
over 30 different built-in functions, which are all discussed
separately further on in this manual.

A statement appears wholly on a statement line ,
thereafter referred to as a "line", which may include up to
80 characters and must be terminated by a carriage return
character. No more than one statement can be coded on a line,

nor can a statement be continued on the next line.

Each line must be numbered to indicate the normal
sequence in which the statements are executed. These line
numbers appear at the left end of the line and may be = any
value from 1 to 65535. Statements may be entered in any
order. The computer keeps them in numerical order no matter

how they are entered. For example, if statements are input in
the sequence 30, 10, 20, the computer arranges them in _ the
order 10, 20, 30.

Good programming practice dictates that the line numbers
be separated by some numeric distance, say 10, so that if
programming errors are found , or changes made to the
program, new lines with numbers in between those which

already exist can be inserted.

Upon request, the computer can optionally generate
automatic line numbers separated of each other by some
user-defined distance. Once the source program has been
created, the statements can also be resequenced. The

automatic line numbering and resequence system commands are
discussed in chapter 13. Here is a brief illustration of
their usage.

Example 2.0 : automatic line numbering and
cteatastententententestantantant resequencing.

(user*’s inputs are underlined)
READY

N 10, 2

10 aq2
12 PRINT A

BASIC-M 3.0 User’s Guide Page 02-01

PROGRAM ORGANIZATION AND ELEMENTS 2.1 -- Statement lines

14 STOP

16 < CR > exit program editing by depressing
the carriage return key

READY

RESEQ /5

READY

LIST

00010 A=2
00015 PRINT A
00020 STOP

When a BASIC-M program is executed, execution starts
with the first statement in the first line (the statement at
the top of the page of a listing); then control flows to the
next line down the page (of the program listing). This
process continues until a statement is encountered which
changes the flow explicitly (i.e, GOTO, GOSUB, NEXT, IF ...
etc.), or until a hardware or software event being monitored
forces the computer to execute another portion of the source
program ; this happens in case of interrupts or of condition
monitoring enabled by a WHEN ... THEN statement .

2.2 Statement types

BASIC-M statements may be classified into four basic
categories: input/output , arithmetic or string processing,
control, and nonexecutable. As for any high-level language ,

BASIC-M source statements cannot be executed ; the

machine-language instructions into which these statements are
translated can be executed. But, because “executable
statement" is a conventional phrase, it will be used in all
subsequent discussions.

2.2.1 Input/output statements

These statements help in exchanging data between the
outside world and the user program ; they direct the computer
to read or write a record (a collection of data), indicate

the device to be used (console, disk, line printer) and may
optionally reference a nonexecutable statement which
describes the record (IMAGE statement).

Example 2.1 : input/output statement

50 INPUT "ENTER PARAMETERS ", A, B, C, X

BASIC-M 3.0 User’s Guide Page 02-02

PROGRAM ORGANIZATION AND ELEMENTS 2.2 -- Statement types

70 PRINT USING 90, A*X*X + B¥X + C
90 IMAGE "Y = [6,2]"

2.2.2 Arithmetic and string
processing statements

They constitute the "heart" of most BASIC-M programs, in
that they direct the computer to perform certain arithmetic
calculations (addition, sine calculation, etc.) or string
processing (string concatenation, searching, etc.).

Example 2.2 : arithmetic and string
SS statements

10 AS$="MOTOROLA "+ BS

20 POSITION = SUBSTR(AS,"RO")

30 Y = SIN(X)

2.2.3 Control statements

Normally, statements are executed in the order in which
they appear in the source program. Control statements can be
used to instruct the computer to change this normal order of
execution. For example, control statements can be used to

repeat an instruction or series of instructions a specific
number of times, or to execute certain instructions only
under specified conditions. They can also be used to suspend
or terminate program execution.

Example 2.3 : control statements

35 FOR I = 1 T0 20

40 TOTAL = TOTAL + A(TI)

45 IF TOTAL > MAX THEN PAUSE "OVERFLOW"
50 NEXT I

2.2.4 Nonexecutable statements

These are primarily used to give the compiler
information it will need to execute other statements. The
type declaration statements fall into this category : they
govern the allocation of memory for the variables and dictate
the type of operations to further occur during program
execution (byte or floating-point addition, type conversion,
etc.). Examples of other statements of this category include
the REM statement (to announce a comment), the IMAGE
Statement (to specify a printout format), and the DATA
statement (to store permanent values in the program).

BASIC-M 3.0 User”s Guide Page 02-03

PROGRAM ORGANIZATION AND ELEMENTS 2.2 -- Statement types

Example 2.4 : nonexecutable statements

10 REM This is a sample program
20 BYTE PIA ADDRESS $8008

30 DATA SFF, 4, 128
40 READ INITLZ

50 PIA = INITLZ

statement lines 10, 20 and 30 are
examples of nonexecutable statements.

2.3 Statement composition

BASIC-M statements are composed of various combinations
of keywords, variable names, constants, expressions, and
codes. As many blanks as desired can be inserted between
these guantities to improve program readability. However,
program editing must obey the following simple rules :

1/ each statement line must not exceed 80
characters.

2/ there must be at least one space between’ the
statement line number and the first element of the
statement.

3/7 each key word must be followed by a blank.

2.3.1 Character set

BASIC-M programs are written using a subset of the ASCII
character set depicted in Appendix A. It is composed of
special characters, and of a collection of lower-case,
upper-case and numeric characters collectively called
alphanumeric characters. The upper-case characters are the
characters A through Z ; the lower-case characters are the
characters a through z ; the numeric characters are _ the
characters 0 through 9. These are also called the decimal
digits. The decimal digits and the characters A through F are
collectively called the hexadecimal digits.

The special characters and their meanings or uses,
outside of character-string constants and comments, are given
in figure 2.1.

BASIC-M 3.0 User’s Guide Page 02-04

PROGRAM ORGANIZATION AND ELEMENTS

character name

space
dollar sign

backslash

left bracket

right bracket

double quote
left parenthesis
right parenthesis
asterisk
plus

minus
Slash

up-arrow
period
less-than sign

greater-than sign

immediate or

pound sign
equal sign
comma

underscore

meaning or use

alphanumeric characters
upper-case characters

lower-case characters
decimal digits
hexadecimal digits

separator, otherwise ignored

start of hex constant or
string variable terminator
start of comment

start of bit expression or
format descriptor
end of bit expression or
format descriptor
character-string constant delimiter
begin of argument or subscript list
end of argument or subscript list
multiply
add

subtract

divide or line feed descriptor
exponentiation (raise to power)
decimal point
less than or not equal if followed
by greater-than sign
greater than or not equal if
preceded by less-than sign
begin of a logical unit expression
or not equal

equal
argument or subscript separator

can be embedded in names to improve
readability

CR

The general form of a statement line is as follows :

< line number >< blank >< statement bodv >< comment ><

where 3:

- the comment field is optional. If any, the comment is
preceded by the backslash character and may include
any displayable characters.
- CR is the ASCII carriage return character.
- the statement line length must not exceed
80 characters.

BASIC-M 3.0 User’s Guide Page 02-05

2.3 -- Statement composition

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

The rest of this section identifies the hasic elements
that may exist in the statement body.

2.3.2 Keywords

Keywords have a special meaning in BASIC-M. They
identify operations designated by statements. An alphabetic
list of these key words is given in figure 2.2.

ABS ACS ADDR ADDRESS AND ASC ASN

AT ATN BYTE CALL CHRS CLOSE CON

COS COSH COTH DATA DCLOG DEF DIGITS

DIM END EOF ERR - ERROR EXP EXT
EXTERNAL FIRQ FIX FKEY FLOAT FOR GO

GOSUB GOTO IAND IDN IEOR IMAGE IND

INPUT INT INTEGER INV IOR IRQ ISHFT
KEY LEFTS LEN LET LINE LOC LOG

MAT MIDS MOD NEVER NEXT NMI NOT

ON OPEN OR PAUSE PEEK POKE POS
PRINT RAN READ REM RESTORE RETURN REWIND

RIGHTS RND SEQ SET SGN SIN SINH

sQ SOR STEP STOP STRS SUBSTR TAB

TAN TANH THEN TO TRIMS TRN USING
VAL WHEN ZER

A variable name is a symbolic address selected by the
programmer. Although the address remains constant, it is
called a variable name because the data contained at the
symbolic address may be repeatedly changed during program
execution.

A procedure or function name is an identification of a
series of statements or instructions which can be executed by
specifying in the source program, the name of the procedure /
function. '

BASIC-M user-defined variable , procedure or function
names do not conform with the BASIC standards, in that they

can be multi-characters. A name is not limited in length ;
BASIC-M stores the names in a symbol table, and_ each
variable, procedure or function is coded internally as a

16-bit pointer to this symbol table ; therefore the user can
feel free to use meaningful names without wasting memory
Space. However, care should be exercised so that the length
of any source line is not more than 80 characters. Apart from
this restriction, a name must obey the following rules :

BASIC-M 3.0 User”s Guide . Page 02-06

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

- the first character must be an upper-case character.

- a name may consist only of any alphanumeric
characters and of the underscore (_), and
dollar (S$) signs.

- a name must not be identical to any of the BASIC-M
reserved words listed in figure 2.2.

legal names

AS , ALPHA$, Alpha$, Alpha_memory, Day of the week 1
E6 , I , PI , Exchange _Rate , Dollar$ value

illegal names

Day_of the week:1 name includes a colon
alphas name does not begin with an

upper-case character
SIN reserved word. Note that SINS

would be legal
Alpha memory embedded space

A variable / procedure / function can be renamed at

will, by using the RENAME system command which is discussed
in detail in chapter 13. The user must be aware that changing
a name does not delete the old name from symbol table. Stated
another way, the table expands every time a variable is
renamed, thus consuming memory space. Below is an example of
the effect of the RENAME command.

Example 2.5 : using the RENAME command

LIST

00010 PRINT V1

READY

RENAME V1 Volume_of_cylinder

READY

LIST

00010 PRINT Volume_of cylinder

2.3.4 Constants

Constants , by definition , are unvarying quantities.
There are two categories of constants defined in BASIC-M :
numeric constants, and literal constants (also called string
Or character constants).

2.3.4.1 Literal constants

BASIC-M 3.0 Users Guide Page 02-07

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

A literal constant is a string of characters enclosed in
a pair of double quotation marks. Any letter, digit, or
special character can be included in a literal constant. A
double quote , however, must be indicated by using two double
quotes. For example ,

"""BYE"", HE SAID" represents "BYE", HE SAID

The following are all valid literal constants :

"volume of cylinder = "
"3.14"
"SDelta to requirement is above 6"

The length of a character constant, when displayed or

printed, is the number of characters it contains, including
blanks, but excluding the delimiting double quotation marks.
Each pair of double quotes used to represent a double quote
is counted as one character. The maximum number of characters
in a literal constant is limited only by the maximum number
of characters on an input line, which is 80.

2.3.4.2 Numeric constants

This category is further subdivided in decimal, and
hexadecimal constants.

2.3.4.2.1 Decimal constants

A decimal constant consists of decimal digits with an
optional exponent specification. A decimal constant yields a
5-byte data in a format allowing to code quantities in the
range 10 raised to power -38 to 10 raised to power +38 , with
an accuracy of over 9 digits. A decimal point can be placed
anywhere in the digit string. The exponent is specified by
writing "E" followed by "+" or "-" or nothing, followed by a
digit string for the exponent value itself. The exponent
specification, if present , must be preceded either by a
decimal digit , or by a decimal point itself immediately
preceded by a decimal digit.

valid decimal constants unvalid decimal constants

314159265 3. 14159265
00000300 00000A0
1E12 El2
1.E12 E12
- 314E+00001 -314E/00001

2.3.4.2.2 Hexadecimal constants

BASIC-M can also deal with hexadecimal constants. This
is a convenience offered especially for programmers

BASIC-M 3.0 User’s Guide Page 02-08

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

accustomed to machine-lLanguage.

A hexadecimal constant consists of a hexadecimal digit
string preceded by the dollar sign.

Note that the use of any special character other than
the leading dollar sign is prohibited (in particular, the
decimal point cannot be used in an hexadecimal constant).

Hexadecimal constants supplied in the source program,
are treated as 16-bit signed quantities to represent values
in the range -32768 to +32767. However, hexadecimal numbers
supplied via an INPUT statements assume the range of decimal
constants. The following example illustrates this
distinction.

Example 2.6 : hexadecimal constants

10 VALUE = SFFFE 10 INPUT VALUE 1

20 PRINT VALUE ! 20 PRINT VALUE

RUN ! RUN

-2 ! ? SFFFE (operator’s input)
! 65534

The hexadecimal constants of the source program may
include as many leading zero”’s as desired, the sole
restriction being that no overflow occurs when the constant
is converted to its internal code. Another rule to be
observed is that an hexadecimal constant cannot be preceeded
by an unary minus. Some more examples are shown below :

valid hex constants invalid hex constants

SAF -SAF

SOOOOO0000FFE : $0000.FFE

$8008 S8008E+06

SBF74 $BG74

2.3.5 Expressions

An expression is a combination of variable / function
names , and constants separated by operators. There are four
types of operators : arithmetic , literal , relational , and
logical operators. Depending on the variable / function
types, and of the operators used in the expression , this
latter will be referred to as an aritmetic , or literal, or
relational , or logical expression. Expressions are fully
discussed in chapter 4. This section simply illustrates the
four types of expressions processed in BASIC-M.

2.3.5.1 Arithmetic expressions

Arithmetic expressions can be formed by combining
numeric variables / functions and constants (the operands of
the expressions) with arithmetic operators. There are five
arithmetic operators ;:

BASIC-M 3.0 User’s Guide Page 02-09

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

- the "+" operator which implies an addition,
- the "-" operator which implies a substraction,
- the "*" operator which implies a multiplication,
- the "/" operator which implies a division, and
- the "*" operator which implies an exponentiation.

The value of an arithmetic expression is obtained by
performing the implied operations on the specified items. For
example, if A=4 and B=5, the value of the expression 3*A+B is
equal to 3*4+5 , i.e 17. Note that the constant 3 is the
factor by which the variable A only has to be multiplied, and
not the quantity A+B . This is due to the fact that the "*"
operator has precedence over the "+" operator. The user

however, can dictate the flow of calculations by using
parentheses. For instance , the expression 3*(A+B) where A

and B have the same value as before , will result in the

value 27 , because this time , 3 applies to the sum of A and
B.

BASIC-M supports mixed-mode expressions ; in other
words, the operands involved in arithmetic expressions need
not be of the same type. Internal type conversion, resulting
type of an expression, and operator precedence are all
detailed in chapter 4.

Some examples of arithmetic expressions are :

ATN(1) * SQ (R)
PI * R* R (Spaces are shown for

3.14 * R* 2 sake of readability
TOTAL (X,Y) / AMOUNT only !)

SIN(X) + DCLOG (2)

2.3.5.2 Literal expressions

A literal expression is a combination of string
variables / functions , and/or literal constants, with the
concatenation operator "+". The following are valid examples
of literal expressions :

w GOOD + Ww BYE w

TEXTS + CHRS (4)
BUFFERS (3) + "END-OF-LINE"

2.3.5.3 Relational expressions

A relational expression compares the value of two
arithmetic expressions or two literal expressions. The
expressions to be compared are evaluated and then compared
according to the definition of the relational operator
specified. According to the result, the relational expression

BASIC-M 3.0 User’s Guide Page 02-10

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

is either satisfied (true) or not satisfied (false).

Relational expressions can appear in a BASIC-M program
only as part of an IF or WHEN statement.

The relational operators and their definitions are :

we" equal
"#" or "<>" not equal
">" greater than
">=" greater than or equal
men less than
"<=" less than or equal

Below are some examples of statements that involve relational
expressions.

IF Angle * PI / 180 < 1.57 THEN Rotate(X,Y)
WHEN Pressure = 150 THEN GOSUB 200
IF AS >= BS THEN Swap(AS$,B$)

In the above examples, the relational expressions are those
quantities between the key words IF or WHEN , and THEN.

2.3.5.4 Logical expressions

Logical expressions consist of relational expressions
combined by logical operators using the ordinary rules of
Boolean algebra. For example , the logical expression " A < B
AND C # D " is true if the value of A is less than the value
of B , and if the value of C is different from the value of
D.

The logical operators provided in BASIC-M are :

"NOT" logical expression is true if relational
expression is false, and vice versa.

"AND" logical expression is true if both
relational expressions are true.

"OR" logical expression is true if either
relational expression is true.

Logical expressions can only appear in the IF or WHEN
Statements, as presented in the following examples :

WHEN NOT (Pressure < 150) OR Temp >= 273 then Alarm

IF A$ < Company_name$ AND A=3 OR B#7 THEN’ 100

Logical operators hierarchy is also discussed in chapter 4.

BASIC-M 3.0 User*s Guide Page 02-11

PROGRAM ORGANIZATION AND ELEMENTS 2.3 -- Statement composition

2.3.6 Codes

The BASIC-M language includes several codes, that are
not executed but rather gives the computer information he
needs at execution time. These codes are supplied by reserved
words or special characters. Their main function is to
describe a printout format, a disk file organization, or a
data type. For instance , in the following :

10 PRINT USING "[(/3]" ,A
20 OPEN #98, "STOCK" , I , RAN
30 INTEGER SCRATCH, TEMP

The slash character followed by 3 in statement 10 ,
tells the computer to output 3 line feed characters to the
console prior to printing variable A. Similarly, in
statement 20 , I specifies that the file named "STOCK" is’ to

be opened for input , while the reserved word "RAN" implies a
random access.

This chapter was intended to
describe the organization of a
BASIC-M program , and the main
elements which compose the various
statements. The next chapter goes

into more detail as to the data
types and structures defined in the
language.

Page 02-12

CHAPTER 3

When a language is evaluated, not only does one have to
look at its statement repertory. The statements just show the
actions that may be taken. Equally important are the data
which can be operated upon by the statements. A data type
determines the set of values which variables and functions of
that type may assume.

BASIC-M includes the standard BASIC data types (real

and character), plus two non-standard types (byte and
integer) which are frequently used in a microprocessor
environment. This chapter discusses important subjects
related to data types, such as internal representation ,
Magnitude of the data, accuracy , type declaration or other
arrangement of data in structures. These concepts are
especially important to those people wishing to interface a
BASIC-M program to assembly-language subroutines, in that it
describes the format of the argument data.

3.1 Standard BASIC data types

BASIC-M adheres to the standard convention that any
variable name ending with a dollar sign ($) defines the data
it represents as a character, or string data. In the BASIC-M
language, this convention also extends to the user-defined
functions , either internal or external, and to the library
functions.

The following statements all define character variables
or functions.

Example 3.0 : variables or functions assuming
Saas Ses55- the character type.

10 EXTERNAL HEADing$ ADDRESS 1024

20 AS = STRS (A)

30 DEF Catenate$(X$,Y) = XS + CHRS(Y)
40 TEXTS = Catenate$S (AS,4)
50 HEADing$ (TEXTS)

A character data consists of 31 ASCII characters, and is
internally coded on 32 consecutive bytes in the following
format :

LAAAAA.... AA

BASIC-M 3.0 User*s Guide Page 03-01

DATA TYPES AND STRUCTURES 3.1 -- Standard BASIC data types

where

A stands for an ASCII character.
L is the string length byte, which holds the

current length of the string (0 to 31).

Character data are left-justified, and the
non-significant ASCII bytes, if any, are filled with blanks.
Example 3.1 illustrates the successive internal coding of a
string variable in the course of program execution.

Example 3.1 : internal representation of
HHS Se a string variable

variable LAAA « « @ was A

10 AS$="MC68" (AS) 4MC68bbbbb... b
20 BS="09" (BS) 209 bbbbbbb... b
30 AS=AS+BS$ (AS) 6MC6809bDbb... b

(b stands for blank)

3.1.2 Real data

The real type is the standard numeric data type. Any
variable name which does not end with a dollar sign and which
has not been explicitly declared via a type declaration
Statement, defines the data it represents as a real quantity.
This Standard convention also applies, in BASIC-M, to

internal or external user-defined functions.

Some examples of real variables or functions are shown
below.

Example 3.2 : Real type variables
SSSeeSSeeee or functions.

10 DEF HORIZ(R,TETA) = R*COS(TETA)

20 EXTERNAL PLOT(X,Y) ADDR $E000
30 2 = HORIZ (Radius, 30)

40 PLOT(Z,W)

A real data is stored internally on 5 consecutive bytes,
in a floating-point format that permits representation of
null, positive, and negative numbers in the dynamic range
E-38 to E+38 , with an accuracy of 9 digits.

The internal representation is as follows

Byte 0 : binary two*s complement exponent

Byte 1-4 : 31-bit, normalized, binary
mantissa in 2°s complement form.
least-significant-bit of byte 4
stores sign.

BASIC-M 3.0 Users Guide Page 03-02

DATA TYPES AND STRUCTURES 3.1 -- Standard BASIC data types

The decimal point lies between the exponent
(byte 0), and the most-significant bit of
the mantissa (byte 1).

The mantissa is in the range 0 included to
1 excluded.

In this format,
the

bit) is the complement of the
being the

!
e ~

uo

i
o
n

ow
ot

-24
3.14159265=

Example 3.15 shows how a
out written to

values.

a number is considered as normalized

most significant bit of its mantissa (byte 1 - leftmost
exception sign the

if

value 0 which is coded as all zero’s. Example 3.3

presents a few internal representations of real data.

Example 3.3 : coding real numbers

00000000
00000000
00000101
00000101
00000010

find

byte 1

11000000
01000000
11000000
01000000
11001001

the

byte 2

00000000
00000000
00000000
00000000
00001111

simple BASIC-M program
internal

3.2 Non-standard BASIC data types

A BASIC-M variable (but not a

one byte only. Byte data are 8-bit unsigned may consist of

byte 3

00000000
00000000
00000000
00000000
11011010

byte 4

Sign
V

00000000
00000001
00000000
00000001
10101110

can

(.75x32)

be
representation of real

user-defined function!)

quantities in the range 0 to 255. Should data be outside this
range at execution time,

Byte

line. As

variables
statement which applies to all the

will be seen later, the absolute address of a byte

a runtime error will occur.

must be explicitly declared by the BYTE
variables of the input

variable can be specified via the ADDRESS or ADDR key words.

Byte variable names must not end with a dollar sign
which implicitly defines string quantities (see 3.1.1).

An example
presented next.

Example 3.4

40
50

BASIC-M 3.0 User’s Guide

of byte type declaration

: Byte variables

and

BYTE CRTC ADDRESS S$EF00, Scratch, Temp
BYTE SSDA ADDR SEFO04

usage

($)

is

Page 03-03

DATA TYPES AND STRUCTURES 3.2 -- Non-standard BASIC data types

60 SSDA = 4 \ initialize SSDA
70 CRTC = $12 \ initialize CRTC
80 SSDA = SSDA + 252 \ faulty !!!

Statement 80 will yield a runtime error message
since the resulting value of SSDA would be 256,
which is outside the allowed range.

3.2.2 Integer data

Integer variables (not user-defined functions !) are
16-bit binary signed data in 2°s complement form, internally
stored on 2 consecutive bytes. These variables hold data in
the range -32768 to +32767.

The sign bit is the most significant bit of the 16-bit
data (first byte, bit #7 , visually leftmost bit).

Integer variables must be explicitly declared via _ the
INTEGER statement which is syntaxically similar to the BYTE
statement.

Integer variable names must not end with a dollar sign.
The following statements define and use integer

variables.

Example 3.5 : integer variables

INTEGER IRQ Vector ADDRESS $A000

INTEGER A, B, C

C=A+B \ integer add (o
o

y
e
)

3.3 Access to individual bits

A very handy feature of BASIC-M is that the user may
address each and every bit of a non-subscripted byte/integer
variable, just by specifying its position within the
variable. This greatly eases solving of process-control
applications.

The position of the bit which is to be set, cleared or
tested, within the variable is specified in a pair of
brackets, as shown in the general form : |

VAR[exp]

where :

VAR is a byte or integer variable name , and
exp is an arithmetic expression that indicates
the number of the bit to be accessed.
Note that the most significant bit of a byte, respectively

‘ASIC-M 3.0 User’s Guide Page 03-04

DATA TYPES AND STRUCTURES 3.3 -- Access to individual bits

integer variable corresponds to the number 7, respectively
15, the least significant bit being in both cases bit #0.
Example 3.6 indicates what can be done with bit addressing.

Example 3.6 : bit access

problem : two switches are connected to two
PIA lines, PAO and PA1. Switch on

the led drived from PIA line PA7,
if both switches are not in the
same position. Perform a continuous
monitoring.

(PIA initialization is not shown)

10 BYTE PIA ADDRESS $7004
15 PIA[7] = 0 \ default to led off
20 WHEN PIA[O] # PIA[1] THEN PIA[7] = 1

Example 3.7 : count the number of bits set
ween in the integer variable DEMO

30 INTEGER DEMO

32 COUNT = 0 \ set up counter
34 FOR I = 0 TO 15
36 COUNT = COUNT + DEMO[T]

38 NEXT I \ study next bit

This example can be applied to byte variables,
for computing the parity of an ASCII character

3.4 Mixing data types in expressions

BASIC-M supports mixed-mode expressions, that is, the
elements of expressions can differ as to their type. This
holds true also for an assignment statement : both side of
the assignment operator ("=" sign) need not be of the same
type. However, avoiding mixed types will have a significant
impact .on the overall program compactness and speed, since
the compiler will not generate the necessary calls to the
conversion routines. Optimizing compiler output is a subject
covered in chapter 13 ; to give the reader an idea of the
improvement that can be reached , as far as object program
size and execution speed are concerned, let*s consider the
figures shown in example 3.8

Example 3.8 : optimizing program
SS mee size and speed.

The two BASIC-M programs shown below
produce the same result

BASIC-M 3.0 User’s Guide Page 03-05

DATA TYPES AND STRUCTURES 3.4 -- Mixing data types in expressions

10 INTEGER A
20 BYTE B

30 A=B+t+C-D

10 INTEGER A, B, C, D
20 A=B+C-D

size
speed

37 bytes
1554 cycles

size : 34 bytes
speed : 183 cycles

The example just presented must not be uSed as a basis
for conclusion, the speed being dependent on the current
value of variables. As a general rule programs that do not
use mixed-mode expressions will produce better results.

3.5 Data structure : the array

ee oe ee a ws ee ee

An array is a collection of data elements of the same
data type (character, real, byte, or integer) , that can be
referred to by a single name. Arrays can be either one- or
two-dimensional. A one-dimensional array is also called a
vector ; a two-dimensional array is often referred to as a
matrix. A one-dimensional array can be thought of as a row of
successive data items. A two-dimensional array can be seen as
a matrix of rows and columns. Figure 3.1 shows a schematic
representation of both types of arrays.

One-dimensional array named A

A(1) A(2) A (3) A(4)

B(1,1) B(1,2)
B(2,1) B(2,2)
B(3,1) B(3,2)

er es ee ee we ee ee ee ee ee ee ee ew we ee

Each element in an array is referred to by the name of
the array followed by a_ subscript in parentheses, which
indicates the position of the element within the array. The
general form for referring to an array element is :

Array name (rowexp , colexp)

where :

- Array name is the name of the entire array,

- rowexp and colexp are positive arithmetic
expressions whose truncated integer values

BASIC-M 3.0 User’s Guide Page 03-06

DATA TYPES AND STRUCTURES 3.5 -- Data structure : the array

are greater than zero and less than or equal

to the corresponding dimension of the array.

The dimensions of an array and the number of elements in
each dimension are established either implicitly, or

explicitly if the array is declared via DIM, BYTE, or INTEGER
statements.

An array A(N,M) spans NxMxX+2 bytes in data _ section
(RAM) , and 8 bytes in program section (ROM), where X stands
for the elementary data length in bytes. Thus, the integer
array 1(5) occupies 2+5x2=12 bytes of RAM, and the character
array S$(3,4) , 2+3x4x32=386 bytes.

3.5.2 Array declaration
(ees mee ee me ee ee ee ee ee

ee ee es re ee ee ee ee ee ee ee ew ee eee we ee ee

Byte and integer arrays must be explicitly declared by
using the BYTE and INTEGER statements respectively, whose
general form is as follows

BYTE Arrl(xl,yl), Arr2(x2,y2), ... , ArreN(xN,yN)
INTEGER Arrl(xl,yl), Arr2(x2,y2), ... , ArrN(xN,yN)

where

- ArrI are variable names that must not end
with a dollar sign.

- each pair xI,yI defines the maximum number
of elements per row and per column respectively
(yI is omitted for one-dimensional arrays).

- the BYTE or INTEGER key words apply to all
the arrays of the statement line.

- xI must be in the range 1 to 65535 for one-
dimensional arrays.

- each xI, yI, must be in the range 1 to 255
for two-dimensional arrays.

- the number of dimensions must not exceed 2.

The following are examples of such declarations.

Example 3.9 : declaration of byte and
alone integer arrays

valid declarations

10 BYTE PIA(2), Test_Memory (65535), CRTC (18)
20 INTEGER WORD(16,16), Temp(20)

invalid declarations :

10 BYTE Cube(2,2,2) \ 3 dimensions

20 INTEGER Mem(0,16) \ 1st dimension is null
30 BYTE A(10,256) \ 2nd dimension > 255

BASIC-M 3.0 User’s Guide Page 03-07

DATA TYPES AND STRUCTURES 3.5 -- Data structure : the array

3.5.2.2 Declaring real and character arrays

Real and character arrays can be declared either
explicitly by use of the DIM statement or implicitly by a
reference to an element of an array that has not’ been
explicitly declared.

The DIM statement is syntactically identical to the BYTE
or INTEGER statements described under 3.5.2.1, but the

following rules apply :

- an array name ending with a dollar sign
defines a character array.

- the maximum number of dimensions is two.
- one-dimensional arrays may contain up to

65535 (this far exceeds the system memory !)
- two-dimensional arrays may contain up to

255 elements per row and per column.

Some examples are shown below.

Example 3.10 : declaring explicitly real
SS and character arrays.

2 DIM A$(2,3), TTT(128), LINES (2)
4 DIM TEXT$(60,2), Float_mat (4,8)

array type # of elements RAM size

AS character 2x3=6 6x32+2=194
TTT real 128 128x5+2=642
LINES character 2 2x%32+2=66
TEXTS character 2x60=120 120x32+2=3842
Float_mat real 4x8=32 32x5+2=162

When an array is declared implicitly, by a reference to
one of its elements when its name has not appeared in a prior
DIM statement, it will have the number of dimensions

specified in the reference, and each dimension will contain :

10 elements for real arrays,
5 elements for character arrays.

For example, if no prior DIM statements exists for arrays
named BUFFS and Values, the statements

85 IF Values(3) > 3 * AVerage THEN GOSUB 300

300 PRINT BUFFS (I,4)

will establish a one-dimensional real array "Values"
containing 10 elements, i.e 2+5x10=52 bytes, and a
two-dimensional character array "BUFFS" containing 5x5
elements, i.e 2+25x32=802 bytes Lie Omitting array

BASIC-M 3.0 User’s Guide Page 03-08

DATA TYPES AND STRUCTURES 3.5 -- Data structure : the array

declarations may result in a workspace buffer overflow that
would preclude program compilation and execution. Therefore,
the user is strongly recommended to explicitly declare the
arrays.

3.5.3 Arrangement of arrays in storage

One-dimensional arrays are stored in ascending storage
locations. Thus, the array A(8) is arranged in the order :

A(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8)

Two-dimensional arrayS are stored in ascending’ storage
locations, with the value of the second of the subscript
quantities increasing most rapidly, and the value of the
first increasing least rapidly. Stated another way, arrays
are stored row by row. For example, the array B(3,2)
presented in 3.5.1, is arranged in storage as follows :

B(1,1) B(1,2) B(2,1) B(2,2) B(3,1) B(3,2)

This approach contrasts with the way arrays are stored in
FORTRAN (column by column). However, this arrangement is
definitely more consistent and practical when working on
video RAM“s.

3.5.4 Matrix-oriented statements

BASIC-M includes a set of statements that allow the user
to handle arrays considered as_ single entities, thus
eliminating the need for operating on the individual elements
of the arrays. Chapter 9 covers entirely this powerful set of
statements. The following example is one among many, that is
presented here just to introduce the concept of matrix
re-sizing.

Example 3.11 : Matrix assignment
SSS ee Result : copy the elements of

matrix B(2,3) into the matrix
A(4,6)

10 DIM A(4,6) , B(2,3)
20 MAT A =B

3.5.5 Matrix re-sizing

Some matrix-oriented statements dynamically alter the
size of the arrays. In example 3.11 for instance, the
assignment of matrix B to matrix A causes this latter to be
re-sized to the size of B, i.e 2x3. The size of a matrix can
only be decreased from its original size. In other words ,

BASIC-M 3.0 User’s Guide Page 03-09

DATA TYPES AND STRUCTURES 3.5 -- Data structure : the array

the assignment "MAT B = A" would be illegal.
This feature is of benefit in several situations, like in

solving linear systems of equations by using matrix
inversion.

3.6 Variable and array address control.
Equivalence.

Variables and arrays are normally assigned storage
locations which are not under user control.

The ADDRESS or ADDR key words provides an easy means to
specify their starting address, and also to achieve the
effect of the FORTRAN EQUIVALENCE statement. The following
are some examples with explanations of what can be done.

Example 3.12 : Initialize a PIA

10 BYTE PIA(2) ADDRESS $8008

20 PIA(1) 1 \ Data Direction Reg set-up

30 PIA(2) 4 \ Control Register set-up

Alternate solution

10 BYTE PIA(2) ADDRESS $8008
20 INTEGER PIA_EQU ADDRESS PIA \ equivalence
30 PIA_EQU = $104 \ same effect as lines 20

and 30 of previous example

Example 3.13 : display an input string in the
csleteatetenienteteetententonten first line of a video RAM based

at hex address $E000

10 DIM Alpha_mem$(16,2) ADDR $E000
15 BYTE DUMMY ADDRESS SE000

20 INPUT Alpha_Mem$ (1,1)
25 DUMMY = $20 \ overwrite string length byte

(see 3.1.1) with a blank

Example 3.14 : erase video RAM
leeeateeteaietetententententat (£111 it with blanks)

10 DIM Alpha_mem$(16,2) ADDR $E000
20 BYTE Charac(1024) ADDR Alpha_mem$
30 MAT Charac = SET [32]

alternate solution

20 INTEGER Word(512) ADDR Alpha_mem$
30 MAT Word = SET [$2020]

Example 3.15 : print the binary internal
aleateateaieniententecteteeaten form of a real number.

BASIC-M 3.0 User’s Guide Page 03-10

DATA TYPES AND STRUCTURES 3.6 -- Address control. Equivalence

10 INPUT A

20 BYTE OVL(5) ADDR A, CURRENT

30 FOR I=1 TO 5
40 CURRENT = OVL(TI)

50 FOR J=7 TO 0 STEP -1

60 PRINT CURRENT[J] ; \ print bit
70 NEXT J
80 PRINT

90 NEXT I \ next byte
95 GOTO 10

RUN
? -3
00000010 byte 0 - exponent
01000000 byte 1 - mantissa
00000000 byte 2 - "
00000000 byte 3 - "
00000001 byte 4 - mantissa + sign

Page 03-11

CHAPTER 4

4.0 EXPRESSIONS

This chapter gives additional information on the
expressions which were already introduced in paragraph 2.3.5.

4.1 Rules for writing arithmetic expressions

The following rules must be followed when writing
arithmetic expressions which contain two or more constants
and/or variables (for the sake of simplicity, functions will
be considered as variables throughout this chapter).

4.1.1 Separation of constants and variables

In regular mathemetic notation, to indicate "A times B",

it is common to write "AB". In BASIC-M, this would refer to a

variable named "AB". In effect, each constant and/or variable

must be separated by an operator to explicitly indicate the
desired computation. Therefore to indicate "A times B", one
should write "A*B",

Arithmetic operators all require two operands. However
the "+" and "-" signs can also be used as positive / negative
operators in two situations :;:

- following a left parenthesis and preceding
an arithmetic expression.

- as the leftmost character in an entire
arithmetic expression that is not preceded
by an operator.

For example :

-A+(-B) and B-(-C) are valid
A+-B and B--2 are invalid

4.1.2 Separation of arithmetic operators
ee ee me ce ee oe ee eee ee ee ee ee ee ee ee ee ee ee ee ee ee ee

Two Or more arithmetic operators can never appear in

sequence in an arithmetic expression. For example , to

indicate "A times the negative value -3", the expression
cannot be written as "A*-3" but should be written as
"A*(-3)". This illustrates how parentheses can be used to

separate arithmetic operators. Other uses of parentheses are
discussed next.
Note that the FORTRAN operator "**", expressing an
exponentiation, is not supported in BASIC-M, nor does’ the

language support bitwise operators. Logical AND, inclusive

BASIC-M 3.0 User’s Guide Page 04-01

EXPRESSIONS 4.1 -- Rules for writing arithmetic expressions

OR, exclusive OR, and shift operations are all performed by
using built-in functions.

4.2 Order of evaluation of arithmetic expressions

The order of computation of arithmetic expressions is
based on the hierarchy (or precedence) of the operators
involved. Evaluation is performed from left to right
according to the hierarchy shown below.

hierarchy Operation

lst parenthetical expressions
2nd unary minus
3rd exponentiation
Ath multiplication and division
5th addition and subtraction

In other words, the hierarchy goes from what might be
considered the most difficult to the least difficult, as is
illustrated in example 4.0.

Example 4.0 : operator hierarchy.

Assuming A, B, and C have been

assigned the values -1, 9, and 3 respectively,
the computation of the expression -A*2+B/C*4
is performed as follows ;

-A*2+B/C#4 1*72+9/3%4
1 +9/3%4
1 + 3 *4
1 s+ 12

13

Parentheses may be used to dictate the order in which
calculations are to be performed and to alter the lower three
levels of hierarchy. For example, suppose you desire to add A
to B and then triple the sum. Instead of writing :

X = A+B

Z=X * 3

or : Z=A* 3+B * 3

you could write

Z=(A+t+B) * 3

Note that the use of parentheses reverses the normal levels
of hierarchy since the computer will first add and_ then
multiply. If the programmer has any doubt as to the order of

BASIC-M 3.0 User’s Guide Page 04-02

EXPRESSIONS

BASIC-M 3.0 User’s Guide

evaluation of expressions, it is suggested that parentheses
be used. Unnecessary parentheses do not affect at all the
execution time of a program.

4.3 Mixed-mode arithmetic expressions
Impact on program size and speed

Oe ee ee me ee ee ee ee ee ee ee ee ee ee es ee ee ee

As already mentioned in paragraph 3.4, mixed-mode
expressions are allowed in BASIC-M. In normal cases, the
programmer does not have to bother about the types of the
variables and/or constants of the expressions. This is
especially true when running a program that meets the BASIC
Standards. However, BASIC-M makes provision for unique data
types discussed in chapter 3. Using these types can result in
drastic improvements of the object code size and execution
speed, as reflected in the sample program below.

Example 4.1 : object code size and speed
mec cc cK improvement by avoiding

mixed-mode expressions.

The two programs shown below produce
the same result.

Program A Program B

5 BYTE Y
10 DIM B(5,5) 10 INTEGER A,B(5,5) ,X,Y,2,W
20 A=B(3*X+Y,2Z2/W) 20 A=B($3*X+Y,2/W)

Prog B Prog B

code size ------ = 0.87 ‘exec. time ------ = 0.34
Prog A Prog A

These improvements are due to the fact that variables
appearing in program B are all defined as being of the same
type. Likewise, the constant 3, written as an hexadecimal
constant $3, defines an integer constant. Therefore the
elements of the expression of line 20 are all integers, and
the compiler will not generate any call to type conversion
routines. In addition to that, the expressions representing
subscript quantities are already of the integer type, which
is the type expected by the compiler. Should the result of
the expressions be of the real type, the compiler would have
generated a call to a= real-to-integer conversion routine,
resulting in a larger code size and lower execution speed.
The following is the code generated by the compiler for
addressing an element A(X+Y) of a vector A, given two
situations.

4.2 -- Order of evaluation of expressions

Page 04-03

EXPRESSIONS 4.3 -- Mixed-mode arithmetic expressions

Example 4.2 : code generation for addressing
wooo the element A(X+Y) of a vector

1/ X REAL 2/ X,¥ INTEGERS
Y BYTE

LDX #X LDX #X
JSR LF JSR LI
LDX #¥ LDX #¥Y
JSR LB JSR LI
JSR BTOF JSR IADD
JSR FADD LEAX A,PCR
JSR FTOI JSR INDEX
LEAX A,PCR
JSR INDEX

LF , LB, and LI are runtime routines that load onto’ the
MC6809 User Stack a real, byte and integer data
respectively addressed by the X-register.
BTOF and FTOI are runtime conversion routines to convert
stacked data from byte-to-real and real-to-integer
respectively.
FADD and IADD perform the addition of two real and
integer data respectively on the User Stack.
INDEX returns in the X-register the address of the
element in matrix A whose subscript is the 16-bit last
stacked data. The information that pertains to matrix A (
number of dimensions, size of dimensions, element’ size,

absolute start address, and dynamic size word address)

is stored in the program section (rom-able object code
section), hence the use of the program counter relative

addressing mode to access it in a fashion that preserves
position-independence.
This section describes the benefits of avoiding

mixed-mode expressions, and of using only the compiler
default types (for instance, subscripts default to the
integer type). The next paragraph discusses the data type of
the results of arithmetic expressions. Because expressions
may include built-in functions (SIN, SQR, MOD, ... etc.) ,
it is also worthwhile to know their data types, along with
the default type of the arguments. This information is given
in chapter 13.

4.4 Data types produced by arithmetic expressions

The type of the result of an arithmetic operation
depends upon the type of the two operands (primary)
involved in the operation. The table below gives the
correspondence between the type of the result and the type of
the primary, assuming an expression of the form ;

Priml oper Prim2

BASIC-M 3.0 User’s Guide Page 04-04

EXPRESSIONS 4.4 -- Data types produced by arithmetic expressions

where Priml, Prim2 represent the
the types of the two primaries (variables
or functions), and oper is either one of
the operators : +,-,*,/,°.

Priml \ Prim2 ! byte ! integer ! real

byte ! byte ! integer ! real

integer ! integer ! integer ! real

real ! real ! real ! real

NOTES :

Numeric constants are always real, except
if preceded by a dollar sign which implies
an hexadecimal constant further regarded
as an integer.

At least one of the primaries involved in
an exponentiation must be of the real type.
The result type of an exponentiation is then
always real. A positive value can be raised
to any value, whereas a negative value can
only be raised to an integer number (one
whose fractionary part is null).

When division is applied to two bytes or
integers, the answer is truncated and a byte

Or integer result respectively is produced.
For example, if A=5, B=2, and if A and B

are bytes or integers , then the expression
A/B would yield a result of 2.

4.5 Literal expressions

As defined earlier in chapter 3, literal expressions are
those quantities containing two or more of the following
elements :

- character variables,
- character constants,
- character user-defined functions, and/or
- character built-in functions,

separated by the concatenation operator "+",

All the character elements mentioned above contain a maximum
of 31 ASCII characters, except the character constants which
are only limited in size by the input line length (80
characters). Example 4.3 illustrates some uses of literal
expressions. :

BASIC-M 3.0 User’s Guide Page 04-05

EXPRESSIONS 4.5 -- Literal expressions

Example 4.3 : literal expressions

10 AS="H"

20 BS="E"

30 C$="L"
40 DS=CHR$(79) \ ASCII "oO"
50 IF INPUTS < REFS THEN 80

60 PRINT "GO TO ":A$S+BS$+CS+C$

70 GOTO 320

80 PRINT AS+BS$+CS$+CS+DS

90 GOTO 300

When character data appears in a relational expression (as
is the case in line 50 of the previous example), it is
evaluated according to the sequence of the ASCII codes (see
Appendix A), character by character, from left to right.
Thus , the following relational expressions would all be
satisfied :

w ABC ow = w ABC w

"ABCDEF" < "ABCEEF"

"ABcd" > "ABCD"
iT] AB Ww > w Ll 2 w

When character operands of different length are compared, the
shorter operand is considered to be extended on the right
with blanks to the length of the longer operands. Thus, when
comparing "AB " to "ABC", one effectively compares the
strings "ABb" and "ABC", where b stands for the’ blank
character. Likewise, "ABC "="ABC".,

4.6 Evaluation of logical expressions

Unless you change the order in which logical operators
are applied to their logical operands by using parentheses,
high-precedence logical operators are applied before
low-precedence' logical operators, and equal-precedence
Operators are applied from left to right. The precedence of
the logical operators is shown in the following table.

Logical operator Precedence

NOT ! high
AND ! low

OR ! low

The logical expression
NOT(A < B) ORC #D _, is true if

A is greater than or equal to B, or if
C is different from D.

The logical expression :
C = DOR E= F ANDG=4H~, is true

BASIC-M 3.0 User’s Guide Page 04-06

EXPRESSIONS 4.6 -- Evaluation of logical expressions

either if the values of C and D are equal,
or if the values of E and F are equal and
the values of G and H are equal.

The logical expression ;
(C =D ORE=F) ANDG=H, is true

if G equal H, and if either C equals D or
E equals F.

Page 04-07

CHAPTER 5

5. BASIC-M SIMPLE STATEMENTS
em ce eee eae em ee ed we ee ee ee eee ee ee ee ee

This chapter discusses the statements which are most
frequently used in a BASIC program. More advanced statements,
those unique to BASIC-M, are described in subsequent chapters
of the manual.

5.1 The LET statement
ee ee me ee ee ee ee ee ee we ee ee

General form : LET variable = expression

Purpose : used to assign or specify the value of a
variable.

Comments 3: the assignment operator "="is read "takes the
value of", rather than "equals". Therefore, it
is possible to write :

10 LET IT =I+1

which is interpreted as : "LET I take the
value of (the current value of) I , plus 1".

The variable and the expression on_ the
right-hand side of the "=" must represent both
numeric quantities, or both character
quantities. In the former case, the variable
and the expression need not be of the same
numeric data type. Below are three examples of
the LET statement °:

15 LET PI = 3.14
20 LET Message$ = "HELLO" + CHR$ (4)
25 LET A = BS + CS \ INVALID EXAMPLE

The word "LET" can be omitted in an
assignement statement. These two statements :

mean exactly the same.

5.2 The REM statement

General form : REM any series of characters

BASIC-M 3.0 User’s Guide Page 05-01

BASIC-M SIMPLE STATEMENTS 5.3 -- READ, DATA, RESTORE statements

Purpose : Allows insertion of a line of comment in the
listing of a program.

Comments : REM lines are ignored when the program is
executing. They are solely for information and
make your programs easier to work with, and
easier for other people to use.

As discussed under 2.3.1, an alternate method
to insert comments is to append them at the
end of a statement line, right after the
backslash character.

Example 5.0 : 50 REM Initialize variables
60 LET A = 1.414 \ Square root of 2

5.3 The READ, DATA, and RESTORE statements

The assignment Statement is often used ‘to initialize
variables to specific values. The DATA and its associated
READ and RESTORE statements provide an alternate solution for
initializing variables, and result in fewer lines of program.

General form : DATA cstl, cst2, ..., cStN
READ varl, var2, ..., varN

RESTORE

where 3:

cstl, cst2, cstN denote numeric or string
constants, and varl, var2, varN identify
numeric or string variables.

Purpose : The DATA statement causes values to be placed
in an internal data table, sequentially, i.e
in the order in which they are entered. There
may be several DATA statements in a program.
For instance, the following ;

20 DATA 3.14, SAA, "HELLO", 22, -6.28

is equivalent to the set of lines :

12 DATA 3.14, SAA
14 DATA "HELLO",22, -6.28

Once the values are in the data table, they
can be assigned to variables by using the READ
statement, as illustrated below ;

30 READ PI, PATTERN, MESGS, N, REF

Note that the previous line is functionally
equivalent to the following set of assignments
°
°

BASIC-M 3.0 User’s Guide Page 05-02

BASIC-M SIMPLE STATEMENTS 5.3 -- READ, DATA, RESTORE statements

25 LET PI = 3.14
30 LET PATTERN = SAA

35 LET MESGS = "HELLO"
40 LET N = 22

45 LET REF = -6.28

The READ statement locates the values in the
data table sequentially and assigns them, in
order, to the variables. This can be done via
several READ statements, not necessarily a
Single one. For example, the READ statement
shown before can be split in two, as
illustrated next ;

100 READ PI, PATTERN

would cause the first two constants in the
table to be assigned to PI and PATTERN
respectively. Another READ statement would
take up where the last one left off. Thus :

110 READ MESGS, N, REF

would complete the assignment.

If you wish, you can use the values in the
data table more than once. At any point in a
program, one can instruct that values’ be
assigned from the beginning of the table
again, even all the values in the table have
not been read. The RESTORE statement is used
to point back to the beginning of the table.

Comments : - Care must be exercised so as not to read
More values than the table contains. This
would result in a runtime error.
° DATA statements need not be grouped
together: any statement line can be _ placed
between two DATA statements.
- DATA statement(s) can be located anywhere,
even after READ statement(s).
- A number is converted to a string (free
format) if assigned to a character variable.
- If a string value is assigned to a numeric
variable an attempt is made to convert it
prior to assignment (see STRS and VAL
built-in functions).

6 Example 5.1 : 10 DATA 1,2 5,

A=1, B=2, C=3

3 0

20 READ A,B,C
30 READ D \ D
40 RESTORE
50 READ G,H \ G=l, H=2

i A 4
\
=4

5.4 The console INPUT statement

BASIC-M 3.0 User’s Guide Page 05-03

BASIC-M SIMPLE STATEMENTS 5.4 -- The console INPUT statement

General form : INPUT varl, var2, ..., varN

Purpose : assigns values input from the console _ to
variables. Unlike the LET and READ statement
which both allow the supply of constant values
to variables (values that must be known when

the program is prepared), INPUT waits until
the program is running before actually
supplying these values.

Comments : When an INPUT statement is encountered, the
program comes to a halt, and a question mark

is output to the console. The program does not

continue execution until the input values have
been all entered and assigned to the variables
listed in the INPUT statement. Each line of
input data must be terminated by a carriage
return, and the data must be separated by a
comma or a space. A question mark is' printed
on the console when more values are required
to satisfy an input statement.

Should more values be entered than implied by
the INPUT statement , extra ones are merely

ignored.

Control codes :The following three control codes are
provided for editing an input data line :

RUBOUT deletes the last entered character

CTRL-H has the same effect as RUBOUT

CTRL-X deletes the whole input line.

Break : As mentioned before, the ? character continues
to be printed after each response until enough
numbers are typed in. Should the user desire
to abort the INPUT statement , he may enter an

exclamation mark (!). This causes’ the

variables, that were not yet supplied with
values by the INPUT process, to stay at their
current values. For example , given the
statement °:

10 INPUT A,B,C,D

and the following input lines :

? 22 $44 (carriage return)

? ! (! is typed in by operator)

the values 22 and $44 will be assigned to A
and B respectively, whereas the current values
of C and D will remain unchanged.

Entering strings :; The previous example shows an input
line where the input data are separated by a

BASIC-M 3.0 User’s Guide Page 05-04

BASIC-M SIMPLE STATEMENTS 5.4 -- console INPUT statement

Space character. Neither the space nor the
comma however can be used as a delimiter when

entering character data, since these two
characters can be embedded in a literal. If

several literal constants are to be entered on

the same input line, one must use delimiting

quotes. Thus, given the statement :

100 INPUT AS,BS

If the input line looks like :

? THIS IS

the string "THIS IS" will be assigned to AS,
whereas :

? "THIS" "Ts"

will assign "THIS" to AS, and "IS" to BS.

If quotes are not used to delimit the string
values, the first 31 characters typed in are
put into the first string variable, the next
31 characters in the second variable, ...,
etc; the last variable assigned is truncated
to the remaining number of characters in the
line.

Error checking ;: The INPUT statement checks for valid
data. Should an erroneous data be entered, an

error message is printed and the operator is
requested to re-enter the values from where
the error was detected. For instance, if as a

response to the statement :

50 INPUT A, B, C$

one enters the following :

? 3 "HELLO" "enter"

RETYPE FROM ARROW
5
6

the value 3 assigned to A is. preserved,
whereas one must re-enter the values for B
(that was erroneously assigned a_= string
value), and for CS.

Input prompt : Since a BASIC program can contain’ several
INPUT statements, one has to keep track of
which one is being executed. This may _ be
solved by preceeding the INPUT statement with
a PRINT statement, or better, by specifying an

input prompt in the INPUT statement itself.
The prompt will be automatically displayed
when the associated INPUT statement becomes

BASIC-M 3.0 User’s Guide Page 05-05

BASIC-M SIMPLE STATEMENTS 5.4 -- console INPUT statement

active. The input prompt is specified as a
literal constant that follows the INPUT key
word, as illustrated below :

10 INPUT "enter coordinates ", X, Y

RUN

enter coordinates ? 312 256

5.5 The PRINT statement - simple form.

This paragraph discusses the simplest form of the PRINT
statement, the one used to output data in free format to the

system console or line printer. Formatting data via the PRINT
USING statement, and saving data onto a diskette file are
described in separate chapters.

General form : PRINT #LU expl dell ... expN delN

where :

- LU is an expression yielding a logical unit
number in the range 0 to 255. If LU=0 or LU=1,
the printout occurs on the console ; if LU=2,
the printout is directed to the system line
printer; if LU > 2, then the operands are

saved onto a diskette file. The logical unit
specification is optional (#LU). If not
present, the printout is directed to the
system console.

- expl, ..., expN are arithmetic or literal
expressions whose values’ are printed to the
logical unit.

- dell, ..., delN are PRINT delimiters, that

affect how spacing is to be performed between
the printed values. Either one of the
characters ae or "es" can be used as
delimiters. In addition, the last delimiter
delN can be omitted.

Purpose ;: The PRINT statement causes the values yielded
by the expressions expl, ..., expN, to. be
converted to a readable form and printed onto
the system console or line printer. The values
are printed in the order in which they appear
in the operand list.

String printout ;: Character values are printed as_ the
ASCII equivalent of the string contents, i.e.,

BASIC-M 3.0 User’s Guide Page 05-06

BASIC-M SIMPLE STATEMENTS 5.5 -- The PRINT statement - simple form

"STRING" is printed as STRING.

Numeric printout : Numeric values are printed in either
of the following forms :

1/ sign d.ddddddddE esgn xx

if the magnitude of the number is greater than
2 raised to power 29 (appr. 5.3687E+08), or
if the magnitude of the number is less than 2
raised to power -4 (.0625).
The digit d to the left of the decimal point
is always different from zero ; trailing zeros
are suppressed ; esgn represents the exponent

Sign ; xx represents a two-digit exponent. The
printed form corresponds to a value of (sign
d.dddddddd) * 10 raised to power (esgn xx).

2/ sign ddddddddd

if the value is an integer whose magnitude is
less than 2 raised to power 29 (= appr.
5.3687E+8) , sign is a "-" sign if the number
is negative (otherwise this position is
omitted), and ddddddddd are digits with
leading zeros stripped off printout.

3/ sign dddd.ddddd

if none of the previous conditions describe
the value; a maximum of 9 digits are printed
in this form; "." represents the decimal point
and may be anywhere within the digit string ;
leading and trailing zeros to the right of the
decimal point are suppressed.

Delimiters ; Field separators may be either "," or : °
The comma causes tabbing between printed
fields; it forces the terminal to space to the
column such that the column number modulo 20
is one ; stated another way , there are column

boundaries at 21,41,61, ..., etc.

The semicolon causes a space to be printed if
the value to its left is numeric ; if the
value to its left is a string , the semicolon
prints nothing. Below are some examples of
printout :

Example 5.2 : Effect of PRINT delimiters.

10 Pi=3.14
20 SS="good"
30 TS="bye"
40 PRINT Pi;SS$,TS

BASIC-M 3.0 User”s Guide Page 05-07

BASIC-M SIMPLE STATEMENTS 5.5 -- The PRINT statement - simple form

50 PRINT SS$;TS$,Pi,2*Pi
60 PRINT 2*Pi;Pi

RUN

3.14 good bye
goodbye 3.14 6.28
6.28 3.14

coll col21 col4l1

Normally , the PRINT statement causes a set of

values to be printed, and then, a new line to
be started. The new line start may be
suppressed by ending the PRINT statement with
a "s" or "," (which have the same meaning as
above). Further printing by other PRINT
statements will then occur where the

unterminated PRINT left off. In other words,

10 PRINT X,Y,

20 PRINT 2,W

is equivalent to :

30 PRINT X,Y,2,W

A PRINT statement with no print fields simply
causes an empty line to be sent to the logical
unit.

TAB function : A print field may contain TAB(arithmetic
expression) instead of a literal or

arithmetic expression . This causes the
terminal to space until the column specified
by the argument value of the TAB function is
reached . If the argument value specifies a
column less than the current position of the
print head (or screen cursor), no spaces are
produced. Note that TAB(exp) must be followed
by a mem,

The example shown below will cause a sine
curve to be printed onto the system line
printer (LU = 2).

Example 5.3 : Drawing a sine curve.

10 I= 0
20 PRINT #2 TAB(50 + 50 * SIN(I)); SIN(I)
30 IT =I + .25
40 GOTO 20 \ print for ever ...

5.6 The DIGITS and LINE statements

BASIC-M 3.0 User’s Guide Page 05-08

BASIC-M SIMPLE STATEMENTS 5.6 -- The DIGITS and LINE statements

General form : DIGITS = arithmetic expression
LINE = arithmetic expression

Purpose : DIGITS causes the number of digits specified
by the expression to be printed in the
fractionary field of a numeric value . If the
expression happens to be null , then the
printout format is as described under 5.5.
Values whose fractionary field includes more
significant digits than the number implied by
the expression will automatically be rounded
(not truncated !) to the number of digits
specified.
Values whose fractionary field includes less
significant digits than the number implied by
the expression will be extended to the right
with trailing zeros. The following example
presents a possible usage of the DIGIT
statement.

Example 5.4 : Effect of the DIGIT statement.

10 INPUT A,B
20 DIGITS = B
30 PRINT A
40 GOTO 10

RUN
? 123 5
123.00000
? 1.234 2
1.23
? -9.23456E22 4
-9.2346E+22

The LINE statement specifies the maximum
number of characters’ that can be printed on
the same line to the logical unit. In BASIC-M,
this number defaults to 80. If the print head
position happens to exceed the line length
specified in the LINE statement, a carriage
return and line feed character will then be
sent to the output device.

Comments : The DIGITS statement only affects the printout
format but does not affect at all the speed of
calculations.

5.7 The GOTO statement

General form : GOTO line number , or
GO TO line number

Purpose : Transfers control unconditionally to the

BASIC-M 3.0 User’s Guide Page 05-09

BASIC-M SIMPLE STATEMENTS 5.7 -- The GOTO statement

specified statement number.

Comments : GOTO overrides the normal execution sequence
of statements, and is useful for repeating a
task indefinitely, or GOing TO another part of
a program if certain conditions are present.
GOTO should never be used for .entering
FOR-NEXT loops , Subroutines , or user-defined

procedures ; doing so may produce
unpredictable results or fatal errors.

Example : The following will unconditionally pass
control to statement number 20

100 GOTO 20

5.8 The conditional GOTO statement

General form : ON index GOTO lnl, 1n2, ..., InN

where ¢

- index is an arithmetic expression,
- inl, 1n2, 1nN are line numbers.

Purpose : The conditional GOTO statement (also referred
to as computed GOTO) transfers control to the
statement whose numeric position in the list
of statement numbers (reading left to right).

is equal to the index possibly rounded down to
a byte value. Thus , an index with a value of
3.75 would cause control to be transferred to
the third statement in the list.

Comments : If the index has a value less than 1 or
greater than the total number of statements
listed, a runtime error is reported, and

control is passed to the next statement.

Example 5.5 : Given the relationship : y=x*N, compute the
value of y for 2 input values x and N_ ,

without using the exponentiation operator.

10 REM this sample program does not check
20 REM the validity of N (1#=<N< 5).
30 INPUT X, N

40 Y=X
50 ON N GOTO 90,80,70,60
60 Y=Y*xX \ x*4
70 Y=Y*X \ x*3
80 Y=Y¥*X \ x*2
90 PRINT Y
95 GOTO 30

BASIC-M 3.0 User’s Guide Page 05-10

BASIC-M SIMPLE STATEMENTS 5.8 -- The conditional GOTO statement

5.9 The GOSUB and RETURN statements

General form : GOSUB line number
RETURN

Purpose ¢: The GOSUB and RETURN statements are used
together to implement subroutines, i.e.

sequences of BASIC-M statements written once
in the user program that can be called for
from several places.

The GOSUB statement transfers control
unconditionally to the subroutine whose line
number is specified.

The RETURN statement transfers control back to
the the calling program, at the statement that
immediately follows the associated calling
GOSUB . f

Comments : Subroutine calls may be nested, i.e. , a
subroutine may call another subroutine, which

in turn may call another one, ...etc. It is
wise however to return from every subroutine
called ; otherwise, the stack that stores’ the

return addresses may overflow.

5.10 The conditional GOSUB statement
es ce ee ee ee ee ee we ee ee ew ee ee

General form : ON index GOSUB lnl, l1n2, ..., l1nN

where index, l1nl, 1n2, InN have’ the same

meaning and effect as in the computed GOTO
statement (refer to 5.8).

Purpose : The computed GOSUB statement causes control
to be transferred to the statement whose
numeric position in the list of line numbers
is equal to the byte value of the index. As
for the ON...GOTO, the index must be equal or
greater than 1, and less than or equal to. the
total number of statement numbers in the list.
The destination of the ON...GOSUB statement
must be a subroutine, which as such, must’ end
with a RETURN statement .

5.11 The IF statement

General form : IF logexp THEN statement, or
IF logexp THEN line number

where 3:

- logexp is a logical expression (see
2.3.5.4),

BASIC-M 3.0 User’s Guide Page 05-11

BASIC-M SIMPLE STATEMENTS 5.11 -- The IF statement

- statement is any executable statement that
does not include the THEN keyword. The
following are examples of invalid IF
statements ;

10 IF A>B THEN IMAGE "[(C2/2]" \ Non-executable
20 IF A=3 THEN ON NMI THEN 100 \ Two THEN’s

Purpose 3: When an IF statement is executed, the logical
expression is evaluated. If the relationship
is true, the statement in the THEN clause is
executed ; note that "THEN line number" is
equivalent to "THEN GOTO line number". If the
relationship is false, control is passed to
the first executable statement following the
IF statement. .

Example 5.6 : Same definition as in example 5.5 - Modified
to check that N is in a permissible range. If
N is not in the range 1 thru 4, then stop

execution.

10 INPUT X,N

15 N = INT(N) \ let N become an integer
20 IF N < 1 OR N > 4 THEN STOP

25 Yel
30 Y=Y¥* X
35 N=N-1l
40 IF N # 0 THEN 30
45 PRINT Y \ output result
50 GOTO 10

Another example illustrating the call of a
user-defined multi-line procedure named PLOT,
based on the values of the coordinates xX and
Ne

50 IF X<313 AND X>0 AND NOT(Y>255) THEN PLOT(X,Y)

Comments : It must be emphasized that the IF statement
causes the test of a condition (the one

specified by the logical expression) at the
time the IF is executed , and at this’ time

only. On the contrary, the WHEN statement

implies a continuous monitoring of a
condition, as is explained in more detail
further on in this manual.

5.12 The FOR and NEXT statement

General form : FOR index = expl TO exp2 STEP exp3
NEXT index

BASIC-M 3.0 User’s Guide Page 05-12

BASIC-M SIMPLE STATEMENTS 5.12 -- The FOR and NEXT statements

where 3:

- index is a simple arithmetic variable,
- expl, exp2, and exp3, are arithmetic
expressions,

- exp3 is optional.

Purpose :; Together, a FOR statement and its paired NEXT
statement delimit a FOR loop , that is, a_ set
of BASIC-M statements that can be executed a

number of times. The FOR statement marks’ the
beginning of a loop and specifies the
conditions of its execution and termination.
The NEXT statement marks the end of the loop.

expl yields the initial value of the index,
exp2 represents its ending value (at _ which
the loop ends), and the amount that the index
is increased or decreased after each execution
of the loop is indicated by exp3.
If STEP and exp3 are omitted, an increment of
1 is assumed.

Upon execution of the FOR statement, the index
is set equal to the initial value expl, then
the loop is executed. When the NEXT statement
is encountered, the specified increment exp3 (
which may be negative) is added to the

current value of the index which is then
compared with the specified final value exp2.
If the index is still less than (or greater
than, for negative increments) or equal _ to
the final value, the loop is executed again
and the cycle continues until an increment is
made that renders the index out of the
specified final value. At that time, the index

is set back to its final value and control
falls through to the first executable
statement following the NEXT statement.

Comments : - A FOR-NEXT loop is always executed at least
once.

- The final value of the index as well as the
value of the increment are evaluated upon
execution of the NEXT statement, and
therefore, can be affected during execution of
the loop.

- If the value of the increment exp3 is zero,
the FOR loop executes for ever unless the

value of the index is purposely set beyond the
specified final value within the loop.

- Transfer out of a FOR loop is permitted,

whereas transferring control into the loop may
cause unpredictable results.

- FOR loops can be nested within one another
as long as the internal FOR loop falls

BASIC-M 3.0 User’s Guide Page 05-13

BASIC-M SIMPLE STATEMENTS 5.12 -- The FOR and NEXT statements

entirely within the external FOR loop ; in
other words, FOR loops must not overlap =;

doing so will cause an error message at
compile time . The maximum number of nested
FOR loops is 21.

- There must always’ be a NEXT statement to

balance a FOR statement (with the = same

variable name used as index).

Example 5.7 : A third solution to the problem presented in
examples 5.5 and 5.6.

10 INPUT x, N
15 N = INTT(N)
20 IF N <1 OR N >4 THEN STOP
25 Yel
30 FOR K=1TON
35 Y=yY* X
40 NEXT K

45 PRINT Y

50 GOTO 10

Example 5.8 : Use a FOR loop to solve the problem presented
in example 5.3 (draw a sine curve).

10 FOR I=0 TO 2*PI STEP PI/100
15 X=SIN(TI)
20 PRINT #2 TAB(50+50*X) 3X
25 NEXT I

5.13 The STOP , PAUSE , and END statements

General form : STOP constant

PAUSE constant

END

where constant is a literal or numeric
constant.

Purpose : The STOP and the END statements allow to
terminate program execution. These two
statements can appear anywhere in a _ program.
Note that the END statement does not imply the
physical end of a BASIC-M program (statements
that follow an END statement are compiled).

The PAUSE statement causes program execution

to be temporarly suspended ; execution resumes
from the the first executable statement that
follows the PAUSE statement as soon as_ the
operator strikes any key (except a control
key) on the system console.

BASIC-M 3.0 User’s Guide . Page 05-14

BASIC-M SIMPLE STATEMENTS 5.13 -- The STOP, PAUSE, and END statements

Comments : - The END and STOP statements are not
mandatory as last statement lines of a
program.

Since several PAUSE or STOP statements may

exist in a program, the user may wish to be
informed of where the program is running when
execution is suspended or halted. This
information can be provided by attaching an
optional literal or numeric constant to the
PAUSE or STOP statements, as shown in the next

example.

Example 5.9 : 10 IF Temp > 280 THEN PAUSE "REPAIR COOLING"

20 WHEN Pressure > 120 THEN STOP "ALARM !!!"
30 PAUSE 22

5.14 Illustrative examples
SO eee em Oe ee em ee oe ee eee ee ee ee ee

This paragraph presents three sample programs that illustrate
the use of some of the statements which were described in
this chapter.

Example 5.10 : Compute the square root of a positive number
A by uSing the formula :

X2 = (X1 + A/X1) / 2

The square root X2 of A is obtained by
applying the above formula iteratively. Xl is
initially set equal to A. The iterative
process ends either when a given number of
iterations have been performed , or when the
absolute difference X2-Xl is less than a
user-defined number.
A program is written below that inputs ;:
- A : the number whose square root is to be
computed,
- EPS : the smallest absolute difference X2-X1
that causes the algorithm to terminate,
- ITER : the maximum number of iterations to
be performed.

The program is intended to print :
- the square root of A (X2),
- the difference X2-X1,
- The amount of iterations that were
performed.

Entering a value A less than or equal to 0
will stop program execution.

10 REM main program
20 INPUT “enter data ", A, EPS, ITER

30 PRINT \ empty line
40 IF A <= 0 THEN STOP \ reject numbers <=0

BASIC-M 3.0 User’s Guide Page 05-15

BASIC-M SIMPLE STATEMENTS 5.14 -- Illustrative examples

50 REM call square root subroutine
60 GOSUB 120
70 PRINT "SQRT","DELTA","LOOP" \ header
80 PRINT X2, X2-X1, N \ print results
90 GOTO 20 \ ask for next entries
100 REM

110 REM Square root subroutine
120 Xl=A \ initialize Xl
130 FOR N = 1 TO ITER \ perform ITER loops
140 X2 = .5 * (Xl + A/X1) \ NEWTON’s formula
150 IF ABS(X2-Xl) < EPS THEN 180
160 Xl = X2 \ X2 is new value of Xl
170 NEXT N \ next iteration

180 RETURN \ exit subroutine

RUN

enter data ? 2 1.E-3 25

SQRT DELTA LOOP
1.41421356 -2.12341547E-06 4
enter data ?

Example 5.11 : Read 256 frames of a paper tape and print
their binary sum.
The reader is supposed to be connected to a
PIA ; the PIA control and data register are

designated RDC and RDD_ respectively. The
wiring and PIA initialization are such that :

- bit #6 of RDC is set when the tape is loaded
into the reader.
- bit #3 of RDC going high causes the next
frame to be read.

- bit #7 of RDC is set when a frame is
available for reading.

10 REM PIA declaration and initialization are not shown
20 SUM = 0 \ initialize checksum

30 REM make sure that tape is ready
40 IF RDC[6] = 0 THEN PAUSE "LOAD TAPE"

50 FOR K = 1 TO 256 \ to read 256 frames.
60 RDC[3] = 1 \ send pulse to activate
70 RDC[3] = 0 \ reader.
80 TIMOUT = 0 \ initialize time-out flag.
90 IF RDC[7] = 1 THEN 130 \ increment time-out as long
100 TIMOUT = TIMOUT + 1 \ as frame is not available.
110 IF TIMOUT < 1000 THEN 90 \ ;

120 STOP "CHECK READER" \ time-out! stop execution.
130 SUM = SUM + RDD \ add this frame to checksum.
140 REM reading RDD has reset RDC[7]
150 NEXT K \ go and read next frame.
160 PRINT "CHKSUM = ":SUM \ 256 frames read.

BASIC-M 3.0 User“s Guide Page 05-16

BASIC-M SIMPLE STATEMENTS 5.14 -- Illustrative examples

Example 5.12 : A series of computer systems is built where
each system has its own passwords . The number
of passwords varies from one computer’ to
another, and is recorded in each computer. The
following sample program will allow access’ to
a particular machine if the operator’s
password matches one of those defined in it.

REM line 30 defines the number and values
REM of the passwords for a given machine.
DATA 4, "H.T.IRE","FORD P.MO","N.NER","AT." \4 passwords
REM 2...

FOR Try = 1 to 3
INPUT "Password ", Key$
READ N \number of passwords accepted by this machine
FOR K = 1 TON

READ Pass$
IF Key$ = Pass$ THEN 180
NEXT K \ no match. read next password
RESTORE \ all passwords exhausted. ask again ...
NEXT Try \ unless 3 attempts already done
PRINT "SECURITY CHECK !"
PRINT CHRS$(7); \ sound bell
GOTO 150 \ continuously !!

' REM Valid password
PRINT "ACCESS AUTHORIZED"

Page 05-17

CHAPTER 6

6. PRINT USING

Paragraph 5.5 discussed the simplest form of the PRINT
Statement. This chapter is entirely devoted to the
description of the PRINT USING statement, an extension of
PRINT to perform formatted, instead of free-format outputs to

the console, line printer or to a diskette file.

General form : PRINT #LU USING format , print list

where 3:

- LU is an expression yielding a logical unit
number in the range 0 to 255 . If LU=0 or
LU=1, the printout occurs on the console ; if
LU=2, the printout is directed to the system
line printer ; if LU>2, then the operands in
the print list are saved onto a diskette file.
The logical unit specification (#LU) is
optional; if not present, the printout
defaults to the console.

- format is a string variable name, or a
string constant, or a line number of an IMAGE

statement, which describes the format in which
the operands in the print list are to be
printed (or saved to a diskette file).

- print list is a set of string or numeric
expressions (excluding the TAB function)
separated by commas or semicolons ; as in the
simple PRINT statement, the last item in the
print list may be followed by either one of
these two delimiters, which would cause the
print head to stay stable after the last item
in the list has been printed (no. carriage
return - line feed characters are sent to the
printing device). In the case cf the PRINT
USING statement, the "," and ":" used to

separate the items in the print list play no
role, as long as the format string is complete
enough to describe the format of all the items
to print. Should the format string be
incomplete, the delimiters "," and ";" will
control tabbing as described in the PRINT
Statement (refer to paragraph 5.5).

Purpose :; The PRINT USING statement is used to perform
formatted outputs ; it operates by alternately
outputting parts of the format string and
outputting values (from left to right) from

BASIC-M 3.0 User’s Guide Page 06-01

PRINT USING 6.1 -- General description

the print list. For each value in the print
list , PRINT USING does the following :

The characters from the format string are
printed until the format string is exhausted
Or until a format descriptor (enclosed in
"[]"), is encountered which describes’ the
printout format of the value to be printed.
If the format string is exhausted , free
format output is used.

Before going any further into the description
of the various format descriptors , let’s
consider the following examples which all
produce on the system line printer’ the
formatted output shown below :

coll <... 20 columns ...> < 3> <2>

Vv
ITEM : HAMMER COST ... 2.75

>

> (2 empty lines)

Example 6.1 :

10 LET ItemS$ = "HAMMER"
20 LET Cost = 2.75

30 PRINT #2 USING "ITEM : [20]COST eee [3,2] [/2]", Item$, Cost

Example 6.2 :

10 Format$ ="ITEM : [20]COST ...[3,2][/2]"
20 PRINT #2 USING Format$, Item$, Cost

Example 6.3 :

10 PRINT #2 USING 40, Item$, Cost
40 IMAGE "ITEM : [20]COST ...[3,2][/2]"

The above examples illustrate the use of three
descriptors whose meaning is as follows :

[20] specifies that the string variable Item$
is to be printed in a 20-column field (left

justification).

[3,2] specifies that the numeric variable Cost

BASIC-M 3.0 User’s Guide Page 06-02

PRINT USING 6.1 -- General description

is to be represented as a fixed-point number
with 3 positions to print its integer part,
and 2 positions for its fractionary part.

[/2] causes two carriage return - line feed
strings to be sent to the printing device (the
line printer in this example).

BASIC-M provides very handy format descriptors that make
the language well suited for a wide variety of applications
where a versatile formatting of data is at a premium. It
includes many facilities of FORTRAN and COBOL, plus a few

unique ones. These descriptors can also be used in
conjunction with the STRS$ built-in function to format
memory-resident data, instead of output data.

6.2 Format descriptors

General form : [k]

Purpose : Commonly used to print byte, integer, or
string variables in a field of length "k".

Comments : - String variables are left-justified.

r numeric variables are right-justified;
leading zeros are suppressed, the minus” sign,
if any, is floating (i.e. , it is "Stuck" at
the leftmost digit of the number).

Example 6.4 : Print 9%n (0<n<6).

10 FOR N=1 TO 5
20 PRINT USING 40, N, 9°N
30 NEXT N
40 IMAGE "9*[1] =[6]"

RUN

9*1 = 9
9°2 = 81
9°3 = 729
9°4 = 6561
9*5 = 59049

Oe es cee ee ee oe ee me ee ee ee we we

General form : [k,option]

where : option = {R,C }

BASIC-M 3.0 User”“s Guide Page 06-03

PRINT USING

Purpose

Comments

6.2.2 -- The string descriptor

Used to print strings only in a field of
length "k".

-option "R" implies right-justification.
-option "C" implies centering within the
field.

Example 6.5 : self-explanatory.

10 AS = "MOTOROLA"
20 BS = " SEMICONDUCTORS"
30 PRINT AS
40 PRINT USING "[30,R]",A$
50 PRINT AS+BS
60 PRINT USING "[30,C]",A$+B$

MOTOROLA

MOTOROLA
MOTOROLA SEMICONDUCTORS

MOTOROLA SEMICONDUCTORS

General

Purpose

Comments

Example

RUN

ADD
ADD

BASIC-M 3.0 User

col130

e hexadecimal descriptor

form : [$k]

Used to print data which are commonly
represented in the hexadecimal notation (byte
or integer variable).

the leading dollar sign "$" is not printed.
- leading zeros are printed.
- the number is right-justified.

6.6 : Memory test.

INTEGER Tf

BYTE Memory(2048) ADDRESS 1024, Pattern
FOR Pattern = 0 TO SFF

FOR I = 1 TO 2048

Memory (I) =Pattern
IF Memory(I) = Pattern THEN 80

PRINT USING 70 , I+1023 , Pattern, Memory (I)
IMAGE "ADDR [$4] WRITTEN [$2] READ [$2]"

NEXT I

NEXT Pattern

R O5FC WRITTEN AA’ READ A8

R 062A WRITTEN C2 READ CO

“s Guide Page 06-04

PRINT USING 6.2.3 -- The hexadecimal descriptor

6.2.4 The horizontal spacing descriptor

General form : [Xn]

Purpose : Used to output n blanks.

6.2.5 The vertical spacing descriptor

General form : [/n]

Purpose : Used to output n strings consisting of the
carriage return and line feed characters (see
example 6.1).

6.2.6 The fixed-point descriptor

General form : [k,m]

Purpose : Used to output data in a format similar to the
FORTRAN ordinary decimal F format.

Comments : F "m" indicates the number of positions
occupied by the fractionary part of the nymber
(not including the decimal point).

"k" denotes the length of the integer part,
minus sign included in case of a negative
value.

- the minus sign , if any , is floating.

- printout occurs in a field of length =
k+m+1.

- printed numbers are rounded (not truncated).

- Numbers are justified on the decimal point.

- leading zeros are suppressed.

Example 6.7 : Sine calculation.

10 FOR I=-Pi/2 TO Pi/2 STEP Pi/4
20 PRINT USING 40 ,I , SIN(I)
30 NEXT I
40 IMAGE "[(2,4] [X10] [1,12]"

RUN
-1.5708 KEKKERERKEKRKEKK
-0.7854 KRKKKEKKEKERKEKKEEK

0.0000 0.000000000000

BASIC-M 3.0 User“s Guide Page 06-05

PRINT USING 6.2.6 -- The fixed-point descriptor

0.7854 0.707106781000
1.5708 0.999999943000

Note that the first two sine results are not printed
because one attempts to output them in the [1,12]
format ; because these values are negative, "k" should
be set to 2 minimum ; the printout is correct when
changing the IMAGE statement to ;

40 IMAGE "[2,4] [X10] [2,12]"

First printed line becomes :

-1.5708 -0.999999943000

6.2.7 The exponential descriptor

General form : [k,m,n]

Purpose : Used to output data in a format similar to the
FORTRAN exponential E format.

Comments 3: - "k" denotes the length of the integer part
of the number to be printed, minus” sign

included if the number is negative ;_ the
integer part always consists of one digit ;
therefore the minimum value of "k" is 1 ;
likewise "k" must be set equal to 2 , minimum,
for printing negative numbers in this format .

- “m" is the number of positions occupied by
the fractionary part (not including’ the
decimal point).

numbers are justified on the radix point.

- "n" denotes the length of the exponent (sign
included) ; the "E" character that precedes
the exponent value is not counted in "n".

- the field length of a number printed in the
{k,m,n] format is k+tm+tn+2, where 2 reflects

the 2 positions occupied by the radix point
and the "E" character.

Example 6.8 : Same as example 6.7 except that the results
are printed using the E format.

40 IMAGE "[4,6,2] [X5][2,14,3]"

RUN

-1.570796E+0 -9.9999994300000E-01
-7.853982E-1 -7.0710678100000E-01
0.000000E+0 0.0000000000000E+00

BASIC-M 3.0 User”s Guide Page 06-06

PRINT USING 6.2.8 -- The commercial descriptor

7.853982E-1 7.0710678100000E-O1
1.570796E+0 ~9.9999994300000E-01

6.2.8 The commercial descriptor

General form : [Csa(sb)flsl ... fn(sn)fmsm ... f2sz]

Purpose : Mostly used to output data in formats similar
to those of the COBOL language ; _ therefore,
the commercial descriptor is intended for ,
but not limited to, business-type
applications.

Comments : -the quantities "si" shown in the general form
are character strings (excluding the digits l
thru 9, parentheses, quotes and "j")
reproduced "as is", except :

"I" that is printed as a blank.
"+" that is printed as a "-" if the
number is negative.
"-"" that is printed as a blank if the
number is greater than or equal to 0.
"CR" that is printed as two blanks if the
number is positive.
"DB" that is printed as two blanks if the
number is positive.

ethe quantities "fi" shown in the general form
are integers which represent the length of a
printed field for one part of a number.

-all the field descriptors "fi" are optional.

-sb , for instance DM meaning Deutsch Mark,
will be printed in front of the
most-significant digit.

-Sl, s2 ... are printed in between the
numerical fields of the integer part of the
number.

-sn , which must be specified between
parentheses , indicates the pcsition of the

radix point ; the radix point does not default
to "." and may be represented as a string of
any characters (the one specified in the
parentheses) 7. a null string between
parentheses denotes the position of the
decimal point, but does not cause any output.

°-SM, eee, SZ are printed in between the
numerical fields of the fractionary part of
the number.

-if the radix point position is not specified
via the "()" indicator , it is assumed to be

BASIC-M 3.0 User’s Guide \ Page 06-07

PRINT USING 6.2.8 -- The commercial descriptor

to the right-hand side.

-if the floating field (sb) is omitted, the

integer part is printed with possible leading
zeros.

if (sb) is specified , leading zeros of the
number are printed as blanks, even if sb _ has
no characters.

two numeric field descriptors , fi , must be
separated by at least one character different
from a blank.

Spaces embedded in the commercial descriptor
are merely ignored.

Example 6.9 : Using the commercial descriptor.
The following printout is obtained when
running the program presented next :

As of 10/11/78
bookings are $2,190,250.75
by the end of fiscal month (10/25/78), they
should be around K$3,000 (4.800.000 SFr)

10 Book=2.19025075E+6
20 Forecast=3000
30 Date=101178
40 Current_month=10
50 Last_day=25
60 Year=78
70 REM
80 PRINT
90 IMAGE
100 PRINT
110 PRINT
120 IMAGE
130 PRINT
140 IMAGE

USING 90, Date, Book

"As of [C2/2/2][/]bookings are [C($)1,3,3(.)2]"
"by the end of fiscal month ";

USING 120, Current_month, Last day, Year;

"({2]/[21/[21), they[/]should be "
USING 140, Forecast, 1600*Forecast
"around [C(K$)1,3] ([C1.3.3 ! SFr])"

Example 6.10 : Another sample program using the commercial
format.

100 PRINT
110 FOR I=
120 INPUT

"STATEMENT OF ACCOUNT - MONTH : "; Month$
1 TO Nb_ transac
#7, Date, Sum

130 PRINT USING 200, Date, Sum
140 NEXT I

200 IMAGE "

BASIC-M 3.0 User’s Guide

[X6] [6] [X15] [C($)3,3,3(1!1) 2 !!!pB)"

Page 06-08

PRINT USING 6.2.8 -- The commercial descriptor

Data read from diskette file :

OSOTTO seen -500
051579 3 «aeses —215,75
051779 9000
052279 -410
052579 ..ee. 3500.50

Printout obtained ;

col7 col36

Vv Vv

50779 $500 00 DB
51579 $215 75 DB

51779 $9,000 00

52279 $410 00 DB

52579 $3,500 50

Page 06-09

CHAPTER 7

This chapter describes the several statements used to
define the type, structure, and address of the user’s program
data, as well as those used to declare assembly-language
subroutines.

7.1 Declaring BYTE variables

Byte variables are declared via the BYTE statement whose
general form is as follows :

BYTE V1(xl,yl) ADDRESS al, ... , Vn(xn,yn) ADDRESS an

where :

-Vi represent the names of byte variables.
xi, yi are unsigned decimal constants
denoting the size of the dimensions of the
byte array variable Vi.

-ai indicates the memory address of the
variable Vi.

Comments : -xi, yi are optional ; if present, they
specify the size of the first and _ second
dimensions respectively of the byte array Vi.
For one-dimensional byte arrays (byte
vectors), xi must not exceed 65535; for
two-dimensional byte arrays, xi and yi must
each be less than or equal to 255.

-the address clause " ADDRESS ai " is
optional; if present, it defines the memory
address ai of variable Vi. ai is an unsigned
decimal or hexadecimal constant, or the name
of an already declared variable to which Vi is
to be equated.

-the keyword "ADDRESS" may be abbreviated as
"ADDR".

-the BYTE keyword applies to all the variables
of the statement line.

Example 7.1 : Declaring byte variables.

10 BYTE PIA(2) ADDR $8008, Memory(255,16)
20 BYTE PIA_data ADDRESS PIA

30 BYTE Varl, Var2 ADDR Varl, Var3

BASIC-M 3.0 User”s Guide Page 07-01

DECLARATION STATEMENTS 7.1 -- Declaring BYTE variables

-PIA represents a 2-byte vector based at the absolute
address $8008.
-Memory defines a matrix of 255 rows by 16 bytes.
-PIA_data represents the first item of the 2-byte vector
PIA, so PIA data is located at the absolute address
$8008.
-Varl, Var2, Var3 are all three simple byte variables ;
Var2 is equated to Varl , therefore Varl and Var2 reside
at the same address. Note that Var2 is equated to an
already declared variable (backward reference).

7.2 Declaring INTEGER variables
nr ee ee ee es ee ee ee es ee we ee ee ee ee

Integer variables are declared by using the INTEGER statement
whose general form is :

INTEGER V1(xl,yl) ADDRESS al, ... , Vn(xn,yn) ADDRESS an

where Vi, xi, yi, and ai have the same meaning
as for the BYTE statement.

Comments : -same as under 7.1.

-the INTEGER keyword applies to all the
variables defined in the statement line.

Example 7.2 : Declaring integer variables.

10 BYTE Pia_D ADDR $8008, Pia C ADDR $8009

20 INTEGER PIA ADDRESS Pia_D, Word (16,16)

30 REM Pia initialization - solution #1
40 Pia_D = $FF
50 Pia _C = $4 \ or Pia C[2] =1
60 REM alternate solution

70 PIA = SFFO4

7.3 The DIM statement

The DIM statement is used for declaring vectors or arrays of
real or character data; its general form is as shown below :

DIM V1(xl,yl) ADDRESS al , ... , Vn(xn,yn) ADDRESS an

where °

-Vi are variable names; a variable name ending
with a dollar sign ($) defines the variable it
represents as a character variable; any other
name specified in a DIM statement defines a
real variable.
xi, yi are unsigned decimal constants
denoting the first, respectively second size
of the dimensions of the variable Vi.

BASIC-M 3.0 User’s Guide Page 07-02

DECLARATION STATEMENTS 7.3 -- The DIM statement

-ai is the memory address of the variable Vi.

Comments : -xi, yi are optional. For one-dimensional
arrays (vectors), xi must not exceed 65535.
For two-dimensional arrays, xi and yi must not
exceed 255.

-the address clause "ADDRESS ai" is optional ;
if present , it defines the memory address of
the variable Vi. ai is an unsigned decimal or
hexadecimal constant less than 65536, or the
address of an already declared variable to
which Vi is to be equated.

-the keyword "ADDRESS" may be abbreviated as
"ADDR".

-Simple character or real variables which are
to be equated to an absolute address or to the
address of another pre-declared variable must
be declared with a DIM statement; in addition,

these variables must be explicitly declared as
having one dimension of size equal to one.
Thus, if a simple real variable V is to be

defined at the address, say, 1024 , one should

declare it with the statement line :
10 DIM V(1) ADDRESS 1024

Example 7.3 : Declaring variables via the DIM statement.

10 BYTE Display(22,80) ADDRESS SE000
20 DIM Screen(22,16) ADDR Display, Varl, Var(2,3)
30 DIM A$(1) ADDRESS Display, TEXTS (4,5)

In this example, the real matrix "Screen" is
equivalenced with the byte matrix "Display" : therefore
, there is no difference, as far as storage address is
concerned, between these two matrices; however,
referencing an item of matrix "Screen" will also
reference 5 items of matrix "Display" (since a_ real
variable occupies 5 bytes).
-Line 30 says that the character variable A$ is to
occupy the first 32 bytes of matrix "Display".

7.4 Declaring external subroutines

The absolute address of a user-written assembly language
procedure or function must be declared explicitly prior to
being called for. The general form of such a declaration is
as follows :

EXTERNAL Pl ADDRESS al , ... , Pn ADDRESS an

where 3:

BASIC-M 3.0 User’s Guide Page 07-03

DECLARATION STATEMENTS 7.4 -- Declaring external subroutines

-Pi represents the name of the user-supplied
assembly language procedures / functions.

eai is an unsigned decimal or hexadecimal
constant denoting the absolute starting
address of the procedure / function Pi.

Comments : ethe keyword "EXTERNAL" can be abbreviated as
"EXT".

-the keyword "ADDRESS" can be abbreviated as
"ADDR".

ethe "EXTERNAL" or "EXT" keywords apply to all
the subroutines declared in the statement

line.

Example 7.4 : Declaring external subroutines.

10 EXTERNAL XPCRLF ADDRESS $F021, XORBUG ADDR $F02D

20 EXT XPSPAC ADDRESS $F02A

7.5 Runtime initialization

When the "RUN" command is invoked, all the variables defined
in a BASIC-M source program are initialized to zero; this
rule, however, does not apply to variables which are equated
to absolute memory addresses (variables declared with an
"ADDRESS" or "ADDR" specification). For example, given the
statement line :

BYTE A(255) ADDR 1024, B , C(10) ADDR SFF , D$(20)

The simple variable B, as well as the string vector DS, will
be all cleared upon execution, whereas the vectors A and C

will be left unchanged.

Page 07-04

CHAPTER 8

As stated earlier, BASIC-M was specified so as to be a
high-level language which had yet to provide facilities for
the user to work close to the target environment . Not
surprisingly, the language includes the necessary statements
to monitor hardware events such as interrupt requests to’ the
MC6809 processor and keystrokes. This chapter discusses those
along with the statements to allow for a software monitoring
of runtime conditions and errors.

8.1 The ON interrupt THEN statements

There are three statements which allow the user to enable and
process the three possible interrupt requests to the MC6809
processor ; their syntax is as follows :

General form : ON NMI THEN action

ON IRQ THEN action

ON FIRQ THEN action

where °¢

-NMI refers to the non-maskable interrupt
request to the MC6809 processor ; the
processor NMI input is edge-sensitive.

-IRQ and FIRQ refer to the interrupt request,
respectively fast interrupt request to the
MC6809 ; the corresponding inputs are both
level-sensitive ; therefore , the associated
interrupt handlers must cancel the original
interrupt source so that’ the interrupted
program can resume execution once the
interrupts have been serviced.

Comments 3: -interrupts must be enabled via one of the
above statements in order to be recognized and
processed ; should an interrupt request occur
in the system , which has not been previously
enabled by its corresponding "ON" statement ,
the runtime package will flag it as a spurious
interrupt and will abort the execution of the
BASIC-M program.

-the "THEN" clause indicates the service to be
provided when the corresponding interrupt
request is detected. “action" must be an
executable statement with the following
exceptions :

BASIC-M 3.0 User’s Guide Page 08-01

REAL-TIME MONITORING 8.1 -- The ON interrupt THEN statements

ethe "FOR" statement.
othe "GOTO" statement.
eany executable statement that includes a
THEN clause (IF, WHEN, ON).

othe action routines which include more than
one BASIC-M line of code must be structured

like subroutines , that is, they must end with

a "RETURN" statement. Therefore , subroutine
and procedure calls are permitted in an "ON
interrupt" statement.

einterrupt requests are disregarded further to
the execution of an associated "NEVER
interrupt" statement. Should they still occur,
they are treated as spurious interrupts (
runtime fatal error).

Example 8.1 : Speed calculation.
A disk is mounted on the shaft of an engine,

which has an index hole delivering a pulse on
a control line of a PIA at every revolution.
This

The

latter drives the processor IRQ input.
program listed below records the maximum

speed of the engine (r.p.m). A MC6840 timer
is programmed to request an NMI interrupt

every 20 ms. The PIA and timer initialization
routines are not shown.

10 GOTO 110 \ skip over procedure definition
12 REM real-time clock interrupt
14 REM service routineeeece
16 REM -------~
18 DEF Check Time
20 Time=Timet+l
22 IF Time < 50 THEN RETURN

24 Time=0

26 RPM=Speed*60
28 IF RPM > Max THEN Max=RPM

30 Speed=0
32 RETURN

34 REM
100 REM ****.MAIN PROGRAM ****
110 Time=0
120 Max=0
130 Speed=0

\ Time count
\ maximum speed
\ current speed (rpm)

140 ON NMI THEN Check Time \ enable NMI
150 ON IRQ THEN GOSUB 240 \ enable IRQ

160 Init Timer
170 Pia[0]=1
180 GOTO 180
190 REM

\ procedure to set up timer
\ enable sampling
\ program does nothing but waits
\ for interrupts.

200 REM **** END OF MAIN ****

210 REM Interrupt routine to be serviced
220 REM on occurence of the index hole..
230 REM ------- ee eee ee ee eee rs eee es es ee eres me ee ee os es

240 Dummy = Pia \ reset interrupt source

BASIC-M 3.0 User’s Guide

Speed + 1

Page 08-02

REAL-TIME MONITORING 8.1 -- The ON interrupt THEN statements

8.2 The ON KEY statement

User-defined keys allow the operator to interrupt an active
program to run a higher priority subprogram with a _ single
keystroke. Function key interrupts are enabled on execution
of the "ON KEY" statement whose general form is as follows

General form : ON KEY kl, k2, ..., kn THEN action

where

-ki are arithmetic expressions rounded to byte
values which indicate which function keys are
to be considered as active. Striking any key
of the list k1,k2,...,kn will cause the

execution of the statement specified in the
THEN clause (action). This statement must
obey the same rules as the ones set in the
previous paragraph. Keystrokes of function
keys not previously enabled by an "ON KEY"
statement are merely ignored.

Comments : -each arithmetic expression ki must result in
a value greater than 0 and less than 17 (16

keys). A runtime error message is reported if
this is not the case.

-Striking an active key causes an NMI request
to the MC6809 processor ; this , however, does
not mean that the "ON KEY" statement hinders
usage of the other interrupt-related
statements described under 8.1: they all can
co-reside in a BASIC-M program.

-Since there may be several keys enabled by a
Single "ON KEY" statement , it might be
desirable to know which key was depressed last
; this information is supplied by the built-in
function "FKEY" that returns a value between 1
and 16 which denotes the number of the last
depressed key.
-the value returned by "“FKEY" is only
meaningful after execution of the "ON KEY"
Statement. The value of FKEY is zero if no
function key has been activated since the last
call to FKEY ; in other words, reading FKEY

causes it to be resetted to zero.

-function keys enabled by the "ON KEY"
statement can be further individually disabled

(desactivated) by using the associated
"NEVER KEY" statement (see paragraph 8.5).

Example 8.2 : Same as example 8.1, but modified to print the
variable "Max" whenever function key 16 is
activated.

BASIC-M 3.0 User”s Guide Page 08-03

REAL-TIME MONITORING 8.2 -- The ON KEY statement

180 ON KEY 16 THEN PRINT USING "Speed = [13] rpm", Max

185 GOTO 185

Example 8.3 : 5 different tasks are initiated by striking
the function keys Fl thru F5. Write a program
to dispatch control on a valid keystroke.

10 ON KEY 1,2,3,4,5 THEN ON FKEY GOSUB 100,200,300,400,500

100 REM - task #1 -

190 RETURN

500 REM - task #5 -

560 RETURN

The above program is equivalent to ;:

10 ON KEY 1 THEN GOSUB 100
20 ON KEY 2 THEN GOSUB 200
30 ON KEY 3 THEN GOSUB 300
40 ON KEY 4 THEN GOSUB 400
50 ON KEY 5 THEN GOSUB 500

8.3 The WHEN ... THEN statement

The statements described sofar in this chapter are all used
to perform a hardware monitoring of external events , since
they are based on the processor interrupt capabilities. The
next two statements are aimed at easing the continuous
testing of software conditions during program execution.

The WHEN statement is used to regain program control when a
user-defined condition is satisfied ; its general form is :

General form : WHEN logexp THEN action

where

-logexp stands for a logical expression which
specifies the condition to be continuously
tested. Logical expressions are discussed in
paragraphs 2.3.5.4 and 4.6.

eaction is an executable statement which

conforms to the rules set under 8.1.

Comments 3; -any number of WHEN statements can appear in a
program, but only the last executed is

effective at any time.

BASIC-M 3.0 User’s Guide Page 08-04

REAL-TIME MONITORING 8.3 -- The WHEN ... THEN statement

.unlike an "IF" condition which is only tested
upon execution of the "IF" statement, a "WHEN"

condition is tested prior to executing each
and every line of the program. The condition
monitoring is initiated on occurence of a WHEN
statement : should the condition become
satisfied at any time during program execution
, control is then transferred to the action
routine ; during execution of this latter
routine the condition monitoring is
temporarily suspended up until the action has
been wholly executed ; the action terminates
when its RETURN statement is encountered (in
case of a multi-line action routine). This

functionning is illustrated on the following
example :

10 WHEN A>100 THEN GOSUB 50
20 INPUT A
30 A=A+25
40 GOTO 20
50 PRINT "ACTION *** SQR(A) = "3
60 PRINT SOR(A)
70 RETURN

RUN
? 144
ACTION *** SQR(A)
ACTION *** SQR (A)
ACTION *** SQR(A)
? 69
?

12 (due to line 30)
13 (due to line 40)

13. (due to line 20)

Note that the condition is not tested during
the action routine which consists of the lines

50, 60 , and 70. The action would otherwise be

re-entered for ever.

-care should be exercised so as not to run for
ever in the action routine ; this would happen
if a WHEN condition , once met , is never

rendered false further in the program. In the
above example , the condition is related to
the input value A which is a subject to change
; thus , depending on the input value, the
condition will be sometimes satisfied,
sometimes unsatisfied. If, in the same
program, line 20 would be changed to "A=200"
it is obvious that the action associated with
the WHEN statement would be re-entered
continuously. The sample program which follows
is another example of a situation where the
condition, once satisfied, will no longer be

rendered false : consequently, the program
will not work as expected. The program is
supposed to count the number of keystrokes (
function keys excluded). The keyboard strobe

BASIC-M 3.0 User’s Guide Page 08-05

REAL-TIME MONITORING 8.3 -- The WHEN ... THEN statement

signal is connected on a control line of a PIA
labelled KEYBC. A keystroke sets the
most-significant-bit of the byte KEYBC to one.

10 BYTE KEYBC ADDRESS SEF83

20 Count=0 \ initialize count
30 WHEN KEYBC[7]=l1 THEN Count=Count+l

40 :

Whatever the number of keystrokes (but at
least one), the result Count will be

erroneous for bit 7 of KEYBC , once set, will
never be reset. This is due to the operating
principle of the PIA, which requires that its
data register be read to reset the
most-Significant-bit of its control register.
The reader is encouraged to go through the
example 8.5 in order to avoid this common
pitfall.

ethere are circumstances however, where a WHEN

condition disappears by itself ; this is the
case when variables defining the condition are
related to hardware random signals. The
following example presents such a situation ;
the program is intended to drive an audible
alarm for as long as a door is open. ,

10 WHEN Door[3]=l1 THEN Bell

The bit indicating the state of the door
depends on an external condition which, as
such, cannot be controlled by program.

The execution of the "NEVER WHEN" statement

disables all WHEN requests .

-A WHEN statement can be embedded in the
action routine of another WHEN’ statement,

according to the following scheme :

WHEN conditionl THEN actionl

actionl : ‘

WHEN condition2 THEN action2

returnl : RETURN

If this structure is implemented, condition2
will be monitored after, and after only, that
conditionl has been fulfilled AND that action
#1 subroutine has returned. This scheme
provides for switching of conditions. The
Sample program presented next illustrates the

BASIC-M 3.0 User’s Guide Page 08-06

REAL-TIME MONITORING 8.3 -- The WHEN ... THEN statement

functionning just described

10 WHEN A>100 THEN GOSUB 200
20 INPUT A
30 GOTO 20

200 PRINT "LINE 10 WHEN ACTIVE"
210 WHEN B>100 THEN PRINT "LINE 210 WHEN ACTIVE"
220 B=A
230 B=Bt1
240 RETURN

RUN

? 110
LINE 10 WHEN ACTIVE (due to line 30)

LINE 210 WHEN ACTIVE (due to line 20)
? 2
LINE 210 WHEN ACTIVE (B remains unchanged and equal
LINE 210 WHEN ACTIVE to 111 since conditionl is no
? longer tested.)

-usage of the WHEN statement results in some
degradation as far as program execution speed
is concerned.

eprograms that make use of the WHEN statement
Should not be compiled with the "S" compiler
option ; this option prevents the compiler
from generating the statements which allow
runtime condition testing. (refer to "sytem
commands").

Example 8.4 : Effect of the WHEN statement.

10 WHEN X>144 AND X<200 THEN PRINT SQR(X)
20 INPUT X
30 GOTO 20

RUN

? 30 (WHEN condition not satisfied)
? 169 (WHEN condition satisfied)

13 (due to execution of line 30)
13 (due to execution of line 20)
?

Example 8.5 : Video game. The program listed below moves a
ball along the first top line of the EXORset
display (alphanumeric memory based at address
$E000). The game consists in intercepting the
ball when it is in the middle part of the line
(column 39 thru 41 =). A shot is made by
striking any key on the system console. The
keyboard is connected to a PIA based at the
address SEF82 ; striking a key sets the most
Significant bit of the control register at
address SEF83.

BASIC-M 3.0 User’s Guide Page 08-07

REAL-TIME MONITORING 8.3 -- The WHEN ... THEN statement

10 BYTE KEYBD ADDR S$EF82, KEYBC ADDR SEF83
20 BYTE LINE(80) ADDRESS $E000
30 GoTo 110
40 REM --- procedure to check the position of
50 REM --- the ball on occurence of a shot ..
60 DEF Check_shot
70 Dummy=KEYBD \ reset WHEN condition
80 IF J>38 AND J<42 THEN STOP "You won"

90 RETURN

100 REM --- main program
110 MAT LINE=SET[ASC(" ")] \ erase display line
120 WHEN KEYBC[7]=1 THEN Check_shot \ set condition

130 Kl=1 \ set line boundaries
140 K2=80
150 DK=1 \ and step for move
160 FOR J=K1 TO K2 STEP DK \move ball along line
170 LINE(J)=ASC ("0")
180 FOR BB=1 TO 10 \ software delay
190 NEXT BB

200 LINE(J)=ASC(" ")
210 NEXT J
220 TEMP=K1 \ exchange boundaries
230 K1l=K2 \ to move the ball in

240 K2=TEMP \ the reverse direction
250 DK=-DK
260 GOTO 160

Example 8.6 : Using the WHEN statement to replace several IF
statements.

When several identical tests have to be done
in a BASIC program, a WHEN statement can do
the job economically, as illustrated below :

Classical method Using WHEN

10 INPUT A 10 WHEN A>100 THEN STOP

20 IF A>100 THEN STOP 20 INPUT A

70 A=A+10 70 A=A+10
80 IF A>100 THEN STOP :

110 A=A*B 110 A=A*B
120 IF A>100 THEN STOP :

8.4 The ON ERROR statement

Normally, a runtime error causes the associated error message

to be displayed, and program execution to be aborted in case
of a fatal error. The ON ERROR statement provides a means to
process non-fatal errors only. User-defined error processing

BASIC-M 3.0 User’s Guide Page 08-08

REAL-TIME MONITORING 8.4 -- The ON ERROR statement

May .vary from a simple translation of the error message in
the user’s native language, to a more sophisticated error
recovery action. The syntax of the ON ERROR statement is as
follows :

General form : ON ERROR THEN action where :

eaction is an executable statement that
conforms to the rules set in paragraph 8.1.

Comments : ethe runtime error codes defined in BASIC-M
are listed in Appendix ?. The ERR function
returns the code of the last error. that
occured P Calling the ERR function
automatically resets its value to zero.

-user handling of errors is activated on
execution of the "ON ERROR" statement, while
the "NEVER ERROR" statement disables it and
therefore causes the normal error processing
to resume.

the statement ;:

10 ON ERROR THEN RETURN

causes all subsequent errors to. be merely
ignored (error messages are not displayed).

Example 8.7 : Translation of error messages.

10 DIM ERS(33) ,A(5,5)
20 DATA "DIVISION ENTIERE PAR 0"

30 :

80 DATA "TRANSPOSITION ILLEGALE"

100 FOR I=1 TO 33
110 READ ERS (TI)

230 ON ERROR THEN GOSUB 500

340 MAT A=INV(A)

500 PRINT ER$ (ERR)
510 RETURN

RUN

INVERSION DE MATRICE SINGULIERE

Example 8.8 : Error recovery.
The program below fills a buffer with data,
then transfers it to a diskette file. The ON
ERROR statement is used to detect when the

buffer is full (attempting to store a data

BASIC-M 3.0 User’s Guide Page 08-09

REAL-TIME MONITORING

10
20
30
40
50
60
70

100

200
210
220
230

8.4 -- The ON ERROR statement

beyond the buffer end causes an error).

ON ERROR THEN GOSUB 200

I=0

INPUT A

IF A=0 THEN 100

T=I+1

Buffer (I) =A
GOTO 30

MAT PRINT #5 Buffer

T=l1

Buffer (1)=A
RETURN

8.5 The NEVER statement

For each of the ON statements discussed in this chapter ,
there is a paired NEVER statement whose function is to cancel
a monitoring request. The several NEVER statements are as
follows

General

BASIC-M 3.0 User

form : NEVER NMI

NEVER IRQ
NEVER FIRQ

NEVER KEY k1,k2,...,kn

NEVER WHEN

NEVER ERROR

where

-k1,k2,...,Kn have
described under 8.2.

the same meaning as

8.9 : Disabling selected function keys.

K=1 \ default execution to task 1
ON KEY 1,2,3,4,5 THEN GOSUB 100

TASK (K) \ run kth task

K=FKEY \ read number of function key just hit
FOR I=1 TO K \ disable keys of lower order
NEVER KEY I

NEXT I

RETURN

about the RETURN statement
ee eee ae te ea ee ee ee ee oe

*s Guide Page 08-10

REAL-TIME MONITORING 8.6 -- More about the RETURN statement

As stated earlier, it is mandatory to end a multi-line action
subroutine associated with an ON statement, with a RETURN
statement. In the particular context of real-time monitoring
, where an action can be considered as a service routine
which is activated randomly (based on hardware or software
conditions being met), RETURN plays the same role as the
instruction RTI which is used to return from an _ interrupt
service routine. Therefore, its effect is not the same as the
RETURN statement that terminates a BASIC-M_ subroutine. To
highlight this distinction, let*s consider the following
program :

10 WHEN I=4 THEN RETURN

50 I=0
60 GOSUB 100

100 PRINT I
110 I=I+1
120 GOTO 100

The above program will run for ever in the loop delimited by
the lines 100 and 120 ; when I reaches the value 4, control
is transferred to the action routine which does not
absolutely nothing (the RETURN statement does not imply any
concrete action). The point is that the RETURN keyword
appearing in line 10 is not at all connected with the
execution of the subroutine at line 100.

Another use of the RETURN statement was pointed out in
paragraph 8.4. Given the following :

ON ERROR THEN RETURN

All non-fatal errors are ignored (no error message is
displayed).

Finally, the statement ;

ON KEY kl,...,kn THEN RETURN

allows to activate the FKEY function so that it further
returns the number of the last key hit ; not using the ON KEY
statement would result in FKEY being always equal to zero.
The user however, must remember that calling the FKEY
function automatically resets its value to zero.

Page 08-11

CHAPTER 9

This chapter explains matrix manipulation. It is
intended to show the matrix capabilities of BASIC-M and
assumes that the programmer has some knowledge of matrix
theory.

Matrix definition, declaration, type, and arrangement in
storage are topics which have already been discussed in
chapters 3 (paragraph 3.5) and 7. This section only
describes the types of operations which can be performed on
matrices.

9.1 The classical approach
0 ce ee ane ee ee De ee ee ee ee

The classical approach to solving problems in which matrix
operations are involved, consists in operating on every item
of the matrix. This is because most BASIC’s, especially those
‘implemented on microcomputers , do not make provision § for
considering a matrix as an entity ; as a result , it is the
programmer”s responsibility to take care of array indexing
and to find out, if needed, the statements to translate
complex mathematical algorithms such as those involved in
matrix inversion. To cope with the tasks just mentioned, the
programmer needs to write several statement lines. For
instance, if all the elements of a two-dimensional array
A(4,7) are to be set to a given value, say zero, the most
efficient program is likely to look like :

10 FOR I=1 TO 4
20 FOR J=1 TO 7
30 A(I,J)=0
40 NEXT J
50 NEXT I

In BASIC-M , the same problem can be solved by using the
Single statement

10 MAT A = ZER-

Clearly , the classical solution translates into a much
larger machine code (10 times larger than the one yielded by
solution #2 !!!). Not suprisingly the first solution will
execute much slower than the second; this is mainly due to
the fact that array indexing is handled at a "high level"
(BASIC statements) as opposed to the index calculations
yielded by the second program, which are handled by the
runtime package assembly-language instructions.
The subsequent paragraphs detail the operations which can be
carried out on matrices’ using BASIC-M matrix-oriented

BASIC-M 3.0 User’s Guide Page 09-01

MATRIX OPERATIONS 9.2 -- The MAT READ statement

statements.

9.2 The MAT READ statement
es ee se we me ee ee oe ee ee

General form : MAT READ Arr

where :

-Arr is the name of a one- or two-dimensional

numeric or character array.

Purpose : To fill the entire matrix from the current
DATA statement in the row, column order: 1,13;
1,23; 1,33 etc.

Comments : ~The number of elements read is controlled by
the implicit or explicit statements’ that
specify the matrix size.

-The MAT READ statement conforms to the same

rules as the simple READ statement (see

paragraph 5.3).

Example 9.1 : Using MAT READ.

10 DIM NameS$ (2,2) ,A(2,3)

20 BYTE Value (4)

30 DATA “JOHN","MARY","KATE","LEE" ,SFF

40 DATA 2, $41, 5, 2.718

50 MAT READ Names

60 MAT READ Value
70 READ Constant

The following assignment is to take place :

Name$ (2,2) Value (4) Constant
0 ee ee eee eo eo om ee ee wee ee ee ee

Q
 io)

q Z a K wa

| ny

i)

Bi
gs

>

wo

N

~s

=

fo*
)

General form : MAT INPUT prompt , Arr
or

MAT INPUT Arr

where °:

-prompt is an optional literal constant.
-Arr is the name of a one- or two-dimensional
numeric or character array.

Purpose ;: To assign values’ to array elements from the

BASIC-M 3.0 User’s Guide Page 09-02

MATRIX OPERATIONS 9.3 -- The console MAT INPUT statement

keyboard without specifying each array element
individually.

Comments : oA more complex form of the MAT INPUT
Statement is described in chapter 12 , which

allows data to be input from a diskette file.

-When a MAT INPUT statement is executed, it

causes a question mark to be displayed,
possibly preceeded by the input prompt, if
any. The operator is then requested to enter a
list of values that will be assigned
row-by-row to the elements of the specified
array. Data to be assigned to one-dimensional
arrays (vectors) can be input on the same
line.

-Control codes, String input, and error
checking are the same as described under 5.4 (
console INPUT statement).

Example 9.2 : Using the MAT INPUT statement.

10 INTEGER A(3,2)
20 DIM MS (3)
30 MAT INPUT "enter coefficients ", A

40 PRINT "enter array M$"
50 MAT INPUT MS

notes

RUN ae ee ee

enter coefficients ? 1 2 3 (1)
2? 4 (CTRL-X) (2)

? 64H (3)

RETYPE FROM ARROW

? 7 (4)

? 2! (5)
enter array MS
? "How 0 "are 00 "you" (6)

(1) - The third value ,3 , is ignored as data
are entered row-by-row andA is defined
as having two items per row.

(2) - Typing CTRL-X cancels the input data of
the entire row (the second row in this
example).

(3) - Still inputting second row of matrix A.
H is not a numeric data, hence the error
message. Note that the value 6 was assi-
gned to A(2,1).

(4) - 7 completes the input of data assigned to
the second row. 7 goes into A(2,2).

(5) - Because a "!" was entered, the items of the
third row remain unchanged (equal to zero
in our case).

(6) - The data assigned to the string vector M$
are entered on the same line ; note that

BASIC-M 3.0 User’s Guide Page 09-03

MATRIX OPERATIONS 9.3 -- The console MAT INPUT statement

the delimiting quotes can be freely separa-
ted from each other by a blank or a comma.

The matrix A and the vector M$ now contain the
following data ;:

A(3,2) MS (3)

1 2 How
6 7 are

0 0 you

fe ee ee ee ee ee ee ee en ee ee ee ee ee ee eo ee

General form : MAT PRINT #LU Arr

where °:

LU is an arithmetic expression which
specifies the output port.
-Arr is the name of a one-dimensional or
two-dimensional numeric or character array.

Purpose : To display the elements of a specified array
without referring to each array element
individually.

Comments : .-The "#LU" clause is optional. When not
specified, printout is directed to the
console. So is it when LU is rounded to a byte
value equal to 1. When LU is equal to 2,

printout occurs on the system line printer. If
the evaluation of LU leads to a value between
3 and 255, the array elements are directed to

a diskette file. Using a diskette file to
store matrices is discussed in chapter 12.

-When uSing the MAT PRINT statement, the
format of all displayed values is
standardized, so is the spacing between values
on the same line.

- Numeric array elements are _ printed in
free-format. An array is displayed row-by-row;
the following rule applies: the elements of a
row are displayed on the same line as long as
the line length defined by the "LINE"
Statement is sufficient to accommodate them.
If the length is not sufficient, a new line is

Started to print the remaining elements of the
row. Then an empty line is displayed prior to
printing the elements of the next row. Each
array element uses one full print zone of 20
characters.

BASIC-M 3.0 User’s Guide Page 09-04

MATRIX OPERATIONS | 9.4 -- The MAT PRINT statement

- String array elements are displayed
row-by-row. The elements) of a row are
concatenated prior to being printed. Should
the line length defined by the "LINE"
statement be insufficient to accommodate the
resulting string to print, a new line is
Started, which is not further followed by an
empty line (as opposed to the way numeric
arrays are displayed).

-Upon execution of the MAT PRINT statement,
the carriage return and line feed characters
are sent to the output device.

Example 9.3 : Using MAT PRINT.

10 DIM A(3) ,B(2,5) ,C$ (3,6)
20 DATA 1,2,3

30 DATA 4,5,6,7,8
40 DATA 9,10,11,12,13
50 DATA wa y "p,q ’ ak Gr , "pH" ’ Le r up

60 DATA "GT ar KL"

710 DATA HES) (Bp Ly MES. C32) eae ge

80 MAT READ A

90 MAT READ B

100 MAT READ C$
110 MAT PRINT A

120 MAT PRINT B

130 MAT PRINT C$

RUN col21 col4l

Vv Vv

1 2 3

4 5 6 7
8

9 10 11 12
13

ABCDEF

GHIJKL

C$ (3,1) C$ (3,2) asae

9.5 Copying a matrix

General form : MAT Arrl = Arr2

where 3:

eArrl and Arr2 are names of one- or
two-dimensional numeric or character arrays.

Purpose : To assign the elements of one array (Arr2 _)
to another array (Arrl).

BASIC-M 3.0 User“s Guide Page 09-05

MATRIX OPERATIONS 9.5 -- Copying a matrix

Comments : eArrl and Arr2 must be of the same type,

i.e., either both numeric, or both character.

eArrl and Arr2 must have identical dimensions,

but the size of their dimensions need not to

be the same. However, the number of elements

in Arr2 must not exceed the number of elements

in Arrl. The following are examples of matrix
assignments :

10 DIM A(3,2), B(9)
15 BYTE C(2,4) ,D(8)
20 DIM M1$(3), M2$(2,2)
25 REM--. valid assignments
30 MATC=A

35 MAT B = D

45 REM-. invalid assignments
50 MAT C=A \ dimensions not identical
55 MAT C = M1S$ \ mixed-type assignment

After execution of the assignment, Arrl

assumes the same dimensions as Arr2. For

instance, executing the statement at line 30

changes the dimensions of array C from (2,4)

to (3,2). Likewise, statement 35 changes the

dimension of B from (9) to the dimension of D,
i.e., (8).

»Numeric conversions are performed when Arrl
and Arr2 are not of the same numeric data type
(see next example).

Example 9.4 : Matrix copy.

10 DIM A(3,2)

15 BYTE B(2,4)

20 MAT INPUT A

25 PRINT

30 MAT INPUT B

35 PRINT "MATRIX B BEFORE ASSIGNMENT"

420 MAT PRINT B
45 MAT B=A

50 PRINT "MATRIX B AFTER ASSIGNMENT"
55 MAT PRINT B

RUN

? 12 (entering A)
? 255 3
? 10 20

? 254321 (entering B)
? SAA 9 10 20
MATRIX B BEFORE ASSIGNMENT

BASIC-M 3.0 User’s Guide Page 09-06

MATRIX OPERATIONS

FE
AA

MATRIX B AFTER

1
FF

A

9.6 Matrix addi

General form :

Purpose :

Comments 3

Example 9.5 :

10 DIM A(

9.5 -- Copying a matrix

3
9 P

N

=

>

ASSIGNMENT

2

3
14

tion and subtraction

MAT Arrl = Arr2 oper Arr3

where :

-oper is the plus sign "+" to perform matrix
addition, or the minus sign "-" to perform
Matrix subtraction.
-Arrl, Arr2, Arr3 are names of one- or

two-dimensional numeric arrays.

To add or subtract the contents of two

Matrices Arr2 and Arr3 and assign the result
to a third matrix Arrl.

-The three arrays involved in this statement
must have identical dimensions (after
re-dimensioning, if any). In addition, the

size of the dimension(s) of Arr2 and Arr3 must
be identical.

eArrl is re-dimensioned to the size(s) of Arr2
(or Arr3 as they must be the same).

~All three matrices must be numeric.

Matrix addition.

3,3), B(2,2)
20 INTEGER C(2,2)
30 MAT INPUT B
40 PRINT
50 MAT INPUT C
60 MAT A= B+C \ A is re-dimensioned to (2,2)
70 MAT PRINT A

RUN
? 12 #(entering B)
23 4

? SFFFF 10
2? 20 30

0
23

BASIC-M 3.0 User’s Guide

(entering C)

12 (result A)

34

Page 09-07

MATRIX OPERATIONS 9.6 -- Matrix addition and subtraction

9.7 Matrix multiplication

General form : MAT Arrl = Arr2 * Arr3

where ¢

-Arrl, Arr2, and Arr3 are names of one- or

two-dimensional numeric arrays.

Purpose : To perform the mathematical matrix
multiplication of two numeric matrices Arr2
and Arr3 and assign the product to aé_e third
matrix Arrl. In matrix multiplication, a
matrix A of dimensions (p,m) and a matrix B of
dimensions (m,n) yield a product matrix C of
dimensions (p,n) such that for i=1,2,...,p,
and for j=1,2,...,n:

C(i,j) = sum of [A(i,k)*B(k,3j)] for k=1,2,...,m

Below is an illustration of the application of
this formula to square matrices (2,2).

A B C=A* B

a b e f a*etb*g a*f+b*h

c ad g h c*etd*g c*f+d*h

Comments : All of the following relationships must _ be
true (after re-dimensioning, if any) ;:

-The number of columns in the second matrix

Arr2 must equal the number of rows in the

third matrix Arr3.

-The number of rows in the first matrix

(product matrix Arrl) must equal the number of
rows in the second matrix Arr2.

-The number of columns in the product matrix
Arrl must equal the number of columns in the
third matrix Arr3.

-Matrix Arrl may be one-dimensional if either
p or n is equal to l.

-When Arr2 is a one-dimensional array, it is

treated as an array consisting of one row.

-When Arr3 is a one-dimensional array, it is
treated as an array consisting of one column.

BASIC-M 3.0 User’s Guide Page 09-08

MATRIX OPERATIONS 9.7 -- Matrix multiplication

-The same array variable name must not appear
on both sides of the "=" sign; this would
yield an erroneous result although no error is
reported.

-Mathematically, Arr2*Arr3 is not equal to

Arr3*Arr2.

Example 9.6 : Matrix multiplication.

10 DIM A(2,3) ,B(3,4) ,C(2,4)
15 MAT INPUT A
20 PRINT
25 MAT INPUT B
30 MAT C=A*B
35 MAT PRINT C

RUN

? 123 (entering A)
? 45 6

? 10 11 #12 13 (entering B)

? 14 15 16 17
? 18 19 20 21

92 98 104 110
218 233 248 263

9.8 Scalar operations
(See eo eee ee DD ee ees ce ceo OD wD oem me OD

General form : MAT Arrl = Arr2 oper (exp)

where 3:

eArrl and Arr2 are names of one- or
two-dimensional numeric arrays.
oper is one of the following operators :

tyme? pfs

-exp is an arithmetic expression which must be
specified between parentheses.

Purpose : Scalar addition and subtraction allow an
arithmetic expression to be added to, or
subtracted from all the elements of the array
Arr2, and to store the results in the array
Arrl.
With scalar multiplication or division, each
element of the array Arr2 is multiplied or
divided by the specified arithmetic
expression, and the results are stored in the
array Arrl.

Comments : eArrl and Arr2 must be either both
one-dimensional, or both two-dimensional
arrays.

BASIC-M 3.0 User’s Guide Page 09-09

MATRIX OPERATIONS 9.8 -- Scalar operations

The size of the dimensions of Arrl and Arr2
need not be identical; however, the number of

elements in Arr2 must not exceed the number of

elements in Arrl (after re-dimensioning, if
any).

-"MAT Arrl = Arrl oper (exp)" is a valid
operation.

After execution, Arrl is re-dimensioned to
the size of the dimensions of Arr2.

-Numeric type conversions are performed, if
required (see example 9.7).

Example 9.7 : Scalar division.

10 BYTE A(3,3)
20 DIM B(2,4)
30 MAT INPUT B
40 MAT A= 8B / (10)
50 MAT PRINT A

RUN
? 10 20 30 40
? 100 200 300 400

1 2 3 4
A 14 1E 28

9.9 Identity matrix

General form : MAT Arrl = IDN (xpl, xp2) where °:

eArrl is the name of a two-dimensional numeric
Matrix.

-xpl and xp2 are arithmetic expressions.

Purpose : To establish Arrl as an identity matrix and
optionally specify a new working size.

Comments : -An identity matrix is one having all its
elements set to zero, except those residing on

its diagonal from upper left to lower right
which are set to one.

elf a new working size is not specified, the
original matrix must be square (the number of

rowS must equal the number of columns, after
re-dimensioning if any).

~The clause "(xpl, xp2)" is optional. If
present, it specifies a new working size for
Arrl, and therefore has the same effect as a

DIM, BYTE or INTEGER statement . xpl and xp2
must obey the same rules as those followed by

BASIC-M 3.0 User’s Guide Page 09-10

MATRIX OPERATIONS 9.9 -- Identity matrix

dimension sizes (see paragraph 3.5.2). In
addition, the number of elements implied by
(xpl, xp2) must not exceed the number of

elements the matrix Arrl has prior to
execution of the statement. Furthermore, in
the case of the matrix identity statement, xpl
must equal xp2.

Example 9.8 : Matrix identity.

10 DIM A(30,20) ,B(2,2)
20 MAT A=IDN (3,3)
30 MAT B=IDN
40 MAT PRINT A
50 MAT PRINT B

RUN

1 0 0
0 1 0 (matrix A)

0 0 1

1 0 (matrix B)
0 1

9.10 The MAT SET statement
SO ceo ae yD wD OD CeO Oe Com De De ee ee

General form : MAT Arrl = SET (xpl, xp2) [exp] where :

-Arrl is the name of a one- or two-dimensional
numeric array.
-xpl, xp2, and exp are arithmetic expressions.

Purpose : To set all the elements of an array Arrl_ to
the value specified by "exp", and to
optionally establish a new working size as
indicated by (xpl, xp2).

Comments : The new working size specification is
optional; the rules given under 9.9 apply,
except that xpl and xp2 need not be identical.

Example 9.9 : Erasing (filling with blanks) a video RAM
based at hex address $E000.

10 BYTE SCREEN (22,80) ADDRESS $E000
20 MAT SCREEN = SET [$20] \ or SET [ASC(" ")]

9.11 The MAT ZER and MAT CON statements
ee en 0 em a ee ee ee oe co ee ee ee ee ee ee ee

These two statements are particular cases of the MAT SET
Statement, in that they allow to fill an array with two

BASIC-M 3.0 User”s Guide Page 09-11

MATRIX OPERATIONS

specific values : 0 (MAT
as follows 3;

General form : MAT Arrl
MAT Arrl

9.11 -- The MAT ZER and MAT CON statements

ZER), Or 1 (MAT CON). The syntax is

ZER (xpl, xp2)
CON (xpl, xp2)

where Arrl, xpl, xp2 have the same meaning as

in the MAT SET statement.

9.12 Matrix transposition

General form : MAT Arrl

where °:

TRN (Arr2)

-Arrl and Arr2 are names of two-dimensional
numeric arrays.

Purpose : To replace the elements of an array Arrl with
the matrix transpose of another array Arr2.

Comments 3: ~The number of elements in Arr2 must not

exceed the number of elements in Arrl.

~The values in column y of Arr2 become the
values in row y of Arrl.

~The dimensions of the resulting matrix Arrl
are set to be the reverse of the original
Matrix Arr2. For instance, if A has dimensions

of (4,2) and MAT B=TRN(A), B will be assigned
the dimensions of (2,4).

Matrices cannot be transposed into
themselves.

Example 9.10 : Matrix transposition.

10 DIM A(50,2) ,B(2,3)
20 MAT INPUT B
30 MAT A = TRN(B)
40 MAT PRINT A

RUN
? 12 3
2? 45 6

iL 4
2 5
3 6

9.13 Matrix inversion
eee ee ee en oe ee ee ee ee ee ee ee

General form : MAT Arrl

BASIC-M 3.0 User’s Guide

(from now on , A assumes

the dimensions of (3,2))

INV (Arr2)

Page 09-12

MATRIX OPERATIONS 9.13 -- Matrix inversion

where ¢:

-Arr2 is the name of a two-dimensional square
numeric array.
-Arrl is also a two-dimensional numeric array
to be dimensioned as Arr2 after inversion.

Purpose : To establish a square matrix Arrl as the
inverse of a specified square matrix Arr2.

Comments : -For the square matrix Arr2 of dimensions
(m,m), the inverse matrix Arrl, if it exists,
is a matrix of identical dimensions such that:

Arrl*Arr2 = Arr2*Arrl I, where

I is an identity matrix.

-Not every matrix has an inverse: the inverse
of a matrix Arr2 exists if its determinant is
different from zero.

-When the determinant is equal to zero, an
error occurs. In some cases, the determinant

is very close to zero, thus causing either

error conditions, or yielding a result which
is far from the true inverse.

Example 9.11 : Solving a system of linear equations.

Giving the following :

all.xl + + aln.xn = bl
a21.xl +65. + a2n.xn = b2

anl.xl + ones + ann.xn = bn

the values xl, ... , xn which satisfy all the equations

are such that :

X = INV(A) * B
where °

X is the resulting vector { xl, ..., xn },
A is the square matrix containing the coefficients aij,
B is the vector { bl, ..., bn }

10 DIM A(4,4),B(4) ,X(4)

20 PRINT "enter aij "
30 MAT INPUT A
40 MAT INPUT "enter bi ", B

50 MAT A = INV(A)
60 MAT X = A*B
70 MAT PRINT X

BASIC-M 3.0 User*s Guide Page 09-13

MATRIX OPERATIONS 9.13 -- Matrix inversion

RUN

enter a

? 15 8

?9 3 6

27274

?9 13

enter bi ? 10 3 6 2

-0.130643612 1.34005764 1.19788665 — -0.878962535

Page 09-14

CHAPTER 10

Much of the art of programming lies in recognizing
problems which can be solved by a repetitive sequence of
operations. Repetition is mainly desired because it enhances
the effectiveness of a given number of instructions, results

in a shorter code, and makes for economy of thought on the
part of the programmer.

Two kinds of repetitions are found in programming, as
illustrated in the following time sequences where "ti" stands

2
for task i :

(1) tl t2 t2 t2 t3%

(2) tl t2 t3 t2 t4 t2.....

The connected repetition in (1) would be written as a loop;

task "t2" would then be written once only in the’ source
program, and the corresponding instructions coded once only
in the object program.

Disconnected repetitions, as in (2), can be solved by using
subroutine calls, a subroutine being a sequence of
instructions, written and stored once only. In BASIC-M,

Subroutines are called by the GOSUB statement. There are two
main drawbacks in using GOSUB“s:

1/ Programs are not very readable because the subroutine is

not represented by a label which would help to guess its
function, but rather by a line number.
2/ Arguments or parameters cannot be passed easily to the
subroutine.

In BASIC-M, these problems can be overcome by using
procedures and functions:

- A procedure is a sequence of instructions, thus represented
On several statement lines, which is executed whenever the
procedure name is encountered in the program. Arguments’ can
be associated with procedures, and passed back and forth

between the calling program and the procedure.

- A function is a type of subroutine which returns a_ single
result to the calling program. Two types of functions exist:

User-defined functions declared on ae single
statement line.

-Built-in BASIC-M functions such as sine, substring
search, or logarithms.

BASIC-M 3.0 User’s Guide Page 10-01

FUNCTIONS AND PROCEDURES 10.1 -- User-defined functions

The rest of this chapter details the user-defined
procedures and functions, while chapter 11 discusses’ the
built-in functions.

10.1 User-defined functions

Such functions are useful when a particular numeric or)
literal expression appears many times in a program. They are
declared by using the DEF statement whose form is shown next.

General form : DEF funct(argl, arg2, ...) = exp

where :

efunct , argl, arg2 are the names of the
function and formal arguments’ respectively;
these names conform to the rules followed by
the BASIC-M variable names.
-exp is an arithmetic or literal expression,
depending on whether the function is of the
numeric or character type.

Purpose : The DEF statement is used to define a_ user
function and its associated formal parameters,
if any.

Comments 3: ~The DEF statement defining a function must
appear before any use of the function.

-If the function name "func" ends with a
dollar sign "$", the function is of the
character type; consequently, the expression
on the right-hand side of "=" must be literal.

-If the function name does not end with the
dollar sign, the function is numeric’ and
assumes the type real; the expression must
then be an arithmetic expression (its

components may be of any numeric type, not

necessarily real).

-A function must not have the name of a

variable or procedure.

-A user-defined function can be used wherever

an expression is allowed by writing:

eoceee LUNC(argl, arg2, ..., AXLGN)0.%

When the function is invoked, the actual
arguments (those stated in the function call)
are used to evaluate the expression. that
yields the function result. As an_ example,
let*s consider a function "Sum(X,Y)" which is

supposed to return the sum of two parameters X
and Y. The following listing shows how the

BASIC-M 3.0 User’s Guide Page 10-02

FUNCTIONS AND PROCEDURES 10.1 -- User-defined functions

Function is defined, then further invoked to
print the sum of two input values A and B.

10 DEF Sum(X,¥) = X+Y
20 INPUT A,B
30 PRINT Sum(A,B)
40 IF A # 0 THEN 20
50 SsToP

X and Y are the formal parameters of the
user-defined function "Sum", while A and B are
the actual parameters.
When the function "Sum" is invoked in line 30,
the following action is taken by the runtime
package :

-The values inA and B, are converted to the

type of X, respectively Y, if the types of the
actual arguments do not match those of the
formal parameters.
-These values, once converted, undergo’ the

computation dictated by the function
definition (line 10), where the value of A is

equivalent to the value of X, and the value of

B is equivalent to the value of Y.

The conversion, which may occur when the

function is invoked, can be illustrated on the

same example, in which an additional statement
line would declare Y as an integer (5 INTEGER
YY). The following results would be obtained:

RUN

229
11
? 2 32769
-32765

At first glance, the second set of inputs does
not produce the expected result; this is due
to the fact that Y has been declared as_ an
integer; because integers are 16-bit signed
quantities, 32769 corresponds to -32767, hence
the final result. It is recommended to insure
type compatibility between the actual and the
formal arguments.

The number of arguments in a function call
also calls for some comments. If the number of
actual arguments in the call is less than the
number of formal arguments in the definition,
the extra arguments appearing in the
expression of the definition assume the value
they were given prior to the function call.
The following is an example:

BASIC-M 3.0 User’s Guide Page 10-03

FUNCTIONS AND PROCEDURES 10.1 -- User-defined functions

10 D?EF Sum(X,Y)=X+Y
20 INPUT A,B

50 Y=1

80 PRINT Sum(A)

RUN

? 100 200
101
?

If the number of arguments in the call is
greater than the number of formal arguments in
the definition, the extra actual arguments are
merely ignored. This is visualized on the
following:

10 DEF Sum(X,Y)=X+¥Y
20 INPUT A,B,C,D
30 PRINT Sum(A,B,C,D)

RUN
? 1:10 100 1000
il

The actual arguments argl, arg2,..., argN
involved in a function call may be any valid
expressions, and therefore may consist of

simple variables, array elements, ... or
user-defined functions. Complete arrays,
however, cannot be passed as arguments. Below

is another example of function calls.

1 REM Sum the elements of a matrix A

10 DIM A(4)

20 MAT INPUT A

30 DEF Sum(X,Y) =X+Y

40 PRINT Sum(Sum(Sum(A(1),A(2)),A(3)),A(4))

50 REM same aS ...0.

60 PRINT Sum(A(1) ,A(2)+A(3)+A(4))

Example 10.1 : Compute the roots of a quadratic equation.

10
20
30
40
50

DEF DET(R,S,T) =S*S-4*R*T \ function to return determinant
INPUT A,B,C \ enter coefficients of equation

AS="(C-3(.)2] +- ([C3(.)2])" \ define format string
D=DE-T (A,B,C) \ call function
IF D>=0 THEN 80

BASIC-M 3.0 User’s Guide Page 10-04

FUNCTIONS AND PROCEDURES 10.1 -- User-defined functions

60 AS=AS+"*i" \ if determinant is < 0, then
70 D=-D \ negate , and modify format string

80 PRINT USING AS,-B/(2*A) ,SQR(D)/(2*A) \ print roots
90 GOTO 20

RUN

?934 (9O*¥X*X + 3*X + 4)
-000.17 +- (000.65) *i
2? -10 4 6 (-LO*X*X + 4*X + 6)
000.20 +- (000.80)

?

Example 10.2 : Defining a string function.

10 DEF QUEST(AS) = AS+"?" \ function to append a
20 INPUT X$ \ question mark to a string
30 PRINT QUEST (XS)

40 PRINT QUEST (QUEST (QUEST (XS))) \ append 3 "?"

RUN

? "DOES IT WORK "
DOES IT WORK ?
DOES IT WORK ???

10.2 Procedures

Procedures are defined using a different form of the DEF
statement.

General form : DEF proc(argl, arg2, ...)

where

~proc, argl, arg2 are the names of the

procedure and formal arguments’ respectively,
which conform to the rules followed by BASIC-M
variable names. A procedure must not be given
the name of a variable or function.

Purpose : The DEF statement is used to define a series
of statements which may be later invoked by
writing the name of the procedure, possibly
followed by an argument list. Alternatively,
the CALL statement can be used to invoke the
procedure execution; the syntax of the CALL
statement is as follows:

CALL proc (argl, arg2 ,...)

Comments : -The procedure is exit on execution of the
first balancing RETURN statement which is
encountered.

~The procedure definition must appear before
any use of the procedure.

BASIC-M 3.0 User’s Guide Page 10-05

FUNCTIONS AND PROCEDURES 10.2 -- Procedures

-A procedure does not assume any type since no
result is returned to the calling program.

~The rules applying to the arguments of a
user-defined function apply also to the
arguments of a procedure (see paragraph 10.1).

The programmer must make sure that program
control is never transferred directly to the
procedure (unless carely planned), as would be
the case with the following program structure:

110 A=l
120 DEF DELAY (xX)

150 RETURN
160 PRINT A

The execution of the RETURN statement at line
150 would cause the stack to be updated
without any valid reason (no procedure call
was made before). This would result ina

runtime fatal error. To avoid this’ situation,

it is a good programming practice to precede a
procedure definition by a GOTO statement so as
to skip the procedure body in case of in-line
execution. The compiler issues a warning
message whenever a procedure (not a
user-function !) definition is not preceded by

a GOTO statement. A warning message does not

prevent the program from being executable.
These two detections (at compile and run time)
are illustrated below:

10 A=1

20 PRINT A

30 DEF DELAY (X)

40 FOR K=1 TO X

50 NEXT K

60 RETURN

70 PRINT 2*A

RUN

k* WARNING * PROCEDURE LINE 00030 (compilation)
1 (execution)

*** FATAL ERROR #133 AT LINE 60

Example 10.3 : Procedure to complement the bit #i of a byte
(bit #0 is the rightmost bit).

BASIC-M 3.0 User’s Guide Page 10-06

FUNCTIONS AND PROCEDURES 10.2 -- Procedures

10 BYTE BYT, PIA ADDR $8008

20 GOTO 100 \ skip procedure definition
30 DEF COMP (BYT,I) \.- procedure definition

40 BYT[I]=IEOR(BYT[TI] ,1)

50 RETURN \... procedure physical end ..
90 REM ---- MAIN ----

100 INPUT K

110 COMP (PIA,K) \ invert bit #K of PIA
120 IF PIA = 0 THEN STOP

Example 10.4 : Exchange two elements of a string vector.

10 DIM AS (3)
20 GOTO 100
30 DEF EXG(I,J) \ procedure definition

40 TS=AS(T) \ :
50 AS$(TI)=AS$ (J) \ procedure body
60 AS$(J)=TS \ :
70 RETURN \ physical end
80 REM ---- MAIN ----

100 MAT INPUT AS
110 MAT PRINT AS
120 EXG(1,2)
130 MAT PRINT AS

RUN

? "pO ","YOU ","UNDERSTAND"

DO YOU UNDERSTAND (due to line 110)

YOU DO UNDERSTAND (due to line 130)

Example 10.5 : .The sample program below makes use of 3
procedures to set a bit in a byte, to store
the byte in a buffer when all eight bits have
been set, and finally to output the buffer
once full.

This example is intended to demonstrate the
nesting of procedures.

10 BYTE BUF(3),II
20 GOTO 500

30 REM

100 REM ------ PUT REC --------
110 DEF PUT_REC ~— \ when buffer is full, then
120 MAT PRINT BUF \ print it and
130 P=0 \ reset pointer
140 RETURN
150 REM ------ PUT BYTE -------
200 DEF PUT _BYTE(I)
210 INDEX=(P+7)/8
220 BUF (INDEX) =I \ store byte according to
230 IF INDEX=3 THEN PUT_REC \ value of pointer

BASIC-M 3.0 User’s Guide Page 10-07

FUNCTIONS AND PROCEDURES 10.2 -- Procedures

240 RETURN

250 REM ------ PUT_BIT --------
300 DEF PUT _BIT(J) \ set bit currently pointed

310 ITI[7-IAND(P,7)]=J \ to by P to the value J

320 P=P+1 \ update pointer, and store
330 IF IAND(P,7)=0 THEN PUTBYTE(II) \ full byte if

340 RETURN \ appropriate.
350 REM
360 REM ***** MATIN PROGRAM *** kk kkx

500 P=0 \ initialize pointer.

730 PUTBIT(K)

In some cases, to speed up the execution of the overall
program, it is more efficient to code certain tasks in
assembly language. This section discusses how to link these
portions of codes to a BASIC-M program.

The assembly language programs must obey the following rules:
-they must be structured as subroutines, and
therefore should terminate with an "RTS"
instruction or the like.

-~they must be declared as "external"
subroutines (refer to 7.4).

Depending on the context (the way they are invoked), the
assembly language subroutines will be used as procedures or
as user-defined functions (these latter only are supposed to
return a value onto the MC6809 User Stack.).

Context : »When an external subroutine is called like a
procedure, i.e, by ‘just writing its name
optionally preceded by the CALL keyword, it
executes exactly as a procedure does. The
subroutine exits upon execution of the "RTS"
or equivalent instruction. The following are
valid examples of assembly language procedure
calls.

10 EXTERNAL ERASE ADDR $D400, Switch $D430

35 IF SCREEN (22,80) #$20 THEN ERASE

60 CALL Switch (X)

85 Switch

-When an external subroutine is referenced in
an expression, it is used as a user-defined
function, and therefore must return a_ single
result on the user stack. When used in this

BASIC-M 3.0 User’s Guide Page 10-08

FUNCTIONS AND PROCEDURES 10.3 -- Assembly language interface

context, assembly routines whose name _ ends

with a "S" are expected to return a string
result (32 bytes), whereas the others are

Supposed to return a real data onto the user

stack (5 bytes). The format of the returned

data must agree with the BASIC-M internal
representation of the character Or real
variables (refer to chapter 3).

Arguments : -When arguments are associated with an
external subroutine call, the subroutine is

entered with the MC6809 Y-register pointing to
a table that contains the addresses of the
arguments; this table is structured as
follows:

! FDB Argl ! <----- Y-REG
! FDB Arg2 !

{ : !

! FDB ArgN !

! FDB O !

where each line stores a 16-bit address,

with the last one being zero (terminator).

-The actual arguments may be simple variables,
Or expressions. The user is responsible for
insuring type compatibility between the
BASIC-M variables and his assembly language
variables: in other words, BASIC-M byte
variables must be handled as bytes, integer as
16-bit words, ... etc.

Example 10.6 : Defining an assembly subroutine to erase _ the
EXORset display (alphanumeric memory based at
hex address SE000).

10 BYTE Screen(22,80) ADDRESS $E000
20 EXTERNAL ERASE ADDRESS $D400
30 ERASE

Assembly subroutine

ORG $D400

SCREEN EQU S$EO00. Display base address

ERASE LDX #SCREEN

LDD #52020 Two blanks
ERS STD ,X++

CMPX #SCREEN+2048
BNE ERS Go on erasing
RTS

BASIC-M 3.0 User’s Guide Page 10-09

FUNCTIONS AND PROCEDURES 10.3 -- Assembly language interface

Example 10.7 : Change all upper-case characters of a string
to lower-case. This is an example of an
external assembly language user function call
with a literal expression as argument.

10 EXT LOWER$ ADRRESS $D500
20 INPUT AS,BS$
30 PRINT LOWERS (AS$+BS$)
40 GoTo 10

RUN

? "BASIC-M ","User’s Guide"
basic-m users guide
?

Assembly language function

ORG $D500

33 C8 EO LOW LEAU -32,U create room for string
6F C4 CLR ,U default to empty string
AE A4 LDX 7X get string address
27 13 BEQ EXIT no argument in call
86 1F LDA #31
E6 86 LOOP LDB A,X transfer string to stack

Cl 41 CMPB #°A upper-case char ?
25 06 BLO IGNOR
Cl 5A CMPB #°2 (the string length byte is
24 02 BHI IGNOR not an upper-case char code)
CA 20 ORB #$20 yes. change to lower-case
E7 C6 IGNOR STB A,U store in result string
4A DECA tally counter
2A EF BPL LOOP

39 EXIT RTS All done. Return.

Page 10-10

CHAPTER 11

This chapter covers the functions defined in BASIC-M,

which fall into five categories. The first part of the
chapter lists and describes these while the second part
contains several application examples.

11.1 Trigonometric functions

SIN (X)

COS (X)

TAN (X)

ATN (X)

ATN (X,Y)

ASN (X)

ACS (X)

SINH (X)

COSH (X)

TANH (X)

COTH (X)

sine of X radians.

cosine of X radians.

tangent of X radians.

arctangent of X. result in radians.
-PI/2 < result < +PI/2.

ATN (X/Y).

arcsine of X. result in radians.

arcosine of X. result in radians.

hyperbolic sine of X.

hyperbolic cosine of X.

hyperbolic tangent of X.

hyperbolic cotangent of X.

11.2 Other mathematical functions

EXP (X)

LOG (X)

DCLOG (X)

SQ (X)

SQR (X)

ABS (X)

SGN (X)

BASIC-M 3.0 User’s Guide

natural exponent of X.

logarithm of X to the base e.

logarithm of X to the base 10.

square of X (X*X).

square root of X.

absolute value of X.

sign of X.
SGN (X)=-1 if X<0.
SGN (X)=0 if X=0.

Page 11-01

BUILT-IN FUNCTIONS 11.2 -- Other mathematical functions

SGN(X)=1 if X>0.

SGN (X,Y) SGN(X,Y) = ABS(X) * SGN(Y).

INT (X) truncate value of X to an integer.

MOD (X,Y) modulus. returns the remainder of the division
of X by Y.

RND generates a pseudo random number between 0 and

1. A new random number is produced each time
the "RND" function is invoked within the
program; the sequence of random numbers using
"RND" is identical each time a program is run.

RND (X) initializes the congruential series to the
value of xX and returns a random number.

Because random numbers generation depends’ on
the initial value of the series,
RND (X1)=RND(X2) if X1=X2.

X must be in the range 0,1. Note that RND(0)
is equivalent to RND.

FIX (X) returns the 2-byte integer corresponding to
the real value X (-32768 <=X<= 32767).

FLOAT (X) returns the 5-byte real corresponding to the
integer value X.

11.3 Logical functions

TAND (X,Y) logical AND of X and Y.

IOR (X,Y) logical inclusive OR of X and Y.

IEOR (X,Y) logical exclusive OR of X and Y.

ISHFT (X,Y) shifts the binary value of X by Y positions to
the left if Y>O or to the right if y<0.

11.4 String functions

LEN (X$) returns the length of XS.

LEFTS (X$,Y) returns the leftmost Y characters of the

string XS.

RIGHTS (X$,Y) returns the rightmost Y characters of the

string XS.

MIDS (X$,Y,2Z) extracts a string from the string X$, which

begins Y positions from the left and continues
for Z characters.

TRIMS (XS) removes trailing blanks from XS.

BASIC-M 3.0 User’s Guide Page 11-02

BUILT-IN FUNCTIONS 11.4 -- String functions

ASC (X$) returns the numeric value of the code of the
first ASCII character within a string XS.

CHRS (X) returns a single character whose ASCII code is

equivalent to the value of X.

STRS (X) returns the ASCII form of the numeric value xX
as if it were printed.

STRS (X,YS) same as STRS(X) except that the format

directives are taken from the string YS.

VAL (X$) returns the numeric constant equivalent to the

numeric string X$. Thus VAL("4E3")=4000.

SUBSTR(X$,Y$) returns the position of substring Y$ in string
X$. If substring not found, returns 0.

11.5 Miscellaneous functions

PEEK (X) returns the byte stored at location X.

POKE (X,Y) stores the byte value of Y at location X.

Note that this is not a function, in that it
does not return any value to the calling
program. It is listed here as this statement
performs the reverse operation of the PEEK
function.

LOC (Arg) returns the address of Arg. Arg must be a
simple variable or subscripted variable name.

TAB (X) causes tabulation to column X.
Only allowed in a PRINT statement.

POS returns the current position of the cursor or
print head of the console device. The POS
value is updated only each time the print
buffer is flushed.

ERR returns the code of the error that occured
last (see chapter 8). This is a
read-modify-write function.

FKEY returns the code of the function key which was
hit last (see chapter 8). This is a
read-modify-write function.

EOF (X) set to one when end of file X is reached (see
chapter 12). When xX has the value 0, EOF

allows to check if the pointer associated with
the READ and DATA statements is pointing to
the end of the data table (See paragraph 5.3);
if yes, EOF returns a one.

11.6 Default type of the arguments

BASIC-M 3.0 User’s Guide Page 11-03

BUILT-IN FUNCTIONS 11.5 -- Miscellaneous functions

As already mentioned, BASIC-M takes care of the conversion of
the arguments involved in a function call to the type of the
formal arguments. These conversions, when necessary, consume
some of the overall program execution time. When speed is at
a premium, it is of benefit that the types of the actual
arguments match those of the formal arguments. The type of
the formal arguments involved in the BASIC-M built-in
functions is shown in the next table.

function Argl Arg2 Arg3 Result

SIN (X) R
COS (X) R

TAN (X) R
ATN (X,Y) R
ASN (X) R

ACS (X) R
SINH (X) R

COSH (X) R

TANH (X) R
COTH (X) R

EXP (X) R
LOG (X) R

DCLOG (X) R
SQ (X) R

SOR (X) R

ABS (X) R

SGN (X,Y) R
INT (X) R
MOD (X,Y) R

R

R

I

I

I
I

I

S

Ss

S

S
S

S

B
R

S

iS)
I

I

B

[
(
w
m
w
i
w
i

I

RND (X)
FIX (X)
FLOAT (X)
IAND (X,Y)
IOR (X,Y)
IEOR (X,Y)
ISHFT (X,Y)
LEN (X$)
LEFTS (X$,Y)
RIGHTS (X$,Y)
MIDS (XS ,Y,2)
TRIMS (XS)
ASC (XS)
CHRS (X)
STRS (X,Y$)
VAL (X$)
SUBSTR(X$,Y$)
PEEK (X)
POKE (X,Y)
LOC (X)
TAB (X)
POS
ERR - - =
FKEY - - =
EOF (X) B - ~

l
t

w
W
w
w
w
m
w
i
n
d
r
e
e
!

|

{
1

I

1
w
i
n
i
n
i

|

B = byte I integer R i cal

0)

se)

—
 n
 u n ct

oa w =]

QA

BASIC-M 3.0 User’s Guide Page 11-04

BUILT-IN FUNCTIONS 11.6 -- Default type of the arguments

11.7 Illustrative examples

Example 11.1 : Using the RND function.

10 PRINT RND, RND \2 different numbers
20 REM are produced because no argument
30 PRINT RND(.2),RND, RND(.2)

40 REM "RND(.2)" always yields the same number

RUN

1.39698386E-09 9.15583223E-05
0.199987794 7.32536428E-05 0.199987794

Example 11.2 : Display a date in the form
Date : MM/DD/YY
on the bottom line of the EXORset screen.

10 DIM DATES(1) ADDRESS SE6BO

20 BYTE Dummy ADDR DATES
30 INPUT Date

40 DATES=STRS (Date,"Date : [C2/2/2]")

50 Dummy=ASC(" ")

60 GOTO 30

RUN

? 70479
? Date : 07/04/79

Note : line 50 blanks the location corresponding
to the byte that contains the length of the
string DATES.

Example 11.3 : Count the number of characters "M" in an input
string AS.

10 INPUT AS \ input string
20 K=0 \ default to no "M"

30 Posit = SUBSTR(A$,"M") \ search for next "M"
40 IF Posit=0 THEN 80 \ none. exit.
50 K=K+1 \ another one. update counter.

60 AS=RIGHTS (A$,LEN(AS$)-Posit) \ shrink string.

70 GOTO 30 \ go on searching for next "M"
80 PRINT K \ print amount of "M" found
90 GOTO 10

“RUN

? BASIC-M MANUAL

2
?

BASIC-M 3.0 User’s Guide Page 11-05

BUILT-IN FUNCTIONS 11.7 -- Illustrative examples

Example 11.4 : Using "POS" to print column numbers.

10 LINE=60
20 PRINT
30 PRINT " "e
40 PRINT USING "[{1]",POS/10;
50 IF POS # 1 THEN 30
60 PRINT USING "[1]",MOD(POS,10) ;
70 %X.IF POS # 1 THEN 60

RUN

1. 2 3 4
123456789012345678901234567890123456789012

(partial listing of the result)

Page 11-06

BASIC-M 3.0 User’s Guide

CHAPTER 12

When running in an XDOS/MDOS environment, a BASIC-M
program may transfer data to or from disk files. This chapter
describes the disk I/O statements and the file interface

between BASIC-M and XDOS/MDOS floppy disk operating system.

12.1 General description

BASIC-M file management package uses some XDOS/MDOS
routines to interface with disks, that means file
input/output is allowed only within a program running under
XDOS/MDOS control. The user is recommended to be familiar
with the file and disk structures described in the MDOS III
User”°s Guide or the xXDOS User’s Guide prior to
manivulating files with BASIC-M.

Since BASIC-M performs all its I/O transfers through
logical units, a number has to be assigned to each file when
it is opened: this number must be a positive integer, not
greater than 255 and may not be a standard peripheral logical

unit number.

There are three file access types available with
BASIC-M: sequential, random and indexed. These will be
discussed in paragraph 12.1.1.

Also, there are three open modes: for input only, for
output only, for both input and output (update).

IMPORTANT WARNING

SINCE THE DISK FILE INPUT/OUTPUT PACKAGE AND THE DISK

OPERATING SYSTEM ARE NOT REENTRANT, A PROGRAM WHICH

MANIPULATES DISK FILES MUST NOT BE INTERRUPTED. INTERRUPTING

A DISK FILE I/O INSTRUCTION MAY DESTROY THE DISK DATA AND

FILE STRUCTURE. DO NOT USE "ON KEY", "ON NMI", "ON IRQ", "ON

FIRQ" AND DISK I/O SIMULTANEOUSLY.

12.1.1 File types

Three file tvpes are available :

sequential the file is read or written one record after
another, beginning with the first one. No
positioning is allowed. This type follows the
ASCII source record structure described in the
XDOS user*s guide or the MDOS III User’s
Guide.

- Page 12-01

DISK FILE INPUT/OUTPUT 12.1 -- General description

random a random file is made of fixed length records,
each of them may be addressed by its ordinal
position in the file, beginning with record l.
Each record physically exists, even if it has
not been written into it, except those records

following the last record written in the file.
This means that any unused record between
existing records occupies the same amount of
room in the file as if it were initialized.

indexed as a random file, an indexed file is made of
fixed length records. A table follows the last

data record in the file: it contains numbers
which are used as record access keys. An index

key is not the position of the record in the
file, but only a number assigned to it. Since
records are entered sequentially in the file
when a new key is used, no “holes" appear
between existing records. For example, an

indexed file in which only records with index
keys 4 and 2097 have been written, contains

effectively two records.

Use of random and _ indexed files is very similar; the
choice between these two file structures is a matter of
access speed and mass storage occupation: a random file
requires more room than an indexed file if the records used
are not contiguous, but the access is much faster, especially

when the file contains a lot of records. The user has then to
choose the most convenient file structure, depending on its
own application requirements.

BASIC-M 3.0 User”s Guide Page 12-02

DISK FILE INPUT/OUTPUT 12.1 -- General description

For listing purposes, any type of file is created as an
XDOS/MDOS ASCII file, however, the physical organization
Slightly differs from one file type to another.

! sequential indexed random !

! !

!record length variable fixed fixed !
! !

! maximum !
!record length 255 bytes 255 bytes 255 bytes !

! !

! space !
! compression yes no no !
! used |

! !
! RIB entries !

! (see XDOS/MDOS !

'User’s Guide) !
! RIBSLB 0 1 2 !

| !

{ RIBSSL) number of 0 !

i data sectors !

! in file. !

! !
| RIBSSA 0 record record !

! length. length. !
! !
! RIBSLA 0 MS byte : 0 !
! number of !

! sectors in !

! index table. \

! !
See XDOS/MDOS User’s Guide for file structure and RIB
descriptions.

From this table, we see that a sequential file is
completely compatible with XDOS/MDOS software, whereas’ the
random and indexed files are not standard because special
entries in RIB are used.

Care should therefore be exercised when manipulating
random and indexed files with XDOS/MDOS subsystems or other
non-BASIC-M programs:

Copying one of these files will destroy the pointers in
the destination file.
MDOS REPAIR command will find discrepancies in RIB and
will generate a warning message.
Garbage records will appear at the end of an _ indexed
file listing ; they are due to the output of the index
table.

BASIC-M 3.0 User’s Guide Page 12-03

DISK FILE INPUT/OUTPUT 12.1 -- General description

File accesses

File accesses refer to the operations performed for
transferring data to or from a record in the file. The access
of a specific file is declared in an OPEN statement (see
paragraph 12.2).

For each opened file, there is a pointer. This pointer

indicates the file record on which the next data transfer
will be performed. After complete transfer of a record, the
pointer points to the next record, which allows consecutive |
record transfer through execution of a program.

This pointer may be modified at each data transfer
request (INPUT AT, PRINT AT) or by a REWIND statement (see
paragraph 12.6): this allows the user to transfer data to or
from a specific record without reading or writing the file
completely. Use of pointer positioning clauses depends of the
access in use within the file:

Sequential The positioning requests issued within data
transfer statements are ignored. The user may
only REWIND the file.

Random Positioning requests within data transfer
Statements are optional: If not specified,
transfers occur sequentially, else, the

integer value provided by the request is
considered as the position in the file of the
record to be accessed. Subsequent accesses
without positioning request are performed on
the consecutive records. The first record in
the file is in position 1. REWINDing a_ random
file will cause the next data transfer to
occur on record position 1, unless there is a
positioning request issued by the data
transfer statement.

Indexed The positioning clause in data transfer
statements is compulsory. The value provided
by this clause is the index key, and will be

searched in the index table. Index key may he
any integer value between -32768 and +32767.
If the positioning request clause is omitted,
the data transfer will be performed on the
record whose index key is 0. A REWIND
Statement has no effect when issued on a_ file
open for indexed access.

Any of the three file types may be opened for sequential
access, while only random files may be open for random access

and only indexed files for indexed access.

When a record is not terminated (the previous file
access statement was a PRINT and the last delimiter was a
comma or a semi-colon), the only statement which will
continue the same record is a PRINT without pointer
positioning clause. A record may never be continued in an
indexed file.

BASIC-M 3.0 User”s Guide Page 12-04

DISK FILE INPUT/OUTPUT 12.2 -- The OPEN statement

12.2 The OPEN statement

This statement is used to open a file and assign it to a
logical unit number.

General form : OPEN #LU,filename,mode,access,recl

where :

LU is an expression representing the logical unit
number to be assigned to the file. After
evaluation, it is truncated to its integer

value. This must be a valid disk logical unit
number (3 <= LU <= 255).

filename is a string variable or constant containing
the name of the file to be opened. It must be
a valid XDOS/MDOS file name. The default
suffix is "SA", the default drive is 0 (See
XDOS/MDOS User’s Guide for the complete file
name description).

mode is the transfer mode used within the file. It
May be
I for input
O for output

‘U for update (input and output).

access this parameter specifies the access type in
use at each data transfer. This can be :
SEQ for sequential access
RAN for random access

IND for indexed access

This parameter is optional; if not provided,
SEQ is assumed.

recl is an optional integer constant representing
the record length in the file. This parameter
is not used if the file to be opened already
exists or if the file is accessed
sequentially. If not provided, the global line
length parameter value is used (see paragraph
5.6).

BASIC-M 3.0 User’s Guide Page 12-05

DISK FILE INPUT/OUTPUT 12.2 -- The OPEN statement

Depending on mode, access and file existence, OPEN
performs different operations :

file exists sequential indexed random

input mode open for open for ‘open for

output mode

input, point
to the first

record in

the file.

fatal error.

input, no

file pointer
positioning.

fatal error.

input, point

to the first
record in

the file.

fatal error.

update mode open for open for open for
I/O, point I/O, no file I/O, point
to the end pointer to the first
of file. positioning. record in

the file.

new file sequential indexed random

input mode

output and
update mode

file is not created, end of file flag
is set, file may only be tested

(see parag

create and

open file.

create and

open file,
initialize

RIB values,

build an

empty index

table.

raph 12.4) or closed.

create and

open file,
initialize

RIB values.

Om

OD

Om
e

Om

om
e

fm
m

fm
m

om
e

Om
e

fm

Om

Om

Om

Om

Om
e

Om
e

Om
e

om
e

=>

om
e

cm
e

Cm

cm
e

Om

Om
e

Om
e

Om

A maximum of five files may be open at the same time. If
more files are needed, an opened file must be closed before
opening another one.

12.3 The file INPUT statement

This statement is used to position the file pointer and
accept data from the file.

General form : INPUT #LU AT key,varl,var2,...,varn

where °

LU is an expression whose result is translatable
to a byte value, representing the logical unit

BASIC-M 3.0 User’s Guide Page 12-06

DISK FILE INPUT/OUTPUT 12.3 -- The file INPUT statement

number assigned to the file upon which data
transfer will be performed.

key is an expression translatable to an _ integer
value which will be used as the index key. The
"AT key" clause is optional. See paragraph
12.1.2 for details about file pointer
positioning.

varl,var2,varn are variables into which the input values are
to be stored. If there are more values in the
record than the number of variables in the
list, the excess values are ignored. If there
are not enough values in the record to fill
all variables, the last variables in the list
are unchanged. This allows variable
initializing with a default value before
input. On the other hand, it constraints the
user to clear the variable before each input
if the previous variable content is not to be
considered as a default value.

An illegal logical unit number causes an error message
to be printed and data to be accepted from the console
keyboard.

Positioning the file pointer (by the AT clause) with a
valid index key always resets the end of file flag.

The end of file flag is set upon statement completion if

The end of a sequential file has been read.
A record located beyond the last record of a random file
has been read.
An index key which is not yet entered in the _ table
(uninitialized record) has been given for the
positioning of an indexed file pointer.

After an end of file condition has occured, consecutive
read without positioning the file pointer will cause a fatal
error.

Care should be taken if reading of a sequential file
opened in update mode is needed : the file pointer is at end
of file. To read the existing records in file, a REWIND
statement (see paragraph 12.6) must occur prior to the first
INPUT statement execution.

Data input from an uninitialized random file record is
not detected and the data read are unsignificant, since the
file is not zero filled at creation time.

Example 12.1: The following program interprets operation
codes located in a random file considered as a
"virtual memory" (the program which creates
the file is not shown). Each record is 40

BASIC-M 3.0 User”s Guide Page 12-07

DISK FILE INPUT/OUTPUT 12.3 -- The file INPUT statement

bytes long and contains at most two numbers:
the

the

one is the operation code or data,
second one is an optional parameter

representing the record number upon which the
operation must be performed. Operation codes
are defined as follows.

function

Jump to record specified by the
parameter.

Load the first number contained in
the record pointed by the parameter
into the accumulator.
Add to the accumulator the first
number contained in the record
pointed by the parameter
Multiply the accumulator by the
first number contained in the record
pointed by the parameter.
Store the accumulator content in the

record pointed by the parameter.
Input a number from the keyboard and
store it in the record pointed by
the parameter.
Print the first number contained in
the record pointed by the parameter.
Stop the execution.
Test the first number of the’ record
pointed by the parameter: if zero,
do not execute the next operation
code.

10 OPEN #4,"MEMORY",U, RAN \ open virtual memory file
20 PC=l1
30 ACC=0

\ initialize program location counter
\ reset accumulator

40 INPUT #4 AT PC ,OPCODE,MEM \ fetch op-code & operand

50 IF OPCODE<1 OR OPCODE>9 THEN 390 \ illegal op-code

60 PC=PC+1 \ point to next program location
70 ON OPCODE GO TO 80,110,140,180,220,250, 290,330,350
80 REM -JUMP-

90 PC=MEM

100 GO TO 40

= 1

LLO REM -LOAD ACCUMULATOR- OPCODE = 2

120 INPUT #4 AT MEM ,ACC

130 GO TO 40
\ MEM is value address

140 REM -ADD MEMORY TO ACCUMULATOR- OPCODE = 3

150 INPUT #4 AT MEM ,DUMMY

160 ACC=ACC+DUMMY

170 GO TO 40
180 REM -MULTIPLY ACCUMULATOR BY MEMORY- OPCODE = 4
190 INPUT #4 AT MEM ,DUMMY
200 ACC=ACC*DUMMY

210 GO TO 40
220 REM -STORE ACCUMULATOR IN MEMORY- OPCODE = 5
230 PRINT #4 AT MEM ACC

240 GO TO 40
250 REM -INPUT A VALUE AND STORE IN MEMORY- OPCODE = 6

BASIC-M 3.0 User’s Guide Page 12-08

DISK FILE INPUT/OUTPUT

260 INPUT DUMMY

270 PRINT #4 AT MEM DUMMY
280 GO TO 40

290 REM -PRINT MEMORY CONTENT-—

300 INPUT #4 AT MEM ,DUMMY
310 PRINT DUMMY

320 GO TO 40

330 REM -STOP- OPCODE = 8

340 STOP " **** END OF RUN
350 REM -SKIP IF ZERO-

360 INPUT #4 AT MEM,DUMMY

370 IF DUMMY = 0 THEN PC = PC + 1
380 GO TO 40
390 REM
400 STOP "**x* ILLEGAL OP CODE
410 END

12.4 The end of file test

OPCODE

12.3 -- The file INPUT statement

OPCODE = 7

9

REKKEN

There are two non-Standard forms of test statements used
to take special actions upon reading the end of a file.
These are :

IF EOF(LU) THEN action
WHEN EOF (LU) THEN action

where 3

LU is an expression representing the logical unit
number on which the file to be tested is open
(see paragraph 12.3).

action

which does

is a line number or an executable statement

include a THEN clause

(exceptions : FOR, NEXT). See paragraph 5.11
for a complete description.

The EOF function value is true if the end of file flag
of the requested logical unit is set. That means the action
will be taken if the end of the file has been encountered or
an unknown index key has been used in the last file access.

Immediately after opening a file in input mode, the
function result is true if the file does not exist.

In addition, if the last DATA item (see paragraph 5.3)
has been read, EOF(0) is true.

BASIC-M 3.0 User’s Guide Page 12-09

DISK FILE INPUT/OUTPUT 12.4 -- The end of file test

Example 12.2

STOP

READY

Note

execu

REM THIS PROGRAM LISTS ITSELF ON THE CONSOLE,
REM ASSUMING IT IS LOCATED IN A FILE CALLED "PROG",

REM WITH SUFFIX "SA" ON DISK DRIVE 1.
REM

OPEN #10,"PROG:1",I \ OPEN ITSELF, SE QUENTIAL INPUT

AS="""\\ INITIALIZE VARIABLES
BS=" Ww -

cs=" uw

INPUT #10 ,AS,BS,CS$ \ READ ONE RECORD

IF EOF(10) THEN STOP "END OF FILE" \ EXIT WHEN EOF

PRINT AS$;B$;C$ \ NOT EOF, WRITE RECORD TO CONSOLE

GO TO 60 \ GO READ NEXT RECORD
END

END OF FILE

that this example is the program listing AND the
tion too.

Example 12.3 :

10 REM PROGRAM TO CONVERT A NUMBER IN ROMAN NUMERALS.

20 REM

30 DATA 1000,"M",900,"CM",500,"D",400,"CD"
40 DATA 100,"C",90,"XC",50,"L",40,"XL"
50 DATA 10,"X",9,"IX",5,"V",4,"IV"
60 DATA 1,"I"

70 REM

80 INPUT "GIVE ME A NUMBER (0 TO STOP) ",N

90 REM
100 IF N<=0 THEN’ STOP

110 RESTORE \ rewind data pointer
120 IF EOF(0) THEN 180 \ if end of data , all done.

130 READ I,AS$ \ fetch a test value and roman equivalent

140 IF I>N THEN 120 \ go fetch next test value if too big
150 N=N-I \ update number by the current test value
160 PRINT AS; \ print the roman equivalent of test value
170 GO T0 140 \ go see if value can be subtracted again

180 PRINT \ end of roman numeral output
190 GO TO 80 \ go prompt user on next line
200 END

READY

RUN

GIVE ME A NUMBER (O TO STOP) ?1979

MCMLXXIX

GIVE ME A NUMBER (0 TO STOP) ?4602

MMMMLCITI

GIVE ME A NUMBER (O TO STOP) ?0

STOP

BASIC-M 3.0 Users Guide Page 12-10

DISK FILE INPUT/OUTPUT 12.5 -- Output transfer to a file

12.5 Output transfer to file via the PRINT statement

To output data to a file, an extension of the PRINT
statement is used whose general form is given below :

PRINT #LU AT key USING format, expl dell ... expn deln

See paragraph 5.5 for the description of expl to expn = and

dell to deln.

See chapter 6 for the “USING format," optional clause

description. :
See paragraph 12.3 for the description of LU parameter’ and
for the "AT key" optional clause description.

The effect of this statement is the output of the
variable list content to the file opened on logical unit
number "LU", at the record numbered "key".

If the file is opened in input mode, a fatal error
occurs.

If the positioning clause is not specified or ignored
(see paragraph 12.3), the output transfer is made to the

currently pointed record. If one record is not sufficient to
hold all data output, the remaining data will be stored in
the consecutive records (see paragraphs 5.6 and 12.2).

Consecutive records in an indexed file are records whose keys
are consecutive.

Remember that indexed or random files have fixed length
records: If the record is not completely filled with the
output data, trailing blanks are added up to the record
length (These spaces may appear as data if read back in a
string variable by an INPUT statement).

Writing to an unexisting record (or unknown key) extends

the data file space (and the index table) automatically.

Care must be exercised when accessing sequentially a
non-sequential file: output transfers may completely destroy

the file structure and/or the index table.

Example 12.4 : A deck of punched cards has been accidentally
shuffled! The shuffled card deck image has

been put in a sequential disk file by an
external program. Providing the cards are
numbered from 10 to 20000 by step of 10 in
columns 1 to 5 and there is a space in column
6, re-build the original card deck image in

BASIC-M 3.0 User’s Guide Page 12-11

DISK FILE INPUT/OUTPUT 12.5 -- Output transfer to a file

the same file.

10 OPEN #3,"CARDS",U \ update original file
20 OPEN #25,"TEMP",U, IND ,80 \ indexed work file

30 REWIND #3 \ update sequential file - read it first
40 ASs="" \ initialize variables
50 BS=""

60 cs=""

70 %§INPUT #3 ,NUMBER,AS,BS,CS \ input a card image
80 IF EOF(3) THEN 110 \ file transferred to work file
90 PRINT #25 AT NUMBER AS;BS$;C$ \ key is card number

100 GO TO 40 \ go input next record
110 REWIND #3 \ rewrite sequential file
120 FOR NUMBER=10 TO 20000 STEP 10

130 INPUT #25 AT NUMBER ,AS,BS$,CS$ \ read work file
140 IF EOF(25) THEN STOP "CARD MISSING"

150 PRINT #3 USING "[C5] ",NUMBER;A$;BS$; TRIMS (CS)

160 NEXT NUMBER \ transfer next record
170 STOP "DONE" \ card deck sorted, exit.
180 END

This statement is used to position the record pointer of
a file at the first record in this file.

General form : REWIND #LU

See paragraph 12.3 for the description of the LU parameter.

The REWIND statement has no effect when applied to an
indexed file.

REWIND #0 is equivalent to the RESTORE statement (See
paragraph 5.3).

12.7 The CLOSE statement

This statement is used to close a file and release its
assigned logical unit number. CLOSE can also be used to
provide for file truncation and deletion.

General form : CLOSE #LU (normal)

CLOSE #LU,T (truncate)

CLOSE #LU,D (delete)

See paragraph 12.3 for the description of the LU parameter.

Although this is done implicitly by the STOP and END

BASIC-M 3.0 User’s Guide Page 12-12

DISK FILE INPUT/OUTPUT 12.7 -- The CLOSE Statement

statements and by the normal termination process of a BASIC-M
program, it is often needed to close a file before
terminating a program, for example to open another file or to
change the open mode. The CLOSE statement allows it.

The table below summarizes the actions performed on the file
for the second and the third form of the close statement. The
actions taken depend on the file open mode.

OPEN MODE ; T D

SEQ

RAN Input normal file closing normal file closing
IND

IND Output normal file closing file deleted
Update

SEQ Output normal file closing file deleted
RAN

RAN Update file is truncated after file deleted
the last referenced record

SEQ Update file is truncated after file deleted
the last referenced record
although the file pointer is
positioned to the logical
end of the file upon file
opening

- the "last referenced record" is the higher order record
which has been read or written (not the one that
chronologically preceded the CLOSE statement).

- CLOSE #LU,T without any prior reference to the file,
deletes the file.

Example 12.5 : To concatenate several files and store in

another one (MERGE source files).

BASIC-M 3.0 User’s Guide Page 12-13

DISK FILE INPUT/OUTPUT 12.7 -- The CLOSE Statement

10 OPEN #3,"RESULT",O \ create result file
20 DATA "FILE1","FILE2","FILE3","FILE4","FILE5"

30 IF EOF(0) THEN STOP "DONE" \ no more exist, exit

40 READ AS \ fetch a file name
50 OPEN #4,AS,I \ open input mode, sequential access

60 IF EOF(4) THEN 140 \ file not found, open next file

70 AS="" \ initialize variables
80 Bps=""

90 cs=""

100 INPUT #4 ,AS$,BS,CS$ \ read a record from source file

110 IF EOF(4) THEN 140 \ end of input file, go open next
120 PRINT #3 AS;B$;CS \ output record to destination file

130 GO tO 70 \ go input next record
140 CLOSE #4 \ close current source file
150 GO TO 30 \ go open next input file
160 END

12.8 Alphanumeric access key
(ee a ee ee cee ee ee ee ee ee ee ee ee ee ee

The BASIC-M user will sometimes need to index files with
alphanumeric strings: BASIC-M does not provide such a
facility since for each application, the user may find a
specific and appropriate coding algorithm. However, the
following example illustrates the use of an indexed file as a
phone directory. The first program must be used to enter or
modify records in the file. The second program is executed to
consult the phone directory. A hashcoding routine is called
before each data transfer with the file to find the numeric
access key assigned with the given string.

Example 12.6 : Phone directory

10 INTEGER AKEY,CHAR \ Hashcode routine variables
20 GO fT0 200 \ skip procedure
30 DEF HASH(KEYS,LU)

40 AKEY=0 \ initialize access key
50 AS=KEYS+" "\ 31 chars.
60 FOR I=1 TO 31 \ use all characters
70 CHAR= ASC(MIDS$(AS$,I,1)) \ next character code
80 AKEY= IOR(ISHFT(AKEY,3), ISHFT(AKEY,-13)) \ rotate
90 AKEY= IEOR(AKEY,CHAR) \ 3 bit left, 13 right

100 NEXT I \ same with next character code
110 INPUT #LU AT AKEY ,BS \ read record

120 IF EOF(LU) OR (AS$=BS$S) THEN RETURN

130 AKEY=AKEY+1 \ redundant definition, see next record
140 GO TO 110 \ loop until found or empty record
150 REM

160 REM --MAIN PROGRAM--

170 REM
200 OPEN #4,"PHONE",U,IND,42 \ open phone directory file
210 INPUT "GIVE NAME AND PHONE NUMBER ",NAMES , PHONE

220 IF NAMES="END" THEN STOP \ type END to quit
230 HASH(NAMES,4) \ compute numeric access key
240 PRINT #4 AT AKEY USING "[31] [X] [9]",NAMES, PHONE

250 GO TO 210 \ recorded, go input next name

BASIC-M 3.0 Users Guide Page 12-14

DISK FILE INPUT/OUTPUT 12.8 -- Alphanumeric access key

10 INTEGER AKEY,CHAR \ Hashcode routine variables
20 GO TO 200 \ skip procedure
30 DEF HASH(KEYS,LU) \ same as in creation program
40 AKEY=0
50 AS=KEYS+" "
60 FOR I=l1 TO 31
70 CHAR= ASC(MIDS$(A$,I,1))
80 AKEY= IOR(ISHFT(AKEY,3), ISHFT(AKEY,-13))
90 AKEY= IEOR(AKEY,CHAR)

100 NEXT I
110 INPUT #LU AT AKEY ,BS
120 IF EOF(LU) OR (AS=BS) THEN RETURN
130 AKEY=AKEY+1
140 GO TO 110
150 REM

160 REM --MAIN PROGRAM--
170 REM

200 OPEN #4,"PHONE",1I,IND \ open phone directory file
210 INPUT "WHO DO YOU WANT TO PHONE TO ",NAMES
220 IF NAMES="END" THEN STOP \ type END to quit

230 HASH (NAMES, 4) \ compute numeric access key
240 IF EOF(4) THEN 300 \ test empty record
250 INPUT #4 AT AKEY ,NAMES, PHONE \ read phone number
260 PRINT TRIMS (NAMES) :"°S PHONE NUMBER IS ":PHONE

270 GO TO 210 \ go ask for another name
300 PRINT TRIMS (NAMES):" IS NOT IN THE PHONE DIRECTORY"

310 GO TO 210 \ go ask for another name

12.9 Array input/output with disk files

The MAT INPUT (paragraph 9.3) and MAT PRINT (paragraph
9.4) statements may be applied to disk files too. This is
discussed in this paragraph.

12.9.1 Input of an array from a file

General form : MAT INPUT #LU, Arr

where :

LU is the logical unit (See description in
paragraph 12.3).

Arr is the name of the array in which the input
data will be stored.

This statement is equivalent to the BASIC-M-like
sequence

FOR Cntr = 1 TO Number_of _rows_in_Arr
INPUT #LU,Arr(Cntr,1),...,Arr(Cntr,Number_ of _columns_in Arr)
NEXT Cntr

BASIC-M 3.0 User’s Guide Page 12-15

DISK FILE INPUT/OUTPUT 12.9 -- Array input/output with disk files

One can notice that positioning the pointer ina file is
not possible within this statement. For this reason, arrays

may not be properly input from an indexed file, since the
absence of index key is interpreted as a zero value key. This
means that each row of the array will be read from the zero
key record.

12.9.2 Output of an array to a disk file

General form : MAT PRINT #LU Arr

where :

LU is the logical unit (See description in
paragraph 12.3).

Arr is the name of the array to be stored in file.

See paragraph 9.4 for the exact definition of operations.

As for the MAT INPUT statement, the index key cannot’ be

specified; for this reason, a MAT PRINT statement execution

on an indexed file will store the first array row in the
record of zero value key, and the other rows in the records
consecutively numbered.

Example 12.7 : This is a complete program to test the
validity of a specific matrix inversion. The
user may choose the output device at execution
time without modifying the program. The output
device may be the console, the line-printer or

a disk file. In the latter case, the user is

prompted for the output file name.

10 DATA "CN",1,"cn",1,"LP",2,"lp",2,"FILE",99,"file",99
20 INPUT "GIVE OUTPUT DEVICE (LP, CN OR FILE) ",DEVICES
30 REM Strip leading and trailing blanks
40 IF SUBSTR(DEVICES," ")<>l THEN 70

50 DEVICES= TRIMS(RIGHTS (DEVICES, LEN (DEVICES) -1))

60 GO TO 40

70 IF EOF(0) THEN 110 \ see if legal input

80 READ NAMES ,LU
90 IF NAMES=DEVICES THEN 140 \ if found, exit loop

100 GO TO 70
110 PRINT "ANSWER CORRECTLY, PLEASE" \ bad input, reask

120 RESTORE
130 GO TO 20
140 IF LU#99 THEN 170 \ if disk, ask for a file name
150 INPUT "GIVE FILE NAME PLEASE ",FILES

160 OPEN #LU,FILES,O, SEQ \ create output file
170 PRINT #LU USING 190,"MATRIX INVERSION" \ device ok

180 PRINT #LU USING 190,"-----~----------- "\ print header
190 IMAGE "[78,C]"

200 PRINT

210 INPUT "MATRIX DIMENSION ",N

BASIC-M 3.0 Users Guide Page 12-16

DISK FILE INPUT/OUTPUT 12.9 -- Array input/output with disk files

220 IF N>O AND N<1ll THEN 250

230 PRINT "MATRIX DIMENSION ALLOWED BETWEEN 1 AND 10"

240 GO TO 210 \ REASK FOR CORRECT INPUT

250 MAT A= ZER(N,N) \ initialize matrix dimensions
260 PRINT #LU "| MATRIX DIMENSION : ";N;"X "sN \ echo DIM

270 PRINT #LU

280 INPUT "GIVE INPUT DATA FILE NAME" , DATAS

290 OPEN #100,DATAS,I, SEQ \ open input file
300 IF NOT(EOF(100)) THEN 340 \ file exists, ok

310 PRINT "FILE NOT FOUND"

320 CLOSE #100

330 GO TO 280 \ reask for file name
340 MAT INPUT #100 ,A \ input matrix data
350 PRINT #LU "INPUT MATRIX"
360 MAT PRINT #LU A \ echo data on output device
370 MAT B= INV(A) \ invert matrix
380 PRINT #LU "MATRIX INVERSE"
390 MAT PRINT #LU B \ print inverse to output device
400 MAT C=A*B \ multiply: must find identity matrix
410 PRINT #LU " A*B"

420 GOSUB 470
430 MAT C=B*A \ identity must be found this way too
440 PRINT #LU " B*A"
450 GOSUB 470
460 STOP "DONE"

470 MAT PRINT #LU C \ print multiplication result
480 RMS=0 \ compute accuracy of the previous calculation
490 MIN=1.E38
500 MAX=0
510 FOR I=l TON \ sean full matrix
520 FOR J=1 TON

530 E=0 \ compare to identity matrix
540 IF I=J THEN E=1
550 E= ABS(C(I,J)-E)
560 RMS=RMS+ SQ(BE)
570 IF MIN>E THEN MIN=E
580 IF MAX<E THEN MAX=E
590 NEXT J
600 NEXT I
610 RMS= SQR(RMS/ SQ(N))
620 PRINT #LU USING 630,"STATISTICS",MIN
630 IMAGE "(23,C][/2]BEST : [2,8,3]"
640 PRINT #LU USING 650,MAX,RMS
650 IMAGE "WORST : [2,8,3][/]RMS : [2,8,3]"
660 PRINT #LU
670 RETURN
680 END

Page 12-17

CHAPTER 13

13. SYSTEM COMMANDS

This chapter covers the commands used to invoke BASIC-M,
create a source program, run it and save it and compile it.
There are several system parameters, such as the compiler
re-entry point, which are dependent on the implementation;
they are hereafter referred to by symbols, rather than their
absolute address. The user is requested to carefully read the
instructions which are given separately when purchasing
BASIC-M, in order to know the absolute values of the system
parameters. These are available on a "NEWS" file in the
system disk.

13.1 Operating Modes

There are two possible modes of operation with BASIC-M.
The first mode is Interpreter Mode, in which new source
programs can be created and immediately executed using the
RUN command. The interpreter mode can also be used to load an
old source program, possibly created by the CRT editor, from
disk, and to execute this program with the RUN statement. The
prime advantage of Interpreter mode is that it allows’ the
user modify the source and subsequently save this to disk
either overwriting the old file or creating a new one. This
permits a fast change-tryout-change iteration when writing
new software.
Programs to be executed in Interpreter mode are restricted in
use of many additional features of BASIC-M such as Interrupt
Handling, use of assembly sub-routines, real external
addresses, as they may interfere with BASIC-M’s operation.
Nor can they access the graphic RAM area of the EXORset.
For these programs, the source can be created either using
the CRT editor or within BASIC-M, and partially debugged in
Interpreter Mode. Then the programs should be compiled by
invoking BASIC-M in Compiler Mode (option 0), in order to

create an object module on disk. The size of these programs
can be larger than is possible in Interpreter Mode,as they
need not be entirely resident in memory at compile time.

13.2 Invoking BASIC-M

The BASIC-M compiler/interpreter is invoked under control of
the disk operating system; once this latter has been loaded,
the "=""prompt sign is displayed. The operator can then
invoke BASIC-M by typing the following command:

=BASICM <name 1>[,<name 2>] [;<options>]

where ¢

BASIC-M 3.0 User’s Guide Page 13-01

SYSTEM COMMANDS -- 13.2 Invoking BASIC-M

<name 1> is the name of the file to be further executed,
possibly after some BASIC-M editing,
<name 2> optionally specifies the name of an output file
which is created when BASIC-M is exit.
Both file specifications are in the standard disk-operating
system format:

<file name> [.<suffix>] [:<logical unit number>]

The default values "SA" and zero are used for the suffix and
the logical unit number, respectively, if they are not
explicitly entered.

The following options are valid:

If no options are specified BASIC-M operates in Interpreter
Mode.

! Autostart, i.e. chain the loading, compilation and
execution of an existing source file whose name is
<namel>.
This option is mutually exclusive with all the
other options defined below. After execution of
the user program, control is returned to the
operating system.

O[=:DRV] Invoke BASIC-M in the compiler mode.
file <namel> must exist.

file <name2> must not be specified.
In the compiler mode, BASIC-M returns the object
code ina file whose name is <namel>, whose suffix

is ".LO", and which is constructed in the’ same

drive as the source file <namel>, unless a

destination drive number DRV is specified. In this
case, the object file and the compiler scratch file
are both constructed on this drive.

-O Invoke BASIC-M in the compiler mode without
generation of a user object code file; "-O" is used
to get a compilation listing only.

S Produce a compacted object code (see paragraph
13.3.13).

M Output a symbol table to the listing device.

-M Do not output the symbol table.

L[=#CN] Output compilation listing to console.
L=#LP Output compilation listing to printer.
L=<name3> Output compilation listing to the file whose name

is <name3>, whose suffix is ".BL". Destination
drive defaults to drive 0.

-L Do not output a compilation listing. Message and
error indications, if any, will be displayed on the
console.

R=$XXXX Produce object code to execute in conjunction with

BASIC-M 3.0 User’s Guide Page 13-02

SYSTEM COMMANDS -- 13.2 Invoking BASIC-M

the Runtime package based at address XXXX in the
end user system.

D=SYYYY User Data Section base address.

P=SWWWwW User Program Section Origin. WWWW is the load and
start address of the user object file; this

information is saved in the object file RIB.

Default options for compiler mode:

-S, M, -L, L=#CN if L only specified
R=S$6B00
D=$ 2000
P=$4000

Each record of the input file must be numbered
(line numbers are in the range 1 to 65535), and

should not contain more than 80 ASCII characters.

If the diskette file <name 1> already exists, the
input will be taken from it. If <name 1> does not
already exist, then it will be automatically
created, and the user program may be further saved

to it upon exit.

The second file name specification can only be used
if the file <name 1> to be edited already exists on
the diskette. The output file is used to receive
the user program <name 1> after it has been edited
and/or run by BASIC-M. When BASIC-M is exit, the
output file contains a complete copy of the input
file plus any changes that were made to the BASIC-M
source program once it was loaded in the workspace
buffer. The input file is preserved.

One of the standard operating system error messages
will be displayed if the input file <name 1> is
delete or write protected and <name 2> is not
specified, or if the output file <name 2> already
exists.

The following are examples of BASIC-M valid
invocations:

=BASICM DEMO:1 (1)

=BASICM:1 TEST.BS, NEWTEST.BM (2)

A slightly different form makes provision’ for
chaining automatically the loading, compilation and
execution of an existing BASIC-M source program.
For instance, to execute a program named "DEMO"
residing in drive 1, (1) could be typed in as
=BASICM DEMO:1;!

Likewise, (2) would be

=BASICM:1 TEST.BS; !

BASIC-M 3.0 User“s Guide Page 13-03

SYSTEM COMMANDS 13.3 -- Interpreter Mode

13.3 Interpreter Mode

The BASIC-M source program can be edited either
"off-line" under control of the system text editor,
or “on-line" under control of the BASIC-M editor.
For editing long programs, it is recommended to use
the system text editor which provides more
facilities than the BASIC-M editor; the user must
keep in mind that his source program must be
line-numbered. For a complete description of the
system editor, refer to the relevant manual.

The BASIC-M editor is line-oriented. It provides
for line insertion, deletion or replacement. Again,
it is emphasized that all the statement lines must
start with a valid line number (in the range 1 to
65535), followed by at least one space character.

I€ the user wishes to insert a statement between
two others, he types a statement number that falls
between the other two followed by the statement he
wishes to insert. After the statement has been
completely entered, the user enters a carriage
return to complete the insert.

If the user wishes to delete a statement line, he
merely enters the number of the statement followed

by a carriage return.

If the user wishes to replace a statement, the

number of the statement to be replaced must be
typed, followed by the new statement and a carriage
return.

When a statement is being typed in, the user may
delete the last entered character by hitting the
"RUBOUT" (the character just deleted is echoed to
the console). The whole statement line may be

cancelled by striking the "X" key while holding
down the "CTRL" key.

13.3.2 Auto Line-numbering

The "N" command requests BASIC-M to automatically
output line numbers.

N [Nl] [,N2]

Where :

-"N1" is the first line number to be prompted.
-"N2" is the value to be added to "Nl" to form each
succeeding line number prompted.

BASIC-M 3.0 User’s Guide Page 13-04

SYSTEM COMMANDS 13.3 -- Interpreter Mode

The "N" command initiates the input process in which all data
following the command is inserted into the BASIC-M workspace
buffer. The two parameters Nl and N2 default to the value 10.
Prompting will continue until a carriage return is entered as
first character of a statement.

13.3.3 RESEQuence

This command is used to renumber the statement lines of a
program.

Syntax : RESEQ [N1]

where ¢:

"Nl" is the line number at~ which to begin
resequencing and the increment to be applied to
form each subsequent line number within the source
program.

Nl defaults to the value 10.
Prior to actually resequencing, BASIC-M checks’ that the
highest line number resulting from the resequence operation
does not exceed the allowable range (65535); if this

condition is not met, the message "UNABLE" is displayed to
the console.

13.3.4 LIST and LIST Erroneous statement lines

The "LIST" command allows the display of all or a portion of
the source program.

Syntax : LIST [#LU] [N1-N2]

where 3:

-Nl and N2 specify the first and last statement
lines respectively, to be listed.
-LU specifies the output device.

The list defaults to the entire program to be displayed to
the console (LU=1); LU should be set equal to 2 in order to

direct the printout to the system line printer.

The "CTRL-W" and "CTRL-P" codes can be entered while the
program is being listed to suspend, or respectively abort,
the list operation. Once the printout has been temporarily
suspended with the "CTRL-W" code, it can be resumed _ by
Striking any key.

Statements whose syntax is incorrect appear as REM
statements, with the error code listed after the REM keyword.

The following is an example of the LIST command:

READY

BASIC-M 3.0 User’s Guide Page 13-05

SYSTEM COMMANDS 13.3 -- Interpreter Mode

LIST 25-55

00027 REM ... INPUT STRING ...
00035 INPUT A$
00043 REM **13** 00043 PRINT AS$+B+CHR$ (7)
00051 GOTO 35

READY

The above listing shows that the statement line 43 has an-

error whose code is 13. The user still does know where the

error resides within the line. To detect the level of the

error, he may ? then use the LISTE command which is

syntaxically the same as the simple LIST command.

LISTE displays only those statements which have been flagged
as syntactically erroneous. A pointer points to the token in
error. The following listing would be obtained on the system
line printer if the LISTE command was applied to the previous
sample program:

READY
LISTE #2 25-55
e@eeeeeeetees eo eoeoeeeeuexeeeeeee#ee#ee8e8eeeeee eo V

00043 REM **13** 00043 PRINT AS+B+CHRS (7)

00001 ERRORS (B is a numeric variable, and

therefore cannot be embedded

READY in a literal expression.)

13.3.5 FLAGON and FLAGOFF

Normally, syntax errors, if any, are not reported until the
program is listed with the LIST or LISTE errors. A command
exists for the user to be informed immediately of syntax
errors, aS each statement line is entered. This immediate
detection is activated by giving the command "FLAGON", which
can be further disabled by entering its counterpart "“FLAGOFF"
command (default state). An example is presented next:

READY
FLAGON
N 27,8

27 REM ... INPUT STRING ...
35 INPUT AS
43 PRINT AS+B+CHRS (7)

51

13.3.6 The DELete command

BASIC-M 3.0 Users Guide Page 13-06

SYSTEM COMMANDS 13.3 -- Interpreter Mode

This command permits the user to delete a block of lines in
the program using a single command. A single line can be
deleted by entering the line number immediately followed by a
carriage return. To delete a block of lines the syntax is as
follows:

DEL Nl [-N2]

Where: Nl is the line number of the first statement to be
removed

N2 is the line number of the last statement to be

removed.

13.3.7 The RENAME command

As is implied, this command is used to rename the variables
of the source program, if the user so desires. This is a
convenience for changing the one- or two-character variable
names of a standard BASIC program into more meaningful names.

Syntax : RENAME VARI VAR2

where °:

VAR1 stands for an existing variable whose name is
to be changed into VAR2.

VAR1 and VAR2 must be of the same type (numeric or string).

VAR2 must not have been used previously in the program.
The substitution is not applied to the names which may be
defined in comment lines or in literal constants.

Below is an illustration of this command :

LIST

00010 REM ... INPUT STRING AS ...
00020 INPUT AS
00030 PRINT AS+BS$
00040 GOTO 20

READY

RENAME AS NEW NAMES

READY

LIST
00010 REM ... INPUT STRING AS ...
00020 INPUT NEW_NAMES
00030 PRINT NEW _NAMES+B$
00040 GOTO 20

13.3.8 Returning to the disk-operating system

- Once a session is terminated, the user may return to the
disk-operating system by using the "QUIT" command. When this

BASIC-M 3.0 User’s Guide . Page 13-07

SYSTEM COMMANDS 13.3 -- Interpreter Mode

command is entered, the user is requested whether he wishes
to save his source program (to the output file defined by the
command line which was entered to invoke BASIC-M) (see 13.1).

If the answer is "Y", the program is first dumped to the
output file, and the disk-operating system is then re-entered
(the prompt "=" is displayed). If the answer is "N", step 2
only occurs. If the answer is not satisfactory, the question
"SAVE (Y/N) ?" is issued again.

IMPORTANT NOTE

BECAUSE PROGRAMMING ERRORS MAY CAUSE THE ALTERATION OF THE

MEMORY-RESIDENT SOURCE PROGRAM AT EXECUTION TIME, THE USER IS

HIGHLY ENCOURAGED TO SAVE HIS SOURCE ONTO A DISKETTE FILE

PRIOR TO ISSUING THE "RUN" COMMAND.

13.3.9 The RUN command

The execution of a BASIC-M source program is invoked by the
"RUN" command, which operates internally in three steps:

1/ If the source program has already been compiled
successfully, control is transferred directly to step 3
below.

2/ Otherwise, the source program is first compiled thus
producing a position-independent object code.

3/ The object code is executed under control of the

run-time package. Execution proceeds until one of the
following conditions is met:

-the last statement line has been executed.
-a STOP or END statement is encountered.

-a fatal error occurs.

-the operator aborts the execution by entering
the "CTRL-P" code.

Either of the above conditions will cause the execution
of the object code to terminate and control to. be
transferred back to BASIC-M. Note also that typing
"CTRL-W" causes the execution to be suspended until
another keystroke causes it to resume.

If the RUN command is entered again without the source

program being modified meanwhile, step 1 of the RUN
process depicted above is omitted, and_ the overall

execution will proceed slightly faster.

13.3.10 TRON and TROFF

The TRON command is used to trace a BASIC-M program, with
each statement line number being displayed prior to its
execution. The TROFF command cancels a TRON request.

BASIC-M 3.0 User’s Guide Page 13-08

SYSTEM COMMANDS 13.3 -- Interpreter Mode

13.3.11 The PATCH command

The PATCH command is used to exit temporarily from BASIC-M
and transfer control to the system monitor. Once in the
monitor, BASIC-M may be re-entered by typing the proceed
command ";P".

13.3.12 The NEW command

The NEW command causes the working storage area in memory and
pointers to be reset. The effect of using this command is’ to
erase all traces of the program currently stored in memory in
order to start over.

13.3.13 The COMPILE command

The COMPILE command allows the user to generate a compiler

listing when operating in interpreter mode.

Syntax: COMPILE [<options,>]

Where the possible options are:

"S" request code generation optimization
"M" display symbol table
"L" print the compile address of each line
"R" specify the base address of the runtime package.
"D" specify the base address of the data section.

the effect of these options is discussed next

Option "S" ¢: Normally, each executable statement line
compiles into the following:

JSR RUNL

FDB statement line number

code reflecting
the statement

RUN1 is a subroutine in the runtime package
which, in particular, takes care of displaying

statement numbers when the trace mode is
active, of checking for stack overflow,
operator abort or suspend, and of testing
conditions associated with the WHEN ... THEN
statements.
-The option "S" prevents the compiler from
generating the first two lines shown in the
above code expansion, thus providing for a
saving of 5 bytes per statement line ... and
for faster execution. Again, it must be

stressed that this option suppresses’ the

BASIC-M 3.0 User’s Guide Page 13-09

SYSTEM COMMANDS 13.3 -- Interpreter Mode

following features during program execution:

-line number printing on error.
-WHEN...THEN monitoring.
-stack checks.

-operator’s action checks.
-trace.
Therefore, this option should be used

essentially to recompile programs which have
proven error free, and which do not’ contain

WHEN statements.

Option -"M" : Causes the printout of the symbol table which
shows the attribute and location of each
variable / procedure / function defined within
the BASIC-M program.
The following attributes are defined:

byte variable.
integer variable.
real variable.
string variable.

-RF: real user-defined function.
: string user-defined function.

-P ; user-defined procedure.
: external function/procedure.

I ve]

In addition, this option also causes’ the

printout of the data section (RAM) and program

section (ROM) limits of the compiled program.

Example :
10 BYTE Screen(22,80) ADDR $E000

20 INPUT AS

30 DEF SUM(X,Y)=X+Y

40 PRINT USING AS, SUM(3,8)

COMPILE S,M

NO ERROR dimension

Vv
-E000....2
-990C.....
-002C.....
29926 «wae
9931.2 wes

SCLEEN weccccscvecvcesceBovcs

AD ave ck ee ee Re Oe
SUM wscevccecsvveceae eRe oe
A wecseseeeeees ence ee aes ws
Yo ccc c cere nce nccaccceeRecee

DSCT: 990A-9D81
PSCT: 9D82-9EI1B

Option "L" ¢: To print the absolute compile address of each
statement, so that breakpoints can be inserted
at the beginning of each line of the program.

Example : compiling the previous program.

BASIC-M 3.0 User’s Guide Page 13-10

SYSTEM COMMANDS 13.3 -- Interpreter Mode

COMPILE S,L

00010....9D97
00020....9D97
00030....9DAE
00040....9DD2

Option "R" : To specify the absolute base address of the
runtime package in the end-user system (the
package is position-independent).

Option syntax :. R=S$nnnn , where

Snnnn is the hexadecimal base address of the
runtime package.

NOTE : PROGRAMS COMPILED WITH THIS OPTION
MUST NOT BE EXECUTED WITH THE "RUN"

COMMAND.

Option "D" ; To specify the absolute base address of the
scratchpad RAM (the one storing the BASIC-M

variables and stacks) in the end-user system.

Option syntax : D=Smmmm , where

Smmmm is the hexadecimal base address of the
scratchpad RAM.

NOTE : THE FIRST 34 BYTES OF MEMORY (LOC 0
TO $21) ARE RESERVED.

The following system dependencies are defined. Refer to the
attached documents for reading their absolute addresses ;:

RUN.ST : Run-time package start address.
RUN.EN : Run-time package end address.
BASICM : BASICM warm-Start entry point.

13.4 Compiler mode
ee cee ee cee ees oe eee ee ee

Most of the time, BASICM is used in the interpreter mode
because this mode provides the desirable interaction for the
operator to quickly write and debug small. to medium-sized
programs. In this mode, the system memory is shared as
follows :

BASIC-M 3.0 User’s Guide Page 13-11

BASIC-M 3.0 User’s Guide 13.4 -- Compiler mode

ENDUS

symbol table

Vv

object code PSCT

object data DSCT *

I-code

RUN.ND =o | enn nnn ne ee

Runtime
OVERW §f---=-------- =

RUN.ST | ----------------------

Compiler

compiler buffers
$2000 |----------------------

Operating system
0000

where :;

ENDUS is the address of the last location of contiguous RAM
The symbol table expands towards 0000.
I-code is the buffer storing the intermediate source code,
that expands towards the symbol table.
RUN.ST and RUN.EN denote the starting and ending address,
respectively, of the Runtime package as loaded by the BASICM
system command.

As is shown, BASICM allocates storage for object data
and object code in the area which lies in between the upper
end of the I-code buffer and the top of the symbol table.
Clearly, as the source program expands and/or as the object
data section requires more and more memory space, one may end
up in a situation where the memory space left cannot
accommodate the object code section. This situation results
in the message "NO ROOM" being displayed when attempting to
"RUN" the source program. It is then suggested to use BASICM
in the compiler mode. In this mode of operations, BASICM will
allocate the buffers mentioned above from the location
labelled OVERW in the map_ shown before. This extends the
available space for the compiler by 12K bytes approximately.
Since most of the Runtime package is overwritten in this
mode, the execution of the object program cannot be directly
envoked. The user will have to merge the produced object code
and the runtime package prior to loading and executing’ the
resulting module. Note that the environment parameters (DSCT

address and Runtime origin) must be specified when compiling
the source program.

The Compiler Mode is activated by envoking BASIC-M with the

BASIC-M 3.0 User’s Guide Page 13-12

BASIC-M 3.0 User’s Guide 13.4 -- Compiler mode

following command line

=BASICM <name>:O[=:DRV] [S] [M] [L] [R=Sxxxx] [,D=$xxxx] [,P=$xxxx]

where

<name> is the name of the input file to be compiled, and
conforms to the file specifications set in section 13.1.
"O" (standing for object output) is the option activating the
compiler mode. Refer to section 13.2 for a description of the
other options.

The following is an example:

=BASICM SAMPLE: 1;OSMLR=$8400 ,D=$100,P=$3000

BASIC-M INTERACTIVE COMPILER
COPYRIGHT BY MOTOROLA 1979

EXORSet release 3.00

PAGE 01 SAMPLE -SAs1

00010 INPUT A,B
00020 PRINT A+B
00030 IF A=0 THEN STOP
00040 GOTO 10

A ae nccaneceneese eve sReececcene eI lOO wwe cs
Bosessccccesees coe ee eResecccc es sOLO5 sac as

DSCT: 0100-0555 PSCT: 3000-3085
RUNTIME BASE : 8400

END OF COMPILATION

The user program SAMPLE.LO will execute when loaded with the
runtime package of BASIC-M. The BLOAD utility can be used to load
the user module together with the runtime package, or to merge

them into one file that can be later downloaded into a target
system.
Note that for programs to execute in the EXORset under XDOS, the

data section, program section and runtime package must be located
above $2000. Otherwise they will overwrite XDOS.

13.5 The BLOAD Utility

The BLOAD utility is available with BASIC-M as a .CM file on the
the system diskette. Its function is to merge a user module or
modules with the runtime package and either create a disk file or
load the module into memory for immediate execution.
BASIC-M must be resident in drive 0 during the operation of BLOAD.

Syntax: BLOAD <name 1>[,<name 2>, ... ,<name n>] [;<options>]

BASIC-M 3.0 User”s Guide Page 13-13

BASIC-M 3.0 User’s Guide 13.5 --BLOAD

Where: <name 1l> is the name of a user code file generated by
the BASIC-M Compiler.

<name 2>, ...,<name n> are the names of object files to
be loaded/merged with <name 1> and the Runtime package.
These can be assembly-language written or BASIC-M
written routines.

<options> are as follows:

Option Default Function

O[=<concat>] -O Merge all files <name j> (j=l to n)
and the Runtime package in to a single
object file <concat>. <concat> defaults
to file <name 1> with "CM" as suffix.

G -G Load all files <name j> (j=l to n)
and the Runtime package, and execute

program from origin of <name 1>.

L=$XXXX L=$0020 Patch the first 2 bytes of the Runtime
package with the value XXXX which

represents the address of DCST LINK
where the Runtime memorizes the origin
of the user data section.

R Extract the Runtime package from the
BASIC-M file on drive 0 and load it in
memory at the address implied by the
user object file <name 1>.
RM implied if option "G" is selected.
If option "O" is selected and "G" is not
the Runtime is not loaded/merged.

M M Include matrix operations in Runtime.

D D Include disk operation in Runtime.
The combination "-MD" is not allowed.

Notes:

If niether option "O" nor option "G" are selected, the object
files and the Runtime package are loaded into memory and control
is passed to the debug monitor.

Object files may be loaded over the disk operating systyem and/or
the BLOAD command provided that option "O" is selected.

As the Runtime package is extracted from the BASIC-M compiler
during the load / merge process, BLOAD expects to find the file
"BASICM.CM" on drive 0. As a_ result, make sure that this file is

available on drive , and furthermore never rename BASIC-M.

Example:

The following is an example of creating a disk command (suffix
"Cm") °

BASIC-M 3.0 User’s Guide Page 13-14

BASIC-M 3.0 User’s Guide 13.5 --BLOAD

Example problem: The STOP statement causes the system monitor to
be reentered if the program is run on the EXORset, while control
is transferred to MDOS if the p rogram is run on the EXORciser. If
the Exorset user desires to return to the XDOS operating system,
he can program a procedure to do this. A possible solution is
shown below:

=BASICM DOS:1;0LMS

BASIC-M INTERACTIVE COMPILER

COPYRIGHT BY MOTOROLA 1979

EXORsSet release 3.00

PAGE O01 DOS SA:

0011 00010 INTEGER DOSVEC
0011 00020 EXTERNAL DOS ADDRESS DOSVEC
0011 00030 DOSVEC=$3F1A \"SCALL .MDENT"
0024 00040 REM
0024 00050 INPUT A,B
003D 00060 PRINT A,B
0060 00070 IF A=0 THEN DOS
0083 00080 GOTO 50
0088 00090 END

DOSVEC... cc cee ee eee c cen eenee Lews wes 2000.....
DOS. ccc ccrcccrccoce eee eecer ee bvwenee 2000.....
Aweeees soe cece eeees eee oReeccee 2002 .
Bewcneenccue ee ee eoeRe voce - 2007

DSCT: 2000-24BB PSCT: 4000-40A2
RUNTIME BASE : 6B00
END OF COMPILATION

=BLOAD DOS:1;0=DOS:1
DOS -LO:1 4000
RUN-TIME 6B00

DATA SECTION 2000 — 24BB

|

Do
s

N
O

m
y

~
~

LOAD BOUNDS 4000 - A2F7
=Dp0S:1

? 1,1

1 1
20,1

0 1

Rentering the operating system as shown above does not cause the
open files to be closed; therefore, if files have been opened by
the BASIC-M program, the user should provide the necessary
statements to get them closed.

NOTE: BASIC-M programs with system calls must not use the first 8K
bytes of memory.

BASIC-M 3.0 User’s Guide Page 13-15

BASIC-M 3.0 User’s Guide 13.5 --BLOAD

BASIC-M programs with disk I/O imply that the operating system be
loaded in memory

BASIC-M 3.0 User”s Guide Page 13-16

CHAPTER 14

The disk-version of BASIC-M runs on the EXORciser / EXORterm,

or EXORset development tools equipped with a minimum of 48
kilobytes of RAM. The supported disk-operating system (MDOS
or XDOS) is used for loading and saving the source programs,
and for exchanging data with the diskettes when the BASIC-M
programs contain disk input/output statements.

The Compiler / Interpreter and the runtime package occupy

about 14K bytes of RAM each. The runtime package is ROM-able
and position-independent.

14.2 Space estimates

As the ASCII source program is entered, BASIC-M takes each
incoming line and processes it to an intermediate code which
takes less memory than the original program and allows for a
faster compilation. In this intermediate code, in particular,
variable or function/procedure names are coded as pointers to
a symbol table, line numbers and hexadecimal constants’ as

16-bit words, and each keyword as an 8-bit code. Hence, the
following hints:

-feel free to use readable names.
-keep the number of comments and their length
to a minimum (comments are reproduced "as-is"
in the intermediate code).

-whenever possible, use hexadecimal constants.

-if a constant appears several times in the
program, equate it to a variable and use this
variable name to reference it.

When the RUN or BASICM;0 commands are entered, the

intermediate code is translated into the final object code,
and memory is allocated to the variables. In order’ to
minimize the size of the program (object code) and data
sections (scratchpad), the following simple rules’ should be
observed:

-do not omit to dimension arrays prior to
referencing their elements with subscripted
variable names.
-do not use real variables where byte or
integer variables could be used.
-avoid mixed-mode expressions.
-compile the source program with the "Ss"
option, whenever possible (refer to paragraph
13.11).

BASIC-M 3.0 User’s Guide Page 14-01

PERFORMANCE CHARACTERISTICS 14.2 -- Space estimates

The compiled code uses approximately 1/3 to 1/2 as many bytes
as the source text; this value is an estimate only and may
vary in either direction from program to program.

14.3 Speed estimates

Herebelow are some execution times of a few runtime routines:

floating add : 950 us max.
floating multiply : 2.5 mS max.
floating divide : 6.7 mS max.
FIX and FLOAT : ~ 270 us
trig functions : ~ 20-30 ms

The following sample programs’ and results give more
significant figures as far as speed is concerned.

Benchmark BK1

10 FOR K=1 TO 10
20 NEXT K

a/ Program compiled without option "S"
1.8 ms / loop

b/ Program compiled with option "S"
1.67 ms / loop

c/ Program modified to declare K as an integer, and
to code the constant 10 as an hex constant (SA).

0.16 ms / loop

Benchmark BK2

10 K=0
20 K=K+1l
30 IF K<10 THEN 20
40 STOP

a/ same as a/ in BK1
2ms / pass

b/ same as b/ in BKl
1.73 ms / pass

c/ same as c/ in BK1
0.4 ms / pass

Benchmark BK3

20 K=K+1

30 A=K/K*K+K-K

40 IF K<10 THEN 20

BASIC-M 3.0 User“s Guide Page 14-02

PERFORMANCE CHARACTERISTICS

a/ Program compiled without option "S"

b/ Program modified to declare K and A
as integer variables, and to code 10
as an hex constant. Option "S" is used.

6.8 ms / pass

1.8 ms / pass

Benchmark BK4

a/ Program compiled without option "S"

b/ Program compiled with option "S"

PRINT "START"
K=0

DIM M(5)
K=K+1

A=K/2*3+4-5
GOSUB 820

FOR L=1 TO 5
M(L) =A

NEXT L

IF K<1000 THEN 500
PRINT "END"

END

RETURN

20.8 sec

18.9 sec

14.3 -- Speed estimates

Page 14-03

APPENDIX

BITS 4 TO 6 -- 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P “* »p
1 SOH DC] ! 1 A Q a q

B 2 sTx pe2 " 2 B R b
I 3 ETX DC3 # 3 Cc Ss é S
T 4 EOT pc4 § 4 Dp T da et
Ss 5 ENQ NAK & 5 E Ue ou

6 ACK SYN & 6 Fv €£ Vv
0 7 BEL ETB * 7 G W g w

8 BS CAN (8 H xX h x
T 9 HT EM) 9 I oy iy
O A LF SUB * : JI 2 4 2

B vr ESC + : K [kk f{
3 C FF FS, < Lb \ ul |

D CR GS - = M J] om
E SO. RS > N * on ”*
F SI us / ? O | o DEL

Page A-Ol1

APPENDIX

1 Invalid logical expression in an IF or WHEN statement

2 Missing THEN in an IF or WHEN statement

3 THEN must be followed by an executable statement

4 Uncomplete bit selector (missing "]")

5 Illegal procedure name or bit selector not followed by "="

6 Equal sign expected

7 Illegal branch statement

8 GOTO or GOSUB not followed by a valid line number

9 CALL is not followed by a valid procedure name

10 Missing ")" in an argument list, selector or array size

11 Illegal arithmetic expression

12 Missing ")" in an arithmetic expression

13 Illegal literal expression

14 Missing or invalid argument list in a POKE statement

15 Invalid unsigned integer constant

16 Invalid exponent

17 Filename must be a string variable or constant

18 Invalid variable name in a DIM statement

19 Illegal or unspecified array size in a DIM statement

20 Illegal ADDRESS clause in a DIM or EXTERNAL statement

21 Illegal variable name in a BYTE or INTEGER

statement (string variable names not allowed)

22 Missing address specification in an EXTERNAL statement

23 Illegal operands in a READ statement
No separator, or expression or illegal variable name

BASIC-M 3.0 Users Guide Page B-Ol

APPENDIX B

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

SYNTAX ERROR MESSAGES

Illegal operands in a DATA statement
Operand is neither numeric, nor hexadecimal, nor string

Missing "#" in an OPEN, CLOSE or REWIND statement

Missing comma in an OPEN statement

Undefined data transfer mode in an OPEN statement

Neither I, nor O, nor U.

Illegal file access
Neither SEQ, nor IND, nor RAN

"=" required in a LINE or DIGITS statement

Illegal index name in a FOR or NEXT statement

Index not followed by "="in a FOR statement

Missing TO in a FOR statement

Invalid NEVER or ON statement

Invalid line numbers list in an ON ..GOTO statement

IMAGE not followed by a format string

Illegal variable or procedure name

Missing parentheses in a logical expression

Invalid file number in an EOF function

Invalid relational operator

Illegal or missing separator in an INPUT statement

Invalid key

No argument list following the TAB keyword, or
Expression not enclosed between parentheses in a matrix

scalar operation

Invalid operand in a MAT READ, INPUT or PRINT statement
Expressions are not allowed

Missing comma in a MAT INPUT or MAT PRINT statement

Missing "=" in a matrix assignment statement

expression not enclosed in [] in a MAT SET statement

Missing argument in a MAT INV or MAT TRN statement

Illegal character scanned

Illegal statement

Statement too long

BASIC-M 3.0 User”s Guide Page B-02

APPENDIX B SYNTAX ERROR MESSAGES

51 Missing argument list following a string function

eecece ee eeeee eee eee ee eo ee eo oe ee ee ee ee ee Oe

Page B-03

APPENDIX

1 variable is redefined.

2 forward reference

3 first dimension is null or overflows

4 two dimensions specified while first one exceeds 255

5 second dimension is null or overflows

6 second dimension exceeds 255

7 more than 64 K are spanned

10 function redefined

11 DATA statement operand is not a constant

12 | signed hexadecimal constant

13 constant overflows

14 exponentiation requires that one of the operands be real

15 invalid dimensioned variable or undefined user-function or
procedure

16 bit reference does not apply to a BYTE or INTEGER variable

17 attempt to invert or transpose a simple variable

18 illegal call of a user-defined procedure / function

19 implicit redimensioning of a variable

20 variable not recognized during previous pass

21 user function is defined forwards

22 expression used as argument in the "LOC" function

23 too many arguments in a built-in function

24 built-in function does not support argument

25 missing argument in a built-in function

BASIC-M 3.0 User’s Guide Page C-0Ol

APPENDIX C

26

27

28

29

30

31

33

34

COMPILATION ERROR MESSAGES

TAB is used in a "PRINT USING" statement

Too many nested "FOR-NEXT" loops (21 max.)

Nested "FOR-NEXT" loops with same variable used as index

Imbricated "FOR-NEXT" loops

Illegal THEN clause in a "WHEN ... THEN" statement

Illegal THEN clause in a "ON IRQ, FIRQ, NMI, ERROR or KEY

statement

Illegal operation (matrix division)

Record length too large in an OPEN statement

Page C-02

APPENDIX

no error

integer division by 0

byte division by 0

conversion overflow

floating-point operation overflow

SIN / COS overflow

SQR overflow

EXP overflow

exponentiation (power) overflow

LOG / DCLOG overflow

ASN / ACS overflow

Illegal image

string to numeric conversion error

computed GOTO / GOSUB index out of range

Function key index out of range

invalid output logical unit

invalid input logical unit

illegal input data

attempt to read past end-of-data (READ statement)

array bounds overflow

illegal bit number

not enough arguments in calling sequence

modulus overflow

dynamic array bounds setting error

BASIC-M 3.0 User’s Guide Page

APPENDIX D

24

25

26

27

28

29

30

31

32

33

34

129

130

L3i1

L32

133

134

135

136

137

138

139

140

141

142

143

RUNTIME ERROR MESSAGES

illegal array (MAT IDN)

illegal array (MAT INV)

attempt to inverse a (almost) singular matrix

dimension number error (matrix copy)

conversion error or overflow in matrix operation

illegal array (scalar operation)

illegal array (matrix add / subtract)

illegal array (matrix transpose)

illegal array (matrix multiplication)

hyperbolic function overflow

illegal logical unit in an end-of-file test

FATAL RUNTIME ERRORS

stack overflow

spurious IRQ

spurious NMI

spurious FIRQ

return from main program

no disk or operating system not functional

illegal or already opened logical unit

attempt to open too many logical units at
the same time

illegal file name (OPEN)

no such device

device already reserved

device not reserved

device not ready

invalid device

duplicate file name

BASIC-M 3.0 User”s Guide Page D-02

APPENDIX D RUNTIME ERROR MESSAGES

144 file name not found

145 invalid open/closed flag

146 end-of-file

147 invalid file type

148 invalid data transfer type

149 end of media

150 buffer overflow

151 checksum error

152 file is write protected

153 file is delete protected

154 logical sector number out of range

155 no disk file space available

156 no directory space available

157 no segment descriptor space available

158 invalid directory entry number

159 invalid retrieval information block

160 cannot deallocate all space

161 binary record length too large

162 sector buffer size error

163 invalid logical unit (REWIND)

164 SWI executed

165 SWI2 occured

166 SWI3 occured

Page D-03

APPENDIX

BYTE
INTEGER

DIM

EXTERNAL

DEF

E.2 Input/output statements

INPUT

PRINT
PRINT USING
IMAGE

DATA
READ

RESTORE

OPEN
CLOSE
REWIND

E.3 Control statements

RETURN
FOR .. TO .. STEP
NEXT

ON KEY ..THEN
ON NMI THEN

ON IRQ THEN

ON FIRQ THEN

NEVER KEY ...

NEVER NMI

NEVER IRQ
NEVER FIRQ
NEVER WHEN

STOP

PAUSE

BASIC-M 3.0 User’s Guide Page E-01

APPENDIX E SUMMARY OF BASIC-M STATEMENTS AND FUNCTIONS

E.4 Matrix statements

MAT INPUT
MAT READ
MAT PRINT

MAT Vl = v2 ferred] V3
MAT V1 = v2 {+,-,*,/} (exp)

MAT Vl = ZER
MAT Vl = IDN
MAT Vl = TRN
MAT Vl = INV
MAT Vl = CON
MAT Vl = SET []

E.5 Miscellaneous statements

POKE

LINE =

DIGITS

REM

E.6 Built-in functions

ASN SINH

ACS COSH

ATN COTH

LOG DCLOG
SOR

SGN

MOD

FLOAT

IOR IEOR

LEFTS RIGHTS
ASC CHR$

SUBSTR

LOC TAB

FKEY EOF

ISHFT

MIDS
STRS

POS

Page

APPENDIX

F. AN812: CHAINING THE EXECUTION OF OVERLAYS

CHAINING THE EXECUTION OF
DISK RESIDENT BASIC-M PROGRAM OVERLAYS

Prepared by

Herve Tireford

Patrick Monnerat

The BASIC-M repertory of statements does not make

provision for a CHAIN instruction as do a few other BASIC

interpreters. This note describes a simple method to

implement this function thanks to the XDOS system call

-COMND. As this system call is available in the XDOS Disk

Operating System only, the following description applies to

the EXORset BASIC-M interactive compiler.

GENERAL
The general idea behind a CHAIN statement is to

partition a large BASIC-M program to run in a disk
environment into several modules (or overlays) to be

subsequently loaded and executed when needed. This
technique, although resulting in some speed degrada-

tion due to the overlay loading, is primarly intended to
minimize the memory requirements, as there is only

one overlay loaded in memory at execution time.

OVERLAYS
Overlays are separately compiled BASIC-M pro-

grams. The-first overlay loaded in memory must
include the BASIC-M Runtime package, if not resident
in ROM. The subsequent overlays, however, need not

include the Runtime, and therefore consist of the user
code only, provided they were compiled with the “R”

option specifying the same Runtime start address as

the first overlay.

DATA PRESERVATION
Data (variables) which are to be shared by the over-

lays must be defined in a common memory area; this

is usually done by declaring the variables with an
address assignment specification (ADDRESS clause).
This type of variables is not initialized by the Runtime

package, so no assumption must be made as to their
initial value. In addition, for XDOS 3.0, the common
variables area must not start below $2200 when using

the method described. For XDOS 4.0, the lowest origin
for the common variables is $2400.

BASIC-M 3.0 User’s Guide

An alternate solution for passing variables from one
overlay to another is to save them in a disk file on
completion of the current overlay and to retrieve them

on execution of the next overlay.
When establishing a program memory map, take

into account that 60 bytes following the last memory

address loaded are used during the overlay load

process, and the last 200 bytes at the top of available
RAM are used by XDOS.

CHAIN PRINCIPLE

Upon termination of the current overlay, an external
procedure CHAIN is initiated; actually, this procedure
consists in initializing the MC6809 X-register to point

to a buffer containing the name of the next overlay to
load/execute, prior to executing the XDOS system call

.COMND. As a result, and instead of re-entering the
XDOS command interpreter, the overlay whose name

is stored in the buffer pointed to by the X-register will
be loaded and brought to execution. The reader is

encouraged to refer to the XDOS User’s Guide (para-
graph 20.5.6) for the complete description of the
.COMND System Call.

The user-supplied CHAIN procedure consists of
the following:

instruction code

CHAIN LDX #BUFFER 8E XX XX

SCALL .COMND 3F 40

It may be defined in an assembly language module;

due to its short size, however, it can be more easily

Page F-01

supplied as part of the BASIC-M program as shown

below:

O01 BYTE CALLGY CS)

00020 EXTERNAL CHAIN ADDR CALLOV

00030 CALLOV CL) $Gk

00040 CALLGY C2 =

00050 CALLOM (3) ss

CAL.
CAL.

o

0dn6sG LOY C4) $36
ooo70 AO C85) 6-40

®
@

¢

OOS Che" OVI. LOY + CHR CHD D

00510 CHAIN

A
Fay
A
A

°

*
-
~
°

The sample program shown in the appendix uses

another method for supplying the CHAIN procedure
code from the BASIC-M program, based on the DATA
and MAT READ statements. Whichever method is

used, the user is cautioned that the X-register is to
point to the first ASCII character of the buffer, whose
address is given by the function LOC(C$)+1. In effect,
it should be remembered that the first byte of a string

C$ (the one at address LOC(C$)) actually contains the
string length, and not the first ASCII character of the

string!
The BASIC-M program above equates the CHAIN

procedure with the 5-byte table CALLOV(5) (lines 10

and 20); in other words, when control is transferred to

the CHAIN procedure, the MPU actually begins to
execute the sequence of code contained in this table.
This code is stored in the table during execution of
lines 30 thru 70. Lines 40 and 50 store the most signifi-

cant and least significant, respectively, byte of the
address +1 of the buffer C$ in the second and third

location of the table CALLOV. Line 500 merely

initializes the command buffer C$ with the name of the
overlay to execute next, terminated by carriage return.
Of course, this implies that a file OVJ.LO be found in

the disk directory at execution time. Should this file
not be found, the message “WHAT ?” will be displayed.

EXAMPLE
The appendix illustrates the method just described.

A BASIC-M program has been partitioned in three

source overlays OVO, OV1, and OV2, all starting at the

same address $3000, and all using the same data sec-

\

SHE TC CLOG CCB) AD 9 ES) \

TAND CCLOC COs 41> 9 BFR \
\

\

xX lk

Boat ADDR CC#+1)

B oof ADDRCO#+ 1)
t

initialize butter for CHAIN

call overlaw OVI-LO

tion based at $2500. They all assume that the runtime

originates at $6500. In this example, the sole variable

common to the three overlays is a vector A(5) which is

based at $2200 (lowest address for a common section).

.OVOis the first overlay; it reads in 5 numeric values
from the keyboard and stores them in the vector

A(5). It also requests a string variable DO$ which
may assume the value “SIN” or the value “COS”;
depending on DO$, OVO will invoke either OVSIN.

LO (the object file corresponding to the source
overlay OV1) or OVCOS.LO (the object file corres-

ponding to the source overlay OV2).

.OVSIN.LO stores in a disk file names RESULT each

element of A(5) and its sine value.

.OVCOS.LO stores in RESULT each element of A(5)

and its cosine value.

,OVSIN.LO and OVCOS.LO each chains the execu-
tion of the XDOS LIST command to list the file

RESULT they constructed. This implies that the
LIST command be available on the disk in drive 0.

On completion of LIST, XDOS is re-entered.

The listing in the appendix shows the different steps
to be followed. Note the use of the compiler-mode

(option “O” is specified when invoking BASIC-M) to

return the user-code directly to the disk. Also note that

OV1.LO and OV2.LO are renamed OVSIN.LO and

OVCOS.LO, respectively, to be compatible with the

names of the overlays which can be called from the

first overlay OVO.LO.

APPENDIX

aASrcmM OVOsO

BASICM 2. 02
COPYRIGHT BY MOTOROLA TNO. 1979

READY
LOS

00010 BYTE CALLOYVCS)
00020 EXT CHAIN ADDRESS CALLOV
00030 DCM CCL) ADDR $20
00040 DATA SEE ry bOe bly kOF » $40
0050 MAT READ CALLGY
OOOO REM
00070 DIM ACS) ADDR $2200
00080 MAT TNFUT “erber ACS) $ "9A
00090 JNEUT "enter SIN or COS ¢ "»DOG
GCOL00 TF NOT CD "SIN" OF DOK "COST THEN 90
OOLLO Che OU" +Dtde LO"
G012Z0 FRINT "CALLIING OVERLAY oo "9 Oth
OO130 Chel CHP CGD)
00440 CHAIN

READY
COMPILE Me Re&t4500 9 De bend

NO ERROR

CAL. L. CV 94 FFF HH HHH HHHHO HHH ed oO @ wea 0 0 aoe 1

CHAIN e@% GG FHF HOH HHH HHO i Ce 2850 0 OO @

Che eeoeevreseereseevreeoemoco ee es Ue ceed

Cleve ee ree oreo ooeeesoeeseobieosoe seems oeel.

DOB. oe eee eee aoe ee eee eee eee 68 ee eee oe oe

BOTS ZENO 29DA
ITs GDVR- GF 21.

READY
QUT
CREATE OEJECT FXLE OV Ls CY/N)D PY

ENTER FROGRAM HEX ORTGIN CBXXXX) ¢ $3000

SAS IM CW IO

BASLOM i. We

COPYRIGHT EY MOTOROLA: TING. 1979

REALS

LIST

COOOL BYTE CALLOVCS)
00020 EXT CHAIN ADDRESS Cao

00030 DIM C#CL) ADDR #50

00040 DATA BEE y Oe BSL» BOF y 640

Oodsd MAT READ CALLOY

NO960 REM

QO070 DIEM ACS) ADDR £2200

OOO8G REM

OO09U PEN Ry "RESULT" oO
OOLO0 REWICNGD ARS

OO110 FOR Ted TOS

00120 FRINT 43 USTNG 2209ACTO» SINCACT) >
00130 XMAGE "ACT® Cee SIC XLOISTNCACT Ds Ree 7 i"

OO140 NEXT ©

O0LSO FPRINT AS "END OF FIOLE RESULT"

00160 CLOSE ak
00170 Che LYST RESULT! + CHEB CHD)

OOUSO CHAIN

READY

COMPILE My Re #46500 9 Debesd

NO) ERROR

GELLIM sos oe eee recor esecocelioe ees onde coed

CHAITIN « « Co cele eee oe oN Oe woe °

CBee rere crorseseccceseoveseseo os oe coool

Messer eososeeoereoeseseceliososs ee adocved
igs ‘9 Oot Py Ee
eon oo 0 00686 o ooh 60 0 OM tbs © ooo

DSCTS Z500—298F
PECTS DERE GFE

READY
QUIT
CREATE OBJECT FILE OV4. oLOSO (Y/N) ? Y

ENTER PROGRAM HEX ORIGIN CBXxXXX) ¢ $3000

APPENDIX

G. AN813: PARTIONING A BASIC-M SOURCE PROGRAM

PARTITIONING A BASIC-M
SOURCE PROGRAM

Prepared by

Herve Tireford

and

Patrick Monnerat

BASIC-M source programs may be such that their size or

memory requirements render their compilation impossible

due to the BASIC-M compiler design approach which

assumes the source be wholly memory-resident at the time

compilation is initiated. There are several methods which can

be used separately or jointly to overcome this problem: use of

the compiler-mode, use of the compiler ‘‘S’’ option to

minimize the object code requirements, assignment of the

Data Section, coding of constants as hexadecimal values,

definition of integer or byte variables whenever possible,

partitioning of the source into several modules to be

compiled separately and chained at execution using the

XDOS SCALL .CMND, ... etc. This note describes how to

partition the source into several modules which are compiled

separately, and which may reside in ROMs in the final

environment. It outlines the user-program design constraints,

and illustrates the assembly routine used to call one module

from another. We are restricting this study to a two-object

module partition.

COMPILER CODE GENERATION
The following code is generated by the BASIC-M

compiler at the beginning of each object program:

START CLRA

LDS #STACK Stack eoinber ancd data section initialization

JSF NTT

FCC /VVRR/ Rurvbime version/revisior

FDE DSEC Start address of cata section

FIDE “SEC“START Offset to statement code

DATA comstants ancd array cdesorirtors

FCE 0

PSEC EQU * Resinnins of statement coce

oe

BASIC-M 3.0 User’s Guide Page

PARTITIONING THE SOURCE
PROGRAM

Let’s assume that the source needs to be partitioned

in two modules, hereafter referred to as M1, and M2.
M1 is the main module, i.e., it contains the object code
to which control is transferred first. The following

rules apply:

1. M2 must be written as a subroutine and therefore

must terminate with a RETURN statement, unless

control is not given back to M1.
2. The variables local to M1 and those local to M2

must reside in two distinct data sections, the

origins of which are specified in the COMPILE
command. Of course, the user must insure that the
two data sections do not overlap. To that end, itis

recommended'to compile M1 first, and then to

deduce the origin of the data section for M2 from
_ the highest data section address of M1 as reflected

in the symbol table issued on completion of the

compilation of M1.
3. The global variables, i.e., those common to M1 and

M2, must be explicitly defined in each module by

a declaration statement to assign the variable
absolute address (ADDRESS clause), It should be
emphasized that such variables will not be initial-

ized by the runtime package, therefore no assump-
tion must be made as to their initial value.

4. All the DATA statements must reside in M1.

5. In order to obtain an accurate indication of error
in the event one occurs, it is recommended (but not

mandatory) that line numbers in M1 be distinct

from line numbers in M2.
6. M1 statements cannot transfer control to a

specific statement in M2, and vice-versa. It is only

possible to call a secondary module (M2) from

another module.
7. Mi cannot call user-written functions/procedures

defined in M2, nor can M2 call functions/proce-

dures defined in M1.

8. In order to transfer control to M2 from M1, an
external assembly procedure, hereafter referred
to as “CALLM2”, needs to be declared in M1, and

further activated when desired.
9. Statements which may implicitly transfer control

from one module to the other must be deactivated
prior to entering a given module and reactivated

upon return from the called module. Those state-

ments include:
.WHEN ... THEN
.ON ERROR THEN
.ON NMI (IRQ, FIRQ) THEN
.ON KEY ... THEN

ASSEMBLY CONTROL
ROUTINE “CALLM2”

This subroutine is listed in Figure 1. It supports a

real or integer argument which dictates whether the
data section of module M2 must be cleared or not upon
entry in M2. Note that on the first call to CALLM2 one
must specify no argument or an argument equal to zero
so as to initialize the data section of M2. Not doing so

may preclude the normal recognition of execution
errors. Further calls to M2 may specify an argument

different from zero if the user desires to preserve the
data of M2 as set up by the previous call.

EXAMPLE
The appendix contains a sample program to illus-

trate the procedures and rules described. A BASIC-M
program has been split in two modules M1 and M2. M1

is intended to generate 100 random numbers in a vec-
tor A(100). M2 is aimed at printing a subrange of the

same vector A between two subscripts K and L to be
input at execution time. The example assumes that the
BASIC-M runtime package starts at $6500. The
MERGE command concatenates the object modules

CALLM2 (org $2000), M1 (org $2200), and M2 (org

$2800) into the final user code OBJECT, and forces

the M1 origin as start address.

6
W
T
T
V
O

—
I
d
u
n
o

O
n
A
d

N
O
O
0
0

S
A
N
T
N
Y
G
M

T
R
L
O
U
L

N
0
0

O
N
0
0
0

W
e
y

S
H
O
T

AO

G
L
S

s
m
d

S
P
I
N
G
O
M

O
N
T

T
W
S

AQ
W
I
N

I
O
S

es
aTInaow

W
a
h
e
y

N
T
I
T
A
O

W
Y
O

Tt
daTwa

FINGOW
AO

NTOTYO
J

LISe

S
P
I

r
n

tt

£
e
0
0

P
L
0
0
0

ee
OQ)

H
C

S
M
U
C
M
A
C
E
 ST:

N
O
T

LIAS
W
e
d

S
d

A
V
S

P
O
O

O
0
2

O
n
e

 AS
e
e

7SCDKC DRC DR DK
MEIC MEDI DAC

CDE
DC DEC D

E
C

DCDCDC

DICE DIC
ICCD

9
SE DIS D

C

MD
D
K

D
E
D

Me
“
S
E
G

e
l

S
A
U
N
T

SIRI
O
M
.

x
C
A
N
T

SY
C
V
U
W
U
M

«
2
0
°
 2

A
E
R

I
S
V
S

HORCHOW
HORCRCHCNCOHOK

C
C
C

HOOK
MCE

MCACRICH
C0

ACCC
BE HO

CJC HED
CHC

ED
NCC

SES
CTE
C
R
E

i
ACTING

2
0
 *

ce
CIO

W
A

0
2
6

Mae
cored

S
I
N
C

A
A
L
S

S
S
P
I
N
G
O
E

S
Y
R

Ou

Mo
°° C
A
S
T

Ls
AG

&
S
I
M
O

“0
L
O
N

Sr

iS
L
O
N

S
A
Y

AIO

2W
S
I
N
G
O
W

CL.
“
I
O
A
L
N
W
O
O

H
o
o
s

APPENDIX
aRaASICM Mist

BASIC-M 2. 0

COPYRIGHT EY MOTOROLAy TNC. 1979

READY
LIST

C0010 REM ween MODULE ML
GCO02Z0 REM weer FSOT BASED AT $2200 soo DSCT BASED AT #400

DOOD REM cerree es

OOO REM wereree

QOOSO REM weeeees
QUOG0 REM weesee
OO07O REM wreeeeee

00080 EXTERNAL CALLM2 ADDR $2000

GO080 REM COMMON VARTABLES DECLARATION
OOL00 REM nvr COMMON SECTION BASED AT #100

GO110 TNTEGER FASS ADDR $0100

00120 DIM ACLOO) ADDR $0108

QOUSO REM wren ee
00140 DATA "WE ARE NOW TN M2" 9 "WE ARE NOW BACK IN M1"

QOLS0 FASS#=60 \N TNITTALIZE FASS TO 0

00160 FOR Te) TO 100
DOL70 ACT RAND

OO1L80 NEXT T
GOO1970 FASSHFASS +L

00200 CALLMZ CRASS.) NOON FIRST CALL» DATA SECTICON WICLL. IRE CLEARED
00210 READ MEStd

C0220 FRINT MESOE

00230 RESTORE

Oue40 GOTO 160

GENERATE 100 RANDOM VALUES IN ARRAY ACL00)
CALL MODULE M2 TO HAVE A SUERANGE OF ACLOO)
LISTED FROM ROW K TO ROW LL)

READY

COMPLE Me Re bod dy De $4600

NO ERROR

ot LMA o¢$0O0%46O4F F464 FH HH HF FE @o4e% 4 A 0) 0) 0) oOo eo 4%

FASS FCCC FCHFHHHHHHE SEH HEH HHH YH x oe OO 0 1 0 if] oo % % &

Mecereeesesseeeeseseessseltoss ee ede veel

Te OCF OHH HHHHHH HHH HHS alts e ¢ 06 OG02. ©ooe

MESOb se oe eee esse ese eer eoeeenc eo UGA oo 066

ICT? 0600-0ADG ...Solet’s start M2 DSCT at $B00.

SOT? 6EDA-7048

READY

GUT
CREATE OBJECT FICE Mi ehOsO CY/ND FF ¥

ENTER PROGRAM HEX ORTGIIN ChXXXX) & #2200

BaASrce CMVe2IO

BASIC-M 2.0%

COPYRIGHT BY MOTOROLA» ING. L979

LS

00010 BYTE CALLOYUCS)
C0020 EXT CHATN ADDRESS CALLOV
00030 DIM C#OL) ADDR $50
00040 DATA SBE e609 $51» hOF y $40
00O0%0 MAT READ CALLOY
N0060 REM
00070 DIM ACS) ADDR $2200
00080 :
00090 OREN #39 "RESULT" 9
GOLO0 REWIND tS
00110 FOR Le. TO S
OOL20 FRINT HS USING 1209ACTO» COSCACT))
OO130 TMAGE “ACIO= C2 SIC XLOICOS (ACT) = E2977"
00140 NEXT ;
00150 FRINT #3 "END OOF FILE RESULT"
00160 CLOSE ARS
00170 Che" LIST RESULT" + CHR CD)
00180 CHAIN

READY
COMPILE Me R= $6500 2 De $2500

NO ERROR

CALLOV, ©4646 H4HHH HHH FG ots o¢%9 @ 6 200 eoeoo¢ 1

CHAIN « oO HFC HHHHHH HH HHO okie ooo 2200 oo ¢

(FH eo 6 FFF FH HH HH HHH HH FD ooSe ooo eO030-. eeek

Meeeee reer rs. ooeeeo eer oseoeticoscveeeadDeveood

. 189 Poa 9
Tose eroe soe see oo eee seo e relic sees othe oe oo

DSCTs 2500—-29RF
FPSCOT$ GDEE-~OFE4

READY
QUINT
CREATE OBJECT FILE OVU2 LOO CY/N)D ? ¥

ENTER PROGRAM HEX ORIGIN CBXXXX) $ $3000

2NAME OUL LO» OVSIIN. LO

=NAME O26 LO 2 OVCOS 1

ahASIlM DUMMY

BASTC-M 22.02

COPYRIGHT EY MOTOROLA TNC. 1979

This, just to load the Runtime at $6500

re ADDY (default load address in BASIC-M)

QUT

SAVE CY/N) PN
mil VO.1.0 load/execute first overlay

enter ACh) 3 P BS.14189265 41.57 0 1 2

erbter SIN or COS $ ‘? TAN

enter SIN ar COS 3 ? COS

CALIING OVERLAY «6+ OVCODS. 1.0

(What follows is the result of the execution of the

“LIST RESULT” command invoked from OVCOS.LO)

PAGE O01 RESULT .SA30

ACT 3.14159 COS CACK) = Oe PPPIDDD

ACKO= 1.57000 COSCACTI = 0.0007963

ACY)= 0.00000 COS CACK) d= Oe PP99I9D

ACK)= 1.00000 COS CACTI 0.540302

ACK)= 2.00000 COS CACTI ds «0641461468

END OF FILE RESULT

BBASTCM Maze 0)

BASIC-M 2.02
COPYRIGHT BY MOTOROLAy TNC. 1979

FEAL Y
LST

01000 REM m= MODULE 2
01010 REM --=-— PSCT BASED AT $2800 xxx DSCT BASED AT sE00
OLOZO REM mene
01030 REM m= IT PRINTS OUT @ SUBRANGE OF ARRAY AC100)
OLO40 REM wenn DECLARE COMMON VARIABLES
01050 INTEGER FASS ADDR #0100
01060 DIM ACLOO) ADDR #0102
OL070 REM me
01080 READ Ms
01090 PRINT Ma
01100 FRINT USING 1110.FASs
O1110 XMAGE "THIS XS FASS HZ"
01120 INFUT "“SUBRANGE K AND Lf "Kyl.
01130 IF KHL THEN 1120
01140 FOR INDEX#K TOL.
Q1150 PRINT INDEX» ACINDEX)
01160 NEXT INDEX
Q1170 RETURN

RELAY

COMPILE My Re $6500 9 Ds th00

NO ERROR

FASS $F 7H FH HHHHHHHHH HOG I $%OO4 4% 0 j 0 0) ooo @

Meee eee reese ee eeseresesooolioco soo GIO s coool

Ma oO F HHH HTH HHHHHEH HHH HHS $ Sn 0 i 0 a @$o¢ 0 @

K $F OHHTHHHHHH HHH HHH HHS Fe @e¢o oo @ O27 ¢e¢o% @

Loo oF OFF HHHHHHHHH HHH HHS oF, ooo o¢ O27 « @oo¢

TINDEX eee eee eee seer ee eee oelio oe oo e Oh e oo ee

READY

QUT

CREATE OBJECT FILE Me ehO30 CY/N)D ? Y

ENTER PROGRAM HEX ORIGIN CBXXXX) ¢ $2800

=MERGE CALLM2Z oLO9 M1 LOM LOy ORUIECT 6 Ls 22200
#BASICM DUMMY

BAGICH-M 2 02

COPYRIGHT EY MOTOROLA TNC. 1979

This is just for loading the Runtime at $6500

READY
QUILT

(default address) SAVE CY/N) ?N
#hGAD OBJECT

oF WE ARE NOW TN M2
THIS YS PASS #1
SUBRANGE K AND L$? 2 4
2 9 ISS83223E-05
3 4. 40887 301E-04
4 Be LL284885k-03
WE ARI NOW BACK IN MI.
WE ARE NOW TN MZ
THIS TS PASS # 2
SUBRANGE K AND L$? 99 101
oF 0.67471 0883
100 0 B87 6549642

OKI ERROR #19 AT LOCNE:
104 ~ 4151162 .5
WE ARI NOW BACK TN M1
WE ARE NOW TN MZ
THIS TS FASS & 3
SUBRANGE K AND L. 3 7? 1 0
SUBRANGE K AND L. 3) 4%
2 0. 932374047
WE ARE NOW BACK IN Mi
WE ARE NOW UN Ma
THIS IS FASS # 4
SUBRANGE K AND LL. 3 ’F
STOR xoOKx OPERATOR ABORT HHOK

(CTRL-P was typed)

L1S0 (index out of range)

APPENDIX H

1.1. INTRODUCTION

This manual is a supplement to the M6809 BASIC-M User’s
Guide; it discusses the requirements for a user-written
firmware which allows the object code produced by the EXORset
BASIC-M compiler (release 3.00 and higher) to’ run in
conjunction with the EXORset BASIC-M Runtime package, in an
M6809-based end user system.

A complete example is presented in appendix B- that
outlines the procedures to be followed to develop a specific
application firmware to run in a Micromodule' environment
(M68MM19) .

1.2. BASIC-M SOFTWARE ENVIRONMENT

Three levels of program code are needed for the
execution of a BASIC-M program: ,

-LEVEL A: Highest level consisting in the object code
produced by the BASIC-M compiler; this is the
true user program; it is hereafter referred to
as the "user code".

-LEVEL B: The Runtime package code.

-LEVEL C: The lowest level routines which form what we
will call the "kernel". The kernel is the only
object code which is system-dependent; it
contains the I/O routines, interrupt handlers,
and so forth.

Level A code interfaces with Level B subroutines, which in
turn, interface with Level C code, as is represented in
figure 1.1.

A USER CODE

B RUNTIME |
| Hardware

\c KERNEL ¢€sees2=2===>

| environment

1.3. USER AND RUNTIME CODE CHARACTERISTICS

The User and Runtime Codes are both ROMable and
position-independent. Position independency implies that
these codes can be physically located anywhere among the 64K
memory map. However, the user code assumes that the Runtime
Package is installed at the same address as the one specified
at compilation time. The Runtime and User Code origins, as
well as the origin of the data section can be specified at
the time BASICM is invoked in the “compiler" mode. Of course,
there must be no hardware conflict (no overlap) between the

following sections :

-The Kernel,

-The Runtime Package,
~The User Code,

-The RAM Data Section.

The kernel installation requirements are detailed in the next
paragraph. The Runtime Package origin and RAM Data Section
Starting address are supplied in the BASICM invoking command
("compiler" mode); for instance, the following command

generates a user code that will execute in a target system
where the Runtime Package is installed at hex base address
8000 and where RAM exists from E000 onwards.

=BASICM SAMPLE;OL=#LP,R=$8000 ,D=$E000

The memory sizes of the user code and RAM Data Section are
shown in the symbol table printout.
The size of the Runtime Package required to run the User Code
varies between 10K and 14K bytes depending on the BASIC-M
source program (see paragraph 1.8).

1.4. THE KERNEL FUNCTION

The task of the user-written kernel is to provide the
hardware/software interface. The functions it must fulfill

can be split in four categories:

a. Start-up routine

This routine is given control at the time of the
system start-up or restart. It must initialize the
system peripherals and pass_ control over to the User
Code (level A).

b. I/O routines

They are the standard peripheral device drivers,
and are accessed each time a BASIC-M I/O statement is
encountered in the course of program execution, or when
an error message is output by the Runtime Package.

' Page H-02

c. Interrupt control

The kernel must include the interrupt vectors and
the interrupt primary handlers.

d. Closeout routine

This is the portion of code which is executed when
a "STOP" or "END" statement is encountered, or upon
completion of the user code. It may halt the processor
(CWAI instruction), or start another process.

1.5. THE KERNEL SPECIFICATIONS

The following rules must be observed to _ insure
compatibility between the kernel and the Runtime Package.

-Rule A: the kernel must respond to the address’ range
FOOO thru FFFF, even though it does not fully
occupy this address space.

-Rule Bz: the RESTART vector points to the kernel
start-up routine.

eRule C: the Start-up routine must initialize the
standard peripherals that may be attached to
the user system (console, printer); this is
not done by the Runtime Package, nor by the
User Code.

-Rule D: upon completion, the start-up routine must
transfer control to the first byte of User
Code (level A).

-Rule E: Interrupt handling.

The highest locations of the kernel, i.e those
responding to the address range FFF2 to FFFF,
must contain the restart and interrupt
vectors. The RESTART vector has already been
discussed (Rule B). The other vectors must

point to primary interrupt handlers’ which
themselves must transfer control to secondary
interrupt handlers (Runtime-resident) whose

addresses are maintained in a table in RAM
data section. The pointer to the top address
of the secondary interrupt vector table is
held in a 16-bit RAM location whose address is
to be specified in the kernel locations FFEE,
FFEF. This pointer is controlled by the
Runtime Package; further to the execution of a

STOP or END statement, the pointer is reset to
zero; therefore, interrupts that may occur

afterwards should be handled separately;
usually the user should treat them as spurious

Page H-03

-Rule Fs:

INCHNP

OUTCH

PDATA

LIST

(undesirable) interrupts.

Figure 1.2 illustrates the indirect interrupt
vectoring scheme just described; figure 1.3
contains a listing that shows how the kernel
must be Structured as far as interrupt
handling is concerned.

Input/Output drivers.

Two standard peripheral devices are treated by
the Runtime package: the console and the line
printer. This implies the definition of three
functions:

-input from console,

eOutput to console,
Output to line printer.

The line printer output driver is. only
required if the BASIC-M source program
includes a statement of the type PRINT #LU or
MAT PRINT #LU where LU (logical unit

specification) is equated to 2.

The console input driver is required if the
source program contains one of the following
Statements ;:

INPUT, MAT INPUT, INPUT #LU, MAT INPUT #LU, or
PAUSE, where LU is equated to 0 or 1.

The console output driver, however, must be
provided anyway, since the error processing,
the STOP, PAUSE, and END statements may access

it any time.

The driver entry points and functions must be
provided in the kernel as follows:

$FO015 Input a character from the console to
the A register (most significant bit
must be cleared) and echo it. The other
registers must be preserved. Optional
entry point.

$F018 Output the character in the A_ register
to the console display device. The
registers must be preserved. Mandatory
entry point.

SF024 Output to the console display device a
carriage return and line feed
characters followed by the character
string pointed to by the X register and
terminated with an EOT character (04).
Mandatory entry point.

$F042 Output the character in the A. register

Page H-04

to the line printer. The registers must
be preserved. If successful, return

with carry bit clear, if not, set carry
bit upon return. Optional entry point.

In addition, a break condition test routine must be
provided if the BASIC-M source program has not been
compiled with the "S" option, or if the BASICM program
performs line printer output or matrix operations.

CKBRK $F045 Test a break condition; return with
carry clear if no break, with carry set
if the user program is to be aborted.
The A register can be altered; the
other registers must be preserved.

IMPORTANT NOTE

Never modify the stack pointers U and S other than with
PSH and PUL instructions.

-Rule G: Closeout routine.

The entry to this routine is performed upon
execution of the STOP or END statements, or
upon program completion. This routine may not
return.

EXIT $FO2D Terminates the program execution.

1.6. RAM STORAGE

The starting address of the RAM DSCT section which is
used by the program variables and stacks, is memorized by the
Runtime Package in a 16-bit RAM word referred to as the Data
Section Link (DSCT LINK). The address of the DSCT LINK is

held in the first two bytes of the Runtime Package. The
"as-delivered" address of the DSCT LINK for the EXORset
BASICM Runtime Package is $0020; it can be changed, if

desired. The BLOAD utility which is supplied on each BASICM
diskette provides a convenient means to change this value
(see paragraph 1.9). The DSCT LINK is controlled by the
Runtime and MUST not be altered during the execution of the
program.

1.7. FUNCTION KEYS

A function keys interrupt handler is included in the
Runtime Package. This handler is accessed on every NMI
interrupt which occurs when keys interrupts are enabled
further to the execution of "ON KEY..." statements. Should
the user desire to take advantage of function keys
monitoring, he must provide in his system a_ hardware

Page H-05

circuitry which is fully compatible with the one in EXORset
30. Refer to the EXORset User*’s Guide for a complete
description.

1.8. RUNTIME PACKAGE SIZE

BASIC-M programs which do not include matrix-oriented
statements (those starting with the "MAT" keyword) nor disk
I/O statements require that the first 10K bytes bytes of the
Runtime Package be resident at execution time, whereas the
full 14K bytes are needed to cope with matrix operations.

Using the BLOAD utility provides an easy means to tailor
the Runtime Package to the application requirements.

1.9. BLOAD UTILITY

The BLOAD command available on the EXORset BASICM
diskette allows to merge multiple files comprising the User
Code file, assembly language-written files and all or part of
the Runtime Package into a single file which represents’ the
application firmware that runs in conjunction with the
user-supplied kernel. In addition, BLOAD produces a memory
map showing the boundaries of each module loaded. The BLOAD
functions and options are described in the BASCNEWS file of a
BASICM diskette. Below is just an example of the construction
of a file TEST.CM that is the concatenation of a User code
file TEST.LO (generated by the BASICM compiler) that is
origined at $A800, and of the Runtime package without matrix
nor disk routines. The Runtime package has been specified at
compile time to origin at $8000 in the end-user system. The
DSCT LINK (see paragraph 1.6.) is located at address S$E7FC.

=BLOAD TEST;ORL=SE7FC,-M

TEST -LO:0 A800 - A8A7
RUN-TIME 8000 - A7A6

DSCT LINK E7FC - E7FD

DATA SECTION E000 - E4B4

LOAD BOUND S 8000 - A8A7

Page H-06

BH

2
WD

FB

KR

Et

n
oO

Hq

Aa

--->

PRIMARY
INTERRUPT

VECTORS

PRIMARY L/o
INTERRUPT +

HANDLERS ROUTINES

(FFFE,FFFF)

(FFFO,FFF1)

(FFEE, FFEF)

SECONDARY

INTERRUPT

VECTORS

oP ee ee Oe ee ene ee ee ee ee eee ee ee oe oe ee ee oe

0 eee es eo eo ens Om ene ce ee OS eS es ee Ds eo

ee ee ee ee ee ee ee ee ee ee

-=->-—

The primary interrupt handlers transfer control to the
Runtime secondary handlers by accessing the secondary
interrupt vectors contained in a table pointed to by
the pointer whose address is specified in FFEE, FFEF.
The pointer and secondary interrupt vectors contents
are set up by the Runtime Package upon entry in the
BASIC-M program (user code).

Page H-07

* INTERRUPT VECTORS
*

ORG

FDB
FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB

EQU

ORG

SFFEE
ATOP
=
SWI3
SWI2
FIRQ
IRQ
SWI
NMI
RESTAR

SE72E

SXXXX

ADDRESS OF POINTER TO SECONDARY VECTORS TABLE
RESERVED

ADDRESS OF STARTUP ROUTINE

MUST BE IN RAM

INTERRUPT ROUTINES IN KERNEL

* PRIMARY INTERRUPT HANDLERS

SWI

IRQ

FIRQ

SWI2

SWI3

*

BSR
FCB
BSR
FCB
BSR
FCB
BSR
FCB
BSR
FCB
BSR
FCB

INTER
-3
INTER

=5
INTER
-7
INTER

-9
INTER

“11
INTER

~13

NMI SERVICE ROUTINE
MSB OF VECTOR IS A POINTER -3
SWI SERVICE ROUTINE

IRQ SERVICE ROUTINE

FIRQ SERVICE ROUTINE

SWI2 SERVICE ROUTINE

SWI3 SERVICE ROUTINE

* CENTRAL PRIMARY INTERRUPT HANDLER
*

INTER

NOVEC
*

PSHS
LDX
BEQ
LDB
LDX
BEQ
STX
PULS

X,B,CC
>ATOP

NOVEC

[4,S]
B,X

NOVEC

4,58

X,CC,B,PC

SAVE REGISTERS USED IN THIS ROUTINE
FETCH SECONDARY TABLE TOP ADDRESS
NOT SPECIFIED. ERROR.
FETCH VECTOR OFFSET
FETCH CORRESPONDING SECONDARY HANDLER ADDRESS
ILLEGAL ADDRESS
MODIFY RETURN ADDRESS ON SYSTEM STACK
RESTORE REGISTERS AND GO TO INTERRUPT ROUTINE

VECTOR ERROR PROCESSING

Figure 1.3. Listing of the kernel interrupt routines
and vectors structure.

Page H-08

CHAPTER 2. KERNEL FOR MICROMODULE M68MM19

2.1. INTRODUCTION

This chapter describes a general-purpose kernel that has
been specifically written to interface a BASIC-M application
software to an end-user system based on micromodule M68MM19,
thereafter referred to as MM19. The proposed kernel makes
some assumptions as to the usage of the MM19 I/O adapters and
memory map; for instance, the ACIA port is used as the system
console port, thus requiring that a terminal be connected to
it, and the PIA port is used to interface to a
Centronics-type line printer. In addition, the kernel also
offers facilities to load into the system RAM the XDOS 4 disk
operating system, and possibly the application software;
therefore, disk I/O operations under control of the

application program are feasible, with the restriction that
no interrupt must occur during disk operations.

The features incorporated in the kernel are likely to
Satisfy most of the users needs. However, there are certainly
applications requiring a hardware environment different from
the one implied by the proposed kernel; for those, the kernel
listed in Appendix A should still provide a valuable aid as a
starting point for an adaptation.

2.2. HARDWARE ENVIRONMENT

The following environment is assumed by the proposed
kernel:

-kernel based at S$FO0OO,
etop of addressable memory at SFFFF,

-console ACIA based at $EC14,
eline printer PIA based at $EC1O,
-2K bytes of RAM based at SE000 (can be used to hold the

Data section of the application program).

If disk I/O operations are required, the user shall

install in his system the EXORset mini-floppy disk
controller or the EXORdisk III floppy-disk controller
equipped with the appropriate EXORset disk driver. Either
of these boards occupies memory space between SE800 and
SECOF; if the EXORset mini-floppy disk controller is
used, the on-board 16K RAM must be disabled.
In addition, the system must include the amount of
contiguous RAM necessary to hold the xpOS 4 disk
operating system and the application program, should it
not be resident in (E)ROM’s.

Page H-09

2.3. THEORY OF OPERATIONS

This section gives some explanations on the operations
of the proposed kernel listed in Appendix A.

2.3.1. Start-Up

Upon system start-up or restart, the console ACIA and
the line printer PIA are initialized, and a 16-bit word is
retrieved from the first two locations of the kernel labelled
APSTRT; if the word just retrieved is not zero, it is
Supposed to be the starting address of the application
program; control is then passed over to it. If APSTRT
contains a 16-bit null value, the kernel loads the XDOS 4
disk operating system by entering the disk driver at $E800.
In case no disk is available (ready) in drive 0, the user is
prompted with the message:

INSERT DISK IN DRIVE 0

An automatic disk bootstrap is performed as soon as the disk
is ready; upon its completion, the XDOS 4 prompt sign "=" is
displayed at the system console and the user may enter a
command of its choice; generally it will be a command to load
and execute the application program.

The start-up process is summarized in the flowchart of
figure 2.1.

i START-UP | |
2

no yes
oars — X=0 0 ----- a
| ?

Enter program at X | yes Disk no
O eae enn ee ee = Teco Ready ----- .

| ? Vv

Vv Wait until

%&

o
>

om
e t

! disk ready

Page H-10

2.3.2. Kernel Jump Table

The kernel jump table includes all the entry points and
routines necessary to the execution of a BASIC-M program that
are described in chapter 1. It is derived from the EXORbug
monitor jump table; entry points which could be accessed from
assembly-language routines, and which would transfer control
to utilities not implemented in the proposed kernel all
direct the execution to a common routine that, first,
displays the address of the routine the user attempted to
call, and second, enters the EXIT routine.

2.3.3. EXIT Routine

This routine is entered upon termination of the BASICM
application program (STOP, END statements or physical end of
program are encountered), or on occurence of a fatal error or

operator abort.

If the application program came to its normal
completion, the EXIT routine will transfer control toa

user-supplied sequence whose address is found in the third
and fourth bytes of the kernel (ARSTRT); this routine may for
example just restart the application program.

If the application program has not been entered yet, the
EXIT routine will prompt the user with the message:

PRESS RESET TO RESTART

and wait idle until the system is restarted.

2.3.4. Other
ee oe ot oe me ee

The other routines of the kernel do not call for special
comment as they conform to the specifications described in
chapter l.

The RAM locations labelled ATOP, RAMAD, AECHO, STACK in

the kernel (assembly listing lines 71 thru 74) may _ be
assigned addresses other than those listed; however, if XDOS
4 has to be loaded in the system, the definitions of ATOP,
AECHO, and STACK must no be changed.

2.3.5. More On Disk I/0

If XxDOS 4 is used in the end-user system, the parameters
which normally reflect the alternate map disk controller (see
XDOS 4 User’s Guide) must all be cleared. This is achieved by
setting to zero the six values in the Disk Identification
Block (PSN 0000) starting at offset $76.

The start-up routine detailed under 2.3.1 describes how
the user may optionally load the disk operating system upon

Page H-1l

system start-up. This process ends up with XDOS 4 displaying
its prompt character ("=") and awaiting a system command from

the console.

A simple modification to XDOS 4 allows to automatically
load and execute a user-selectable command (the application
program) instead of entering the normal XDOS 4 command

interpreter after XDOS has been loaded. The modification is
as follows?:

1/.Concatenate with the file "XDOS.SY" a data file which
initializes the XDOS command buffer (CBUFF$ EQU SAE) with
the name of the user-selected program terminated by
Carriage return.

2/.Change the start address of the file xXDOS.SY to its

current start address +2. This may be accomplished by
using the following procedures:

(a) Build and assemble the file containing the name of

the command to execute on start-up. This name must
be loaded from CBUFF$ upwards and must be
terminated with a carriage return character. For
the sake of explanation, the file which contains
the name of the command to execute on cold-start is

referred to as NAMECMD.LO, whereas the user-command

file associated is referred to as USERCMD.CM.

(b) Unprotect file XDOS.SY by using:
=NAME XDOS.SY;NX

(c) Read the xXDOS.SY normal start address in RIB by
using:
=DUMP XDOS.SY
:S FFFF

The XDOS start address is found at offset 7A, 7B.
Let it be YYYY.

(d) Concatenate XDOS.SY and NAMECMD.LO, giving the new
XDOS.SY named XDOS1.SY. Use the following command
where WWWW is equal to YYYY+2 (see step (c) above):
=MERGE XDOS.SY,NAMECMD.LO,XDOS1.SY;WWWW

(e) Rename XDOS.SY by using:
=NAME XDOS.SY,XDOS2

(£) Rename XDOS1.SY to become XDOS.SY, by using:
=NAME XDOS1.SY,XDOS.SY;WDS

(g) Generate a new diskette in drive #1, by using:
=BACKUP ;:R

Select the files you want to have copied (the user
command USERCMD.CM must be selected !).
The "BACKUP ;R" command insures that the xXDOS.SY

load and start addresses are written into sector 18
of the diskette.

(h) Restore original XDOS.SY on drive #0, by using:
=NAME XDOS.SY,XDOS1;NX

=NAME XDOS2.SY,XDOS.SY;WDS

Page H-12

The new diskette thus generated in drive #1 is then
ready for autostart.

Page H-13

CHAPTER 3. APPLICATION EXAMPLE

This chapter describes an application based on MM19. For
the sake of simplicity, the application is kept simple even
if it may look somewhat academic; the aim is more to detail
the procedures that lead to the execution of the application
program in a micromodule environment than to detail the
program itself.

3.1. APPLICATION DESCRIPTION

The MM19 is used as a computer whose function is to find
how to combine six numbers in order to yield a given target
number by applying elementary arithmetic operations (¥*,+,-).
The seven numbers (the first six and the target) are input
from the console; for example, if MM19 is given the 6 numbers

5 25 4 75 6 5

and the target number 469, the application program must be
able to determine that the target can be obtained by applying
the following successive operations:

4 x 25 = 100
100 - 5 = 95
95 x 5 = 475

475 - 6 = 469

As is shown on this example, the solution need not’ use
all the six input numbers; however, a number can be used only
once.

Of course, there may be several solutions to a_ problem;

the program is required to output only one (that may not be
the most efficient !). Also, there may be no exact’ solution;
in that case, the program will report it.

Optionally, the seven numbers may be generated randomly
instead of being input from the console. In any event, the
target number is included between 100 and 999, and the other

six numbers can be any of the following:

1..9 , 10 , 25 , 50 , 75 , 100

The problem and its solution can be at will listed to
the system console or line printer. To have more fun, the
MM19 is requested to find a solution in a fixed time frame of
One minute; if a solution is found before this time elapsed,
the program will report the time it took to come to it.

A sample run of the program will help to understand how
the program works (see 3.4. now ... or later on).

Page H-14

3.2. HARDWARE ENVIRONMENT

Keeping track of the time implies that a real-time clock
be available in the system; a timer of the MM19 PTM (MC6840)

is programmed to fulfill this function.
The MM19 ACIA and PIA are used to interface to the

system console and line printer, respectively.
The kernel is the one listed in Appendix A except that

PGSTRT is defined as the application program start address
$D000; it occupies the EROM sockets U27 and U28.

The MM19 2K-byte RAM starting at $E000 is used to hold
the program variables and stacks (data section).

The user code firmware is located in two 2K-byte EROM’s
located at $D000 (MM19 sockets U29 and U30).

The Runtime package resides externally on a M68MM04

micromodule based at $8000.

3.3. IMPLEMENTATION STEPS

The following steps are taken once the BASICM
application program has been edited:

1/. The source program (SAMPLE) is compiled with the
following command line:

=BASICM SAMPLE;OL=#LP ,R=$8000,D=SE000,P=$D000,S

The listing shown in appendix B is then obtained on the
development system line printer, and the user code is saved
in the object file SAMPLE.LO. ,

As is shown in the previous command line, option "S" was
selected for this particular program; this is because’ the
program uses the IRQ interrupt: if option "S" was not
specified, the "check break" function would be performed
prior to executing each statement, and those of the IRQ
service routine in particular; as the “check break" function
basically checks the ACIA for the CTRL-P code in its receiver
or for a framing error (see kernel), it would then empty the
ACIA receiver, thus causing the characters expected by an

INPUT statement to be lost.

2/. A single load module is constructed by invoking the BLOAD
utility, that comprises the user code (SAMPLE.LO) and the
part of the runtime package necessary to this application
(Runtime disk I/O are not used).

=BLOAD SAMPLE;ORL=SE7FC,-D

Note that the DSCT LINK (See paragraph 1.6) is specified at
SE7FC, i.e, in the MM19 2K-byte RAM block.

The load module is constructed under the name SAMPLE.CM, and

the following map is produced by BLOAD:

Page H-15

SAMPLE .LO:0 D000 —- DFBO (see note (1)

RUN-TIME 8000 - BlOC (see note (2)

DSCT LINK E7FC - E7FD (see note (3)

DATA SECTION E000 - E563 (see note (3)

~
~

we

we

w
a

LOAD BOUNDS 8000 - DFBO

note (1) : will be firmware in MM19 sockets U29, U30.
note (2) : will be firmware on Micromodule M68MM04.

note (3) : in MM19 2K-byte RAM block.

The user just has then to burn into EROM’s the relevant
sections of the file SAMPLE.CM whose boundaries are indicated
in the map.

The BLOAD command above could have included the kernel

as load module; for this application however, the kernel was
PROM-programmed from a separate file.

3.4. RUNNING THE PROGRAM

The following shows a sample run of the application
program:

Results to printer ? N
Random or Input (R/I) ? R

given numbers : 6 50 4 2 9 10
Target number to find : 380

I made it in 4.10 seconds !

4 x 6 = 24

24 + 9 = 33
33 + 10 = 330

330 + 50 = 380

Quod Erat Demonstrandum.

Results to printer ? N
Random or Input (R/I) ? I

Enter the 6 numbers (1..10, 25, 50, 75, 100) :?1235 749
Target number to find (101 - 999) ? I1Ol

given numbers : 1 2 3 5 7 9
Target number to find ;: 101

I made it in 0.90 seconds !

7 + 3 = 10
10 x 5 = 50
50 x 2 = 100

100 + 1 = 101

Quod Erat Demonstrandumn.

Page H-16

Results to printer ? N
Random or Input (R/I) ? R

given numbers : 8 100 8 50 50 9
Target number to find : 580

I can’t find the solution

APPENDIX I

ee ee cee me ee ee ee ee wr ae ee ee we en we we we wn ee

PAGE 001 MM19BK .SA:1 MM19BK -- BASIC-M MINIMUM KERNEL FOR MM19

00001 NAM MM19BK
00002 OPT ABS ,NOW, LLEN=120
00003 TTL -- BASIC-M MINIMUM KERNEL FOR MM19

00005 * MM19 PERIPHERAL DEVICES

00007 EC14 A ACIA EQU $EC14 ACIA IS USED FOR MASTER CONSOLE COMMUNICATIONS
00008 EC10 A PIA EQU $EC10 PIA IS USED AS CENTRONICS COMPATIBLE PRINTER INTERFACE
00009 EC18 A PTM EQU $EC18 NOT USED

00011 * SPECIAL CHARACTERS

00013 0004 A EOT EQU $04 CTL-D -- END OF TRANSMISSION CHARACTER
00014 000A A LF EQU SOA LINE FEED
00015 000D A CR EQU $0D CARRIAGE RETURN
00016 0010 A DLE EQU $10 CTL-P -- ABORT CHARACTER
00017 0017 A ETB EQU $17 CTL-W -- PAUSE CHARACTER
00018 0020 A SPACE EQU $20 SPACE

00020 * ACIA CONFIGURATION PARAMETERS

00022 0003 A ACRES’ EQU $11 ACIA MASTER RESET
00023 0000 A ACRINT EQU %0 RECEIVE INTERRUPT DISABLED
00024 0000 A ACRTST EQU 300 “RTS LOW, TRANSMIT INTERRUPT DISABLED
00025 0002 A ACPAR EQU %010 7 DATA BITS, EVEN PARITY, 1 STOP BIT.
00026 0001 A ACCLK EQU $01 DIVIDE CLOCK BY 16 MODE
00027 0009 A ACCTL EQU ACRINT!<7+ACRTST!<5+ACPAR!<2+ACCLK ACIA CONTROL WORD

00029 * ACIA STATUS BITS

00031 0001 A RDRE EQU $1 RECEIVE DATA REGISTER FULL
00032 0002 A TDRE EQU %10 TRANSMIT DATA REGISTER EMPTY
00033 0010 A FE EQU %10000 FRAMING ERROR

00035 * PIA CONFIGURATION PARAMETERS

00037 OOFF A DDRA EQU $11111111 ALL LINES A SIDE IN OUTPUT
00038 0000 A DDRB EQU 00000000 ALL LINES B SIDE IN INPUT
00039 0000 A IRQAIM EQU $0 IRQA1 MASKED
00040 0000 A EDGEA1 EQU $0 CAl ACTIVE ON HIGH TO LOW TRANSITION
00041 0001 A CA2DIR EQU $1 CA2 IS AN OUTPUT
00042 0003 A CA2 EQU $11 CA2 ALWAYS HIGH
00043 0000 A IRQB1M EQU %0 IRQB1 MASKED
00044 0000 A EDGEB1 EQU %0 CBl ACTIVE ON HIGH TO LOW TRANSITION
00045 0001 A CB2DIR EQU $1 CB2 IS AN OUTPUT
00046 0003 A CB2 EQU $11 CB2 ALWAYS HIGH
00047 0038 A PIACTL EQU CA2DIR!<5+CA2!<3+EDGEA1!<1+IROAIM PIA SIDE A CONTROL BYTE
00048 0038 A PIBCTL EQU CB2DIR! <5+CB2!<3+EDGEB1!<1+IRQB1M PIA SIDE B CONTROL BYTE

PAGE 002 MM19BK .SA:1 MM19BK -- BASIC-M MINIMUM KERNEL FOR MM19

00049 0004 A DRSEL EQU 3100 SELECT DATA REGISTER BIT

00051 * DISK ROM EQUATES

00053 E800 A OSLOAD EQU $E800 LOAD OS
00054 E822 A FDINIT EQU $E822 INITIALIZE DISK INTERFACE
00055 E875 A RESTOR EQU SE875 RESTORE DRIVE
00056 E887 A CLOCK EQU $E887 COMPUTE FREQUENCY PARAMETER
00057 *

00058 0000 A CURDRV EQU $0000 CURRENT DRIVE NUMBER STORAGE

00060 * BASIC-M PROGRAM EXECUTION START ADDRESS

00062 0000 A PGSTRT EQU $0000 DEFAULT START ADDRESS (LOAD XDOS)

00064 TTL -- RAM STORAGE

PAGE 003

00066
00067
00068
00069
00070
00071
00072
00073
00074

00076

MM19BK -SA:1 MM19BK -- RAM STORAGE

E7FF

E72E
E7FC
E714
E703

*

* USE TOP OF MM19 ONBOARD RAM FOR MONITOR USAGE
*

A RAMTOP
*

A ATOP
A RAMAD
A AECHO
A STACK

EQU

EQU

EQU
EQU
EQU

SE7FF HIGHEST RAM ADDRESS

SE72E 2ND LEVEL INTERRUPT VECTOR TABLE ADDRESS STORAGE
SE7FC DSCT LINK ADDRESS
$E714 INPUT CHARACTER ECHO FLAG (0 => ECHO)
$E703 STACK ADDRESS AT RESET TIME

-- JUMP TABLE AND PROGRAM START ADDRESS

PAGE 004

00078A

00079A
00080A
00081A

00083A
00084A
00085A
00086A
00087A
00088A
00089A
00090A
00091A
00092A
00093A
O0D094A
0)O95A
0)096A
0)097A
00098A
00099A
00100A
00101A
00102A
00103A
00104A

00106

F000
F000
F002
F004

F006
F009
FOOC
FOOF
F012
F015
F018
FO1B
FO1E
F021
F024
F027
FO2A
F02D
F030
F033
F036
F039
FO3C
FO3F
F042
F045

MM19BK

17
16
16
17
17
16
16
16
16
16
16
16
16
16
17
17
17
16
17
17
16
16

-SA:1 MM19BK --

0000
D000
E7FC

003F
0065
0066
0036
0033
0193
0182
0041
003C
0173
0163
0162
0034
0122
0015
0012
OOOF
01A4
0009
0006
O1A7
O17F

A APSTRT
A ARSTRT
A

F048
FO71
F075
F048
F048
F1AB
F19D
FOSF
FO5D
F197
F18A
F18C
F061
F152
F048
F048
F048
F1E0
F048
F048
F1LEC
F1C7

ARAMAD

XOUTCH

XPCRLF
XPDATA

XEXIT

ORG
FDB
FDB
FDB

LBSR
LBRA
LBRA
LBSR
LBSR
LBRA
LBRA
LBRA
LBRA
LBRA
LBRA
LBRA
LBRA
LBRA
LBSR
LBSR
LBSR
LBRA
LBSR
LBSR
LBRA
LBRA

TTL

$F000
PGSTRT
$D000
RAMAD

UNIMP
CHEXL
CHEXR
UNIMP
UNIMP
INCHNP
OUTCH
OUT2HS
OUT4HS
PCRLF
PDATA
PDATAL
PSPACE
EXIT
UNIMP
UNIMP
UNIMP
ZAPBRK
UNIMP
UNIMP
LIST
CKBRK

JUMP TABLE AND PROGRAM START ADDRESS

BASIC-M PROGRAM START ADDRESS
FATAL ERROR RECOVERY ENTRY POINT ADDRESS
ADDRESS OF DSCT LINK

CBCDHX UNIMPLEMENTED
CONVERT MS BCD TO ASCII HEX
CONVERT LS BCD TO ASCII HEX
INADDR UNIMPLEMENTED
INCH UNIMPLEMENTED
INPUT CHARACTER, STRIP PARITY
OUTPUT CHARACTER
DISPLAY HEX 2 DIGITS
DISPLAY HEX 4 DIGITS
DISPLAY CARRIAGE-RETURN, LINE-FEED
DISPLAY CR, LF, STRING
DISPLAY STRING
DISPLAY SPACE
END OF BASIC-M PROGRAM EXECUTION
XLDA UNIMPLEMENTED
XSTA UNIMPLEMENTED
XTOGL UNIMPLEMENTED
NO BREAKPOINT, DUMMY ENTRY POINT
SAVREC UNIMPLEMENTED
GETREG UNIMPLEMENTED
OUTPUT CHARACTER TO PRINTER
CHECK BREAK CONDITION

-- ILLEGAL ENTRY TO MONITOR --

PAGE 005

00108A
00109A
00110A
OO11I1A
00112A
00113A
00114A
00115A
00116A
00117A

00119

F048
FO4B
F04D
FO4F
F051
F053
F055
F057
F059
FO5B

MM19BK

30
8D
35
30
34
30
8D
8D
32
20

-SA:1 MM19BK -- ILLEGAL ENTRY TO MONITOR --

8C 35
D7
10
1D
10
E4
06
c8
62
DO

F024
UNIMP LEAX

BSR
PULS
LEAX
PSHS
LEAX
BSR
BSR
LEAS
BRA

<ILLENT, PCR

XPDATA DISPLAY "CALL TO UNIMPLEMENTED ROUTINE $"

»,4 COMPUTE ROUTINE ADDRESS

-3,X
»4

0,S DISPLAY ROUTINE ADDRESS

OUT4HS

XPCRLF NEW LINE

2;58 DROP ROUTINE ADDRESS

XEXIT ABORT

-- NUMBER CONVERSION AND DISPLAY NUMBER ROUTINES --

PAGE 006 MM19BK .SA:1 MM19BK -- NUMBER CONVERSION AND DISPLAY NUMBER ROUTI

00121A FOS5D 8D 06 F065 OUT4HS BSR OUT2H DISPLAY MS BYTE

00123A FOSF 8D 04 F065 OUT2HS BSR OUT2H DISPLAY BYTE

00125A FO61 86 20 A PSPACE LDA #SPACE
(0126A F063 20 B3 F018 YOUTCH BRA XOUTCH GO DISPLAY SPACE

(0128A F065 A6~ 84 A OUT2H LDA 0,X DISPLAY MS
(0129A F067 8D O08 - FO71 BSR CHEXL
00130A F069 8D F8 F063 BSR YOUTCH
(0131A FO6B A680 A LDA 0,X+ DISPLAY LS
00132A FO6D 8D 06 ~~ F075 BSR CHEXR
00133A FO6F 20 F2 # F063 BRA YOUTCH AND EXIT

00135A FO71 44 CHEXL LSRA MOVE BITS 7-4 TO 3-0
00136A F072 44 LSRA
00137A F073 44 LSRA
00138A F074 44 LSRA

00140A F075 84 OF A CHEXR ANDA- #SF CONVERT LS BCD TO ASCII HEX
00141A F077 8B 30 A ADDA #°0
00142A F079 81 39 A CMPA #°9
00143A FO7B 23. 02 + #£¥FO7F BLS RTN 0-9
00144A FO7D 8B 07 A ADDA #7 A-F
00145A FO7F 39 RTN RTS DONE, EXIT

00147 * MESSAGE FOR ERROR ROUTINE
00148 *
00149A F080 43 A ILLENT FCC /CALL TO UNIMPLEMENTED ROUTINE $/
00150A FOOF 04 A FCB EOT

00152 TTL -- RESTART RESPONSE ROUTINE -- PERIPHERAL INITIALIZATION

PAGE 007

00154A
00155A
00156A
00157A
00158A
00159A
00160A
00161A
00162A
00163
00164
00165
00166A
00167A
00168A
00169A
00170A
00171
00172
00173
00174A
00175A
00176A
00177A
00178A
00179A
00180
00181
00182
00183A
00184A
00185A
00186A
00187A
00188A
00189A
00190A
00191A
00192A
00193A
00194A
00195A
00196A
00197A
00198A
00199A
00200
00201A
00202
00203A
00204A
00205A

00207

FOAO
FOA4
FOA6
FOA7
FOA9
FOAA
FOAE
FOAF
FOB3

FOB5S
FOB7
FOBA
FOBC
FOBF

FOC2
FOCS
FOC8
FOCB
FOCE
FOD1L

FOD4
FOD8
FODA
FODC
FODF
FOE2
FOES
FOE7
FOEA
FOEC
FOEE
FOFO
FOF3
FOF6
FOF8
FOFA
FOFC

FOFF

F101
F103
F119

MM19BK .SA:1

10CE E703 A
1A 50 A
4F
1F 8B A
5F
ED 9D OF40
43
ED 9D FFS1
1F 43 A

86 03 A
B7 EC14 A
86 09 A
B7 EC14 A
7F E714 A

7F EC11l A
TE EC13 A
cc FF3C A
FD EC10 A
cc 003C A
FD EC12 A

AE 8D FF28

26 25 FOFF
6F E2 A
BD E822 A
7F 0000 A
BD E887 A
25 05 FOEC
BD E875 A
24 OE FOFA
6D E4 A
26 EF FODF
30 8C OE
17 0094 F18A
6C E4 A
20 E5 FODF
32 61 A
TE E800 A

6E 84 A

oD A
49 A
0D A

RES

*

LDS
ORCC
CLRA
TFR
CLRB
STD
COMA
STD
TFR

MM19BK -- RESTART RESPONSE ROUTINE -- PERIPHERAL INI

#STACK FIRST THING TO DO IN CASE OF INTERRUPT
#$50 MASK IRQ & FIRQ

SET DIRECT PAGE = 0
A,DP

INITIALIZE 2ND LEVEL INTERRUPT VECTOR TABLE ADDRESS
[ATOPA, PCR]

[ARAMAD,PCR] NO BASIC-M PROGRAM IN EXECUTION YET
S,U INITIALIZE USER STACK

* MASTER DEVICE INITIALIZATION
*

LDA
STA
LDA
STA
CLR

#ACRES RESET ACIA
ACIA
#ACCTL INITIALIZE IT
ACIA
>AECHO FORCE ECHO

* PRINTER INTERFACE INITIALIZATION

*

CLR
CLR
LDD
STD
LDD
STD

PIA+1 SELECT DDRA
PIA+3 SELECT DDRB

#DDRA! <8+PIACTL+DRSEL
PIA INITIALIZE PIA A SIDE

#DDRB! <8+PIBCTL+DRSEL
PIA+2 INITIALIZE PIA B SIDE

* GO EXECUTE BASIC-M PROGRAM OR LOAD OS

DKWAIT

DKNRDY

GOLOAD

*

GEXEC
*

DKMSG

LDX

BNE
CLR
JSR
CLR
JSR
BCS
JSR
BCC
TST
BNE
LEAX
LBSR
INC
BRA
LEAS
JMP

JMP

FCB
FCC
FCB

TTL

APSTRT,PCR FETCH PROGRAM START ADDRESS

GEXEC ADDRESS OK?, GO TO IT
0,-S INITIALIZE MESSAGE FLAG
>FDINIT ADDRESS IS ZERO, LOAD XDOS
>CURDRV RESTORE DRIVE 0
>CLOCK COMPUTE TIMING PARAMETER
DKNRDY DISK NOT READY
>RESTOR
GOLOAD DISK OK, GO LOAD OS
0,S MESSAGE PRINTED ?
DKWAIT YES, TRY AGAIN
<DKMSG, PCR
PDATA
0,S SET MESSAGE DISPLAYED FLAG
DKWAIT GO TRY AGAIN
1,8 DROP FLAG
>OSLOAD GO LOAD OS

0,X GO EXECUTE USER PROGRAM

CR,LF
/INSERT DISK IN DRIVE 0/
CR,LF,EOT

-- INTERRUPT HANDLER

PAGE 008 MM19BK .SA:1 MM19BK -- INTERRUPT HANDLER

00209 *
00210 * GO EXECUTE SECOND LEVEL INTERRUPT ROUTINE IF ANY
00211 *
00212 * IF ADDRESS FOUND IS ZERO, ABORT WITH "NO VECTOR" MESSAGE
00213 *

00215 * NMI RESPONSE ROUTINE

00217A F11C 8D 10 F12E NMI BSR INTER CALL INTERRUPT HANDLER
00218A F11E FD A FCB =3 TOP OF TABLE OFFSET TO NMI VECTOR

00220 * SWI RESPONSE ROUTINE

00?22A F1IF 8D (0) >) F12E SWI BSR INTER CALL INTERRUPT HANDLER
00223A F121 FB A FCB -5 TOP OF TABLE OFFSET TO SWI VECTOR

00;}25 * IRQ RESPONSE ROUTINE

00227A F122 8D OA F12E IRQ BSR INTER CALL INTERRUPT HANDLER
00228A F124 F9 A FCB -7 TOP OF TABLE OFFSET TO IRQ VECTOR

00230 * FIRQ RESPONSE ROUTINE

00232A F125 8D 07 F12E FIRQ BSR INTER CALL INTERRUPT HANDLER
00233A F127 F7 A FCB -9 TOP OF TABLE OFFSET TO FIRQ VECTOR

00235 * SWI2 RESPONSE ROUTINE

00237A F128 8D 04 F12E SWI2 BSR INTER CALL INTERRUPT HANDLER
00238A F12A FS A FCB -ll TOP OF TABLE OFFSET TO SWI2 VECTOR

00240 * SWI3 RESPONSE ROUTINE

00242A F12B 8D 01 F12E SWI3 BSR INTER CALL INTERRUPT HANDLER
00243A F12D F3 A FCB -13 TOP OF TABLE OFFSET TO SWI3 VECTOR

00245 * COMMON INTERRUPT HANDLER

00247A F12E 34 15 A INTER PSHS X,B,CC SAVE REGISTERS
00248A F130 AE 9D OEBA LDX [ATOPA,PCR] FETCH 2ND LEVEL INTERRUPT VECTOR TABLE ADDRESS
00249A F134 27 17 F14D BEQ NOVEC NOT SPECIFIED, ERROR
00250A F136 E6 F8 04 A LDB [4,8] FETCH TOP OF TABLE OFFSET TO CORRECT VECTOR
00251A F139 AE 85 A LDX B,X FETCH VECTOR
00252A F13B 27 10 F14D BEQ NOVEC NOT SPECIFIED, ERROR

PAGE 009 MM19BK

00253A
00254A
00255
00256A
00257A
00258
00259A
00260A

00262

F13D AF
F13F 35

F141
F14A

F14D 30
F150 8D

-SA:1 MM19BK -- INTERRUPT HANDLER

64 A STX 4,S REPLACE RETURN ADDRESS WITH INTERRUPT ROUTINE ADDRESS
95 A PULS CC,B,X,PC RESTORE REGISTERS AND GO TO INTERRUPT ROUTINE

*

4E A NVECTM FCC /NO VECTOR/
OD A FCB CR,LF,EOT

*

8C Fl NOVEC LEAX NVECTM,PCR OUTPUT ERROR MESSAGE
38 F18A BSR PDATA AND ABORT

TTL -- EXECUTION TERMINATE ROUTINE

PAGE 010 MM19BK .SA:1 MM19BK -- EXECUTION TERMINATE ROUTINE

00264 *
00265 * EXIT FROM BASIC-M PROGRAM
00266 *
00267 * ENTRY CONDITIONS : NONE

00268 x
00269 * THIS ROUTINE NEVER RETURNS.
00270 *
00271A F152 1A 50 A EXIT ORCC #$50 INHIBIT INTERRUPTS
00272A F154 10CE E703 A LDS #STACK REINITIALIZE STACK IN CASE OF ENTRY BY CRASH
00273A F158 EC 9D FEA8 LDD [ARAMAD,PCR] EXIT FROM BASICM ?
00274A F1S5C 27 07 F165 BEQ RECOV YES, GO EXECUTE ERROR RECOVERY PROGRAM
00275A F15E 30 8C 08 LEAX <EXITM,PCR DISPLAY MESSAGE
00276A F161 8D 27 F18A BSR PDATA
00277A F163 20 FE F163 BRA * WAIT FOR EVER
00278A F165 6E 9D FE99 RECOV JMP [ARSTRT,PCR] GO EXECUTE ERROR RECOVERY PROGRAM
00279 *
00280A F169 50 A EXITM FCC /PRESS RESET TO RESTART PROGRAM/
00281A F187 0D A FCB CR,LF,EOT

00283 TTL -- INPUT/OUTPUT ROUTINES

PAGE

00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298A
00299A
00300A
00301A
00302A
00303A
00304A

00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316

011 MM19BK

F18A
F18c
F18E
F190
F192
F194
F196

8D
A6
81
27
8D
20
39

00317A F197 86
00318A F199 8D
00319A F19B 86

00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331A
00332A
00333A
00334A
00335A
00336A

F19D
F19OF
FIA1
F1A4
F1A6
F1A9

34
C6
FS
27
B7
35

-SA:1 MM19BK -- INPUT/OUTPUT ROUTINES

0B
80
04
04
09
F6

0D
02
OA

04
02
EC14
FB
ECL5
84

F19

F1A

A
D
A

r
P
r
r
e
r
r
p
r

k

* DISPLAY CR, LF, ASCII STRING TO MASTER DEVICE
®

+

*

*

* EXIT CONDITIONS :
*

*

k

*

* STACK REQUIRMENTS
*

PDATA BSR PCRLF
PDATAL LDA 0,X+

CMPA #EOT
BEQ PDATA2
BSR — OUTCH
BRA — PDATAL

PDATA2 RTS

*

* DISPLAY CR,
*

* ENTRY CONDITIONS :
*

* EXIT CONDITIONS
*

*

*

* STACK REQUIRMENTS
*

PCRLF LDA #CR
BSR OUTCH
LDA #LF

*

*

*

* ENTRY CONDITIONS :
*

* EXIT CONDITIONS :
k

*

* STACK REQUIRMENTS
*

OUTCH PSHS B
LDB #TDRE

OUTCH2 BITB ACIA
BEQ OUTCH2
STA ACIAt1
PULS B,PC

ENTRY CONDITIONS : X = ADDRESS OF ASCII STRING TO DISPLAY
STRING IS TERMINATED BY AN EOT ($04) CHARACTER.

X = ADDRESS OF BYTE FOLLOWING THE EOT.
A IS DESTROYED.
CC IS MEANINGLESS.
OTHER REGISTERS ARE PRESERVED

8 BYTES.

OUTPUT CARRIAGE-RETURN, LINE-FEED
FETCH STRING CHARACTER
END OF STRING ?
YES, EXIT
NO, DISPLAY CHARACTER
GO FETCH NEXT CHARACTER

DONE, EXIT

LF ON MASTER DEVICE

NONE

: A IS DESTROYED
CC IS MEANINGLESS
OTHER REGISTERS ARE PRESERVED

5 BYTES

OUTPUT CARRIAGE RETURN

OUTPUT LINE FEED, FALL IN OUTCH ROUTINE

DISPLAY CHARACTER ON MASTER DEVICE

A = CHARACTER TO DISPLAY

cc IS MEANINGLESS
OTHER REGISTERS ARE PRESERVED

3 BYTES

SAVE B REGISTER
WAIT FOR ACIA READY

NOT READY, WAIT
ACIA READY, SEND CHARACTER
RESTORE B REGISTER AND EXIT

PAGE 012 MM19BK .SA:1 MM19BK -- INPUT/OUTPUT ROUTINES

00338 *
00339 * INPUT A CHARACTER FROM MASTER DEVICE, STRIP PARITY, ECHO CHARACTER
00340 ®
00341 * ENTRY CONDITIONS : NONE
00342 * :
00343 * EXIT CONDITIONS : A CONTAINS THE INPUT CHARACTER
00344 ® CC IS MEANINGLESS
00345 * OTHER REGISTERS ARE PRESERVED
00346 *
00347 * STACK REQUIRMENTS : 3 BYTES
00348 *
00349A F1AB 86 01 A INCHNP LDA #RDRF TEST ACIA STATUS
00350A FIAD B5 EC14 A INCH] BITA ACIA WAIT FOR ACIA READY
00351A F1BO 27 FB F1AD BEQ INCH1 NOT READY
00352A F1B2 B6é EC15 A LDA ACIA+1 FETCH INPUT CHARACTER
00353A F1B5 84 7F A ANDA #%01111111 STRIP PARITY
00354A F1B7 7D E714 A TST >AECHO ECHO CHARACTER ?
00355A FIBA 27 El F19D BEQ OUTCH YES, GO DO IT
00356A FIBC 7F E714 A CLR >AECHO RESET FLAG
00357A FIBF 39 RTS AND EXIT

00359 *
00360 * TEST BREAK CONDITION
00361 *
00362 * ENTRY CONDITIONS : NONE
00363 *
00364 * EXIT CONDITIONS : C = 0 OK, CONTINUE
00365 * = 1 A BREAK CONDITION HAS OCCURED
00366 id REMAINDER OF CC IS MEANINGLESS
00367 * A IS DESTROYED
00368 al OTHER REGISTERS ARE PRESERVED
00369 x
00370 * STACK REQUIRMENTS : 2 BYTES
00371 i
00372 *

00373 * BREAK CONDITION IS EITHER A CONTROL-P OR A BREAK KEY-IN
00374 *
00375 * IF CONTROL-W HAS BEEN TYPED, THE ROUTINE WAITS FOR ANOTHER CHARACTER
00376 * BEFORE RETURNING TO CALLING PROGRAM.
00377 *
00378 * ROUTINE ENTRY POINT IS AT CKBRK
00379 *

00380A F1CO 86 11 A BRK3 LDA #FE+RDRF TEST FRAMING ERROR OR CHARACTER RECEIVED
00381A F1C2 B5 EC14 A BRK4 BITA ACIA WAIT UNTIL ONE OR BOTH DETECTED
00382A F1C5 27 FB F1c2 BEQ BRK4
00383 *

00384A FIC7 B6 EC14 A CKBRK LDA ACIA FETCH STATUS
00385A FICA 85 10 A BITA #FE FRAMING ERROR ?
00386A FICC 26 13 FLE1 BNE BRK1 YES, BREAK KEY HAS BEEN HIT
00387A FICE 85 ol A BITA #RDRF CHARACTER READY ?
00388A FIDO 27 oD F1DF BEQ BRK2 NO, EXIT
00389A F1D2 B6 EC15 A LDA ACIA+1 YES, FETCH CHARACTER
00390A F1D5 84 7F A ANDA #S7F STRIP PARITY
00391A F1D7 81 10 A CMPA #DLE CONTROL-P ?

00392A F1D9 27 06 FIE1 BEQ BRK1 YES, GO EXIT WITH CARRY SET
00393A FIDB 81 17 A CMPA #ETB CONTROL-W ?

PAGE

00394A
00395A
00396A
00397

00398A
00399A
00400A
00401A
00402A

00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416A
00417A
00418A
00419A
00420A
00421A
00422A
00423A
00424A
00425A
00426A
00427A
00428A
00429A
00430A
00431A

00433

013

F1DD
F1DF
F1EO

F1E1
F1E4
F1E7
FLEA
F1EB

F1EC
F1EF
F1F2
F1F4
FLF7
F1F9
F1FC
F1FD
F200
F202
F203
F205
F208
F20A
F20B
F20E

MM19BK

27
4F
39

B6
B6
B6
43
39

B7
B6
86
B7
86
B7
43
B6
84
4a
26
7D
2A
4F
B6
39

~SAz1

El F1CO

EC15 A
EC15 A
EC15 A

EC10 A
EC10 A
34 A
ECll A
3c A
EC11 A

EC12 A
03 A

06 F20B
EC1ll A
F3 F1FD

EC10 A

MM19BK -- INPUT/OUTPUT ROUTINES

BEQ BRK3 YES, GO WAIT FOR ANOTHER CHARACTER
BRK2 CLRA NO BREAK CONDITION, CLEAR CARRY
ZAPBRK RTS AND’ EXIT
*

BRK1 LDA ACIA+1l A BREAK CONDITION HAS OCCURED, RESET FRAMING ERROR
LDA ACIA+1 AND POSSIBLE OVERRUN
LDA — ACIA+1
COMA SET CARRY
RTS EXIT

*

* OUTPUT CHARACTER TO PRINTER
*

* ENTRY CONDITIONS : A = CHARACTER TO OUTPUT
*

* EXIT CONDITIONS : C = 0 => OUTPUT WAS SUCCESSFUL
* = 1 => OUTPUT FAILED
* REMAINDER OF CC IS MEANINGLESS
* OTHER REGISTERS ARE PRESERVED
*

* STACK REQUIRMENTS : 3 BYTES
*

LIST STA PIA PUT CHARACTER ON PRINTER BUS
LDA —-~PIA CLEAR PREVIOUS STATUS
LDA #$34 STROBE DATA
STA —- PIA+1
LDA —s #$3C
STA PIA+L
COMA SET ERROR STATUS

LISTl LDA PIA+2 FETCH PRINTER STATUS
ANDA #3
DECA MUST BE ONLINE
BNE LIST2 ERROR, OUTPUT FAILED
TST PIA+1 WAIT UNTIL CHARACTER OUT
BPL LIST1 NOT OUT, LOOP
CLRA OK, EXIT WITH CARRY CLEAR

LIST2 LDA PIA RESTORE A REGISTER, CLEAR STATUS
RTS AND EXIT

TTL -- HARDWARE INTERRUPT VECTORS

PAGE 014 MM19BK .SA:1 MM19BK -- HARDWARE INTERRUPT VECTORS

00435 *
0436 * ASSIGN TO TOP OF ADDRESSABLE MEMORY
01437 *
00438A FFEE ORG SFFEE
09439A FFEE E72E A ATOPA FDB ATOP ADDRESS OF 2ND LEVEL INTERRUPT VECTOR TABLE ADDRESS
00440 *
00441A FFFO F14D A FDB NOVEC RESERVED, ERROR
00442A FFF2 F12B A FDB SW13 SOFTWARE INTERRUPT 3 VECTOR
00443A FFF4 F128 A FDB Swi2 SOFTWARE INTERRUPT 2 VECTOR
004440 FFF6 F125 A FDB FIRQ FAST INTERRUPT REQUEST VECTOR
00445A FFF8 F122 A FDB IRQ INTERRUPT REQUEST VECTOR
00446A FFFA F1l1F A FDB SWI SOFTWARE INTERRUPT 1 VECTOR
0(447A FFFC Flic A FDB NMI NON MASKABLE INTERRUPT VECTOR
00448A FFFE FOAO A FDB RES RESTART VECTOR

0(/450 FOAO A END RES END OF MM19BK. P.MONNERAT, OCT. 15, 1980.
TCTAL ERRORS 00000--00000

ACCLK 0001 ACCTL 0009 ACIA EC14 ACPAR 0002 ACRES 0003 ACRINT 0000 ACRTST 0000 AECHO E714 APSTRT FOO0O
ARAMAD F004 ARSTRT FO02 ATOP E72E ATOPA FFEE BRK1 F1lEl BRK2 FIDF BRK3 F1CO BRK4 F1C2 CA2 0003
CA2DIR 0001 CB2 0003 CB2DIR 0001 CHEXL F071 CHEXR F075 CKBRK F1C7 CLOCK E887 CR 000D CURDRV 0000
DDRA OOFF DDRB 0000 DKMSG F101 DKNRDY FOEC DKWAIT FODF DLE 0010 DRSEL 0004 EDGEA1 0000 EDGEB1 0000

EOT 0004 ETB 0017 EXIT F152 EXITM F169 FDINIT E822 FE 0010 FIRQ F125 GEXEC FOFF GOLOAD FOFA
ILLENT FO80 INCH1 FI1AD INCHNP F1AB INTER F12E IRQ F122 IRQAIM 0000 IRQBI1M 0000 LF 000A LIST F1EC
LISTL FIFD LIST2 F20B NMI Fl1C NOVEC F14D NVECTM F141 OSLOAD £800 OUT2H F065 OUT2HS FOSF OUT4HS FO5D
OUTCH F19D OUTCH2 F1Al PCRLF F197 PDATA F18A PDATAl F18C PDATA2 F196 PGSTRT 0000 PIA EC10 PIACTL 0038
PIBCTL 0038 PSPACE F061 PTM EC18 RAMAD E7FC RAMTOP E7FF RDRF 0001 RECOV F165 RES FOAQ RESTOR E875
RTN FO7F SPACE 0020 STACK £E703 SWI FLIF SWI2 F128 SWI3 F12B TDRE 0002 UNIMP F048 XEXIT FO2D

XOUTCH F018 XPCRLF FO21 XPDATA F024 YOUTCH F063 ZAPBRK F1EO

APPENDIX J

eo ee ee as es ee ee ee eS eB wee me ww wwe eee

PAGE 01 SAMPLE’ .SA:0

006C
006c
006C
006C
006C
006C
006C
006Cc
006C
006C
006C
006C
006C .
006C
006C
006C
006C
OO8F
OO8F
0096
OOAF
OOAF
OOBE
00CD
OODC
OOEB
OOFA
0109
010E
0133
015D
016C
018F
01A2
01C5
O1F1
O1F6
0205
022F
0287
02A5
O2AA

02D8
0303
0343
035C
037F
0382
03B8
03D1
03D6
0415
049A
04C5
04DE
0501
052C
054F
0552

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590

REM ***** SAMPLE PROGRAM FOR MM19) *****

REM

INTEGER Time,Dummy

BYTE Tswch,Tmout

BYTE PTM cr1l3 ADDRESS SEC18

BYTE PTM cr2 ADDRESS $EC19
BYTE PTM_ stat ADDRESS PTM_ cr2

INTEGER PTM tl ADDR SEC1A

INTEGER PTM t2 ADDR $EC1C

INTEGER PTM_ t3 ADDR SEC1E

INTEGER Prnt, LU,X,I1,J,M,P,C1I,CA,CN,CT,Zero,One, Hundred

INTEGER A(12) N(7) , TI (12) 'T(7) »Numbers (14)
REM

DATA $1,$2,$3,$4,$5,$6,$7,$8,$9,$A,$19,$32,$4B,$64
DATA $0,$1,$64
REM

DEF Odd= IAND(M,One)

REM

MAT READ Numbers

READ Zero,One,Hundred
REM

PTM_cr2=One \ Select CR1
PTM_cr13=One \ Clear CRl1, preset state
PTM_cr2=Zero \ Select CR3
PTM_crl3=Zero \ Clear CR3
PTM cr2=One \ Clear CR2, select CR1
Tswch=Zero
GOSUB 1710 \
INPUT "Results to printer
I= SUBSTR("YESNO" ,RS)
Prnt=One

IF I=4 THEN 370

Prnt=$2

IF I=l THEN 370

PRINT "Answer YES or NO, please !!!"
GOTO 290

P=Zero

INPUT "Random or Input (R/I) “",R$
ON SUBSTR("RI", LEFTS(R$,1))+One GOTO 400,420,510

PRINT “Invalid answer"

GOTO 370
J= RND(PTM_t1/10000)
FOR I=One TO $6 STEP One
CN=Numbers(FIX(14* RND)+One)
N (I) =CN

IF CN=Hundred THEN P=CN

NEXT I

X= FIX(900* RND)+Hundred

IF X=P THEN 480

GOTO 680
PRINT "Enter the ?6 numbers (1..10, 25, 50, 75, 100) : "3:

INPUT N(One) ,N($2) ,N($3) ,N($4) ,N($5) ,N(S$6)
FOR I=One TO $6 STEP One
CNEN (T)

IF CN=Hundred THEN P=One

FOR J=One TO SE STEP One

IF CN=Numbers(J) THEN 610
NEXT J

PRINT "Invalid input"

Start timer for randomize
iT) RS

PAGE 02

OS6F
0574
0577

OS8F

05CD
O5DF
060E

062C
0631

0658

069D
06CC
O6FD

0700

0716

0755

0758

075D

076C

077B

078A
078F

07A8

07B6

07C4

O7EL
07F0

0808

0819

0832
084A

0870
0889

O8AlL

O8BA

08CB
O8E4

O8FD
091A

0933

0938
0947

094C

0965

0975
O9BF

09DB

O9F4

OAOD

0A26

OA3F

0A58

0A79
OA92
OA97

OAAF

OADL

OAEA

OBO7

SAMPLE .SA:0

00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180

GOTO 510
NEXT I

Pp=P+Hundred

PRINT "Target number to find ("3P;"- 999) "s
INPUT X

IF X>=P AND X<S03E8 THEN 680

PRINT "Invalid number"
GOTO 630
FOR LU=One TO Prnt STEP One

PRINT #LU USING "[/3] given numbers : [3]",N(One) ;
FOR I=$2 TO $6 STEP One

PRINT #LU USING " [3]",N(I)3

NEXT I

PRINT #LU

PRINT #LU USING " Target number to find : [3]",X
NEXT LU

GOSUB 1780 \ Stop timer
Tswch=One \ Count time
Time=Zero \ Initialize time accumulator
Tmout=Zero \ No timeout yet
GOSUB 1710 \ Start timer
A(One) =X

MAT II= ZER

MAT T= ZER

N($7)=Zero
M=Zero
M=M+One

P=Odd
CI=ITI (M)

CI=CI+One
IF CI<$7+P THEN 1020

II (M) =Zero
M=M-One

IF M=Zero THEN 1200

P=Odd
CI=ITI (M)

CT=T (CI)

IF CT=SFFFF THEN 1000

T(CL)=Zero

GOTO 890

CT=One

GOTO 1050
CT=T (CI)

IF CT<>Zero THEN 890

IF CI<>$7 THEN CT=$2-$3*P

IF Tmout<>Zero THEN 1200

II (M) =CI
T(CI)=CT

CA=A (M)
CN=N (CI)

IF P=Zero THEN 1140

J=CA+CT*CN

IF J=Zero THEN 1250

GOTO 1170
J=CA/CN
IF J*CN<>CA THEN 980

IF J=One THEN 1250

IF M=SC THEN 980

A (M+One) =J

PAGE 03

0B29
OB2E
0B33
OB5A

OB71
0B74
0B79
OB7E
OBA5
OBD8
OBDB
OBFE
0C16
OC2F
0C48
0cél
OC7A
0c98
OCB1
OCD8
ODOE
OD11
0D16
OD2F
0D56
0D98
OD9B
ODAA

ODC3
ODEA
OEOL1
OEO04
OE09
OE1B
0E30
0OE58
OE81
OEAB
OEAB
OEAB
OEAB
OECB
OEDA
OEE6
OEE6
OFO2
OF1A
OF41
OF50
OF51
OF51
OFS51
OF5?1
OF64
OF 6F
OF82
OF83
OF83
OF83

SAMPLE ~SA:0

01190 GOTO 860
01200 GOSUB 1780 \ Stop timer
01210 FOR LU=One TO Prnt STEP One

01220 PRINT #LU USING 1540

01230 NEXT LU
01240 GOTO 270
01250 GOSUB 1780 \ Stop timer
01260 FOR LU=One TO Prnt STEP One

01270 PRINT #LU USING 1550,Time/100
01280 NEXT LU
01290 J=N(II(M))

01300 M=M-One
01310 CI=II(M)

01320 cCT=T(CI)
01330 CN=N(CTI)
01340 CA=A(M)
01350 IF Odd<>Zero THEN 1410
01360 IF CN=One THEN 1460
01370 FOR LU=One TO Prnt STEP One

01380 PRINT #LU USING 1510,J,CN,CA
01390 NEXT LU
01400 GOTO 1450
01410 IF CN=Zero THEN 1460

01420 FOR LU=One TO Prnt STEP One

01430 PRINT #LU USING 1520,3,-CN*CT,CA
01440 NEXT LU

01450 J=CA
01460 IF M<>One THEN 1300

01470 FOR LU=One TO Prnt STEP One
01480 PRINT #LU USING 1530
01490 NEXT LU
01500 GOTO 270
01510 IMAGE "[9] x[{5] =[5]"
01520 IMAGE "[9] [C+()5] =[5]"
01530' IMAGE "[{/2] [X22]Quod Erat Demonstrandum. [/3]"
01540 IMAGE "[/3][X20]I can’t find the solution[/3]"
01550 IMAGE "[/3][X22]I made it in[3,2] seconds ![/]"
01560 REM
01570 REM ----- IRQ RESPONSE ROUTINE -----

01580 REM
01590 IF PTM_stat=$81 THEN 1630
01600 PTM_cr13=One \ IRQ does not come from PTM
01610 STOP "BAD IRQ"

01620 REM
01630 IF Tswch=Zero THEN 1660

01640 Time=Time+One -\ 10 MORE MILLISECONDS
01650 IF Time>=$1770 THEN Tmout=One \ Timeout after 60 seconds
01660. Dummy=PTM tl \ Clear IRQ
01670 RETURN

01680 REM
01690 REM ----- START TIMER ROUTINE -----

01700 REM
01710 PTM_tl=$270F \ Count 10 ms

01720 ON IRQ THEN GOSUB 1590

01730 PTM_cr13=$42 \ Start timer, enable interrupts

01740 RETURN

01750 REM
01760 REM ----- STOP TIMER ROUTINE -----

01770 REM

PAGE 04

OF83
OF92
OF95
OF96

SAMPLE .SA:0

01780
01790
01800
01810

PTM_cr13=One
NEVER IRQ
RETURN

END

\ Inhibit interrupts, hold in preset state

PAGE 05 SAMPLE .SA:0

DUMMY. cs mee ccnseceusevccclewscs oOO2. wens
Tswoh..cccecces ccocccccceeecBe cece oHO04. co oe

Tmout..... cocccccecc ecco cBoe cee es oHONS cove

PTM Crl3is veces vs ve ow oe ee Bes oe sBC1LBs cass

PTM CL2...cceecee wo wa ee wae mone wlll dle wan
PTM Stat......seeee va neue Baw enw e BOLO ww ae
SO Wins we sim we oe eee eo eee elke eee
PIM C2eeccnvenenanewenenelewnde eDCLs awn

PTM_ C2scicecccaseceresscenedben nes clCLEs aves

PENtccvcevecccvccvvccscscccceloes vce oO0G.ceee

GU ss i565 6 68 BOE SS Be as oe He DoE Ss TEs & E008.....

Kis tse oe Oe we eS os He te eee eLee sss eHOOAS c.5%

Likd c6:8 66 04 CSO oe 8 oe wee ekes cee cHONKs we os

Dos ta ews os Cave ee He ee oe weLles vs oo BOOBS os as

Miss oe sae FS FS TOTST be BE HE Oe IT.eeee-Hh010.....

Pais is taS OS TE HS GOS Oe eT oe Oe Le oe we HOLZ. as ws
CT st eeewe cn se ceeesev ew oe lew ov os BOL 4s cn as

CAw ies ew eeie ae oe www wswewew~s Le vw we oe HOLS soe ce

CN ace ws seit oe we ee ee ewewele woe oe BOLB ewe aie

CT crc ccccccvccccccsccccccelLoceve cGOlAscooe

LOLOe vcccorxcecccccccccesccclevcv ec obOlCoe cee

ONE. ccccescevccccvccccvvele ccc ce oO Mes cece
Hundred. .ccccccccvccccccclecccc obO2Z0e..008

Deccvcccccccccescccvecccole cece oO sdevvol

Ne wccvccccvccvvccccevecccelLe ecco obO3Cecool

TT. ccc ccc cccccvcvcccccccele vec eo oMOAC.. ook

Tevcccvecccveccccccccceevcloccc co oUO6.c0e0L

NUMbDELrS..ccccccccsecvscvcclecvcc eh G...0L
Odd... ie Taw we HS ww seo eeRP acs e sO07 Las acs

Re vs caw wa ww eae we oe Ee ee S....--B094.....

DSCT: EOQ00-E563 PSCT: DOOO-DFBO
RUNTIME BASE : 8000
END OF COMPILATION

