
AN INTRODUCTION TO

THE CR80 ADVANCED

MULTIPROCESSOR

OPERATING SYSTEM

AMOS

791116/JH@

INTRODUCTION TO CR80 AMOS

The Advanced Multiprocessor Operating System (AMOS) for

the CR80 computers is a hierarchical structure of system

components, where each component in the layer builds on

the lower layers.

AMOS consists of the following components:

an operating system kernel

a memory management module

a modular set of device drivers

a file management system

a unified input/output system

The modularity of AMOS makes it possible to build systems

where not all components are used, where new modules are

included or where certain components are replaced by

customerized modules to fulfil very special requirements.

In a small application with no need for backing store

files the file management system need not be included.

Not used device drivers can be left out and new device

drivers are very easily included in the system.

AMOS Kernel

The Kernel is the lowest of the AMOS layers.

The Kernel is responsible for

Management of software-processes

interprocess communication

management of the CPUs

the lowest level of device handling (interrupt

handling).

Process Manacement

Process management is concerned with implementation of

software processes as a data type ard with implementa-

tion of the functions available for operating on pro-

cesses.

A process may be defined as an incarnation of the data

transformations obtained by executicn of a program in

a given context. A context is taker to mean a set of

CPU registers (CPU resident or savec).

Processes are uniquely identified by symbolic names

throughout a CR80 computer. A process may thus be vre-

ferred to without a requirement to know in which

memory locations it resides. The only in-

stant at which such a knowledge need be specified

is when a process is created.

The following functions are available for operating

On processes:

create process

remove process

start process

stop process

Process Communication .

Interprocess communication is based on exchange of

messages and answers.

Two concurrent processes can cooperate by sending

messages to each other. A message consists of a

number of machine words. Messages are trans-

mitted from one process to another by means of mes-

sage buffers selected from a pool.

Efficiency is obtained by the queuinc of buffers,

which enables a sending process to continue imme-

diately after delivery of a message or an answer

regardless of whether the receiver is ready to pro-

cess it or not.

Interrupt Handling

The Kernel controls the input/output interrupt facilities of
the processor,

A process may reserve an interrupt and thereby es+ abiish
monopoly of - using that interrupt until it is releasecé
again.

On the arrival of an interrupt, hardware saves the exe-
cuting process and loads the process the identificazticr
of which is fetched from an interrupt table.

If the interrupt is not waited for, a dummy interrust
process is loaded; it increments the occurrence e6unc
of the interrupt and reloads the former executing process.

If the interrupt is awaited by a process, the kernei
interrupt process is loaded. It makes the waiting cors-
cess enter the executing state.

CPU Management

CPU management is responsible for the allocation of

CPUs to the preempted processes.

CPUs are handled by the Kernel as separately identifi-

able objects addressed by a symbolic name.

CPUs are grouped in pools. Each pool has its own ready

list(s) of processes and is scheduled separately. Wher

a process is created, it is determined which pool of CPUs

it shall execute on.

The CPU allocation algorithm works independently for eacn

CPU pool. The CPU allocation algorithm is invoked

@® when a process calls a wait function to receive a

not yet occurred event

@ when a CPU has been allocated to a process a pre-

defined amount of time (tunable).

Memory Management

The memory management module administers a shared pool

of memory segments. Segments may dynamically be allocated to

processes and deallocated after use.

Device Drivers

Each device connected to a CR80 system is controlled

by a device driver.

The main purpose of a CR80 device driver is to bridge

the gap between the hardware interface and the CR8&O

process concept.

Device drivers are implemented as CR80 processes

establishing a generalized interface to the user

processes fitting into the CR80 IO system. The gene-

ralized interface defines standard formats for driver

operations and the command codes are unified where

possible.

User processes communicate with drivers by using the

send message and wait answer functions of the monitor.

These functions may be used indirectly by calling the L-°

System or directly from a user process (for instance to use

device in some specialized way).

Contrary to a user process, a driver process is

authorized to perform IO operations.

A device driver has exclusive access to the corre-

sponding device. Any use of a device must therefore

be performed via the actual device driver which then

is able to manage and control the access rights of the

requesting user processes (granting mutual exclusion,

etc. when necessary).

The device drivers check the hardwaxre equipment,

remedies errors if possible and reports serious

failures.

A large number of different device drivers exist,

interfacing a wide range of hardware equipment to the

CR805

terminals

large disks (12-300 MB)

diskettes

line printers

card readers

DMA channels

magnetic tape transports

communication lines for variety of

protocols including X25 and BSC.

File Management System

The file management system offers a structuring of backing

store into logical files and is responsible for storing,

maintaining, and retrieving information on secondary storage

devices (disks, diskettes, and magtapes).

The number and kind of devices(spindles, tapedrives)

attached to the file management system is dynamically recon-

figurable.

The file management system consists of a set of command

processes each capable of performing one command at a

time, communicating with the device drivers for disk,

diskette or magtape by means of messages. The work

is distributed among the command processes by a contro.

process by means of messages, too. “he control process,

in turn, is activated by reception o: messages sent to it

by the I/O system on behalf of an application progran.

The interface between the I/O system and the controi porcecess

corresponds to the interface between the I/O system ana

other driver processes.

Device and Volume Handling

Each device (disk controller, tape szation, etc.) known

to the file system is represented by a Device Contrci

Block (DCB). A DCB contains the information which maxes

it possible for the file system to use the device.

This information includes the process name of the ccrre-

sponding driver process and the kind of device. When a

volume is mounted on the device, its description is inciudec

in the DCB. Both devices and volumes may be referenced by

symbolic names. The device control plock is linked to

all open files on the volume mounted on that device.

The file system may. be given commands concerning;

@ Management of peripheral devices.

Devices may be assigned to ané
deassigned from the file system

dynamically.

@® Management of volumes. Volumes

may be mounted on and dismounted from

specific devices.

User Handling

Each process pair using the file management system is

within the file system represented by a User Control

Block (UCB). The name of the user is contained in tne

UCB. Several processes may be active under the same

user name, thus having the same access rights. The UC8

is linked to the file control biocks for files that ace

open to the user. The links show the access rignts to

that particular file.

There are commands to the file management system for

creation and removal of user control blocks.

File Handling

Each open file is within the file system represenced by a

File Control Block (FCB). The FCB contains information

which makes it possible to access the corresponding fil

This information includes the address of the file on tx
volume, its size and its type. The FCB is linked to user

control blocks for all users who operate on the file

indicating at the same time their access rights to tne file.

The FCB is also linked to the device controi bliocx <or tne

volume on which it resides.

5.4

symbolic name. Using that neme it is

possible to locate the file later on.

The file may also be renamed or removed

from the directory again.

e Change of access rights for a specific user

(or the public) vis-a-vis a file. The right

to change the access rights is itself delegatabie.

e Transfer of data between files and buffers in the

10

application programs. For transfer purposes a file

is considered simply as a string of bytes. [It

is, therefore, a byte string that is trans-

ferred between a file and a buffer. The user

can directly access any byte sequence in a file.

The operations which are imp-emented by the file

system are read, modify, and apnvend.

Security

The protection of data entrusted to the file management

system is handled at the file level.

The mechanism for access control is based on the use

of Access Control Lists (ACL). There is an ACL connectéea

to each file. The ACL is a table which describes tre

access rights of each individual user (one being the

public) to the corresponding file. When ever a user <=ries

to access a file, the ACL is used to verify that he is

indeed allowed to perform this access.

Input/Output System

The AMOS I/O system provides the application programs
with a unified interface to peripheral devices includine

disk volumes.

The I/O system may either be used to call directly to peri-
pheral device driver process or it may call the DAMOS
file management system. In the former case the Gevice is
treated as a single file in itself, in the latter casé the
file management system will structure the device intc

logical files organized in a hierarchical directory

structure.

The AMOS input/output system is a set of procedures whicn
may be called from all application programs. The insvt’

output system code is shared by ail programs anc invoked

by MON-instructions. However, no cortext switch takes

place. The input/output system checks the Validity 62
parameters passed to it, and the legality of a requested
Operation. If the check is satisfiec a message is prepared
for the appropriate device driver anc sent to it. tse-
code and classification information are specified to the

driver, enabling it to perform any relevant authenticatic-.

The commands to the I/O system may be divided into Zour
groups:

@® Environment Control

@® Direct Input/Output

@® Sequential Input/Output

@® Input/Output Utilities.

The first group which to a certain extent is Gevice devender
covers such operations as:

create file, assign terminal, etc.

12

The direct I/O operations directly reflect the data trans-

fer commands of peripheral device drivers and of the file

Management system. They may be performed either with or

without suspension of the calling precess. It is the

responsibility of the user to allocate and specify to the

I/O system the necessary buffers. The buffers used for

one command must be specified to the I/O system .by a iist

of buffer references. Each of these references may

specify either a local buffer or an external buffer requested

from the buffer manager. Local and external buffer 1)
 3 ie

S e) (a
y

mixed freely in a buffer list.

The sequential I/O procedures are implemented by the 2/5

system on top of the direct I/O proc: iures. For the

purpose of sequential I/0, the I/O system will aliocate

the necessary buffers for implementation of a read-aheac/

write-behind strategy. The I/O system ccpies data beiween

the user area and the buffers. Sing_e bytes cr recoras oF

any length may be transferred. Blocking/Deblocking of recoras

are handled by the I/O system.

The input/output utility procedures are built on top of the

sequential I/O procedures. These procedures include

formatted input/output of numbers, identifiers, text strings.

etc.

Input/Output Via the File Management system

The device, volume, user, and file Manipulation commands
of the file mangement system are directly available
through the I/O system. The necessary data structures
are allocated and deallocated when files are Opened and
closed, but apart from that parameters are just passed
on to the file management system.

Input/Output to Peripheral Drivers

All commands are passed on to the driver process but son (5

file related commands may turn out to be irrelevant ané
therefore ignored by the driver. By the 1/0 system
terminals are handled in the same way as files. However,
for sequential input only one buffer is used in stead of
the usual double buffer. |

13

