M68LLD(D4)
SEPTEMBER 1979

MDOS LINKING LOADER
REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
Tiability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

Fourth Edition
©Copyright 1979 by Motorola Inc.
Third Edition March 1978

CHAPTER 1

e © o o o o
N CONOOTPHWN

P d pd fd o fd fd

CHAPTER

)
[

PR PPN N
e o ° °

e o e o o o
° e o e o
OOoONOOOTPWNE—

° ° ® o L]
L] L] L] L] o
N =

®
NNNNNNYNOOOOOUTUIOTITCITGIT IO T D WN =
L] [] °

.
e o o
DAL WN =

w

CHAPTE

] [] ° []
WM =

w WWWW = NN NN NN NN NN
L o

°
(32]

APPENDIX A
APPENDIX B

TABLE OF CONTENTS
GENERAL INFORMATION

INTRODUCTION

OPERATING ENVIRONMENT
ADVANTAGES OF THE LINKING LOADER
RELOCATION

LINKING

MODULE LIBRARIES

MEMORY ASSIGNMENT

LOAD MAPS

LINKING LOADER COMMANDS

INVOKING THE LINKING LOADER
LOADER INPUT
COMMAND FORMAT
LOADER COMMANDS
Command Nomenclature
CONTROL COMMANDS
EXIT
IDOF - Suppress Printing of Module ID
IDON - Print Module ID
IF - Intermediate File
IFOF - Intermediate File Mode Off
IFON - Intermediate file Mode On
INIT - Initialize Loader
MO - Map Output
OBJ - Produces Load Module
LOAD DIRECTIVES
LIB - Library Search
LOAD - Load a File
STATE COMMANDS
BASE - Initialize Minimum Load Address
CUR - Set Current Location Counter

DEF - Loader Symbol Definition
END - Ending Address

MAP - Prints Load Maps

STR - Starting Address

SAMPLE OPERATIONS WITH THE LINKING LOADER

INTRODUCTION
SIMPLIFIED LOADER OPERATION

LOADER OPERATIONS USING INTERMEDIATE FILES
LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN

MDOS COMMAND
LOADER OPERATIONS USING A CHAIN FILE

A SUMMARY OF LINKING LOADER COMMANDS
LINKING LOADER ERROR MESSAGES

5
[o1)
(1]

— o e b e
]
AN DD =

PARARPRDWWWWN N -

NNI\)NNN!}JNNNNNN
= OWOWRO NN NOOO OO

oo

LIST OF ILLUSTRATIONS

o
@

Page

FIGURE . Load Maps - Example 1
. Load Map - Example 2

Loader-Produced Memory Map

1-1

1-2

1-3

3-1. Message Program 1 (PG1)
3-2. Message Program 2 (PG2)
3-3. Message Program 3 (PG3)
3-4, Basic Loader Operation
3-5
3-6
3-7
3-8
3-9

wwwwwclnwcﬁl\:v—u—n—'

w W

| e |
1

~N o

Using an Intermediate File

Using a Library File

Listing of Chain File Invoking RLOAD
Using a Chain File and RLOAD

Map Output File Listing

=== = = O 00WWNOTW

NOOTW =

ii

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

The MDOS Linking Loader combines relocatable object modules produced by the
Resident M6800 and Macro Assemblers, M6800 Resident FORTRAN Compiler, or
Resident MPL Compiler into an absolute load module. This resultant load module
is in a format suitable for loading by either the EXORciser loader or disk
operating system loader.

The Linking Loader is a two-pass loader requiring each input module to be read
twice. During Pass 1, a global symbol table is constructed describing the
attributes of the various global symbols. During Pass 2, the input modules are
read again and assigned absolute memory addresses. Module relocation and
linking is performed during the second pass, and an absolute load module is
produced.

1.2 OPERATING ENVIRONMENT

The minimum equipment required to use the Linking Loader is:
a. An EXORciser system
b. An EXORdisk II or EXORdisk III floppy disk drive system
C. An EXORciser-compatible terminal
d. 24K of Random Access Memory
e. Motorola Disk Operating System software (MDOS).

1.3 ADVANTAGES OF THE LINKING LOADER

In conjunction with the Resident M6800 Assembler, Macro Assembler, MPL Compiler,
and FORTRAN Compiler, the Linking Loader permits the user to:

. Segment source programs and data

. Ré1ocate object modules

. Link modules via global symbols

. Search user created libraries to satisfy unresolved global symbols
. Dynamically assign memory

- Create a memory map describing the lTocation of each object module
and data block loaded

. Create a Tlarger system than possible without linking by making smaller
assembly modules.

1-1

ASCT - Absolute Section (non-relocatable)
There may be an unlimited number of absolute sections in a user's
program. These sections are used to allocate/load/initialize memory
locations assigned by the programmer rather than the 1loader; for
example, addresses assigned to ACIA's and PIA's.

BSCT - Base Section (direct addressing)
There is only one base section. The Linking Loader allocates
portions of this section to each module that needs space in BSCT.
BSCT is generally used for variables that will be referenced via
direct addressing. BSCT is Tlimited to Tlocations within the
addressing range of @ through 255 ($@ through $@@FF).

CSCT - Blank Common (uninitialized)
There is only one CSCT. This section is used for blank common
(similar to FORTRAN blank common). This section cannot be
initialized.

DSCT - Data Section
There is only one data section. The Linking Loader allocates
portions of this section to each module that needs a part of DSCT.
DSCT is generally used for variables (RAM) which are to be accessed
via extended mode addressing ($100-$FFFF).

PSCT - Program Section

PSCT is similar to DSCT except that it is intended to be used for
instructions. The PSCT/DSCT division was made to facilitate a
RAM/ROM dichotomy.

This section concept is preserved by the Loader during the Toad process. As a
module is being loaded, each of its sections is combined with the corresponding
sections of previously-loaded modules. As a result, the absolute Toad module

produced by the Loader will contain one continuous memory area for each section
type encountered during the load operation.

In addition to the program segmentation provided by the section concept, the
relocation and linking scheme supports named common. The named common concept
provides the function of initialization common areas within BSCT, DSCT, and
PSCT. In processing named common definitions, the Loader will:

. Assign to each named common area a size equal to the largest size defined
for the named common during the load process.

. Allocate memory at the end of each section for the named common blocks
defined within that section.

The load maps shown in Figure 1-1 describe the load process with regard to
sections and named common. The module EX1 requires memory to be reserved in
BSCT, CSCT, DSCT, and PSCT, although the only space necessary in DSCT is for the
named common NCOMl. The module EX2 requires that memory be allocated in BSCT,
CSCT, DSCT, and PSCT. Neither module defines any ASCT blocks.

30

20

50

10

EX1 EX2
LENGTH
BSCT 10 BSCT
CSCT 35 CSCT
NCOM1(DSCT) 20 DSCT
10 NCOM1(DSCT)
PSCT
60 PSCT
NCOM2(PSCT)
NCOM3(PSCT) 15 NCOM3(PSCT)
5 NCOM2(PSCT)
DECIMAL
ADDRESS LOAD MODULE
0
SYSTEM AREA
32
35 BSCT PGM1
45 BSCT PGM2
CSCT
80
DSCT PGM2
100
NCOM1
120
PSCT PGM1
170
PSCT PGM2
230
235 NCOM2
250 NCOM3
FIGURE 1-1. Load Maps - Example 1

1-3

The load module map illustrates a typical memory map that might be produced by
loading EX1 and EX2. The BSCT for both EX1 and EX2 are allocated memory within
the first 256 bytes of memory. As shown, the first 32 ($20 hex) bytes of BSCT
are reserved by the Loader for use by the disk operating system, unless
otherwise directed. After BSCT, space for blank common is allocated, followed
by space for the EX2 DSCT. Since EX1 requires no DSCT for its exclusive use,
none will be allocated. The named common block NCOM1 within DSCT is assigned

memory at the end of DSCT. Finally, the PSCT's for EX1 and EX2 are allocated
along with the PSCT common blocks NCOM2 and NCOM3.

The Loader assigns memory within sections in the order in which the modules are
specified. Named common blocks are allocated memory at the end of their
corresponding section, in the order in which they are defined. Figure 1-2
iTTustrates a load module map produced by loading EX2, followed by EX1. This

load module map is slightly different from the map in Figure 1-1 where EX1 was
loaded first.

1.4 RELOCATION

Relocation allows the wuser to assemble/compile a source program without
assigning absolute addresses at the time of assembly or compilation. Instead,
absolute memory assignment is performed at load time. In order to relocate a
program (within memory), the source program must be assembled with the
Assembler, using the OPT REL directive, or compiled with the M6800 Resident
FORTRAN Compiler. The assembler or compiler will produce a relocatable object
module. These relocatable object modules contain information describing the
size of each section (ASCT, BSCT, CSCT, and DSCT) and named common area, as well
as the relocation data.

In order to load any relocatable object module, the MDOS Linking Loader must be
used. The Loader assigns addresses and produces an absolute object module
compatible with the system loader.

The advantages of using relocation are:

. Re-assembly is not required for each new absolute Toad address
. Relocation via the Linking Loader is faster than re-assembly
. Dynamic memory assignment of modules is possible

. Larger programs can be written than was possible before.

1.5 LINKING

Linking allows instructions in one program to refer to instructions or data
which reside within other programs. If all programs are assigned absolute
addresses during assembly time, it is possible to directly reference another
program via absolute addresses. However, when using relocatable programs,
absolute load addresses are not generally known until load time. In order to
access other relocatable programs or data blocks, external reference symbols
must be used. These external symbols are commonly called global symbols since
they may be referenced by any module at load time. Although global symbols are
used to 1ink modules at load time, they must be explicitly defined and referencd
at assembly time. This is accomplished by the Assembler directives, XDEF and
XREF. The XDEF directive indicates which labels defined within a module can be
referenced by other modules. The XREF directive indicates that the label being
referenced is defined outside the module. For FORTRAN programs, the compiler
will generate an XDEF and XREF for each SUBROUTINE and CALL statement,
respectively. _

1-4

DECIMAL LOAD MODULE
ADDRESS

0
SYSTEM AREA
32
BSCT PGM2
4?2
BSCT PGM1
45
CSCT
80
DSCT PGM2
100
NCOM1
120
PSCT PGM2
180
PSCT PGM1
230 .
NCOM3
245 =
NCOM2
250 ‘s

FIGURE 1-2. Load Map - Example 2

1-5

At load time, global references are matched with their corresponding global
definitions. Any reference within a module to a global symbol is updated with
the load address of the global symbol. If the loader detects a global reference
without an associated global definition, an undefined global error will be
printed and a load address of zero will be assigned to the reference.

1.6 MODULE LIBRARIES

The Linking Loader can automatically search a file for modules which contain
definitions satisfying any unresolved global symbols. Such a file is called a
library file and is composed of one or more object modules merged together. The
|.oader sequentially searches the 1library file. If a module is found that
contains a symbol definition satisfying an unresolved global symbol, that module
will be loaded. Only those modules which can satisfy an unresolved reference
will be loaded. Since a library file is searched only once, modules which
reference other modules within the library file should occur within the Tibrary

file before the referenced module. Otherwise, the user must direct the Loader
to search the 1ibrary again.

1.7 MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned to the program sections
within the specified modules. Norma]lg, the loader will automatically perform
this assignment by allocating memory by sections in the order: ASCT, BSCT,
CSCT, DSCT, and PSCT. However, the user may define the starting and/or ending
address of any non-ASCT section. In this case, the Loader will first reserve
memory for those sections with defined load addresses before allocating space
for any other section. The Loader also permits a user to specify the relative
section offset of a module within a section. However, a section of a module is
always loaded in the associated load section in the order in which the module
was specified. Named common blocks are always assigned memory at the end of the
associated load section.

1.8 LOAD MAPS

The Loader will optionally produce a load map describing the memory Tlayout
resulting from the loading of the specified modules. Figure 1-3 is an example
of some of the features included in a typical load map. In addition to this
full load map, the Loader may be directed to product partial load maps listing
only the undefined global symbols or section load addresses.

1-6

NO UNDEFINED SYMBOLS
MEMORY MAP

SIZE STR END COMN
0006 4510 4515

0006 4406 4408

CC1A 0000 0019 0000
0030 0020 004F 0030
0042 0400 0441 0020
0088 1000 1087 0000

STOoOOOEPEPDW0V

MODULE NAME BSCT DSCT PSCTY
PGI1 0000 0400 1000
PG3 0005 040E 1060
PG2 0005 0D40E 1070

COMMON SECT IONS
NAME S SIZE STR
OCOMM O 0008 0422
DCOMM2 D 0018 042A

DEFINZED SYMBOLS

MODULE NAME: PG1

CR A 000D EQT A 0004 EXBPRT A FO024 LF A 000A
MSG 1 P 1000 MSG2 0 0400 MSGSIZ B 0000 PGINE P 1016
START P 1G0A

MODULE NAME: PG3
ATEST A 4406 POWERS P 1060

MODULE NAME: PG2
EXBENT A FS564 MSG3 0O 040E MSG4 D 0418 PGM2 P 1070
STACK 8 0019

FIGURE 1-3. Loader-Produced Memory Map

1-7

CHAPTER 2

LINKING LOADER COMMANDS

2.1 INVOKING THE LINKING LOADER

The Linking Loader must be called while under the control of the MDOS disk
operating system. When the user types the command:

=RLOAD <c/r>

the disk executive will Toad the Linking Loader. Upon entry, the loader prints:

M6800 LINKING LOADER REV n.m
? . .
* (where n.m is the revision number)

The character ? is the Loader prompt, and is printed whenever the Loader has
completed the last command and is ready for another.

2.2 LOADER INPUT

The input to the Loader is in one of two forms -- commands or object modules.
The Loader commands control the relocation and linking of desired object
modules. Object modules are produced by the MPL Compiler, or Assembler, or
Resident FORTRAN Compiler. Each source program assembled or compiled creates a
single relocatable object module on a disk file. These disk files, or those
files created by merging one or more of these files, are used as the input to
the Loader. The Loader command structure provides for the loading of an entire

file or selected modules within a file. In addition, a disk file may be used as
a library file. The Loader may also be run under the MDOS CHAIN command.

2.3 COMMAND FORMAT

Each Loader command Tline consists of a sequence of commands and comments,
followed by a carriage return. The first space in a command line terminates the
command portion of the 1line, and the remainder is assumed to be comments.
Multiple commands may appear on a line by using a semicolon (;) as a command
separator. The format of a command line may thus be defined as:

9
' Fcommand>[;<command>]9o] [%space>[<comments>i]<c/r>

EXAMPLE: STRB=@;STRD=$1000;STRP=$4000
IDON
LOAD=PG1

The commands in a command line are executed only after the Loader detects a
carriage return.

If a command line is entered incorrectly, the 1ine may be corrected in either of
two manners. First, the command line may be deleted completely by typing CTRL X
(the CTRL and X keys typed simultaneously). This causes the Loader to ignore
the current command line, and issue a CR, LF, and await a new command input
line. However, instead of deleting the entire command line, it may be corrected
by deleting the character(s) in error. This is accomplished by typing a RUBOUT
to delete the last character typed. The typing of a RUBOUT also causes the last
character entered to be printed. After deleting the character(s) in error, the

2-1

corrected version of the command line may be entered. The (MDOS) CTRL D key
allows the operator to redisplay the line to show a "clean" copy of the Tine for
operator inspection. Thus, full compatibility is maintained with the normal
MDOS .KEYIN special character functions.

The Loader will execute all the commands in a command 1ine before another prompt
is issued. If an error is detected while attempting to process a command, that
command will be terminated. The remaining commands in the command line will be
ignored.

When using multiple commands per line, it should be noted that selected commands
require that they are the last command on a line, and include:

« INIT

. all intermediate file commands (IF, IFOF, IFON)

. 0BJ
2.4 LOADER COMMANDS
The Loader commands are divided into three classes:

1. control commands

2. load directives

3. state directives.
The control commands are used to initiate Passes 1 and 2 of the Loader, as well
as to return to EXbug or the disk operating system. The load directives are
used to identify the modules to be loaded. Finally, the state directives direct
the assignment of memory to the various program sections and the production of a
load map.

2.4.1 Command Nomenclature

{f=-name>

Used to indicate the name of a disk file to be used by the
Loader. Unless specified, the file is assumed to have a suffix

of "RO" and drive number of f. For the format of the file
name, consult the MDOS Manual. (Example: PGl.RO:1)

Used to indicate a decimal or hexadecimal number. Unless
preceded by a $ character (which is wused to denote
hexadecimal), the number will be interpreted as decimal.

Un}?sg explicitly stated otherwise, the allowable number range
wi e:

<number>

P - 65,535 gdecimal)
$9 - $FFFF (hexadecimal)

[] - Used to indicate that the enclosed directive(s) is optional.
[] - Used to indicate that the enclosed directive may be
0 repeated from @ to 99 times, up to a total of 79 characters
maximume

{ } - Indicates that one of the enclosed options must be used.
2-2

2.5 CONTROL COMMANDS

2.5.1 EXIT

<number>
FORMAT: EXIT ,: {(namel)]

DESCRIPTION:

2.5.2 IDOF -
FORMAT: IDOF
DESCRIPTION:

2.5.3 IDON -
FORMAT: IDON
DESCRIPTION:

The EXIT command causes control to be returned to the disk
operating system after all Loader files have been closed.

The MDOS version of the Loader allows the user to define the
starting execution address of the object program. If the <number>
option is specified, the given absolute number will be used as the
starting execution address. This address must be a valid address
within the program. The <namel> option is similar to the <number>
option except that <name> must be a valid global symbol. If
neither option is used, the starting address defaults to the
address associated with the label appearing in the operand field
of the END statement in the assembled program.. If two or more
modules have END statements with operands, the operand associated
with the first module Toaded will be used as the starting address.

Suppress Printing of Module ID

This command suppresses the printing of the name and printable
information associated with each object module Tloaded or
encountered in a library file. For assembly language programs,
this information is specified via the NAM and IDNT directives.

Print Module ID

This command causes the name and printable information associated
with each object module loaded or encountered in a library file to
be printed at the console device. For assembly language programs,
this information is specified via the NAM and IDNT directives.

2-3

2.5.4 IF - Intermediate File

FORMAT: IF=<f-name>

DESCRIPTION:

EXAMPLE:

2.5.5 IFOF -
FORMAT: IFOF
DESCRIPTION:

2.5.6 IFON -
FORMAT: IFON

DESCRIPTION:

2.5.7 INIT -
FORMAT: INIT
DESCRIPTION:

The IF command defines a file to be used as an intermediate file.
An intermediate file is a copy of all Pass 1 Loader commands and
object modules. It is used to direct the load operation during
Pass 2, instead of requiring the user to retype the Pass 1 command
sequence during Pass 2. The IF command also automatically places
the Loader in intermediate file mode similar to the IFON command.
Like the IFON command, the IF command must be the last command in
a command line.

The IF file name must be a valid disk file name and may not be the
name of an existing file on the specified diskette. Upon proper
exiting from the Loader, the IF file is deleted.

IF=IFILE Defines IFILE on drive @ as the intermediate file.
Default suffix is "IF".

Intermediate File Mode Off

IFOF temporarily suppresses the creation of the intermediate file

until an IFON directive is encountered. This command must be the
last command in a command line.

Intermediate File Mode On

This command directs the Loader to write all further commands and
object modules onto the intermediate file. This directive remains
in effect until an IFOF or Pass 2 command is detected. The IFON
command must be the last command on a command line. IFON is
implied when the intermediate file is defined by the IF command.
If an intermediate file is to be used during Pass 2, the IFON
directive must be in effect.

Initialize Loader

INIT initializes the Loader for Pass 1. This command is performed
automatically when the Loader is first initiated. The use of this
command permits the user to restart the Loader when entry errors
are made, without having to exit back to MDOS. Any previously
created object and/or intermediate files will be deleted. The
INIT comand must be the last command in a command 1ine.

2-4

2.5.8 MO - Map Output

. _ |<f=-name>
FORMAT: MO= ,;devicegl

DESCRIPTION: The MO command is used to specify the media on which the map
output is to be produced. The MAP output will default to the
console printer.

If a file name is specified, it must not be the name of an
existing disk file. The map cannot be directed to a file during
Pass 2 or whenever an intermediate file is being used.

A map can be produced on the console printer or line printer by
specifying the mnemonic #CN or #LP, respectively.

EXAMPLE : MO=MAPFL A11 output generated by the MAP command will be
written on file MAPFL on drive 0.
MO=#LP The Tline printer will be used for all future map
output.

2.5.9 O0BJ - Produces Load Module

FORMAT: O0BJA=<file-name>
OBJX=<file-name>[,printed information]

DESCRIPTION: This loader command is used with the MDOS Loader to initiate the
second pass of the Loader. During this pass, an object file is
created on disk with the name <file-name>. This file may not be
the name of an existing file on the specified disk. The file will
be created on disk P unless disk 1 is specified in <file-named.
The type of object file produced by the Loader is determined by
the command form as follows:

OBJA - This format creates an absolute memory image file suitable
for loading via the MDOS LOAD command. A default file
suffix of 'LO' and drive P will be used if none are
specified.

0BJX - An object file in EXORciser loadable format (S@, S1, and
S9 records) is created via this command form. This file
may not be loaded via the MDOS LOAD command without first
using the MDOS EXBIN command. However, files created in
EXORciser loadable format may be copied to cassette or
paper tape and loaded via EXbug. A default suffix of 'LX'
and drive @ will be used if none are specified with the
file name.

If an intermediate file (IF) was generated during the first pass of the Loader,
the second pass automatically processes the commands entered during the first
pass. In the event that an intermediate file was not created, the same sequence
of commands used during the first pass must be repeated. Regardless of the use
of an intermediate file, the OBJA or OBJX command must be the last command on
the command line.

2-5

EXAMPLES:

OBJX=SORT,BINARY SORT PROGRAM

This command initiates the second pass of the Loader,
which will create an EXORciser loadable file on disk
file 'SORT.LX:0'. The SO record will contain the file
named SORT and the ASCII character string 'BINARY SORT
PROGRAM' ,

OBJA=REPORT:1

The Loader will create the absolute object file on file
'REPORT.LO' on drive 1.

2.6 LOAD DIRECTIVES

2.6.1 LIB - Library Search

99
FORMAT: LIB=<f-name>l:,[<f-name>:[| 0

DESCRIPTION:

EXAMPLE:

The LIB command instructs the Loader to search the specified file
name(s) for those modules which satisfy any undefined global
references. Any module that satisfies an unresolved global
reference will be loaded. A suffix of .RO and logical drive of
1@ are assumed for <f-name>.

A library file is a collection of individual relocatable object
modules which were merged into a single file.

Modules loaded via the LIB command may also reference global
symbols that are not defined. Since a library file is searched
only once for each LIB command, it should be made with care so
that no module has any reference to a prior (higher level) module,
or multiple passes of the same library must be done.

It should be noted that the Macro Assembler and certain compilers
(FORTRAN) produce a single relocatable object module in a file.
Since these single object module files can be merged together into
other (library) files, the terms "object file" and "object module"
are not necessarily equivalent.

LIB=MLIB:1 The modules on file MLIB.RO on drive 1 will be
searched to resolve any unsatisfied global
references.

2-6

2.6.2 LOAD - Load a File

FORMAT: LOAD=<f-named l:, [<f-name> ﬂ 93

DESCRIPTION:

EXAMPLE :

The LOAD command directs the Loader to load the specified object
files.

The LOAD command directs the Loader to load all object modules
found in the specified file name(s). The file name could be a
library file, but the LOAD command, unlike the LIB command, will
load each object module found, irregardless of whether or not it
is needed.

A suffix of .RO and logical drive :0 are assumed.

LOAD=PGM1:1 Loads all modules within file PGM1.RO on disk
drive 1

LOAD=PGM1,RAM:1,PGM2,PGM3 Loads all modules within files PGM1.RO
on drive @, RAM.RO on drive 1,
PGM2.RO on drive @, and PGM3.RO on
drive @.

2.7 STATE COMMANDS

2.7.1 BASE - Initialize Minimum Load Address

FORMAT: BASE [=<number>]

DESCRIPTION:

EXAMPLE :

The BASE command allows the user to specify an address above which
his program will load. The BASE command affects only the memory
assignment of CSCT, DSCT, and PSCT. Memory assignments related to
BSCT, ASCT, and those sections with defined starting/ending
addresses (via commands STR or END) are not affected by this
command .

The use of the <number> option is used to define the lowest
address which may be assigned to CSCT, DSCT, or PSCT. If the
<number> option is not specified, the lowest assignable address
will default to the next modulo 8 address following MDOS. This
format of BASE allows the user to load his program above MDOS
without having to know where MDOS ends. If the BASE command is
not specified, a default address of $20 (32 decimal) will be used
as the lowest load address during memory assignment.

BASE Unassigned CSCT, DSCT, and PSCT will be assigned load
addresses above MDOS.

2-7

2.7.2 CUR - Set Current Location Counter

B

FORMAT: CUR<D =|:\:| <number>

DESCRIPTION:

EXAMPLE :

EXAMPLE :

P

The CUR command is used to modify the Loader's current relative
loading address of the specified section (BSCT, DSCT, or PSCT).
The CUR command must be used prior to the LOAD or LIB command so
as to update the loading address first. If the '\' option is not
specified, the relative load address for the appropriate section
will be set equal to the given <number> starting section plus its
value (see STR command). This <number> must be equal to or
greater than the section's current relative load address. This
form of the CUR command allows the user to start a module section
at a defined address. For PSCT, the <number> entered is added to
the absolute value for STRP to obtain the new PSCT load address
value. The following example loads four 1K EPROM's at $4400,
$4800, $5000, and $8C00 from multiple files. Each LOAD command
utilizes less than $400 bytes in PSCT (starting PSCT=$4400).

?STRP=$4400

?LOAD=FILE11l, FILE12,FILE13 EPROM at $4400

?CURP=$400

?LOAD=FILE21,FILE22,FILE23 EPROM at $4800 ($4400 + $400)
?CURP=$C00

?LOAD=FILE31,FILE32 EPROM at $5000 ($4400 + $C00)

?CURP=$4800
?LOAD=FILE41,FILE42,FILEA3,FILE4A4 EPROM at $8COC ($4400 + $4800)

The '\' option affects the section's relative load address in a
different manner. This option causes all future modules to be
loaded at an address which is a power of two relative to the start
of the section (2,4,8, etc.). The specified <number> defines the
given power of two. This option remains in effect until the
option is specified again or until the .current pass of the Loader
is complete. If the '\' option is in effect when memory is

assigned to the starting section addresses, the starting address
of the section will also be assigned a load address which is a

power of two. This option does not apply to named common blocks
within the specified section.

If the CUR directive is not used, each module will normally be

loaded at the next 1load address in the appropriate section
(contiguously loaded modules). However, modules created via the

FORTRAN Compiler will be loaded at the next even address.

CURP=$100 Sets the relative PSCT 1location counter to $100
plus STRP value.

CURP=\16 Causes the Loader to load all future PSCT sections
at a relative address within PSCT which is modulo 16
plus the STRP value.

NOTE

When using the CUR command within an MDOS chain
file, the '\' option must use '\\' instead of '\'.
(See CHAIN command description in the MDOS Manual.)

2-8

EXAMPLE :

STRP=$4001
CURP= $400
LOAD=PG1,PG2,PG3

If each file is a single module with less than 1K of PSCT in each
one, then each module's starting PSCT address would be assigned as
follows:

PG1=$4001
PG2=$4401
PG3=$4801

2.7.3 DEF - Loader Symbol Definition

FORMAT: DEF: <name1>={

DESCRIPTION:

EXAMPLE:

ASCT
<number)| | BSCT
sDSCT
PSCT

<{name?2>

The DEF command is used to define a global symbol and enter it in
the global symbol table. The symbol to be defined is given by
namel and must be a valid Macro Assembler variable name. The
symbol may not currently be defined. If the <number> option is
used, the symbol will be defined with the given number as the
relatived address within the specified section. The DEF command
may be used to provide another name for a previously defined
symbol by using the <name2> option. <name2> must be a currently
defined global symbol. The section options -- ASCT, BSCT, DSCT,
PSCT -- are used to define the section associated with the defined
section. ASCT is the default section.

DEF:ACIA1=$EC10,ASCT Defines symbol ACIAl as an ASCT symbol
with absolute address $EC10 (hexadecimal).

2.7.4 END - Ending Address

B

FORMAT: END{C)=<number)

DESCRIPTION:

EXAMPLE:

D
P

The END commands are used to set the absolute ending address of
the associated section (BSCT, CSCT, DSCT, PSCT). If both an
ending and starting address are defined, the size described by
these boundaries must be equal to or greater than the size of the
associated section.

NOTE

An ending address of $0000 will reset any previous
END directive for the corresponding section.

ENDB=255 BSCT will be allocated such that the last address
reserved is 255 (decimal).

2-9

2.7.5 MAP - Prints Load Maps

C

FORMAT: MAP) F

DESCRIPTION:

S
U

The MAP commands are used to display the current state of the
modules loaded or the Loader's state directives.

MAPC -

MAPF

MAPS

MAPU

Prints the current size, user defined starting address, and
user defined ending address for each of the sections, as
well as the size, starting address, and ending address for
each ASCT defined.

A full map of the state of the loaded modules is produced
after the Loader assigns memory. This map includes a list
of any undefined symbols, a section load map, a load map
for each defined module and named common, and a defined
global symbol map. If a user assignment error (UAE)
exists, this command cannot be completed. Use the MAPC
command to determine the cause of the error. '

The Loader assigns memory to those sections not defined by
a user supplied starting and/or ending address. A memory
load map, which defines the size, starting address and
ending address for each section, is printed. If a user
assignment error (UAE) exists, this command cannot be
completed. Use the MAPC command to determine the cause of
the error.

Prints a Tlist of all global references which currently
remain undefined.

2.7.6 STR - Starting Address

B

FORMAT: STR} Cl= J<number)>
<global ASCT symbol>

DESCRIPTION:

EXAMPLE:

D
P.

The STR commands set the absolute starting address of the
associated section (BSCT, CSCT, DSCT, PSCT). Those sections whose
starting address is not defined by the user will be assigned a
starting address by the loader.

NOTE
A starting address of $FFFF will reset any previous
STR directive for the corresponding section. This

will allow the Loader to define the starting address.

STRP=$1000 PSCT will be allocated memory starting at $1000.

2-10

CHAPTER 3
SAMPLE OPERATIONS WITH THE LINKING LOADER

3.1 [INTRODUCTION

This chapter provides a description of the operation of the Loader in typical
applications. To demonstrate the use of the Loader, a simple message printinj

program will be used. This program consists of three modules which referencg
instruction sequences or data within each other. As assembly listing of each

module is shown in Figures 3-1, 3-2, and 3-3.
3.2 SIMPLIFIED LOADER OPERATION

The simplest form of the Loader's operation is shown in Figure 3-4. In thiy
example, all three files -- PGl, PG2, and PG3 -- are loaded, and the object file
PG123 is created. The sequence of steps shown in Figure 3-4 is as follows:

1. The LOAD command loads the first file, PGl.RO:@. During all 1load
operations, a global symbol table of all external definitions and
references is built.

2. The LOAD command loads the next two files, PG2 and PG3. Notice the
default suffix 'RO' and drive number 'P' are assumed.

3. The OBJA command starts pass 2 of the load function, which will create an
absolute memory image object file named PG123 on drive P with the suffix
'L0'. This command also assigns memory addresses to the various program
sections. The use of the OBJX command, instead of OBJA, would have a
similar effect, except an EXORciser load image would be produced.

4, Since an intermediate file was not created in pass 1, all ‘commands
entered in pass 1, with the exception of MAP commands, must be repeated.
In pass 2, the LOAD command generates the absolute code for the object
file. Notice that all three files are loaded with one load command this
time.

5. The MAPU command is not really necessary here, but was entered to verify
that no undefined symbols exist.

6. A complete memory map is produced by the MAPF command. In the first part
of the map (6a), any undefined external references are listed. In the
next part (6b), the section type, the size, starting address, ending
address, and size of the section's common block are listed for each
program section. For example, PG123's DSCT area will have a size of 42
(hex) bytes, of which 20 (hex) bytes are in common. The DSCT area will
start at address $6A and end at $AB. The starting address of the various
sections for each program module is given in the next map part (6c). As
seen from the map, PG2 PSCT starts at address $FD, which corresponds to
the PG2 instruction:

PGM2 CLRA

3-1

PAGE 001 PGl eSA21 PG1 PROGRAM TO PRINT OUT MESSAGES (MAIN)

00001 NAM PG1

00002 oPT RELyCREF+NOG

00003 TTL PROGRAM TO PRINT OUT MESSAGES (MAIN)
00004 IONT 08/710/79 MAIN MESG PROGRAM - MODULE #1
00006 * ASSEMBLY PROCEDURE: RASM 3,00 MDOS 3.00
00007 * =RASM PGLl3SLN=T76

000038 *

oooc9 * PROGRAM PARTS: PGly PG2y PG3

00010 * COMPUTER: M6800

00012 FO024 A EXBPRT EQU $F024 EXBUG PRINT ROUTINE
00014 # ASCII CHARACTER EQUATES

00015 =

00016 0004 A EOT EQU 4 END OF TEXT

00017 000A A LF EQU $A LINE FEED

00018 0000 A CR EQU $D CARRTIAGE RETURN
00020 * EXTERNAL REFERENCES

00021 *

00022 XREF ATEST

00023 XREF DSCT:MSG3sMSG49ANYSSTACK
00024 XREF EXBENT+PGM2

00026 * EXTERNAL DEFINITIONS

00027 %

00028 XDEF MSG2+MSGL1+EXBPRT9ySTARTPGLNE
00029 X0EF MSGSIZ.EOTsLFoCR

FIGURE 3-1. Message Program 1 (PGl1)

3-2

PAGE 002 PGl «SA:1 PGl PROGRAM TO PRINT OUT MESSAGES (MAIN)

00031 * COMMON MESSAGE AREA

00032 * (NAMED COMMON "DCOMM™ IN DSCT)

00033 *

00034N 0000 DCOMM COMM DSCT

00035N 00600 0000 P MSG1P FDB MSG1 PTR TO MESG 1 (INM PSCT)
00036N 0002 0000 O MSG2P FDB MSG2 PTR TO MESG 2 (IN DSCT)
00037N 0004 0000 A MSG3P FDB MSG3 PTR TO MESG 3 (XREF IN DSCT)
00038N 0006 0000 A MSG4P FDB MSG4 PTR TO MESG 4 (XREF IN CSCT)
00040 * MESSAGES 1 AND 2

00041 * (NEW NAMED COMMON "DCOMM2" IN DSCT)

00042 %

00043N 0000 DCOMM2 COMM DSCT

00044N 0000 0001 A CMSGCT RMB 1 COMMON MESSAGE COUNT
00045N 0001 0014 A CMSG RM8 20 COMMON MESSAGE

00047C 0000 CSCT S3LANK COMMON SECTION
00048C 0000 0010 A MSGCST RMB l6 RESERVE 16 BYTES

0005CD 0000 DSCT DATA SECTION

000510 0000 4D A MSG2 FCC \MESSAGE 2\

00052D 0009 04 A FCB EOT DEL INEATE END OF MESSAGE
00054P 0000 PSCT PROGRAM SECTION

00055P 0000 4D A MSG1 FCC \MESSAGE I\

0005¢P Q009 04 A FCB EOT

000588 0000 B8SCT BASE SECTION

000598 0000 0001 A MSGSIZ RMB 1 MESG SIZE STORAGE

FIGURE 3-1. Message Program 1 (PGl) (cont'd)

3-3

PAGE

00061
00062
00063
00064P

00066P
0no67P
00ceBP
00069P
00070

00071

00072

00073P
00074P
ooo7sP
00076P
0007T7P
0onpT8P
00079

00080

00081

00082°P
00083°p
00084P
00035P
nnone6P
00087P
cnossP
00089°P
00090°P
00091°P
00092°P
00093p
00094P
000959P
00096P
000937P
0n098p

001008
00101
00102
00103
N0104
001058
001068

00108D
00109D
001100

00112
00113

003

PG1

000A

000A 8E
000D FE
0010 BD
0013 TE

0016 CE
0019 8D
001C FE
001F 3D
0022 CE
0025 8D

0028 CE
0028 FF
C02€ CE
0031 FF
0034 F6
0037 D7
0039 FE
003C A6
003E 03
003F FF
0042 FE
0045 A7
0047 08
0048 FF
oQ4B SA
004C 26
004E TE

0001

Noo1

0003

000A
000A 96
000C DE

0000
0o0co
FD24
0000

> > Z P

0000
FO24
0004
FO24
0000
F024

P D> Z b D>

0000
0003
0001
nocl
00090
00

0001
00

PRO@ZR2EO

0001
0003
00

> ®®

0003 B

EB 0039
0000 A

0002 A
0002 A

01 8
03 8

ocoa P

PG1

* PROGRAM SECTION
% EXECUTION STARTS AT "START™

PSCT
START LDS
LDX
JSR
JMp

GINE LOX
JSR
LOX
JSR
LOX

JSR

3 3¢ 3¢

LDX
STX
LDX
STX
LDASB
STAB
LOX
LDAA
TNX
STX
LDX
STAA
INX
STX
DECSB
BNE
JMP

LOOP1

BSCT
NOTE:

3¢ 38 s

3

FROMPT RMB
TOPNTR RMS

DSCT
LDAA
LDX

TTL
END

TOTAL ERRORS 00000--00000

FIGURE 3-1.

#STACK
MSGL1P
EXBPRT
PGM2

PROGRAM 2 RETURNS TO

#MSG3
EXBPRT
MSG3P
EXBPRT
#MSG 4
EXBPRT

#MSGCST
TOPNTR
#CMSG
FROMPT
CMSGCT
MSGSIZ
FROMPT
09X

FROMPT
TOPNTR
0¢X

TOPNTR

Loor1
ATEST

IF FORWARD REFERENCED,
THEREFORE ALL BSCT VARIABLES SHOULD BE
DEFINED BEFGRE REFERENCED.

2
2

FROMPT
TOPNTR

PROGRAM TO PRINT OUT MESSAGES (MAIN)

PROGRAM SECTION

SET UP STACK REGISTER (XREF)
GET MESSAGE 1 POINTER

PRINT MESSAGE 1

GO TO PROGRAM 2 (XREF)

THIS POINT (XDEF)

GET MESSAGE 3 ADORESS
PRINT MESSAGE 3
GET MESSAGE 3 POINTER
PRINT MESSAGE 3 AGAIN
PRINT MESSAGE 4

MOVE MESSAGE FROM CMSG IN DCOMM2 TO BLANK COMMON

MESSAGE DESTINATION ADDRESS
MESSAGE ADDRESS (FROM)

MESSAGE LENGTH

SAVE MESG LENGTH

GET SOURCE POINTER
GET BYTE

UPDATE SOURCE POINTER

GET DESTINATION POINTER
SAVE BYTE
UPDATE DESTINATION PCINTER

UPDATE CHARACTER COUNTER
Looe
GOTO PROGRAM W/ASCT REGIONS

DIRECT ADDRESSING SECTION
EXTENDED ADOR IS USED.

FROM POINTER
TO POINTER

DATA SECTION
%%%DIRECT ADDRESSING USED*=xx*
(EXAMPLES ONLY - NOT EXECUTED)

CROSS REFERENCE TABLE

START

3-4

Message Program 1 (PGl) (cont'd)

PAGE 004 PG1 «SA:1 PGl CROSS REFERENCE TABLE

R ATEST 00022%00098

ND 0001 CMSG 00045%00084%

ND 0000 CMSGCT 00044%*00086

b 000D CR 00018*00G29

ND DCOMM 00034%

ND DCOMM2 00043+

D 000« ECT D0016%*=00029 00052 00056

R EXRENT 000264%

D FO24 EX8PRT 00012%00028 00068 00074 00076 00078
B 0001 FRCMPT 50085 00088 00091 00105%00109
D OO0DA LF 00017%00029

P 0039 LOODP1 00088%00097

DP 0000 MSG1 00028 00035 00055%

ND 0000 MSGLlP 0003500067

0D 0000 MSG2 00028 00036 00051%

ND 0002 MSG2P 00036%*

RN MSG3 00023%00037 00073
ND 0004 MSG3P 00037#00075
RD MSG 4 00023%00038 00077

ND 0006 MSG4P 00038%
C N000 MSGCST 00048%00082
D3 0000 MSGSIZ 00029 00059%00087
0P 0016 PGINE 00028 00073
R PGM2 00024%00069
R STACK 00023%00066
DP» 00D0A START 00028 00066%00113
R 0003 TOPNTR 00083 00092 00095 00106%00110

FIGURE 3-1. Message Program 1 (PGl) (cont'd)
3-5

PAGE

00001
00002
00003
00004

00006&
00007
000048
00009
00010

00012

00014
00015
00016
00017
00018
00019
00020

00022

00023

00024N
00025N
00026N
00027N
00028N

00030N
0ND031N
00032N
00033 N
00034

027036

00037

000380
000390
00040D
000410
000420

001

0000
0000
0002
0004
0006

0000
0000
0001
0014

0000
0000
00909
000A
0013

PG2

F564

0002
0002
0002
0002

17
43
0C
0018

%D
00
4D
00

oSA:

A

> P> >P>

Z P> >

> > > P>

1 PG2 M
NAM
oPT
TTL
IONT

%

%

* (o40)

EXBENT €EQU

&

%

XDEF
XREF
XREF
XREF

ESSAGE PRINTER SUBPROGRAM

PG2

CREFsREL ¢ NOG

MESSAGE PRINTER SUBPROGRAM

08/710/79 MESG PRNTR SUBPROG - MODULE #2

ASSEMBLY PROCEDURE: RASM 3,00 MDOS 3.00
=RASM PG23LN=76

PROGRAM PARTS: PGle PG2y PG3

MPUTER: M6800

$F564 EXBUG ENTRY POINT

XDEFS AND XREFS

MSG3oMSG4sSTACKIEXBENT«PGM2
BSCT:MSGS1?Z
EXBPRTePGINEsMSGL1oMSG2
EOTsCRoLF

* MESSAGE POINTER AREA (DCOMM)

%
DCOMM

MSG1PT
MSG2PT
MSG3PT
MSG4PT

DCOMM2
CMSGCT
CMSG

CMSGE

COMM
RMB
RMB
RMB
RMB

COMM
FCB
FCC
FC8
EQU

% MESSAGES

oo
R

MSG3

MSG4

DSCT
FCC
FC8B
FCC
FC8

FIGURE 3-2.

DSCT

2

2

2

2

DSCT

CMSGE-CMSG « COMMON MESSAGE CHAR COUNT!

\N\COMMON TEST PROGRAM\

CReyLFoLFyEOT

* END OF MESSAGEFE
3 AND 4

\MESSAGE 3\

EOT

\MESSAGE 4\

EOT

Message Program 2 (PG2)
3-6

PAGE O

00044

00045

00046P
00047P
00048P
00049P
00050P
00051P
00052Pp
£Nos53p
0ND54P
000Ss5P

000578
000588
000598

00061

02

0000
0000
0001
0003
0006
9009
000C
00CF
0012
0015

0000
0000
0014

PG2

4F
97
FE
30
Ce
8D
FE
8D
7€

«SAz1 PG2

00

0000
0o0o0cC
0000
0000
0002
0000
0000

0014
0001

PPLP>PPP>ZD>

A
A

* START OF PROGRAM 2

as

PSCT
PGM2 CLRA
STAA
LDX
JSR
LDX
JSR
LDX
JSR
JMP

BSCT
RMB
STACK RMB

END

TOTAL ERRORS 00000--00000

ND 0001
ND 0000
ND 0018

F564

D 0000

ND D002
DD 0000
ND 0004
nH 009A
ND 0006

DpP 0000
D3 0014

CMS G

CMSGCT
CMS GE

CR

DCOMM
DCOMM2

EOT

EXBENT
EXBPRT

LF
MSG1

MSG1PT

MSG2

MSG2PT

MSG3

MSG3PT

MSG &

MSG4PT
MSGSTZ
PGLNE

PGM2

STACK

00031 00032%

00031%

00031 00034%*
00020%00033

00024%
00030%

MSGSIZ
MSGL1PT
EXBPRT

#MSG?2

EXBPRT
MSG2PT
EXBPRT
PGINE

00020%00033 00040 00042
00012%00017
00019%*00050 00052 00054
00020%00033 00033

00019%

00025%00049
0001900051
00026%*00053
00017 00039%

00027

00017 00041%*

00028%

00018%00048
00019%00055
00017 00047%*
00017 00059%

FIGURE 3-2.

3-7

MESSAGE PRINTER SUBPROGRAM

INITe MESG LENGTH
PRINT MESSAGE 1

PRINT MESSAGE 2
PRINT MESSAGE 2 AGAIN

RETURN TO PROGRAM ONE

DIRECT ADDRESSING SECTION

STACK STORAGE AREA

Message Program 2 (PG2) (cont'd)

PAGE O

00001
00002
00003
00004

00006
00007
0p008
00009
ooo1lo0

0no12
00013

00015
00016
00017C
00018C

00020A
00021A
00022A
00023A

00025A
00026A
000274

00029P
00030°P
00031P
noo3zp
00033P
00034°P

00036

01

0000
0000

0000
4406
4406
4409

4510
4510
4513

0000
0000
0002
0004
0006
0008

PG3

Y))
TE

«SA:1 PG3 #%&PROGRAM TO ILLUSTRATE USE OF ASCT
NAM PG3
TTL *%%¥PROGRAM TN ILLUSTRATE USE OF ASCT
oPT RELsCREF
IDNT 08/10/79 ASCT ILLUSTRATION - MODULE #3
% ASSEMBLY PROCEDURE: RASM 3,00 MDOS 3.00
= =RASM PG3:13LN=76
* PROGRAM PARTS: PGle PG2s PG3
* COMPUTER: M6800
XOEF ATEST.POWERS
XREF EXBPRToEXBENT
% BLANK COMMON
CSCT
0030 A CMSG RM8B $30
ASCTY UNNECESSARY!
ORG $4406 e 0ORG CAUSES ASCT!
0000 C ATEST LDX H#CMSG START OF COMMON MESSAGE
4510 A JMP ATEST?2
ORG $4510
0000 A ATEST2 JSR EXBPRT PRINT MESSAGE
0000 A JMp EXBENT GOTC EXBUG/DON®'T STOP
PSCT PROGRAM SECTION
0031 A POWERS FDB 1 POWERS OF TEN TASBLE
000A A FDB8 10
0064 A FDB 100
03EB A FDB 1000
2710 A FDB 10000
END

TOTAL ERRORS 00000--00000

D 4406
4510
C 0000

nDP 0000

ATE
ATE

ST
ST2

CMSG
EXBENT

EXB
P OW

PRT
ERS

00012 00022%
00023 00026%*
00018%*00022
00013%00027
00013%00026
00012 00030%*

FIGURE 3-3. Message Program 3 (PG3)

3-8

=RLOAD

MDO= LINKING LOARDER REY 0Z=.00
COPYRIGHT BY MOTODRDOLA 1977
1)7LOAN=PGL, RO | ========-==-s=osmosmooooooe LOAD FIRST FILE
2 ﬁ'n ORD=PG2: PE3 ~--m-mmmmmmmmmmmommooommmooo LOAD OTHER TWO FILES
1] e L Rt en————————am—— REPEAT PRSS%1 commsanps
) = UL A e PRINT UNDEFINED SYMBOLS MAP
HD UMDEF INED ZYMEOLE
(6)PMAPF === === == e e e PRINT FULL MEMORY/SYMBOL MAP
HU HHDEFINFD ENMEOL = 6a

MEMORY MAF

ZIZE =TR EMD COMN

onoe 4510 4515

oooe 4408 440F

DO1A D020 DNE3 00N 6b
Nnzn ND=A Nnes 0030

no4z ooed ODARE 0020

DO7F2 00AC D11E Dooon

MODULE NAMF BECT DECT FPZCT
P51 no=n NNaER NNAr 6C
P2 nogs oaove 00FD
PRZ= NzA 002c 01135

COMMON ZECTIONE
MAME = ZISE TTE
neAMM D nnne 002c 6d
DCOMMZ I 0018 0024
DEFIMNED =YMEDLE

VS ID D i

MODULE MAME: PG1]
B R T EDT A 0004 EXBFRT A FO24 LE A o0oA
MZE1 P O0AC Mzze D 00EA MEZGZIZ B 0020 FSINE P OOCE

ZTART P 0O0E&

ML : PG
”“-%En¥“ﬂEF5249 MZiE3 n oovs MZin4 o oonse FiEME F 0OOFD

ETACK. B 0039
MODULE MAME: PG32
ATEST A 4406 FOMERE P 0115 69
(7)7EMIT et e e e R RETURN TO MDOS
=LOAD PE1238Y ccmmmc e LOAD OBJECT PROGRAM FILE

OE §P mmmmmmmmmmmemm oo oeeceeccoaas START PROGRAM EXECUTION
MEZZAGE
MESSAGE
MF S SAGE

$a DI TSN et

=R
COMMOM TEST PROGRAM
EXBUG 2.1
SE

FIGURE 3-4. Basic Loader Operation
3-9

6e

6f

7.

The fourth area of the map (6d) defines the size and starting address of
any named common blocks. Thus, the PGl variable CMSGST, which is the
first variable in the DCOMM2 common block, will be located at address
$8C. The final map feature provides an alphatized list of all global
symbols by modules (6e, 6f, 6g). The modules are listed in the order

that they were loaded. Thus, the PGl variable START has an absolute
address of $B6.

To return to MDOS, the EXIT command is used. This command may, in
addition, be used to assign a starting execution address. In this
example, PG123's starting address will be at address $B6, since the
variable START appears as the operand on PGl's END statement. Two
alternate methods of defining the execution address are: .

EXIT=START
or EXIT=$B6

3.3 LOADER OPERATIONS USING INTERMEDIATE FILES

As shown in the previous example, most commands must be re-entered during pass 2
of the Loader. The use of an intermediate file eliminates the need to retype
Loader commands. Figure 3-5 is an example of the use of intermediate files.
Commands used in the sequence are explained below, with the exception of those
commands previously discussed.

1.

5.

7.

The intermediate file feature is invoked by defining a new file for use
as the intermediate file.

. The IDON command turns the identifier option on to allow printing of the

IDNT assembly directive as entered in the files.

This command 1ine shows how more than one command may be specified on the
same line by using the ';' feature. The STR command is used to define
the starting section addresses of $400 and $1000 for DSCT and PCST,
respectively. These starting addresses are reflected in the map
generated in pass 2.

The CUR command with the '\' option causes the PSCT section of each
module to start at an address which is modulo $10 from the start of PSCT.
This feature permits the user to easily debug relocatable programs, since
modules start at convenient addresses. Thus, in the example of Figure
3-5, the first PSCT code for module PG2 will start at $1070.

Notice that the Tloading order is different from the example in
Figure 3-4. As each file/module is loaded, its identifier is printed
(5a).

As in the previous example, the OBJA command initiates pass 2 of the
Loader. However, since the intermediate file feature is being used, the
second pass 2 is automatically performed without the user re-entering the
commands. Notice the identifiers are also printed here as each
file/module is loaded (6a).

The Loader has completed processing all commands entered in pass 1; the
user may now enter any non-load command such as a MAP command or EXIT.

In this case, all map output is directed to the line printer with the
MO=#LP command.

3-10

=RLOAD
MDO= LINKING LOADER REWY l'l-' oo
"'UPYPIEHT BY MOTORDLA 197

1) PTIF=TEMP mmmmsimmm oo o een CREATE INTERMEDIATE FILE = TEMP
§ 3Ty STRP ST O 00T STRESD 1100000 égﬁhg Eﬁ 3} ggém AR SSEs
FEURP=F1 0 ccmmcm o cm e e e e e e oo p
O L ha nesa waTH vESE procRAM i Nlm L PRtz
5 I8-10-7 3 -
(5a) P&3 pE-10-72 ASCT ILLUSTRATION - MODULE 3
G2 02-10-72 MESE PRNTR SUEPROG - MODULE #2
(6) "Dgrl? pﬁloﬁp-I}l--’_;-;ﬂ-ﬂ-‘,[-;l—;l-g‘:;-;:‘-ﬁﬁai’h-ﬂ TA&IUB{\R_% 2‘_1 CONTROLLED BY INTERMEDIATE FILE
(6a) PGz NE-10-79 ASCT ILLUSTRATIOM - MODULE #3
7) ML p - R 10773 NPSE FRNTR EUBPRUGAS—SI%“D;#PEoﬁPUT TO LINE PRINTER
EMHEE e ———— JEMORY/SYMBOL MAP TO LINE PR
I ——— St b 1 CHE Bl
B e oy i —— LOAD OBJECT PROGRAM FILE
OF 5P e e START PROGRAM EXECUTION
MESSAGE 1
MESTAGE 1
MESSAGE 2
MESSAGE 2
MESSAGE 3
MESSAGE 3
ME SSARE

COMMOM TE‘-‘T FROGRAM

EXBUG 2.1
*E

FIGURE 3-5. Using an Intermediate File

3-11

8. A full map is sent to the line printer to produce a hard copy with the
MAPF command. The line printer map output is shown in Figure 1-3.

9. The object file is closed and control is returned to MDOS via the EXIT
command.

3.4 LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN MDOS COMMAND

The previous examples have described the loading procedure performed via the
LOAD command. In these examples, the user was aware of each module that had to
be loaded. However, in other cases, the user may be aware of only the entry
point name required to perform a desired function. In such instances, the user
can create a file which contains a collection of utility modules. The Loader
may be used to extract only the required modules from this library file. The
use of a library file is shown in Figure 3-6, and a description of the various
steps is explained below:

1. The MDOS MERGE command is used to build a library file PGLIB. This file
contains the modules in files PGl, PG2, and PG3.

2. The use of the BASE command directs the Loader to assign memory for CSCT,
DSCT, and PSCT above the MDOS system area. As a result, the user program
may be invoked directly as an MDOS command without wusing the LOAD
command. However, if the program has initialized BSCT, the MDOS LOAD
command must be used to execute the program. The effect of the BASE
command is shown in the program's memory map where CSCT, DSCT, and PSCT
are assigned memory above $2000.

3. A1l currently undefined symbols are listed via the MAPU command. In this
example, the six undefined symbols correspond to the six external
references in PGl.

4, The LIB command searches the file PGLIB for any modules which satisfy the
current undefined symbols. Since PG2 and PG3 are modules in PGLIB that
satisfy these undefined symbols (i.e., PG2 and PG3 have XDEF's for
ATTEST, EXBENT MSG3, MSG4, PGM2, and STACK), they will be loaded via the
LIB command. PGl, which is also in PGLIB, will not be loaded again.

5. The second MAPU command shows that all external references have now been
satisfied.

6. The second pass of the Loader is initiated with the OBJA command, and
creates an object file with the name MESSAGE. The use of the suffix
'CM', along with the Loader's BASE command, permits the created file to
be treated as an MDOS command (see item 9).

7. Since an intermediate file was .not created during pass 1, all commands
entered in pass 1 must be repeated in pass 2. The MAP, END, and STR
commands are the only exceptions to this rule.

8. The EXIT command completes pass 2 of the Loader and returns to MDOS.

9. The file created by the Loader is treated as an MDOS command and,
therefore, is loaded and executed automatically.

3-12

(1)=MERGE PG1.ROsPGE.ROsPGE2.ROsPELIB.RO ====---- BUILD LIBRARY FILE

=RLOAD

MNO= LINKTNG LOADER REY 02,00
COPYRIGHT BY MOTORDLA 1977

(2)FBASE -—=---====--mmmmmmmo -
HOARSEPE] ==
) T —

ATEST EXRENT MSG3
NONE IINDEFINED SYMBOLS

SSF'IB =FELIE -============--

MO UMDEFIMED SYMEBOLE

-

$6g”DBIH =MEZZAGE . CM —-coeemn

R
?'DHD PE1SLIB=FGLIE

MEMORY MAP

nnne 4510 4515
nnne 4406 440E

LE NAME P*FT DECT
120 2020

°0 'U'j VA DDID D

ry Sy Uy (e
) MO s

nnzR 2052

COMMON SECTIOME
MAME = =ZI7E E=TR
pCcoMM T onng 205
neoMME T no1e 205A
UEFINED SYMBOLE

MODULE MAME: PRI
R A ononm FOT

MEG1 P gove Mz

START P 207VC
MODULE MAME: PGe

EXBENT A F5&4 MEGE2

STACK B 0NN39
MUDULE HHHE' PE3

ZIZE =TR END COMN

Oni{A 0020 00322 0000
noz0 2000 202F 00320
o4z 2020 2071 N020
AN72 2072 20E4 0000

PECT
enve
ﬁﬂEq eN2E
dﬂDB

"""""""""""""" LOCATE PROG AM M
________________________ LOCATE PROGRAN ABOVE HDOS

oo oo PRINT UNDEFINED SYMBOLS
------------------------ SEARCH LIBRARY FILE
e PRINT UNDEFINED SYNBOLS

------------------------ START PASS 2 - BUILD COMMAND FILE
------------------------ REPEAT PASS:1 COMMANDS

------------------------ PRINT FULL MEMORY/SYMBOL MAP

A onnd EXBPRT R F024 LF A 000R
D 2030 MSGEIZ B 0020 PEINE P 20882

n 203k M4 D 2048 PEME P 20C3

44 06 FOWERS P 20DE

{ }*FVIT _____________________
9) =MESSAGE ==m===-=-m=mmaau-

ME SSAGE
MESSAGE
MESEARE
MESSARE
MESSAGE
MESSAGE
ME SEAGE
COMMON TE*T PROGRAM

B I MMy = =

E¥RIIG 2.1
*E

----------------------- RETURN TO MDOS
----------------------- LOAD AND EXECUTE NEW MDOS COMMAND

FIGURE 3-6. Using a Library File

3-13

3.5 LOADER OPERATIONS USING A CHAIN FILE

For programs requiring more than a few modules, the use of the MDOS CHAIN
command to 1link them becomes a virtual necessity. It also provides a
self-documenting listing of how to link the program. A sample chain file is
shown in Figure 3-7. The use of this chain file is shown in Figure 3-8, and a
description of the various steps is explained below.

1. The chain file (LINK.CF) 1is invoked using the MDOS CHAIN command. There

are five option parameters which will be passed on to the chain file.
This is the only line entered by the operator until (7).

2. The chain file pauses here to give the operator a chance to abort, if so
desired, without destroying anything.

3. The previous map and object file are deleted.

4. The Linking Loader is invoked via the RLOAD command. The parameters from
the command 1ine (1) are substituted to define the section values.

5. Map output is directed to an output file called PG321.M0. This provides
a permanent listing of the map output which can be listed at any time.

6. The MDOS LIST command is invoked to produce a hard copy of the map file
on the Tline printer. Note the header option is used and the DATE command
line parameter is substituted. The 1line printer 1listing of the map
output files is shown in Figure 3-9.

7. The chain file processing ends and the input stream returns to the
keyboard for operator input.

3-14

PAGE 001 LINK «CF:0

/%
/% e e e X Az S e e e e e o e ke e e e e oG o e e ok e ol s e ofie o sfe ofi o e ot ofe otk ok ke x fx
/¥ *%x LINK MESSAGE PROGRAMS CHAIN PROCESSOR %%
/% %R 08710779 %
/% RERER RN R R R R R R R R LR R R R R R LR R
/%

D% v

% WARNING! GOING TO DELETE THE FOLLOWING FILES:
¥ m—m————— PG321.L0:0 (OLD OBJECT)

DX PG321.M0:0 (OLD RLOAD MAP)
A% .
ax ABORT WITH °BREAK® KEY OR

de STRIKE °*RETURN® TO CONTINUEeoe

%

dSETyM B

DEL PG321.L0¢PG321.M0

ASETsM O

RLOAD

IDON

STRD=$ZDZSSTRP=8ZPZsSTRB=%%BY

/1FS CpP

CURP=\\$ZCP %

/XI1F

LOAD=PG3+PG2+PG1

MAPU

DBJA=PG321

STRD=$ZDZ:STRP=$2%PZ3STRB=9%BX

/1FS CP

CURP=\\$ZCPZ

/XIF

LOAD=PG3+PG2+PG1

MAPU

MO=PG321.MO

MAPF

EXIT

PES

LIST PG321.MOSLH

MESSAGE PROGRAM TEST RLOAD MAP - 2DATEZ
L

/TIFC BoDyPoDATE

/% :

/% COCKPIT ERROR DETECTED!

/%

/% MUST SPECIFY THE FOLLOWING OPTIONS:
Y e T T TS

/% B = START BASE SEGMENT ADDRESS (HEXs NO $)
/% D = " DATA L " (HEXe NO $)
/% P = " PROGRAM n " (HEXy NO $)
/% DATE = TODAY'S DATE FOR MAP LISTING

/%

/% OPTIONAL

/% CP = HEX VALUE (NO $) FOR "CURP=\\" COMMAND
/%

/% %%x% CHAIN ABORTED #*%*

/%

/ABORT

/X1F

FIGURE 3-7. Listing of Chain File Invoking RLOAD
3-15

(1) =CHATM LIMKIDATEX10 AUG. 1979%s BR0%s DX400%, PX1000% CPR100%

P00 0000000000LPLPPPPPPLEPPPPPPPPPPOS00000
e LINK MFESSAGE PROGRAMS CHAIN FROCESSOR e

*®

n2-10-79

*$

PLPPOPPPPPLOPPPEPPPPPPIPPEPPPPPIPPBPPO0000S

e
e WARNIMG! GOING TO DELETE THE FOLLOWING FILEZ::
e ——————— PRI21.LO0 ‘OLD ORIFCTY
Pe FiE221.M0:0 ¢OLDT FLOAD MAF
Ve
e AEDORT WITH “ERERK- KEY OR
(2) 3. STRIKE ‘RETURM® TO COMTIMUE...
Ne
PZET FOFF 0800
(3) nEL PG3I21.LO«PE321.MO
It | .LD:n DELETED
PE32 .MD: 0 TDELETED
FTET FOFF 0000
(4) =_pAD
MU0~ L IMKTMS LORDER FEY 0O=.00
Q?gEﬁIGHT BY MOTOFOLA 1977
o
FETRD=%4003 STRP=$10005 STRE=%0
TEURP=~%1 00N
FLOAD=PG2« PRE PR
FG3 Ne-10-79 ASCT ILLUSTRATION - MODULE #3
F2 n2-10-72 MESGE PRNTR SUBPROS - MODLULE #g
Fi51 NE-10-79 MAIN MESG FROGRAM - MODLULE 1
TMAFL
MO UMDEFIMED SYMEDOLE
TNRJA=FGRI21
?“TRD=$4nn=ﬁTRP=$1nnn;ETEB=$U
FOURP=~&1 00
T OAD=PR=. P2 PG1)
P2 N2-10-72 ASCT ILLUSTRATION - MODULE 32
Fize N2-10-79 MESE FRNTR SUEPROG - MODULE #2
Pi51 Ne-1N-72 MATN MESGH PROGRAM - MODULE 1
TMAPL

MO LUMDEFINED EZYMEOLE

*MO=PG31.MO
FMAPF

TEXIT

e

LIST PGR2E1.MOSLH

ENMTER HEADIMG: MEZZA

Ne
EMD CHRAIN
=_0RD PG321sY
1

- SEAGE 1
MEZZAGE 2
MEZZAGE 2
MEZZAGE 2
MESSRAGE 2
MESZRGE 4
TOMMON TEST PROGRAM

ESBLG 2.1
14

FIGURE 3-8.

3E PROGRAM TEST RLOAD MAP - 10 AUG.

3-16

LOAD OBJECT PROGRAM

START PROGRAM EXECUTIOM

Using a Chain file and RLOAD

1979

PAGE 001 PG321 «M02:0 MESSAGE PROGRAM TEST RLOAD MAP - 10 AUG. 1979
NO UNDEFINED SYMBOLS
MEMORY MAP

SIZE STR END COMN
0006 4510 4515

0006 4406 4408

001A 0000 0019 0000
0030 0020 004F 0030
0042 0400 0441 0020
0251 1000 1250 0000

VOO EERPWV

MODULE NAME BSCT DSCT PSCT
PG3 0000 0400 1000
PG2 0000 0400 1100
PGl 0015 0414 1200

COMMON SECTIONS
NAME S SIZE STR
DCOMM D 0008 0422
DCOMM2 D 0018 042A
DEFINED SYMBOLS
MODULE NAME: PG3
ATEST A 4406 POWERS P 1000
MODULE NAME: PG2
EXBENT A F564 MSG3 D 0400 MSG4 D 040A PGM2 P 1100
STACK B 0014
MODULE NAME: PG1
CRrR A 0000 EOT A 0004 EXBPRT A FO024 LF A 000A

MSG1 P 1200 MSG2 D 0414 MSGSIZ B 0015 PGINE P 1216
START P 120A

FIGURE 3-9. Map Output File Listing
3-17

COMMAND
CONTROL COMANDS

BASE[=<number>]

car £ee)
IDOF

IDON
[F=<f-name>
IFOF

IFON

INIT

0BJ [Q]=<f-name>

_J<device>
MO_{(f—name)}

LOAD DIRECTIVES

LIB=<f-name) [,[(f-name>:£l 93

LOAD=<f-name) l}[(f-name>]_]93

APPENDIX A

A SUMMARY OF LINKING LOADER COMMANDS

FUNCTION

LOAD CSCT, DSCT, and PSCT above defined address
(default=MDOS compatible)

Give control to the disk operating system
Suppress identification printing

Print module identification information
Specify the intermediate file
Intermediate file mode off

Intermediate file mode on

Initialize the Loader

Initiates Pass 2

MAP output

Enter file mode

Load the indicated file(s)/module(s)

A-1

COMMAND
STATE COMMANDS

B
CUR{D}=[\]<number>
P
ASCT
<number>| | BSCT
DEF: (name1>={<name2>} sDSCT
PSCT
B
ENDJ C {=<number>
D
P
MAPC
MAPF
MAPS
MAPU

STR)C\=<number>
D
P.

FUNCTION

Set current location counter

Define a symbol

Set section ending address

List user assigned section sizes and addresses
List full load map

List loader assigned section sizes and
addresses
List undefined symbols

Set section starting address

A-2

S

APPENDIX B
LINKING LOADER ERROR MESSAGES

Errors detected by the Linking Loader, while processing a command or loading a
module, will result in an error message being printed at the user terminal.
These errors are divided into two classifications: fatal errors and non-fatal
(warning) errors. When the Loader detects a non-recoverable error, a fatal
error message will be printed. Any commands not processed on the last command
line will be ignored and a new prompt printed. If the Loader can recover from
an error, only a warning message will be printed.

FATAL
ERROR MESSAGES
MESSAGE

BAE BSCT Assignment Error - the combined size of BSCT is greater
than the amount that can be allocated in the defined BSCT area.

cov Common Overflow - the size of a section's common is greater
than 65,535.

GAE General Assignment Error - the Loader cannot assign absolute
memory addresses. This may result from:

. address conflicts associated with ASCT's

. user assignment of section addresses

. the combined length of all sections exceeding 65,535
. the order in which the Loader assigns memory.

ICM IT11egal Command

IOR ITTegal Object Record - the input module is not a valid
relocatable object module.

ISA IT1legal Stream Assignment - this error occurs when an invalid
I/0 device is assigned to a Loader I/0 stream.

ISY ITTegal Syntax - error in the option or specification field of
a command. This error may also occur when a command is not
terminated by a semicolon, space, or carriage return.

LoV Local Symbol Table Overflow - not enough memory for all the
local (external) symbols defined by the current object module.
Check for contiguous memory from location (.

GOV Global Symbol Table Overflow - not enough memory for all the
global (external) symbols defined by the object modules. Check
for contiguous memory from location @.

PHS Phase Error - the absolute address assigned to a global symbol
at the end of Pass 1 does not agree with the address computed
during Pass 2.

Sov Section Overflow - the size of a section is greater than

65,535,
B-1

FATAL
ERROR MESSAGES

MESSAGE
UAE

UIF
UoI

WARNING MESSAGES

User Assignment Error - the user has incorrectly defined 1oad
addresses. Use the MAPC command to produce a map for
determining the cause of this error. The UAE error occurs
when:

. the user defined end address is 1less than the user
defined start address

. the space allocated by the user defined start and end
addresses is less than that required for the section.

. the user has defined Tload section addresses which
overlap

. the user defined execution address is out of range
. the user has defined ASCT below $20

. the user has initialized locations in BSCT which are
assigned below $20

Undefined IF File
Undefined Object Input File

IAM - <address> - Illegal Address Mode - a global symbol is referenced as

a one-byte operand, and the most significant byte of the global
symbol address is non-zero. One byte relocation is performed,
using only the least significant byte of the global symbol
address. The warning message indicates the absolute address of
such a reference.

MDS - <symbol> - Multiply Defined Symbol - the Loader has encountered

another definition for the previously defined global symbol.
Only the first definition will be valid. This can also be
caused by section conflicts for the symbol -- i.e., defined via
an EQU directive (ASCT) and referenced in another module as
BSCT.

UDS - <symbol> - Undefined Symbol - the symbol was not defined during

Pass 1. A load address of zero will be assumed.

B-2

