
M68LLD(D4)

SEPTEMBER 1979

MDOS LINKING LOADER

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

Fourth Edition
©Copyright 1979 by Motorola Inc.

Third Edition March 1978

CHAPTER 1
t
e

e
e

e
e

e@

e
e

e

R
O

C
O
N
D
O
P

W
P

° —

P
O
R

P
O
P

PO

P
O
P
S
 P
O

e
e

°
e

e
e

ee
e

e@
e

e
e
e

@
W
O

O
N
D
O
P
W

D
M
F

e
e@

e
e

e

e
e

e
e

e

O
E

e

S
N
N
N
N
N
N

D
D
D

oO

O
S

BP

W
P

e
e

e

e eo
e

e
A
N
P

wW
NY
M

eR

Ww

CHAPTE

W
w

W
W
W

W

7
A

MR

P
M
P

PD

P
O
P

P
O

P
N
P

A
P
O

lO

[P
O

A
d

PO

e
e

APPENDIX A
APPENDIX B

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION
OPERATING ENVIRONMENT
ADVANTAGES OF THE LINKING LOADER
RELOCATION
LINKING
MODULE LIBRARIES
MEMORY ASSIGNMENT
LOAD MAPS

LINKING LOADER COMMANDS

INVOKING THE LINKING LOADER
LOADER INPUT
COMMAND FORMAT
LOADER COMMANDS

Command Nomenclature
CONTROL COMMANDS

EXIT
IDOF - Suppress Printing of Module ID
IDON - Print Module ID
IF - Intermediate File
IFOF - Intermediate File Mode Off
IFON - Intermediate file Mode On

INIT - Initialize Loader
MO - Map Output
OBJ - Produces Load Module

LOAD DIRECTIVES
LIB - Library Search
LOAD - Load a File

STATE COMMANDS
BASE - Initialize Minimum Load Address
CUR - Set Current Location Counter
DEF - Loader Symbol Definition
END - Ending Address
MAP = Prints Load Maps
STR - Starting Address

SAMPLE OPERATIONS WITH THE LINKING LOADER

INTRODUCTION
SIMPLIFIED LOADER OPERATION
LOADER OPERATIONS USING INTERMEDIATE FILES
LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN

MDOS COMMAND
LOADER OPERATIONS USING A CHAIN FILE

A SUMMARY OF LINKING LOADER COMMANDS
LINKING LOADER ERROR MESSAGES

E Q
 om

e
e

re
r
e
r

0
D
A
D
A

D
e
e

P
P
R
P
P
W
W
W
W
R
H

D
H
H
S

F
o
e

(8

1
P
S

he

PS

a
S

B
o
l
e

R
F
R

Y
U
O
U
O
O
A
N
N
N

D
D
N

WH

o
o

LIST OF ILLUSTRATIONS

~~

m@

ie)

FIGURE - Load Maps - Example 1
» Load Map - Example 2

Loader-Produced Memory Map

1-1
1-2
1-3
3-1. Message Program 1 (PG1)
3-2. Message Program 2 (PG2)
3-3. Message Program 3 (PG3)
3-4, Basic Loader Operation
3-5
3-6
3-7
3-8
3-9

W
w

G0
!

GO
:

G9

G
2

ED

G0

1
OY

L
O
)
!

E>

1
i
~
™

1

t
NS
N

O
T

Using an Intermediate File
Using a Library File
Listing of Chain File Invoking RLOAD
Using a Chain File and RLOAD
Map Output File Listing R

e
e

R
R

rR

OO

O
W

W
™

O
W

N
W

DD

O
1
W

ii

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

The MDOS Linking Loader combines relocatable object modules produced by the
Resident M6800 and Macro Assemblers, M6800 Resident FORTRAN Compiler, or
Resident MPL Compiler into an absolute load module. This resultant load module
is in a format suitable for loading by either the EXORciser loader or disk
operating system loader.

The Linking Loader is a two-pass loader requiring each input module to be read
twice. During Pass 1, a global symbol table is constructed describing the
attributes of the various global symbols. During Pass 2, the input modules are
read again and assigned absolute memory addresses. Module relocation and
linking is performed during the second pass, and an absolute load module is
produced.

1.2 OPERATING ENVIRONMENT

The minimum equipment required to use the Linking Loader is:

ae An EXORciser system

b. An EXORdisk II or EXORdisk III floppy disk drive system

c. An EXORciser-compatible terminal

d. 24K of Random Access Memory

e. Motorola Disk Operating System software (MDOS).

1.3 ADVANTAGES OF THE LINKING LOADER

In conjunction with the Resident M6800 Assembler, Macro Assembler, MPL Compiler,
and FORTRAN Compiler, the Linking Loader permits the user to:

« Segment source programs and data

“ Relocate object modules

« Link modules via global symbols

- Search user created libraries to satisfy unresolved global symbols

- Dynamically assign memory

- Create a memory map describing the location of each object nodule
and data block loaded

- Create a larger system than possible without linking by making smaller
assembly modules.

1-1

ASCT - Absolute Section (non-relocatable)

There may be an unlimited number of absolute sections in a user's
program. These sections are used to allocate/load/initialize memory
locations assigned by the programmer rather than the loader; for
example, addresses assigned to ACIA's and PIA's.

BSCT - Base Section (direct addressing)

There is only one base section. The Linking Loader allocates
portions of this section to each module that needs space in BSCT.
BSCT is generally used for variables that will be referenced via
direct addressing. BSCT is limited to locations within the
addressing range of @ through 255 ($@ through $QQFF).

CSCT - Blank Common (uninitialized)

There is only one CSCT. This section is used for blank common
(similar to FORTRAN blank common). This section cannot be
initialized.

DSCT - Data Section

There is only one data section. The Linking Loader allocates
portions of this section to each module that needs a part of DSCT.
DSCT is generally used for variables (RAM) which are to be accessed
via extended mode addressing ($100-$FFFF).

PSCT - Program Section

PSCT is similar to DSCT except that it is intended to be used for
instructions. The PSCT/DSCT division was made to facilitate a
RAM/ROM dichotomy.

This section concept is preserved by the Loader during the load process. As a
module is being loaded, each of its sections is combined with the corresponding
sections of previously-loaded modules. As a result, the absolute load module
produced by the Loader will contain one continuous memory area for each section
type encountered during the load operation.

In addition to the program segmentation provided by the section concept, the
relocation and linking scheme supports named common. The named common concept
provides the function of initialization common areas within BSCT, DSCT, and
PSCT. In processing named common definitions, the Loader will:

. Assign to each named common area a size equal to the largest size defined
for the named common during the load process.

- Allocate memory at the end of each section for the named common blocks
defined within that section.

The load maps shown in Figure 1-1 describe the load process with regard to
sections and named common. The module EX1 requires memory to be reserved in
BSCT, CSCT, DSCT, and PSCT, although the only space necessary in DSCT is for the
named common NCOM1. The module EX2 requires that memory be allocated in BSCT,
CSCT, DSCT, and PSCT. Neither module defines any ASCT blocks.

10

EX1 EX2

LENGTH

BSCT 10 BSCT

CSCT 35 CSCT

NCOM1(DSCT) 20 DSCT

10 NCOM1(DSCT)

PSCT
60 PSCT

NCOM2(PSCT)

NCOM3(PSCT) 15 NCOM3(PSCT)

5 NCOM2(PSCT)

DECIMAL ADDRESS LOAD MODULE

0

SYSTEM AREA

32
35 BSCT PGM1

45 BSCT_PGM2

CSCT

80
DSCT PGM2

100

NCOM1
120

PSCT PGM1

170

PSCT PGM2

230
235 NCOM2

250 NCOM3

FIGURE 1-1. Load Maps - Example 1

1-3

The load module map illustrates a typical memory map that might be produced by
loading EX1 and EX2. The BSCT for both EX1 and EX2 are allocated memory within
the first 256 bytes of memory. As shown, the first 32 ($20 hex) bytes of BSCT
are reserved by the Loader for use by the disk operating system, unless
otherwise directed. After BSCT, space for blank common is allocated, followed
by space for the EX2 DSCT. Since EX1 requires no DSCT for its exclusive use,
none will be allocated. The named common block NCOM1 within DSCT is assigned
memory at the end of DSCT. Finally, the PSCT's for EX1 and EX2 are allocated
along with the PSCT common blocks NCOM2 and NCOM3.

The Loader assigns memory within sections in the order in which the modules are
specified. Named common blocks are allocated memory at the end of their
corresponding section, in the order in which they are defined. Figure 1-2
illustrates a load module map produced by loading EX2, followed by EX1. This
load module map is slightly different from the map in Figure 1-1 where EX1 was
loaded first.

1.4 RELOCATION

Relocation allows the user to assemble/compile a source program without
assigning absolute addresses at the time of assembly or compilation. Instead,
absolute memory assignment is performed at load time. In order to relocate a
program (within memory), the source program must be assembled with the
Assembler, using the OPT REL directive, or compiled with the M6800 Resident
FORTRAN Compiler. The assembler or compiler will produce a relocatable object
module. These relocatable object modules contain information describing the
size of each section (ASCT, BSCT, CSCT, and DSCT) and named common area, as well
as the relocation data.

In order to load any relocatable object module, the MDOS Linking Loader must be
used. The Loader assigns addresses and produces an absolute object module
compatible with the system loader.

The advantages of using relocation are:

- Re-assembly is not required for each new absolute load address

- Relocation via the Linking Loader is faster than re-assembly

- Dynamic memory assignment of modules is possible

- Larger programs can be written than was possible before.

1.5 LINKING

Linking allows instructions in one program to refer to instructions or data
which reside within other programs. If all programs are assigned absolute
addresses during assembly time, it is possible to directly reference another
program via absolute addresses. However, when using relocatable programs,
absolute load addresses are not generally known until load time. In order to
access other relocatable programs or data blocks, external reference symbols
must be used. These external symbols are commonly called global symbols since
they may be referenced by any module at load time. Although global symbols are
used to link modules at load time, they must be explicitly defined and referencd
at assembly time. This is accomplished by the Assembler directives, XDEF and
XREF. The XDEF directive indicates which labels defined within a module can be
referenced by other modules. The XREF directive indicates that the label being
referenced is defined outside the module. For FORTRAN programs, the compiler
will generate an XDEF and XREF for each SUBROUTINE and CALL statement,
respectively.

1-4

DECIMAL LOAD MODULE
ADDRESS

0

SYSTEM AREA

32

BSCT PGM2

42

BSCT PGM1
45

CSCT

80

DSCT PGM2

100

NCOM1

120

PSCT PGM2

180

PSCT PGM1

230 .

NCOM3

245 f=

NCOM2
250 “um

FIGURE 1-2. Load Map - Example 2

1-5

At load time, global references are matched with their corresponding global
definitions. Any reference within a module to a global symbol is updated with
the load address of the global symbol. If the loader detects a global reference
without an associated global definition, an undefined global error will be
printed and a load address of zero will be assigned to the reference.

1.6 MODULE LIBRARIES

The Linking Loader can automatically search a file for modules which contain
definitions satisfying any unresolved global symbols. Such a file is called a
library file and is composed of one or more object modules merged together. The
|oader sequentially searches the library file. If a module is found that
contains a symbol definition satisfying an unresolved global symbol, that module
will be loaded. Only those modules which can satisfy an unresolved reference
will be loaded. Since a library file is searched only once, modules which
reference other modules within the library file should occur within the library
file before the referenced module. Otherwise, the user must direct the Loader
to search the library again.

1.7 MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned to the program sections
within the specified modules. Normal ly the loader will automatically perform
this assignment by allocating memory by sections in the order: ASCT, BSCT,

CSCT, DSCT, and PSCT. However, the user may define the starting and/or ending
address of any non-ASCT section. In this case, the Loader will first reserve
memory for those sections with defined load addresses before allocating space

for any other section. The Loader also permits a user to specify the relative
section offset of a module within a section. However, a section of a module is
always loaded in the associated load section in the order in which the module
was specified. Named common blocks are always assigned memory at the end of the
associated load section.

1.8 LOAD MAPS

The Loader will optionally produce a load map describing the memory layout
resulting from the loading of the specified modules. Figure 1-3 is an example
of some of the features included in a typical load map. In addition to this
full load map, the Loader may be directed to product partial load maps listing
only the undefined global symbols or section load addresses.

1-6

NO UNDEFINED SYMBOLS

MEMORY MAP

SIZE STR END COMN

0006 4510 4515
0006 4406 440B
COLA 0000 0019 0000
0030 0020 004F 0030
0042 0400 0441 0020
0088 1000 1087 0000 C

T
O
o
O
O
N
O
r
P
r
R
r
N

MODULE NAME BSCT DOSCT PSCT
PGL 0000 0400 1000
PG3 0905 O40E 1060
PG2 0005 040€ 1070

COMMON SECTIONS

NAME S SIZE STR

DCOMM OD 0008 0422
OCOMM2 D 0018 042A

DEFINED SYMBOLS

MODULE NAME: PGI1
CR A 0000 EOT A 0004 EXBPRT A F024 LF A OOOA
MSG1 P 1000 MSG2 D 0400 MSGSIZ B 0000 PGINE P 1016
START P 100A

MODULE NAMES PG3

ATEST A 4406 POWERS P 1060

MODULE NAMES PG2
EXBENT A F564 MSG3 D 040E MSG4 D 0418 PGM2 P 1070

STACK 8 0019

FIGURE 1-3. Loader-Produced Memory Map

1-7

CHAPTER 2

LINKING LOADER COMMANDS

2.1 INVOKING THE LINKING LOADER

The Linking Loader must be called while under the control of the MDOS disk
operating system. When the user types the command:

=RLOAD <c/r>

the disk executive will load the Linking Loader. Upon entry, the loader prints:

M6800 LINKING LOADER REV n.m
? . oe
; (where nom is the revision number)

The character ? is the Loader prompt, and is printed whenever the Loader has
completed the last command and is ready for another.

2.2 LOADER INPUT

The input to the Loader is in one of two forms -- commands or object modules.
The Loader commands control the relocation and linking of desired object
modules. Object modules are produced by the MPL Compiler, or Assembler, or
Resident FORTRAN Compiler. Each source program assembled or compiled creates a
single relocatable object module on a disk file. These disk files, or those
files created by merging one or more of these files, are used as the input to
the Loader. The Loader command structure provides for the loading of an entire
file or selected modules within a file. In addition, a disk file may be used as
a library file. The Loader may also be run under the MDOS CHAIN command.

2.3 COMMAND FORMAT

Each Loader command line consists of a sequence of commands and comments,
followed by a carriage return. The first space in a command line terminates the
command portion of the line, and the remainder is assumed to be comments.
Multiple commands may appear on a line by using a semicolon (;) as a command
separator. The format of a command line may thus be defined as:

9
kccmand>C;<conmand>°® | [<space>C <connents>3] <¢/r>

EXAMPLE: STRB=9;STRD=$1000;STRP=$4000
IDON
LOAD=PG1

The commands in a command line are executed only after the Loader detects a
carriage return.

If a command line is entered incorrectly, the line may be corrected in either of
two manners. First, the command line may be deleted completely by typing CTRL X
(the CTRL and X keys typed simultaneously). This causes the Loader to ignore
the current command line, and issue a CR, LF, and await a new command input
line. However, instead of deleting the entire command line, it may be corrected
by deleting the character(s) in error. This is accomplished by typing a RUBOUT
to delete the last character typed. The typing of a RUBOUT also causes the last
character entered to be printed. After deleting the character(s) in error, the

2-1

corrected version of the command line may be entered. The (MDOS) CTRL D key
allows the operator to redisplay the line to show a "clean" copy of the line for

operator inspection. Thus, full compatibility is maintained with the normal

MDOS .KEYIN special character functions.

The Loader will execute all the commands in a command line before another prompt
is issued. If an error is detected while attempting to process a command, that
command will be terminated. The remaining commands in the command line will be
ignored.

When using multiple commands per line, it should be noted that selected commands
require that they are the last command on a line, and include:

- INIT

- all intermediate file commands (IF, IFOF, IFON)

- OBJ

2.4 LOADER COMMANDS

The Loader commands are divided into three classes:

1. control commands

2. load directives

3. state directives.

The control commands are used to initiate Passes 1 and 2 of the Loader, as well
as to return to EXbug or the disk operating system. The load directives are
used to identify the modules to be loaded. Finally, the state directives direct
the assignment of memory to the various program sections and the production of a
load map.

2.4.1 Command Nomenclature

<f-name> Used to indicate the name of a disk file to be used by the
Loader. Unless specified, the file is assumed to have a suffix
of "RO" and drive number of 9. For the format of the file
name, consult the MDOS Manual. (Example: PG1.R0:1)

Used to indicate a decimal or hexadecimal number. Unless
preceded by a $ character (which is used to _ denote
hexadecimal), the number will be interpreted as decimal.
Unvess explicitly stated otherwise, the allowable number range
wi e:

<number>

Q - 65,535 feet
$0 - $FFFF (hexadecimal)

[] - Used to indicate that the enclosed directive(s) is optional.

[7 - Used to indicate that the enclosed directive may be
0 repeated from @ to 99 times, up to a total of 79 characters

maximum.

{ } - Indicates that one of the enclosed options must be used.

2-2

2-5 CONTROL COMMANDS

2-5-1 EXIT

<number>
FORMAT: EXIT ; {erane> } i

DESCRIPTION:

2.5.2 IDOF -

FORMAT: IDOF

DESCRIPTION:

2.5.3 IDON -

FORMAT: IDON

DESCRIPTION:

The EXIT command causes control to be returned to the disk
operating system after all Loader files have been closed.

The MDOS version of the Loader allows the user to define the
starting execution address of the object program. If the <number>
option is specified, the given absolute number will be used as the
starting execution address. This address must be a valid address
within the program. The <namel> option is similar to the <number>
option except that <name> must be a valid global symbol. If
neither option is used, the starting address defaults to the
address associated with the label appearing in the operand field
of the END statement in the assembled program.. If two or more
modules have END statements with operands, the operand associated
with the first module loaded will be used as the starting address.

Suppress Printing of Module ID

This command suppresses the printing of the name and printable
information associated with each object module loaded or
encountered in a library file. For assembly language programs,
this information is specified via the NAM and IDNT directives.

Print Module ID

This command causes the name and printable information associated
with each object module loaded or encountered in a library file to
be printed at the console device. For assembly language programs,
this information is specified via the NAM and IDNT directives.

2.5.4 IF - Intermediate File

FORMAT: IF=<f-name>

DESCRIPTION:

EXAMPLE:

2.5.5 IFOF -

FORMAT: IFOF

DESCRIPTION:

2.5.6 IFON -

FORMAT: IFON

DESCRIPTION:

2.5e/ INIT -

FORMAT: INIT

DESCRIPTION:

The IF command defines a file to be used as an intermediate file.
An intermediate file is a copy of all Pass 1 Loader commands and
object modules. It is used to direct the load operation during
Pass 2, instead of requiring the user to retype the Pass 1 command
sequence during Pass 2. The IF command also automatically places
the Loader in intermediate file mode similar to the IFON command.
Like the IFON command, the IF command must be the last command in
a command line.

The IF file name must be a valid disk file name and may not be the
name of an existing file on the specified diskette. Upon proper
exiting from the Loader, the IF file is deleted.

IF=IFILE Defines IFILE on drive @ as the intermediate file.
Default suffix is "IF".

Intermediate File Mode Off

IFOF temporarily suppresses the creation of the intermediate file
until an IFON directive is encountered. This command must be the
last command in a command line.

Intermediate File Mode On

This command directs the Loader to write all further commands and
object modules onto the intermediate file. This directive remains
in effect until an IFOF or Pass 2 command is detected. The IFON
command must be the last command on a command line. IFON is
implied when the intermediate file is defined by the IF command.
If an intermediate file is to be used during Pass 2, the IFON
directive must be in effect.

Initialize Loader

INIT initializes the Loader for Pass 1. This command is performed
automatically when the Loader is first initiated. The use of this
command permits the user to restart the Loader when entry errors
are made, without having to exit back to MDOS. Any previously
created object and/or intermediate files will be deleted. The
INIT comand must be the last command in a command line.

2-4

2.5.8 MO - Map Output

. _ |<f-name>
FORMAT: MO= sevice

DESCRIPTION: The MO command is used to specify the media on which the map
output is to be produced. The MAP output will default to the
console printer.

If a file name is specified, it must not be the name of an
existing disk file. The map cannot be directed to a file during
Pass 2 or whenever an intermediate file is being used.

A map can be produced on the console printer or line printer by
specifying the mnemonic #CN or #LP, respectively.

EXAMPLE : MO=MAPFL All output generated by the MAP command will be
written on file MAPFL on drive 9.

MO=#LP The line printer will be used for all future map
output.

2.5.9 OBJ = Produces Load Module

FORMAT: OBJA=<file-name>

OBUX=<file-name>[printed information]

DESCRIPTION: This loader command is used with the MDOS Loader to initiate the
second pass of the Loader. During this pass, an object file is
created on disk with the name <file-name>. This file may not be
the name of an existing file on the specified disk. The file will
be created on disk @ unless disk 1 is specified in <file-name>.
The type of object file produced by the Loader is determined by
the command form as follows:

OBJA - This format creates an absolute memory image file suitable
for loading via the MDOS LOAD command. A default file
suffix of 'LO' and drive @ will be used if none are
specified.

OBJUX - An object file in EXORciser loadable format (S@, S1, and
S9 records) is created via this command form. This file
may not be loaded via the MDOS LOAD command without first
using the MDOS EXBIN command. However, files created in
EXORciser loadable format may be copied to cassette or
paper tape and loaded via EXbug. A default. suffix of 'LX'
and drive @ will be used if none are specified with the
file name.

If an intermediate file (IF) was generated during the first pass of the Loader,
the second pass automatically processes the commands entered during the first
passe In the event that an intermediate file was not created, the same sequence
of commands used during the first pass must be repeated. Regardless of the use
of an intermediate file, the OBJA or OBJX command must be the last command on
the command line.

2-5

EXAMPLES: OBJX=SORT, BINARY SORT PROGRAM

This command initiates the second pass of the Loader,
which will create an EXORciser loadable file on disk
file 'SORT.LX:0'. The SO record will contain the file
named SORT and the ASCII character string 'BINARY SORT
PROGRAM’.

OBJA=REPORT: 1

The Loader will create the absolute object file on file
"REPORT.LO' on drive 1.

2.6 LOAD DIRECTIVES

2.6.1 LIB - Library Search

99
FORMAT: L1Be<f-nane>|,CeF-nane> J 0

DESCRIPTION:

EXAMPLE:

The LIB command instructs the Loader to search the specified file
name(s) for those modules which satisfy any undefined global
references. Any module that satisfies an unresolved global
reference will be loaded. A suffix of .RO and logical drive of
:@ are assumed for <f-name>.

A library file is a collection of individual relocatable object
modules which were merged into a single file.

Modules loaded via the LIB command may also reference global
symbols that are not defined. Since a library file is searched
only once for each LIB command, it should be made with care so
that no module has any reference to a prior (higher level) module,
or multiple passes of the same library must be done.

It should be noted that the Macro Assembler and certain compilers
(FORTRAN) produce a single relocatable object module in a file.
Since these single object module files can be merged together into
other (library) files, the terms "object file" and "object module"
are not necessarily equivalent.

LIB=MLIB:1 The modules on file MLIB.RO on drive 1 will be
searched to resolve any unsatisfied global
references.

2-6

2.6.2 LOAD - Load a File

FORMAT: LOAD=<f-name> : [<f-name> i 7

DESCRIPTION:

EXAMPLE :

The LOAD command directs the Loader to load the specified object
files.

The LOAD command directs the Loader to load all object modules
found in the specified file name(s). The file name could be a
library file, but the LOAD command, unlike the LIB command, will
load each object module found, irregardless of whether or not it
is needed.

A suffix of .RO and logical drive :@ are assumed.

LOAD=PGM1:1 Loads all modules within file PGM1.RO on disk
drive l

LOAD=PGM1,RAM:1,PGM2,PGM3 Loads all modules within files PGM1.RO
on drive @, RAM.RO on drive 1,
PGM2.RO on drive @, and PGM3.RO on
drive @.

2-7 STATE COMMANDS

2.7.1 BASE = Initialize Minimum Load Address

FORMAT: BASE [=<number>]

DESCRIPTION:

EXAMPLE :

The BASE command allows the user to specify an address above which
his program will load. The BASE command affects only the memory
assignment of CSCT, DSCT, and PSCT. Memory assignments related to
BSCT, ASCT, and those sections with defined starting/ending
addresses (via commands STR or END) are not affected by this
command.

The use of the <number> option is used to define the lowest
address which may be assigned to CSCT, DSCT, or PSCT. If the
<number> option is not specified, the lowest assignable address
will default to the next modulo 8 address following MDOS. This
format of BASE allows the user to load his program above MDOS
without having to know where MDOS ends. If the BASE command is
not specified, a default address of $20 (32 decimal) will be used
as the lowest load address during memory assignment.

BASE Unassigned CSCT, DSCT, and PSCT will be assigned load
addresses above MDOS.

2-7

2.7.2 CUR - Set Current Location Counter

B

P
FORMAT: CUR<D aN <number>

DESCRIPTION:

EXAMPLE :

EXAMPLE:

The CUR command is used to modify the Loader's current relative
loading address of the specified section (BSCT, DSCT, or PSCT).
The CUR command must be used prior to the LOAD or LIB command so
as to update the loading address first. If the '\' option is not
specified, the relative load address for the appropriate section
will be set equal to the given <number> starting section plus its
value (see STR command). This <number> must be equal to or
greater than the section's current relative load address. This
form of the CUR command allows the user to start a module section
at a defined address. For PSCT, the <number> entered is added to
the absolute value for STRP to obtain the new PSCT load address
value. The following example loads four 1K EPROM's at $4400,
$4800, $5000, and $8C00 from multiple files. Each LOAD command
utilizes less than $400 bytes in PSCT (starting PSCT=$4400).

?STRP=$4400
?LOAD=FILE11, FILE12,FILE13 EPROM at $4400
?CURP=$400
?LOAD=F ILE21,FILE22,FILE23 EPROM at $4800 ($4400 + $400)
?CURP=$C00
?LOAD=F ILE31,FILE32 EPROM at $5000 ($4400 + $C00)
?CURP=$4800
?LOAD=FILE41,FILE42,FILE43,FILE44 EPROM at $8C00 ($4400 + $4800)

The '\' option affects the section's relative load address in a
different manner. This option causes all future modules to be
loaded at an address which is a power of two relative to the start
of the section (2,4,8, etc.). The specified <number> defines the
given power of two. This option remains in effect until the
option is specified again or until the.current pass of the Loader
is complete. If the '\' option is in effect when memory is
assigned to the starting section addresses, the starting address
of the section will also be assigned a load address which is a
power of two. This option does not apply to named common blocks
within the specified section.

If the CUR directive is not used, each module will normally be
loaded at the next load address in the appropriate section
(contiguously loaded modules). However, modules created via the

FORTRAN Compiler will be loaded at the next even address.

CURP=$100 Sets the relative PSCT location counter to $100
plus STRP value.

CURP=\16 Causes the Loader to load all future PSCT sections

at a relative address within PSCT which is modulo 16
plus the STRP value.

NOTE

When using the CUR command within an MDOS chain
file, the '\' option must use '\\' instead of '\'.
(See CHAIN command description in the MDOS Manual.)

2-8

EXAMPLE : STRP=$4001
CURP= $400
LOAD=PG1,PG2,PG3

If each file is a single module with less than 1K of PSCT in each
one, then each module's starting PSCT address would be assigned as
follows:

PG1=$4001
PG2=$4401
PG3=$4801

2.7.3 DEF - Loader Symbol Definition

FORMAT: DEF: <nanel>={

DESCRIPTION:

EXAMPLE:

ASCT
<number>| | BSCT

»DSCT
PSCT

<name2>

The DEF command is used to define a global symbol and enter it in
the global symbol table. The symbol to be defined is given by
namel and must be a valid Macro Assembler variable name. The
symbol may not currently be defined. If the <number> option is
used, the symbol will be defined with the given number as the
relatived address within the specified section. The DEF command
may be used to provide another name for a previously defined
symbol by using the <name2> option. <name2> must be a currently
defined global symbol. The section options -- ASCT, BSCT, DSCT,
PSCT -- are used to define the section associated with the defined
section. ASCT is the default section.

DEF :ACIA1=$EC10,ASCT Defines symbol ACIA1 as an ASCT symbol
with absolute address $EC10 (hexadecimal).

2.7.4 END - Ending Address

B
FORMAT: END<C}=<number>

DESCRIPTION:

EXAMPLE:

D
P

The END commands are used to set the absolute ending address of
the associated section (BSCT, CSCT, DSCT, PSCT). If both an
ending and starting address are defined, the size described by
these boundaries must be equal to or greater than the size of the
associated section.

NOTE

An ending address of $0000 will reset any previous
END directive for the corresponding section.

ENDB=255 BSCT will be allocated such that the last address
reserved is 255 (decimal).

2-9

2.7.5 MAP - Prints Load Maps

C
FORMAT: MAP) F

DESCRIPTION:

S
U

The MAP commands are used to display the current state of the
modules loaded or the Loader's state directives.

MAPC =

MAPF

MAPS

MAPU

Prints the current size, user defined starting address, and
user defined ending address for each of the sections, as
well as the size, starting address, and ending address for
each ASCT defined.

A full map of the state of the loaded modules is produced
after the Loader assigns memory. This map includes a list
of any undefined symbols, a section load map, a load map
for each defined module and named common, and a defined
global symbol map. If a user assignment error (UAE)
exists, this command cannot be completed. Use the MAPC
command to determine the cause of the error.

The Loader assigns memory to those sections not defined by
a user supplied starting and/or ending address. A memory
load map, which defines the size, starting address and
ending address for each section, is printed. If a user
assignment error (UAE) exists, this command cannot be
completed. Use the MAPC command to determine the cause of
the error.

Prints a list of all global references which currently
remain undefined.

2.7.6 STR - Starting Address

B
FORMAT: STR} C\= j<number>

<global ASCT symbol>

DESCRIPTION:

EXAMPLE:

D
P.

The STR commands set the absolute starting address of the
associated section (BSCT, CSCT, DSCT, PSCT). Those sections whose
starting address is not defined by the user will be assigned a
starting address by the loader.

NOTE

A starting address of $FFFF will reset any previous
STR directive for the corresponding section. This
will allow the Loader to define the starting address.

STRP=$1000 PSCT will be allocated memory starting at $1000.

2-10

CHAPTER 3

SAMPLE OPERATIONS WITH THE LINKING LOADER

3.1 INTRODUCTION

This chapter provides a description of the operation of the Loader in typical
applications. To demonstrate the use of the Loader, a simple message printing
program will be used. This program consists of three modules which referenca
instruction sequences or data within each other. As assembly listing of eacin
module is shown in Figures 3-1, 3-2, and 3-3.

3.2 SIMPLIFIED LOADER OPERATION

The simplest form of the Loader's operation is shown in Figure 3-4. In this
example, all three files -- PG1l, PG2, and PG3 -- are loaded, and the object file
PG123 is created. The sequence of steps shown in Figure 3-4 is as follows:

1. The LOAD command loads the first file, PG1.RO:@. During all load

operations, a global symbol table of all external definitions and
references is built.

2. The LOAD command loads the next two files, PG2 and PG3. Notice the
default suffix 'RO' and drive number 'f' are assumed.

3. The OBJA command starts pass 2 of the load function, which will create an

absolute memory image object file named PG123 on drive ™ with the suffix
'LO'. This command also assigns memory addresses to the various program
sections. The use of the OBJX command, instead of OBJA, would have a
similar effect, except an EXORciser load image would be produced.

4. Since an intermediate file was not created in pass 1, all ‘commands
entered in pass 1, with the exception of MAP commands, must be repeated.
In pass 2, the LOAD command generates the absolute code for the object
file. Notice that all three files are loaded with one load command this
time.

5. The MAPU command is not really necessary here, but was entered to verify
that no undefined symbols exist.

6. A complete memory map is produced by the MAPF command. In the first part
of the map (6a), any undefined external references are listed. In the
next part (6b), the section type, the size, starting address, ending
address, and size of the section's common block are listed for each
program section. For example, PG123's DSCT area will have a size of 42
(hex) bytes, of which 20 (hex) bytes are in common. The DSCT area will
start at address $6A and end at $AB. The starting address of the various
sections for each program module is given in the next map part (6c). As
seen from the map, PG2 PSCT starts at address $FD, which corresponds to
the PG2 instruction:

PGM2 = CLRA

3-1

PAGE OO1 PGl eSAtl PGI PROGRAM TO PRINT OUT MESSAGES (MAIN)

00001 NAM PGl
00002 OPT REL» CREFoNOG
00003 TTL PROGRAM TO PRINT OUT MESSAGES (MAIN)
00004 TONT 08/10/79 MAIN MESG PROGRAM — MODULE #1

00006 * ASSEMBLY PROCEDURES RASM 3-00 MOOS 3.00
00007 * =RASM PGISLN=76
00008 *
00009 * PROGRAM PARTS: PGl» PG2e0 PG3
00010 * COMPUTER: M6800

00012 FO24 A EXBPRT EQU $FO024 EXBUG PRINT ROUTINE

00014 * ASCII CHARACTER EQUATES
00015 %
00016 0004 A EOT EQU 4 END OF TEXT
09017 OOOA A LF EQU $A LINE FEED
00018 0000 A CR EQU $D CARRIAGE RETURN

00020 * EXTERNAL REFERENCES
00021 *
00022 XREF ATEST
00023 XREF DSCT 2MSG39MSG4eANYSSTACK
00024 XREF EX BENT oPGM2

00026 * EXTERNAL DEFINITIONS
09027 *
00028 XDEF MSG2oMSG1sEXBPRT» START oPGLNE
00029 XDEF MSGSITZeEOTsLFoCR

FIGURE 3-1. Message Program 1 (PG1)

3-2

PAGE 002 PG1 eSA:1 PGI PROGRAM TO PRINT OUT MESSAGES (MAIN)

90031 * COMMON MESSAGE AREA

00032 * (NAMED COMMON "OCOMM™ IN DSCT)
00033 *
00034N 0000 DCOMM COMM OSCT
00035N 0000 0000 P MSG1P FODB MSG1 PTR TO MESG 1 CIN PSCT)
00036N 0002 0000 O MSG2P FDB MSG2 PTR TO MESG 2 (IN OSCT)
00037N 0004 0000 A MSG3P FDB MSG3 PTR TO MESG 3 (XREF IN DSCT)
09038N 0006 0000 A MSG4P FDB MSG4 PTR TO MESG 4 (XREF IN CSCT)

00040 * MESSAGES 1 AND 2
00041 * (NEW NAMED COMMON "DCOMM2" IN DSCT)
00042 %
00043N 0000 DCOMM2 COMM DSCT
00044N 0000 0001 A CMSGCT RMB 1 COMMON MESSAGE COUNT
O0C4S5N OOO] OOl4 A CMSG RMB 20 COMMON MESSAGE

0004¢7C 0000 CSCT BLANK COMMON SECTION
00048C 0000 0010 A MSGCST RMB 16 RESERVE 16 BYTES

0005CD 0000 OSCT DATA SECTION
000510 0000 4D A 4SG2 FCC NMESSAGE 2\
00052D 0009 04 A FCB EOT DELINEATE END OF MESSAGE

00054P 0000 PSCT PROGRAM SECTION
00055P 0000 4D A MSG1 FCC \MESSAGE IN
09056P 0009 04 A FCB EOT

000588 9000 BSCT BASE SECTION
000598 0000 0001 A MSGSTIZ RMB 1 MESG SIZE STORAGE

FIGURE 3-1. Message Program 1 (PG1) (cont'd)

3-3

PAGE

00061
00062
09063
00064P

00066P

ON06TP

OO0C6BP

00069P

00070

Q0071

00072

00073P

0O00T4P

OouoTSP

O00T6EP

O00TTP

O807BP

00079

00080

00081

o0082P

00083 P

00084P

00035P
ONOB6P

o00087P

C008BP

00089P

00090P

OOO91LP

09092P

00093P

00094P

00095P

00096P

00097P

09098P

001008

O0101
00102
00103
00104
001058
001068

00108D
09109D
001100

00112
00113

003 PG1

OOOA

OOOA 8E
OO00OD FE
0010 BD
09013 TE

0016 CE
0019 BD

OOI1Cc FE
OO1F 3)
0022 CE
0025 BD

0028 CE
9002B FF
CO2E CE
0031 FF
0034 F6
0037 D7
9039 FE
003C A6
OO3E 03
Q003F FF
0042 FE
0045 A7
0047 08
0048 FF
OC4B 5A
004C 26
OO4E TE

0001

9001
9003

000A
O00A 96
000C DE

0000
00Cc0
F024

0000 >
p
e
p
Z
z
p
P

9000
F024
0004
F024
0000
F024 P

e
P
A

P
P

0000
0003
0001
0001
9000
00
0001
00 b

P
o
w
z
a
2
Z
2
a
n

0001 8B
0003 B
00 A

0003 8

EB 0039
0000 A

9002 A
0002 A

Ol 8
03 8

000A P

PGl

= PROGRAM SECTION
* EXECUTION STARTS AT "START

PSCT

START LOS
LDX
JSR
JMP

GINE LOX
JSR
LOX
JSR
LOX

JSR

3b

sb

Gt

LOX
STX
LDX
STX
LOAB
STAB
LOX
LDAA
TNX
STX
LOX
STAA
INX
STX
DECB
BNE
JMP

LOOP

BSCT

NOTE:

3
3b

se

3

FROMPT RMB
TOPNTR RMB

OSCT

LDAA
LOXx

TTL
END

TOTAL ERRORS 00000--00000

FIGURE 3-1.

#STACK
MSGIP
EXBPRT

PGM2

PROGRAM 2 RETURNS TO

#MSG3
EXBPRT
MSG3P
EXBPRT
#MSG4

EXBPRT

#MSGCST
TOPNTR
#CMSG
FROMPT
CMSGCT
MSGSIZ
FROMPT
OoX

FROMPT

TOPNTR

0oX

TOPNTR

LOOPI
ATEST

ITF FORWARD REFERENCED»
THEREFORE ALL BSCT VARIABLES SHOULD BE
OEFINED BEFGRE REFERENCEDe

2
2

FROMPT
TOPNTR

PROGRAM TO PRINT OUT MESSAGES (MAIN)

PROGRAM SECTION

SET UP STACK REGISTER (XREF)
GET MESSAGE 1 POINTER
PRINT MESSAGE 1

GO TO PROGRAM 2 (XREF)

THIS POINT (XDEF)

GET MESSAGE 3 ADORESS
PRINT MESSAGE 3

GET MESSAGE 3 POINTER
PRINT MESSAGE 3 AGAIN
PRINT MESSAGE 4

MOVE MESSAGE FROM CMSG IN DCOMM2 TO BLANK COMMON

MESSAGE DESTINATION ADDRESS

MESSAGE ADDRESS (FROM)

MESSAGE LENGTH
SAVE MESG LENGTH
GET SOURCE POINTER
GET BYTE

UPDATE SOURCE POINTER

GET DESTINATION POINTER
SAVE BYTE
UPOATE DESTINATION PCINTER

UPDATE CHARACTER COUNTER
Looe
GOTO PROGRAM W/ASCT REGIONS

DIRECT ADDRESSING SECTION
EXTENDED ADOR IS USED.

FROM POINTER
TO POINTER

DATA SECTION
S2eD01RECT ADDRESSING USED***
(EXAMPLES ONLY - NOT EXECUTED)

CROSS REFERENCE TABLE
START

3-4

Message Program 1 (PG1) (cont'd)

PAGE 004 PGI eSAzl PGI CROSS REFERENCE TABLE

R ATEST 00922*00098
ND 0001 CMSG 00045%*00084
ND 00900 CMSGCT 00044*00086
D 00ND CR 00018*00629
NOD DCOMM 00034%

NN) DCOMM2 00043%
DB 0004 ECT 90016*00029 00052 00056
R EXRENT 00024%

0 FO24 EXB8PRT 00012*00028 00068 00074 00076 00078
6B OOOL FREMPT 90085 00088 00091 00105*00109

D0 OOOA LF 90017*00029
P 0039 LODP1L 00088*00097

DP 0000 MSG1 00028 00035 00055%*
ND 0000 MSGI1P 00035*00067
0D 0000 MSG2 00028 00036 00051%
ND 0002 MSG2P 00036
Ri) MSG3. 00023*00037 00073
ND 0004 MSG3P 90037*00075
RD MSG4 00023*00038 OOO0TT
ND 0006 MSG4P 00038%

C 9000 MSGCST 00048*00082
03 0000 MSGSIZ 900029 00059%*00087
OP 0016 PGINE 00028 00073%

R PGM2 0002 4*00069
R STACK 00023%00066
DP OOOA START 00028 00066*00113

R 0003 TOPNTR 00083 00092 00095 00106*00110

FIGURE 3-1. Message Program 1 (PG1) (cont'd)

3-5

PAGE

00001
00002
00003
00004

00006
C0007

00008
00009
00010

00012

00914
09015
00016

09017
00018
00019
00020

00022
00023
O0024N
00025N
00026N
O0027N
00028N

00030N
00031N
00032N
00033 N
00034

09036
00037

00038N
000399
00040D
000410
0004290

001

0000
0000
0002
0004
0006

0000
0000
0001
0014

0000
0000
0009
OOOA
0013

PG2

F564

0002
0002
0002
0002

17
43
0c
9018

4D
00
40
00

eSAs

A

P
r
P
 P

rP

2
e
P
P
P
p

>
b
e

P
b

1 PG2 4

NAM

OPT

TTL

IONT

*

*

& co

EXBENT EQU

*®

*

XDEF

XREF

XREF

XREF

ESSAGE PRINTER SUBPROGRAM

PG2
CREF eREL»oNOG
MESSAGE PRINTER SUBPROGRAM
08/10/79 MESG PRNTR SUBPROG - MODULE #2

ASSEMBLY PROCEDURE: RASM 3-00 MDOS 3-00
=RASM PG23LN=76

PROGRAM PARTS: PGle PG2e PG3
MPUTERS M6800

$F 564 EXBUG ENTRY POINT

XDEFS AND XREFS

MSG3oMSG4oSTACK ec EXBENT oPGM2

BSCT:3MSGSIZ

EXSPRT eo PGINE oMSG1LeoMSG2

EOTeCRoLF

* MESSAGE POINTER AREA (DCOMM)
%

DCOMM
MSGIPT
MSG2PT
MSG3PT
MSG4PT

DCOMM2
CMSGCT
CMSG

CMSGE

COMM
RMB
RMB
RMB
RMB

COMM
FCB
FCC
FCB

EQU

= MESSAGES
ve +4

MSG3

MSG4

DSCT
FCC
FCB
FCC
FCB

FIGURE 3-2.

OSCT

z

2

2

2

OSCT

CMSGE-CMSG « COMMON MESSAGE CHAR COUNT!

\COMMON TEST PROGRAM\

CReolFelFe EDT

* END OF MESSAGE

3 AND 4

\MESSAGE 3\

EOT

\MESSAGE 4\

EOT

Message Program 2 (PG2)

3-6

PAGE 0O

00044
00045
00046P
00047P
00048P

00049P
00050P
90051P
00052P
09053P
09054P
00055P

090578
0005388
00059B

00061

02

0000
0000
0001

0003
0006
9009

0o00c
OOCF
0012
0015

0000
0000
0014

PG2

4F
97

FE
30
CE
BD
FE
BD
TE

eSAZ1 PG2

00
00900
9000
0000
0000
0002
0000
0000

0014
oool

P
e
a
b
r
P
p
r
z
Z
z
p

A
A

* START OF PROGRAM 2
ae

PSCT
PGM2 CLRA

STAA
LOX
ISR
LOX
JSR
LOX
JSR

JMP

BSCT
RMB

STACK RMB

END
TOTAL ERRORS 009000--00000

ND 0001
ND 00900
ND 9018

F564

D 9000

ND 0002
DD 0000
ND 0004
DN OODA
ND 0006

DP 0000
D8 0014

CMSG
CMSGCT
CMS GE
CR
DCOMM
DCOMM2
EOT
EXBENT
EXBPRT

Le

MSGI
MSGIPT
MSG2
MSG 2PT
MSG3
MSG3PT
MSG4
MSG4PT
MSGSIZ
PGINE
PGM2
STACK

00031 00032
00031%
00031 00034
00020*00033
00024
00030%

MSGSIZ
MSGLPT
EXBPRT
H#MSG2
EXBPRT
MSG2PT
EXBPRT
PGINE

00020*00033 00040 00042
00012*00017

00019*00050 00052 00054
00020*00033 00033
00019*

00025*00049
00019%00051
00026*00053
00017 00039
00027%
00017 00041%
0002 8%
00018*0004B8
00019%*00055
00017 00047%
00017 00059%

FIGURE 3-2.

3-7

MESSAGE PRINTER SUBPROGRAM

INIT. MESG LENGTH
PRINT MESSAGE 1

PRINT MESSAGE 2

PRINT MESSAGE 2 AGAIN

RETURN TO PROGRAM ONE

DIRECT ADDRESSING SECTION

STACK STORAGE AREA

Message Program 2 (PG2) (cont'd)

PAGE 0

00001
00002
00003
00004

00006
00007
00008

00009
00010

00012
00013

OO0oLs
00016
0O017C
00018C

09020A
O00021A
00022A
COO23A

O0025A
00026A

000274

00029P
00030P
09031P
00032P
00033P
00034P

00036

01

0000
0000

0000

4406

4406

4409

4510
4510

4513

0000
0000
9002
0004
0006
0008

PG3

TE

eSAz1 PG3 **=PROGRAM TO ILLUSTRATE USE OF ASCT

NAM PG3
TTL ***PROGRAM TO ILLUSTRATE USE OF ASCT

OPT REL» CREF
TONT 08/10/79 ASCT ILLUSTRATION - MODULE #3

* ASSEMBLY PROCEDURES RASM 3-00 “DOS 3-00
* =RASM PG3215LN=76

* PROGRAM PARTS:2 PGle PG2e PG3
* COMPUTER: M6800

XOEF ATEST» POWERS
XREF EXBPRToEXBENT

* BLANK COMMON

cSCT
0030 A CMSG RMB $30

ASCT UNNECESSARY!
ORG $4406 e ORG CAUSES ASCT!

0000 C ATEST LOX #CMSG START OF COMMON MESSAGE
4510 A JMP ATEST2

ORG $4510
0000 A ATEST2 JSR EXBPRT PRINT MESSAGE

0000 A JMP EXBENT GOTG EXBUG/DON*T STOP

PSCT PROGRAM SECTION
0031 A POWERS FDB 1 POWERS OF TEN TABLE
000A A FOB 10
0064 A FDB 100
O3EB A FOB 1000
2710 A FDB 10000

END
TOTAL ERRORS 00000--00000

D 4406
4510

Cc 0000

DP 0000

ATE

ATE
ST

ST2
CMSG
EXBENT
EXB
POW

PRT
ERS

00012 00022%

00023 00026*
00018*00022
00013*00027
00013*00026
00012 00030*

FIGURE 3-3. Message Program 3 (PG3)

3-8

=FLOAD

MDO: LINKING LOADER PEY O3. 00
COPYRIGHT BY MOTOROLA i9r?

V)PLOAD=P 61. RD: | -monm oreo een en nec eenennne LOAD FIRST FILE
2 o DAD=P G2: PGS ---wwvooeeoomecc coco ecto LOAD OTHER TWO FILES
i} MLDRTEP G1. PSE: PGS —-=nnnnnmn rn nmnemnn nn REPEATPBRSs71_conmanps
5)?MAPL ------------~-~------------ nen nee enn PRINT UNDEFINED SYMBOLS MAP

ee UNDEFINED =YMEOLS
(6) ?MAPF --------------------------------------- PRINT FULL MEMORY/SYMBOL MAP

1 TINDEFINED Z=YMBOL = 6a

MEMORY MAP

SIZE =TR ENT COMN
noone 4510 4515
Hoe 4406 4408
NOtA ooed ones noon 6b
miso COOSA OoeS OOSO
onde O06 CORB O00
nAaes OOR OLE ono)

MODULE NAME BECT DSCT PECT
Pini noe Oe CA 6c
Pe noes Gore OoFD
PGS OosA Ooee O115

COMMON =ECTION:

NAME = ZISE =T
TAM TF Anne OOS

TCOMMe DT oo1s oo

TEFINED =YMEOL:

Q
H
D

D
i
s

6d

MODULE NAME: Pol
cr A oot EOT
eG P OAL Mebe

START P OOBE

good EXBERT A Fed LE A OOoR
Q0GA MEGEI2 F obeo FEINE F oote Lam

Jo

MNT : PG
TEE Ree sea” Mees T oore MEb4 DD oose Pome F OOFD
ZTACK EB Oss

MODULE NAME: POS
ATEET A dane POWERS FP O115 6g

(7)FERIT ----nn cnn nnn n nnn nnn nn nnn enn n nena RETURN TO MDOS
=LOAD PG1233¥ ----------------------------- LOAD OBJECT PROGRAM FILE
A START PROGRAM EXECUTION
MEZZAGE
MESSAGE
MF SAGE
ME == ARE

S
e

TS

COMMOM TEST PROGRAM

EMBUG 2.1
oF

FIGURE 3-4. Basic Loader Operation

3-9

6e

6f

de

The fourth area of the map (6d) defines the size and starting address of
any named common blocks. Thus, the PGl variable CMSGST, which is the
first variable in the DCOMM2 common block, will be located at address
$8C. The final map feature provides an alphatized list of all global
symbols by modules (6e, 6f, 6g). The modules are listed in the order
that they were loaded. Thus, the PG1l variable START has an absolute
address of $B6.

To return to MDOS, the EXIT command is used. This command may, in
addition, be used to assign a starting execution address. In this
example, PG123's starting address will be at address $B6, since the
variable START appears as the operand on PG1's END statement. Two
alternate methods of defining the execution address are:

EXIT=START

or EXIT=$B6

3.3 LOADER OPERATIONS USING INTERMEDIATE FILES

As shown in the previous example, most commands must be re-entered during pass 2
of the Loader. The use of an intermediate file eliminates the need to retype
Loader commands. Figure 3-5 is an example of the use of intermediate files.
Commands used in the sequence are explained below, with the exception of those
commands previously discussed.

1.

56

de

The intermediate file feature is invoked by defining a new file for use
as the intermediate file.

- The IDON command turns the identifier option on to allow printing of the
IDNT assembly directive as entered in the files.

This command line shows how more than one command may be specified on the
same line by using the ';' feature. The STR command is used to define
the starting section addresses of $400 and $1000 for DSCT and PCST,
respectively. These starting addresses are reflected in the map
generated in pass 2.

The CUR command with the '\' option causes the PSCT section of each
module to start at an address which is modulo $10 from the start of PSCT.
This feature permits the user to easily debug relocatable programs, since
modules start at convenient addresses. Thus, in the example of Figure
3-5, the first PSCT code for module PG2 will start at $1070.

Notice that the loading order is different from the example in
Figure 3-4. As each file/module is loaded, its identifier is printed
(5a).

As in the previous example, the OBJA command initiates pass 2 of the
Loader. However, since the intermediate file feature is being used, the
second pass 2 is automatically performed without the user re-entering the
commands. Notice the identifiers are also printed here as_ each
file/module is loaded (6a).

The Loader has completed processing all commands entered in pass 1; the
user may now enter any non-load command such as a MAP command or EXIT.

In this case, all map output is directed to the line printer with the
MO=#LP command.

3-10

=RPLOAD
MNO: LINKING LOADER FEY a3: oo
See eae. BY MOTORDLA 197

1) @TFSTEMP =---~---------------- ~~ CREATE INTERMEDIATE FILE = TEMP
‘ pappbaga4o0s STRESHI GOOF STRESD Loon no a iit ‘eB RNs eer roy annpesges
PEEP |) wacananmenmmecnemimemina mma am p

RSL naeinera MAIN wese PROGPAM (Oo bHSE Ro = [5 nee ine? a -
(5a) P63 Ne-10/79 ASCT ILLUSTRATION - MODULE #3

G2 N8-10-79 MESG PRNTP SUBPROG - MODULE #2
(6) 708 j= eles TteFo MEIN MEEG PRUGREH START BRS: ane CONTROLLED BY INTERMEDIATE FILE

(6a) Pas 08-10-79 ASCT ILLUSTRATION - MODULE #2

7) NESE ee ee eee eee? aSsIatl MAP OUTPUT TO LINE PRINTER eMAPE an ernie er IEMORY/SYMBOL MAP TO LINE PR 1 SB ennonneenesscacccoooo RUbbengyggeteo. Rab ERE” Ruoen SHAD Palas!) 2222222=s-222eceseoot tooo LOAD OBJECT PROGRAM FILE

OF 3 P ~------ 22-2 ------- =~ --8 === START PROGRAM EXECUTION
MESSAGE 1
MESSAGE 1
MESSAGE 2
MESSAGE 2
MESSAGE 3
MESSAGE 3
COMrcn TEST FROGRAM

EXBUG 2.1
o€

FIGURE 3-5. Using an Intermediate File

3-11

8. A full map is sent to the line printer to produce a hard copy with the
MAPF command. The line printer map output is shown in Figure 1-3.

9. The object file is closed and control is returned to MDOS via the EXIT
command.

3.4 LOADER OPERATIONS USING A LIBRARY FILE/CREATING AN MDOS COMMAND

The previous examples have described the loading procedure performed via the
LOAD command. In these examples, the user was aware of each module that had to
be loaded. However, in other cases, the user may be aware of only the entry
point name required to perform a desired function. In such instances, the user
can create a file which contains a collection of utility modules. The Loader
may be used to extract only the required modules from this library file. The
use of a library file is shown in Figure 3-6, and a description of the various
steps is explained below:

1. The MDOS MERGE command is used to build a library file PGLIB. This file
contains the modules in files PG1l, PG2, and PG3.

2. The use of the BASE command directs the Loader to assign memory for CSCT,
DSCT, and PSCT above the MDOS system area. As a result, the user program
may be invoked directly as an MDOS command without using the LOAD

command. However, if the program has initialized BSCT, the MDOS LOAD
command must be used to execute the program. The effect of the BASE
command is shown in the program's memory map where CSCT, DSCT, and PSCT
are assigned memory above $2000.

3. All currently undefined symbols are listed via the MAPU command. In this
example, the six undefined symbols correspond to the six external
references in PGl.

4. The LIB command searches the file PGLIB for any modules which satisfy the
current undefined symbols. Since PG2 and PG3 are modules in PGLIB that
satisfy these undefined symbols (i.e., PG2 and PG3 have XDEF's for

ATTEST, EXBENT MSG3, MSG4, PGM2, and STACK), they will be loaded via the
LIB command. PG1, which is also in PGLIB, will not be loaded again.

5. The second MAPU command shows that all external references have now been

satisfied.

6. The second pass of the Loader is initiated with the OBJA command, and
creates an object file with the name MESSAGE. The use of the suffix
'CM', along with the Loader's BASE command, permits the created file to
be treated as an MDOS command (see item 9).

7. Since an intermediate file was.not created during pass 1, all commands
entered in pass 1 must be repeated in. pass 2. The MAP, END, and STR
commands are the only exceptions to this rule.

8. The EXIT command completes pass 2 of the Loader and returns to MDOS.

9. The file created by the Loader is treated as an MDOS command and,
therefore, is loaded and executed automatically.

3-12

(=mMERGE PG1.RO:PG2.RO:P62.PO:PGLIB.RO -------- BUILD LIBRARY FILE
=PLOAD
MNOS LINKTNG LOADER REY 03.00

COPYRIGHT BY MOTOROLA 1977

(2)@BASE oan -nnrnnc naan nnn c nnn encnns recone rior <8 PROGRAM. ABOVE. MDOS

(ay “ome tier ne aes aa SoC” BEHB 7 STATE PRINT UNDEFINED SYMBOLS
*LOAT=Pi51

Wasa n en nnnnnnnn ncn nnc nen nnanenesassss es SEARCH LIBRARY FILE
=a ae a PRINT UNDEFINED SYMBOLS

rete =MESSAIGE. cM ween cece n nnn eee nee e nee START PASS 2 - BUILD COMMAND FILE
ZLORD= PEL:LIBSPELIE oe ee ee eee ee ee eee ee eeresee= REPEAT PASS: 1 COMMANDS

FUNDER INED “SYMBOCS 77cm nono PRINT FULL MEMORY/SYMBOL MAP

MEMORY MAP

SIZE
one
Ooo
OniA
nosd
nd4e
ones

U
D

a
5

V
S
N

M
D
D

a
n
n

i

1

=TR
4510
4406
noed
eood
ensn

3 pare

NAME peu | De
ULE meo eM:

t
n

END
4515
440F
nos
ener
enri
ened

hes 20
nA eo

COMMON SECTIONS

SIZE =T
TcoMM TD anne ens
NAME

ncoMMe

= 31

Tre oo if eon

UEFINED =*MBOL?

MODULE NAME: PG1
i <9
M2el
START

A one
P 20?
P 20

ny
=

7c

MODULE NAME: PGe
EXBENT A F564
STACK

MOO eer NA

BE ans

ei
446

39

PGS

COMN

oood
aos
og2o
oood

CT PEC
20 20?
BE ents
Se eOnr

EXBPRT A FOe4 LF A OO0R

MSGSIZ B ONeO PGINE P 208s

M264 DN 2048 PGMe P 20c3

(8 red 2a ES SR SAS RETURN TO MDOS
wenn nnn anne nanan nnn nnn enn e en ennee-= ee LOAD AND EXECUTE NEW MDOS COMMAND 9) =MES SAGE

MESSAGE
MESSAGE
MESSAGE
MESSAGE
MESSAGE
MESSAGE
MESSAGE B

L
I
N
N

COMMON TEST PROGRAM

EMBL 2.1
oF

FIGURE 3-6. Using a Library File

3-13

3.5 LOADER OPERATIONS USING A CHAIN FILE

For programs requiring more than a few modules, the use of the MDOS CHAIN
command to link them becomes a virtual necessity. It also provides a
self-documenting listing of how to link the program. A sample chain file is
shown in Figure 3-7. The use of this chain file is shown in Figure 3-8, and a
description of the various steps is explained below.

1. The chain file (LINK.CF) is invoked using the MDOS CHAIN command. There
are five option parameters which will be passed on to the chain file.
This is the only line entered by the operator until (7).

2. The chain file pauses here to give the operator a chance to abort, if so
desired, without destroying anything.

3. The previous map and object file are deleted.

4. The Linking Loader is invoked via the RLOAD command. The parameters from
the command line (1) are substituted to define the section values.

5. Map output is directed to an output file called PG321.M0. This provides
a permanent listing of the map output which can be listed at any time.

6. The MDOS LIST command is invoked to produce a hard copy of the map file
on the line printer. Note the header option is used and the DATE command
line parameter is substituted. The line printer listing of the map
output files is shown in Figure 3-9.

7. The chain file processing ends and the input stream returns to the
keyboard for operator input.

3-14

PAGE OO1 LINK eCF30

/%
4% Hee Le ee He Be ae ae He Mic Hee SR ae He eR he he ae ae a he Se ae oe oe ie he ae ae ake he a ae ae hk ae ok a he

1% *x LINK MESSAGE PROGRAMS CHAIN PROCESSOR **%

1% eR 08/10/79 ex
3 BR ME Hs Se oe ae eo ae ee a a ee ee he he ie He ee he He he He hee he He he ae Se ae Hee ee

1%

a*

ax WARNING! GOING TO DELETE THE FOLLOWING FILES:

OF eee eee = PG321-L0:0 (OLD OBJECT)

ax PG321.2M0:0 (OLD RLOAD MAP)
ax ;

ax ABORT WITH °BREAK® KEY OR

de STRIKE "RETURN® TO CONTINUEcece
ax

OSET»M &

DEL PG321-tL09PG321-M0

OSET»M O

RLOAD

IDON

STRD=$202 5 STRP=S2ZPY%S STRB=$ZBF

IFS CP

CURP=\\S2CP2%

SXF

LOAD=PG3ePG2oPG1
MAPU

OBJ A=PG321

STRD=$2%OVSSTRP=$APVSSTRB=SULB
IFS CP

CURP=\\S$2%CPZ

XIF

LOAD=PG35PG2ePG1

MAPU

MO=PG3212M0

MAPF

EXIT
ax

LIST PG321-eM0$5LH

MESSAGE PROGRAM TEST RLOAD MAP — %DATEZ%
ax

JIFC BoDoPe DATE
1% :

7% COCKPIT ERROR DETECTED!
4%

1% MUST SPECIFY THE FOLLOWING OPTIONS:
PR wm mr en we wo

1% B = START BASE SEGMENT ADDRESS (HEXs NO $)
1% 0 = " DATA a " (HEX» NO $)
7% P = " PROGRAM “ " (HEX» NO $)
1% DATE = TODAY'S DATE FOR MAP LISTING
1*

1% OPTIONAL
/* CP = HEX VALUE (NO $) FOR "CURP=\\" COMMAND
4%

(% #e% CHAIN ABORTED ***
7%

ABORT
4XIF

FIGURE 3-7. Listing of Chain File Invoking RLOAD

3-15

(1) <cHAIN LINKS DATEXLO AUG. 1979%s BxO%s Ded 00%» PL O00%s CPR1 00%

POOPOSOHSSOSHH HH HHO SOPHO SHOP OO DDD PHO OOP OOO

oe LINK MFSZSAGE PROGRAMS CHAIN FROCESSOR o
ee ne10-"9 Sd

POOOSOSHH SSO PS SEHP SOPH OHO OS HOOPS OPO POO OOSOD

Ve

s@ WARNING? GOING TO DELETE THE FOLLOWING FILES:

le eee Pote1.Lo:o (OLD OR.AECT?
Ve Pese1.MO:0 ‘OLD FLOAN MAP?
We

qe ABORT WITH “EBREAK’ KEY OR
(2) a, STRIKE “RETURN’ TO CONTINUE...

qlo

VIET FOFF osod
(3) NEL _PGS21.LO»PE321.M0

Pte t .LO:0 DELETED
Phase -MO:0 DELETED
PZET FOFF ono

(4) &.pAn
MTO= LINKTMG LOADER PEY OF.00

COPYRIGHT BY MOTOROLA 1977 aan

FETPD=HF4ANOS STRPHE1L0008 STRB=S0
FUR PS.$81 00
F_LDADHPG3.PRe FI

PES n2-10-79 AECT ILLUSTRATION —- MODULE #3
Pe ne-10-79 MESG PRATR SUBPROGS - MODULE #2
Fst ne-(o-79 MAIN MESG PROGRAM —- MODULE #1

eMAPI
NO UNDEFINED 2YMBOL=

TORIASPGS2 1
FETRTSHKANs “TRPHF1OO0s STRE=HSO

TCURPSs="$100
7_DAD=PG35PG2sPG1 -

Ps ne-ioe79 ASCT ILLUSTRATION - MODULE #3

Pine need0-79 MESG PRNTR =SUEPROG - MOTULE +2

Pint ne-in-79 MAIN MESG PROGRAM —- MOTWILE 1
eMAPI

MNO UNDEFINED =YMBOL=
7MO=FPG3e1.M0
?MAPF
PEXIT
qe

LItT Pesei.MOsLH
ENTER HEATING: MESSA

ye

ENT CHAIN
=LDOAD Poeseis

1
-2SAGE 1

MEZZAGE 2
MESSAGE 2
MESSAGE 3
MESSAGE
MESEAGE 4
COMMON TEST PROGRAM

EXBUG 2.1
o£

FIGURE 3-8.

GE PROGRAM TEST FLOAD MAP - 10 AUG.

3-16

LOAD OBJECT PROGRAM

START PROGRAM EXECUTION

Using a Chain file and RLOAD

i979

PAGE O01 PG321 e400 MESSAGE PROGRAM TEST RLOAD MAP - 10 AUG. 1979

NO UNDEFINED SYMBOLS

MEMORY MAP

SIZE STR END COMN
0006 4510 4515
0006 4406 4408
001A 0000 0019 0000
0030 0020 O04F 0030
0042 0400 0441 0020
0251 1000 1250 0000 V

P
O
o
O
M
O
O
r
P
P
?
r
N
”
A

MODULE NAME BSCT DSCT PSCT
PG3 0000 0400 1000
PG2 0000 0400 1100
PGl 0015 0414 1200

COMMON SECTIONS

NAME S SIZE STR

DCOMM D 0008 0422
OCOMM2 D 0018 042A

DEFINED SYMBOLS

MODULE NAME: PG3
ATEST A 4406 POWERS P 1000

MODULE NAME: PG2
EXBENT A F564 MSG3 D 0400 MSG4 D 040A PGM2 P 1100
STACK B 0014

MODULE NAME: PG1
CR A 0000 EOT A 0004 EXBPRT A F024 LF A OOOA
MSG1 P 1200 MSG2 D 0414 MSGSIZ B 0015 PGINE P 1216
START P 120A

FIGURE 3-9. Map Output File Listing

3-17

COMMAND

CONTROL COMANDS

BASE[=<number>]

on freer
IDOF

IDON

IF=<f-name>

IFOF

IFON

INIT

OBJ fe] =<#-name>

_}<device>
Hom {eerie

LOAD DIRECTIVES

LIB=<f-name> [-tf-nane>3| *

LOAD=<f-name> [t<F-nane>]°9

APPENDIX A

A SUMMARY OF LINKING LOADER COMMANDS

FUNCTION

LOAD CSCT, DSCT, and PSCT above defined address
(default=MDOS compatible)

Give control to the disk operating system

Suppress identification printing

Print module identification information

Specify the intermediate file

Intermediate file mode off

Intermediate file mode on

Initialize the Loader

Initiates Pass 2

MAP output

Enter file mode

Load the indicated file(s)/module(s)

A-1

COMMAND

STATE COMMANDS

B
CUR<D}=[\]<number>

P

ASCT
<number>) | BSCT

DEF: <namel>={¢name2> f »DSCT

PSCT

B
END) C (=<number>

D
P

MAPC

MAPF

MAPS

MAPU

STR/ C\=<number>
D
P.

FUNCTION

Set current location counter

Define a symbol

Set section ending address

List user assigned section sizes and addresses

List full load map

List loader assigned section sizes and
addresses

List undefined symbols

Set section starting address

A-2

C
e

APPENDIX B

LINKING LOADER ERROR MESSAGES

Errors detected by the Linking Loader, while processing a command or loading a
module, will result in an error message being printed at the user terminal.
These errors are divided into two classifications: fatal errors and non-fatal
(warning) errors. When the Loader detects a non-recoverable error, a fatal
error message will be printed. Any commands not processed on the last command
line will be ignored and a new prompt printed. If the Loader can recover from
an error, only a warning message will be printed.

FATAL
ERROR MESSAGES

MESSAGE

BAE BSCT Assignment Error - the combined size of BSCT is greater
than the amount that can be allocated in the defined BSCT area.

COV Common Overflow - the size of a section's common is greater

than 65,535.

GAE General Assignment Error - the Loader cannot assign absolute
memory addresses. This may result from:

. address conflicts associated with ASCT's
- user assignment of section addresses
- the combined length of all sections exceeding 65,535
- the order in which the Loader assigns memory.

ICM Illegal Command

IOR Illegal Object Record - the input module is not a valid
relocatable object module.

ISA Illegal Stream Assignment - this error occurs when an invalid
I/0 device is assigned to a Loader I/0 stream.

ISY Illegal Syntax - error in the option or specification field of
a command. This error may also occur when a command is not

terminated by a semicolon, space, or carriage return.

LOV Local Symbol Table Overflow - not enough memory for all the
local (external) symbols defined by the current object module.
Check for contiguous memory from location 9.

GOV Global Symbol Table Overflow - not enough memory for all the
global (external) symbols defined by the object modules. Check
for contiguous memory from location 9.

PHS Phase Error - the absolute address assigned to a global symbol
at the end of Pass 1 does not agree with the address computed
during Pass 2.

SOV Section Overflow - the size of a section is greater than
65,535.

B-1

FATAL
ERROR MESSAGES

MESSAGE

UAE

UIF

VOI

WARNING MESSAGES

User Assignment Error - the user has incorrectly defined load
addresses. Use the MAPC command to produce a map for
determining the cause of this error. The UAE error occurs
when:

. the user defined end address is less than the user
defined start address

- the space allocated by the user defined start and end
addresses is less than that required for the section.

- the user has defined load section addresses which
overlap

- the user defined execution address is out of range

. the user has defined ASCT below $20

- the user has initialized locations in BSCT which are
assigned below $20

Undefined IF File

Undefined Object Input File

IAM - <address> - I]legal Address Mode - a global symbol is referenced as
a one-byte operand, and the most significant byte of the global
symbol address is non-zero. One byte relocation is performed,
using only the least significant byte of the global symbol
address. The warning message indicates the absolute address of
such a reference.

MDS - <symbol> - Multiply Defined Symbol - the Loader has encountered
another definition for the previously defined global symbol.
Only the first definition will be valid. This can also be
caused by section conflicts for the symbol -- i.e., defined via
an EQU directive (ASCT) and referenced in another module as
BSCT.

UDS - <symbol> - Undefined Symbol - the symbol was not defined during
Pass 1. A load address of zero will be assumed.

B=-2

