M6BMASR(D2)
SEPTEMBER 1979

M6800
M6801
M6805
M6309
MACRO ASSEMBLERS REFERENCE MANUAL

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Furthermore, such information does not
convey to the purchaser of the product described any license under
the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, EXbug, EXORdisk, and MDOS are trademarks of Motorola Inc.

Second Edition
Copyright 1979 by Motorola Inc.
First Edition December 1978

-

CHAPTER

1.

CHAPTER

CHAPTER

CHAPTER

B N S R

1
1.
1

N R RO RO R R R A R R R N R RO R

PAPEPAPPPAPEAEPEPPEPEAPPEAPEPARPPAPEEEDDDED

whNNNDNNPNNPPPARNNDN- N

_ W

COoONOUGTPWNE D

—
N = O

DDA DWN -

NP WN =

TABLE OF CONTENTS

GENERAL INFORMATION

INTRODUCTION

ASSEMBLY LANGUAGE
OPERATING ENVIRONMENT
ASSEMBLER PROCESSING

CODING ASSEMBLY LANGUAGE PROGRAMS

INTRODUCTION
SOURCE STATEMENT FORMAT
Sequence Number
Label Field
Operation Field
Operand Field
M6800/M6801 Addressing Modes
M6805 Addressing Modes
M6809 Addressing Modes
Expressions
Operators
Symbols
Constants
Comment Field
ASSEMBLER OUTPUT

RELOCATION AND LINKING
INTRODUCTION

ASSEMBLER DIRECTIVES

INTRODUCTION

ASCT - ABSOLUTE SECTION

BSCT - BASE SECTION

BSZ - BLOCK STORAGE OF ZEROS

COMM - NAMED COMMON SECTION

CSCT - BLANK COMMON SECTION

DSCT - DATA SECTION

END - END OF SOURCE PROGRAM

ENDC - END OF CONDITIONAL ASSEMBLY
ENDM - END OF MACRO DEFINITION

EQU - EQUATE SYMBOL TO A VALUE

FAIL - PROGRAMMER GENERATED ERROR
FCB - FORM CONSTANT BYTE

FCC - FORM CONSTANT CHARACTER STRING
FDB - FORM DOUBLE BYTE CONSTANT

IDNT - RELOCATABLE IDENTIFICATION RECORD
IFxx - CONDITIONAL ASSEMBLY DIRECTIVES
MACR - MACRO DEFINITION

NAM - ASSIGN PROGRAM NAME

OPT - ASSEMBLER OUTPUT OPTIONS

ORG - SET PROGRAM COUNTER TO ORIGIN

NNNNNNNII\)NI\)I\)I\)NNN
== = = = = OY U1 D W N =
WWMN N O

¥
—

bbhhhbbbhh?hb#hhb#&bb
HENNOOIOOIOERERERPDRDWWWNRNNN

1
o

e R I = I e R N

CHAPTER

oot ot

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

TToOTMMmoOm>>

PAGE - TOP OF PAGE

- PSCT - PROGRAM SECTION

REG - DEFINE REGISTER LIST

RMB - RESERVE MEMORY BYTES

SET - SET SYMBOL TO A VALUE

SETDP - SET DIRECT PAGE PSEUDO REGISTER
SPC - SKIP BLANK LINES

TTL - INITIALIZE PAGE HEADING

XDEF - EXTERNAL SYMBOL DEFINITION

XREF - EXTERNAL SYMBOL REFERENCE

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

INTRODUCTION

MACRO OPERATIONS

CONDITIONAL ASSEMBLY

EXAMPLES OF MACROS/CONDITIONAL ASSEMBLY

CHARACTER SET

SUMMARY OF INSTRUCTIONS

DIRECTIVE SUMMARY

ASSEMBLER MESSAGES

ASSEMBLER OUTPUT FORMAT

M6800 MACRO ASSEMBLER/M6800 ASSEMBLER DIFFERENCES
USING THE MACRO ASSEMBLER

SAMPLE PROGRAMS

ii

e
=%}
42

1
[S S g e
WwwwhhhN—E OO

-h-b-b-h-?-bbb-b-b

TOMMOO ™I

b e b fod fd fed fd foed

1
W

i
IOy LW NN

]
O~

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

The M6800 Macro Assembler is a program that processes source program statements
written in M6800 assembly language. The Assembler translates these source state-
ments into object programs compatible with the M6800 Linking Loader or the EXbug
loader, and produces a listing of the source program. The M6800 Macro Assembler
has been designed to operate on Motorola's 6800 Development System. The MDOS and
tape versions of the M6800 Macro Assembler also support the M6801 instruction set.
In addition, this manual describes the M6805 Macro Assembler and the M6809 Macro
Assembler. Unless explicitly stated otherwise, all information pertaining to

the M6800 Macro Assembler also pertains to the M6805 and M6809 Macro Assemblers.
Although the Linking Loader is referred to as the M6800 Linking Loader, it
supports M6800/6801, M6805, and M6809 programs.

The versions of the Macro Assembler described in this manual are:

RASM 3.00 (M6800/M6801 MDOS version)

RASM 2.2 (M6800 EDOS version)

RASM 2.2 (M6800/M6801 tape version)
RASMO5 2.00 and 3.00 (M6805 MDOS version)
RASM09 3.01 (M6809 MDOS version)

Earlier versions of these products may not support all of the features described
in this manual.

1.2 ASSEMBLY LANGUAGE

The symbolic language used to code source programs to be processed by the
Assembler is called assembly language. The language is a collection of mnemonic
symbols representing: operations (i.e., machine instruction mnemonics, directives
to the assembler, or macro instructions), symbolic names, operators, and special
symbols.

The assembly language provides mnemonic operation codes for all machine instruc-
tions in the M6800 instruction set. The M6800 and M6801 instructions are defined
and explained in the M6800/6801 Programming Reference Manual. The M6805 instruc-
tions are defined and explained in the M6805 Programming Reference Manual. The
M6809 instructions are defined and explained in the M6809 Programming Reference
Manual. The assembly lanauage also contains mnemonic directives which specify
auxiliary actions to be performed by the Assembler. These directives are not
always translated into machine language. The assembly language also enables

the programmer to define and use macro instructions which are used to replace a
single statement with a predefined sequence of statements found in the macro
definition.

1-1

1.3 OPERATING ENVIRONMENT
The minimum hardware requirements for the Macro Assembler include:

Motorola 6800 Development system with EXbug monitor
System console (keyboard and printer/display)

M6800 EDOS version -- EXORdisk I, 16K RAM

M6800/M6801 MDOS version -- EXORdisk II, 24K RAM
M6800/M6801 Tape version -- Console reader/punch, 16K RAM
M6805 MDOS version -- EXORdisk II, 24K RAM

M6809 MDOS version -- EXORdisk II, 32K RAM

1.4 ASSEMBLER PROCESSING

The Macro Assembler is a two-pass assembler. During the first pass, the source
program is read to develop the symbol and macro tables. During the second pass,
the object file is created (assembled) with reference to the tables developed

in pass one. It is during the second pass that the source program listing is
also produced.

Each source statement is processed completely before the next source statement
is read. As each statement is processed, the Assembler examines the label,
operation code, and operand fields. The operation code table is scanned for a
match with a known opcode. If there is no match, the macro definition table
is scanned.

During the processing of a standard operation code mnemonic, the standard
machine code is inserted into the object file. If a macro is being processed,
the definition is expanded one line at a time and processed as a normal assembly
language statement as defined above. If an Assembler directive is being
processed, the proper action is taken.

Any errors that are detected by the Assembler are displayed before the actual
line containing the error is printed. Errors are accumulated, and a total number
of errors is printed at the end of each source listing. If no source listing

is being produced, error messages are still displayed to indicate that the
assembly process did not proceed normally.

1-2

CHAPTER 2

CODING ASSEMBLY LANGUAGE PROGRAMS

2.1 INTRODUCTION

Programs written in assembly language consist of a sequence of source statements.
Each source statement consists of a sequence of ASCII characters ending with a
carriage return. Appendix A contains a list of the supported character set.

2.2 SNURCE STATEMENT FORMAT

Each source statement may include up to 5 fields: a sequence number, a label
(or "*" for a comment line), an operation, an operand, and a comment.

2.2.1 Sequence Number

The sequence number field is an optional field provided as a programming con-
venience. The sequence number field starts at the beginning of the source line,
and consists of up to five decimal digits. The value of the number must be less
than 65536. Sequence numbers must be followed by a space. In MDOS versions of
the Macro Assembler, sequence numbers will be automatically printed on the source
listing. EDOS and tape versions of the Assembler will only print the sequence
numbers under control of the OPT directive.

Although sequence numbers are optional, they must be consistently used or not
used for an entire program. If the first source statement has a sequence number,
then every succeeding source statment must also have a sequence number. If the
first source statement does not have a sequence number, then no other source
statement may be numered.

2.2.2 Label Field

The Tabel field occurs as the first field of a source statement. The label field
can take one of the following forms:

1. An asterisk (*) as the first character in the label field indicates
that the rest of the source statement is a comment. Comments are
ignored by the Assembler, and are printed on the source listing
only for the programmer's information.

2. A space as the first character indicates that the label field is
empty. The 1line has no label and is not a comment.

3. A symbol character as the first character indicates that the Tine
has a label. Symbol characters are the upper case letters A-Z,
digits 0-9, and the special characters, period (.), dollar sign ($),
and underscore (). Symbols consist of one to six characters,
the first of which must be alphabetic or the special character,
period (.). Certain special symbols are reserved by the Assembler,
and will cause an error to be generated if they appear in a label
field. These reserved symbols are: A, B, and X. For the M6809
Macro Assembler, the following are also reserved symbols: CC, D,
DP, PC, PCR, S, U, and Y. For the M6805 Macro Assembler, only A and
X are reserved. '

2-1

A symbol may occur only once in the label field unless it is used with the SET
directive. If a symbol does occur more than once in a label field, then each
reference to that symbol will be flagged with an error.

With the exception of some directives, a label is assigned the value of the
program counter of the first byte of the instruction or data being assembled.

The value assigned to the Tabel may be either relocatable or absolute.

Chapter 3 contains a complete description of relocation in the Macro Assembler.

In case the value is relocatable, the label is assigned the appropriate relocation
attribute as well. Relocatable labels will have absolute values assigned to them
during the 1ink/load process performed with the M6800 Linking Loader.

Each unique label, undefined symbol, and external reference symbol in a program .
js allocated a ten-byte block in the symbol table. In addition, a ten-byte
block is allocated for every four references to a symbol, if the cross reference
option (paragraph 4.20) is in effect.

2.2.3 Operation Field

The operation field occurs after the label field, and must be preceded by at
least one space. The operation field must contain a symbol. Thus, the rules
governing labels apply to the operation field as well. Entries in the operation
field may be one of three types:

Opcode These correspond directly to the machine instructions.
The operation code includes the "A" or "B" character
for the accumulator specification. For compatibility
with other M6800 assemblers, a single space may
separate the operation code from the accumulator
designator. For example, "LDA A" is the same as "LDAA".
Although the M6809 Macro Assembler recognizes the above
instruction forms (Appendix B.6), the proper form for
the M6809 instruction "load accumulator A" is "LDA".
The M6805 Macro Assembler does not recognize the opcode
format that contains a space. In addition, only
accumulator "A" is recognized.

Directive These are special operation codes known to the Assembler
which control the assembly process rather than being
translated into machine instructions.

Macro call These indicate the selection of a previously defined macro
which is to be inserted in place of the macro call.

The Assembler first searches for operation codes in an internal table of machine
operation codes and assembler directives. If no match is found, the macro
definition table is searched. Therefore, macros should not be given the names
of existing instruction mnemonics, root mnemonics (such as ADD, SUB, EOR, etc.),
or directives. If neither of the tables holds the specified operation code, an
error message is printed. If code is being generated, three bytes of zeros are
generated for an invalid operation code.

2-2

2.2.4 Operand Field

The operand field's interpretation is dependent on the contents of the operation
field. The operand field, if required, must follow the operation field, and must
be preceded by at least one space. The operand field may contain a symbol, an
expression, or a combination of symbols and expressions separated by commas.

The operand field of machine instructions is used to specify the addressing mode
of the instruction, as well as the operand of the instruction. The format of
the operand field for M6800 instructions is summarized in the following table:

Operand Format

no operand
<expression>
#<expression>
<expression>,X

Operand Format

<expression>,<expression>
<expression>,<expression>,<expression>

Operand Format

<<expression>
><expression>
[<expression>]
<expression>,R
<<expression>,R
><expression>,R
[<expression>,R]
<[<expression>,R]
>[<expression>,R]
Q+

Q++

[Q++]

-Q

==(]

[==Q]
W1,[W2,...,Hn]

M6800 Addressing Mode

accumulator and inherent
direct, extended, or relative
immediate

indexed

For the M6805, the following additional operand formats exist: .

M6805 Addressing Mode

bit set or clear
bit test and branch

For the M6809, the following additional operand formats exist:

M6809 Addressing Mode

direct

extended

extended indirect

indexed

8-bit offset indexed

16-bit offset indexed

indexed indirect

8-bit offset indexed indirect
16-bit offset indexed indirect
auto increment by 1

auto increment by 2

auto increment indirect

auto decrement by 1

auto decrement by 2

auto decrement indirect
immediate

where R is one of the registers PCR, S, U, X, or Y, and Q is one of the registers
S, U, X, or Y. Wi (i=1 to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X,
or Y. ‘

The operand fields of assembler directives are described in Chapter 4. The
operand fields of macros (Chapter 5) depend on the definition of the macro.

2-3

2,2.4,1

M6800/M6801 Addressing Modes. The M6800 includes some instructions

which require no operands. These instructions are self-contained and employ
the inherent addressing or the accumulator addressing mode.

IMMEDIATE ADDRESSING

RELATIVE

Immediate addressing refers to the use of one or two bytes of informa-
tion that immediately follow the operation code in memory. Immediate
addressing is indicated by preceding the operand field with the pound
sign or number sign character (#). The expression following the #

will be assigned one or two bytes of storage, depending on the
instruction.

ADDRESSING

Relative addressing is used by branch instructions. Branches can only

be executed within the range -126 to +129 bytes relative to the first
byte of the branch instruction. The actual branch offset is put into

the second byte of the branch instruction. The offset is the two's
complement of the difference between the location of the byte immediately
following the branch instruction and the location of the destination of
the branch. Branches to externally referenced symbols or to symbols
residing outside of the current program section are invalid.

INDEXED ADDRESSING

Indexed addressing is relative to the index register. The address is
calculated at the time of instruction execution by adding a one-byte
displacement (in the second byte of the instruction) to the current
contents of the X register. Since no sign extension is performed on
this one-byte displacement, the offset cannot be negative. Indexed
addressing is indicated by the characters ",X" following the expression
in the operand field. Special cases of ",X" or "X" alone, without a
preceding expression, are treated as "(#,X". Since the displacement

is a one-byte quantity, external references and addresses in sections
other than BSCT and possibly ASCT are not valid.

DIRECT AND EXTENDED ADDRESSING

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct addressing is
Timited to the first 256 bytes of memory. Direct and extended address-
ing are indicated by only having an expression in the operand field.
Direct addressing will be used by the Macro Assembler whenever possible.
References to BSCT symbols (including external references to BSCT
symbols) or to ASCT symbols with a value less than 256 will automatically
be assembled with the direct addressing mode. If a directly-addressable
symbol is referenced before it has been defined as being in BSCT (or ASCT
less than 256), the instruction will be assembled with the extended
addressing mode in order to avoid phasing errors. A1l other cases will
result in extended addressing mode being used.

2.2.4.2 M6805 Addressing Modes. The M6805 includes some instructions which
require no operands. These instructions are self-contained, and employ the

inherent

addressing or the accumulator addressing mode.

IMMEDIATE ADDRESSING

RELATIVE

Immediate addressing refers to the use of one byte of information that
immediately follows the operation code in memory. Immediate addressing
is indicated by preceding the operand field with the pound sign or
number sign character (#). The expression following the # will be.
assigned one byte of storage. Since the expression is one byte,
external references and addresses in sections other than BSCT and
possibly ASCT are not valid.

ADDRESSING

This addressing mode is the same as described for the M6800.

INDEXED ADDRESSING

Indexed addressing is relative to the index register. " The address is
calculated at the time of instruction execution by adding a one- or
two-byte displacement to the current contents of the X register. The
displacement immediately follows the operation code in memory. If

the displacement is zero, no offset is added to the index register.

In this case, only the operation code resides in memory. Since no sign
extension is performed on a one-byte displacement, the offset cannot

be negative. Indexed addressing is indicated by the characters ",X"
following the expression in the operand field. Special cases of ", X"
or "X" alone, without a preceding expression, are treated as "p,X".
Some instructions do not allow a two-byte displacement. When this is
the case, external references and addresses in sections other than BSCT
and possibly ASCT are not valid.

DIRECT AND EXTENDED ADDRESSING

The addressing mode is the same as described for the M6800 with one
addition. Some instructions do not allow extended addressing. When
this is the case, external references and addresses in sections other
than BSCT and possibly ASCT are not valid.

BIT SET OR CLEAR

BIT TEST

The addressing mode used for this type of instruction is direct,
although the format of the operand field is different from the direct
addressing mode described above. The operand takes the form

<expression 1>, <expression 2>. <expression 1> indicates which bit

is to be set or cleared. It must be an absolute expression in the

range 0-7. It is used in generating the operation code, <expression 2>
is handled as a direct address, as described above.

AND BRANCH

This combines two addressing modes: direct and relative. The format
of the operand is: <expression 1>, <expression 2>, <expression 3>.
<expression 1> and <expression 2> are handled in the same manner as
described above in "bit set or clear". <expression 3> is used to
generate a relative address, as described above in "relative addressing".

2-5

2.2.4.3 M6809 Addressing Modes. The M6809 includes some instructions which
require no operands. These instructions are self-contained, and employ the
inherent addressing or the accumulator addressing mode.

IMMEDIATE ADDRESSING

Immediate addressing refers to the use of one or two bytes of informa-
tion that immediately follow the operation code in memory. Immediate
addressing is indicated by preceding the operand field with the pound
sign or number sign (#) -- i.e., #<expression>. The expression
following the # will be assigned one or two bytes of storage, depending
on the instruction. A1l instructions referencing the accumulator "A"
or "B", or the condition code register "CC", will generate a one-byte
immediate value. Also, immediate addressing used with the PSHS, PULS,
PSHU, and PULU instructions generates a one-byte immediate value.
Immediate operands used in all other instructions generate a two-byte
value.

The register list operand does not take the form #<expression> but
still generates one byte of immediate data. The form of the operand is:

R1 [5R2;,4:«5RN]

where Ri (i=1 to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X
or Y. The number and type of symbols vary, depending on the specific
instruction.

For the instructions PSHS, PULS, PSHU, and PULU, any of the above

register names may be included in the register list. The only restriction
js that "U" cannot be specified with PSHU or PULU, and "S" cannot be
specified with PSHS or PULS. The one-byte immediate value assigned to

the operand is determined by the registers specified. Each register namc
sets a bit in the immediate byte as follows:

Register Bit

« O
w

oo
O~RMNWPRLOITO

O>XrWoOXxX<CTY
)

Oe v

(Paragraph 4.24 contains a detailed explanation of immediate expressions
with the PSH/PUL instructions.)

For the instructions EXG and TFR, exactly two of the above register
names must be included in the register list. The other restriction is
the size of the registers specified. For the EXG instruction, the two
registers must be the same size. For the TFR instruction, the two
registers must be the same size, or the first can be a 16-bit register
and the second an 8-bit register. In the case where the transfer is
from a 16-bit register to an 8-bit register, the least significant 8
bits are transferred. The 8-bit registers are A, B, CC, and DP. The
16-bit registers are D, PC, S, U, X, and Y. The one-byte immediate
value assigned to the operand is determined by the register names. The
most significant four bits of the immediate byte contain the value of

the first register name; the least significant four bits contain the
value of the second register, as shown by the following table:

2-6

Register Value (hex)

D 0
X 1
Y 2
U 3
S 4
PC 5
A 8
B 9
cC A
DP B

RELATIVE ADDRESSING

Relative addressing is used by branch instructions. There are two

forms of the branch instruction. The short branch can only be executed
within the range -126 to +129 bytes relative to the first byte of the
branch instruction. The actual branch offset is put into the second
byte of the branch instruction. The long branch can execute in the

full range of addressing from 0000-FFFF (hexadecimal) because a two-byte
offset is calculated and put into the operand field of the branch
instruction. The offset is the two's complement of the difference
between the location of the byte immediately following the branch instruc-
tion and the location of the destination of the branch. Branches to
externally referenced symbols or to symbols residing outside of the
current program section are only valid for long branches.

DIRECT AND EXTENDED ADDRESSING

Direct and extended addressing utilize one (direct) or two (extended)
bytes to contain the address of the operand. Direct and extended
addressing are indicated by having only an expression in the operand
field (i.e., <expression>). Direct addressing will be used by the
M6809 Macro Assembler whenever possible. References to ASCT expressions
with values having the most significant byte of the expression the same
as the current value of the direct page pseudo register (Paragraph 4.27)
will automatically be assembled with the direct addressing mode.
References to BSCT symbols (including external references to BSCT symbols)
will use the direct addressing mode only if the value of the direct page
pseudo register is zero. If a symbol that follows the above rules is
referenced before it has been defined, the instruction will be assembled
with the extended addressing mode in order to avoid phasing errors. All
other cases will result in extended addressing mode being used.

Regardless of the criteria described above, it is possible to force the
Assembler to use the direct addressing mode by preceding the operand
with the "<" character. Similarly, extended addressing can be forced

by preceding the operand with the ">" character. These two operand
forms are: <<expression> and ><expression>. There is no restriction on
the latter form. It will always generate extended addressing. If
direct addressing is forced, the following checks are made:

1. If the expression contains an external reference to a section
other than BSCT, a relocation error will be generated.

2-7

2. If the expression contains symbols in sections other than
BSCT, the expression will not be relocated by the M6800
Linking Loader. A warning message is generated to indicate
this condition. Thus, the user must ensure that the direct
page register at execution time is set up properly to
accommodate direct addressing for such expressions.

3. If no error or warning message is generated as a result of
checks 1 and 2, the most significant byte of the expression
is compared with the direct page pseudo register. If they
are not the same, a warning message is generated. Again, the
user must ensure that the direct page register is set up at
execution time.

INDEXED ADDRESSING

Indexed addressing is relative to one of the index registers. The
general form is <expression>,R. The address is calculated at the time
of instruction execution by adding the value of <expression> to the
current contents of the index register. The other general form is
[<expression>,R]. In this indirect form, the address is calculated at
the time of instruction execution by first adding the value of
<expression> to the current contents of the index register, and then
retrieving the two bytes from the calculated address and address+l.
This two-byte value is used as the effective address of the operand.
The allowable forms of indexed addressing are described below.
Appendix B.5 describes the format of the post-byte (i.e., the byte
immediately following the opcode) for each of the indexed addressing
modes. In the description below, R refers to one of the index
registers S, U, X, or Y.

The accumulator offset mode allows one of the accumulators to be
specified instead of an <expression>. Valid forms are:

<acc>,R and [<acc>,R]

where <acc> 1is one of the accumulators A, B, or D. This form generates
a one-byte operand (post-byte only). When accumulator A or B is specified,
sign extension occurs prior to adding the value in the accumulator to

the index register.

The valid forms for the automatic increment/decrement mode are shown
below. For each row, the three entries shown are equivalent.

R+ s R+ 0,R+
-R »=R 0,-R
R++ JR++ 0,R++
e ==k 0 <R
[R++] [,R++] [0,R++]

[""R] [9"'R] [Os"R]

In this form, the only valid expression is 0. Like the accumulator
offset mode, this form generates a one-byte operand (post-byte only).

2-8

The valid forms for the expression offset mode are:

R wR <expression>,R
[R] [,R] [<expression>,R]
<R <,R <<expression>,R
<[R] <[,R] <[<expression>,R]
>R >,R ><expression>,R
>[R] >[,R] >[<expression>,R]

The "<" and ">" characters force an 8- or 16-bit offset, respectively,

and are described below. If no expression is specified, or if a non-
relocatable expression with a value of zero is specified, only the post-
byte of the operand is generated. If a non-relocatable expression with

a value in the range -16 to +15 is specified without indirection, a one-
byte operand is generated which contains the expression's value, as

well as the index register indicator. At execution time, the expression's
value is expanded to 16 bits with sign extension before being added to

the index register.

A11 other forms will generate a post-byte, as well as either a one- or
two-byte offset which contains the value of the expression. The size
of the offset is determined by the type and size of the expression.
ASCT expressions with values in the range -128 to +127 generate an
8-bit offset. If an ASCT expression contains a symbol that is refer-
enced before it has been defined, the instruction will be assembled
using a 16-bit offset in order to avoid phasing errors. A1l other
cases will result in a 16-bit offset being generated. In the case
where an 8-bit offset is generated, the value is expanded to 16 bits
with sign extension at execution time. Because of sign extention,
even BSCT expressions generate 16-bit offsets. This eliminates the
possibility of generating incorrect code in the case where a BSCT
expression has a value of $80 or greater after relocation by the
Linking Loader.

Regardless of the criteria described above, it is possible to force

the Assembler to generate an 8-bit offset by preceding the operand with
the "<" character. Similarly, a 16-bit offset can be forced by preceding
the operand with the ">" character. There is no restriction on the ">"
form. It always generates a post-byte followed by a 16-bit offset.

If an 8-bit offset is forced, the following checks are made:

1. If a relocatable expression contains symbols in section
other than BSCT, a relocation error is generated. The user
must beware that because of sign extension on eight bit off-
sets, a BSCT expression with a value of $89 or greater after
relocation will give incorrect results.

2. If the expression is absolute but has a value outside of the
range -128 to +127, a byte overflow error is generated.

The valid forms for the program counter relative mode are exactly the

same as the expression offset mode, with the exception that the index
register specification must be "PCR". However, the manner in which

the offset is generated by the Assembler differs. The Assembler generates
a relative address which is then used as the 8- or 16-bit offset follow-
ing the post-byte. The relative address is the two's complement of the
difference between the location of the byte immediately following the
indexed instruction and the value of the expression. If the expression
contains any external references or symbols residing outside of the

current program section, a 16-bit offset is generated.

2-9

If the relative address calculated is not in the range -128 to +127, or
if the expression references a symbol that has not yet been defined,

a two-byte offset is generated after the post-byte. A one-byte offset
is generated if the relative address is in the range -128 to +127.

Like the expression offset mode, a one-byte offset can be forced by
preceding the operand with a "<". A ">" forces a two-byte offset. A
byte overflow error is generated if a one-byte offset is forced when
the relative address is not in the range -128 to +127. A relocation
error is generated if a one-byte offset is forced with an external
symbol or one that contains another section reference.

The extended indirect mode has the form:
[<expression>]

Although extended indirect is a logical extension of the extended
addressing mode, this mode is implemented using an encoding of the post-
byte under the indexed addressing mode. A post-byte is generated, as
well as a two-byte offset which contains the value of the expression.

2.2.4.4 Expressions. An expression is a combination of symbols, constants,
algebraic operators, and parentheses. The expression is used to specify a value
which is to be used as an operand. Expressions follow the conventional rules

of algebra.

Expressions may contain relocatable or externally defined symbols. However, the
following rules must be followed in order for the expression to be valid.

1. Relocatable symbols or expressions cannot be multiplied, divided, or
operated on with the special two-character operators.

2. A relocation count is maintained for each program section represented
within an expression. Adding a relocatable symbol causes the relocation
count to be incremented; subtracting a relocatable symbol decrements the
relocation count. After an expression has been evaluated, the following
criteria must be met:

a. A1l section counts except for one must be zero.

b. The exception section must have a count of either zero or one
or minus one.

c. When an expression is used in conjunction with the one-byte
immediate addressing mode, the indexed addressing mode, or with
the FCB directive, all section counts except the BSCT count must
be zero.

3. One or more external reference symbols may be added or subtracted without
regard to section.

Only the least significant byte of an externally referenced symbol will be
operated on by the M6800 Linking Loader when such symbols are used in conjunctior
with the immediate addressing mode (one byte immediate operand) or the indexed
addressing mode. In the immediate addressing mode, only one externally referenced
symbol is allowed.

2-10

2.2.4.5 Operators. The precedence of the various operators is as follows.
Parenthetical expressions are evaluated first, with the innermost parentheses

being processed before the outer ones. Mext, the multiplication (*), division (/),
and all two-character operators have precedence. O0f lowest precedence are the
addition (+) and subtraction (-) operators. Unary minus can only occur at the
beginning of an expression or immediately before a left parenthesis. Unary minus
is equivalent in evaluation to putting a zero directly before the minus sign.

For example, the following expressions are all equivalent:

-TAG1*INDEX+3
0-TAG1*INDEX+3
-(TAG1*INDEX)+3

Operators of the same precedence are evaluated from left to right. A1l inter-
mediate results in the computation of an expression are truncated to a 16-bit
integer value. The result of an expression is also a 16-bit integer. Operators
can operate on numeric constants, single character ASCII Titerals, and symbols.

In addition to the normal operators for multiplication, division, addition,
and subtraction, the Assembler recognizes certain two-character operators.
These operators are infix operators and have the same precedence as multi-
plication or division. Each two-character operator begins with an exclamation

go;qt g!) and takes two operands. The following two-character operators are
efined:

1= exponentiation The left operand is raised to the power specified by the
right operand. If the right operand is zero, the resulting
value will be "1", regardless of the value of the left
operand.

'. - logical AND Each bit in the left operand is logically "ANDed" with the
corresponding bit in the right operand.

'+ - inclusive OR Each bit in the left operand is inclusively "ORed" with
the corresponding bit in the right operand.

'X - exclusive OR Each bit in the left operand is exclusively "ORed" with
the corresponding bit in the right operand.

‘< - shift left The Teft operand is shifted to the left by the number of
bits specified by the right operand. The left operand is
zero-filled from the right.

!> - shift right The left operand is shifted to the right by the number of
bits specified by the right operand. The left operand is
zero-filled from the left.

'L - rotate left The Teft operand is rotated left by the number of bits
specified by the right operand. The most significant bit
is rotated into the least significant bit position of the
left operand.

'R - rotate right The left operand is rotated right by the number of bits
specified by the right operand. The least significant
bit is rotated into the most significant bit position of
the left operand.

2-11

2.2.4.6 Symbols. Each symbol is associated with a 16-bit integer value which
is used in place of the symbol during the expression evaluation. Each symbol
also has associated with it one of the following attributes:

. Absolute attribute

Relocatable attribute

External reference (defined in another program)
Named Common name (cannot be used in expressions)
Undefined

SET symbol

DO B WN

An absolute, relocatable, or undefined symbol may also be used as an external
definition (to be referenced by another program).

Certain symbols are special to the Assembler. These special symbols can only be
used in expressions, and include the following:

* The asterisk used in an expression as a symbol represents the
current value of the Tocation counter (the first byte of a multi-
byte instruction).

NARG This symbol is only valid within a macro expansion. It takes on
the value of the number of arguments that has been passed to the
current level of expansion.

2.2.4.7 Constants. Constants represent quantities of data that do not vary in
value during the execution of a program. The numeric constants can be in one
of four bases: decimal, hexadecimal, binary, or octal.

A decimal constant consists of a string of numeric digits. The value of a decimal
constant must fall in the range 0-65535, inclusive. Optionally, decimal constants
may be preceded by the ampersand character (&). The following example shows both
valid and invalid decimal constants:

VALID INVALID REASON INVALID

12 123456 more than 5 digits
12345 12.3 invalid character
865201 67800 out of range (> 65535)

A hexadecimal constant consists of a maximum of four characters from the set of
digits (0-9) and the upper case alphabetic letters (A-F), and is preceded by a
dollar sign ($). Hexadecimal constants can also be designated by being succeeded
by the Tetter "H". In this case, the first digit of the hexadecimal constant
must be a numeric so that the constant can be distinguished from a symbol name.
Hexadecimal constants must be in the range $0000 to $FFFF. The following example
shows both valid and invalid hexadecimal constants:

VALID INVALID REASON INVALID
$12 ABCD no preceding "$"
OABCDH $G2A invalid character
$001F $2F018 too many digits

2-12

A binary constant consists of a maximum of 16 ones or zeros preceded by a percent
sign (%). Binary constants can also be represented by a series of ones and

zeros succeeded by the letter "B". The following example shows both valid and
invalid binary constants:

VALID INVALID REASON INVALID
%00101 1010101 missing percent
%1 %10011000101010111 too many digits
101008 %210101 invalid digit

An octal constant consists of a maximum of six numeric digits, excluding the
digits 8 and 9, preceded by a commercial at-sign (@). Octal constants can
also be designated by ending in the letter "0" or "Q". Octal constants must
be in the ranges @p to @177777. The following example shows both valid and
invalid octal constants:

VALID INVALID REASON INVALID
017634 02317234 too many digits
377Q ©277272 out of range
1776000 239140 invalid character

Character constants can be used in expressions if they are .single characters.
Character constants are preceded by a single quote. Any character, including
the single quote, can be used as a character constant. The following example
shows both valid and invalid character constants:

VALID INVALID REASOM INVALID

ok “VALID too long
2.2.5 Comment Field

The Tast field of an Assembler source statement is the comment field. This
field is optional and is only printed on the source listing for documentation
purposes. The comment field is separated from the operand field (or from the
operation field if no operand is required) by at least one space. The comment
field can contain any printable ASCII characters.

2.3 ASSEMBLER OUTPUT

The Assembler output includes an optional listing of the source program and an
optional object file which is in one of the following two formats: EXORciser-
loadable format or relocatable format. For the MDOS versions of the Macro
Assemblers, a third object file format exists -- MDOS loadable memory image.
Appendix E contains the description of the source 1listing formats.

The Assembler will normally suppress the printing of the source listing, and
select the generation of an object output file. These conditions, as well as
others, can be overridden via options supplied on the command line that invoked
the Assembler.

2-13

The assembly source program listing contains the original source statements,
formatted for easier reading, as well as additional information which is
generated by the Assembler. Most lines in the listing correspond directly to

a source statement. Lines which do not correspond directly to source statements

include: page headings, error messages, expansions of macro calls, or such
directives as FCB, FCC, and FDB.

The assembly listing may optionally contain a symbol table or a cross reference
table of all symbols appearing in the program. These are always printed after
the END directive if either the symbol table or cross reference table options
(Paragraph 4.20) are in effect. The symbol table contains the name of each
symbol, along with its defined value. The cross reference table additionally
contains the assembler-maintained source line number of every reference to :
every symbol. The format of the cross reference table is shown in Appendix E.3.

2-14

CHAPTER 3

RELOCATION AND LINKING

3.1 INTRODUCTION

"Relocation" refers to the process of binding a program to a set of memory
locations at a time other than during the assembly process. For example, if
subroutine "ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the "ORG" directive's operand field at

the beginning of the subroutine, and then to re-assemble the routine. A
disadvantage of this method is the expense of re-assembling ABC. An alternative
to multiple assemblies is to assemble ABC once, producing an object module which
contains enough information so that another program (the M6800 Linking Loader)

can easily assign a new set of memory locations to the module. This scheme offers
the advantages that re-assembly is not required, the object module is substantially
smaller than the source program, relocation is faster than re-assembly, and
relocation can be handled by the Linking Loader (rather than editing the source
program and changing the ORG directive).

In addition to program relocation, the Linking Loader must also resolve inter-
program references. For example, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC

is not assembled at the same time as the calling program, the Assembler cannot
put the address of the subroutine into the operand field of the subroutine call.
The Linking Loader, however, will know where the calling program resides and,
hence, can resolve the reference to the call to ABC. This process of resolving
inter-program references is calling "linking".

The relocation and Tinking scheme was developed to provide the following
capabilities:

Program relocation

. Multiple program Tlinking

Easy development of programs for RAM/ROM environment
Easy specification of any addressing mode
Specification of uninitialized, blank common
Specification of initialized, named common

DT WN =

Program sections provide the basis of the relocation and linking scheme. There
are five different sections. They are described below.

ASCT, or absolute section, is a non-relocatable section. There may be a Timited
number of absolute sections in a user's program. These sections are used to
allocate or initialize memory locations that are assigned by the programmer
rather than by the M6800 Linking Loader. ASCT can be used to define the locations
of PIA's or ACIA's, for example.

BSCT, or base section, is a relocatable section. There is only one base section.
The M6800 Linking Loader assigns portions of the base section to each module that
requires space in BSCT. The base section is generally used for variables that
are to be accessed using the direct addressing mode. BSCT is restricted to
memory locations 0-255, inclusive (decimal).

3-1

CSCT, or blank common, is a relocatable section. There is only one blank common
section. CSCT is similar to blank common used in FORTRAN. The blank common
section cannot be initialized.

DSCT, or data section, is a relocatable section. There is only one data section.
The M6800 Linking Loader assigns portions of this section to each program that
requires space in DSCT. DSCT is generally used to contain variables which are
in RAM and are to be accessed using the extended addressing mode.

PSCT, or program section, is a relocatable section. There is only one program
section. PSCT is similar to DSCT. However, it is generally used to contain
program instructions. The use of DSCT and PSCT facilitates creation of programs
that reside in ROM but access variables in RAM.

Uninitialized, blank common is placed into CSCT as described above. At times,
however, it is convenient to have several common areas, each of which may be
initialized. Therefore, the concept of named common was included in the M6800
relocation and Tinking scheme. MNamed common can be specified in either BSCT,
DSCT, or PSCT. The size of the named common area that is allocated will be

the largest of the named common sizes from the program modules that reference it.
A named common block must reside wholly within a single section.

For a complete description of the M6800 Linking Loader, the M6800 Linking Loader
Reference Manual should be consulted.

3-2

CHAPTER 4

ASSEMBLER DIRECTIVES

4.1 [INTRODUCTION

The Assembler directives are instructions to the Assembler, rather than
instructions to be directly translated into object code. This chapter describes
the directives that are recognized by the Macro Assembler. Detailed descrip-
tions of each directive are arranged alphabetically. The notations used in

this chapter are:

{1} Contains a list of elements, one of which must be selected.
Each choice will be separated by a vertical bar. For example,
{IFCI/IFNC} indicates that either IFC or IFNC must be selected.

[] Contains an optional element. If one of a series of elements
may be selected, the available list of choices will be contained
within the brackets. Each choice will be separated by a vertical
bar. For example, [BSCTiDSCTiPSCT] 1indicates that either BSCT,
DSCT, or PSCT may be selected.

XYZ The names of the directives are printed in capital letters. The
required parts of directive operands will also be printed in
capital letters. A1l elements outside of the angle brackets (<>)
must be specified as-is. For example, the syntactical element
[<number>,] requires the comma to be specified if the optional
element <number> is selected.

< > The element names are printed in lower case and contained in angle

brackets. The following elements are used in the subsequent
descriptions:

<comment> A statement's comment field

<label> A statement label

<expression> An Assembler expression

<expr> An Assembler expression

<number> A numeric constant

<string> A string of ASCII characters

<delimiter> A string delimiter

<option> An Assembler option

<symbol> An Assembler symbol

<sym> An Assembler symbol

<sect> A relocatable program section

<reg list> M6809 register list

<reg exp> M6809 register expression

In the following descriptions of the various directives, the syntax, or format,
of the directive is given first. This will be followed with the directive's
description.

4-1

4.2 ASCT - ABSOLUTE SECTION
ASCT [<comment>]

The ASCT directive causes the program counter to te restored to the address
following the address of the last byte previously allocated to an absolute
section (or to zero if ASCT is used for the first time). The program counter
becomes absolute, and subsequent object code will not be relocated. The ASCT
directive may only be used if a program is being assembled with the relocatable
option (OPT REL).

4,3 BSCT - BASE SECTION
BSCT [<comment>]

The BSCT directive causes the program counter to be restored to the address
following the address of the Tast byte previously allocated to the base section
(or to zero if BSCT is used for the first time). The program counter becomes
relocatable within the base section. A1l symbols that are defined in BSCT will
be accessed using the direct addressing mode if the symbols are defined prior
to being referenced. With the M6809 Macro Assembler, direct addressing in BSCT
is only used if the direct page pseudo register is set to zero (Paragraph 4.27).
BSCT cannot be larger than 256 (decimal) bytes. The BSCT directive may only be
used if the program is being assembled with the relocatable option (OPT REL).

4.4 BSZ - BLOCK STORAGE OF ZEROS
[<Tabel>] BSZ <expression> [<comment>]

The BSZ directive causes the Assembler to allocate a block of bytes. Each byte
js assigned the initial value of zero. The number of bytes allocated is given
by the expression in the operand field. If the expression contains symbols that
are either undefined or external references or forward references, or if the
expression has a value of zero, an error will be generated.

4.5 COMM - NAMED COMMON SECTION
<label> COMM {BSCT : DSCT i PSCT} [<comment>]

The COMM directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the named common
section specified by the <label> field (or to zero if <label> is used for the
first time). The program counter becomes relocatable, and subsequent object
code will be relocated within the named common section. The COMM directive is
one of the directives that assigns a value other than the program counter to
the label.

Named common allows the definition of a group of symbols that are to occupy the
same area of memory in each of several programs that are to reside in different
areas’ of memory. Each symbol is defined as a relative offset from the beginning
of the named common section. When the relocatable programs are link/loaded via
the M6800 Linking Loader, each reference to a named common section is relocated
by the starting address assigned to the section by the Linking Loader. The
Linking Loader allocates enough memory to accommodate the largest named common
section defined by any of the linked programs.

4-2

The COMM directive's <label> field becomes the name of the named common section.
This symbol cannot be used in any subsequent Assembler expressions. The <label>
can only appear with other COMM directives within the proaram. The operand of
the-COMM directive defines what addressing mode will be used to reference
symbols that are defined in the named common section. Subsequent references to
the named common section identified by <label> must have the same operand field.

The COMM directive may only be used if the program is being assembled with the
relocatable option (OPT REL).

4.6 CSCT - BLANK COMMON SECTION
CSCT [<comment>]

The CSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the blank common
section (or to zero if CSCT is being used for the first time). The program
counter becomes relocatable, and subsequent memory bytes reserved will be re-
located within the blank common section. No initialization (object code) of
CSCT is allowed. Only the RMB directive can be used to allocate storage. All
symbols defined with CSCT will be accessed with the extended addressing mode.
With the M6809 Macro Assembler, direct addressing can be used to access symbols
in CSCT if the operand field in which they are referenced is preceded with a "<"
(Paragraph 2.2.4.3). The CSCT directive may only be used if the program is
being assembled with the relocatable option (OPT REL).

4.7 DSCT - DATA SECTION
DSCT [<comment>]

The DSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the data section
(or to zero if DSCT is being used for the first time). The program counter
becomes relocatable, and subsequent object code will be relocated within the
data section. A1l symbols defined within DSCT will be accessed with the
extended addressing mode. With the M6809 Macro Assembler, direct addressing
can be used to access symbols in DSCT if the operand field in which they are
referenced is preceded with a "<" (Paragraph 2.2.4.3). The DSCT directive may
?n]y be gsed if the program is being assembled with the relocatable option

OPT REL).

4.8 END - END OF SOURCE PROGRAM
END [<expression> [<comment>]]

The END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. If the
END directive is not encountered before the physical end of the source file is
found, an error will be generated. However, this error is only a warning. The
optional expression in the operand field can be used to specify the starting
execution address of the program.

4.9 ENDC - END OF CONDITIOMAL ASSEMBLY
ENDC [<comment>]

The ENDC directive is used to signify the end of the current level of conditional

assembly (Paragraph 4.17). Conditional assembly directives can be nested to a
depth of eight.

4,10 ENDM - END OF MACRO DEFINITION
ENDM [<comment>]

The ENDM directive is used in a macro definition (Paragraph 4.18). Its presence
indicates the end of the macro definition.

4.11 EQU - EQUATE SYMBOL TO A VALUE
<label> EQU <expression> [<comment>]

The EQU directive assigns the value of the expression in the operand field to
the label. The EQU directive is one of the directives that assigns a value
other than the program counter to the label. The label cannot be redefined
anywhere else in the program. The expression cannot contain any external
references, forward references, or undefined symbols. The expression may,
however, be relocatable.

4.12 FAIL - PROGRAMMER GENERATED ERROR
FAIL [<string>]

The FAIL directive will cause an error message to be printed by the Assembler.
The total error count will be incremented as with any other error. The FAIL
directive is normally used in conjunction with conditional assembly directives
for exceptional condition checking. The assembly proceeds normally after the
error has been printed. The <string> can be optionally specified to describe
the nature of the generated error.

4.13 FCB - FORM CONSTANT BYTE
[<label>] FCB {<expr>[,<expr>,...,<expr>]}[<comment>]

The FCB directive may have one or more operands separated by commas. The value
of each operand is truncated to eight bits, and is stored in a single byte of
the object program. Multiple operands are stored in successive bytes. The
operand may be a numeric constant, a character constant, a symbol, or an
expression. If multiple operands are present, one or more of them can be null
(two adjacent commas), in which case a single byte of zero will be assigned for
that operand. An error will occur if the upper eight bits of the evaluated
operands' values are not all ones or all zeros. The expressions may be relo-
catable with respect to BSCT, or may contain BSCT external references. However,
all other external references or relocatable symbol types are invalid.

4-4

4.14 FCC - FORM CONSTANT CHARACTER STRING

[<label>] FCC <number>,<string> [<comment>]
or
[<label>] FCC <delimiter><string><delimiter> [<comment>]

The FCC directive is used to store ASCII strings into consecutive bytes of
memory. Any of the printable ASCII characters can be contained in the string.
The FCC directive has two formats. The first format requires that <number> be

a decimal constant in the range 1-255. The comma is required after the decimal
constant. The <number> specifies the number of characters contained in <string>,
which begins immediately after the comma. Should <number> be greater than the
number of characters in the string (e.g., carriage return encountered in line
before specified number of characters are found), then spaces will be inserted

to fill the remainder of the string.

The second format of the FCC directive specifies the string between two identical
delimiters. The delimiters can be any printable ASCII character. The first non-
blank character after the FCC directive will be used as the delimiter. Thus, if
the delimiter happens to be a decimal digit, the first character of the string
cannot be a comma.

4.15 FDB - FORM DOUBLE BYTE CONSTANT
[<1abel>] FDB {<expr>[,<expr>,...,<expr>]}[<comment>]

The FDB directive may have one or more operands separated by commas. The 16-bit
value corresponding to each operand is stored into two consecutive bytes of the
object program. Multiple operands are stored in successive bytes. The operand
may be a numeric constant, a character constant, a symbol, or an expression. If
multiple operands are present, one or more of them can be null (two adjacent
commas), in which case two bytes of zeros will be assigned for that operand.

4.16 IDNT - RELOCATABLE IDENTIFICATION RECORD
IDNT <string>

The IDNT directive is used to create an identification record for the relocatable
object module. The <string> can be any printable ASCII characters. The end of
<string> is the terminating carriage return. This identification record can
subsequently be displayed by the M6800 Linking Loader during the 1link/load
process. The IDNT directive only has meaning when the program is being assembled
with the relocatable option (OPT REL).

4.17 TIFxx - CONDITIONAL ASSEMBLY DIRECTIVES

{IFCIIFNC} <string 1>,<string 2>
or
{IFEQ.IFGE \IFGT IFLE \IFLEIFNE} <expression> [<comment>]
The IFxx directives are used to conditionally assemble a section of a source
program. The portion of the source program following the IFxx directive up to
the next ENDC directive is conditionally assembled, depending on the result of

the string comparisons (first form) or depending on the value of the expression
in relation to the condition (the second form).

4-5

The IFC directive will cause the subsequent statements to be assembled if the
two strings compare. The IFNC directive will cause the subsequent statements

to be assembled if the two strings do not compare. In either case, if the
condition is not met (comparison in the first case, and no comparison in the
second case), the subsequent statements will be excluded from the assembly. The
beginning of <string 1> is the first non-blank, non-comma character after the
IFxx directive. The end of <string 1> is the last character before the first
comma. The beginning of <string 2> is the first character after the first comma.
The end of <string 2> is the last character before the end of the source line.
Thus, if the first form of the IFxx directive is used, no comment can appear on
the source statement. Both <string 1> and <string 2> can be null. <string 1>
will be null if only a comma is specified after the IFxx directive. <string 2>
will be null if only a carriage return is found after the comma.

If the second form of the IFxx directive is used, the subsequent statements will
be assembled if the expression is:

IFEQ -- equal to zero

IFGE -- greater than or equal to zero
IFGT -- greater than zero

IFLE -- less than or equal to zero
IFLT -- less than zero

IFNE -- not equal to zero

If the condition is not met, the subsequent statements will be excluded from
the assembly.

Conditional assembly directives can be nested to a depth of eight. Chapter 5
contains a complete description of the IFxx directives.

4.18 MACR - MACRO DEFINITION
<label> MACR [C] [<comment>]

The MACR directive is used to define a macro. Al1 statements following the MACR
directive up to the next ENDM directive become a part of the macro definition.
The required label is the symbol by which the macro will subsequently be called.
The MACR directive is one of the directives that assigns a value other than the
program counter to the label. Macro names must not be names of existing instruc-
tion mnemonics, root mnemonics (e.g., SUB, EOR, ADD, etc.), or Assembler
directives. The operand field may optionally contain the letter "C". If the C

is present, then all comment lines (lines with an asterisk in column 1) will be
retained in the macro definition. If the C is not specified, then all comment
lines will be excluded from the definition. Since macro definitions are stored
in memory, ommitting the C will reduce the memory requirements of the macro
definition. Macro definitions may not be nested -- that is, another MACR directive
cannot be encountered before the ENDM directive. Chapter 5 contains a complete
description of macros.

4-6

4.19 NAM - ASSIGN PROGRAM NAME
NAM [<string> [<comment>]]

The NAM directive is generally used as the first statement of an assembly
language program. Its use, however, is optional, and more than one NAM directive
can be used in a program. The <string> specified will be printed on the heading
line of each page of the source listing. It will be used as the name in the SO
record if an absolute EXORciser-loadable program is being created; or it will be
the name of the relocatable program module (displayed by the M6800 Linking °
Loader) if relocation has been specified. The <string> consists of a maximum of
six printable ASCII characters.

4.20 OPT - ASSEMBLER OUTPUT OPTIONS
OPT <option>[,<option>,...,<option>] [<comment>]

The OPT directive is used to control the format of the Assembler output. The
options are specified in the operand field, separated by commas. A1l options

have a default condition. Some options are not reset to their default conditions
at the end of pass one. Some options are allowed to have the prefix "NO" attached
to them, which then reverses their meaning. Depending on the version of the

Macro Assembler, most options can be initialized from the command Tine that
invoked the Assembler. In the following descriptions, the parenthetical inserts
specify "DEFAULT", if the option is the default condition, and "RESET", if the
option is reset to its default condition at the end of pass one. The text in

the OPTION column of the following table indicates the minimum characters that

are required to identify the option. Additional characters can be appended to

the end of an option to make it more readable, depending on programmer preference.
For example, CL can be CLIST, NOG can be NOGEN, L can be LIST, U can be UNASSEMBLE,
etc.

OPTION MEANING

ABS Select absolute MDOS-Toadable object output (non-
relocatable). A1l relocatable directives are invalid
if this option is specified. The "REL" and "LOAD"
options are invalid if this option is used. This option
is only supported on MDOS versions of the Macro Assemblers.

CL (DEFAULT, RESET) Print the conditional assembly directives.
NOCL Do not print the conditional assembly directives.
CMO Only valid with M6805 Macro Assembler. Allow CMOS

instructions STOP and WAIT.

NOCMO (DEFAULT, RESET) Only valid with M6805 Macro Assembler. Do not allow
CMOS dinstructions STOP and WAIT.

CRE Print a cross reference table at the end of th source
listing. This option, if used, must be specified before
the first symbol in the source program is encountered.

G Print the code generated for multiple operands of the
FCB, FCC, and FDB directives.

4-7

NOG (DEFAULT, RESET)

NOL (DEFAULT, RESET)

LLE=<number>

LOAD (DEFAULT)

Do not print the code generated for multiple operands
of the FCB, FCC, and FDB directives.

Print the Tisting from this point on. The "L" option
causes an internal Tist counter to be incremented.

As long as the list counter is greater than zero, the
subsequent source listing will be printed. If the
source listing is not specified on the command 1line that
invoked the Assembler, the L option has no effect when
encountered within the source program.

Do not print the listing from this point on (including
the OPT NOL directive). The "NOL" option causes an
internal list counter to be decremented. As long as
the 1list counter is less than or equal to zero, the
subsequent source listing will not be printed. Thus,
the NOL and L options can be nested. For example:

OPT NOL
MAC1 MACR

OPT NOL

OPT L

ENDM

OPT L

The Tlisting will be turned off with the first NOL option
causing the macro definition to be omitted from the
source listing. The last L option will cause the listing
to be turned on again, resuming the printing of the
source program. The NOL and L options within the body
of the macro are used to suppress printing of the macro
at expansion time, regardless of the state of the "MEX"
option.

Change the number of characters to be printed per line
to the decimal number specified. The default value is 72;
the minimum value is 50; and the maximum value is 120.

Select absolute EXORciser-loadable object output (non-
relocatable). A1l relocatable directives are invalid

if this option is specified. The "REL" and "ABS" options
are invalid if this option is used.

Direct object output into memory. This option cannot

be used in conjunction with the "REL" option. The
Assembler will only allow memory to be used for the object
output that is beyond the end of the available contiguous
memory. If an error occurs while placing object code into
memory (non-existent memory or Assembler memory), an

error message will be displayed and the "M" option will

be disabled. This option is not to be confused with "M"
command line option of the MDOS version of the Macro
Assembler (see Appendix G.1).

4-8

MC (DEFAULT, RESET)
NOMC
MD (DEFAULT, RESET)
NOMD
MEX
NOMEX (DEFAULT, RESET)
0 (DEFAULT)

NOO

P=<number>

NOP

REL

SE

NOU (DEFAULT, RESET)

Print macro calls

Do not print macro calls.

Print macro definitions.

Do not print macro definitions.
Print macro expansions

Do not print macro expansions

Create output module. Since this option is normally
selected, it need not be specified. It instructs the
Assembler to create an object module (either in memory
or in a file). This option can only be used once
within a source program.

Do not create object output module. This option is used
to suppress creation of an output module. This option
will suppress the creation of the object module even if
the creation of one was specified on the command Tine
that invoked the Assembler.

Change the number of source statements printed per page
to the decimal number specified. The default value is 58;
the minimum value is 10; and the maximum value is 255.

Suppress paging; ignore PAGE directives and do not print
headings or page numbers.

Select relocatable object output. This option indicates
that the assembly is to be done in the relocatable mode.
Any object code produced will be in the relocatable
record format. A1l relocatable directives are valid if
this option is specified. The "REL" option should be
placed before any statement in the source file (other
than NAM directive or comment lines). The REL option

is invalid if used with the LOAD, ABS, or M options.

Print symbol table at end of source listing. This option
has no effect if the "CRE" option is used.

Print the user-supplied sequence numbers in the right
margin of the source listing. This option is ignored
in the MDOS version of the Macro Assembler which auto-
matically prints the user-supplied sequence numbers.
Only the EDOS and tape versions of the Macro Assembler
respond to this option.

Print the unassembled lines skipped due to failure to
satisfy the condition of a conditional assembly directive.

Do not print the lines excluded from the assembly due
to a conditional assembly directive.

W (DEFAULT, RESET) Only valid with M6809 Macro Assembler. Print warning
messages.

NOW Only valid with M6809 Macro Assembler. Do not print
warning messages.

1 Only valid with MDOS and tape versions of the M6800
Macro Assembler. Allow M6801 instruction mnemonics
to be assembled. This option permits the Assembler to -
recognize valid M6801 instruction menmonics
(Appendix B.2). If "Z01" 1is specified, the M6800
mnemonics will still be recognized and assembled
properly. In addition, the object code for any M6801
instructions will also be generated correctly. This
option can be used more than once in a program.

NOZ@1 (DEFAULT, RESET) Only valid with MDOS and tape versions of the M6800
Macro Assembler. Disallow M6801 instruction mnemonics.
If this option is used in conjunction with the Z@1
option, all subsequent M6801 instructions (until another
Z@1 option) will cause errors to be generated.

4.21 ORG - SET PROGRAM COUMTER TO ORIGIN
ORG <expression> [<comment>]

The ORG directive changes the program counter to the value specified by the
expression in the operand field. Subsequent statements are assembled into

memory locations starting with the new program counter value. If no ORG
directive is encountered in a source program, the program counter is initialized
to zero. If the program is being assembled with the relocatable option (OPT REL),
the default program counter value is zero and in PSCT. Expressions in the
operand field can be relocatable. If they are, they may change the program
counter section, as well as the program counter's value. Expressions cannot
contain external references, forward references, or undefined symbols.

4.22 PAGE - TOP OF PAGE
PAGE

The PAGE directive causes the Assembler to advance the paper to the top of
the next page. If no source listing is being produced, the PAGE directive will
have no effect. The directive is not printed on the source listing.

4.23 PSCT - PROGRAM SECTION
PSCT [<comment>]

The PSCT directive causes the program counter to be restored to the address
following the address of the last byte previously allocated to the program
section (or to zero if PSCT is used for the first time). The program counter
becomes relocatable, and subsequent object code will be relocated within the
program section. A1l symbols defined within PSCT will be accessed with the
extended addressing mode. Direct addressing of PSCT symbols is not possible,
except with the M6809 Macro Assembler where direct addressing can be used to
access symbols in PSCT if the operand field in which they are referenced is
preceded with a "<" (Paragraph 2.2.4.3). The PSCT directive may only be used
if the program is being assembled with the relocatable option (OPT REL).

4-10

4.24 REG - DEFINE REGISTER LIST
<label> REG <reg list> [<comment>]

The REG directive is only supported by the Mé809 Macro Assembler. It assigns
a value associated with a register list to the label. The REG directive is
one of the directives that assigns a value other than the program counter to
the label. The label cannot be redefined anywhere else in the program.

<reg list> must be of the form:

R1 [9R2,...,Rn]

where Ri (i=1 to n) is one of the symbols A, B, CC, D, DP, PC, S, U, X, or Y.
An error message is generated if both U and S are specified. A warning occurs
if the same register is specified more than once. Register D is the same as
registers A and B.

Although <label> may be used in any expression, its value is only meaningful
when used with the instructions PSHU, PULU, PSHS, and PULS. The operand for
these instructions can take one of two forms:

{PSHU {PULUPSHS {PULS} <reg Tist>
or
{PSHUPULUIPSHSIPULS} #<reg exp>
<reg list> is in the same format as defined above. An error message is
generated if the register list contains a "U", and the instruction is PSHU or

PULU. Similarly,-an error occurs if the register list contains an "S", and the
instruction is PSHS or PULS. <reg exp> is of the form:

<sym 1>[i+<sym 2>!+...!+<sym n>]
where <sym i> (i=1 to n) must be defined by the REG directive. An error occurs
if a PSHU/PULU instruction is followed by a <reg exp> that contains a symbol
previously defined with the REG directive that contained a U in the register list.
A similar check is made for PSHS/PULS and S.

Valid Examples

ALLREG REG A,B,CC,DP,X,Y,U,PC
REGXY REG X,Y
REGAB REG A,B

PSHS #ALLREG

PSHU #REGXY.+REGAB

Invalid Examples

REGUS REG U,S can't specify both U and S
REGU REG U

PSHU #REGU can't push U reg. onto U reg.
REGLST REG A,B,D duplicate reg. name warning

PSHS #REGU:!:+REGU duplicate reg. name warning

4-11

4.25 RMB - RESERVE MEMORY BYTES
[<label>] RMB <expression> [<comment>]

The RMB directive causes the location counter to be advanced by the value of

the expression in the operand field. This directive reserves a block of memory
the length of which in bytes is equal to the value of the expression. The block
of memory reserved is not initialized to any given value. The expression cannot
contain any external references, forward references, or undefined symbols. The
value of the expression cannot be relocatable. The RMB directive is the only
storage allocation operation that is allowed in the blank common section, CSCT.

4.26 SET - SET SYMBOL TO A VALUE
<label> SET <expression> [<comment>]

The SET directive assigns the value of the expression in the operand field to

the label. The SET directive functions like the EQU directive. However, labels
defined via the SET directive can have their values redefined in another part of
the program (but only through the use of another SET directive). The SET
directive is useful in establishing temporary or re-usable counters within macros.

4.27 SETDP - SET DIRECT PAGE PSEUDO REGISTER
SETDP <expression> [<comment>]

The SETDP directive is only supported by the M6809 Macro Assembler. It is used
to assign a value to the direct page pseudo register at assembly time. The value
of the lTeast significant byte of the expression is assigned to the direct page
pseudo register. This value is then used in determining if a particular memory
reference can use the direct mode of addressing (Paragraph 2.2.4.3). On initial-
ization, the pseudo register is assigned the value zero. Thus, in relocatable
programs, direct addressing is automatically generated for BSCT symbols unless
the direct page pseudo register has been changed with the SETDP directive. The
SETDP directive can be used any number of times in an assembly. Each occurrence
changes the value of the direct page pseudo register. The expression cannot
contain any external references, forward references, or undefined symbols. In
addition, it must be an absolute expression. If the most significant byte of

the expression is not zero, a warning occurs. However, the direct page pseudo
register is assigned the value of the least significant byte of the expression,
anyway.

It should be carefully noted that the SETDP directive does not affect the Direct

Page Register at execution time. The user must assume responsibility for

ensuring that the assembly and run-time values are compatible. In the example:
SETDP $20

the direct page pseudo register would be set to $20, causing absolute addresses
in the range $2000-$20FF to be assembled using the direct addressing mode.

4-12

4.28 SPC - SKIP BLANK LINES
SPC <expression>

The SPC directive causes blank Tines to be inserted into the source listing

for formatting purposes. The SPC directive is not printed in the listing.

The number of lines skipped is determined from the expression in the operand
field. If the number of lines to be skipped would cause the 1isting to cross

a page boundary, then the paper will only be advanced to the top of the next
page. The expression's value must be greater than zero and less than 256.

The expression cannot contain any external references or undefined symbols.

The value of the expression cannot be relocatable. A source program line that
contains only a carriage return will have the same effect in the source listing
as the directive "SPC 1".

4.29 TTL - INITIALIZE PAGE HEADING
TTL [<string>]

The TTL directive causes the heading to be initialized to the string in the
operand field. Up to 45 printable characters can be specified in the string.
If a carriage return is found before the 45th character, the heading will be
less than 45 characters. The heading will be printed on the top of all
succeeding pages until another TTL directive is encountered. The heading is
normally blank except for the Assembler-generated page number.

4.30 XDEF - EXTERNAL SYMBOL DEFINITION
XDEF <symbol>[,<symbol>,...,<symbol>] [<comment>]

The XDEF directive is used to specify that the 1ist of symbols is defined within
the current source program, and that those definitions should be passed to the
M6800 Linking Loader so that other programs may reference these symbols. This
directive is only valid if the program is being assembled with the relocatable
option (OPT REL). If the symbols contained in the directive's operand field are
not defined in the program, an error will be generated.

4.31 XREF - EXTERNAL SYMBOL REFERENCE
XREF [<sect>:]<sym>[,<sym>,...][,<sect>:<sym>[,<sym>,...]]...

The XREF directive is used to specify that the list of symbols is referenced

in the current source program, but is defined (via XDEF directive) in another
program. Each <sym> in the operand field of the XREF directive will be
associated with a program section, as specified by <sect>. The <sect> specifi-
cation and the addressing mode assumed for that section can be any one of the
following:

<sect> Addressing mode
BSCT direct addressing
DSCT extended addressing
PSCT extended addressing
ANY extended addressing

4-13

For the M6809 Macro Assembler, direct addressing is only generated for BSCT
symbols if the direct page pseudo register is set to zero (Paragraph 4.27).

If <sect> is not specified for a symbol, "ANY" will be used as a default. A
symbol's section attribute is specified by placing the section name (from above
table) followed by a colon (:) in front of the symbol or 1ist of symbols.

[f the XREF directive is not used to specify that a symbol is defined in another
‘program, an error will be generated, and all references within the current program
to such a symbol will be flagged as undefined.

If, during the subsequent 1ink/load process, the M6800 Linking Loader detects

that the section attribute specified for an external reference does not agree
with the section attribute of the external definition, an error will be generated.
However, this cannot be detected during the assembly process. The use of the

ANY section (or no section specification at all) will allow the symbol to be
defined in any section.

4-14

CHAPTER 5

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 INTRODUCTION

This chapter describes the macro and the conditional assembly capabilities of
the Macro Assembler. These features can be used in any program, regardless of
whether or not the relocation feature is used,

5.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern

of instructions that within themselves contain variable entries at each iteration
of the pattern, or basic coding patterns subject to conditional assembly at each
occurrence may be involved, In either case, macros provide a shorthand notation
for handling these patterns. Having determined the iterated pattern, the pro-
grammer can, within the macro, designate selectable fields of any statement as
variable. Thereafter, by invoking a macro, the programmer can use the entire
pattern as many times as needed, substituting different parameters for the
designated variable portions of the statements.

lihen the pattern is defined, it is given a name. This name becomes the mnemonic
by which the macro is subsequently invoked (called). The name of a macro
definition should not be the name of an existing instruction mnemonic, a root
mnemonic (e.g., SBC, ADD, EOR, etc.), or an Assembler directive.

The macro call causes source statements to be generated. The generated state-
ments may contain substitutable arguments. The statements that may be generated
by a macro call are relatively unrestricted as to type. They can be any
processor instruction, almost any Assembler directive, or any previously defined
macro. Source statements generated by a macro call are subject to the same
conditions and restrictions that programmer-generated statements are subject to.

To invoke a macro, the macro name must appear in the operation code field of a
source statement. Any arguments are placed into the operand field. By suitably
selecting the arguments in relation to their use as indicated by the macro
definition, the programmer causes the assembler to produce in-line coding
variations of the macro definition.

The effect of a macro call is the same as an open subroutine in that it produces
in-line code to perform a predefined functijon. The in-line code is inserted

in the normal flow of the program so that the generated instructions are
executed in line with the rest of the program each time the macro is called.

An important feature in defining a macro is the use of macro calls within the
macro definition. The Assembler processes such "nested” macro calls at expansion
time only. The nesting of one macro definition within another definition,
however, is not permitted. If macro names are used as arguments, then they can
only be used in the operation field of a macro definition statement if they are
to be recognized by the macro processor. Thus, the macro must be defined before
its appearance in either a source statement's operation field or in the operand
field of another macro call.

In the examples that follow, not all instructions used are recognized by the
M6805 Macro Assembler. There is no "B" accumulator, and the "A" accumulator
designator is not always required. However, all of the information that
follows applies to all Macro Assemblers.

For example, if the following macros were defined in a program:

LDAX MACR
LDX \O
LDAA 0,X
ENDM
LDAXI MACR
LDAX \0
INX
STX \0
ENDM
then the statement
LDAXI VAR
would generate the code LDX VAR
LDAA 0,X
INX
STX VAR

The definition of macro consists of three parts: the header, which assigns a
name to the macro; the body, which consists of prototype or skeleton source
statements; and the terminator. The header is the MACR directive and its label.
The body contains the pattern of standard source statements. The terminator

is the ENDM directive.

For example, if the following code pattern were used in a program:

ADDA LA+5
ADCB LB+5
SUBA LC
SBCB LD

ADDA LU
ADCB LV
SUBA ALPHA
SBCB BETA

ADDA LW+LX
ADCB LY+LZ
SUBA GAMMA
SBCB DELTA

then the following macro definition could be used to represent the above pattern:

LDM MACR
ADDA \O
ADCB \1
SUBA \?
SBCB \3
ENDM

5-2

Then the previous coding examples could be written using the macro LDM as
follows:

LDM LA+5,LB+5,LC,LD
LDM LU,LV,ALPHA,BETA

LDM LW+LX,LY+LZ,GAMMA,DELTA

The Assembler recognizes substitutable arguments by the presence of the back-
slash character (\). Having encountered this identifier, the Assembler examines
the next character which is used as an argument pointer. Argument pointers must
be one of the characters in the set of digits 0-9 and the upper case letters
A-Z. Thirty-six arguments are the maximum number of arguments that can pe
handled by any macro definition. Macro arguments can appear anywhere within a
source statement of the macro body.

When specifying a symbol in the label field of a statement within the body of

a macro, the programmer must be aware that this macro can be used only once,
since on the second use, the same label will be redefined, causing an error.
Consequently, the user of labels within the macro definition must be approached
with caution. Alternatively, the use of Assembler-generated labels, or the
placement of substitutable arguments in the label field, is recommended.

The label field, the operation field, and the operand field may all contain

text and arguments which can be concatenated by simply placing the substitutable
argument directly in the text with no intervening blanks (e.g., AB\OS$E).
Concatenation is especially useful in the operation field and in the partial sub-
fields of the operand field. As an example, consider a machine instruction such
as ADD(R), where (R) can assume the designator A or B. The following macro
definition contains a partial operation field argument, as well as a partial
operand field: '

ADJ MACR
ADD\O 1
AND\O #\2
ENDM

When the in-line coding is generated, the ADD\O becomes ADDA or ADDB, as
designated by the argument passed along in the macro's argument field. The
"AND" instruction is in the immediate mode with the "#" included as part of the
macro definition. Thus, the call of the macro ADJ defined above with the
following arguments:

ADJ A,TAG1,INDEX
would generate the following source statements when expanded:

ADDA TAG1
ANDA #INDEX

Macro usage can be divided into two basic parts: definition and calling
(expansion). The definition of macros has been described above. The calling
of macros to expand the definition is described below.

The macro call statement is made up of two basic fields: the operation field
(contains the macro name) and the operand field (contains substitutable arguments).
Each operand of a macro call corresponds one-to-one with an argument pointer of
the macro definition. For example, the LDM macro defined earlier could be invoked
for expansion (called) by the statement:

LDM LA+5,LB+5,LC,LD

where the operand field arguments, separated by commas and taken left to right, .
correspond to the argument pointers "\0" through "\2", respectively. These
arguments are then substituted in their corresponding positions of the definition
to produce a sequence of instructions.

The maximum number of macro arguments is 36. These arguments are represented

by the argument pointer symbols \0-\9 and \A-\Z in the macro definition. An
argument can be declared null when calling a macro. However, it must be declared
explicitly null. MNull arguments can be specified in two ways: by writing the
delimiting commas in succession with no intervening spaces, or by terminating
the argument 1ist with a comma and omitting the rest of the argument Tist.

A null argument will cause no character to be substituted in the generated
statements that reference the argument. When a macro argument has multiple
parts or contains blanks, the argument must be enclosed within parentheses. The
parenthetical argument must still be delimited with the normal commas. The
parenthetical argument can contain commas as in the following example:

LDM (5,X),(6,X),(LAB+1,X),(LAB+2,X COMMENT)
which would generate the following instructions:

ADDA 5,X

ADCB 6,X

SUBA LAB+1,X

SBCB LAB+2,X COMMENT

It can happen that the argument list of a macro extends beyond the end of a
single line. 1In this case, a semicolon must be used in place of a comma after
the last argument to appear on the line. The next argument must then appear in
the first column of the next line. This allows for continuation lines. It is
illegal to have a semicolon embedded within the text of a parenthetical argument.

At times, labels are required within macros. Since normally a label can only
be used once in the label field, multiple macro expansions with the same label
will cause multiply defined label errors. One way to avoid this problem is to
pass the label to the macro as an argument. Each macro call can then be
parameterized with a different label. Another alternative is to use Assembler-
generated symbols in the label field. These symbols will take on the form
"_nnnnn", where "nnnnn" is a decimal number from 00000 to 65535, inclusive.
The Assembler will generate a new symbol whenever it encounters "\.a" within a
macro expansion. The "a" must be an alphanumeric character. Each time a new
symbol is generated in this manner, an internal counter is incremented. Thus,
subsequent symbols encountered in subsequent macro expansions will be unique.
Within the same expansion, each reference to the same "\.a" will reference the
same symbol generated for that expansion.

5-4

The symbol NARG is a special symbol when referenced within a macro expansion.
The value assigned to NARG is the number of arguments passed to the current
level of macro expansion. This symbol makes it easy to conditionally assemble
parts of a macro or to check for error conditions based on the number of passed
arguments. Paragraph 5.4 contains several examples of macro usage.

5.3 CONDITIONAL ASSEMBLY

A section of a program that is to be conditionally assembled must be bounded
by an IFxx-ENDC directive pair. The source statements following the IFxx
directive and up to the next ENDC directive will be included as a part of the
source file being assembled only if the condition specified by "xx" is satis-
fied (true) by the operand field of the IF directive. If the condition proves
false, the source file will be assembled as if those statements between the
IFxx and the ENDC directives were never encountered.

Conditional assembly allows the user to write a comprehensive source program

that can cover many conditions. Assembly conditions may be specified through

the use of arguments in the case of macros, and through definition of symbols

via the SET and EQU directives. Variations of parameters can then cause assembly
of only those parts necessary for the specified conditions.

For instance, a program may be assembled in one of two variations of a basic
form, depending on the type of environment in which it will eventually be used.
The input/output section of a program, for example, will vary if the program is
to be used in a disk environment or in a paper tape environment. Conditional
assembly directives can be used to include and to exclude those I/0 sections
based on a flag set at the beginning of the assembly as shown in the following
illustration of a hypothetical program's structure.

*

* DEVTYP = 0 MEANS DISK 1/0
* NOT= O MEANS TAPE 1/0

*
IFEQ DEVTYP
. DISK I/0 SOURCE STATEMENTS

ENDC
IFNE DEVTYP

TAPE I/0 SOURCE STATEMENTS
ENDC
When the program above is assembled, one of the I/0 sections will be included
and one will be excluded from the source file based on the assembly-time value
of the symbol "DEVTYP". 1If the assembly statement:
DEVTYP EQU O
is placed into the source file prior to any conditional directive references

to that symbol, the disk I/0 section will be included and the tape I/0 section
will be excluded. Similarly, if the statement:

5-5

DEVTYP EQU 1

is placed into the source file, the disk I/0 section will be excluded and the
tape I/0 section will be included.

Any of the conditional directives could have been used to effect such a result.
Instead of the "equal" and "not equal" conditions, the "greater than" and "less
than or equal to" conditions could have been used, etc.

Conditional directives can also be used within a macro definition to ensure at
expansion time that the required number of arguments was passed. Specific
arguments can be tested to ensure that they fall within a given range of
allowable values. In this way, macros can become self-checking and generate
error messages to any desired level of detail. The next section contains several
examples of conditional assembly directive usage.

5.4 EXAMPLES OF MACROS/CONDITIONAL ASSEMBLY

The following example illustrates the use of a macro and conditional assembly
within the macro to check for errors. The macro is used to generate a series of
equates for PIA's. The PIA's are assumed to be numbered from 1 to 48 (decimal),
inclusive. The addresses of the PIA's start at location $EECO. PIA number 01
occupies Tocations $EE00-$EE03, PIA number 02 occupies locations $EE04-$EEQ7,
etc. It would be cumbersome to enter all of the equates for all PIA's by hand.
Thus, the following macro can be included in a program and invoked to generate
those equates required for a given set of PIA's. Error messages are generated
via the FAIL directive. The operand field of the FAIL directive is used to
identify the error. The example contains sufficient comments to document how
the macro works. Following the macro definition are examples of the macro's
usage. The example was assembled using the options:

OPT MEX,NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL).

5-6

U
SRR
J P B

O N
XU N)

X

e

Fcn B 5o B T o T T o o x|
PR 2o
PQWg - hh

R)
AR DD S

oy

acn I x]

DN o o)

—y
o i o BB B]

WP S W0~ O &b

fcn LI o I I A B L I o B o)
R O DU (R ol ol el e

2

AR ERORITOEE DR T
nd Lol LAl Bal Il LA 3 R RS PY RO R

o B I o o T o I o e B I R o B
QDD 00 550 005
A WRPEP DD DNHASL

=
ficy)

OGP I S I P Y

A

i~

e I o I o B AN
DR ED
D W R

= &

IR o B I By B B cn)
=
=2
EN
n

BEB5Ea
aaEsl
BEE52
BEas3

P EEFDEEE EEEEEEFEEE R

THE FIA ERUATE MACEO TAKES ONE ARGUMENT. THE
ARGUMEMT MUST BE A DECIMAL NUMBER EETWEEMN 1 AND
4, IWCLUSIVE. THE HUMEER MUST BE TWO DIGITS
clLE . 8l 82,83,47, 480,

EREORS WILL EBE GEMERATED IF ARGUMENT IS MISSING
IF TOO MANY ARGUMENTS ARE SUFFLIED, OR IF
THE ARGUMENT IS OUTSIDE OF THE RAMGE @1-4&

THE MACRO MWILL GEMERATE FOUR EGUATES EACH

TIME IT IS INVOKED. THE GEMERATED EQUATES
WILL BE FOR THE DATA AND THE CONTROL REGISTERS
FOR EOTH A AND B SIDES OF THE FIA

IA MACR

IF "MARG-1" IS5 ZERO. ONLY OME ARGUMENT
MWAS FASSED TO THE MACRO. AS REQUIRED. IF
"MARG-1" IS MNOT ZERO, TOO FEW OR

TOO MANY ARGUMEMTS WERE PASSED (ERRORD).

IFNE MARG-1

FAIL *TOO FEW OR TOO MANY ARGS#*

ENDC
E J
THE FOLLOWING THREE BLOCKS OF CONDITIONALS
ARE USED TO CHECK FOR OTHER ERREORS. THEY WILL
ONLY BE USED IF THE CORRECT NUMBER OF ARGUMENTS
WERE FASSED TO THE MACRO <I.E. . "MARG-1" = @),
sk
4
THE NEXT CONDITIONAL TESTS FOR AN ARGUMENT
YALUE LESS THAN OR EQUAL TO ZERD (INVALIDD>.
THE "&" IS USED TO FORCE CHECKING FOR A
* VALID. DECIMAL NUMEBER
*®
IFE® NARG-1
IFLE &-@
FRIL #FIA <{= @
EMDC
EMDC
E
E
THE MEXT COWMDITIOMNAL TESTS FOR AWM ARGUMENT
* GREATER THAN 43 IF "~@-49" IS GREATER THAM OR
* EQUAL TO ZERO, THE ARGUMENT WAS GREATER THAN 48
CINYALID).
E 3

IFEQ MNARG-1

IFGE &\@a-49

FARIL *FIA > 48+
EMDC

BEEcd ENDC

BEESS *

BRAEES # THE FOLLOWIMNG CONDITIONALS ARE ONLY TRUE

BEasy * IF NO ERRORS WERE ENCOUNTERED ABOYE. THE

lals TS * SAME TESTS ARE USED, EBUT THE OFFPOSITE CONDITION
BERSD # IN ORDER TO REWERSE THE MEANING OF THE TEST.

)
XX
—
XY
T

=
%

BEEEL IFER NARG-1

BREEZ IFGT &5@ . ENSURE DECIMAL NUMEER > @
BEEET IFLT &\@-49 . ENSURE DECIMAL NUMEER < 49
BEEES *

BHAES * GEMERATE THE ACTUAL EQUATES

BREEE = |
BRRET FSEAD SET $EEGE+(NB-1)#4+@ . FIA @ DATASDD A
EREEE PNBAC SET $EE@E+(NG-1)#d+1 . PIA @ CONTROL A
BEEE FNBED SET $EEBE+CNB-1)#4+2 . PIA @ DATASDD E
BEETE PNOEC SET $EEBE+CNB—13#4+% . FIA @ CONTROL E
BRETL #

BEETZ ENDC

BRETS ENDC:

BRET4 © ENDC

BRETS ENDM

BRETE =

BEETT # ILLUSTRATE USE OF MACRO TO GENERATE EGUATES
BEETE # FOR PIA NUMEERS @1 AND 04

BRETS o

BRBSER AHEE PIA &1

EEBES A FPELAL SET FEEBO+IEL-1 ned+l . FIA B1 DATASDD A -
EEEL A PelRc SET FEESB+C@L-1 0434+ . FIA @1 CONTROL A
EEQZ A PBLlED SET FEESG+HIEL~L e+ 0 PIA @1 DATASDD B
EFe: A PELBC SET FEEGR+CAL-1 04443 | FIA 81 CONTROL E

BEAESLA BERE FIA K
Fad4R SET FEEQGE+ A4~ 04d44+60 . PIR @4 DATARADD A
FE4AC =ET FEERG+CAd-1 04441 . FPIA @4 CONTROL A

EEBE FE4BeR SET FEEQE+BY-1 00442 . FPIA 84 DATARSDD E

m
m
=
2o

T I

EEGF Fa4BC SET FEEBE+CAd-10wd+X . FIA @4 CONTROL B
BaBs2 *
AEEES # THE FOLLOMING USE OF THE MACRO ILLUSTRATES
s et # THE ERROR CHECK FOR NO ARGUMENTS FRSSEDR
BEGES *
BEBSER BEaa FIA
#etekERROR 293-—QEHEa

FAIL #TOO0 FEW OF TOD MAMY ARGSH
EIEEE *
BEESE # THE FOLLOMIMG USE OF THE MACRO ILLUSTRATES
ARBED # THE ERROR CHECE FOR FIA MUMEER LESS THAW 81
BEERSE *
BEESLA GEEE FIA al%)
depbkERROR 255--EREgs
FRIL #PIR <= &%

BEEs *
AEEIZ * THE FOLLOWING USE OF THE MACRO ILLUSTRATES
BEEG # THE ERROR CHECEK FOR FPIA NUMEER GREATER THAM 4&
BEEBSS *

ot I o wx

I

5]
T

BESGH HEEE FIA 49
#ERROR 25S-—B0ns]
FAIL #FIA > 48w
HRST # »
BIESS # THE LAST USE OF THE MACRO ILLUSTRATES
G # THE ERROR CHECK FOR TOO MANY ARGUMENTS
LB *
Elaif BEEE FIA Bl B4
+#ERROR 255--00696

FAIL #TOOQ FEW OF TOO MANY ARGSH
e I by END
OTAL ERRORS G@E@d--—E:1 61

The following example illustrates the use of the Assembler-generated labels
within macros. The generated code in itself is meaningless in this example.
However, it does validly show how several invocations to the same macro cause
different labels to be created.

In this example, no error checking is performed within the macro to ensure

that an argument was passed. Thus, if the macro is called without a supplied
argument, the "\0" argument pointer will be replaced with a null string (removed)
in the generated "JSR" statement. The operand of the JSR will then become the
period symbol which was intended to be the first part of a comment. Since "."

is a valid Assembler symbol, an undefined symbol error would be generated if

the macro were called without an argument.

The following assembly was generated using the options:
OPT MEX,NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL).

5-9

BEREL #
PEARZ # THE "CALL" MACRO IS USED TO CALL A
BEBET * SUEROUTINE FOR AN 10 FUNCTION. PRESUMAELY
ARAE # THE 1/0 FUNCTION RETURNS AN ERROR STATUS IN
BEEES # THE COMDITION CODE REGISTER. IF THE CARRY
BRBAG # FLAG IS SET TO 1, AN ERROR IS INDICATED. IF
BEEET % THE CARRY FLAG IS RESET TO @ R NORMAL RETURN
BREES # 1S INDICATED
BEREAS e
IR 6 * THIS MACRO MILL GENERATE A CALL TO THE FUNCTION
eaEl # FOLLOWED BY A JUMP INSTRUCTION TO THE ERROR
BREL2 # PROCESSOR. SINCE THE ERROR PROCESSOR IS
e et # MOST LIKELY OUT OF RANGE FOR A ERANCH
A o # INSTRUCTION, AN UNCONDITIONAL JUMP MUST BE
BER)S * USED. THE MACRO WILL AUTOMATICALLY CREATE
BBEE # INTERMEDIATE LABELS TO ERANCH RROUND THE
HRAEL, 7 * JUMP INSTRUCTION.
BRAELS * .
BEE1S CALL MACR
BOEZE JSR NG . PERFORM 1.0
BEEZL BCC S\ @ . CC => NO ERROR
BEEZZ JMP ERROR . CS => ERROR
BOEZE . @ EQU # . GENERATED LAEEL
BEE24 ENDM
BeB2S o
PREZE # USING THE "CALL" MACRO
BREZ? #
BERZE e
DEEZ # DEFINE FICTITIOUS ENTRY POINTS TO THE
AREZE # INPUT, OUTPUT. AND ERROR ROUTINES
BEEZL o
BEEZS 2008 A INFUT EQU $2600 INFUT ROUTINE
BRI @06 A OUTPUT EOU $3060 OUTPUT ROUTINE
BEET4 4066 A ERROR EOU $4600 ERROR PROCESSOR
BERES *
BEOIEH HOOR CALL INPUT

A G006 BD 2008 A JSR INPUT PERFORM 1,0

A B0E3 24 B3 BOGS BCC . GE@aE CC => NO ERROR

A BEGS 7E 4008 A JMF ERROR €S => ERROR

BOEE A . GOORE EQU % GENERATED LAEEL

BREITH QOO CALL OUTRUT

A GOOs ED @608 A JSR OUTPUT FERFORM 1.0

A BEEE 24 A% G616 BCC . @e@Ed CC = WO ERROR

A @O0 7E 40008 A JMF ERROR CS =» ERROR

BELE A . GEEEL EQU GEMERATED LAEEL

BEAIEA BE160 26 FE 0610 ERA #
BERTS END
TOTAL ERRORS BEOEH--EEHH0

5-10

The next example utilizes the string forms of the conditional assembly
directives (IFC and IFNC). Strings passed as macro arguments tend to be more
meaningful than numerical values since they can be descriptive to specify a
condition's state. The example could just as well have been written using the
value 0 instead of the string "RESET", the value 1 instead of the string "SET"
and the value 2 instead of the string "STORE". The comments in the example
explain how the macro is used. Following the macro's definition are examples
of the macro's usage. ,

The following example was assembled with the options:
OPT MEX,NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL).

PG *
GeaaZ # THE FOLLOMIMNG MACRD ILLUSTRATES THE USE
BIEEE # OF THE STRING FORM OF THE COMDITIOMAL ASSEMBLY
BREES # DIRECTIVES. AN ARGUMENT IS PASSED TO THE
BREES # MACKD AS A CHARACTER STRING. BASED ON THE
GAGEEG # YALUE OF THE CHARACTER STRING. THE MACRO
BEEET # WILL GENERATE DIFFERENT SERUENCES OF CODE
POAES s

BEEED # IF THE ARGUMENT “SET" IS SPECIFIED. THE
BIEIELE # INDICATED VARIAELE IN MEMORY WILL EBE
BEELL # FILLED WITH A PATTERN OF $FF

BEE12 # THE YARIAELE MAME IS PRASSED AS AN ARGUMENT
EEELE # TO THE MACRO ALSO

I i+

BIEELS # IF THE ARGUMENT "RESET" 15 SPECIFIED. THE
ARELE # INDICATED YARIAELE IM MEMORY WILL EE

BIEELT # FILLEL WITH A PATTERN OF $6G,

BEELE # THE YARIABLE MAME IS FASSED AS AN ARGUMENMT
GEELS # TO THE MACRD ALSO

ARG "

AEaz1 # IF THE FRGUMENT “STORE" 15 SPECIFIED. THE
(Sl]otere # INDICATED YARIABLE IN MEMORY WILL EE

PREZT # FILLED WITH A GIVEN YALUE OR PATTERM.
BEEZS # THE MAME OF THE VARIFELE AND THE

BREZS # YALUE TO BE STORED RRE PASSED AS ARGUMENTS
BER2E # TO THE MACRO ALSO.

BEEZ 7 #

BEEZE # AN ERROR WILL EE GEMNERATED IF A STRING
anE2o # OTHER THAN "SET". "RESET". OR "STORE" IS
Gee3a # SPECIFIED AS AN ARGUMENT

BEEZL #

PREZ2 EYTE MACR

AEAZEE "

BEATY # CHECK FOR YALID ARGUMENT STRING

PEEES *

5-11

9

BIEEZE IFHC N8, SET
BEEET IFNC @, RESET
Glalokss IFMC @, STORE
Clalckss FRIL *IMVALID STRING FARGUMENT:
EIEIEI4 ENDC
ARG ENDEC
AR 2 EHDE:
QEB4E o
BEG44 # CHECK FOR "RESET" ARGUMENT
AERS #
ABESE IFC %@, RESET
AEET CLR w1 . SET EYTE TO ZERO
ABa4S EHDC
AEE49 #
AEESE # ‘CHECK FOR “"SET" ARUGMENT
AR5 *
BEESS IFC @, SET
BEESE CLR N1 . SET BYTE TO ZERO
Glsloh! COM 1 . FLIP TO ALL ONES
BEHSS ENDC
EEESE * '
PEGST # CHECK FOR "STORE" ARGUMENT
BEEGE #
HEARSS IFC 8. STORE
BEBER FSHA . SAYE ACCUMULATOR
BEEEL LDAA #%1 . GET “ALUE
ol STAA “2 . STORE WALUE
ARG PULF . RESTORE ACCUMULATOR
REES ENDLE: :
HERES *
HEREE EMDHM
BEGET +*
IHEEE # USE THE MACRO TO “SET" TEMPL TO ALL ONES
BN #
BEETER GEHEE EYTE SET. TEMPL
A BE0E 7F G618 A CLR TEMPL . SET EYTE TO ZEROD
A BOEZ 73 6018 A CcoM o TEMPL . FLIF TO ALL ONES
AT L G
BEET 2 + 1USE THE MACRD TO "RESET" TEMFZ TO ALL ZERDES
AT *
BEETAR GEEE EYTE RESET. TEMPZ
A GEEE 7F @611 A CLR TEMFZ . SET BYTE TO ZERO
EIEET S e
BEETE # USE THE MACRO TO "STORE" ASCII “A° INTO TEMPZ
BT #
BEETEA GEED EYTE STORE. "R, TEMFX
A BEE3 326 FSHA . SAVE ACCUMULATOR
A OBEEA 25 41 A LDFAFA #°F . GET WALLE
A BEEC B7 8812 A STAR TEMPZ . STORE WALLE
A BEEF 2 FULA . RESTORE ACCUMULATOR
EET
AEEEE : USE AN INWALID STRING TO SHOM ERROR CHECK
EHEEL s
BEASZA AELE EYTE FILL.A. B C

5-12

bk EREOR 285=-—HAREE

FRIL #IMWALID STRING ARGUMENT*
"

= + VARIAELES

o *
BEESEA BELE BEEl A TEMFL REME 1
BEGETH BEll BEsl A TEMPZ KME 1
BESSER Bl BEElL A TEMFE REME 1
AapEass EMD
TOTAL ERRORS SHEEL--BHES2

The last example illustrates macro nesting and macro recursion. Nesting refers
to calling one macro from within another macro. Recursion refers to calling
the same macro from within itself. A recursive macro must have some criterion
that can be tested by a conditional assembly directive to prevent infinite
recursion. Since macros can only be nested eight levels, the recursive macro
can only call itself a maximum of seven times.

The comments in the example will explain how the macro is used. Following the
macro definitions are examples of the macro's usage. The example was assembled
with the assembly options:

OPT MEX, NOCL

to show the results of the expansion (MEX) and to improve visibility by not
printing the conditional directives (NOCL). Within the macro itself the MEX
and NOMEX options are used to further clarify the generated expansions by
suppressing the printing of the intermediate results of decrementing the
recursion counter,

GRENEL *

BEEEZ # THE FOLLOWIMG MACRD CAM BE USED TO REFEAT
B # AM ASSEMELY LAMNGUAGE STATEMENT A MAXIMUM

EIEEES # OF 42 TIMES. THE MACED MAY EBE ERSILY

BAEES # MODIFIED FOR A LARGER MAXIMUM

BEEEE #

HEOET # THE REFERT MACRD IMYOKES AMOTHER MACRO WHICH
BEGEE # 15 UZED TO REFPEAT THE ASSEMELY STATEMEMNT

BN * H MAKIMUM OF 7 TIMES ¢HENCE THE MAME

HER1E # RFT1.7» THE REFEAT MACED MAINTAINS A COUNTER
alaloh # WHICH IS DECREMEWTED EBY 7 EACH TIME THE

Sk e # IMHEF MACRO I% CALLED. WHEM THE COUNTER
HEELE * HAS A WALUE OF 7 OR LESS. THE

B4 # IMNER MACED IS CALLED OME FINAL TIME TO FIMISH
AEE1S # THE FEFETITION OF THE REMAINING LIMNES

BEELE *

Slnih iy FEFEAT MACE

HEELS OFT MOMER

BEELD IFGT “&8-42

IS ZE FRIL # COUMNT EXCEEDS MAXIMUM #

5-13

=
i
=
P

i

ENDC
CCOUMT SET S8 .0 IMITIAL YALUE OF COUNTER

IFGE . COUNT-7
CCOUNT SET . COUNT-F . REDUCE BY =EVEN

RFTL_FT V. o%1> . D0 LIMNES

EMDLC
B

IFGE . COUNT-7
CCOUNT SET . COUNT-V . REDUCE EBY SEVEM MORE <143
FEFTL.V V. N4y . DO LINES

EMNDLC
£

IFGE . COUMT=-7¥ :
L COUNT SET . COUNT-F . REDUCE BY SEWEN MORE C21)
RFTA.T V. <81 0 DO LIMNES

ENDC

T
U

§
=4

R

Lod bof Lod Lad L) P2 PY RY PO PO PO PRI DD

=

=}

J R 0 00) 16 LR

D o B S S o B o o O o B v S S T o B s s o]
=

Fo RN o T B o oy B B o

o
B N O o O P R T

& *
[5]E] IFGE . COUNT -7V

L COUNT SET | COUNT-7 . REDUCE BY SEVEN MORE (28D
FRTL.V V. 5N1» . [0 LIMES
EMDC

*

Fiow B ow e)
-..J

oIy B o R s B B I o0 I o B ot T o Iy B on B o B e S B o T U o o B v
[acw o B)

2

DN TR B SR 1 B oS VRO CX I O v I s B w S s s O OO Y |

(sls] IFGE . COUNT-¥

R COUNT SET . COUNT-7 . REDUCE BY SEVEW MORE <350
EEE RETLI.F Foesdd o [7 LINES '

VS ENDC

G *

B RETL.V . COUMT, <12 0O REMAIMING LIMES

B OFT MEX

,.
e
]
!
—
%
—
X

A EMDM
$:
ITMMEFR MACEO--RECURSIVE
#
EFTA_Y MACE
ARE S LT SET -8
BRSNS OFPT MEX
EEEST sl
EIRE S OFT MOME=

T
fxx]
o
bx]

=
%)
!
o]

i)
onnoon

T T
o i T E
i N OO U O

WA]
n

HEEASS LT SET . T-1
FHAGSE IFME . T

BREEL RPTL-7 . T, %10
DG 2 ENDC
BREIE EMDHM
EIEEE =
HIEHES # USE MACRO TO GENERATE THELE OF THE FOWERS OF
BRGEES # TWO. THE TRAELE CAM BE LOCATED ANYMHERE
BREET # SINCE THE EXFRESSION SUBTRACTS THE PROGRAM
AREES # COUNTER FROM THE BRSE ADDRESS OF THE TRELE
DG #
BEETEF AECD ORG $AECD ILLUSTRATE IMNCEFEMDENCE
DG, #
OEETEA AECD BASE REFEAT 16, CFDE 2!70(#-BRSED 2D
OFT MEX
A ORECD @@el A FOE 2! C(e—BRASEDN/2)

5-14

A ABCF HEE
A AEDL EaEg
A ABDXE BEEe
A ABDS ge1a
H REDY BazE
A AREBDS oad4a
A AEDE Basa
A ABDD G166
A AEDF e b]
A AEBEL B4 EE
A ABEZ naaa
A ABES 1066
A RAEBET pd e]
A ABE2 4866
A HEEE ceaa

5[5]E P4

BERET

BERETS

BREE

el HEES

BAEFER REBED
A HEED 47
A REBEE 47
A AEBEF 47
H AEF& 47
A AEF1 47

AT

TOTAL ERRORS BEOEEH-—-EB0@6E

I I T

I

T T T

#

* USE MACRD TO GEMERATE YARIABLE NUMBER OF

OFT

FDE
OFT
FLE
oFT
FhE
oFT
FDE
OFT
FDE
aFT
FDE
QFT

FDE
OFT
FDE
OFT
FDE
OFT
FDE
QFT
FDE
OFT
FOE
oFT
FDE
QOFT
FDE
oFT
FDE
OFT

ME®

2 T CCR=-BRSED A2
ME

217 CR-BASEY /20
ME¥

217 CCh—BRSEYSED
MEX

2! 7 CCk-BRSEX /2
MEX

217 (x-BRSEY /2D
MEX :

2! 7 CC=BRSED /2D
ME®

217 Ck-PASEN /2D
MEX

2! T CCk=BRSE» A2
MEX

2T CCk=BRSED /20

MEX
2! T CR~-BRSEDY /2D
MEX
21T CCk=BRSEM A2
ME®
2! T CCR=BRSED /20
MEX
2! T CC-BRSEY /20
ME®
2! T CCk=BRSED A2
MEX
2! T CCR-BRSED /2D
ME

* SHIFT INSTRUCTIONS

E 3
Vi

EGL
REFERT
OFPT
ASKA
oFPT
ASRA
arT
ASRA
oFPT
ASREA
oPT
ASkA
oFrT
EMD

S

Vi, CASRAD
ME

ME

MEX

MEX

MEX

MEX

5-15

p

APPENDIX A

CHARACTER SET

The character set recognized by the Macro Assembler is a subset of ASCII.
The ASCII code is shown in the following figure. The following characters
are recognized by the Assembler:

. The upper case letters A through Z.

The digits O through 9.

Four arithmetic operators: +, -, *, and /.

The special two-character operators: '~, !>, !<, !X, !., '+, 'R, and !L.
Parentheses in expression: (,).

A O AW N =

The special symbol characters: underscore (), period (.), and
dollar sign ($). Only the period may be used as the first character
of a symbol.

7. The characters used as prefixes for constants and addressing modes:

Immediate addressing

$ Hexadecimal constant

& Decimal constant

@ Octal constant

% Binary constant

> ASCII character constant

8. The characters used as suffixes for constants and addressing modes:

X Indexed addressing

H Hexadecimal constant

0 Octal constant

Q Octal constant

B Binary constant

,PCR M6809 indexed addressing
S M6809 indexed addressing
,U M6809 indexed addressing
, Y M6809 indexed addressing

9. Three separator characters: space, carriage return, and comma.

10. The character "*" to indicate comments. Comments may contain any
printable characters from the ASCII set.

11. The special symbols "\" and "\." used with the macro definitions as
argument pointers or Assembler-generated symbols, respectively.

12. For the M6800/M6801 and M6809 Macro Assemblers, the special symbols
"A" and "B" to specify the accumulator in the operation code. For the
M6805 Macro Assembler, the special symbols "A" and "X" to specify the
accumulator or index register in the operation code. The special
symbol "X" to indicate indexed addressing in the operand field; the
special symbol "*" to represent the value of the current program
counter; and the special symbol "NARG" to represent the number of
macro arguments passed to the current level of macro expansion. For

A-1

the M6809 Macro Assembler, the special symbols "PCR", "S", "U",

and "Y" to indicate indexed addressing in the operand field; the
special symbol "D" to specify the accumulator in the operation code;
the SpeC'ia] SymbO]S "A", "B", ”CC“, ”D“, IIDPH, “PC”, "S”, "U“, “X",
and "Y" to indicate registers in the operand field of the TFR, EXG,
PSHU, PULU, PSHS, and PULS instructions; and the special symbols "A",
"B", and ."D" to indicate offsets in the indexed mode.

13. For the M6809 Macro Assembler, the characters used to indicate
indirect addressing: [,].

14. For the M6809 Macro Assembler, the character "<" preceding an
expression to indicate direct addressing mode or 8-bit offset in
indexed mode, and the character ">" preceding an expression to
indicate extended addressing mode or 16-bit offset in indexed mode.

15. For the M6809 Macro Assembler, the characters used to indicate auto
- increment and auto decrement in the indexed mode: +, ++, -, --.

ASCIT CHARACTER CODES

BITS 4 to 6 0 1 2

NUL DLE SP
SOH DC1 .

STX DCz2 "

ETX DC3
EOT DC4
ENQ NAK
ACK SYN
BEL ETB
BS CAN
HT EM

LF SUB
VT ESC
FF - FS

CR GS -

o W — —
e OOONO T PWMNDHFO (W

w

o

=

wn

v 4 e~ 20 3RS T

DV Il A
OZ=rGQ—=ITOMMODOm>E® |
Se— I N< X E<ZZHUDNXOO TV o
== N XTI <o 0 30T ([

—
TMMOO@WITOONIITTTPRPWNFO
OS3S =X =TJQ HhDODaoaoow

s1US / DEL

A-2

APPENDIX B

SUMMARY OF INSTRUCTIONS

The following table lists the special symbols used in the description of
M6800, M6801, M6805, and M6809 instructions.

Operation Functions

Left side of equal sign is replaced by right side of equal sign
Evaluate contents first; grouping
The contents of

) The contents of memory specified by the parenthetical address
Arithmetic addition
Arithmetic subtraction

¥ Arithmetic multiplication

and Boolean and

effad M6809 effective address

or Boolean inclusive or

xor Boolean exclusive or

L> Logical shift right by number of bits specified

L< Logical shift left by number of bits specified

A> Arithmetic shift right by number of bits specified

A< Arithmetic shift left by number of bits specified

R> Rotate right by number of bits specified

R< Rotate left by number of bits specified

N+ =~ 1
A~ —

Operand Sizes and Register Names

$nn The hexadecimal number "nn"

n A bit value of n (0 or 1)

nn An eight-bit value of nn (00-$FF)

nnnn A sixteen-bit value of nnnn (0000-$FFFF)
aa Eight-bit address 5

aaaa Sixteen-bit address

A Accumulator A

B M6800/M6801/M6809 Accumulator B

C Carry condition code (Bit 0 of CC)

cC Condition code register

D M6801/M6809 dual accumulator A,B

EI M6805 external interrupt pin

F M6809 fast interrupt condition code (Bit 6 of CC)

H Half carry condition code (Bit 5 of CC; bit 4 if M6805)
I Interrupt condition code (Bit 4 of CC; bit 3 if M6805)
ii Eight-bit immediate operand

iiii Sixteen-bit immediate operand

N Sign condition code (Bit 3 of CC; bit 2 if M6805)

P Program counter register

rl M6809 register list

rr Eight-bit, relative branch address

rerr Sixteen bit, relative branch address

B-1

Stack register

M6809 user stack register

M6800/M6801/M6809 overflow condition code (Bit 1 of CC)
Index register

XX Eight-bit, indexed addressing offset

xxop M6809 indexed operation depends on index mode (see B.5)
xx0 M6805 no offset indexed addressing

xx1 M6805 eight-bit, indexed addressing offset

X2 M6805 sixteen-bit, indexed addressing offset

Y M6809 index register

Z Zero condition code (Bit 2 of CC; bit 1 if M6805)

<< CW!m

Condition code symbols

Status bit tested and set if true; reset otherwise

Status bit reset by operation

Status bit set by operation

Status bit unaffected by operation

Programming Reference Manual contains details on setting of
the status bit

V=IO

B.1 M6800 INSTRUCTIONS

In the following tables, the "Function" column for branch instructions only
contains the test condition performed by the branch. The following function
will be performed if the result of the test is true:

P=(P)+0002+rr
If the result of the test is false, the following function will be performed:
P=(P)+0002

The functions for the instructions BSR, DAA, JSR, RTI, RTS, SWI, and WAI are
described in detail in the M6800 Programming Reference Manual.

B-2

Mne=-

monic

Oper-

and

Func

M6800 Instructions

tion

ABA
ADCA

ADCB

ADDA

ADDB

ANDA

ANDB

ASL

ASLA
ASLB
ASR

ASRA
ASRB
BCC
BCS
BEQ
BGE
BGT
BHI
BITA

BITB

BLE
BLS
BLT

i
aa
XX
aaaa
i1
aa
XX
aaaa

aa
XX
aaaa
i1
aa
XX
aaaa

aaaa

i1
aa
XX
aaaa
11
aa
XX
aaaa
rr
rr
rr

(A

> > 222>

B=(B
B=(B

(A)+(B)
(A)+11+(C)

)+ M(aa)+(C)

(A)+EMOCX) +xx)+(C)
(A)+M(aaaa)+(C)

)+1i1+(C)
)+M(aa)+(C)

B=(B)+M.((X)+xx)+(C)

B=(B

)+M(aaaa)+(C)

A=(A)+1ii
A=(A)+M(aa)
A=(A)+M((X) +xx)

A=(A

)+M(aaaa)

B=(B)+ii
B=(B)+M(aa)

B=(B
B=(B

)M ((X) +xx)
)+M(aaaa)

A=(A) and it

A=(A) and M(aa)
A=(A) and M((X)+xx)
A=(A) and M(aaaa)
B=(B) and {ii

B=(B

) and M(aa)

B=(B) and M((X)+xx)
B=(B) and M(aaaa)

MCCX

Y)+xx)=M((X)+xx) A< |

M(aaaa)=M(aaaa) A< |
A=(A) A< |

B=(B
MOCX

) A< |
YExx)=M((X)+xx) A> |

M(aaaa)=M(aaaa) A> |
A=(A) A> |

B=(B
Test
Test
Test
Test
Test
Test
(A)
(A)
(A)
(A)
(B)
(B)
(B)
(B)
Test
Test
Test

) A> |
(C)=0
(C)r=1
(Z2)=1
(N) xor (V)=0
(Z) or [(N) xor (V)]1=0
(C) xor (Z)=0
and ii
and M(aa)
and M((X)+xx)
and M(aaaa)
and ii
and M(aa)
and M((X)+xx)
and M(aaaa)
(Z) or [(N) xor (V)I1=i
(C) or (Z)=1l
(N) xor (V)=|

B-3

Status
HI NZVZC
T-TTTT
T-TTTT
IT-TTTT
IT-TTTT
T-TTTT
-=-TTO =
-=-TTO -
- -1T2?T
- -TT?2T
--TT2?T
-=-TT2?T
-=-TT?2?T
-==TT2?T
-=-=TTO -
-~-TTO -

M6800 Instructions

Mne- Oper=- Op=- Function Status
monic and code HI NZVZC
BMI rr 2B Test ()=1 = = =@ =@ «a = =
BNE rr 26 Test (Z)=0 = = = = « - =
BPL rr 2A Test (N)=0 = = = =@ = = =
BRA rr 20 Tests always true @ = = = = = = = =
BSR rr 8D Subroutine call = @~ = = = = = = =
BVC rr 28 Test (V)=0 = = =@ =@ =« «
BVS rr 29 Test ()=t « e« <<=
CBA - 11 (A)=(B) -=-=TTTT
CLC e ocC c=sO0 e e e - - 0
CLI - OE I=0 -0 = = = =
CLR XX 6F MC(X)+xx)=00 -=0100
aaaa 1F M(aaaa)=00
CLRA —e 4F A=00 -=0100
CLRB —— 5F B=00 -=0100
CLV e 0A V=0 - - =<0 -
CMPA ii 81 (A)=-1ii -=-TTTT
aa 91 (A)-M(aa)
XX Al (A)=MC(X)+xx)
aaaa Bl (A)=M(aaaa)
CMPB ii o] (B)-iti -=-TTTT
aa D1 (B)-M(aa)
XX El (B)=M(C(X)+xx)
aaaa Fli (B)=-M(aaaa)
COM XX 63 MOCX) +xx)=M((X)+xx) xXor $FF - = T T 0 1
aaaa 73 M(aaaa)=M(aaaa) xor S$FF
COMA wonm 43 A=(A) xor SFF -=-TTOI
COMB em 53 B=(B) xor $FF -=TTO I
CPX i11id 8C (X)-iiit -=?T7? -
aa 9C (X)-M(aa,aa+l)
XX AC (X)=MC(X)#+xXX (X)) +xxX+1)
aaaa BC (X)=M(aaaa,aaaa+l)
DAA - 19 Converts binary add of -=-TTT?
BCD into BCD
DEC XX 6A MOCX)+xx)=M((X)+xx)-01 -=TT2? -
aaaa TA M(aaaa)=M(aaaa)-01 '
DECA - 4A A=(A)=01I -=-TT? -
DECB - 5A B=(B)=-0lI -=-=TT? -
DES e 34 S=(5)=-0001 e e e - - -
DEX e 09 X=(X)-=0001 - =T =« =
EORA ii 88 A=(A) xor 1ii - =-TTO -
.aa 98 A=(A) xor M(aa)
XX A8 A=(A) xor M((X)+xx)
aaaa B8 A=(A) xor M(aaaa)
EORB ii C8 B=(B) xor ii -=-TTO -
aa D8 B=(B) xor M(aa)
XX E8 B=(B) xor M((X)+xx)
aaaa F8 B=(B) xor M(aaaa)
INC XX 6C MCCX)+xx)=M((X)+xx)+0I -=-TT? =
aaaa 1C M(aaaa)=M(aaaa) +0I
INCA e 4C A=(A)+01I -=-TT? =

B-4

LDAB

LDS

LDX

LSR

LSRA
LSRB
NEG

NEGA
NEGB
NOP

ORAA

ORAB

PSHA
PSHB
PULA
PULB
ROL

ROLA
ROLB
ROR

aaaa
XX
aaaa
11
aa
XX
aaaa
i
aa
XX
aaaa

iiii -

aa
XX

aaaa
iiit

aaaa

M6800 Instructions

Op- Function Status
code HI NZ V C
5C B=(B)+01 -=-TT? -
31 S=(S)+0001f @ = e = = - -
08 X=(X)+0001I - = =] « =
6E P=(X)+xx = == = = - -
TE P=aaaa

AD Subroutine call = = = = = = =
BD Subroutine call

86 A=11i -=-TTO -
96 A=M(aa)

A6 A=M (X)) +xx)

B6 A=M(aaaa)

Cé6 B=1ii -=-TTO -
D6 B=M(aa)

E6 B=M ((X)+xx)

F6 B=M(aaaa)

8E S=iiii -=-2TO0 -
9E S=M(aa,aa+l)

AE S=M((X)+xx, (X)+xx+1)

BE S=M(aaaa,aaaa+l)

CE X=1iiii -=-2TO0 -
DE X=M(aa,aa+l)

EE X=M((X)+xx, (X)+xx+1)

FE X=M(aaaa,aaaa+l)

64 MOCX)+xx)=M.((X)+xx) L> | -=0T2?T
74 M(aaaa)=M(aaaa) L> |

44 A=(A) L> | -=-0T<?2T
54 B=(B) L> 1| -=-0T2?T
60 MOCX)+xx)=00=-M ((X) +xx) -=TT7??
70 M(aaaa)=00-M(aaaa)

40 A=00-(A) - =TT??2?
50 B=00-(B) - =TT 2?7
Ol P=(P)+0001 = e e e e - -
8A A=(A) or f{i - =-TTO -
9A A=(A) or M(aa)

AA A=(A) or M((X)+xx)

BA A=(A) or M(aaaa)

CA B=(B) or ii -=TTO -
DA B=(B) or M(aa)

EA B=(B) or M((X)<+xx)

FA B=(B) or M(aaaa)

36 M(S)=A% S=(S)-0001 = | = = = = = =
37 M(S)=B$ S=(S)-0001 = = = = = = =
32 S=(S)+00018% A=M(S) = = = = = = =
33 S=(S)+0001s B=M(S) = = = = = = =
69 MOCX)+xx)=M((X)+xx) R< | -=-=TT2?2?T
79 M(aaaa)=M(aaaa) R< |

49 A=(A) R< | -=-TT2?2T
59 B=(B) R< | -=TT?2T
66 MOCX)+xx)=M((X)+xx) R> | - T T2?T
76 M(aaaa)=M(aaaa) R> |

B-5

M6800 Instructions

Function

SBCB

SEC
SEI
SEV
STAA

STAB

STX

SUBA

suUBB

SWI
TAB
TAP
[BA
[PA
IST

[STA
[STB
TSX
rxs
WAI

aaaa

aaaa
aa
XX
aaaa
aa
XX
aaaa
aa
XX
aaaa

aaaa

A=(A) R> |

B=(B) R> |

Return from interrupt
Return from subroutine
A=(A)=(B)

A=(A)=-1i=-(C)
A=(A)=M(Aaa)=(C)
A=(A)=MC(X)+xx)=(C)
A=(A)-M(aaaa)=(C)
B=(B)=1i-(C)
B=(B)=-M(aa)=(C)
B=(B)=M((X)+xx)=(C)
B=(B)=-M(aaaa)=(C)

C=1
I[=1
V=1
M(aa)=(A)
MCCX)+xx)=(A)
M(aaaa)=(A)

M(aa)=(B)
MOCX)+xx)=(B)
M(aaaa)=(B)
M(aa,aa+1)=(S)
MOCX)+XX o (X)+xXxX+1)=(S)
M(aaaa,aaaa+1)=(S)
M(aa,aa+l)=(X)
MOCX)#xx, (X)) +xx+1)=(X)
M(aaaa,aaaa+l)=(X)
A=(A)-11

A=(A)=-M(aa)
A=(A)=MC(X) +xx)
A=(A)-M(aaaa)

B=(B)=1ii

B=(B)-M(aa)
B=(B)=M((X)+xx)
B=(B)=-M(aaaa)

Software interrupt
B=(A)

CC=(A)

A=(B)

A=(CC)

MCCX)+xx)=00
M(aaaa)=00

(A)=00

(B)-=00

X=(S)+0001

S=(X)=0001

Wait for IRQ

B.2 M6801 INSTRUCTIONS

The M6801 allows all of the instructions from the preceding table. In addition,

the following instructions are valid.

These instructions can only be assembled

using the MDOS or tape version of the M6800 Macro Assembler.

Function

ASLD
BHS
BLO
BRN
JSR
LDD

LSL

LSLA
LSLB
LSLD
LSrD
MUL

PSHX
PULX
STD

suBD

aaaa

iiii

aaaa
1111
aa
XX
aaaa

X=(X)+(B)

D=(D)+iiii
D=(D)+M(aa,aa+l)
D=(D)+M (X)) +xx 4 (X) +xx+1)
D=(D)+M(aaaa,aaaa+l)
D=(D) A< |

Test (C)=0

Test (C)=|

Tests always false
Subroutine call

D=111ii

D=M(aa,aa+l)

DM ((X)+xx%, (X)+xx+1)
D=M(aaaa,aaaa+l)
MCCX)+xx)=M((X)+xx) L< |
M(aaaa)=M(aaaa) L< |
A=(A) L< |

B=(B) L< 1

D=(D) A< |

D=(D) L> 1

D=(A)*(B)

M(S,S+1)=(X)3% S=(S)-0002
S=(S5)+0002% X=M(S,S+1)
M(aa,aa+l)=(D)

MOCX)+xx, (X)+xx+1)=(D)
M(aaaa,aaaa+!)=(D)
D=(D)-1iiil
D=(D)=M(aa,aa+l)
D=(D)=M((X)+xx, (X)+xx+1)
D=(D)-M(aaaa,aaaa+l)

B-7

Status
HI NZV C
-=-TTTT
- =TT 22T
- -TTO =
--TT??T
- ==TT?2T
-=-=TT?2T
--TT?T
- ==0T?2T
----- ?
-=-TTO -
-=-TTTT

B.3 M6805 INSTRUCTIONS
In the following tables, the "Function" column for branch instructions only
contains the test condition performed by the branch. The following function
will be performed if the result of the test is true:
P=(P)+0002+rr (for branch)
P=(P)+0003+rr (for bit test and branch)
If the result of the test is false, the following function will be performed:
P=(P)+0002 (for branch)
P=(P)+0003 (for bit test and branch)

The functions for the instructions BSR, JSR, RTI, RTS, STOP, SWI, and WAIT
are described in detail in the M6805 Programming Reference Manual.

B-8

Mir -
mari o

Clppee o=
and

£l p—- Funetion Status
I I HIN?Z

AL 3% e
an 53] Qe
2R3 (e (Y
et INEY e
: o -

] [ERY] [4%]
AL
FALs
U &
JAL3
ER
Fl2
A4
4
4

id
(AY+MCaar+ ()

(A +Mzaar)+(02)

CAYHM OO)+)4 (0
CAYEMOCX)t L) +417)

(AYAMOX)+ (1)

REIFADE SR : L N
A= (A)Y+HM(aa)

A=A +Mraaa)

A= (A MY)+ 1)

A= CAY M))

A= (AY+MOX)

A=) and i - - P
A (A and M(aa)

A=) arnd M{zazz)

AL

::::::

AN

L 114 A=) and MO +u)
mxl E4 A=(A) and MOCX) +L)

WO F 4
=L ¥ e

wiud]
7
sl O A5
AELX et =
AR aa =7

L7

A= (A and M(X)
MCaa)=M(aaz) O |

MOCX)4+l)=MO(X) A<
M) =M(X) A< |

MOC) Fat L) =M)Y +sl) A)
77 MOX)=M(X) A §

4.7 A=) N
87 X (X)) A

(AY+ii+(Il) T - T T

A= (A)Y A o o= T T T
X=(X) A | w & T T T
MCaa)=M(aa) A» § - e

1 I

ECLR

i
0, aa

A4
i1

Test (D)=

oot 0

0
M(aa)=0

1 e T

L, ag 13 Bit | af M(az) =0
dian) Bt 2 of M(aa)=0
a3 L7 Bit 3 af M{ar) =0
Ay aa IRy Eait 4 of M(aa)=Q
Shoan 1B Bit 5 af M{aa)=0
booaa AR it & of M(aa)=0
7. 2a LK Bil 7 af M{az)=0

e
as

27

Test
Trst

()
()

#
%)

rr - -
Rl r S fest (H)=0
ETS 1 P e pal (MY=L e e e -
Y "t o K (Y war (Z2)=0 =
G B s 4 T ()0 - e
Fi rr VI et R =hinh -
[EXA r o Mest ET =low e e e o

B-9

M e
meanie

BIT

[EAN
Bl
EMI
i
EME
FiNLC
L
FilAy
FRCLR

ERN
EiReET

BEET

Opet-
and

il
aa
222k

It
0, aa, Fr
L:raa,rr
T RB P
Hean,rr
Ay 3R 1K
Sooas.
- O

.y

J- T VI

O, aa, by
L, 2z, vy
doan.re
TV o
Ayaa, e
B R3 FI
;a2 101
7 Ra
O, 88

L, 2a
Yoan

S oas

A aan
Heoaa
booan
723

v

L pe-

[] |:| i)

A5
Tt
[
T1%3
B
F

s g
A

Funetion

(A)
()
(A)
()
(A)

A
&
2R
a

E

mel dd

ng MCaa)
nd M{azaa)
md MOOX) +uuid)
el MO) L)

(A and MOX)
Trat ((2)=]

Test () or (7)= i

Twst (1)=0
Tesl (N)=|§
Trst ()=l
Test (Z)=0
Test (N)=0

Tests always L

Test kit O of
Test bt L of
Trat kit 2 of
Test bit & of
] Bt 4 wof
it % of
t‘i T. -{'_‘- (] +
it 7 of

¥

1

T

1

T

bt QO of

ant kit 1 of
s obil ¥ oof
Lokt 3 af
Tobit A oof

Tokih 5 af
Lobit & of
Tast kit 7 af

Fit O nf MGaa)

£

Feit L oaf Miza)s=
Fa w2 oaf MOna)s

foaf Msa) -
Bt A of Mag)s
Fit S5 oaf iiaz)
Fag b & of MOxzn)s
Eit 7 af MOax):

it

shronutine oa)

] =)

M za) =00
M)+] Y00
PLE) =m0

00

X000

alwa Vi ¥

s
M{aa) =0
MCaa)=0
M{az) =0
MCazn)=0
ME) =0
MCaz)=0
Ml {za) =0
M(aa)=0Q
alsae
MCaa)=|
MAEra)=1
MCaa)=§
M{aa) =l
MCaa)=i
M{ar) =l
MCaa)e=g
Mess) =1
)

1

Htatus

I N

T

) -

- 0

-0
- 0

Z

T -

I~

Mg Clpper o= 1 g Funetion Slatus

moni o anl e B [T A I

oM s ii
CMEA aa (AY-MCaz)

(A) M{aaxa)l

CA)Y~MCCX) i)

CEAY =M OXY 4 l)

(A)Y-MCX)

MCza) =MOar) wor $FF e w
W bl , FMCCX) i)=MOX)4l) war $SFF
MO Pt MOX)e= MOX) st HBFF

0 an

(M) i S

MO - A% A CA) wnr $FF wos T
M X b M (X)) o $FF e T

FEY/ i A (XY=, S |
MF X an | EpE () -MCar)
aaaa [IRE (X)~M(aaaan)
MR I CX)MOX) b))
Wl B (XY=MCX Y +uul)
PISH 0] = (XYM {X)
VIR aa i MCaz)=M(aa)-0f S
wul by GO ESHIBEIINS GRS DEIN
I TE MOX)M (X)) =0,
DN s 40 A=) ~0] —

[X s - T3] X (X)) =01 o T

[EX
E I R N CA) sor g =5 em o |
[A=CA) sar M(as)
e A= (A war M(azaaz)
[z A=) sar MOCX) 4d)
F e A= (AY wor MOCX)+umd)
i A=) stor MOX)
A M{aa)=M(az)+0] ST |
bl MECCK) e L) =M) 43 L) +0)
(W VAN MOX)=M(X)+04
INCA e 4.7 RERESDEISN] e I
TNCX A e i X
INX
JME as Ja: Faz g =5 B
ARRSZ [F==anana
W AL Froas (X) s
el X fraz) bend
¥ u0 F F= (X))
IR aa FaTl Subroutine call R
RiaRA D Eubroutine oall
W 111 Subroutine eal)
1 kD SBubroutine call
%10 F13 Subroutine oall

TN

, %2
MM
s,

B-11

(X)+04 - -~ T T

M v
meri o

L.IA

LI

MEZCSEY
NELE X
NI
IR0

R,

RN
FRia X
Rtk

RIUIRA
RCIRX
e
RTY

RTS

ez

anrl

ii
an
RRARA

IRV
ol

1 fa

N B

AL
Fid
()
Thés
4
F &
3153
FE
e

Funotion Slhatus

N=id e e 5

N=M(aa)

A=M{aaza)

=M OOX) +u?)

NPl X)) k)

=M OX)

Koo -
X=Mza)

XM agaa)

XM OO)+ d)

X=M OO) bl)

XM Ox)

MCar) =M{ar) A | s
MOCX Y)Y =MOCX)+ uml) N

PECXY =MOX) A |

A= (Y NS

X= (X)) A L

MCaza)=pFi(an) Lx §

MR @RISR RE KA IS TES I N - |
MOX)=MOX) |

=) L] G
P E N O I LA |
M{aa)=00-M(.13)

FOCX) (1Y QO-MOOX)bl
MEX) =00-MX)

Y QO () -
x :-,:(:)(:)u... (x) e
o (F* Y 000§,

A=) or 1

=AY o MOaa)

N=0A) ar MOzaaza)

(3= (N) or MOCX)+u?)

A=) o MOCX)+Hl)

NE=(R)Y o MOX)

Meaa)=M{ag) R< L e
MO+ =MO) +unl) RO
MEX)=M{X) R« 1

NN RS o

A={(X) R« |

MCaz)=M(aa) K> | -
MOCXY el) =M+ l) R L
MOX)=M(X) R §

A=(A) R> L -
Yo (X)) K= § .

—

- O

(8]

- 0

S e e e -

Return from interrupt Ll

Reaeturn fraom subeantins

B-12

e

H I NZI

19 1 g
Mol o

Ry

SEL
S
ETA

ST
=TX

RN 6

TETH
TETX
TXA

WO

Chpog tom

an

iid
an

R3A2AR

7

W
R4

s ve(”
M)

(¥
”

N
PXePe
1)

Pl

()
235
Y|
M
N ™

Founetion

BNy id-C12)
O (A= MG ()
A A) =ML aama) -0

(s (O =X e) (0
DAY =M OO +300L) = (10)

N2 CA) =X)= (1)

e |

[|

M) ()
MCaaaa)=(N)
MECK)+)= ()
MOCK Y+ Yo ()
MEX)=(A)

CMOE version only
Mera)=(X)
MCazaa)=(N)

MOCX)4y (X))
MOCE Y+l) (X))
MEX)=(X)

AUt DESE Y

A=) ~M{an)

A= (A -MCaang)
A=) M) b))
A= CAY MO)4 ul)
A) MY
Sotftware intervupt
(X)=(1N)

M(an)-00
MOCY) +3000) =00

MY)00

() =00

(%) ~00

(i)=1(X)

CMOES version only

B-13

v j -~
s e T

B.4 M6809 INSTRUCTIONS

In the following table, the "Function" column for branch and long branch

instructions only contains the test condition performed by the branch. The

following function will be performed if the result of the test is true:
P=(P)+0002+rr (for branch)

P

(P)+0003+rrrr (for 1-byte long branch opcode)
P=(P)+0004+rrrr (for 2-byte long branch opcode)
If the result of the test is false, the following function will be performed:

P=(P)+0002 (for branch)

P=(P)+0003 (for 1-byte long branch opcode)
P=(P)+0004 (for 2-byte long branch opcode)
The functions for the instructions BSR, CWAI, DAA, EXG, JSR, LBSR, PSHS, PSHU,

PULS, PULU, RTI, RTS, SEX, SWI, SWI2, SWI3, SYNC, and TFR are described in
detail in the M6809 Programming Reference Manual.

B-14

M6809 Instructions

Function

ADCB

ADDA

ADLB

ADDD

ANDA

ANDB

ANDCC
ASL

ASLA
ASLB
ASR

ASRA
ASRB
BCC
BCS
BEQ
BGE
BGT
BHI
BHS

(X)
(A)
=(A)
A=(A)
A=(A)
B=(B)
B=(B)

X
A
A

+(B)

+1i+(C)

+ M(aa)+(C)
+xxop+(C)
+M(aaaa)+(C)
+1{i+(C)
+M(aa)+(C)

B=(B)+xxop+(C)
B=(B)+M(aaaa)+(C)
A=(A)+11
A=(A)+M(aa)
A=(A)+xxop
A=(A)+M(aaaa)

B=(B)
B=(B)

+ii
+M(aa)

B=(B)+xxop
B=(B)+M(aaaa)
D=(D)+1i1i1i

D=(D)

+M(aa,aa+l)

D=(D)+xxop
D=(D)+M(aaaa,aaaa+l)

A=(A)
A=(A)
A=(A)
A=(A)
B=(B)
B=(B)
B=(B)
B=(B)

and ii

and M(aa)
and xxop
and M(aaaa)
and 11

and M(aa)
and xxop
and M(aaaa)

CC=(CC) and ii

M(aa)

=M(a3a) A< |

xxop=xxop A< |
M(aaaa)=M(aaaa) A< |

A=(A)
B=(B)
M(Caa)

A< |
A< |

=M(aa) A> |

xxop=xxop A> |
M(aaaa)=M(aaaa) A> |

A=(A)
B=(B)
Test
Test
Test
Test
Test
Test
Test

A> |

A> |

(C)=0

(C)=1

(Z2)=1

(N) xor (V)=0

(Z) or [(N) xor (V)1l=0
(C) xor (Z)=0

(C)=0

B-15

- e» e» eo» e > =

~T=-TTTT
-T=-TTTIT
~-T=-TTTT
-T=-TTTT
-==TTTIT
-=-=-TTO -
-==-TTO-=-
12222722
-?2-TT?TI
-?2-TT?2T
-2 =-TT?2T
-?2=-IT?2T
-?2=-TT?T
-?2=-TT?2T

BITB

BLE
BLO
BLS
BLT
BMI
BNE
BPL
BRA
BRN
BSR
BVC
BVS
CLR

CLRA
CLRB
CMPA

CMPB

CMPD

CMPS

CMPU

CMPX

Cl

BC

M6809 Instructions

Function

(A) and 1ii

(A) and M(aa)
(A) and xxop
(A) and M(aaaa)
(B) and ii

(B) and M(aa)
(B) and xxop
(B) and M(aaaa)

Test (Z) or [(N) xor (V)I=|

TEST (C)=I

Test (C) or (Z)=lI
Test (N) xor (V)=l|
Test (N)=1

Test (Z2)=0

Test (N)=0

Tests always true
[ests always false
Subroutine call
Test (V)=0

Test (V)=I
M(aa)=00 .

xxop=00
M(aaaa)=00

A=00

B=00

(A)=ii

(A)-MC(Caa)

(A)=xxop

(A)=M(aaaa)

(B)=ii

(B)=M(aa)

(B)=-xxop

(B)-M(aaaa)
(D)=-iiii
(D)-M(aa,aa+l)

(D) =xxop
(D)-M(aaaa, aaaa+l)
(S)-ilii
(S)=M(aa,aat+l)
(S)-xxop

(S)-M(aaaa, aaaa+l)
(U)=-iiii
(U)-M(aa,aa+l)
(U)=-xxop
(U)=-M(aaaa,aaaa+l)
(X)=-iiii
(X)=M(aa,aa+l)
(X)=xxop
(X)=M(Aaaaa,aaaa+l)

B-16

Status

FHINZVC

--=-TTO -

- e» em v w® e» =

I

i

|
OO

R
-=--T
--=T

-~ O O
—~ O O

Mne- Oper- Op-
monic and code
CMPY iiii 10,8C
aa 10,9C
XX0op 10,AC
aaaa 10,BC
COM aa 03
XXop 63
aaaa 73
COMA es 43
COMB 53
CWAI ii 3C
DAA - 19
DEC aa 0OA
XXop 6A
aaaa TA
DECA e 4A
DECB s 5A
EORA ii 88
aa 98
XXop A8
aaaa B8
EORB ii cs
aa D8
XXop E8
aaaa F8
EXG rl 1E
INC aa 0]
XXop 6C
aaaa 1C
INCA = 4C
I NCB —— 5C
JMP aa OE
XX0p 6E
Aaaa TE
JSR aa 9D
XX0op AD
aaaa BD
LBCC rrrr 10,24
LBCS rrrr 10,25
LBEQ rrrr 10,27
LBGE rrrr 10,2C
LBGT rrrr 10,2E
LBHI rerr 10,22
LBHS rrrr 10,24
LBLE rrrr 10,2F
LBLO rrrr 10,25
LBLS rrrr 10,23
LBLT rrrr 10,2D
LBMI rrrr 10,28

M6809 Instructions

Function

(Y)-iiii
(Y)-M(aa,aa+l)
(Y)=-xxop

(Y)-M(aaaa, aaaa+l)
M(aa)=M(aa) xor S$FF
xxop=xxop xor S$FF

M(aaaa)=M(aaaa) xor SFF

A=(A) xor SFF
B=(B) xor S$FF

Clear and wait for interrupt?
Converts binary add of

BCD into BCD
M(aa)=M(aa) =0l
xxop=xxop-0I

M(aaaa)=M(aaaa)-0lI
A=(A)=-01

B=(B)=0l

A=(A)
A=(A)
A=(A)
A=(A)
B=(B)
B=(B)
B=(B)
B=(B)

Xor
Xor
Xor
Xxor
Xor
Xor
Xor
Xor

ii
M(aa)
XXop
M(aaaa)
ii
M(aa)
XXop
M(aaaa)

Exchange 2 registers
M(aa)=M(aa)+0l1

xxop=xxop+0l

M(aaaa)=M(aaaa) +0lI
A=(A)+0I

B=(B)+0l

P=aa

P=xxop

P=aaaa

Subroutine call
Subroutine call
Subroutine call

Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test
Test

(C)=0

(C)=1

(2)=1

(N) xor (V)=0

(Z) or [(N) xor (V)1=0
(C) xor (Z)=0

(C)=0

(Z) or [(N) xor (V)Il=l
(C)=1I

(C) or (Z)=1

(N) xor (V)=|

(N)=1

B-17

Status
FHINZVC

- = =TTTT
-==-TTOI
-=-=-TTOI
-==-TTO I
2222722
-==TTTT
-=-=-TT2?-
-=-=TT2?-
-=-=-TT?-
~~=-TTO-
-=--TTO-
222722722
-~-=-TT? -
-=-=-TT? -
-=-=-TT?-

M6809 Instructions

Mne- Oper- Op- Function Status
monic and code FHINZVC
LBNE rrrr 10,26 Test (Z2)=0 = = = = =« = =« =
LBPL rrrr 10,2A Test (N)=0 = @ = @ = = « =
LBRA rrrr 16 Tests always true @ = = = = = « = « =
LBRN rrrr 10,21 Tests always false @ = = = = = =« <« = =
LBSR rrrr 17 Subroutine call S
[.BVC rrrr 10,28 Test (V)=0 = = = =« « = - -
LBVS rrrr 10,29 Test (V)=1 = = = = « =« « =
LDA ii 86 A=1i1 _ -=-=TTO =~
aa 96 A=M(aa)
XXop A6 A=xxop
aaaa B6 A=M(aaaa)
LDB il Cé6 B=11i -=-=TTO -
aa D6 B=M(aa)
XxXop E6 B=xxop
aaaa Fé6 B=M(aaaa) _
LDD iiid cC D=1iiii -=-=TTO -
aa DC D=M(aa,aa+l)
xxop EC D=xxop
aaaa FC D=M(aaaa,aaaa+l)
LDS iiii 10,CE S=iiii - = ==TTO -
aa 10,DE S=M(aa,aa+l)
XxXop 10,EE S=xxop
aaaa 10,FE S=M(aaaa, aaaa+l)
LDU iiii CE U=iiii - =--TTO -
aa DE U=M(aa,aa+l)
XXop EE U=xxop
aaaa FE U=M(aaaa,aaaa+l)
LDX iiii 8E X=1iii - ==TTO -
aa 9E X=M(aa,aa+l)
XXop AE X=xxo0p
aaaa BE X=M(aaaa,aaaa+l)
LDY i1ii 10,8E Y=iiii - =-=<TTO -
aa 10,9E Y=M(aa,aa+l)
XX0p 10, AE Y=xxo0p
aaaa 10,BE Y=M(aaaa,aaaa+l)
LEAS XX0p 32 S=effad xxop === = = = = = =
LEAU XxXop 33 Useffad xxop = = = = = = = =
LEAX XX0op 30 X=effad xxop - === =T ==
LEAY XX0p 31 Y=effad xxop - == =T = =
LSL aa 08 M(aa)=M(aa) A< | -2 --TT2??T
XXop 68 XXop=xxop A< |
aaaa 78 M(aaaa)=M(aaaa) A< |
LSLA - 48 A=(A) A< | -?2=-TT?2T
LSLB - 58 B=(B) A< | -?2=-TT?TI
LSR aa 04 M(aa)=M(aa) L> | - ~-=0T-~-=T
XXop 64 xxop=xxop L> |
aaaa 14 M(aaaa)=M(aaaa) L> |

B-18

M6809 Instructions

Mne- Oper- Op- Function Status
monic and code FHINZVC
LSRA e 44 A=(A) L> 1 -=-=-0T-=T
LSRB - 54 B=(B) L> | w oo T = T
MUL = 3D D=(A)*(B) -=-=-=-T-=-T
NEG aa 00 M(aa)=00-M(aa) -?2-TT?T

XXop 60 xxop=00-xxo0p

aaaa 70 M(aaaa)=00-M(aaaa)
NEGA - 40 A=00-=(A) -?2 =T T
NEGB - 50 B=00-(B) -?2?=-TT?T
NOP - 12 P=(P)+0001 e = e e = - -
ORA i1 8A A=(A) or ii -=-=TTO -

aa QA A=(A) or M(aa)

XXop AA A=(A) or xxop

aaaa BA A=(A) or M(aaaa)
ORB ii CA B=(B) or ii -=-=-TTO -

aa DA B=(B) or M(aa)

XXop EA B=(B) or xxop

aaaa FA B=(B) or M(aaaa)
ORCC ii 1A CC=(CC) or 1ii 72?22?17
PSHS rl 34 Push registers on M(S) = = = = = = « <
PSHU rl 36 Push registers on M(U) = = = = = = = =
PULS rl 35 Pull registers from M(S) 22?2?7727
PULU rl 37 Pull registers from M(U) P2 2?2?21
ROL aa 09 M(aa)=M(aa) R< | -=-=-TT2?T

XX0p 69 xxop=xxop R< |

aaaa 19 M(aaaa)=M(aaaa) R< 1|
ROLA - 49 A=(A) R< | -=-=IT?T
ROLB - 59 B=(B) R< | -=-=TT2?T
ROR aa 06 M(aa)=M(aa) R> | -=-=-TT?T

XXop 66 xxop=xxop R> |

aaaa 16 M(aaaa)=M(aaaa) R> 1
RORA e 46 A=(A) R> 1 -=-=TT2?T
RORB = 56 B=(B) R> 1| -=-=TT2?2T
RTI - 3B Return from interrupt P22
RTS - 39 Return from subroutine = = = « = = =
SBCA ii 82 A=(A)=-1i-(C) --=TTTT

aa 92 A=(A)=-M(aa)=(C)

XXop A2 A=(A)=-xxop=-(C)

aaaa B2 A=(A)=-M(aaaa)=(C)
SBCB ii Cc2 B=(B)=1i-(C) -=-=TTTT

aa D2 B=(B)=M(aa)=(C)

XXop E2 B=(B)=xxop=-(C)

aaaa F2 B=(B)=-M(aaaa)=(C)
SEX - 1D Sign extension of B into A - - T T O -
STA aa 97 M(aa)=(A) -=-=-TTO -

xxop A7 xxop=(A)

aaaa B7 M(aaaa)=(A)

B-19

M6809 Instructions

Function

STX

STY

SUBA

suUBB

SuBD

SWI
SWI2
SWI3
SYNC
[FR
IST

[STA
I'STB

M(aa)=(B)

xxop=(B)
M(aaaa)=(B)
M(Caa,aa+1)=(D)
xxop=(D)
M(aaaa,aaaa+l)=(D)
M(Aaa,aa+1)=(S)
xxop=(S)

M(aaaa,aaaa+!)=(S)
M(aa,aa+1)=(U)
xxop=(U)
M(aaaa,aaaa+l)=(U)
M(aa,aat+l)=(X)
xxop=(X)

M(aaaa,aaaa+l)=(X)
M(aa,aa+1)=(Y)
xxop=(Y)
M(aaaa,aaaa+l)=(Y)
A=(A)-1ii
A=(A)-M(aa)
A=(A)=-xxop
A=(A)-M(aaaa)
B=(B)-11i
B=(B)-=M(aa)
B=(B)-xxop
B=(B)=-M(aaaa)
D=(D)-111i
D=(D)-M(aa,aa+l)
D=(D)-xxop
D=(D)-M(aaaa,aaaa+l)
Software interrupt
Software interrupt
Software interrupt
Synchronize
Transfer register
M(aa)=-00

xxop=-00
M(aaaa)-00

(A)=00

(B)=00

B-20

B.5 M6809 INDEXED ADDRESSING MODES

The value of the post-byte (the first byte following the opcode) for instruc-
tions using the indexed addressing mode is determined by the format of the
operand. Two formats exist: simple indexing and complex indexing. Simple
indexing is used when the operand is of the form:

<exp>,R
where <exp> is an absolute expression in the range -16 to 15 but not equal to
zero, and R is one of the index registers "S", "U", "X", or "Y". All other

indexed addressing modes use the complex indexing format. The two post-byte
formats are described below:

Simple Indexing -- Post-Byte

7 6 5 4 3 2 1 0
} 0 ! RR ! OFFSET :

where RR=00 if X register
01 if Y register
10 if U register
11 if S register

OFFSET=5-bit 2's complement

Complex Indexing -- Post-Byte

where RR= 00 if X or PCR
01 if Y
10 if U
11 if S

I= 0 if no indirect
1 if indirect

TTTT=0000 Single auto-increment (R+)
0001 Double auto-increment (R++)
0010 Single auto-decrement (-R)
0011 Double auto-decrement (--R)
0100 O offset value or no offset
0101 Accumulator B is offset (B,R)
0110 Accumulator A is offset (A,R)
1000 8-bit offset
1001 16-bit offset
1011 Accumulator D is offset (D,R)
1100 8-bit offset with PCR
1101 16-bit offset with PCR
1111 Extended indirect

B-21

B.6 M6800/M6801 INSTRUCTIONS AND M6809 EQUIVALENTS

Not all M6800/M6801 instructions have exact equivalences recognized by the

M6809 Macro Assembler. Some translate into instructions that generate more

bytes by the M6809 Macro Assembler. However, all opcode mnemonics recognized

by the M6800/M6801 Macro Assembler are recognized by the M6809 Macro Assembler,
and are translated into equivalent M6809 code where possible. Some translations
are not equivalent, but the same function is still performed. In addition, some
"M6800-1ike" mnemonics are recognized by the M6809 Macro Assembler and translated.

M6800/M6801 Mnemonic Type of Instruction M6809 Equivalent

ABA 6800 PSHS B
ADDA S+
ASLD 6801 ASLB
ROLA
CBA 6300 PSHS B
CMPA S+
CLC 6800 ANDCC #$FE
CLF 6800-11ke ANDCC #$BF
CLI 6800 ~ ANDCC #$EF
CLIF 6800-like ANDCC #SAF
CLV 6800 ANDCC #$FD
CPX 6800 CMPX
DES 6800 LEAS -1,S
DEX 6800 LEAX =1 ,X
DEY 6800-11ke LEAY =1,Y
INS 6800 LEAS 1,S
I NX 6800 LEAX 1,X
INY | 6800-11ke LEAY 1,Y
LDAAS LDA A 6800 LDA
LDAB3 LDA B 6300 LDA
LDAD 6301 LDD
LSLD 6801 ASLB
ROLA
LSRD 6301 LSRA
RORB
ORAA3 ORA A 6800 ORA
ORAB3 ORA B 6800 ORB
PSHA3 PSH A 6800 PSHS A
PSHB3 PSH B 6800 PSHS B
PSHX 6801 PSHS X
PULAS PUL A 6800 PULS A
PULB3 PUL B 6800 PULS B
PULX 6801 PULS X
SBA 6800 PSHS B
SUBA S+

B-22

M6800/M6801 Mnemonic Type of Instruction M6809 Equivalent

SEC 6800 ORCC #3501

SEF 6800-1like ORCC #$40

SEI 6800 ORCC #s10

SEIF 6800~-11ike ORCC #4650

SEV 6800 ORCC #$02

STAAs STA A 6800 STA

STAB% STA B 6800 STB

STAD 6801 STD

I'AB 6800 TFR A,B
TSTA

TBA 6800 [FR BoA
ISTA

TAP 6800 TFR A.CC

TPA 6300 TFR CC,A

I'sx 6800 TFR S5,X

rxs 6300 TFR X,S

NAI 6800 CNAI #SFF

B-23

APPENDIX C

DIRECTIVE SUMMARY

A complete description of all directives appears in Chapter 4.

ASSEMBLY CONTROL

END
FAIL
NAM
ORG
SETDP

Program end

Programmer generated errors

Assign program name

Origin program counter

Set direct page pseudo register (M6809 only)

SYMBOL DEFINITION

ENDM
EQU
MACR
REG
SET

Macro definition end

Assign permanent value

Macro definition start

Register Tist definition (M6809 only)
Assign temporary value

DATA DEFINITION/STORAGE ALLOCATION

BSZ
FCB
FCC
FDB
RMB

Block storage of zero; single bytes
Form constant byte

Form constant character string

Form constant double byte

Reserve memory; single bytes

PROGRAM RELOCATION

ASCT
BSCT
COMM
csCT
DSCT
IDNT
PSCT
OPT REL
XDEF
XREF

Absolute section

Base section

Named common section

Blank common section

Data section

Identification record
Program section
Relocatable output selected
External symbol definition
External symbol reference

C-1

CONDITIONAL ASSEMBLY

ENDC End of current level of conditional assembly

IFC Assemble if strings compare

IFEQ Assemble if expression is equal to zero

IFGE Assemble if expression is greater than or equal to zero
IFGT Assemble if expression is greater than zero

IFLE Assemble if expression is less than or equal to zero
IFLT Assemble if expression is less than zero

IFNC Assemble if strings do not compare

IFNE Assemble if expression is not equal to zero

LISTING CONTROL

OPT ABS Select absolute MDOS-loadable object output

OPT CL Print conditional assembly directives

OPT NOCL Don't print conditional assembly directives

OPT CMO Allow CMOS instructions STOP and WAIT (M6805 only)
OPT NOCMO Don't allow CMOS instructions STOP and WAIT (M6805 only)
OPT CRE Print cross reference talbe

OPT G Print generated lines of FCB, FCC, and FDB directives
OPT NOG Don't print generated lines of FDB, FCC, and FDB directives
OPT L Print source listing from this point

OPT NOL Inhibit printing of source listing from this point
OPT LLE=n Change line length

OPT LOAD Select absolute EXORciser-loadable object output

OPT M Create object output in memory

OPT MC Print macro calls

OPT NOMC Don't print macro calls

OPT MD Print macro definitions

OPT NOMD Don't print macro definitions

OPT MEX Print macro expansions

OPT NOMEX Don't print macro expansions

OPT O Create object output file

OPT NOO Do not create object output file

OPT P=n Change page length

OPT NOP Inhibit paging and printing of headings

OPT REL Select relocatable object output

C-2

OPT S Print symbol table

OPT SE Print user-supplied sequence numbers

OPT U Print unassembled code from conditional directives

OPT NOU Don't print unassembled code from conditional directives
OPT W Print warnings (M6809 only)

OPT NOW Don't print warnings (M6809 only)

OPT Zp1 Allow M6801 instruction mnemonics (M6800 only)

OPT NOZP1 Don't allow M6801 instruction mnemonics (M6800 only)
PAGE Print subsequent statements on top of next page

SPC Skip lines

TTL Initialize heading for source listing

c-3

APPENDIX D
ASSEMBLER MESSAGES

A description of all error and warning messages follows. Warning messages
are only supported by the M6809 Macro Assembler. Some error messages only
occur when using the M6809 Macro Assembler or the M6805 Macro Assembler.
The format of the error is:

***XERROR XXX-- YYYYY

where XXX is the error message number, and YYYYY §s the line number of the

previously encountered error. If YYYYY = 00000, this indicates that there

is no previous error. The format of the warning messages is similar. The

EDOS and tape versions of the M6800 Macro Assembler do not include the line
number of the last error.

D.1 ERROR MESSAGES

169 Invalid bit number (M6805 only)
The bit number in bit set/clear and bit test and branch instructions
must be an absolute number in the range 0-7.

173 Invalid use of direct mode indicator (M6809 only)
The direct mode indicator, "<", was specified in the extended indirect
addressing mode (e.g., LDA <[VAR]). The "<" is ignored.

174 Invalid auto increment/decrement format (M6809 only)
Single auto increment or decrement was specified in the indirect mode
(e.q., L?A [X+]) or more than two minus or plus signs detected (e.g.,
LDA ---X).

175 Invalid index register format (M6809 only)
One of the accumulators "A", "B", or "D" was specified as the offset
in the indexed mode, but was not followed by one of the index registers
"st, "ut, "X", or "Y" (e.g., LDA A,PCR).

176 Invalid expression for PSH/PUL (M6809 only)
The immediate expression following one of the instructions PSHS, PULS,
PSHU, or PULU contained symbols defined with other than the REG
directive (Paragraph 4.27), contained an operator other than "!+", or
contained no symbols following the "#" (e.g., PSHU #$FF; PSHS #REG1*REG2).

177 Incompatible register for PSH/PUL instruction (M6809 only)
The register list for the PSHS/PULS instructions cannot contain the
register "S", and the register list for the PSHU/PULU instructions
cannot contain the register "U". The register list specified with the
REG directive cannot contain both "U" and "S". 1In the case with the
REG directive, the value assigned to the symbol will be the first "U"
or "S" encountered (e.g., PSHS S).

178 Invalid register operand specification (M6809 only)
Undefined register name encountered in register list; not exagt]y two
register names in register Tist specification for TFR or EXG'1nstrgct1ons;
or no register list specified for PSH/PUL instructions. VAlid register
names are: A, B, CC, D, DP, PC, S, U, X, and Y (e.g., TFR A,B,X; PULU Q).

D-1

179

202

206

207

208

209

210

211

212

214

215

216

217

Incompatible register pair (M6809 only)
The register pair of an EXG instruction was not the same size (i.e.,
two 16-bit registers or two 8-bit registers), or the register pair
specification of a TFR instruction indicated a transfer from an 8-bit
register to a 16-bit register. The 8-bit registers are: "A", "B",
"cc", and "DP". The 16-bit registers are: "D", "PC", "S", "U", "X",
and "Y" (e.g., EXG X,A; TFR B,PC).

Label or opcode error

The label or opcode symbol does not begin with an alphabetic character
or a period.

Label error

The statement label field is not terminated with a blank. This usually -
occurs if an invalid character is used in the label.

Undefined opcode

The symbol in the opcode field is not a valid opcode mnemonic, directive,
or macro definition.

Branch out of range
The operand resulted in an offset greater than 129 bytes forward or
126 bytes backward from the first byte of the branch instruction. This
error may also occur if the operand is in a different program section
(relocatable) than the current program counter section.

I1legal addressing mode

The specified addressing mode in the operand field is not valid with
this instruction type.

Byte overflow -- operand too large
The operand's value exceeded 1 byte (8 bits). The most significant
eight bits of the 16-bit expression must be all zeros or all ones for
a one-byte field.

Undefined symbol
The symbol never appears in a label field.

Directive operand error
A syntax error was detected in the operand field of a directive.

FCB directive syntax error
The structure of the FCB directive is syntactically incorrect.

FDB directive operand error
The structure of the FDB directive is syntactically incorrect.

Directive operand error
The directive's operand field is missing, terminated by an invalid
terminator, or an expression in the operand field contains an invalid
operator.

Option error
An option in the operand field of the OPT directive was undefined.

D-2

219

220

221

222

223

225

226

227

228

229

230

231

No END statement
The END directive was not found at the end of the last source file.
The END directive is automatically supplied.

Phasing error
The value of the program counter during pass 1 and pass 2 for the same
instruction is different.

Symbol table or macro table overflow
The symbol table or macro table has overflowed. This is a fatal error,
and terminates the Assembler during pass 1.

Reserved symbol used
One of the reserved symbols (A, B, or X) appeared in the label field
or in the operand field of a statement. These symbols can only be
used in the operation field to modify the root mnemonic (A or B) or
in the operand field to specify indexed addressing (e.g., ,X). For
the M6809 Macro Assembler, other reserved symbols are Y, U, S, D, CC,
DP, PC, and PCR. For the M6805 Macro Assembler, only A and X are
reserved symbols.

The directive must or must not have a label
Depending on the directive used, the label field must be blank or must
contain a valid symbol.

Named common name used in expression
A named common section name can only appear in the label field of
another COMM directive. Its use anywhere else is invalid.

I1legal parenthesis
The parentheses in an expression do not balance.

Too many digits in numeric constant
An overflow in the numeric evaluation of a constant was detected.
Also used if a sequence number is missing on a line in a file that
has sequence numbers. '

Invalid usage of operator
The multiplication, division, and two-character operators cannot be
used in a relocatable expression or with external references.

Invalid starting execution address
The starting execution address specified as the expression on the END
statement is not within the range of the MDOS-loadable object file.
This can happen, since RMB's at the beginning or end of the program
are not included in the range of the program.

CSCT initialization error
No initialized code can be placed into CSCT.

Multiple relocatable section types
More than one relocatable section type occurred in the evaluation of
an expression or one relocatable symbol occurred with a unary minus
preceding it.

232 Relocation count error

The relocation count for a given section after an expression evaluation
was greater than one (e.g., adding two PSCT symbols).

233 Symbol name too large
A symbol of greater than 6 characters was encountered.

234 Multiply defined symbol
A reference was made to a multiply defined symbol.

235 Memory error
The OPT M option was used and object code was going to be written into
non-existent memory or into contiguous memory belonging to the Assembler.

236 Program counter overflow

The program counter overflowed its maximum value for a particular
section ($FF for BSCT, $FFFF for all other sections).

237 Invalid terminator for sequence number
The character following a user-supplied sequence number was not a blank.

238 Section table overflow

Too many ASCT and named common sections were specified. This is a
fatal error, and terminates the Assembler during pass 1.

239 Illegal directive in absolute mode
A relocation directive (e.g., PSCT, COMM, etc.) was used, but the
relocation option (OPT REL) was not specified.

240 Inconsistent or invalid named common operand
The operand field of the COMM directive did not contain BSCT, DSCT, or
PSCT specifications; or the operand field was different from the one
used the first time.

241 I111egal symbol used in an expression
An undefined forward reference, external reference, or relocatable
symbol was used i1legally in an expression. The instruction will
not be relocated by the M6800 Linking Loader.

242 OPT directive error
The "LOAD", "REL", or "ABS" options were used in combination; the "REL"
option was not ASCT or the program counter was not zero; or the "CRE"
option was used after the first symbol had already been placed into
the symbol table.

243 XREF or XDEF directive operand error
An invalid symbol or no operand was detected in the operand field of
the XDEF or XREF directive.

244 111egal page or Tisting line length
A page or listing line length was not within the allowed range.

245 Invalid use of common variable
A variable in blank or named common cannot be used in the operand
field of the XDEF, XREF, or COMM directive.

247 Invalid terminator for an operand
The character following the legal part of an operand is not a valid
terminator (usually a carriage return or space). For the M6809 Macro
Assembler, this error could occur if invalid indirect pairing; i.e.,
an operand has "[" but no "]".

248 Macro definition error .
An attempt was made to define a macro that already existed.

249 Macro parenthesis error
Parentheses in macro call argument are not balanced.

250 Macro definition nest error
A macro directive was encountered during a macro expansion. Macro
definitions cannot be nested.

251 Macro expansion nest error
Macro calls were nested too deep, or the number of ENDM directives
does not match the number of MACR directives.

252 Invalid macro argument index
The character following a backslash (\) during macro expansion was not
an alphanumeric or a period.

253 IFC, IFNC directive syntax error
No operand was found or no comma was found to separate the two arguments.

254 Conditional directives nest error
Conditional directives were nested too deep, or the number of ENDC
directives did not match the number of IFxx directives.

255 FAIL directive warning
The FAIL directive (a planned program error) was encountered.

D.2 M6809 WARNING MESSAGES

1

Long branch not required :
A long branch instruction was used to branch to an address within
the range -126 to +129. Although the long branch instruction could
be changed to a short branch, it could result in other out-of-range
short branches.

Extended addressing should be used
Direct addressing was forced by using the "<" indicator. However, the
direct page pseudo register assigned by the SETDP directive (Paragraph
4,27) indicated that the extended mode should have been used.

Duplicate register specification
The same register name was specified more than once in a register list.
Register "D" specified with either register "A" or "B" gives this
warning.

Possible SETDP expression error
The most significant byte of the expression in a SETDP directive was
not zero. The direct page pseudo register is assigned the value of
the least significant byte anyway.

Extended addressing should be used
Direct addressing was forced by using the "<" indicator with a CSCT,
DSCT, or PSCT non-external expression. The expression will not be
relocated by the M6800 Linking Loader.

Possible transfer error
The TFR instruction was used with a transfer from a 16-bit register
to an 8-bit register. The result of such a transfer is to move the
least significant byte of the 16-bit register to the 8-bit register.

APPENDIX E

ASSEMBLER OUTPUT FORMAT

A1l the numeric information printed on the source listing is in hexadecimal,
unless otherwise noted.

E.1 M6800/M6801 FORMAT

The MDOS version of the Macro Assembler will automatically print user-supplied
sequence numbers in the left margin if they appear in the source file. However,
the EDOS and tape versions of the Assembler will only print sequence numbers
under control of the OPT directive. Then the sequence numbers will be printed
in the right-most five columns of the source listing. Thus, the column titled
"SEQ #" in the following table does not apply to EDOS and tape versions of the
Macro Assembler.

COLLIMM

SERD # NO SEQ # CONTENTS

1-5 e USER-SUFFLIED SERLENCE NHUMEEFR:
CDECIMAL »

=11 1-5 SOURCE LIME MNWUMBER: A FIVE-DIGIT
CECIMAL COUNTEFR HMAINTARIMED BY THE
ASSEMELER

iz & FROGREAM COUNTER SECTION FLAG <A=ASCT.
B=ESCT. C=C2CT, D=DSCT. N=HNAMED
COMMON. P=PSCT?

14-47 a-11 CUREENT PROGRAM COUNTER

19-26 13-14 MACHIME OFERATION CODE
FOR MOM-BRANCH INSTRUCTIOMS:

S2=-23 1&-17 FIRST BYTE OF OPERAMND

225 18-1% SECOND BYTE OF OFERAND CIF AMYD»

2a e OFERAND SECTION FLAG <A. EB. Cs D

; Ms F2

FOR BRANCH INSTRUCTIONS:

2= 16-47 RELATIYE EBRAWNCH OFFSET

25-28 ia-22 RESOLUTE RODRESS OF DESTIMATION
FOF DIRECTIVES LIKE BSZ, EQL ORG

ETC:

25=-20 19-z22 YALUE OF EXFRESSION

ZA-Z5 2424 LAEEL FIELD

EV-42 1-32s OFERRTION FIELD

4350 27-44 OFPERAND FIELD: LONGER OFPERANDS EXTEND
INTD THE COMMENT FIELD

o2-132 46-132 COMMENT FIELD

E-1

E.2 M6805 FORMAT

The M6805 Macro Assembler will automatically print user-supplied sequence
numbers in the left margin if they appear in the source file.

COLUMN
Seq # No Seq #
1-5 -—
T=11 1=5
12 6
14=17 8=11
19-20 13-14
22-23 16=17
24-25 18=-19
31 25
22-23 16=117
28-31 22=-25
22-23 16=117
25=26 19-20
28-31 22-25
28-31 22-25
33-38 27-32
40-45 34-39
46-53 40-47
55=-132 49-132

CONTENTS

User-supplied sequence number (decimal)

Source line numbert a five-digit decimal
counter maintained by the assembler

Program counter section flag (A=ASCT,
B=BSCT, C=CSCT, D=DSCT, N=Named Common,
P=PCST)

Current program counter
Machine operation code

For non=branch instructionss
First byte of operand
Second byte of operand (if any)
Operand section flag (AyB,CyD4N,P)

For branch instruction:
Relative branch offset
Absolute address of destination

For bit test and branch instructionss
First byte of operand

Relative branch offset
Absolute address of destination

For directives like BSZ, EQU, ORG, etcs
Value of expression

Label field
Operation field

Operand field$ longer operands extend
into the comment field

Comment field

E-2

E.3 M6809 FORMAT

The M6809 Macro Assembler will automatically print user-sgpp]ied sequence
numbers in the left margin if they appear in the source file.

COLUMN
Seq # No Seq #
-5 —-——
1-11 =5
12 6
14=-17 8=11
19-20 13-14
21=-22 15-16
24-25 18=19
26=217 20-21
32 26
24-25 18=19
27-28 21=-22
29-30 23-24
32 26
24-25 18=-19
26=-21 20-21
29-32 23=26
24-25 18=19
27-28 21=22

CONTENTS

User-supplied sequence number
(decimal)

Source line numbers a five-digit
decimal counter maintained by the
assembler

Program counter section flag (A=ASCT,
B=BSCT, C=CSCT, D=DSCT, N=Named
Common, P=PSCT)

Current program counter

First byte of machine operatinn code
Second byte of op-code (if any)

For non-branch, non-indexed
instructionss
First byte of operand
Second byte of operand (if any)
Operand section flag (A, B, C, D,
N, P) :

For non-branch, indexed instructionss
Index post=byte
First byte of operand
Second byte of operand (if any)
Operand section flag

For branch instructions:
First byte of relative branch
offset
Second byte of offset (if any)
Absolute address of destination

For M6800 equivalent instructionss
Second byte of translated

instruction
Third byte of instruction (if
any)

E-3

29-30 23-24 Fourth byte of instruction (if

any)
For directives 1like BSZ, EAU, ORG,
29-32 23-26 3§f;e of expression
34-39 28-33 Label field
41-46 35-40 Operation field
47-54 41-48 Operand field$ longer operands extend

into the comment field
56-132 50-132 Comment field

E-4

E.4 CROSS REFERENCE FORMAT

COLUMN CONTENTS

1 Symbol Type Flag:
D - External definition

N - Named common symbol
R - External reference
U - Undefined symbol
M - Multiply defined symbol
S - "SET" symbol
blank - None of the above
2 Symbol Section Flag

blank - ASCT
B - BSCT
C - CSCT
D - DSCT
P - PSCT

4-7 Hexadecimal value of symbol

9-14 Symbo1 name

16-? Assembler-maintained source line numbers of

symbol reference. The asterisk appears
after the line number of a symbol's
definition. If the symbol was undefined,
the asterisk will appear after the symbol's
last reference.

E-5

APPENDIX F
M6800 MACRO ASSEMBLER/M6800 ASSEMBLER DIFFERENCES

Several differences exist between the M6800 Macro Assembler and the M6800
Co-resident Assembler. Obvious differences include such things as relocation,
external references, external definitions, conditional assembly, extended
expression evaluation (operators and parentheses), printing of titles on the
source listing, printing of sequence numbers on the left side of the listing,
macro definitions, and the M6801 instruction mnemonics.

Other differences are not attributable to major new features of the Macro
Assembler. These differences include:

1. The "OPT 0" option is no longer required to generate an object file.
The object file is created as a default.

2. A11 expressions follow the normal rules of algebra rather than the
strict left-to-right evaluation performed by the Co-resident Assembler.

3. The NAM directive is not required.

4. The symbol table space required for each symbol has changed from eight
to ten bytes. In addition, if the cross reference option is in effect,
an additional ten bytes are required for every four references to a
symbol.

5. The Macro Assembler requires more memory.

6. In certain versions of the Macro Assembler, all of the Assembler
options specified with the OPT directive can be specified on the command
Tine that invokes the Assembler. This feature allows various options
to be included or excluded without having to edit the source file.

7. Some versions also allow the source 1isting to be directed to a diskette
file and to direct the printing of error messages to the printer (no
listing being produced).

With the exception of the M6801 option, all of the above differences also apply
to the M6805 and M6809 Macro Assemblers.

F-1

APPENDIX G

USING THE MACRO ASSEMBLER

The following paragraphs describe how to invoke the Macro Assembler from an
MDOS diskette, an EDOS diskette, or from tape. Each section also includes an
example of the command Tine format. After the Macro Assembler has been invoked,
it will display a message of the following format:

MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

M6800 MACROASSEMBLER 2.2
COPYRIGHT BY MOTOROLA 1978

M6805 MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1978

MEB09 MACROASSEMBLER 03.01
COPYRIGHT BY MOTOROLA 1978

to indicate the version of the assembler (M6800 MDOS - first sign on display;
M6800 EDOS or tape - second sign on display; M6805 MDOS - third sign on display;
M6809 MDOS - fourth sign on display) and the current revision number of the
assembler.

G.1 M6800/M6801 MDOS MACRO ASSEMBLER

The M6800 Macro Assembler is invoked from the MDOS command 1ine, as are other
MDOS commands. However, the M6800 Macro Assembler requires that the system has
a minimum of 24K bytes of memory. The format of the command line is:

RASM <name 1>[,<name 2>,...,<name n>] [;<options>]

where <name i> are the names of source files. Each file name in the list of
source files is in the standard MDOS file name format:

<filename> [.<suffix>] [:<logical unit number>]

The default values of "SA" and "@" are used if suffix and logical unit number
are not explicitly entered. Up to twenty file names can be accommodated by the
Assembler. If multiple source files are specified, only the last source file
should contain the END directive. If an END directive is found in a file prior
to the last one, the assembly will exclude any files after the END directive.

The <options> may be one or more of the options listed in the following table.

A11 options except those that control the destination of the source listing, the
destination of the object file, and the printing of error messages on the printer
if no listing is desired, can be specified from within the source program with

the OPT directive. Certain options are automatically used as a default condition.
These conditions can be reversed or overridden by preceding the option letter with
a minus sign (-). The following options are recognized by the Assembler:

G-1

OPTION DEFAULT

A -A
C C
D D
E -E
F F
G -G
H -H
L -L
L=#CN, -L
L=<name>, -L
M -M
N=ddd, N=72
0 0
O=<name>, 0
P=dd, P=58
R -R
S -S
U -U
X -X
yA -7

ATTRIBUTE CONTROLLED BY OPTION

Absolute MDOS-Toadable object file output

Printing of macro calls

Printing of macro definitions

Printing of macro expansions

Printing of conditional directives

Printing of generated code from FCB, FDB, and FCC directives
Input initial heading from the console

Print source listing on line printer

Print source listing on console

Print source listing into diskette file <name> (default
suffix is "AL"; default logical unit is zero)

Print error messages only on line printer

Set printed Tine length to "ddd" (decimal)

Create object file with name <name 1> and suffix "LX"
(absolute EXORciser-loadable), suffix "RO" (relocatable),
or "LO" (absolute MDOS-loadable) on same drive as <name 1>
of command line

Create object file with name <name>

Set number of printed lines per page to "dd" (decimal)
Relocatable object file output

nt symbol table

Print unassembled code between conditional directives
Print cross reference table

Use M6801 instruction mnemonics instead of M6800 and
create M6801 object output

D
rri

Certain options (L=, N=, 0=, P=) require a terminating comma only if other

options follow.
or separators.

Options are normally specified without any intervening blanks
The options "L" and "M" are mutually exclusive, as are "A" and

"R". The "A" option is only supported by the MDOS version of the Macro Assembler.

Each symbol in the symbol table requires ten bytes. Thus, if the minimum of 24K
bytes of memory is used, the Macro Assembler can accommodate about 195 (decimal)
symbols. However, if the cross reference option is specified, the symbol table

requirements differ.

In this case, an additional ten bytes are required by each

symbol for every four references to that symbol. If macro definitions are
used (MACR directive), the available symbol table space will be smaller.

Like other MDOS commands, the RASM command is sensitive to the BREAK and CTL-W
keys of the system console.

The following are examples of valid MDOS command Tines that invoke the Macro

Assembler:

RASM SFILE1;LRX

This command line causes the Macro Assembler to assemble the source
file SFILE1.SA:f) in the relocatable mode ("R" option). A source
lTisting will be directed to the system line printer ("L" option).

At the end of the source listing, a cross reference table will be
printed ("X" option). An object output file, SFILE1.RO:@, will also
be produced automatically.

G-2

RASM FILEA:1;0=TEMP:Q

This command Tline causes the Macro Assembler to assemble the source
file FILEA.SA:1. No source 1isting will be generated, regardless
of the OPT L directives within the source file. An object file will
be created on drive zero. The suffix of the file will be "LX" (if
no OPT REL or OPT ABS is contained in source file) or "RO" (if OPT
REL is contained in source file) or "LO" (if OPT ABS is contained
in source file. '

RASM F1,F2,F3:1;L-0S

This command 1ine causes the Macro Assembler to assemble the three
source files F1.SA:p, F2.SA:p, and F3.SA:1 as if they were one
contiguous source file. A source listing is produced on the system
line printer. No object output file will be created. A symbol
table will be printed at the end of the source listing.

RASM TEST;A _
This command Tine causes the Macro Assembler to assemble the source
file TEST.SA:@. No source listing will be generated. An object file
will be created on drive zero (f). Its name will be TEST.LO, and
it will be in a format that can be loaded by MDOS.

G.2 M6805 MACRO ASSEMBLER

The M6805 Macro Assembler only runs under MDOS. It is invoked from the MDOS
command line, as are other MDOS commands. The format of the command line is:

RASMO5 <name 1>[,<name 2>,...,<name n>] [j;<options>]

With the following exceptions, the command 1ine parameters are the same as
described for the M6800 MDOS Macro Assembler (Paragraph G.1).

1. The "Z" option does not exist.

2. With 24K bytes of memory, the M6805 Macro Assembler can accommodate
about 185 (decimal) symbols.

G.3 M6809 MACRO ASSEMBLER
The M6809 Macro Assembler only runs under MDOS. It is invoked from the MDOS
command line, as are other MDOS commands. However, the M6809 Macro Assembler
requires that the system has a minimum of 32K bytes of memory. The format of
the command line is:

RASMO9 <name 1>[,<name 2>,...,<name n>] [;<options>]

With the following exceptions, the command line parameters are the same as
described for the M6800 MDOS Macro Assembler (Paragraph G.1).

1. The "Z" option does not exist.

2. The "W" option exists and indicates that warnings should be printed.
"-W" suppresses warnings. The default is to print warnings.

3. If the "M" command line option is specified, warnings as well as error
messages are directed to the line printer.

4, With 32K bytes of memory, the M6809 Macro Assembler can accommodate
about 740 (decimal) symbols.

G.4 M6800 EDOS MACRO ASSEMBLER

The M6800 Macro Assembler is invoked from the EDOS command line, as are other
EDOS commands. However, the RASM command requires that the system has a minimum
of 16K bytes of memory. The format of the command Tine is:

RASM, [<1ist>],[<object>],<name 1>[,<name 2>,...,<name n>]

where <list> specifies whether or not a source listing is to be produced, <object>
specifies whether or not an object file is to be produced, and <name i> (i=1 to n)
are the names of EDOS source files. Each file name must be a valid EDOS file

name (five characters). If multiple source files are specified, only the last
file should contain an END directive. If an END directive is encountered prior

to the last file, the assembly will not include files after the END directive.

The <list> can be either the line printer (#LP), the system console (#CN), an
EDOS file name, or null (indicated by a comma only). If no <list> is specified,
no source listing will be produced. If an EDOS file name is used to receive the
source 1isting, then no object file can be created on the diskette at the same
time.

The <object> can be either the line printer (#LP), the system console (#CN), an
EDOS file name, or null (indicated by a comma only). If an EDOS file name is
used to receive the object file, then no source listing can be created on the
diskette at the same time. The line printer or system console should not be
used if the program is being assembled with the relocatable option (OPT REL).

The EDOS Macro Assembler does not support the M6801 instruction set or the
printing of sequence numbers on the left. If sequence numbers are in the source
file, they will only be printed if the OPT SE option is in effect.

Each symbol in the symbol table requires ten bytes. Thus, if the minimum of
16K bytes of memory is used, the Macro Assembler can accommodate about 270
(decimal) symbols. However, if the cross reference option is used, the symbol
table requirements differ. In this case, an additional ten bytes are required
by each symbol for every four references to that symbol. If macro definitions
are used (MACR directive), the available symbol table space will be smaller.

Following are examples of valid EDOS command 1ines used to invoke the Macro
Assembler:

RASM, #CN,PROGO, PROGS

This command line will cause the file PROGS to be assembled. A source
listing will be produced on the system console. The object file PROGO
will also be created on the diskette. Both source and object files
are on drive zero.

G-4

RASM, ,PROGO:1,PROGS

This command line will cause the file PROGS to be assembled. However,
no source listing will be produced. The object file, PROGO, will be
created on drive one.

RASM, #LP, ,PROG1,PROG2,PROG3

This command line will cause the files PROG1, PROG2, and PROG3 to be
assembled as if they were one contiguous source file. A source
listing is produced on the system line printer. No object file will
be created.

G.5 M6800/M6801 TAPE MACRO ASSEMBLER

The tape version of the Macro Assembler is loaded via EXbug. When the EXbug
prompt:

EXbug V.R
is displayed, the command
LOAD
should be entered. EXbug will respond with the prompt:
SGL/CONT
to which the operator should respond with an "S". The tape should then proceed
to be loaded into memory. EXbug will display its prompt again after the load
has completed.
The Macro Assembler is given control via the command:
600;G
(either from MAID, if using EXbug version 1.1 or 1.2, or directly from EXbug, if
using version 2.0). The Macro Assembler will then display a sign-on message,

followed by the prompt:
#LIST,#0BJECT:
?

The operator must respond with the proper device designators as follows:

Designator Device
#CN Console printer
#CP Console punch
#LP Line printer
null No output desired

For example, the operator response:
#CN,#CP

causes the source listing to be directed to the console printer, and the object
file to be directed to the console punch. The operator response:

#LP
G-5

causes the source listing to be directed to the Tine printer, and no object
file to be created. The operator response:

,#CN

causes no source listing to be generated, and an object file to be displayed
on the console printer. A null response for both devices (carriage return only)
will cause neither a source listing nor an object file to be created.

Next, the Macro Assembler will display the message:

SOURCE DEVICE:
?

to which the operator must enter the device designator that contains his source
input file. The console reader (#CR) or the EXORtape (high-speed paper tape
reader) (#HR) is the only valid designator for the source device. The source
tape must be loaded and ready to be read before this response is given.

If an END directive is not encountered in the source file (i.e., a tape time-out
occurred), then the assembler will redisplay the "SOURCE DEVICE" prompt, enabling
the operator to load another source file. This process will continue until an
END directive is encountered in a source file. If no source files contain an

END directive, the operator can respond with the letter "E", followed by a
carriage return to the "SOURCE DEVICE" prompt. This will end pass one of the
assembler and will cause an error to be generated indicating that no END
directive was encountered.

When the END directive is encountered, or when the "E" is entered by the operator
as explained above, the assembler will end pass one, and begin pass two. This
is indicated by the following display:

PASS 2
SOURCE DEVICE:
?

The operator must then reload all of the source tapes in the same sequence as
they were loaded during the first pass. The specification of the device is the
same as during pass one. The termination of pass two is also the same as during
the first pass. During pass two, the source listing and the object file, if
specified, will be produced.

After pass two is terminated, the assembler will display another question mark
prompt (?) to indicate that it is ready to assemble another program. The source
listing and object device designators should be entered at this point if another
assembly is to occur.

If the operator detects an error in an input line that he has entered prior to
depressing the terminating carriage return, the CTL-X keys can be depressed to
cancel the entire line, allowing a new line to be input; or the CTL-H keys can
be depressed causing the previously entered character to be deleted. The
character deleted is redisplayed on the console as positive feedback that it was
removed from the input line.

G-6

Each symbol in the symbol table requires ten bytes. Thus, if the minimum of
16K bytes of memory is used, the Macro Assembler can accommodate about 360
(decimal) symbols. However, if the cross reference option is specified, the
symbol table requirements differ. In this case, an additional ten bytes are
required by each symbol for every four references to that symbol. If macro
definitions are used (MACR directive), the available symbol table space will
be smaller.

The tape version of the Macro Assembler does not support the printing of
sequence numbers on the left margin. If sequence numbers are contained in a
file, they can only be printed with the OPT SE directive; then they will be
printed in the right margin of the source listing. The tape version of the
Macro Assembler does not support the relocatable option either. Thus, all
directives dealing with program sections and relocatable features cannot be
used.

G-7

APPENDIX H

SAMPLE PROGRAMS

The following example illustrates the various Macro Assembler directives

that can be used in any program, regardless of whether or not it is assembled
with the relocatable option. An attempt has been made to show all of the
different types of constants and expression formats that can be used. Although
the listing format shown is for the M6800 Macro Assembler, that is the only
difference between that and the M6805 and M6809 Macro Assemblers for this example.

The comments contained in the example serve to document what the different
directives are used for.
and should be consulted for a description of each directive, if necessary.

PAGE 00 EXAMP! ,.SA:0

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
0001 |
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021A 00920
00022A 0005
00023
00024
00025
00026
00027
00028
00029

00030

* % ok % % % % ¥ F %

* % % % ok % ¥ ¥ %

0005 A
0006 A

L
*
*
*
*
*
*

*

Chapter 4 describes all of the directives in detail,

THIS EXAMPLE ILLUSTRATES THE USE OF THE VARIOUS
ASSEMBLER DIRECTIVES THAT DO NOT INVOLVE
PROGRAM RELOCATION,

TURN ON OPTIONS TO PRINT SYMBOL TABLE AND TO
GENERATE OBJECT LISTING FROM FCB, FDB, AND FCC

OPT S,G
USE DEFAULT VALUE OF PROGRAM COUNTER
FOR INITIAL ORIGIN

BSZ -- BLOCK STORAGE OF ZEROES
FIRST FORM USES SIMPLE CONSTANT
SECOND FORM USES COMPLEX EXPRESSION

BSZ 5 . FIVE BYTES

ABELO BSZ $10%2/2=-510+@77-76Q+101B . 6 BYTES

EQU -- ASSIGN VALUE TO LABEL. FIRST FORM USES
PROGRAM COUNTER IN EXPRESSION, SECOND
FORM USES * AS BOTH PC AND MULTIPLY
OPERATOR. THIRD AND FOURTH FORMS USE
SHIFT OPERATOR.

000B A TAGI EQU * « USE OF PROGRAM COUNTER

00031
00032
00033
00034
00035
00036
00037A
00038A

000 39

>>22>2>>> 2> > > >

00040
00041
00042
00043A
00044A

00045

>>>>>>>>>> >

00046
00047
00048
00049A

000B
000C
000D
O00E
O000F
0010
0011
0012
0013
0014
0015
0016
0017
0018

0019
00IB
001D
OOIF
0021

0023
0025
0027
0029
0028
002D
002F
0031

0033

0035
0036
0037
0038
0039
003A
0038
003C
003D
003E

003C
0BOO
0BOO

ocC

10
OA
08
02
31
30
OB
FF
OA
00
00
14

000C
000A
0010
O0OA
0008
0002
0031
0030
000B
FFFF
O00A
0000
0000
0014

41
42
43
44
45
41
20
20
20
20

A
A
A

>2>>>2>>>>>>>>>

>>>>>>>>>>>>>>

>>>>>>>> > >

TAG2
TAG3
TAG4
*

* FCB =— FORM

*
TAGS

*

* FDB -- FORM

*

*

* FCC -= FORM

*

*

EQU
EQU
EQU

FCB
FCB

FCB

FDB
FDB

FDB

FCG

FCC

kkek /2 « CALC PCxPC/2
TAG1!<8 . SHIFT LSB INTO MSB
TAG1!'<(2!"3) . SAME AS TAG3

CONSTANT BYTE
12 o FORM A SINGLE BYTE

10,$10,810,@Q10,%10,71,20,TAG3!>8,~1

1044420 . USE OF NULL OPERANDS

CONSTANT DOUBLE BYTE
12 . FORM A DOUBLE BYTE

10,$10,810,810,%10,71,70,TAG3!>8,~-1

10,4420 «+ USE OF NULL OPERANDS

CONSTANT CHARACTER STRING
5,ABCDE . STRING "A3CDE"

5,A o STRING "A "

* TURN OF GENERATION OF OBJECT CODE LISTING FRO!

*

OPT

NOG °

00055
00056A 003F
00057A 0051
00058
00059
00060
00061 A 0100
00062
00063
00064

00066
00067
00068
00069A 0100
00070
00071
00072
00073
00074A 0105
00075
00076A 0106
00077
00078A 0108
00079
00080
00081
00082

41
42

0005

0001
0001
0002
0002
0003
0003

A
A

>2>2>2>2> > >

*
STR_2 FCC - "ABC #$%&“() STRING"

STR$1 FCC ABCDEFA . STRING "BChHEF"
*

* REORIGIN THE PROGRAM COUNTER
*

ORG $100 . PC=256 (DECIMAL)
*

* USE SPC DIRECTIVE TO SKIP 3 LINES
*

*

* RMB -- RESERVE MEMORY BYTES

*

LOC. RMB 5 . FIVE BYTES

*

* SET -- INITIALIZE TEMPORARY VALUE TO SYMBOL
*

SKIPs1 SET | CHANGEABLE SYMBOL

SKIPS1 SET SKIPSI+1
RMB SKIPSI

RMB SKIPS! . ONE BYTE
SKIPSI SET SKIPSI+1 .
RMB SKIPS| . TWO BYTES

THREE BYTES
END == END OF PROGRAM

* % %

EnND

TOTAL ERRORS 00000--00000

LABELO 0005 LOC.

TAGI 0008

TAG2

0100 SKIPSI 0003 STRSI 0051 SIR_2 NO3F
003C TAG3 0BOO TAG4 0B0OO TAGS 1008

H-3

H.1 M6800 PROGRAMS

The next two examples illustrate the use of the relocation scheme. The first
program is a "main" program that calls a subroutine which is assembled external
to the main program. The main program sets up the parameters prior to calling
the subroutine. These two examples also show the format of the program listing,
as well as the usage of the various addressing modes and relocatable directives.
First, the main program is shown.

FRGE @8l ERELMAIN . SA:1

alsirishi #*

B # THIS EXAMFLE ILLUSTREATES THE UWSE OF THE
]k # RELOCATRBLE DIRECTIVES

HEEEd W

BEREES #

CHEEIEE e

alalsisr # TURK OM RELOCATRELE AMD CROSS REFEREMCE
GRS # THELE DPFTIOMNS

HEEES *

L B OFT FEL. CEE

AEEL #

el # DEFIME THE EXTERMAL REFERENCES TO A
EISEL 3 # MOWE CHARACTEER SUBRDUTINE. "MOWE"
@EERL S # 1% THE EMTREY FOIMNT TO

BEELS # THE ROUTIME: "FROM" IS A FPOINTER
BEELE # TO A SOURCE STRIMG: AMD "TOo" IS A
BEELV # POIMTER TO A DESTINATION STRIMG
RAEELE #*

AL “AFREF ESCT :FROM. TO, PSCT : MOVE
HEE, DEFIME EMTEY POINT INTO EXBUG

AREZ 2

FCF4 R EXBUG EGLU FFCF4

&

:
2
2
-
(=

e
2
7y
2
z
%

DEFIME R STRIMG: BUFFER. AMD STACK
IM THE DATA SECTION

&
5
A
5 %]
(5]
[}
5]

DDA R D N o Iy S Ry B R

Heoh GEEE LaCT
B2ah Beea Al A FME 29 . STARCE AREA
BEZEALD B gaG1 A STACK EME : . TOP OF STARCE
(5 BE1LE =T A STRIMG FCC "WILL EBE MIWED TO BUFFER"
s HEES D STREMD EGLU * . EMD OF STRING
HEZED BBz5 BESE H BUFFER EME t=]5] . DESTIMATIOM BLUFFER
ARG #*
BREZES # DEFIME THE MAIM FREOGRAM IW THE
BISEAEE # FROGREAM SECTION
AARAZET #
BERZSF BEeGE FSCT
BIRE SR BEGE P START EQLU # .
AERdEF aeeE SE aeilh D LD #STACE . IMITIALIZE STACE FOINTEER

H-4

gEaadlF Boas CE gl L L[#EZTRING . SOURCE STRIMG

HEG42F BaEs DF 0@ A ST FROM :

BEEGER oEes CE eEzs D L[#EUFFER . DESTIMNATIOWN AREHR
BEGG4F BEBE DF Qe A ST TO

AEa45F eEah Ce 17 A LAk #’TPEHﬁ—:TPIHu . LEMGTH TO MOVE
Gendel DUoF B GE0E A JER MI2VE . ROUTIME TO MOVE

aaad PR aelz YE FOF4 A JHF EXBEUG . EAIT TO DEEULG MONMITOR
HEad S #*

B2 aEaEE - F END STHRT . STARTIWG EXECUTION RDDRE
TOTAL EREORS QEO0E--B0EEE

[BEZE5 BUFFER BRAZEZ+EER43

FCF4 EXBLIG BOA2Z+HE0H47

RE FROM GEE1 +06042
FF MOYE s an Reldala ST

D BEll STACK HEEEE+EA840

P @Ba8n START GEE3Ze0a042

[BEES STREND BOE3E2+60645

D BElE STRING g@@Zi+00841 GRE45
FE TO BEEL2E0EEG 4

Next, the "MOVE" subroutine is shown.

PAGE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
000168
000178
000188
00019
00020
00021
00022
00023
00024
00025P
00026
00027p
00028P
00029p
00030p
00031P
00032P
00033pP
00034v¢
00035p
00036P
00037p
00038
00039

001

0000
0000
0002

0000

0000
0002
0004
0005
0007
0009
000B
00oC
000E
000F
0011

MOVE

DE
A6
08
DF
DE
AT
08
DF
5A
26
39

.SAz1
0002 A
0002 A
0000 P
00 B
00 A
00 B
02 B
00 A
02 B
EF 0000

@

[HIS EXAMPLE IS THE "MOVE"™ ROUTINE

RESERVE SPACE IN DIRECT ADDRESSING AREA

- SOURCE POINTER

DESTINATION POINTER

SUBROUT INE

BYTES IN SOURCE

"TO" SET UP BY

ENTRY POINT

PICK UP SOURCE ADDRESS
GET SOURCE BYTE

SAVE INCREMENTED POINTER
STORE DESTINATION BYTE

SAVE INCREMENTED POINTER
DECREMENT COUNTER
LOOP UNTIL ZERO .
RETURN TO CALLER

%*
*
* CALLED BY THE PREVIOUS EXAMPLE.
*
"
OPT REL ,CRE .
*
* DEFINE THE EXTERNAL SYMBOLS
*
XDEF MOVE FROM,TO
*
*
* FOR THE SOURCE AND DESTINATION
* POINTERS.
*
BSCT
FROM RMB 2
TO RMB 2
o
* DEFINE THE “MOVE"®
* ENTERED WITH "B" = NO,
* STRING., “FROM" AND
* THE CALLING PROGRAM.
%
PSCT
MOVE EQU *
LDX FROM
LDAA 0,X
INX
STX FROM
LDX ToO
STAA 0,X
INX
SIX TO
DECB
BNE MOVE
RIS
*
END

TOTAL ERRORS 00000--00000

DB 0000 FrOM
DP 0000 MOVE

b8 009

2 TO

00010 0001 7%*00027 00030
00010 00026*00036
00010 00018*00031 NNO34

H-6

H.2 M6805 PROGRAM

The following example illustrates the use of the bit instructions.

4
A #TZTEIT CHECES AM 1.0 BIT AND SETS
A #0F CLEARS SOME EIT FLAGS

A # DEPENDING OM STATE OF 170 BIT

+:

BB H IMFUT E@LU ¥4 IMFUT DRTA

=
al 120

DB o o
SO B R

3 g

(5] AAEETH G640 ORG 46

FESE BEEESA G840 BEE H FLAGL FME i BIT FLAG=

BEESE BEEE9H AGdl e e A FLAGZ EME 2 EIT FLAG=
BELEHE GRG1ER 8888 ORG Fo

BEL1E Beell BESE A TSTEBIT EGU #*
BELZE BEELZA GB26 097 64 A8 BEss ERCLE Z. IMFUT. OFF

BELEH Gaals #IMFUT BIT IS OW —— SET S0OME EIT FLAGS
BELAE BOE14R G 1A 48 H BZET S, FLAGL

BELSEH BEELEH BE 14 48 A EBSET 2 FLAGL
BE1EE BEE1ER BE8Y 28 65 BESF ERA COMT
EELFE BB #IHNFLT BIT IS OFF —- CLEAR SOME BIT FLAG
BELSE BEE1DA GEss 11 94 H OFF BCLE B FLAGS

BEL2E BEE19H G82E 10 94 A EBCLE & FLAGZ

b TS T [e T e T) O <= 2 A BCLE 7. FLAGE

L e e s T S b HESF A OCONT Ezn # COMTIMUE FPROCESSI
L5 g v R 5 T T e EMD

TOTAL ERFOEZS GEGEE-—BHEEE

H-7

H.3 M6809 PROGRAMS

The following example illustrates how a program can take advantage of the
direct addressing mode without being a relocatable program using BSCT.

00001
00002
00003
00004
00005
00N06
00007
00008
00009
000 10A
00011
00012A
00013A
00014A
00015
00016
00017
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028

2070

2000
2001
2003

2067
2069
2068
206D
206F
2071
2013
20175
2077
2078

86
IF
96
9E
AT
9F
81
27
3B
20

000D
00

2003
0064

0020

20
8B
00
Ol
80
Ol
oD
0l

FE

*

*THIS PROGRAM HANDLES AN INTERRJPT FROM
* AN INPUT DEVICE=-=IT GETS CONTROL ON
* AN IRQ FROM A PIA, INPUTS A CHAR,
* CLEARS THE INTERRUPT, PUTS THE CHAR.
* IN A BUFFER, INCREMENTS TAE BUFFER
* PTR, TESTS FOR END OF LINE, RESTORES
* REGISTERS, AND RETURNS
*
0ORG $2000
A EOL EQU $D CR IS END OF LINE IND.
A MODEM FCB 0
A BUFPTR FDB BUF
A BUF RMB 100
*SET UP DP PSEUDO REG. FOR ASSEMBLER
A SETDP $20
*SET UP DP REGISTER FOR EXECUTION
A LDA #$20
A [FR A,DP
A LDA MODEM CLEARS PIA IRQ
A LDX BUFPTR GET PTR
A STA X+ STORE CHAR
A STX BUFPTR UPDATE PIR
A CMPA #EOL END OF LINE?
2078 BEQ EOLGP IF YES, MORE TO DO
RTI ELSE, RETURN
2078 EOLGP BRA *
END

TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

The following example illustrates how position independent code can be
generated by using the PCR indexing mode.

00001
00002
00003
00004
00005
00006

00008A
00009A
00010A
O0011A
00012A
00013

00015A
00016A
0001 7A
00018A
00019A
00020A
00021

00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031 A
00032A
00033A
00034

0000
0005
000A
000F
0014

00l E
0021
0024
0027
0029
0028

002D
002F
0031
0033
0035
0037
0039
003A
003C
003E
003F
0041

30
31
33
Cé
8D
20

I A
34
86
AO
35
A9
19
34
AT
5A
26
35

99
99
0l
99
NOO0A
000A

3C E9
8C FO
8C F7
0A
02
FE

Ol
0l
99
A2
0l
82

0]
c2
FO
81

=222 >

A
002D
0028

> > > >

> >

0031
A

TOIAL ERRORS 00000--00000

[OLAL WARNINGS 00000--00000

* % %k % % %

MINUEN FCB
FCB
SUBTRA FCB
FCB
RESULT RMB
COUNT EQU

LEAX
LEAY
LEAU
LDB
BSR
BRA

*

SUBSEQ SEC
PSHS

LOOPS LDA
SUBA
PULS
ADCA
DAA
PSHS
STA
DECB
BNE
PULS
END

H-9

SUBSEQ SUBTRACTS A SEQUENCE OF DECIMAL
DIGITS (1Y) FROM ANOTHER SEQUENCE
OF DECIMAL DIGITS (IX) AND STORES
THE RESULT (US)
ALL STRINGS ARE COUNT BYIES LONG

$99,599,599,599,$99
$99,$09,500,$00,$N0
$01,%09,500,$00,$00
$99,%00, 854,832,511

10
10
MINUEN+COUNT ,PCR
SUBTRA+COUNT ,PCR
RESULT+COUNT ,PCR
#COUNT
SUBSEQ
*
SET CARRY
cC CARRY TEMP
#$99 THE TEN’S COMPLEMENT
0,-Y NO CARRY POSSIBLE
cC THE SAVED CARRY
0,=X DO A BINARY ADD
BACK TO BCD
cC SAVE THE CARRY
0,=U STORE THE RESULT
DONE?

LOOPS IF NOT, 50 AGAIN
CC,PC CLEAN UP STACK AND RET

