
M68XDOS4 (D3)
OCTOBER 1982

EXORset Disk Operating System User’s Guide

XDOS 4.0

The information in this document has been carefully
checked and is believed to be entirely reliable. No
responsibility, however, is assumed for inaccuracies.
Furthermore, such information does not convey to the
purchaser of the product described any license under’ the
patent rights of Motorola, Inc. or others.

Motorola reserves the right to change specifications
without notice.

EXORset, EXORbug, EXORciser, XDOS and MDOS are
trademarks of Motorola, Inc.

Third Edition
Copyright 1982 by Motorola, Inc.

MANUAL ORGANT ZATION

The purpose of this quide is to provide the user with
the necessary information required to generate an XDOS

system, to use the xXDOS command programs, and to produce
user-written programs that are compatible with XDOS. In

addition, a brief summary is presented of the XDOS-supported
software products which are currently available.

The User’s Guide has been divided into two parts. PART
I is intended for the new user of XDOS who is just receiving
his system. It is essentially a manual within a manual that
can be read as an entity by itself. It provides the basic
concepts that are necessary for the simplified operation of
XDOS. PART I contains descriptions and examples of the basic
forms of the most frequently used XDOS commands in the order
in which they would most likely be used ina software
development environment. The infrequently used commands’ are

also summarized in order to direct the user to those chapters
(command descriptions) as the need for their use arises.

PART II is intended as a detailed reference manual. for

those who need to know specific or extended information about
the XDOS commands, the system structure, and the resident
system functions.

Page ii

—

4

—

TABLE OF CONTENTS Page

MANUAL ORGANIZATION . 2. 2. «© © © © © © © © © © © © «© Li

TABLE OF CONTENTS « « « « «© » © © # «© w® # © w » © w» LUD

PART I -- SIMPLIFIED XDOS USER“S GUIDE

1. INTRODUCTION . 6 6 © # ee 6 ee we eh huhu !hUhhUmhhUmwh*e dhOLHO1

1.1 Hardware Support Required +... O1-O1
1.2 Additional Supported Hardware « « O1-O1
1.3 Software Support Required 6 6 « »« « « O1-O1
1.4 Program Compatibility . . 2. . « « © « © « » « « O1-O2
1.5 Hardware Installation « « « « « « O1-02
1.5.1 Operating Principles « « « « O1-04
1.5.2 Logical Unit Numbers «© « « « « O1-05
1.5.3 Configuration Requirements + « O1-05
1.5.4 Configuration Paramenters 6 « « « 01-06
1.5.5 Operating on the Alternate Controller 01-07
1.5.6 Disk Disgnostics «+. © © « « « « « « O1-07
1.6 Software Installation »« © © © « « « O1-08

2. GENERAL SYSTEM OPERATION 6 « « « © «© «© « O2-01

2.1 System Initialization © © « © © « « « © O2-O1
2.2 Sign-on Message «6 «© © © «© «© «© © © «© « 02-02
2.3 Initialization Error Messages «+ « 02-02
2.4 Operator Command Format 6 « «© © « « « « O2-06
2.5 System Console« « © © « © © © « © « Q2-07

2.5.1 Carriage return key . .. 2... «6 © « « « 02-07
2.5.2 Control-P . . . 2. «6 © «© © © © © © © © «© «© 02-07
2.5.3 Control-W . . 2. 2 2 2 6 © © © © © © ew ew hf 02-08
2.5.4 Control-X . . . 2. «© © © © © © © © © © © «© 02-08
2.5.5 DEL or RUBOUT . .. «+ © © © © © © «© «© « O2-08

2.5.6 Control-D . . . « © «© «© © © © «© © «© © « «© 02-08
2.6 Common Error MesSages 6 «© «© © » © « « « O2-09
2.7 Diskette File Concepts-+-. +. O2-ll

2.7.1 File name specifications 02-11
2.7.1.1 Family names + 02-12
2.7.1.2 Device specifications 02-13

2.7.2 File creation . . 2... © © © « «© © © «© « 02-13
2.7.3 File deletion 2. «© «© © «© © © «© «© « 02-13
2.7.4 File protection . . . 2. .« © « © © « «© © © O2-14

2.8 Typical Command Usage Examples +. » O2-15
2.8.1 DIR -- Directory display »« 02-16
2.8.2 E.CM -- Program editing +... « 02-17
2.8.3 RASMO9 -- Program assembling 02-17
2.8.4 DEL -- File deletion-... 02-18
2.8.5 LOAD -- Program loading/execution 02-19
2.8.6 NAME -- File name changing 02-20
2.8.7 NAME -- File protection changing 02-20
2.8.8 COPY -- File copying 02-21
2.8.9 BACKUP -- XDOS diskette creation 02-22

2.9 Other Available Commands « « 02-23
2.9.1 BACKUP -- Diskette copying « 02-23
2.9.2 MERGE -- File concatenation« 02-23
2.9.3 FREE -- Available file space display . . 02-23
2.9.4 CHAIN -- XDOS command chaining 02-23
2.9.5 DUMP -- Diskette sector display 02-24
2.9.6 FORMAT -- Diskette reformatting 02-24

XDOS 4.0 User’s Guide Page iii

TABLE OF CONTENTS Page

2.9.7 DOSGEN -- XDOS diskette generation .. . 02-24
2.9.8 ROLLOUT -- Memory rollout to diskette . . 02-24

2.10 XDOS-Supported Software Products 02-24
2.11 Paper Alignment © © «© © « © « « Q2-25

PART II -- ADVANCED XDOS USER“S GUIDE
ee es ee ee ee em ee ee ee ee ee we

3 ° BACKUP COMMAND ° ° ° ° ° ° ° ° ° e e ° ° ° e e e ° 0 3-0 1

3.1 Use... see 6 wm ee we eh hUhUh!hUh huh !hU!.hUmh hw) 6O3B=O1
3.2 Diskette Copying <6 *® #8 © e © ww 6 we we Ow we & O3=O2
3.3 File Reorganization « © « «© « © « © « 03-03
3.4 File Appending . ewe «ee we we wee we we ow hw 6 OSHOT
3.5 Diskette Verification . . . 2. 2. «© © «© © «© « «© « 03-09
3.6 Other Options 6 «6 « © © «© © © © «© « «© « 03-09
3.7 Messages» a 0 1 Oe i
3.8 Precautions with BACKUP oe 6 6 wm we « « O8—L5

3.8.1 BACKUP and the CHAIN process ° » © © e 03-15
3.9 Examples cS 2e es we ee Ss » « e © O3-16

4 ° CHAIN COMMAND ° ° ° ° ° ° e ° ° ° ° ° e ° ° e ° ° ° 04-01

4.1 USe « «© we we we we HH HH B®
4,2 Execution Operators

4.2.1 Execution Comments.
4.4.2 Operator Breakpoints
4.2.3 Error status word .
4.2.4 SET operator ...
4.2.5 TST operator
4.2.6
4.2.7
4.2.8

° °

e
e

8
@

e

JMP operator

e
e
e

«©

©
©

©
©

©
@

o

>

I
1
t
t
t
t
t
d

jo
)

Ww
W

LBL operator

CMD Operator .

3 o 8
4 Resuming an Aborted CHAIN Process .
5

4.3 MessageS . . . 6 © « «© «© «© » ® « - » 04-06
4. eo. - « 04-08
4.5 Examples © © «© © © © © © © © « - « 04-09

5. COPY COMMAND «6 © © © © © © © «© © © © « O5-O01

Sed USE 2 6. we e 8 © © ee © ew el wlll ehlUwlUllUwlhUl 65K OL
5.1.1 Diskette-to-diskette copying 05-02
5.1.2 Diskette-to-device copying 05-02
5.1.3 Device-to-diskette copying 2 6 © © © © © 05-04
5.1.4 Verification 2 6 © © © oe ew hw he 605-05
5.1.5 Automatic verification oe © eo ew ew el wl he 05-06

5.2 User-Defined Devices« © «© « © © « © « 05-06
5.3 COPY Mode Summary . . 2. «© «© © © © © © « « e e © 05-07
5.4 Messages . . . 2. «© «© © © © © © © © © © © © ew ht 05-08

5.5 Examples. é F oe © © eo ew he 05-09
5.5.1 Diskette- to- -diskette example o 6 © © © « 05-09
5.5.2 Diskette-to-device example ». 05-10
5.5.3 Device-to-diskette example . » «© «© « « 05-10

6. DEL COMMAND . 2... . © © «© « © © «

6.1 Use. . “2 © we © © © ww we @ » 06-01
6.1.1 Single file name "deletion © © © © © © © © 06-01
6.1.2 Multiple file name deletion 06-02

XDOS 4.0 User’s Guide Page iv

TABLE OF CONTENTS

6.1.3 Family deletion «© «© «© © «
2 Options « 6 6 «© ss es te ew he ehhh ll
3 MessageS + « © «© © «© © © «© «© © © «

4 Examples . 6 «© «© #8 © #6 8 6 He He eee Hw ®

7s DIR COMMAND « « # # #8 @ &@ @ 8 ee we we HH Fe ee we

7.1.5 Other options
7.2 Messages . . 2. « «6 © «© © « «

7.3 Examples oo « «

Fel USG 2 es we ee ww ew em we om ok ee me Oe
7.1.1 Families-e.«. -s “-. « 8
7.1.2 System files. « ae we o 6 8
7.1.3 Entire directory ening ow @ 2 - s
7.1.4 Segment descriptors o 8 8

8. DOSGEN COMMAND 6 « © © © © © © © © © «

Use... ° o © © ©
Diskette Surface Test ..
Minimum System Generation
MessageS « e

Examples . 2... 6 « « « a
n
w
n
w
a
a

ON

®
W
N
E

9 e DUMP COMMAND e e e e e e e e e e e e e e e e e e e

9.1 Use... . . ° °
9.1.1 Physical Mode of operation
9.1.2 Logical Mode of operation
9.1.3 Sector change buffer ..
UMP Command Set 6 «

Quit -- Q.....e« «
Select logical unit -- U °
Open diskette file --O. 3
Close diskette file -- C ;
Show sector -- S i
Print sector -- L.... . °

Read sector .into change buftac -- R

Write change buffer into sector -- W
Fill change buffer -- F....

-lL0 Examine/change sector buffer .
sageS . 2. © « © » © © «© © © © © e
mpleS . 2. » © © © © « © © © «© « « Y

V
9
N
N
N
N
N
N
N
N
N
N
N
 S
F

o
s

©
w
o

ew
w
w

W
D
A
I
N
D
U
N
A
W
N
E

e
o
 8

&
©
 ©

©
©

o
w

*
*

6

ee
*

®

e

6

©
©

©

©
©

©
8

l
w

o
e

@
&

o
e

ec
w
e
 w

e
we
8

o
e

eo
©

ew

e
e

e
e

e
e
e

e
e

eo
we

w
e
 w

e
we

ew

eo
0
©

©
©

o
w

w
w

O
e

ee

e
e

LO. FORMAT COMMAND .« « «© « = «=e = we ee ew ow we we

10.1 Use e e@ e e @ e e e e e e e e e e e e e e e e

10,2 Messages «wn we we we ee oe we Oe we ee
10.3 Beample « «© ss © sw Be 6 eH huhu UU

ll. FREE COMMAND oo © © © © © © © «© «

11.1 Use e e@ e e e e e e e e @ e e @ e@ e @ e e eo e

11.2 Example . . 2. 2. 2. «© «© © «© © © © © © © © © 8

XDOS 4.0 User’s Guide Page

Page

06-02
06-03
06-03
06-04

07-01

07-01
07-02
07-02
07-02
07-04
07-04
07-04
07-06

08-01

08-01
08-03
08-04
08-04
08-06

09-01

09-01
09-01
09-02
09-02
09-03
09-03
09-04
09-04
09-04
09-05
09-05
09-06
09-07
09-08
09-08
09-09
09-11

10-01

10-01
10-02
10-02

11-01

11-01
11-01

TABLE OF CONTENTS

12. GIST COMMAND-. +. © © © «© «© «© « »

12.1 Use.
12.1.1
12.1.2
12.1.3
12.1.4 Non-standard page formats .

12.2 MessageS . 2. « « «© « © © © © © © «
12.3 Examples 6 « © © © © © © «

13. LOAD COMMAND © © © © © © e

13.1 Use.

13.1.1
13.1.2
13.1.3
13.1.4

Start/end specifications
Physical line numbers .
User-supplied heading .

Page

e ° 12-01

s « » 12-01
12-02
12-02
12-03
12-03
12-03
12-04

- » 13-01

- « 13-01
Command-interpreter-loadable programs . 13-02

programs13-04
Map

Non-command-interpreter-loadable
Programs in the Alternate Memory
XDOS command line initialization

14.

15.

16.

13.1.5 Entering the debug monitor
13.2 Error Messages © «© © © «
13.3 Examples «6 © « © «© «© © e

MERGE COMMAND« « «© © © © © « «

14.1 Use .. ce *« «© 8
14.1.1 Merging non-memory-image files
14.1.2 Merging memory-image files
14.1.3 Other options

14.2 Messages « © © © © © «© e

14.3 Examples «6 © «© © © © «© »

NAME COMMAND . . . «6 © «© © © © © « «

15.1 Use . 2... «2. © © © © © © © ©
15.1.1 Changing file names...
15.1.2 Changing file attributes .

15.2 Error MessageS . . . « «© e« « « e

15.3 Examples « « « « e e

ROLLOUT COMMAND « « © « e

16.1 Use . 2. «© © «© «© © © © © © © ©
16.1.1 Alternate Memory Map...
16.1.2 Non-overlayed memory .. .
16.1.3 Overlayed memory
16.1.4 Scratch diskette conversio

16.2 Messages . . 2. « © © © © © «© «© «
16.3 Examples 6 © © © © «© »

XDOS 4.0 User’s Guide

« « 13-05
13-06
13-07
13-07
13-08

- « 14-01

- 14-01
- 14-02
- 14-03
- 14-04
- 14-04
- 14-05

- e 15-01

15-01
15-01
15-02
15-03
15-03

° ° 16-01

16-01
16-02
16-03
16-03
16-05
16-05
16-07

Page vi

17.

18.

TABLE OF CONTENTS

SYSTEM DESCRIPTION 2. © « © « -«

17.1 Diskette Structure

17.1.1
17.1.2
17.1.3
17.1.4
17.1.5
2 File

17.2.1
17.2.2

17.

Diskette tdenbif ication “Block

Cluster Allocation Table

Lockout Cluster Allocation Table

Directory so ©

Bootblock -« . « « °

Structure . . oe “ «© *

Retrieval fnformation Block oe

File formats

17.3 Record Structure « » «
17.3.1
17.3.2
17.3.3
17.3.4

Binary records

ASCII records . 7
ASCII-converted- “binary seconds °

File descriptor records
17.4 System Files 2. « «

17.4.1
17.4.2

17.5
17.6
17.7
17.8
17.9

INPUT/OUTPUT FUNCTIONS FOR SUPPORTED

System overlayS»
System error message file .

Memory Map. . ca 8 & © B &@

XDOS Command Interpreter o 8 & & ® & &

Interrupt Handling «+ «© «© «

System Function Calls
XDOS Equate File«. »

18.1 Supported Devices... ss © «
18.2 Device Dependent I/O Tune tions o 8 8

18.2.1
18.2.2
18.2.3

DEVICES

Console input -- .KEYIN . < « .
Check for BREAK key ~-- .CKBRK . ee

Console output -- .DSPLY, .DSPLX, .DSPLZ

-2.3.1 Example of console I/O Fi

Printer output -- .PRINT, .PRINX -

-2.4.1 Example of printer output soa
Physical sector input -- .DREAD, .EREAD
Physical sector output -- .DWRIT, .EWRIT
Multiple sector input -- .MREAD, .MERED

Multiple sector output -- .MWRIT, .MEWRT
Diskette controller entry points . .

XDOS 4.0 User’s Guide

18.3 Device Independent I/O Functions... so. #
18.3.1 1/0 Control Block -- IOCB . .

18.3.1.1 IOCSTA -- Error status... °
18.3.1.2 IOCDTT -- Data transfer type .
18.3.1.3 IOCDBP -- Data buffer pointer
18.3.1.4 IOCDBS -- Data buffer start .
18.3.1.5 IOCDBE -- Data buffer end to¢
18.3.1.6 IOCGDW -- Generic device word .
18.3.1.7 IOCLUN -- Logical unit number
18.3.1.8 IOCNAM -- File name . e 8 &
18.3.1.9 IOCSUF -- Suffix... . w@ ©
18.3.1.10 IOCMLS -- Maximum LSN referenced
18.3.1.11 IOCSDW -- Current SDW.. . .
18.3.1.12 IOCSLS -- Starting LSN of SDW .
18.3.1.13 IOCLSN -- Next LSN ... © 8

18.3.1.14 IOCEOF -- LSN of end-of- file e
18.3.1.15 IOCRIB -- PSN of RIB ... f
18.3.1.16 IOCFDF -- File descriptor flags

18.3.1.17 IOCDEN -- Directory entry number
18.3.1.18 IOCSBP -- Sector buffer pointer

Page

Page

17-01

17-01
17-02
17-02
17-03
17-03
17-05
17-06

"17-06
17-08
17-09
17-09
17-10
17-11
17-13
17-14
17-14
17-15
17-16
17-19
17-20
17-21
17-23

18-01

18-01
18-01
18-02
18-04
18-04
18-05
18-06
18-07
18-07
18-10
18-10
18-11
18-12
18-12
18-13
18-17
18-18
18-21
18-21
18-21
18-22
18-22
18-22
18-22
18-23
18-23
18-24
18-24
18-24
18-24
18-24
18-28
18-28

vii

TABLE OF CONTENTS Page

18.3.1.19 IOCSBS -- Sector buffer start . . 18-29
18.3.1.20 IOCSBE -- Sector buffer end . . . 18-29

18.3.1.21 IOCSBI -- Internal buffer pointer 18-29
18.3.2 Reserve a device -- .RESRV 18-30
18.3.3 Open a file -- .OPEN © 18-31
18.3.4 Input a record -- .GETRC 18-35
18.3.5 Output a record -- .PUTRC 18-38
18.3.6 Close a file -- .CLOSE 18-41
18.3.7 Release a device -- .RELES ... « « « 18-43
18.3.8 Example of device independent 1/O” - « « 18-44

18.3.9 Specialized diskette I/O functions . .. 18-47

18.3.9.1 Input logical sectors -- .GETLS . 18-47
18.3.9.2 Output logical sectors -- .PUTLS . 18-49
18.3.9.3 Rewind file -- .REWND .. . - « 18-51
18.3.9.4 Example of logical sector 1/O” - » 18-53

18.3.10 Error handling « © « « e« « 18-56

O
M
B
D
A
H
N
D
M
N
P
W
N
Y
D

19. INPUT/OUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES 19-01

19.1 Device Dependent I/O« « « 19-01
19.2 Device Independent I/O... P - e » 19-01

19.2.1 Controller Descriptor Block -- CDB » « « 19-01
19.2.1.1 CDBIOC -- Current IOCB address .. 19-04

19.2.1.2 CDBSDA -- Software driver address 19-04
19.2.1.3 CDBHAD -- Hardware address . . - 19-04

19.2.1.4 CDBDDF -- Device descriptor flags 19-04
19.2.1.5 CDBVDT -- Valid data types 19-06
19.2.1.6 CDBDDA -- Device dependent area . 19-07
19.2.1.7 CDBWST -- Working storage 19-07

19.2.2 Device drivers. . « « « «© « » » « 19-08
19.2.3 Example of device driver © 6 © © © © © « 19-09

19.2.4 Adding a non-standard device 19-12

XDOS 4.0 User’s Guide Page viii

TABLE OF C ONTENTS

20. OTHER SYSTEM FUNCTIONS

20.1 Regist
20.1.

20.1.

20.1.
20.1.

20.1.

20.1.

20.1.7

20.1.8

20.1.9
20.1.10

20.1.11

20.1.12

20.1.13

20.1.14

20.1.15
20.1.16

A
u

R
W

20.2 Double-

20.2.1
20.2.2

20.2.3

20.2.4

20.3 Charac

20.3.1

20.3.2

20.3.3

20.3.4

20.3.5
20.3.6

20.4 Disket

20.4.1
20.4.2

20.4.3

20.4.4

20.4.5

20.4.6

20.5 Other
20.5.1

20.5.2

20.5.3
20.5.4

20.5.5

20.5.6

21. ERROR MESS

er Functions . . ee ew me se we © © ee
Transfer X to B, A == .TKBA « « « «© @ «@

Transfer B,A to X -- .TBAX«

Exchange B.A with X -- .XBAX
Add B to X -- .ADBX «+e «6 «

Add A to X -- .ADAX 6 «6 © « «

Add B,A to X -- .ADBAX « «

Add X to B,A -- .ADXBA « «

Subtract B from K -- .SUBX«
Subtract A from X -- .SUAX
Subtract B,A from X -- .SUBAX

Subtract X from B,A -- .SUXBA

Compare B,A with X -- .CPBAX
Shift X right -- .ASRX
Shift X left -- .ASLX «
Push X on stack -- .PSHX-
Pull X from stack -- .PULX

byte Arithmetic Functions
Add A to memory -- .ADDAM
Subtract A from memory -- .SUBAM.. .

Shift memory right -- .DMA..... .
Shift memory left -- .MMA
ter String Functions =. . « »
String move -- .MOVE «+. «
String comparison -- .CMPAR
Character-fill a string -- .STCHR ..
Blank-fill a string -- .STCHB .
Test for alphabetic character -- .ALPHA
Test for decimal digit -- .NUMD ...
te File Functions +... +s...
Directory search -- .DIRSM«
Change file name/attributes -- .CHANG

Load program into memory -- .LOAD .
Allocate diskette space -- .ALLOC ..
Deallocate diskette space -- .DEALC .
Display system error message -- .MDERR

Functions .. os 6 e &e * 6 ew mH we
Process file name -- .PFNAM

Re-enter resident XDOS -- .MDENT .. .
Reload XDOS from diskette -- .BOOT. .
Set system error status word -- .EWORD

Allocate user program memory -- .ALUSM
Issue next command -- .COMND

AGES e e e e e e e e e e e e e e e e e

21.1 Diskette Controller Errors e

21.1.1

21.1.2
21.2 Standa

Errors during initialization
Errors after initialization
rd Command Errors .. . 6 6 © © » e« »

21.3 Input/Ouput Function Errors +...
21.4 System Error Status Word... . eo me «
21.5 Comman

APPENDICES

ds Affecting Error Status Word ._ e

A. Track-Sector/Physical Sector Conversion Table . .

XDOS 4.0 User’s Gui de Page

Page

20-01

20-01
20-02
20-02
20-03
20-03
20-03
20-04
20-04
20-04
20-05
20-05
20-05
20-05
20-05
20-06
20-06
20-06
20-07
20-07
20-07
20-08
20-08
20-08
20-08
20-09
20-10
20-10
20-11
20-11
20-11
20-12
20-16
20-18
20-23
20-25
20-27
20-32
20-32
20-35
20-35
20-36
20-36
20-38

21-01

21-01
21-01
21-05
21-06
21-16
21-17
21-18

A-01

ix

TABLE OF CONTENTS

B. ASCII Character Set... .

C. XDOS Command Syntax Summary

D. Diskette Controller Entry Points

E. Mini-Diagnostic Facility .

F. Diskette Description, Handling,

G. Directory Hashing Function

H. XDOS Equate File Listing .

I. xXDOS 4.00 Differences...

J. IOCB Input Parameter Summary

XDOS 4.0 User’s Guide

Format

Page

Page x

PART I

SIMPLIFIED XDOS USER“S GUIDE

(’

VU

CHAPTER 1

1. INTRODUCTION

The EXORset is a single or double-sided, single-density
mini-diskette drive system. Two diskette drives and their
controller are included in the EXORset.

The EXORset Diskette Operating System (XDOS) is a subset
of the EXORciser Disk Operating System (MDOS). Used in
conjunction with the hardware environment of the EXORset
(micromodule compatible) , it provides a powerful and
easy-to-use tool for software development. xXDOS is an
interactive operating system that obtains commands from the
system console. These commands are used to move data on _ the
diskette, to process data, or to activate user-written

processes from diskette. All this can be accomplished with a
minimum of effort; and since XDOS is a facilities oriented
system, rather than a supervisory oriented one, a minimum of
overhead is imposed.

In addition, an extensive set of resident system
functions are provided for general development use. Such
functions as dynamic space allocation, random access to data
files, record I/O for supported and non-supported devices, as
well as many register, string, and other diskette-oriented
routines make XDOS a good basis for a user’s application
system.

1.1 Hardware Support Required

The minimum hardware configuration required to support
XDOS consists of:

-- an EXORset with EXORbug firmware
-- 16K RAM

The above minimum configuration will allow the user to
run any of the XDOS commands that reside on the XDOS system
diskette at the time of purchase. Other additional hardware
may be required to run the XDOS-supported software products.
Such information is described in Appendix H.

1.2 Additional Supported Hardware

XDOS also supports one or two external mass_ storage
units (either 5.25" or 8" media, if an additional floppy disk
controller card is installed (EXORdisk). This allows storage
expansion up to 2MB.

Output on line printer is supported by XDOS. The line
printer interfaces to the EXORset through the printer
interface which consists of one PIA located on the EXORset
main board.

XDOS 4.0 User’s Guide Page 01-01

INTRODUCTION 1.3 -- Software Support Required

1.3 Software Support Regu ired

No additional software is required to run the operating
system as it comes shipped on the system diskette.

1.4 Program Compatibility

All of the XDOS commands and system files that are
shipped on the system diskette must be used with that
particular version of XDOS. XDOS commands and system files
from other versions should never be intermixed.

Most user-written assembly language programs that were

developed independently of xXDOS can be executed on an XDOS
system without reassembly; however, such programs will have
to be converted into the memory-image file format before they
can be loaded from diskette into memory (see section 2.8.5).
Programs need only be changed when transferred to XDOS if:

1. They make assumptions about the
initialization of the stack pointer after
they are loaded into memory,

2. They are origined to load (initialize memory
while loading) below hexadecimal location

$20,

3. They make assumptions about the physical
structure of diskette tables or files,

4. They utilize the diskette for input/output,

5. They make assumptions about the contents of
the SWI and IRQ interrupt vectors.

If a user has software that he has developed using the
EXORciser and MDOS, then Appendix J should be consulted for a
list of differences between XDOS 4.00 and MDOS that may
affect programs running with XDOS 4.00.

1.5 Hardware Installation

The EXORset should be inspected upon receipt for broken,
damaged, or missing parts as well as_ for damage to the
printed circuit boards. The packing materials should be saved
in case reshipping is necessary.

8-inch disk drives connect to the EXORset via the MEX68SFDC

(EXORdisk III) controller board, while 5-inch disk drives

interface via the EXORset standard disk controller board. The

MEX68SFDC module can control up to 4 disk drives, while the
5-inch controller can control a maximum of two disk units.

Should the user need to use two controllers, they will have

to be located in the two separate maps of the EXORset. This
is the case when an EXORdisk III(E) mass storage peripheral
is used in conjunction with 5-inch minidisk units. Two
configurations are then possible which are described below.

XDOS 4.0 User’s Guide Page 01-02

INTRODUCTION 1.5 -- Hardware Installation

A. EXORdisk III Controller in Map l.
Minidisk controller in Map 2.

- Install VXA jumper.
- Install disk driver firmware ROMC5009 in socket
U19.

A2. EXORset Minifloppy Controller

- Configure jumpers SWD as follows:

SWD-1 . OUT > Ready Signal From Drive
SWD-2 IN >

SWD-3 IN |
SWD-4 OUT > FDC and Disk Driver in Map 2
SWD-7 OUT > 16K Ram Block in Map 1
SWD-8 IN |

SWD-5 IN > R/W to FDC Chip
SWD-6 OUT >

NOTE : IN = Jumper Installed
=== OUT = Jumper Left Open

- In socket U22, install PROM FDC 9.A for double-sided and/or
single-sided minidisk drives, Or PROM FDC 9.8 for
single-sided minidisk drives only.

B. Minidisk Controller in Map 1.
EXORdisk III Controller in Map 2.

- Install VMA jumper.
- Install disk driver firmware ROMC5009 in socket U19.

B2. EXORSet Minidisk Controller

- Configure jumpers SWD as follows:

XDOS 4.0 User’s Guide | Page 01-03

INTRODUCTION 1.5 -- Hardware Installation

SWD-1 OUT > Ready Signal From Drive
SWD-2 IN >

SWD-3 OUT |
SWD-4 IN > FDC, Disk Driver and
SWD-7 OUT > 16K Ram Block in Map 1
SWD-8 IN |

SWD-5 IN > R/W to FDC Chip
SWD-6 OUT >

NOTE : IN = Jumper Installed
Sass OUT = Jumper Left Open

- In socket U22, install PROM FDC 9.A for double-sided and/or

single-sided minidisk drives, or PROM FDC 9.8
single-sided minidisk drives only.

1.5.1 Operating Principles

As XDOS might be loaded from either controller, we will designate
as the "current" map the one in which XDOS is booted, the other map
being designated the "alternate" map. Conversely, the controller
accessed in the current map will be designated the "current
controller", and the controller in the alternate map, the "alternate
controller". The terms "current disk" and "alternate disk" will also be
used to refer to the disks that interface to the current and alternate
controller, respectively.

Disk parameters switching technics are used when accessing an
alternate disk, that is, for a given operation on an alternate disk,
the following steps are taken:

a/.the parameters pertaining to the current controller are saved,

b/.the parameters associated with the alternate disk, that were
saved on completion of the last operation performed on the
alternate controller, are restored,

c/.the desired operation is performed on the alternate controller,

d/.the actual parameters of the alternate controller are saved,

e/.the parameters of the current controller that were saved in
step a/ are restored.

Obviously, the operations with an alternate disk will be slower
than those performed on a current disk. Therefore the user will benefit
from using the alternate disks as auxiliary devices rather than using
them to hold scratch files. As the operations with alternate disks
should be kept to a minimum, the user is recommended to install in the

current map the controller that drives the disks having the largest

speed and the largest storage capacity. This simply means that the
EXORdisk III controller will best fit in map l.

XDOS 4.0 User’s Guide Page 01-04

for

INTRODUCTION 1.5 -- Hardware Installation

1.5.2 Logical Unit Numbers

As the EXORdisk III Controller can control up to 4 disk drives,
and may be used as main or alternate controller, XDOS 4 supports up to
8 logical units which are defined as follows:

Logical unit numbers 0 thru 3 are assigned to the current
controller,
-Logical unit numbers 4 thru 7 are assigned to the alternate
controller.

For instance, given an EXORset with an EXORdisk III as main
controller, and a minidisk controller as alternate one, the following
command will copy a file "MINI" from the minidisk responding to logical
unit number 5 (drive 1 of the alternate controller) to a file "MAXI" in
drive 0:

=COPY MINI:5,MAXI:0

If XDOS is booted in map2 following the EXORbug "TMAP" command that
switches the maps, the minidisks will then respond to logical units 0
and 1, while the EXORdisk drives will assume the numbers 4 to 7. As a
result, the same function as above will now be invoked in the following
manner:

=COPY MINI:1,MAXI:4

Note that drive 0 is always the one from which XDOS is booted.

1.5.3 Configuration Requirements

Upon initiation, XDOS tests if an alternate controller can be
accessed in the system. First, the diskette identification block is
checked for valid configuration parameters. If the check does not fail,
XDOS further checks if location E800-E801 in alternate map contain the
value $10CE which is the machine code for the LDS immediate
instruction. If yes, XDOS will allow further acesses to alternate
drives. If not, or if the first check failed, XDOS will limit the
operations to the m ain controller only.

When using an alternate controller, the first 300 hexadecimal
locations in the alternate map must consist of RAM. This is the case in
the standard EXORset as the first 32K bytes of RAM are common to both
maps.

WARNING

If XDOS is used in a system without an alternate controller, the user
must insure that locations E800-E801 of the alternate map do no contain
the value $10CE (no EROM here starting with a LDS immediate
instruction!). Failure to doing so will prevent XDOS from recognizing
the absence of an alternate controller.

XDOS 4.0 User“s Guide Page 01-05

INTRODUCTION 1.5 -- Hardware Installation

1.5.4 Configuration Parameters

In XDOS 3, disk configuration parameters were defined as constants
in the equate file EQU.SA :

SCSTRK EQU 16 NUMBER OF SECTORS / TRACK (S.S DISK)

SCSTKD EQU 32 NUMBER OF SECTORS / CYLINDER (D.S DISK)

SCSMAX EQU. 640 NUMBER OF USABLE SECTORS (S.S DISK)

SCSMXD EQU 1280 NUMBER OF USABLE SECTORS (D.S DISK)

Since XDOS 4 can support more _ than one type of drives, these
definitions have been replaced by system configuration parameters which
are kept in the system disk identification block (sector 0). When XDOS
is booted, the configuration parameters are copied to RAM locations
where they may be read later on by the user-program or by the XDOS
commands and system calls. The symbolic definition of the configuration
parameters can be found in the XDOS 4 equate file EQU.SA, along with
their absolute addresses. Below are typical values for a system with an
EXORdisk III controller as main controller, and a minidisk controller
as alternate one.

name size dec hex description
byte value value

SCTRK$ 1 26 1A NUMBER OF SECTORS / TRACK

(S.S. MAIN CONTROLLER)

SCMAXS 2 2000 7D0 MAX NUMBER OF USABLE SECTORS

(S.S. MAIN CONTROLLER)

SCTKDS 1 52 34 NUMBER OF SECTORS / CYLINDER
(D.S. MAIN CONTROLLER)

SCMXD$ 2 4004 FA4 MAX NUMBER OF USABLE SECTORS

(D.S. MAIN CONTROLLER)

SATRKS 1 16 10 NUMBER OF SECTORS / TRACK

(S.S. ALTERNATE CONTROLLER)

SAMAXS$ 2 640 280 MAX NUMBER OF USABLE SECTORS
(S.S. ALTERNATE CONTROLLER)

SATKDS 1 32 20 NUMBER OF SECTORS / TRACK

(D.S. ALTERNATE CONTROLLER)

SAMXDS 2 1280 500 MAX NUMBER OF USABLE SECTORS

(D.S. ALTERNATE CONTROLLER)
eee cece ee ee ee ee me we es ee ee we ee ee ne ee ee ee ee

In such a configuration, the configuration parameters of a minidisk
will have these values reversed, i.e, SCTRK$S=16, SATRKS=26,...etc.

The configuration parameters are found, in that order, in the disk

identification block, starting at offset DIDSCP ($70). The first 6

bytes there contain the parameters related to the current controller
while the last 6 bytes pertain to the alternate controller parameters.

The DOSGEN and BACKUP system commands take care of copying’ the
appropriate configuration parameters to the identification block of the

XDOS 4.0 User’s Guide Page 01-06

6. CONFIGURATION PARAMETERS

destination diskette.

The configuration parameters of a system diskette are displayed in
the XDOS sign-on message; they can also be visualized by invoking the
FREE command with option "C".

1.5.5 Openwtelng On The Alternate Controller

Since complete status of the alternate controller is memorized by
XDOS, all operations where the alternate disks are involved must be
issued through system calls SCALL’s.

A .RESRV system call can be used to test if the access to the
alternate controller is allowed (IOCGDW="DK", IOCLUN=*4) .

If a physical sector I/O function is attempted on a non-accessible
(not configured) alternate controller, a "NOT READY" indication will be
returned (E3 or **PROM I/O ERROR-STATUS=33 AT XXXX DRIVE Y-PSN 2222)

If an unrecoverable disk error occurs while an operation is being
performed with the alternate controller, or if during the same time the-
BREAK key (ABORT function) is hit, control will then be given to
EXORbug with the alternate map being enabled (a colon is displayed as
the EXORbug prompt). Consequently, the user will have to type in the
EXORbug "TMAP" command prior to re-loading xXDOS.

WARNING

The EXORbug stack is used when the alternate controller is accessed;
consequently, the user calling program must not use it.

The firmware driver for the double-sided minidisk controller (FDC
9.A) does not make provision for the interactive diagnostics program
which features automatic parameters initialization (see Appendix E).
This program, which originates at $EAD2, is only available with the
single-sided minidisk controller (firmware FDC 9.8). Note also that the
double-sided minidisk driver FDC 9.A can accomodate single-sided
minidisk drives.

So, when using driver FDC 9.A, the user will have to configure the
test disk parameters prior to initiating the disk diagnostics based at
SEB90.

The firmware driver for the EXORdisk III controller (ROMC5009)
does not include diagnostics routine. Refer to the EXORdisk III User’s
Guide for fault isolation.

XDOS 4.0 User’s Guide Page 01-07

9. DISK DIAGNOSTICS

The table below summarizes the availability/unavailability of
diagnostics routines depending on the controller firmware in use.

| firmware | mini-diagnostics | Interactive test |

| Romcsoo9 =| =S*é<“‘éwNMSC(ststi(‘US:*:*C~*™” None si
|roc9o.e =| rB90;G (atid FAD2;G |
|rocoa | EBI0;G i None ts;

Note that the SELFTEST program delivered with the EXORset provides
another convenient means to exercise the disk drives, whatever their
type.

1.6 Software Installation

There is no software installation that need be performed. All XDOS
software is included on the diskette that is shipped with each EXORset.
This diskette contains the operating system and a set of commands’ that
comprise XDOS. It may or may not contain any of the XDOS-supported
software products such as editors or assemblers. These products are
dependent on the mode of system purchase.

Page 01-08

CHAPTER 2

This chapter provides the user with the basic concepts
that: are necessary for the simplified and typical operation
of xXDOS. It contains descriptions and examples of the
initialization procedures and of the basic forms of the most
frequently used commands. These examples clearly illustrate
how xXDOS is used to edit a program, to assemble it, to
convert it into a loadable module, to load it and execute it,
as well as ‘some other useful operations. The commands are
presented in a sequence that is commonly followed in a
software development environment.

2.1 System Initialization

To initialize the operating system, power must first be
applied to the EXORset. Once the power is on, the following
steps must be followed:

1. The prompt "EXORBUG V.R" will be displayed by
EXORbug indicating it is waiting for operator
input. "V" indicates the version and "R" the
revision number of the EXORbug monitor in the.
system. If the power was already on and XDOS
must be reloaded, press the restart button

located on the main board through the back

panel.

2. An XDOS diskette (one shipped from Motorola
or one that has been properly prepared by the
user (see section 2.8.9)) must be placed in

drive zero. -The door on the drive unit must
then be closed in order for the diskette to
begin rotating. When shipped from Motorola,
the left side drive is configured as _ drive
zero, the right side drive as drive one, as
seen from the front.

The diskette must be oriented properly before
being inserted into the drive. When the
diskette is inserted properly, the label is
facing right, and the edge of the diskette
with the long narrow slot in the protective
covering is inserted first. The labelled edge

will be the last edge to be covered up as the
diskette is inserted into the drive.

3. The EXORbug "XDOS" command must then _ be
enterd. It will give control to the diskette
controller at address $E800. The controller

will initialize the drive electronics’ and
then proceed to read the Bootblock into
memory. Once the Bootblock has been loaded,

control is transferred to it. The Bootblock

XDOS 4.0 User’s Guide Page 02-01

GENERAL SYSTEM OPERATION 2.1 -- System Initialization

will then attempt to load into memory the
remainder of the resident operating system.

2.2 Sign-on Message

If no errors occur during the initialization process,
XDOS will display the message:

XDOS VV.RR

TOP MEM. ADDR. : SBFFF

DRV. 0-3

S.S. MODE : 26 SCT/CYL, 2000 USABLE SCT.
D.S. MODE : 32 SCT/CYL, 4004 USABLE SCT.

DRV. 4-7
S.S. MODE : 16 SCT/CYL, 640 USABLE SCT.
D.S. MODE : 32 SCT/CYL, 1280 USABLE SCT.

meaning that XDOS has been successfully loaded from disk and
initialized. The "Vv" and "RR" indicate the version and
revision numbers of the operating system, respectively.
In addition, the configuration parameters and the top address
of the portion of contiguous RAM available in the current map
are displayed This last indication is derived from a memory
Sizing operation and provides a visual indication of possible
memory system failures. The above is an example display when
booting XDOS in a system configured with an EXORdisk III as
main drive unit, and minidisks as alternate drive units. The
current map includes 48K bytes of contiguous RAM starting at
0000. indicating that XDOS is ready to accept commands’ from
the operator. The equal sign prompt is subsequently displayed
each time the XDOS command interpreter gets control. The
sign-on message showing the version and revision numbers is
only displayed when XDOS is reloaded from the diskette.

2.3 Initialization Error Messages

If for some reason the drive electronics are not
properly initialized, or if the diskette in drive zero cannot
be read properly to load the Bootblock or the resident
operating system, then a two-character error message will be
displayed and control returned to the EXORbug monitor.

The following errors can be produced during
initialization. All two-character messages begin with the
letter "E".

Message Probable Cause

El A cyclical redundancy check (CRC)
error was detected while reading the
resident operating system into
memory.

XDOS 4.0 User’s Guide Page 02-02

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

E2 The diskette has the write protection
tab punched out. During the
initialization process, certain

information is written onto the
diskette.

The diskette is not damaged and can
still be used for a system diskette;
however, the write protection tab

must first be covered with a piece of
opaque tape to allow writing on the
diskette.

E3 The drive is not ready. The door is
open or the diskette is not yet
turning at the proper speed. If the
diskette has been inserted into the
drive with the wrong orientation, the
"not ready" error will be also
generated.

Closing the door, waiting a little
bit longer before entering the "XDOS"
command, or turning the diskette

around so it is _ properly oriented
should eliminate this error.

B4 A deleted data mark.was detected
while reading the resident operating
system into memory.

E5 This error: status is returned when

the track address has not been found

after five attempts.

E6 The diskette controller has been

presented with a track-sector address
that is invalid.

This error indicates some type of a
hardware problem. For example, the
error can be caused by missing or
overlapping memory, bad memory, or
pending IRQs that cannot be serviced.

E7 A seek error occurred while trying to
read the resident operating system
into memory.

Like E6 errors, this one indicates
some type of a hardware problem.

E8 A data mark error was detected while
trying to read the resident operating
system into memory.

E9 A CRC error was found while reading
the address mark that identifies

sector locations on the diskette.

XDOS 4.0 User’s Guide Page 02-03

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

The diskette controller errors El, E4, E8, and E9
indicate that the diskette cannot be used to load the
operating system; however, a new operating system can be
generated on that diskette, making it useful again. Chapter
8, DOSGEN command, and chapter 10, FORMAT command, describe

ways in which damaged diskettes can be regenerated. Depending
on the extent of the errors, the diskette may be used in

drive one to recover any files that may be on it (section
2.8.8).

The diskette controller error E5 can occur for a variety

of reasons. The most common reason, and the most fatal, is
the destruction of the addressing information on _ the
diskette. If the addressing information has been destroyed
(verified by using DUMP command to examine areas of
diskette), the FORMAT command may be used to rewrite the

addressing; however, information on the damaged diskette
cannot be recovered. Occasionally, after a system has just
been unpacked, the read/write head may have been positioned
past its normal restore point on track zero. In this’ case,
trying the event which caused the error three or more times
May position the head to the proper place. If this fails, the
head will have to be manually repositioned past track zero;
however, this problem rarely occurs. The E7 errors can occur

if a user-written program accesses drive 1 without using one
of the system functions and without first restoring the
read/write head on that drive.

Even after the resident operating system has’ been
successfully read into memory, certain errors can occur in

the subsequent initialization procedure. During
initialization the resident operating system cannot access
the error message processor since it has not’ been

initialized. Messages similar in format to those generated by
the diskette controller are displayed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-character message is a
non-numeric: character. The following errors can occur during
initialization, but only after the resident operating system
has been read into memory.

Message Probable cause

E? This error indicates that the
Retrieval Information Block (RIB) of

the resident operating system file
XDOS.SY is in error. The operating
system cannot be loaded.

The diskette probably is not an XDOS
system diskette, or the system files
have been moved from their original
places.

EM This error indicates that there was
insufficient memory to accommodate

the resident portion of the operating
system.

XDOS 4.0 User’s Guide Page 02-04

GENERAL SYSTEM OPERATION

EI

ER

EU

EV

EN

EQ

XDOS 4.0 User’s Guide

2.3 -- Initialization Error Messages

The memory requirements described in
section 1.1 should be reviewed. If
the minimum requirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

The version and revision of xXDOS
already loaded into memory are not
the same as those on diskette. This
error usually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure outlined in section 2.1.
The error can also occur if the ID
sector has been damaged.

The error can be avoided if the
initialization procedure is followed
correctly every time a new system

diskette is inserted into drive zero.

The addresses of the Retrieval

Information Blocks of the XDOS

overlays are not the same as those at

the time of the last initialization.

This error may occur for the same
reasons as the "EI" error.

An input/output system function
returned an error during the

initialization. Errors of this sort
indicate a possible memory problem or
the opening of the door to drive zero
while the initialization is taking
place.

One of the system files is missing or
cannot be loaded into memory. If a
system file is missing, the diskette
has been improperly generated or’ the
file was intentionally deleted. If a
file cannot be loaded, then the
diskette should be regenerated. The
diskette may be used in drive one to
save any files that may be on it
(section 2.8.8). This error may also
occur if the door to drive zero is
opened while initialization is in
progress.

A NMI has’ occured and the XDOS NMI

vector (NMISVC) was not initialized.
This error may also occur after
completion of the initialization.

An IRQ has occured and the XDOS' IRQ
vector (IRQSVC) was not initialized.

This error may also occur after
completion of the initialization.

Page 02-05

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

EF A FIRQ has occured and the XDOS FIRQ

vector (FIRSVC) was not initialized.

This error may also occur after
completion of the initialization.

ES A SWI2 has occured and the XDOS SWI2
vector (SW2SVC) was not initialized.
This error may also occur after
completion of the initialization.

EW A SWI3 has occured and the XDOS SWI3

vector (SW3SVC) was not initialized.
This error may also occur after
completion of the initialization.

2.4 Operator Command Format

After the sign-on message is displayed, XDOS is ready to
accept commands from the operator. The equal sign prompt (=)
indicates that the command interpreter is awaiting input via
the console. Generally, the equal sign prompt will be
redisplayed after each command has finished its function. The
operator-entered command line must always’ indicate which
command is to be executed. In addition, the file names’ that

May be required by the command must be specified. Some
commands also allow various options that can alter the way in
which their functions are performed. These options are also
entered on the command line. Each command line must be
terminated with a carriage return. The command line has the
following format:

<name 1> <name 2>,<name 3>,....,<name n>;<options>

where each <name i> (i=l to n) has the form of a complete
XDOS file name (see section 2.7.1). The name of the command

to be executed is always <name 1>. The remaining names’ and
the options may not be required, depending on the individual
command. The following lines:

DIR EDIT.CM:1;E
FREE

MERGE FILE1:1,FILE2:0,FILE3:1,FILE1:1

are valid examples of XDOS command lines. Section 2.8
describes in a_ simplified form the basic format (i.e., the
command*s name, what file names must be specified, and what
options are available) of the most frequently used commands.
PART II gives a complete and detailed description of all XDOS
commands. In addition, Appendix H contains a summary of the
command line formats of all XDOS-Supported software products.

Most frequently a "Space" is used to separate <name 1>,
the command name, from the other names which are typically
separated by "commas". The "Semicolon" always separates’ the
options from the rest of the command line. The "space" and
"comma" are the recommended separators since they make the
command line the most readable; however, any character that
will not be mistaken for an XDOS file name character, a
suffix delimiter, a logical unit number delimiter, or a

XDOS 4.0 User’s Guide Page 02-06

GENERAL SYSTEM OPERATION 2.4 -- Operator Command Format

device name delimiter (see section 2.7.1) can be used as a
separator. The use of special characters, although permitted,
is not recommended because the command line becomes’ very
unreadable.

2.5 System Console

-The system console is used as the communications device
between the operator and the operating system. XDOS messages
are displayed on the EXORset screen. XDOS commands, as well

as operator inputs prom pted by the commands, are entered via
the keyboard. All command line input and most input to the
various commands requires upper case, alphabetic characters.
Numeric and: special characters, of course, are case
independent. To allow corrections to be made to any typed
line before the terminating carriage return is entered,
several special keys on the keyboard can be used. In
addition, two other special keys serve to prematurely abort a
command in progress or to "freeze" the display of messages on
the console.

2.5.1 Carriage return key

The CARRIAGE RETURN key is used to terminate any
operator response to an XDOS input prompt. This is true for
the command line as well as all other input that may be
required from the operator by the various commands. The
CARRIAGE RETURN will automatically perform both carriage
return and line feed functions.

2.5.2 Control-P

Control-P is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the P
key. Depressing control-P is recognized as a special
controlled abort function key. Most XDOS commands that take a
long time to complete their function periodically check to
see if the control-P has been depressed. If it has, the
command will come to a premature, but controlled, termination
point.

The control-P should be used, whenever possible, as an
alternative to using the EXORset RESTART pushbutton or the
keyboard BREAK key (The BREAK key is the equivalent of the
EXORciser ABORT pushbutton). The controlled abort that is
achieved with the contol-P ensures that all system tables are
intact. Since termination is delayed until all critical
diskette accesses have been completed, no file space is lost
nor is any system table destroyed. Such precautions cannot be
guaranteed if the BREAK key or RESTART pushbutton are used,
since the operator has no way of knowing whether or not
diskette data transfers are in progress.

XDOS 4.0 User’s Guide Page 02-07

GENERAL SYSTEM OPERATION 2.5 -- System Console

2.5.3 Control-W

Control-W is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the W
key. This combination is used to halt the display of
information on the system console or printer. All commands
that respond to the Control-P abort function will also be
"haltable" with the CTL-W key. Most XDOS commands’ that
display more than a few lines of information on the console
will occasionally check to see if the CTL-W key has_ been
depressed. If a CTL-W is detected, the command will suspend
processing until any other key on the console keyboard is
depressed (except, of course, another CTL-W). This feature is
particularly useful to hold the display if the output rate is
too high to read the messages. In addition, if output is
being directed to the printer, the CTL-W can be used to
suspend printing until the paper is realigned.

2.5.4 Control-X

Control-X is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the X
key. This combination is used to cancel the input line that
was just entered by the operator (before a carriage return is
depressed). All system inputs from the console support CTL-X.
Any characters entered on the current input line thus’ far
will be deleted and input can be resumed from the beginning
of the line. A carriage return and line feed will be sent to
the console, so that the operator has a positive feedback
that the line was cancelled.

2.5.5 DEL or RUBOUT

The DEL or RUBOUT key serves as a backspace key during
console input. If the operator detects an error in the
current input line (before a carriage return is depressed),
the DEL key will cause the preceding character to be removed
from the input line. The character that is removed will be
echoed back to the console so that the operator has a
positive feedback that a character was backed out of the
line.

2.5.6 Control=D

Control-D is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the D
key. This combination allows the operator to re-display the
current input line (before a terminating carriage return is
depressed). If the input line has had several characters
backed out (see DEL key above), the line is very unreadable.
The CTL-D key can, therefore, be used to show a "clean" copy
of the line for operator inspection. The newly displayed line
will be shown on the line following the current input line.
Operator input is not terminated with the CTL-D key. Any
remaining input must still be supplied, as well as the
terminating carriage return.

XDOS 4.0 User’s Guide Page 02-08

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

2.6 Common Error Messages

Many error messages are common to the XDOS commands. In

order to be aware of the most common errors, their
descriptions are included here. These common error messages
will be recognizable to the operator since they are prefaced
with a pair of asterisks (**) and a two-digit reference

number. Each command may, in addition, have a set of specific
error messages that will not be displayed by other commands.
These specific error messages will not have the asterisks or
two-digit reference number. Such messages are explained along
with each command*s detailed description in PART II. A
summary of the standard error messages can be found in
Chapter 21. ‘The messages are listed there in order of their
two-digit reference numbers.

WHAT?

The first name entered on the command line was
not the name of a file in the diskette’s
directory. Most often this error occurs as_ the
result of a mistyped command name.

** Q1 COMMAND SYNTAX ERROR

The syntax of the command line parameters could
not be interpreted. Most often this error refers
to undefined characters appearing in the options
field.

** 02 NAME REQUIRED

The file name required by the command as a
parameter was omitted from the command line.

** 03 <name> DOES NOT EXIST

The displayed file name was not found in the
diskette’s directory. The file name must exist
prior to using the command. The <name> is
displayed to show which name of the multiple
names specified as parameters caused the error.

** 04 FILE NAME NOT FOUND

The file name entered on the command line as a
parameter does not exist in the diskette’s
directory. The file name must’ exist prior to
using the command. No file name is displayed,
since only one parameter is required by the
command.

** Q5 <name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette*s directory. The file name must not
exist prior to using the command. The <name> is
displayed to show which name of the multiple
names specified as parameters caused the error.

XDOS 4.0 User’s Guide Page 02~09

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

** 06 DUPLICATE FILE NAME

The file name entered on the command line as a
parameter already exists in the diskettes
directory. The file name must not exist prior to
using the command. No file name is displayed,
since only one parameter is required by the
command.

** 07 OPTION CONFLICT

The specified options were not valid for the type
of function that was to be performed by the
command. Several of the options are mutually
exclusive and cannot be specified at the same
time.

** 11 DEVICE NOT READY

Most frequently this indicates that a command is
trying to output to the printer while the printer
is not ready.

** 12 INVALID TYPE OF OBJECT FILE

Most frequently this indicates that an attempt
was made to load a program into memory whose file
does not have the "loadable" memory-image format,
e.g., a source file.

** 13 INVALID LOAD ADDRESS

An attempt was made to load a program into memory
thats 1) loads outside of the range of
contiguous memory established at initialization;
2) loads over the resident operating system; 3)

loads below hexadecimal location $20; or 4) loads

beyond hexadecimal location SFFFF.

** 25 INVALID FILE NAME

A file name was specified that contained a family
indicator (*), that began with a device name

indicator (#), or that did not begin with an

alphabetic character, or that contains a
non-alphanumeric character.

** 4) INSUFFICIENT DISK SPACE

A command is trying to create a file or to write
into a file. Upon trying to allocate more file
space, insufficient room remains on the diskette
to accommodate the space requirements.

**PROM I/O ERROR--STATUS=nn AT h DRIVE i-PSN j

An unrecoverable error occurred while trying to
access the diskette. The error status "nn" is a
value returned. by the diskette controller. The
errors are of the same type that cause the

XDOS 4.0 User’s Guide Page 02-10

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

initialization process’ to give control to
EXORbug; however, instead of beginning with the

letter "E", the status (nn) begins with the digit
"3". The second digit of the status corresponds
directly to the diskette controller error number
discussed in section 2.3. The "E" has been
replaced by the "3". Thus, status

31 is the same as El
32 is the same as E2

39 is the same as E9.

A memory address (only meaningful for system
diagnostics) is substituted for the letter "h";
the drive number is substituted for the letter
"i"; and the physical sector number (PSN) at
which the error occurred is substituted for the
letter "j".

2.7 Diskette File Concepts

In XDOS, a diskette file is a set of related information

that is recorded more or less contiguously on the diskette.
The information can be actual machine instructions that
comprise a command or user program. The information can also
be textual data, object program data, or any of the forms
described in Chapter 17. The following section describes how
files are named, created, deleted, and protected.

2.7.1 File name specifications

An XDOS file name specification consists of three parts:
a "file name", a "Suffix", and a "logical unit number". File

names can be from one to eight alphanumeric characters in
length, the first of which must be alphabetic. The alphabetic
characters must be upper case letters. Valid file names could
look like the following:

DIR
DATA115
BACKUP
so
XDOSNEWS
Z

In most cases, all that need be specified when ae file
name specification is called for is the file name. The suffix
and logical unit number are usually given appropriate default
values: by the various commands.

The suffix can be either one or _ two characters in
length. Like file names, suffixes must begin with an_ upper
case alphabetic character. The rest of the suffix must be
alphanumeric. A suffix is used to explicitly refer to a
particular entry in the directory. That is, there may be

XDOS 4.0 User’s Guide , Page 02-11

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

several entries with the same file name but with different
suffixes. In such cases, a file name reference alone would be
ambiguous. Thus, the suffix is used to differentiate between
entries with the same file name. Usually, suffixes designate

a particular format of the file. Thus, a source file could
have the suffix "SA". Its assembled object version could have
the same file name but with the suffix "LX", and its
executable version could have the same file name but with the
suffix "LO". XDOS commands usually supply an appropriate
default suffix when dealing with specific files.

If both file name and suffix are specified, they must be
separated by a period (.). The following are examples of
valid file name specifications using both file name and
suffix:

XDOSNEWS.SA
BACKUP .CM
Z.5A
PROC] .CF
DOCUMENT .Y

Since each diskette is a complete file system in itself,
with complete directory and system files, it is possible to
have directory entries with the same file names and suffixes
on separate diskettes. Thus, the logical unit number is
required to uniquely specify a directory entry on a given
drive. Logical unit numbers consist of a single decimal digit
(0 or 1). In most cases, XDOS commands supply a default value
for the logical unit number. If a particular drive must be
identified, it must be entered by the operator as a part of
the file name specification. Logical unit numbers follow
either the file name or the suffix depending on whether one
or both are specified. The logical unit number must be
separated from the file name or from the suffix by a colon
(3). The following are examples of valid file name
specifications using logical unit numbers.

BACKUP .CM:0

TEST. X31

DIR:l

Z456.D3:0

ASM: 1

2.7.1.1 Family names
eo ee ee ee ee es td

Some commands allow the operator to specify a family of
file names. Family indicators can occur in either the file
name or the suffix. An asterisk (*) is used as a family
indicator. The family indicator represents all or part of a
file name or suffix. For example,

FILE.*

would be a file name _ specification that includes all
directory entries with the file name "FILE "but with any
suffix on the default drive. Similarly,

PROG* .SA

XDOS 4.0 User’s Guide Page 02-12

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

is a file name specification that includes all directory
- entries with "PROG" as the first four characters of their
file names, regardless of what the remaining characters are,

and with suffix "SA" on the default drive. The asterisk
cannot have characters following it. Thus, the following file
name specifications are invalid:

*PROG.SA
PROGRAM. *B

Not all commands allow file name _ specifications to
contain the family indicator. The individual command
descriptions should be consulted to see where family
indicators are acceptable.

2.7.1.2 Device specifications

Some commands allow the operator to enter a device
specification in the command line instead of a file name
specification. Device specifications consist of two parts: a
"device name" and an optional "logical unit number". Device
names are two characters long, both of which must be
alphabetic. A pound sign (#) is used as a leading character
to indicate that the subsequent two-character sequence is a
device name. For example,

#LP
#CN

are valid device names used for the line printer and the
console, respectively. A device specification may be entered
with a logical unit number. Logical unit numbers must follow
the device name and must be separated from it by a colon (:).
The individual command descriptions should be consulted to
see where device specifications are allowed.

2.7.2 File creation
Oe cee ce me ome ee ee ee eo ee ee

XDOS files are never explicitly created by the operator.
All commands that write to output files will create them
automatically if they do not exist. Files will be created
according to the file name specification given on the command
line. That is, if explicit suffixes and logical unit numbers

are specified, the file will be created on the indicated

drive. Otherwise, the appropriate default values supplied by
the command will be used to create the file. Existing files
are unaffected by the creation of a new file.

2.7.3 File deletion

Unlike file creation, file deletion is controlled
explicitly by the operator via the DEL command which is
described later. No other command program will delete
existing files on the diskette. Exceptions to this are
commands that automatically create an intermediate work file
to perform the command’s function. These intermediate files
are deleted by the command as an automatic clean-up process.

XDOS 4.0 User”s Guide Page 02-13

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

2.7.4 File protection

All xDOS files can be configured with delete protection,

with write protection, or with no protection. Delete

protection will prevent the operator from inadvertently
deleting the file (the protection can be changed by the
operator so that the file can be deleted). Write protection
will prevent any command from writing to that file as well as
preventing deletion of the file. Normally, files are
unprotected, allowing both writing to or deletion of the
file. The NAME command, described later, can be used to set

or to change a file’s protection.

Page 02-14

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

2.8 Typical Command Usage Examples

The following sections give simple, but meaningful,
descriptions and examples of the most frequently used XDOS
commands in a typical software development environment. No
attempt is made in these sections to cover all capabilities
and options of the described commands. The detailed command
descriptions in PART II _ serve that purpose. After reading
this section, the operator should be able to go "on-line"
with XDOS and be able to display the directory of a diskette,
create a source program file, assemble it, and load it into

memory for testing. The commands to delete a file, to change
its name or protection, to copy it between diskettes are also
described. New xXDOS diskette generation is discussed in the
last part of this section.

It is assumed in the subsequent discussion that the
system has been properly installed and initialized. Thus, a
system diskette with the XDOS commands resides in drive zero.
Command program files have a suffix of "CM" which is supplied
as a default to the first file name that is entered on _ the
command line. The default logical unit number that is
supplied is ":0". In the command examples that follow, it
will be seen that both suffix and logical unit number are not
specified for the command name.

The following notation will be used in the description
of the command line formats as well as_ throughout the
remainder of the manual:

Notation Meaning

Snnnn Hexadecimal number “nnnn".

<> Syntactic elements are printed in
lower case and are contained in

angle brackets, e.g., <options>,

<name>.

{] Optional elements’ are contained
in square brackets. If one of a
series of elements may be
selected, the available list of
elements will be separated by the
word “or", @.Ge, [<tagl> or
<tag2>].

{} A required element that must be
selected from the set of elements

will be contained in curly
brackets. The elements will be

separated by the word "or".

All elements that appear outside of angle brackets (<>)
must be entered as is. Such elements are printed in capital
letters (if words) or printed as the actual characters (if
special characters). For example, the syntactical element

[;<options>] requires the semicolon (;) to be typed whenever

XDOS 4.0 User’s Guide | Page 02-15

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

the <options> field is used.

2.8.1 DIR -- Directory display
ee eee

The DIR command is used to display the contents of a
diskette’s directory. Bither the entire directory or
selective parts of it can be displayed. ,The format of the
command line for the DIR command is:

DIR [<name>] [;<options>]

The file name specification <name> indicates what to
display. The <options> specification indicates how to display
it. If DIR is entered by itself on the command line, it will

display on the system console the file names of all
user-generated files on drive zero. If no user-generated
files exist on drive zero, a message will be displayed
indicating that no directory entries were found. This is
normally the case when DIR is used without any options on the
system diskettes that are shipped with the new system. To
display the system and the user-generated files, the "S"
option can be placed into the options field:

DIR ;:S

If drive one’s directory is to be displayed, then a ":1"
must be typed in place of the file name specification:

DIR :1:;:S

To direct the output of the DIR command to the printer,
only one other option letter need be specified -- "L". Thus,

DIR :1;:LS

will produce a listing of drive one’s complete directory on
the printer. The "S" and "L" can be in any order, as long as
they follow the semicolon.

The DIR command can also be used to see if a specific
file name exists on a given drive. This is accomplished by
entering a complete file name specification (i.e., name,
suffix, and logical unit number). Thus,

DIR E.CM:1

will perform a directory search for the indicated file name
specification on drive one. If the directory entry exists,
its file name and suffix will be displayed. Otherwise, a
message indicating that no entries were found will be
displayed. Directory searches for specific file names do not
require the "S" option to distinguish between system files
and user files. Chapter 7 contains a complete description of
the DIR command’s use.

XDOS 4.0 User’s Guide Page 02-16

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

2.8.2 E.CM -- Program editing

The E.CM command is used to create and/or to change
user-written source program and data files on diskette. If
the E.CM command resides on the system diskette, it is
invoked with the following XDOS command li‘ ne:

E <filenamel>[,<filename2>] [;<options>]

If the E.CM command is not copied to the system diskette, it
can be invoked from the diskette in drive one with the
£ollowing command line:

Esl <filenamel>[,<filename2>] [;<options>]

A complete description of the E.CM command’s format and
usage is found in the relevant manual.

2.8.3 RASMO9-- Program assembling

The RASMO09 command (hereafter called the assembler) is

used to assemble the source program files created with the
E.CM command. The assembler translates these source programs
into object programs. If the assembler resides on the’ system
diskette, it is invoked with the following XDOS command line:

RASMO9 <name> [;<options>]

If the assembler is not copied to the system diskette in
drive zero, it can be invoked from the diskette in drive one
by using the following command line:

RASM09:1 <name> [;<options>]

The only required parameter is the name of the file that
is to be assembled. Normally, this would be the name of the
file specified in the previous description of the E.CM
command. The assembler will automatically supply the default
suffix for both the source file that is read (SA) and for the

LX file that is created . If its name is not specified, the
memory image file will have the same file name as <name>, but
a different suffix will be assigned to it to differentiate it
from the source file.

Normally, a listing of the assembled program is desired.
The assembler will not produce a source listing unless’ the
option to do _ so is specified in the <options> field. Thus,
the command line to assemble a source program file named
TESTPROG with source listing output would appear as:

RASMO9 TESTPROG;:L

As with the DIR command, the "L" option directs the
printed output to the printer. If a printer is not available,
or if the program is short, the source listing can be
produced on the system console by using the following option:

RASMO9 TESTPROG; L=#CN

XDOS 4.0 User*s Guide Page 02-17

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

If errors are detected during the assembly process, they
will be included on the source listing. If no source listing
is being produced, errors will automatically be displayed on
the console. Typically, the software development process
involves several iterations of the editing and assembly
processes before an error-free object file is produced. The
assembler, however, requires that the object file does not
exist prior to the assembly process. Therefore, if a
duplicate file name error message is displayed, the object
file already exists. It must first be deleted before the
assembly process can continue. The next section describes the
process of file deletion.

During the iterative process of editing/assembling to
obtain an error-free program, the object file created by the
assembler can be suppressed by specifying the option "-O" in
the options field. The command line

RASMO9 TESTPROG;L-O

for example, will assemble the source program as in the above
examples creating the listing on the line printer; however,
the object file will not be created. Thus, the deletion of
the object file between repetitive assemblies is not required
since it is never created.

The relevant manual should be consulted for a_ complete
description of the assembler’s function, usage, and command
format.

2.8.4 DEL -- File deletion

The DEL command is used to delete file names from the
directory. The removal of a file’s name from the directory
makes the file unaccessible to any other process. The file
itself is effectively deleted. Thus, in the subsequent
descriptions, the phrases "delete a file name" and "delete a
file" are equivalent. The format of the command line for the
DEL command is:

DEL <name>

which will cause the specified file to be deleted. If the
object file from the assembly process example above is to be
deleted, for instance, the following command line would be
entered:

DEL TESTPROG.LX

It should be noted that the suffix is specified. Since
the DEL command is a general purpose command, like the DIR
command, no default value for the suffix is supplied. Only
those commands that can validly make an assumption about’ the
type of file they will be dealing with (e.g., E.CM, RASMO9)
will supply default suffixes.

The DEL command will display a message indicating that
the file name was deleted or that the file name was not
found. Chapter 6 contains a complete description of the DEL

XDOS 4.0 User’s Guide Page 02-18

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

command*s other capabilities.

2.8.5 LOAD -- Program loading/execution

The LOAD command is used to load programs froma

memory-image file on the diskette into memory. After the

program has been loaded, the debug monitor can be given

control (for testing the program), or the program can be

given control directly (for execution). The format of the

command line for program loading is:

LOAD <name> [;<options>]

The name of the file whose contents are to be loaded is

given as <name>. The default suffix "LO" is automatically

supplied by the LOAD command. Thus, in normal software

development, only a _ file’s original source program name is

required to take a user through the three processes of

editing, assembling and program loading.

The <options> field of the LOAD command line is used to

specify whether the debug monitor or the loaded program is to

be given control, and whether or not the program overlays the

resident operating system. If the file TESTPROG from the

previous examples was origined to the hexadecimal memory

address $100, the following command line:

LOAD TESTPROG;V

would be used to load the program. The "V" option is used to

specify that the program to be loaded will overlay the

resident operating system. If the "V" option were left off

the command line, an error message would be displayed. The

absence of the "G" option letter means that the debug monitor

will be given control after the program is loaded. So, the

above example would be used to load TESTPROG into memory for

testing.

If, on the other hand, the program TESTPROG has already

been tested and works, the command line:

LOAD TESTPROG; VG

would be used to load and execute the program. No op?erator

intervention is required to specify the starting execution

address. This is only true if the starting execution address

has been specified on the END statement of the source program

during the assembly process.

Typically, most user-written programs that have been

developed prior to receiving the XDOS system would be loaded

and tested in this fashion. Programs that are developed with

XDOS as a basis (i.e., programs that use the resident system

functions) are loaded without the "V" option. Chapter 13

describes the details of the LOAD command and should be

consulted if more information is required.

XDOS 4.0 User’s Guide Page 02-19

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

2.8.6 NAME -- File name changing
Oe ee eee a ee ee ee eS ne Oe ee Oe ee ee on ee eee eee ee

The NAME command allows file names and/or suffixes to be
changed from their originally assigned values. Often, as a
program is developed, its author decides that a file name
other than the original one would be more appropriate and
descriptive. The format of the command line for changing a
file“s name is:

NAME <name 1>,<name 2>

This command line requires. the operator to enter two
names. The first name, <name 1>, specifies the current or
Original name of the file. The default suffix "SA" is
supplied automatically if none is given by the operator. The
second name, <name 2>, indicates the new name that is to be
assigned to the file now known by <name 1l>. Thus, if the file
from the above examples, TESTPROG, were to be given a more
descriptive name, such as BLAKJACK, the following command
would be used:

NAME TESTPROG, BLAKJACK

In this case, only the file name of the source file
would be changed. Other files with the name TESTPROG but with
suffixes other than "SA" would remain unaffected. The
contents of the file that has its name changed are also
unaffected -- only the name in the directory is changed.

2.8.7 NAME -- File protection changing

The NAME command is also used to change the protection
attributes of a file. The command line format for changing a
file*s protection is:

NAME <name>; <options>

The <name> entry is required to identify the file whose
attributes are to be changed. The <options> field contains
the letters D, W, or X to indicate how the protection
attributes are to be changed. The letters take on the
following meanings:

D =-- Set delete protection
W -- Set write protection
X -~ Set no protection (remove existing protection)

Thus, if the file TESTPROG (source file) is to be
protected against deletion, the following command line would
be used:

NAME TESTPROG:D

If the memory-image file that was produced from the
source of TESTPROG were to be write protected and delete
protected, the following command line would be used:

NAME TESTPROG.LO;:DW

XDOS 4.0 User’s Guide Page 02-20

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

The protection on this file could later be removed with
the command line:

NAME TESTPROG.LO;X

Chapter 15 describes in more detail the other features
of the NAME command.

2.8.8 COPY -- File copying
em SS aD ee ee ee ee ee ee

The COPY command is used to make a duplicate copy of a
file on a single diskette, to move a file between’ two
different diskettes, or to move a file between a peripheral
device and a diskette.

To make a duplicate copy of a file on the same diskette,
the following command line is used:

COPY <name 1>,<name 2>

where <name 1> specifies the current name of an existing
file, and <name 2> specifies the name of the duplicate copy.
The default suffix "SA" and the default logical unit number
zero are supplied for <name 1> if those parts of the file
name specification are omitted. Normally, the destination
file, <name 2>, does not exist. The COPY command, however,

will alert the operator if <name 2> does exist, and ask him
if that file should be overwritten. If <name 2> has a
different logical unit number’ than the original file, the
file will be duplicated on the specified drive. If the
TESTPROG source file from the above examples is to be saved
in a file called TEMP, the following command line would be
used:

COPY TESTPROG, TEMP

The file TEMP will be created on the same drive as

TESTPROG, namely, drive zero. To copy TESTPROG to drive one,
one need only specify the logical unit number (:1) after the
second name.

COPY E.CM:1,:0

COPY RASM09.CM:1,:0

would be the commands that are entered if the diskette in
drive one contained these files. The suffixes "CM" are

explicitly specified since neither the E.CM or RASM09
commands are source programs.

A similar procedure would be followed to copy any files
from a diskette in any drive to the system diskette in drive
zero. .If a diskette has been damaged or cannot be used to
initialize XDOS, it may be placed in another drive in attempt
to save any files that may be on it. The COPY command should
be used to save files in this manner. If diskette controller
errors occur during such a save process, the files cannot be
recovered.

XDOS 4.0 User“s Guide Page 02-21

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

If a user wants to transfer external data to a disk

file, he has to write his own driver, then invoke the COPY

command as follows:

COPY #UD,<name 2>;D=<name 3>

where <name 2> is the name of the diskette file into which
the data are to be written. The first parameter, #UD,
specifies the user driver as source device, and the "D=<name

3>" option specifies the memory image file name in which the
driver may be found (see 5.2 and 19).

The above process can be changed slightly so that a file
on diskette can be written to a user defined peripheral. For
example,

COPY <name 1>,#UD;D=<name 3>

will transfer the file named by <name 1> to the user device
through the output driver found in <name 3>. Chapter 5
describes in more detail the other features of the COPY
command.

2.8.9 BACKUP -- XDOS diskette creation

New diskettes, or diskettes never before used on an XDOS

system, must first be prepared for use with xXDOS. The
quickest way to generate a new XDOS diskette is to use the
BACKUP command. Usually, a copy is retained of the original
system diskette that was shipped with the EXORset. This
diskette should be used _ to generate subsequent XDOS
diskettes. It is recommended that the original diskette not
be used for development purposes. It should serve only as the
master copy from which all other diskettes are generated.

A formatted blank or scratch diskette should be placed
into drive one. The master system diskette should be resident
in drive zero. The following command line will then cause a
complete copy of the master diskette to be created:

BACKUP ;U

The "U" option specifies that the entire surface of the
diskette in drive zero is to be read and copied to the
diskette in drive one. This process ensures that all sectors
on the new diskette can be written to. Once the BACKUP
command has been invoked in this way, it will display the
following message:

BACKUP FROM DRIVE 0 TO 1?

to which the operator should respond with a "Y". Any other
response will terminate the BACKUP process, leaving the
diskette in drive one intact. The "Y" response will cause the
diskette copy to take place.

As an added precaution, the two diskettes should be
compared against each other after the BACKUP command has
completed. This diskette verification is invoked with the

XDOS 4.0 User’s Guide Page 02-22

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

following command line:

BACKUP ;UV

If any messages are displayed during the verification
process, the diskette in drive one should not be used as a
system diskette.

‘Chapter 3 describes the BACKUP command in detail.
Chapter 8 describes an alternative method of generating new
system diskettes.

2.9 Other Available Commands

Several other powerful commands are included with each
XDOS diskette. These commands are not needed initially in
becoming familiar with the system; however, they do provide
helpful and necessary tools for the advanced software
developer. A brief description of these commands is given
here to shed some light on their utility.

2.9.1 BACKUP -- Diskette copying

The BACKUP command allows making copies of entire XDOS
diskettes. Options exist for making complete copies, for file
reorganization to consolidate fragmented files and available
diskette space, for appending families of files from one
diskette to another, and for diskette comparisons. Chapter 3
contains the complete description of the BACKUP command.

2.9.2 MERGE -- File concatenation

The MERGE command allows one or more files’ to be
concatenated into a new file. This command is useful in
combining several smaller program modules. several smaller
program modules. Chapter 14 contains the complete description
of the MERGE command.

2.9.3 FREE -- Available file space display

The FREE command displays how many unallocated sectors
and how many empty directory entries are on a diskette.
Chapter 11 contains the complete description of the FREE
command.

2.9.4 CHAIN -- XDOS command chaining

The CHAIN command allows predefined procedures to _ be
automatically executed. A procedure consists of any sequence
of XDOS command lines that have been put into a diskette
file. Instead of obtaining successive command lines from the
console, CHAIN will fetch commands from a file. Th:is feature

allows complicated and lengthy operations to be defined once,
and then invoked any number of times, requiring no operator
intervention. The additional capability of conditional

XDOS 4.0 User’s Guide Page 02-23

GENERAL SYSTEM OPERATION 2.9 -- Other Available Commands

directives to the CHAIN command at execution time permits an
almost unlimited number of applications to be handled by a
CHAIN file. Chapter 4 contains the complete description of
the CHAIN command.

2.9.5 DUMP -- Diskette sector display

The DUMP command allows the user to examine the entire

contents of any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
equivalent of every byte in the sector. The DUMP command
allows opening of files so that they can be examined using
logical sector numbers. Sectors can also be moved into a
temporary buffer where changes can be applied before they are
written back to diskette. Chapter 9 contains the complete
description of the DUMP command.

2.9.6 FORMAT -- Diskette reformatting
eee ae coe eet) ee ED SD OD em OD Se ee ee ee ee ee ee

The FORMAT command attempts to rewrite the sector
addressing information on damaged diskettes. Upon receipt
from supplier, diskettes may not be formatted. They then need
be formatted before they can be used. The FORMAT command must
be used to initialize them. Chapter 10 contains the complete
description of the FORMAT command.

2.9.7 DOSGEN -- XDOS diskette generation
0 ee em ce et em ee es eae ee ee ee ee ee ee oe oe ee ee

The DOSGEN command allows specialized XDOS diskettes to
be prepared. Diskettes that have bad sectors can have’ those
sectors locked out so that the diskette can be used in an
XDOS environment. DOSGEN will also create all system tables
and files on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
Or on appropriately formatted double-sided diskettes. Chapter
8 contains the complete description of the DOSGEN command.

2.9.8 ROLLOUT -- Memory rollout to diskette
me cee ce cae eae cee ee ee weet ae ee ee ee ee ee ee ee ee oe ee

The ROLLOUT command is used for writing the contents of
memory to diskette. The ROLLOUT command does support the
alternate map feature of the EXORset. Options exist for
writing memory directly into a diskette file or for writing
to a scratch diskette. Chapter 16 contains the complete
description of the ROLLOUT command.

2.10 XDOS-Supported Software Products

Although the preceding list of commands provides the
user with many powerful tools for software development, there

are some other Motorola products which are capable of running
in an XDOS environment, even though they were developed
independently. These products are called xXDOS-Supported
software products. No attempt will be made in this User’s

XDOS 4.0 User’s Guide Page 02-24

GENERAL SYSTEM OPERATION 2.10 -- XDOS-Supported Software Products

Guide to comprehensively describe any XDOS-Supported software
' product. Appendix H contains a list (complete at time of
publication) of all products that can be invoked from an XDOS
diskette as a command. Each description will contain’ the
additional hardware requirements, if any, the command line
formats, and a brief discussion of the product’s

capabilities. XDOS-suppor ted software products may be
received on separate diskettes. Section 2.8.8 describes how
such: products can be copied onto the system diskette.

2.11 Paper Alignment

All XDOS commands that output to the line printer will
return the paper to its original position upon termination.
Thus, if the paper is correctly aligned at the time XDOS is
initialized, then the paper will never have to be aligned
again. The paper should be placed so that the print line is
positioned three lines before a perforation (assuming
fan-fold forms). XDOS commands use the standard format of 66
lines/page.
If an alternate paper size is desired the default
line-per-page can be changed by patching the following bytes
using the DUMP command.

Command Logical Sector Offset to first Current Value
byte in Sector (Decimal)
(Hex)

DUMP .CM 0 4 66

DIR.CM 0 4 60
FREE .CM 0 4 66
LIST.CM 0 5 66
E.CM 0 6 66
BASICM.CM 0 9 66

XDOS 4.0 User”s Guide Page 02-25

PART II

ADVANCED XDOS USER“*S GUIDE

CHAPTER 3

3. BACKUP COMMAND

The BACKUP command allows making copies of entire XDOS
diskettes. Options exist for making complete copies, for file
reorganization to consolidate fragmented files and available
space, for appending families of files from one diskette to
another, and for diskette comparisons. The BACKUP command
will only copy XDOS-generated diskettes.

The BACKUP command is invoked with the following command
lines

BACKUP [:<sn>,:<dn>] [;<options>]

where <sn> is the logical drive number of the source drive
and <dn> is the number of the destination drive. The default
value for <sn> is 0. The default value for <dn> is l.
<options> can be one or more of the option letters described
below.

If the command line is valid, the message:

BACKUP FROM DRIVE <sn> TO <dn>?

or

APPEND FROM DRIVE <sn> TO <dn>?

will be displayed. A response of "Y" is required if BACKUP is
to continue. Any other response will return control to XDOS.
Further BACKUP action depends on the specified options. The
options are divided into "Main Options" and “Other Options".
Main Options are mutually exclusive. That is, only one Main
Option can be specified on the command line at a time. The
Other Options can be included with the Main Options as
described in section 3.6.

Main Options Function

none Copy all allocated space to destination
diskette.

R Reorganize diskette so that files are
defragmented and free space is
consolidated on destination diskette.

A Append (copy) selective files to
destination diskette.

Vv Verify (compare) source and destination
diskettes.

XDOS 4.0 User’s Guide Page 03-01

BACKUP COMMAND

Other Options Function

Cc Continue if read/write errors occur.

Dd Continue if deleted data mark errors
occur. —

I Change ID sector during copy.

L Use line printer for bulk of message
printing.

N Suppress printing of file names_ being
copied.

Ss Suppress printing of byte offsets during
comparisons.

U Include unallocated space in copy/verify
process.

4 If duplicate file name exists, delete
old, copy new.

Z If duplicate file name exists, suppress
copy.

3.2 Diskette Copying

Like the other system commands, BACKUP applies’ to
different drive types; therefore, it is possible to copy, for
instance, a 5-inch diskette to an 8-inch one. There are
situations however, where the disk space available on the

destination disk cannot accomodate all the data on the source

diskette. This situation is checked when invoking the BACKUP
command without a main option, or with main option "Vv". In

all the following cases, attempting to copy/verify disks will
cause the message

INSUFFICIENT DISK SPACE ON DESTINATION DRIVE

to be printed and BACKUP to abort.

Source disk Destination disk

5-inch D.S. 5-inch S.S.

8-inch S.S 5-inch S.S.

8-inch S.S 5-inch D.S.

8-inch D.S 5-inch S.S.

8-inch D.S 5-inch D.S.

8-inch D.S 8-inch S.S.

5-inch Single-Sided disks = 80 Kbytes
5-inch Double-Sided disks =160 Kbytes
8-inch Single-Sided disks =256 Kbytes
8-inch Double-Sided disks =512 Kbytes

XDOS 4.0 User”’s Guide Page 03-02

3.1 -- Use

BACKUP COMMAND 3.2 -- Diskette Copying

As entire diskette contents cannot be copied in the instances
above, the user has then to specify the main options "A" or "R"
for file appending and reorganization, respectively.
If no Main Options are specified, then the default BACKUP process
will produce a physical sector copy of the source diskette on the
destination diskette. Only the allocated space from the source
diskette.will be copied. The allocated space includes all file
space and all areas locked out in the Lockout Cluster Allocation
Table (see Chapter 17). Thus, only xXDOS-generated diskettes can be
copied using the BACKUP command, since other diskettes will not
have an allocation table.

Since only the allocated space is copied, the minimum amount
of disk space is copied, and the BACKUP process is completed in
the minimum amount of time. Sometimes, however, it is desirable to
obtain a. complete copy, and not just a copy of the allocated
Space. In such cases, the "U" option can be used to force the
copying of unallocated space as well as the allocated space.

A typical BACKUP process dialogue would look like the
following:

=BACKUP
BACKUP FROM DRIVE 0 TO 1?
Y

and would produce a copy on the destination diskette of the source
diskette”s allocated space.

3.3 File Reorganizat ion

After an xXDOS diskette has been used for a while, the file
structure may become fragmented and new files can become
scattered. The longer a diskette is used in a development
environment, the more the total system performance may be degraded
due to increased access time. File reorganization is supplied by
the BACKUP command and constitutes one way. to restructure XDOS

diskettes, thereby improving the system’s efficiency.

File reorganization improves system efficiency by:

- Consolidating file segments,
- Packing files more closely together,
- Clustering related files together,
- Operator selection to only copy desired files,
- Reducing marginal diskette errors by rewriting

files,
- Consolidating directory space. oa

)
O
e

W
D
E

File reorganization is specified with the Main Option
"R" on the BACKUP command line. Thus,

BACKUP ;R

would invoke the BACKUP command to reorganize the files on

XDOS 4.0 User’s Guide Page 03-03

BACKUP COMMAND 3.3 -- File Reorganization

the source diskette in drive zero during the copy to the
destination diskette in drive one. The source diskette must
be an XDOS diskette. It is unaffected by the reorganization.
The message

BACKUP FROM DRIVE 0 TO 1?

is displayed before any copying takes place. Unlike the
complete copy process which will proceed immediately after
the "Y" response is given by the operator, the reorganization
process will perform the following initialization procedure:
First the ID sector is copied (and optionally modified if the
"I" option was specified). Second, the Lockout Cluster
Allocation Table (LCAT) and the Cluster Allocation Table
(CAT) are initialized (user locked out sectors are not copied
during the reorganization process). Third, the directory
sectors on the destination disk are zeroed. Fourth, the
Bootblock is copied. Fifth, all of the file names from the

source diskette’s directory are read. They are then’ sorted
into alphabetical order, first by suffix, then by file name.

After the sorting has been completed the following message
will be displayed:

ENTER FILE COPY SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)
S, D, P, Q, (CR):

indicating that the operator must enter file selection
commands to specify which files from the source diskette are
to be copied to the destination diskette. The first line of
the message indicates that BACKUP has’ reached the file
selection stage. The second line contains the function of
each file selection command as well as the letter that must
be used to issue that command. The third line is used as a
prompt for the current and _ subsequent file selection
commands.

Command Letter Function

SAVE S Include a certain file name or family
of file names from the sorted
directory in the set of files to be
copied to the destination diskette,

DELETE D Exclude a certain file name or family
of file names from the sorted
directory from the set of files to be
copied to the destination diskette.

PRINT P Display the set of file names from
the sorted directory that are
eligible to be copied to the
destination diskette.

XDOS 4.0 User’s Guide Page 03-04

BACKUP COMMAND 3.3 -- File Reorganization

QUIT Q Terminate the BACKUP command and
return to XDOS. No copying will take
place; however, the destination

diskette has been affected due to the
reorganization option as explained
above.

NO MORE (CR) Entered as a carriage return only. No

more commands will be entered. The
files to be copied have been
selected. If no file selection
commands were issued, all files in
the sorted directory will be copied.
Begin the copy process.

Both the SAVE and DELETE commands require file names to
be specified as parameters. The format of the SAVE and DELETE
commands are the same, except, of course, for the command
letter:

{D or S} <name 1>[,<name 2>,...,<name n>]

The file names specified can contain the family indicator.
The default suffix "SA" will be supplied if none is
explicitly entered. For example, the SAVE command:

S *.CM,EQU,IOCB.*

will cause the family of files having the suffix "CM", the
file EQU.SA, and the family of files having the name IOCB to
be flagged as saved. The DELETE command:

D A*.CM,NOL,TEST.L*

will cause the family of files beginning with the letter "A"
and having a suffix of "CM", the file NOL.SA, and the family
of files named TEST with suffixes beginning with the letter
"L" to be flagged as deleted.

After a SAVE or DELETE command has been entered, each

file name of the sorted directory which has not already been
marked as "saved" or "deleted" and which matches one of the

<name i> (i=l to n) will be marked ?as "Saved" or "deleted".
After all the file names from the SAVE or DELETE command line

have been processed, a new prompt:

S, D, P, Q, (CR):

will be displayed. The operator can then enter further SAVE
or DELETE commands as well as any of the other valid commands
of the BACKUP file selection process.

Once a command other than SAVE or DELETE is entered one
of two things happens to the sorted directory. If at least
one SAVE command has been processed without error, then all

file names in the sorted directory not marked as "Saved" will
be marked as "deleted". On the other hand, if no prior SAVE
commands were used, then all file names not marked as

"deleted" will be eligible for copying (marked as "saved").

XDOS 4.0 User’s Guide Page 03-05

BACKUP COMMAND 3.3 -- File Reorganization

The QUIT command can be entered at any time in response
to the file selection command prompt. QUIT will cause the
BACKUP process to be terminated and control returned to XDOS.
The file selection commands entered thus far will have had no
effect on the destination diskette; however, due to the

reorganization option, the destination diskette will have had

its basic system tables initialized as described above.

The NO MORE command, entered as a carriage return only,

indicates that no more file selection commands will be given
by the operator. If no file selection commands have _ been
entered prior to the NO MORE command, then all file names in

the sorted directory will be eligible for copying to the
destination diskette. The copy process will begin.

The PRINT command will cause all names from the sorted
directory which have not yet been flagged as "deleted" to be
printed. The PRINT command also makes it impossible to enter
further SAVE, DELETE, or QUIT commands. The PRINT command has

its own sub-command structure that allows deletion of file
names from the sorted directory. Along with each file name
and suffix a two-digit, hexadecimal number that indicates the

position of the file name within the sorted directory is
displayed. Thus, the output from the PRINT command could look
like:

00 BACKUP ~CM

01 COPY ~CM

02 DEL CM

03 DIR ~CM

04 DOSGEN ~CM

05 FREE ~CM

1D LOAD CM

1E FORLB RO

1F EQU ~SA

20 IOCB oSA

The range of numbers $06-1C, inclusive, is missing,

indicating that they have been excluded from the sorted
directory via prior SAVE and/or DELETE commands. If PRINT
were the first command to be entered, then all file names in

the sorted directory would be seen, and the range of numbers
would be without gaps.

After the PRINT command has displayed all of the file
names, a new prompt will be issued:

DELETE FILE NOS. :

_to which the operator can respond with a number, a series of
numbers or ranges of numbers separated by commas, a range of
numbers, Or a Single carriage return. The numbers must’ be
From the set of those displayed in front of the file names.
These numbers are used to indicate which files are to be
excluded from the sorted directory before files are copied to
the destination diskette. For example, the following entry:

01-03,1E,05

would cause the file names with numbers

XDOS 4.0 User’s Guide Page 03-06

BACKUP COMMAND 3.3 -- File Reorganization

O01, 02, 03, 05, and 1E

to be removed from the sorted directory before the file copy
process begins. Another "DELETE FILE NOS." prompt will be
displayed if a number was entered in response to a previous
prompt. Thus, as many file names as desired can be excluded
from the sorted directory. A carriage return response to’ the
prompt has the same effect as the NO MORE command described
above; i.e., it will end further command processing and cause
the file copy process to begin.

After the
message

the files to be copied have been selected,

COPYING XDOS SY

will be displayed. This message will in turn be followed by
similar messages for each of the eight remaining system files
that must be copied to every diskette. The xXDOS family of
system files are not shown in the sorted directory since they
must be copied. These system files are copied first so that
they will be assured of residing in specific physical
locations required by the XDOS initialization process. After
the XDOS system files have been copied, the message:

STARTING TO COPY FILES

is displayed, followed by messages of the form:

as each file

Using the above example of the sorted directory and

COPYING <name i>

from the selected files list is copied to the
destination diskette.

the
file names deleted from it, the file copy messages would look
likes

been

COPYING
COPYING
COPYING
COPYING
COPYING
COPYING
COPYING
COPYING
COPYING

XDOS
XDOSOVO
XDOSOV1
XDOSOV2
XDOSOV3
XDOSOV4
XDOSOV5
XDOSOV6
XDOSER

oSY
SY
SY
SY
oSY
oSY
SY
oSY
oSY

STARTING TO COPY FILES
COPYING
COPYING
COPYING
COPYING
COPYING
COPYING
COPYING

BACKUP
DIR

DOSGEN

FREE

LOAD
EQU

IOCB

oCM
CM
CM
CM

~CM
SA
oSA

After all eligible files from the sorted directory have
copied, BACKUP will return control

destination diskette will contain all of the

XDOS 4.0 User’s Guide

to XDOS.

selected

Page

The

files

03-07

BACKUP COMMAND 3.3 -- File Reorganization

packed together as closely as possible, leaving as much free
Space as possible.

3.4 File Appending

The file append process allows selected single files or
families of files to be copied from the source diskette to
the destination diskette. The file append feature of the
BACKUP command is’ similar to the reorganization feature
except that the destination diskette is not initialized with
new system tables or system files. Only the file selection
and the file copying from the source diskette are performed.
The diskette in the destination drive is assumed to be a
valid xDOS diskette. The file append process is invoked by
using the Main Option "A" on the BACKUP command line:

BACKUP ;A

Instead of the "BACKUP FROM DRIVE 0 TO 1?" message normally
displayed by BACKUP, the message:

APPEND FROM DRIVE 0 TO 1?

is shown. The operator must respond with a "Y" if the file
append process is to continue. Like the file reorganization
process, the file append process allows the operator to
select which files are to be copied. The messages for file
selection and the commands to the file selection process are
explained in section 3.3, File Reorganization, and will not
be discussed again here. After all files have been’ selected,
they will be copied similar to the process described in
section 3.3; however, the XDOS family of system files is not
copied.

Since the destination diskette already contains entries
in its directory, a possibility of file name duplication
exists. In the event that one of the selected file names from
the sorted directory duplicates a file name in the
destination directory, the following message will be
displayed:

<name> - DUPLICATION: IS IT TO BE COPIED?

The operator must respond with either an "N" or "Y¥". The "N"
response will prevent the file from being copied to the
destination diskette. The "Y" response will cause the prompt:

NEW NAME:

to be shown, to which the operator can respond with the new
name that is to be assigned. If a valid file name and suffix
are entered, they will be used as the name of the destination
file. The default suffix "SA" will be supplied if none is
explicitly entered. If only a carriage return is given as a
response to the prompt, then the file on the destination
diskette will be deleted (if it is unprotected) before the

file from the source diskette is copied (which will retain
its original name, in this case). If the destination
diskette’s duplicate file cannot be deleted, the message

XDOS 4.0 User’s Guide Page 03-08

3.4 -- File Appending

CANNOT DELETE DUPLICATE NAME

will be displayed and the BACKUP command will be terminated.

The "Y" and "Z" options can be used in conjunction with
the "A" option to indicate an automatic procedure in the
event of file name duplication. The "Y" option will
automatically cause an attempt to be made to delete the file
on the destination diskette before the copy takes place. If
the "Y" option is in effect, the file name duplication
message from above takes on the following form:

<name> - DUPLICATION: IS COPYING

to indicate that a "Y" was given as an automatic response to
the "IS IT TO BE COPIED?" portion of the message. The "2"
option will cause the file name duplication message to take
on the form:

<name> - DUPLICATION: IS NOT COPIED

to indicate that an "N" was given as an automatic res ponse to
the "IS IT TO BE COPIED?" portion of the message.

The file append process causes space to be allocated on
the destination diskette in contiguous blocks. If
insufficient contiguous space should remain on the
destination diskette for a given file, the file will not be
copied. The error message

OBJECT FILE CREATION COPY ERROR

will be displayed and the BACKUP command will be terminated.
The destination diskette may have sufficient space to
accommodate the file; however, if the space is not

contiguous, the above error occurs. To copy the file, the
destination diskette should be run through the file
reorganization process described in section 3.3, or the file
must be copied via the COPY command (Chapter 5). After the

last file has been copied to the destination diskette,
control will be returned to XDOS.

Contrary to XDOS 3, the XDOS 4 BACKUP command allows to
append files to the diskette in drive 0. The following
command would append selective files of drive 4 to drive 0.

=BACKUP :4,:0;3A

APPEND FROM DRIVE 4 TO DRIVE 0?

Y

ENTER FILE COPY SELECTION COMMANDS:

SAVE (S), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)

S, D, P, Q, (CR) :

3.5 Configuration parameters

When copying an entire diskette (no main options) or

XDOS 4.0 User’s Guide Page 03-09

3.4 -- File Appending

reorganizing it (main option "R"), BACKUP takes care of writing
the appropriate configuration parameters to the destination
diskette disk identification block. If the source and destination
drives are in the same map, the parameters are merely duplicated
to the destination disk. If they are not, the parameters
associated with the current controller and those associated with
the alternate controller are first read from the source disk, and

then swapped prior to being written to the destination disk
identification block.

3.6 Diskette Verification

The Main Option "V" invokes the verify process of the BACKUP
command. The verify process allows a physical sector comparison to
be made between the diskettes in the source and destination
drives. The following command line, without the presence of other
options, will cause the verify process to compare the diskettes”
physical sectors based on the source diskette’s allocation table:

BACKUP ;V

If any bytes in any sectors fail to compare, a sector message and
a list of all offsets within the sector that did not compare is
printed:

SECTOR nnnn

OFFSET ii DRO-jj DR1-kk

where "ii" is the hexadecimal offset into physical sector "nnnn",
"jj" is the hexadecimal contents of the sector*’s byte on the
source diskette, and "kk" is the hexadecimal contents of the
respective sector’s byte on the destination diskette. If all
sectors compare, no messages are displayed. After the verification
has completed, control is returned to XDOS.

3.7 Other Options

The Other Options described briefly in section 3.1 cannot be
used indiscriminately with any of the Main Options. This section
serves to fully explain the use of each Other Option.

Other Valid with Function
Option Main Option

Cc any The "C" option will cause the copy or
verify process to continue even if a
retryable read/write error occurred which
could not be corrected. The retryable
errors include CRC, seek, data mark, and

address mark CRC errors. The "C" option
will not cause read/write errors on

Retrieval Information Blocks to be
ignored.

D any The "D" option will cause the copy or
verify process to continue even if a

XDOS 4.0 User’s Guide Page 03-10

BACKUP COMMAND 3.6 -- Other Options

deleted data mark error is detected. This
option allows the verification of
diskettes that have had _ bad sectors
locked out during the DOSGEN process
(such sectors are flagged with a deleted
data mark). The "D" option permits a user
to copy the maximum amount of data from a
bad source diskette to a good destination
diskette.

Other Valid with Function
Option Main Option

I none, R The "I" option indicates that the
diskette”s ID sector is to be modified by
prompting the operator. The "I" option
will cause the following prompt messages
to be displayed. The operator can enter
new information if that field of the ID
sector is to be changed. If the field is
to remain the same as on_ the source
diskette, then only a carriage return
need be entered.

Prompt Operator Response

DISK NAME: . Maximum of eight
characters for
diskette ID. Format

is similar to that of

a file name.

DATE (MMDDYY) : Six-digit numeric
date. No check is
made for valid months

or days of the month.

USER NAME: Maximum of twenty
characters.

L any The "L" option causes the output from the
copy process or from the verification
process to be directed to the line
printer instead of the system console.

N R, A The "N" option will suppress the printing
of the file names as they are being
copied to the destination diskette. This
option will not suppress the printing of
error messages.

S Vv The "S" option will suppress the printing
of the sector offset messages if sectors
do not compare.

XDOS 4.0 User’s Guide Page 03-11

BACKUP COMMAND 3.6 -- Other Options

Other Valid with Function
Option Main Option

U none, V The "U" option indicates that all
physical sectors, both allocated and
unallocated, are to be copied or
verified. If "U" is not specified, only

the allocated sectors, as mapped in the
source diskette’s allocation table, will

be used.

4 A The "Y" option will cause a "Y" to. be
automatically given as a response to the
file name duplication error message. This
will automatically force the attempted
deletion of the duplicate file on the
destination diskette before the file is
copied. The "Y¥" and "Z" options are
mutually exclusive.

Z A The "Z" option will cause an "N" to be
automatically given as a response to the
file name duplication error message. This
will automatically prevent. the file on
the source diskette from being copied to
the destination diskette. The "Z" and "y"
options are mutually exclusive.

3.7 Messages

The following messages can be displayed by the BACKUP
command. Not all messages are error messages, although error
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

BACKUP FROM DRIVE 0 TO 1?

This indicates BACKUP will copy to - the
destination diskette in drive zero from the
source diskette in drive one if a "Y" response is
given. Any other response will cause control to
be returned to XDOS.

APPEND FROM DRIVE 0 TO 1?

This indicates that BACKUP will perform the file
append process if a "Y" response is given. Any
other response will cause control to be returned
to XDOS.

DISK NAME:

The "I" option has been specified. The operator
is expected to respond with a new disk ID or a
carriage return.

XDOS 4.0 User’s Guide Page 03-12

BACKUP COMMAND 3.7 -- Messages

DATE (MMDDYY) :

The "I" option has been specified. The operator
is expected to respond with a new date or a
carriage return.

USER NAME:

The "I" option has been specified. The operator
is expected to respond with a new user name or a
carriage return.

ENTER FILE COPY SELECTION COMMANDS:

SAVE (S), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)

S, D, P, Q, (CR):

The "R" or "A" option has been specified. The
file selection process is activated. The third
line shows what the valid responses are.

S, D, P, Q, (CR):

This is a subsequent prompt from the file
selection process. SAVE and DELETE commands can
be entered until a P (print), Q (quit), or
carriage return (NO MORE) is entered.

SYNTAX ERROR

This indicates a mistake in a _ response to a
question or prompt from the BACKUP command. The
entire line entered by the operator is ignored
and a new response must be made.

STARTING TO COPY FILES

This indicates that files from the sorted
directory are starting to be copied (Ror A
option).

NO FILES TO COPY

This indicates that there are no file names’ in
the source directory (other than the XDOS system
files) or that all of the file names from the
sorted directory have been deleted. No files are
copied if the "A" option is used. Only the xpos
family of system files will be copied if the "R"
option is used.

<name> NOT FOUND

This indicates that a file name or a family of
file names specified by a SAVE or DELETE command
could not be found in the sorted directory.

COPYING <name>

This indicates that the file name specified by
<name> is being copied to the destination

XDOS 4.0 User“s Guide Page 03-13

BACKUP COMMAND 3.7 -- Messages

diskette.

<name> - DUPLICATION: IS IT TO BE COPIED?

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. Only a "Y" or "N" is
accepted as a valid response.

NEW NAME:

This message is displayed if a "Y" is given in
response to the preceding message. It allows’ the
operator to assign a new file name to the file
being copied from the source diskette. A carriage
return response (no file name) will cause an

automatic attempt to delete the duplicate
destination file to be made, rather’ than
assigning a new name to the source file.

<name> - DUPLICATION: IS COPYING

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. The "Y" option caused
an automatic attempt to delete the duplicate
destination file to be made before the copy
continues.

<name> - DUPLICATION: IS NOT COPIED

This indicates that the file name specified by
<name> already exists on the destination diskette
during the append process. The "Z" option caused
the file to be skipped. The destination file is
unaffected.

OBJECT FILE CREATION COPY ERROR

This usually indicates that insufficient
contiguous space exists on the destination drive
for the file being copied (A option).
Occasionally, however, it may mean that an error

was detected in the reading or writing of the
file*s Retrieval Information Block on the
destination diskette.

CANNOT DELETE DUPLICATE NAME

This indicates that the duplicate file name on
the destination diskette could not be deleted due
to its protection attributes.

DELETE FILE NOS.:

The PRINT command displays this prompt to allow
deletion of file names by entering their
displayed numbers. The prompt will be redisplayed
until a null response (carriage return) is given.

XDOS 4.0 User’s Guide Page 03-14

BACKUP COMMAND 3.7 -- Messages

nn <name>

After the PRINT command is chosen during the file
selection process, a list of all file names
eligible for copying is displayed. The "nn" is a
hexadecimal number that indicates the position of
the name with respect to the total sorted
directory. The <name>, of course, is the file’s

name and suffix.

SYSTEM SECTOR COPY ERROR

This indicates that a system sector could not be
read from or written to. BACKUP cannot continue

and control is returned to XDOS.

SECTOR nnnn

This indicates that the physical sectors "nnnn"
did not compare during the verify process.

OFFSET ii DRO-jj DR1-kk

This indicates which bytes did not compare during
the verify process. The "ii" is the hexadecimal
offset into the sector, "jj" is the hexadecimal
contents of the byte on the source unit <s-unit>,
"kk" is the hexadecimal contents of the byte on
the destination unit <d-unit>.

DIRECTORY READ/WRITE ERROR

This indicates that an internal system error was
encountered while trying to access the directory
of the source diskette. Errors of this type
indicate a possible hardware problem.

SOURCE FILE COPY ERROR

This indicates that an internal system error was
encountered while reading a Retrieval Information
Block from a file on the source diskette. Errors
of this ‘type indicate a possible hardware
problem.

3.8 Precautions with BACKUP

The following sections describe some of the precautions
that should be taken when using the BACKUP command in_ the
various environments that are supported by XDOS.

3.8.1 BACKUP and the CHAIN process

Since the BACKUP command has so many different paths
that can be taken, it is generally recommended that BACKUP
not be invoked from within a CHAIN process (see Chapter 4).
The BACKUP process is so important to the protection of
diskette files that the entire process should be supervised

XDOS 4.0 User’s Guide Page 03-15

BACKUP COMMAND 3.8 -- Precautions with BACKUP

by the operator.

Diskette verification from within a CHAIN process’ using
the BACKUP command is also infeasible. The CHAIN command
writes intermediate information to the diskette in drive zero
during its operation. Thus, if BACKUP with the "V" option is
invoked from within a CHAIN process, and if drive zero is
involved in the BACKUP process, then the two diskettes are

guaranteed to be different.

3.9 Examples

Many times it is desirable to differentiate the two
identical copies of diskettes from each other by use of the
ID sector information. The ID sector”®s contents can _ be
changed during a diskette copy by using the "I" option.

=BACKUP ;I
BACKUP FROM DRIVE 0 TO 1?
Y
DISK NAME:NEWNAME
DATE (MMDDYY) :080679
USER NAME:

All information to the right of the colons is supplied by the
operator. The destination diskette will be given the disk
name NEWNAME which will be printed on the heading lines of
subsequent FREE and DIR command invocations (see Chapters 11
and 7, respectively). The date of the disk copy that is
generated is August 6, 1979, and the same user name that was

assigned to the source diskette during a previous BACKUP or
during the initial DOSGEN process will be given to. the
destination diskette (indicated by carriage return response
without any data).

The verification process using the two diskettes
generated above will cause an error when comparing the ID
sectors; however, the remainder of the diskettes are still
compared. The offset messages of the discrepancies can be
Suppressed by also using the "Ss" option. Thus, the
verification of the above example’s generated diskettes would
show the following operator-system interactions:

=BACKUP ;VS
SECTOR 0000

The following example assumes that no scratch or garbage
files exist on the source diskette. Then, the reorganization
process requires a minimum amount of operator interaction:

XDOS 4.0 User’s Guide Page 03-16

BACKUP COMMAND 3.9 -- Examples

=BACKUP ;R

BACKUP FROM DRIVE 0 TO 1?

Y

ENTER FILE COPY SELECTION COMMANDS:

SAVE (S), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)

S, D, P, Q, (CR):
COPYING XDOS ~SY

etc.

STARTING TO COPY FILES

COPYING BACKUP .CM

etc.

It should be noted that no file selection commands were used.
The resulting destination diskette will contain all files
from the source diskette, but they may be in different places

on the surface of the diskette. Thus, a reorganization
process cannot be followed with a verification process’ for
the same diskette pair. The "N" option could have been used
in the above example to suppress the printing of the file
names as they were being copied.

The last example shows the file append process. The
example assumes that there is an XDOS diskette in drive 1.
Also, it assumes that the diskette in drive zero has a family
of files which are to be copied to the destination diskette.
The family has file names which start with the letters "FOR".
The following shows the operator-system interactions:

=BACKUP ;A
APPEND FROM DRIVE 0 TO 1?
Y
ENTER FILE SELECTION COMMANDS :
SAVE (S), DELETE (D), PRINT (P), QUIT (Q), NO MORE (CR)
S, D, P, Q, (CR):S FOR*.*
S, D, P, Q, (CR):P
09 FORT CM
OA FORTLIB .RO
OB FORTNEWS.SA
OC FORTEST1.SA
OD FORTEST2.SA
OE FORTEST3.SA
OF FORTEST4.SA
10 FORTESTS.SA
DELETE FILE NOS.:
B-E,10
DELETE FILE NOS. :

STARTING TO COPY FILES
COPYING FORT ~CM
COPYING FORTLIB .RO
COPYING FORTEST4.SA
FORTEST4.SA - DUPLICATION: IS IT TO BE COPIED?
Y
NEW NAME: FTEST

The file selection command SAVE was used to flag all
file names beginning with FOR as eligible for copying. Then
the PRINT command was used to see the eligible list of file

XDOS 4.0 User’s Guide Page 03-17

BACKUP COMMAND 3.9 -- Examples

names. The PRINT command terminates the use of the DELETE and
SAVE commands. Thus, the PRINT command’s delete file feature

is used to remove any remaining file names from the eligible
list. File names OB, OC, OD, OE, and 10 were deleted in this
Manner. A null response is required to terminate the PRINT
command’s input prompting. The last file to be copied turned
out to have a duplicate file name existing on the destination
drive. The operator responded with a "Y" indicating that he
wanted to copy the file anyway. Since duplicate file names
cannot exist, the append process lets the operator rename the
source file before it gets copied. The new name assigned to
the file on the destination diskette will be FTEST.SA
(default suffix assigned).

Page 03-18

CHAPTER 4

4. CHAIN COMMAND

The CHAIN command allows predefined procedures to _ be
automatically executed. A procedure consists of any sequence
of XDOS command lines that has been put into a diskette file,
known aS a CHAIN file. Instead of obtaining successive
command lines from the console, CHAIN will fetch commands

from the CHAIN file. This feature allows complicated and
lengthy operations to be defined once, and then invoked any
number of times, requiring no operator intervention. The
additional capabilities of conditional directives to the
CHAIN command at execution time permits an almost unlimited
number of applications to be handled by a CHAIN file.

The CHAIN command is initially invoked by the following
command line:

CHAIN <name 1>

The only required parameter is <name 1>, the file name
specification of the diskette file that contains the
procedure definition. The CHAIN file, <name 1>, is given the
default suffix "CF", permitting the file name to be
identified in the directory listing at a glance as being a
CHAIN file. The default logical unit number is zero.

Two special forms of the CHAIN command line can be’ used
to restart an aborted CHAIN process. These command lines are
shown here, but are described in detail in section 4.6.

CHAIN N*
CHAIN *

CHAIN executes a copy phase and an execution phase. In
the copy phase, <name 1> is read from beginning to end and
copied into an intermediate file named CHAIN.SY:0. The source
records will then be read from this file during the execution
phase of the CHAIN process. This file will be automatically
deleted upon the subsequent successful completion of the
CHAIN process.

During the execution phase, CHAIN basically intercepts
the system console input requests so that input can be

supplied from the intermediate file. Each time an input
request is made by a command that is invoked by the CHAIN
process, the next line from the intermediate file will be
read and passed to the command. As far as the command is
concerned, it is receiving its input information from the
operator at the console.

The CHAIN command only intercepts console input via the
XDOS system function ".KEYIN" (see section 18.2). Therefore,

XDOS 4.0 User’s Guide Page 04-01

CHAIN COMMAND 4.1 -- Use

only programs (commands or user-written programs) that use
this system function will receive their input from. the
intermediate file. Programs which contain their own input
routines, or which use the device independent I/O functions

(see section 18.3) can be invoked by the CHAIN process, but
the subsequent input to those programs must be supplied
Manually via the console.

The CHAIN command cannot be invoked from within a CHAIN
process unless it is invoked from the last line of the
intermediate file. An error message will be displayed if
other types of CHAIN command recursion are attempted.

The CHAIN command will continue to supply information
from the intermediate file until the end of the file is
encountered. If, at that point, the next input request from

the console is by the XDOS command interpreter, the CHAIN
process will be properly terminated, XDOS will be re-entered,
and commands will again be accepted from the operator at the
console. If, however, the end of the intermediate file is

encountered while a program is requesting console input, then
the CHAIN process is aborted, an error message is displayed,
and the currently active program will be stopped. Control
will then be given to the XDOS command interpreter.

The diskette in drive zero must remain in drive zero

throughout the execution of the CHAIN process, even if the

"CF" file is compiled from drive one.

4,2 Execution Operators

Execution Operators can be used_ for the dynamic
adjustment of a CHAIN’ process whi le it is being executed.
Through the use of these operators, the user can set values
in an error status word maintained by XDOS, test the word,

and, depending upon the results of the test, skip a portion
of the procedure. The error status word is accessed by all
XDOS commands to indicate whether or not they completed their
function without error.

All CHAIN Execution Operators are denoted by the
commercial at-sign (@) as the first character of a line. Any

number of intervening spaces (including none) can be placed
between the at-sign and the operator. If an operator is found
which is not defined, the CHAIN process will be aborted. The

following Execution Operators are defined:

Operator Function

x Comment
. Operator breakpoint
SET Set error status word

TST Test error status word

JMP Continue sequential processing at label
LBL Define a label
CMD Change state of CHAIN input echo

XDOS 4.0 User’s Guide Page 04-02

CHAIN COMMAND 4,2 -- Execution Operators

4.2.1 Execution Comments

If the character following the at-sign is an asterisk
(*), then an Execution Comment is indicated. The remainder of
the line following the asterisk contains the comment, which
can include any displayable characters. Execution Comments
are displayed when they are encountered during the execution
of the CHAIN process. Execution Comments are used to relay
information to the operator during the actual execution of
the intermediate file. In conjunction with the Operator
Breakpoint (next section), these comments also serve as a
means of passing instructions to the operator for mounting
paper into the printer, swapping diskettes in drive one, etc.

4.4.2 Operator Breakpoints

A variation of the Execution Comment is the Operator
Breakpoint. If a period (.) is used instead of an asterisk
for the Execution Comment, then the normal Execution Comment
is displayed; however, instead of continuing with the
processing of the next line of the intermediate file, the BEL
($07) character is sent to the console to alert the operator.
The CHAIN process then waits for any key on the keyboard to
be depressed before continuing. For example, the following
compiled CHAIN file:

@* GOING TO ASSEMBLE PROGRAM

@. TURN ON PRINTER
ASM TESTPROG 3; LXG

would display the two comments during the execution of the
CHAIN process. Prior to starting the assembly, however, the

CHAIN process would pause allowing the operator time to ready
the printer. Execution would not resume until after the
operator had depressed any key on the system console.

4.2.3 Error status word

Among the operating system’s resident variables is a
two-byte error status word. Each XDOS command will set or
clear a bit within this status word to indicate the status of
the command*s completion. The error status word has the
following format:

XDOS 4.0 User’s Guide Page 04-03

CHAIN COMMAND 4.2 -- Execution Operators

ee ce es ee ee ce cee ee ee ee oe ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee

Error Error Error Type

eee

ee. Bits 0-7 describe

error

cocoeeeeeeeoeee Brror Mask Flag
Bit B (8-A unused)

eee ee ee eevee eoeeceweceesese Error Status Flag
Bit F (C-E unused)

Normally, after the completion of each command, all bits of

the Error Status and the Error Type are cleared (= 0). The
Error Mask is not affected by XDOS commands. If an error
occurred during the command, the Error Status Flag (bit F)

will be set by the command. In addition, an Error Type will
be set into the lower half of the status word (bits 0-7). The
Error Type is used to indicate which error was detected by
the command.

Usually, the CHAIN process will abort anytime the Error
Status Flag is set by one of the commands invoked from _ the
intermediate file. The Error Mask can be used to inhibit
CHAIN process aborting due to command errors by setting the
Error Mask Flag (bit B) to al.

The Execution Operators can affect certain parts of the
status word. A mask feature is provided to isolate the Error
Status Word bits which are to be preserved.

4.2.4 SET operator

The SET operator can be used to place a certain bit
pattern into the system error status word. In particular, the
SET operator is the only way that the Error Mask Flag can be
set to inhibit CHAIN process abortions. The XDOS commands
will only set the Error Status and the Error Type. The SET
operator has the following format:

@SET <mask> <value>

where <mask> is a hexadecimal number which is used to mask
the bits to be preserved, and <value> is a hexadecimal number
representing the bits which must be set in the error’ status
word. The error status word is logically "anded" with <mask>,
then logically "“ored" with <value>. These two numbers may not
exceed SFFFF. As an example of the SET operator, the
following will set the Error Mask Flag (bit B) to inhibit
CHAIN process aborting due to command execution errors:

@SET FOFF 800

XDOS 4.0 User’s Guide Page 04-04

CHAIN COMMAND 4.2 -- Execution Operators

This form will set bit B of the error status word; however,
the other parts of the error status word are not changed. The
following example sets the Error Mask Flag and clear the
remainder of the error status word.

@SET 0 800

4.2.5 TST operator

The TST operator is used to examine the error. status
word for a particular condition. This operator has the
following format:

@TST <mask> <value> <condition>

where <mask> is a hexadecimal number used to mask the bits to
be tested, <condition> is a hexadecimal value representing
the test condition to be performed, and <value> is a
hexadecimal number that is used as part of the test.

Use of the TST operator results in a true or false
condition based on the test performed. If the result of the
test is true, then the next sequential line in the
intermediate file will be skipped. If the result of the test
is false, however, then the next sequential line in the
intermediate file will be processed. In other words, a_ false
condition has the same effect as if the TST operator was not
processed at all.

The following test conditions can be used in the
<condition> field of the TST operator:

<condition> Test performed on word part

22 Higher than <value> (unsigned)
23 Less than or equal to <value> (unsigned)
24 Higher than or equal to <value> (unsigned)
25 Less than <value> (unsigned)
26 Not equal to <value>
27 Equal to <value>
2C Greater than or equal to <value> (signed)
2D Less than <value> (signed)
2E Greater than <value> (signed)
2F Less than or equal to <value> (signed)

The <condition> part of the TST operator must be one of
the hexadecimal values listed.
The <value> and <mask> parts of the TST operator are
hexadecimal numbers in the range 0-FFFF.
All tests are performed on 16-bit values. The error status
word content is first logically "“anded" with the 16-bit
<mask> supplied, then compared to the given 16-bit <value>.
Finally, the appropriate test is performed.

XDOS 4.0 User’s Guide Page 04-05

CHAIN COMMAND . 4.2 -- Execution Operators

4.2.6 JMP operator

The JMP operator allows skipping lines in the

intermediate file during its execution. Used in conjunction

with the TST operator, the JMP operator can be turned into a

conditional jump around critical steps if certain conditions

are detected during the execution of the CHAIN process.

The JMP operator has the following format:

@JMP <label>

where <label> is a hexadecimal value associated to a_ forward

LBL operator. Jumps can only be made in a forward direction.

That is, once a line has been executed from the intermediate

file, it cannot be jumped to with the JMP operator, even if

it has a defined label. Jumps to undefined labels or backward

jumps will cause the CHAIN process to be aborted.

4.2.7 LBL operator

The LBL operator is used to define a label within the

CHAIN file. All labels referenced by the JMP operator must be

defined with the LBL operator. The format of the LBL operator

iss

@LBL <label>

where <label> is a hexadecimal value used to identify the LBL

operator among the others. It must be unique within the LBL

operators, this means that no other LBL operator in the

intermediate file may define the same number. The <label>

part of the LBL operator must be comprised between 0 and FFFF

included.

4.2.8 CMD operator

Normally, during the execution phase, as commands are

processed from the intermediate file, each command line is

displayed on the console. Likewise, all input requested by

the command that is supplied from the intermediate file will

be displayed on the console. The CMD operator can be used to

suppress console display of all input that originates from

the intermediate file. The CMD operator has the following

format:

@CMD <value>

where value is an even hexadecimal number to enable the

print, or an odd hexadecimal number to disable it. Initially

during the execution phase, the print is enabled.

4.3 Messages

The following messages can be displayed by the CHAIN

command. The standard error messages that can be displayed by

XDOS 4.0 User’s Guide Page 04-06

CHAIN COMMAND 4.3 -- Messages

all commands are not listed here. The messages are broken’ up
into two sections: those that can be displayed during the
copy phase, and those that can be displayed during the
execution phase.

The following error messages can be displayed during the copy
phase:

ILLEGAL NESTING OF CHAIN COMMANDS

A CHAIN command was found in the intermediate

file that did not coincide with the last record

of the file. CHAIN processes can only invoke
another CHAIN command from the last line of the

intermediate file.

** 48 CHAIN OVERLAY DOES NOT EXIST

The XDOS system CHAIN overlay does not have an
entry in the directory. The diskette in drive
zero is unable to execute a CHAIN process. The
BACKUP command (Chapter 3) must be used to copy
the system overlays to that diskette.

The following messages can be displayed during the execution
phase:

END CHAIN

This message is displayed upon the successful
termination of a CHAIN process. The next console
input request will be obtained from the system
console again. The intermediate file, CHAIN.SY:0,
will have been deleted.

** 01 COMMAND SYNTAX ERROR

An Execution Operator was encountered that had an
illegal operand field.

** 08 CHAIN ABORTED BY CONTROL-P KEY

The operator depressed the CTL-P key during’ the
execution phase causing the CHAIN process to be
aborted.

** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS WORD

The last executed program set an error. status
into the system error status word which was not
masked by the SET operator. If no SET operators
are used in a CHAIN file, any error status word

change will cause the CHAIN process’ to be
aborted.

XDOS 4.0 User”s Guide Page 04-07

CHAIN COMMAND 4.3 -- Messages

** 22 BUFFER OVERFLOW

The response obtained from the intermediate file
to an input request exceeded the maximum number
of characters that were acceptable to the input
request.

** 49 CHAIN ABORTED BY ILLEGAL OPERATOR

An illegal Execution Operator was encountered in
the intermediate file.

** 50 CHAIN ABORTED BY UNDEFINED LABEL

A JMP operator was encountered which referenced a
label that did not exist (Backward references are

treated as undefined labels).

** 51 CHAIN ABORTED BY PREMATURE END OF FILE

An access to the intermediate file returned an
end-of-file condition when an input request was
made by a program that was invoked by the CHAIN
process. All input that is expected by the
program must be in the intermediate file.

4.4 Resuming an Aborted CHAIN Process

If a CHAIN process is aborted during the execution phase
for any reason, the CHAIN process can still be restarted.

Since the intermediate file is not deleted until the CHAIN
process has been successfully completed, this capability
eliminates the need to recompile the original CHAIN file.

The special CHAIN command line:

CHAIN *

will restart the execution phase with the line last fetched
from the intermediate file (the line that caused the error).
For example, if an assembly has been invoked by the CHAIN
process for which a duplicate object file exists, the CHAIN
process will normally be aborted. The operator could then
manually delete the duplicate file name and restart the CHAIN
process with the above special form of the command line.

If the failing command can never succeed, the current
line of the intermediate file can be bypassed, and the next
one used to resume the aborted CHAIN process by using the
following special command line:

CHAIN N*

If the next line of the intermediate file has been intended
as a keyin response for the program (which just failed), then
the process will generally abort again immediately. By using
the "N*" form of the special command line several times, the
invalid step can usually be bypassed and the CHAIN process
resumed at a valid XDOS command line.

XDOS 4.0 User’s Guide Page 04-08

CHAIN COMMAND 4.4 -- Resuming an Aborted CHAIN Process

The Error Status Mask and the current state of the CMD
operator are lost when a CHAIN is aborted. These values
cannot be restored when an aborted CHAIN process is
restarted.

4.5 Examples

The following example shows a fairly complex CHAIN file
that incorporates most of the features described in this
chapter. This CHAIN file is used to assemble and create
loadable files of a system of program files that resides on
multiple diskettes. The primary assumption made is that = an
XDOS system diskette is on drive zero and that the source
programs will be on drive one (although not all at the same
time).

@CMD 1
‘@SET FOFF 800
@. INSERT DISK 1 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
@* ASSEMBLING MODULE ONE
DEL PROG1.LO:1
:RASMO9 NOL,EQU,LIS,PROG1:1;0=PROG1:1
@Ist FF 0 27
@JMP 1
@* SUCCESSFUL MODULE ONE ASSEMBLY. PROGRAM UPDATE WILL BE PERFORMED
MERGE FINAL.LO,PROG1.LO:1,TEMP.LO
DEL FINAL.LO
NAME TEMP.LO,FINAL
@JIMP 2 ©
@LBL 1
@* ERROR(S) IN MODULE ONE ASSEMBLY. PROGRAM UPDATE WONT BE PERFORMED
@LBL 2

@* ASSEMBLING MODULE TWO
DEL PROG2.LO:1
RASM09 NOL,EQU,LIS,PROG2:1;0=PROG2:1
@rst FF 0 27 ©
@IMP 3
@* SUCCESSFUL MODULE TWO ASSEMBLY. PROGRAM UPDATE WILL BE PERFORMED
MERGE FINAL.LO,PROG2.LO:1,TEMP.LO
DEL FINAL.LO
NAME TEMP.LO, FINAL
@JMP 4
@LBL 3
@* ERROR(S) IN MODULE TWO ASSEMBLY. PROGRAM UPDATE WONT BE PERFORMED
@LBL 4
@. INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
@*

@* ASSEMBLING MODULE THREE
DEL PROG3.LO:1
‘“RASMO9 PROG3:13;0=PROG3:1

@TST FF 0 26
@JMP 5
@* ERROR(S) IN MODULE THREE ASSEMBLY. PROGRAM UPDATE WONT BE PERFORMED
@JMP 6
@LBL 5
@* SUCCESSFUL MODULE THREE ASSEMBLY. PROGRAM UPDATE WILL BE PERFORMED
MERGE FINAL.LO,PROG3.LO:1,TEMP.LO
DEL FINAL.LO

XDOS 4.0 User’s Guide Page 04-09

CHAIN COMMAND 4.5 -- Examples

NAME TEMP.LO,FINAL
@LBL 6
@*

@* ASSEMBLING MODULE FOUR
DEL PROG4.LO:1
RASMO9 PROG4:1;0=PROG4:1
@rst FF 0 26
@JMP 7 .
@* ERROR(S) IN MODULE FOUR ASSEMBLY. PROGRAM UPDATE WONT BE PERFORMED
@JMP 8B
@LBL 7
@* SUCCESSFUL MODULE FOUR ASSEMBLY. PROGRAM UPDATE WILL BE PERFORMED
MERGE FINAL.LO,PROG4.LO:1,TEMP.LO
DEL FINAL.LO
NAME TEMP.LO,FINAL
@LBL 8

The listing of the commands’ is inhibited during the
CHAIN process (@CMD 1). A comment tells the user when the

assembly of a module begins. After each module assembly, a
test is performed on the error status word: if there have
been any errors in the module, it is told to the user, if the
assembly was successful, the object file produced is used to
update a memory image file. Each time a diskette has to be
mounted in drive one, an execution breakpoint is used _ to

request it and pause the system.

It should be noted that the JMP operator may skip over
LBL operators, providing that the searched label is not
defined by these LBL operators. The first time that this
CHAIN file is used, the DEL command will cause an error to

occur; however, the SET operator has been used to inhibit
CHAIN process aborting.

Page 04-10

CHAPTER 5

5. COPY COMMAND

The COPY command allows files to be copied from one
diskette to another, from a diskette to another device, or
from another device to a diskette. It is not possible to copy
files between two non-diskette devices with the COPY command.
Options exist for copy verification and for the use of
non-standard devices.

The COPY command is invoked with the following command

COPY <name 1>[,<name 2>] [3<options>]

where <name 1> is the name of a source file or source device,
<name 2> is the name of a destination file or’ destination
device, and <options> may specify the type of copying that is
to be performed. The following options are valid. Their use
is described explicitly in the next sections:

Option Function

B Perform both the copy and the verify
processes when copying between two
diskette files.

Cc Use binary record conversion during
the copy to a non-diskette device.

D=<name 3>[,] Use a user-defined device driver
instead of a standard xXDOS-supported
device driver during the copy or
verify process. The driver is located
in a diskette file <name 3>.

L List errors on the line printer
during file verification.

M Go to debug monitor after loading
user-defined device driver file.

N Use non-file format mode for’ the

non-diskette device.

Vv Verify source and destination files.
No copy is performed.

W Use automatic overwrite if
destination file already exists on
diskette.

XDOS 4.0 User’s Guide Page 05-01

COPY COMMAND 5.1 -- Use

5.1.1 Diskette-to-diskette copying

In order to copy one diskette file into another, both

<name 1> and <name 2> must be specified. The source file name
specification, <name 1>, will be supplied with the default
suffix "SA" and the default logical unit number zero if those
quantities are not explicitly given. The destination file
name specification, <name 2>, need only be specified with a
file name, a suffix, or a logical unit = number (or any
combination thereof); however, at least one part of <name

2>°s file name specification must be entered. The
unspecified parts of <name 2> will be supplied from _ the
respective parts of <name 1>. Thus, if TESTPROG.SA:0 is to
be copied to the diskette on drive one, then only the logical
unit number need be specified for <name 2>, since the file
name and suffix will be supplied from <name 1>:

COPY TESTPROG, :1

In this example the default values were first supplied for
<name 11>, and then the default values supplied for <name 2>.
There is no restriction in file format when copying from one
diskette file into another.

Only the "B", "LL", "“v" and the "W" options are valid
when copying between two diskette files. The "Vv" and "“B"
options, as well as the "V" and "W" options, are mutually
exclusive. The "L" option is valid only valid with "v" or
"B". The "W" option is used to allow the destination diskette
file to be overwritten if its file name already exists. If,

in the above example, the file name TESTPROG.SA:1 already
existed, then COPY would have displayed the message

TESTPROG.SA:1 EXISTS. OVERWRITE?

and await a response from the operator. A "Y" response would
allow the COPY process to continue, and the file on drive 1
would be overwritten. Any other response would cause the COPY
command to be terminated, and the destination file would be
unaffected. The "W" option’s presence will force the COPY
command to attempt the copy if the destination file name
exists, without prompting the operator.

The other options are explained in subsequent sections.

5.1.2 Diskette-to-device copying
oe ee ee ee ee ce ees ee ee ee ee ee

If a diskette file is to be copied to another device,
both <name 1> and <name 2> must be specified on the command
line. The default assumptions for the source file are _ the
same as in diskette-to-diskette copying; however, <name 2>
must now indicate a destination device rather than aé_ file.
The following are valid device specifications that can be
used for <name 2>3

XDOS 4.0 User’s Guide Page 05-02

COPY COMMAND 5.1 -- Use

Device
Name Associated Physical Device

#CN Console printer
#LP Line printer
#UD User-defined device

Unlike diskette-to-diskette copying, where <name_ 1>
could be the name of any diskette file, <name 1> can only be
an ASCII or binary record file (see section 17.3). Thus, not

every diskette file can be copied to a non-diskette device.
Memory-image files may not be copied to a _ non-diskette
device.

There are two modes for copying files to a non-diskette
device: file format mode and non-file format mode. The file

format mode is the default mode that the COPY command uses.
The file format mode will write one extra record to the
device before any data records are copied from the file. This
special record is called the File Descriptor Record (FDR) and
serves the same purpose as a directory entry for diskette
files: the FDR contains the diskette file*’s name, suffix and
file format (see section 17.3). The "N" option inhibits the

writing of the FDR to the output device, and is used to
indicate the non-file format mode. Thus, if an FDR is to be

written to the output device, the "N" option should be

omitted; if an FDR should not be written, the "N" should be
specified.

The output devices #CN and #LP can be used as_ the
destination device in the diskette-to-device copy mode.
However, the presence of the "N" option on the ‘command line
when copying to these devices has no effect. The #CN and #LP
devices are not "file" devices since no FDR could ever be
read from them. Thus, the COPY command will automatically
force the non-file format mode to be in effect and suppress
the writing of the FDR.

Some output devices cannot support eight-bit binary
data. In such instances, the "C" option must be used when
binary record files are being copied. The "C" option will
cause the binary data to be converted into seven-bit ASCII
data (see section 17.3) which can be handled by the device.

The following table shows what the destination file format
will be, based on the file format of the source file and the
options specified:

Source File Destination File

ASCII ASCII.

Binary, no "C" Binary, if supported by device; else
ASCII-converted=-binary.

Binary, "C" ASCII-converted-binary.

In the non-file format mode ("N" option specified), only
ASCII record files can be copied.

XDOS 4.0 User’s Guide Page 05-03

COPY COMMAND 5.1 -- Use

The "Vv" and "L" options are valid in this copy mode. The
"Ww" and "B" options are inval id since no diskette file is
being written to. The "D" and "M" options can be used, but
only if the device #UD is specified for <name 2> (see section
Sd) «

5.1.3 Device-to-diskette copying

If a file is to be copied from another device to_ the
diskette, then <name 1> is required; however, depending on
the copy mode chosen (file format or non-file format) <name

2> is optional. If the file format mode is to be used (no "N"

option specified), then <name 2> can be omitted. In_ such

cases, the file name to. be used for the diskette file is
taken out of the FDR; however, if <name 2> is specified

(still no "N" option), the source device will be read until
an FDR is found that matches <name 2> before the copy takes
place. In other words, in the file format mode, <name 2>

indicates the name of the file on the device which will be
copied to diskette. The name of the file can only he changed
with the NAME command (Chapter 15) after the file has_ been
copied to diskette.

If the "N" option is specified, then no FDR processing
will be performed. Therefore, <name 2> must indicate the
diskette file that is to be written to.

In either case ("N" option or no "N" option), <name 1>
will specify the source device, and <name 2> will specify the
destination diskette file. The default values "SA" and zero
will be supplied for <name 2>°s suffix and logical unit
number, respectively, if they are not explicitly entered by
the operator. The valid device specification that can be used
for <name 1> is:

Device
Name Associated Physical Device

#UD User-defined device

Only ASCII record files can be copied using the "N"
option. If media have been generated in a non-XDOS
environment, they must conform to the XDOS format for ASCII
record files (section 17.3). Most important is the record
termination sequence. Each record must end with a carriage
return, line feed, and null character combination. Otherwise,

leading data characters from the subsequent record can be
dropped. Next in importance is the end-of-file indicator. The
media should contain the ASCII end-of-file record (section
17.3) or generate a timeout condition.

If binary records are to be copied, then the file format
mode must be used. The binary record copied to diskette will
always be in the binary format, never in the
ASCII-converted-binary format. The FDR contains the format of
the file on the device. Thus, the conversion from
ASCII-converted-binary to binary is performed automatically.

XDOS 4.0 User’s Guide Page 05-04

COPY COMMAND 5.1 -- Use

The "C" option, therefore, is invalid with this form of the
COPY command.

The "Ww" option can be specified to automatically
overwrite the diskette file (<name 2>) if it already exists.

The "D" and "M" options are only valid if <name 1> is the #UD
device. The "B" option is invalid, but the "Vv" and "L"
options are valid. The "L" option can only be specified if
"Vv" is specified.

5.1.4 Verification

The "V" option can be used to compare two files against
each other. No file copying will take place if this option is
specified. The "V" option is valid with all three modes of
the COPY command: diskette-to-diskette, diskette-to-device,
and device-to-diskette. If, however, a device specification
is being used for either <name 1> or <name 2>, it must be a

device that supports input. For example, even though aé_ file
from diskette can be copied to the line printer or the
console punch, the "V" option is invalid for those specific
devices.

The verification process will display the message

VERIFY IN PROGRESS

while the verification is taking place. If the files being
compared are both diskette files, then the parts of the files
that do not compare will be displayed in the following
format:

SECTOR nnnn

OFFSET xx SRC-yy DST-zz

where "nnnn" is the logical sector number of the file, "xx"

is the offset into the sector, "yy" is the source file”s byte
(<name 1>), and "zz" is the destination file*s byte (<name
2>). All values are displayed in hexadecimal.

If memory-image files are being compared, then the
files® RIBs will also be included in the verify process to
ensure that the load information matches.

In the event that only a sector number is displayed
during the verify process (no byte discrepancies shown), then
the two files are of different lengths. The files are
identical through the end-of-file of the shorter file. The
sector number displayed is one sector beyond the end-of-file
of the shorter file.

When verifying a diskette file with a non-diskette file,
the mis-comparisons between the two files are displayed ina
Slightly different format as shown below:

RECORD mmmmm
OFFSET kkk SRC-yy DST-zz

where "mmmmm" is the physical record number in the diskette

XDOS 4.0 User’s Guide Page 05-05

COPY COMMAND 5.1 -- Use

file (in decimal), "“kkk" is the offset within the record
(also in decimal), and "yy" and "zz" are the same as
described above. If the two files being compared are of
different lengths, and if they are identical through’ the
end-of-file of the shorter file, then the offset portion of

the error message will not be printed.

The "L" option can be used in conjunction with the "Vv"
option to cause the mis-comparisons between the two files to
be printed on the line printer instead of the console.

5.1.5 Automatic verification

The "B" option can be used when copying from one
diskette file to another to automatically cause the two files
to be verified after the copy has taken place. Section 5.1.1
describes the copy process between two diskette files.
Section 5.1.4 describes the verification process.

For example, the following command line:

COPY TESTPROG,:1;B

performs exactly the same function as the following two
command lines:

COPY TESTPROG, :1
COPY TESTPROG,:1;V

The "L" option can be specified along with the "B"
option to cause any errors during the verification process to
be printed on the line printer instead of the console.

5.2 User-Defined Devices
ee ee ee ee ee ee

The COPY command allows the user to specify his own
device drivers. Such device drivers must follow the
specifications described in this section. The device name #UD
is used on the COPY command line to indicate that a
user-defined device driver is specified in the options field.
The "D" option is used to pass the file name of the device
driver to the COPY command. The "D" option has the following
format:

D=<name 3>[,]

where the terminating comma is optional. If the "D" option is
the last option specified, then the comma need not be
supplied; however, if other options follow the "D" option,
then the comma must be present to serve as a terminator for

the file name specification of the device driver.

The device driver must be in a file that has the
memory-image format. <name 3> is a complete file name
specification. The default values of "LO" and zero will be
supplied for the suffix and for the logical unit number. The
device driver must meet the requirements set forth in section
19.2 for entry points, for calling sequences, and for return

XDOS 4.0 User’s Guide Page 05-06

COPY COMMAND 5.2 -- User-Defined Devices

conditions. In addition, the following criteria must be
satisfied:

1. The first twelve bytes of the device driver
must contain the Controller Descriptor Block
(CDB) for the device (Chapter 19).

2. The device driver must not overlay the COPY
command. It is suggested that the device
driver load as close to the end of the COPY
command as possible. This address should be
$3000.

Tt may be necessary to set breakpoints in _ the
user-defined device driver to ensure that it is working
properly. The "M" option will cause the COPY command to enter
the debug monitor after the device driver has been loaded
into memory. This feature is especially useful during the
initial testing of the device driver.

The "M" option cannot be used without the "D" option. If
the "M" option is present, the EXORbug monitor is entered and
the user is prompted for a monitor command. That indicates
that the user-defined device driver has just been loaded into
memory. The actual numbers in the pseudo- registers may differ
and are inconsequential. The purpose of going to the debug
monitor is to allow the user to set breakpoints at critical
places in the device driver to verify that it is working
properly. After the breakpoints are set, control is returned

-to the COPY command by entering the EXORbug command

2P

Then, when the user-defined device driver is accessed by the
COPY command, the set breakpoints will allow the user’ to
check the device driver’s functions.

5.3 COPY Mode Summary

The following table summarizes the requirements for the
three COPY command modes. The following symbols are used _ in
the table:

DK-DK Diskette-to-diskette copying
DK-DV Diskette-to-device copying
DV-DK Device-to-diskette copying
R Required
fe) Optional
F File name

D Device name

XDOS 4.0 User’s Guide Page 05-07

COPY COMMAND 5.3 -- COPY Mode Summary

COPY Valid <name 1> <name 2> Restrictions
Mode Options

DK-DK B,L,V,W R,F R,F V and W options are

mutually exclusive. V
and B options are
mutually exclusive. L
is only valid with V
or B.

DK-DV C,D,L,M,N,V R,F R,D N option implies
ASCII record format.

Cc option implies
binary record format.
D option implies #UD
device name. V option
implies input device.
L option is only
valid with V.

DV-DK D,L,M,N,V,W R,D O,F D option implies #UD
device name. V option
implies input device.
W and V options are
mutually exclusive. N
option requires <name
2>. <name 2> causes
search for FDR on
device if no N
option. L option is
only valid with V.

5.4 Messages

The following messages can be displayed by the COPY
command. Not all messages are error messages, although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

<name> EXISTS. OVERWRITE?

The file named by <name> already exists in the
directory. Before overwriting the file, the
operator must respond with a "Y". Any other
response will terminate the COPY command.

VERIFY IN PROGRESS

The "Vv" or "B" option was specified on the
command line. The two files are being compared.

SECTOR nnnn

Two diskette files did not compare during’ the
verify process. "nnnn" indicates the logical
sector number (hexadecimal) of the failure.

XDOS 4.0 User’s Guide Page 05-08

COPY COMMAND 5.4 -- Messages

RECORD mmmmm

Two files did not compare during the verify
process. One file is on diskette, the other file
is not. "mmmmm" indicates the physical record
number (decimal) in the diskette file where the

failure occurred. The LIST command (Chapter 12)
can be used to display the records in a f ile with
their physical record numbers.

OFFSET {xx or kkk} SRC-yy DST-zz

This message indicates which bytes within a
logical sector or within a physical record of the
two files being compared do not match. The offset
"xx" is hexadecimal if comparing diskette files.
The offset "kkk" is decimal if comparing a
diskette file with a non-diskette file. The byte
in the source file is shown as "yy". The byte in
the destination file is shown as "zz".

5.5 Examples

The following examples have been separated into the
three COPY modes as illustrated in the table of section 5.3.

5.5.1 Diskette-to-diskette example
SO ce SR em os oe me ee cme eee ee? ee oe oe ee ne ee ee ee

The following command line

COPY PROGS.RO:2,.RN:1

will copy the file PROGS.RO from drive two into the file
PROGS.RN on drive one. A user response is required to
continue the copy if the file on drive one already exists.
The user response can be suppressed, regardless of whether
the file on drive one exists, by adding the "W" option as
shown:

COPY PROGS.RO:2,.RN:1;W

No error results if the file on drive one does not exist. In
either case, if the logical unit number had been omitted from
the <name 2> specification, the file would have been created
on drive two.

The next example illustrates the display of the bytes
which do not compare when two files are compared with the "v"
option.

=COPY BLAKJACK:1,:0;V
VERIFY IN PROGRESS
SECTOR 0000

OFFSET 10 SRC-31 DST-02
OFFSET 11 SRC-34 DST-03
OFFSET 12 SRC-2B DST-04
OFFSET 13 SRC-54 DST-05
OFFSET 14 SRC-53 DST-06

XDOS 4.0 User”s Guide Page 05-09

COPY COMMAND 5.5 -- Examples

OFFSET 15 SRC-31 DST-07
OFFSET 16 SRC-38 DST-08

OFFSET 17 SRC-OD DST-09
OFFSET 18 SRC-2B DST-00

OFFSET 76 SRC-45 DST-55

OFFSET 77 SRC-4C DST-66

OFFSET 78 SRC-53 DST-77

OFFSET 79 SRC-45 DST-88

5.5.2 Diskette-to-device example

The next example illustrates how source listings that
have been directed to diskette by the assembler (ASM) can be

printed on the line printer. Since the file already contains
page formatting, the LIST command would cause the printed
copy to look strange since LIST imposes its own page
formatting. Thus, the COPY command should be used to print
source listings from diskette:

COPY TESTPROG.AL,#LP

The console printer, #CN, could be used instead of #LP just

as well. The "N" option is not used in this example because
the printer (either #LP or #CN) is not a "file" device.
Copying to a "“non-file" device will automatically set the
non-file format mode. If the "N" option were specified in
such a case, no error would result. It would only be a

redundant request.

The last example illustrates how the command line would
appear if a user-defined device driver is used:

COPY TESTPROG.LX,#UD;ND=TAPE

The user device is indicated via the #UD. The "D" option must
be present. Otherwise, an error would result. The file
TAPE.LO on drive zero will be used as the device driver file
for the user device.

5.5.3 Device-to-diskette example
(a ces ees ee ee me 8 ee me ee ee ee ee ee oe

The following example
COPY #UD;D=LINK

will read a FDR using the user driver located in file LINK.LO
on drive 0. Then it will create a file according to the
specifications found in this FDR, and write to this file the
data following the FDR.

Note that the second file name has not been specified.
In the following example:

COPY #UD,TESTPROG.LX;D=LINK

the user media is scanned until a FDR describing a file name
TESTPROG.LX is found. Then the diskette file TESTPROG.LX will
be created, containing the data following the FDR.

XDOS 4.0 User’s Guide Page 05-10

COPY COMMAND 5.5 -- Examples

If no FDR is specified, the required command line must
look like

COPY #UD,TESTPROG.LX;ND=LINK

The following example illustrates how a user would set
breakpoints in his device driver to verify that it is
performing the functions of a driver as specified in section
19.2. The example shows the EXORbug command issued:

=COPY #UD,TEST;NMD=DRIVER

-30563V

- 3064:V

-3082:V
o7P

The EXORbug monitor is given control after the user’s driver
file, DRIVER.LO:0, has been loaded into memory by the COPY
command. The user then sets three breakpoints (the addresses
for the breakpoints are, of course, meaningless in this
example -- they serve only to illustrate that breakpoints are
set). The ";P" command then returns’ control to the COPY
command. When one of the breakpoints is reached during the
execution of the COPY command, the normal breakpoint display
will be seen. At that point, the user can examine registers,
memory, etc., to ensure that his driver is functioning
properly.

Page 05-11

CHAPTER 6

6. DEL COMMAND

The DEL command is used to remove XDOS file names from a
directory and to deallocate all space that belongs to the
deleted entry. A single file name, a list of file names, or a
family of file names may be deleted with a single command.

6.1 Use

The DEL command is invoked with the following command

DEL [<name 1> [,....,<name n>]] [;<options>]

where each <name i> (i = 1 to n) can specify a specific file
name or ae family of file names. The <options> field can be
one or both of the following option letters:

Option Function

S When family name specifications are used
include entries in the directory with the
"system" attribute.

y Automatically delete all file names of a
family. Do not ask the operator if each
member of the family should be deleted.

The list of file names specified on the command line is
processed from left to right. As the list is processed, the
file names are searched for in the directory specified by the
logical unit numbers. If no logical unit number is explicitly
entered by the operator, zero will be supplied as a default.
No default suffix is supplied. ,

It is recommended that files be configured with delete
protection or that adequate backup copies be kept since it is
not possible to recover an accidentally DELeted file.

6.1.1 Single file name deletion

A single file name is deleted by specifying its name as
the only parameter on the command line. Both the file*s name
and suffix must be supplied by the operator. If the file name
is not found in directory of the indicated (or default)
drive, the message

<name> DOES NOT EXIST

will be displayed. If the file name is found in the directory
and if the file is unprotected, the message

XDOS 4.0 User’s Guide Page 06-01

DEL COMMAND 6.1 -- Use

<name> DELETED

will be displayed to verify that the file name has’ been
deleted. If the file is protected, the message

<name> IS PROTECTED

will be shown. In this case, the file name is not deleted.

6.1.2 Multiple file name deletion

Multiple file names can be deleted by specifying more
than one name on the command line. Multiple file names must
be separated by commas or some other valid delimiter. Like
single file name deletion, multiple file name deletion will
cause one message to be displayed for each file name entered
on the command line to indicate whether it was deleted,

whether it did not exist, or whether it was protected and
could not be deleted. As many file names as_ can be
accommodated on the command line can be deleted at one time.

6.1.3 Family deletion

In either the single or the multiple file name modes, a
file name specification can contain the family indicator. The
family of file names specified by such a designation will
then be considered for deletion. Unlike the single and
multiple file name modes, the operator will be prompted with
the message

DELETE <name> ?

for each file name that belongs to the family. This permits
the operator to see all family members’ before they are
deleted. A "Y" response to the above prompt will cause’ the
file name to be deleted. Any other response will inhibit
deletion of that family member. Protected file names within
the family will be displayed with the standard protection
message indicating that they cannot be deleted.

Without the presence of any options, only file names
lacking the "system" attribute will be considered as eligible
for deletion in the family mode.

A special case of the family mode is the absence of any
file name specification. In this case, the DEL command
processes the command line as if the following file name
specification had been given

e230

which will make all non-system file names on drive zero
eligible for deletion.

A logical unit number may be entered on the command line
as the only part of the file name specification. In this
case, the family *.* will be eligible for deletion. Instead
of the default drive, however, the operator entered logical

XDOS 4.0 User”s Guide Page 06-02

DEL COMMAND 6.1 -- Use

unit number will be used.

6.2 Options

The "S" option is used to include file names with the
system attribute in the family mode of deletion. Normally,
the family mode excludes such file names. The "S" option has
no effect in the single or multiple file name modes.

The "Y" option will inhibit the DEL commands prompt
asking if each family member is be deleted. The effect of
specifying the "Y" option is to give an automatic "y"
response to the prompt; however, neither the prompt nor the

automatic response are displayed. The deletion messages
indicating which members of the family were deleted or
protected will still be shown.

The "Y¥" and "S" options can be used concurrently.

6.3 Messages

The following messages can be displayed by the DEL
command. Not all messages are error messages; however, error

messages are included in the list. The standard error
messages that can be displayed by all commands are not’ shown
here.

<name> DOES NOT EXIST

This message is displayed for each file name on
the command line that is not found in a
directory.

<name> DELETED

This message is displayed for each file name that
is deleted. It is displayed in single, multiple,
or family file name modes.

DELETE <name> ?

This prompt is displayed whenever a family of
file names containing at least one member has
been specified on the command line, and the "Y"
option is not present. The operator must respond
with a "Y" to delete each member of the family.

<name> IS PROTECTED

This message is displayed for each file name that
cannot be deleted due to its protection

attributes. The message is displayed in single,
multiple, or family file name modes.

XDOS 4.0 User’s Guide Page 06-03

DEL COMMAND 6.4 -- Examples

6.4 Examples

To delete a single file name called TESTPROG.SA on drive
zero, the following command line would be entered:

DEL TESTPROG.SA

The DEL command would then display the message

TESTPROG.SA:0 DELETED

after it has deleted the file name. To delete the three file
names: SCRATCH.SA on drive one, TEST.LX on drive one, and
PROG.LO on drive zero, the following command line would be
used. The system’s responses are also shown:

=DEL SCRATCH.SA:1,TEST.LX:1,PROG.LO

SCRATCH .SA:1 DELETED
TEST ~LX:1 DELETED

PROG ~-LO:0 DELETED

The following command line

DEL *.SA,*.SA:1

will search for all file names without the system attribute
and with the suffix "SA" on drives zero and one. After a file
name is found, its complete name will be displaved along with
the prompt asking if the file is to? be deleted. The operator
has complete control over the deletion of any member of the
family since a response is required for every member.

To delete all unprotected file names on _ drive one
without having to respond "Y" to each prompt, the following
command line could be used:

\

DEL :1;YS or DEL *.*:1;YS

In this case, unprotected file names with and without the
system attribute will be deleted.

Page 06-04

CHAPTER 7

7. DIR COMMAND

The DIR command displays XDOS file names from the
directory. The entire directory or selective parts of it may
be displayed. Options exist for displaying an entire
directory entry, its allocation information, and _ for
directing the output to the printer.

The DIR command is invoked with the following command
line:

DIR [<name>] [;<options>]

where <name> can specify a specific file name or a family of
file names. The <options> field can be one or more of the
following option letters:

Option Function

L Direct output to line printer.

S Include file names with the “system"
attribute when displaying a family.

E Display the entire directory entry for each
file name.

A Display the associated allocation information
along with the entire directory entry.

Whenever the DIR command is invoked, regardless of
options or file name specifications, the drive number and the
ID from the diskette in the specified or default drive will
be displayed as a heading. This heading will serve to
identify the subsequent output. The heading has the
following format:

DRIVE : i DISK I.D. : XxXxXxXXXxXxX

where "i" will be the logical unit number zero or one, and
"xxxxxxxx" will be the eight-character ID that was assigned
to the diskette via the DOSGEN command (Chapter 8) or the
BACKUP command (Chapter 3).

Normally, without the presence of any options, the
directory entry specified by <name> will be searched for and
its name and suffix displayed on the system console. The
following sections explain the various options that can be
specified on the command line.

XDOS 4.0 User’s Guide Page 07-01

DIR COMMAND 7.1 -- Use

7.1.1 Families

If <name> contains a family indicator in either the
suffix or the file name portion of the file name
specification, the entire family of file names will be
searched for in the directory and displayed. If no <name> is
specified at all, the default family "*.*:0" will be used. If

only a logical unit number is specified, the family "*.*" on
the indicated logical unit will be used. If the "S" option
has not been specified, only file names without the "system"
attribute will be included in the display. This eliminates
the display of all XDOS system files and commands.

When <name> contains a family indicator (explicitly or
by default), the file names are displayed in the order in
which they are found in the directory. A file name’s position
in the directory is a function of its name and suffix.
Appendix G describes in more detail how names are placed into
the directory; however, it should be noted here that when a

file*s name or suffix is changed, its position in the
directory may also change. Thus, when the directory is shown
at different times, the order of the displayed names may
differ.

7.1.2 System files

File names with the "system" attribute will be included
in the output of the DIR command if the "S" option is
specified on the command line. If a specific file name is
being searched for (<name> does not contain the family
indicator), then the "S" option has no effect.

The effect of the "S" option is identical to its effect
with the DEL command (Chapter 6). Thus, the same family of

file names displayed by the DIR command will be affected by
the DEL command (if invoked with similar command line
parameters). This feature allows an operator to see ahead of

time what family of file names will be affected by the DEL
command.

7.1.3 Entire directory entry

Normally, DIR will only display a file*s name _ and
suffix. The "E" option can be used to cause the entire
directory entry to be displayed. The presence of the "E"
option will cause each displayed line from the DIR command to
look like:

FFFFFFFF.SS WDSCN# RRRR 2222 DD

where the symbols take on the following meanings:

XDOS 4.0 User’s Guide Page 07-02

DIR COMMAND 7.1 -- Use

Symbol Meaning

FFFFFFFF File name

SS Suffix
WDSCN# Attributes
RRRR RIB address

ZZ22Z File size
DD Directory entry number

The file name a nd suffix are, of course, obvious. The file

att ributes are always displayed as a six-character field. The
presence of a letter or number in a specific position of the
attribute field indicates that the particular attribute
applies to the file. A period in a position of the attribute
field indicates that the particular attribute does not apply.
The following letters (and positions) are defined in the
attribute field:

cc
o

co

H
E

-. File format (O=user defined,

2=memory-image,
3=binary record,
5=ASCII record,

7=ASCII-converted-
: binary record)

2.... Non-compressed spaces
Zeceeeee Contiguous space allocation

occoeccee SYStem file
eocceceeeee Delete protection

ooccescceeee Write protection

ee

00

00

of

SS

co

co

co

of

&

ie
we

we

ee

00

ce

00

o8

cf

BZ

ww
e

oe
oe

oe
ee

we
owe

CF

Thus, if the "W" is displayed, the file is write protected.
If no "W" is displayed, the file is not write protected; if
the "C" is displayed, the file is allocated contiguous space;
if no "C" is displayed, the file is segmented; etc.

The remainder of the fields of the directory entry
contain only hexadecimal numbers. The RRRR field contains the
physical sector number of the first sector of the file. This
sector is known as_ the file*s Retrieval Information Block

(RIB). It is described in detail in Chapter 17. The RIB

contains the allocation information that describes where the

remainder of the file is located on diskette.

The Z222Z2Z2 field contains the file”s size in sectors. Due
to the allocation scheme used by XDOS, this field will always
be a multiple of the basic unit of allocation (see Chapter
17). The size is, therefore, the physical size of the file.

The logical file size, or the number of sectors from _ the

beginning to the end-of-file indicator, may be smaller.

The DD field is an eight-bit coded field that describes
the directory entry’s physical position within the directory.
It is interpreted as follows:

XDOS 4.0 User’s Guide Page 07-03

DIR COMMAND 7.1 -- Use

: : eee ee Position within sector
: (0-7)

Zeeeease coer ccc cccccee Physical sector number
($3-$16)

If the "A" option is specified on the command line, then
in addition to having the entire directory entry displayed
for each file name, the file*s allocation information will
also be shown. The allocation information is contained in the
file*’s RIB and describes where each segment of the file is
located on the diskette. This information is displayed
following the complete directory entry. One line is shown for
each segment of the file. The format of the allocation
information is

SS pppp zzz

where "ss" is the number of the segment (0-56, decimal),

"pppp" is the physical sector number of the sector. that
Starts the segment (hexadecimal), and "zzz" is the size of
the segment in sectors (hexadecimal). For example, a

directory entry could appear as follows:

EXFILE .SA -DS..3 O0D0O 0088 75 00 O00DO 080
01 0140 008

The file EXFILE.SA consists of two segments. The first
segment starts in physical sector $DO and is $80 sectors
long. The second segment starts in physical sector $140 and
is 8 sectors long. The file’s physical size is $88 sectors.

7.1.5 Other options

Normally, the output from the DIR command is’ displayed
on the system console. The "L" option can be used to direct
the output to the line printer. The format of the display is
the same. Like other XDOS commands that direct output to the
line printer, the paging will be preserved by the DIR
command. Thus, once the paper in the printer has been
aligned, it will remain aligned after a directory has’ been
printed.

7.2 Messages

The following messages can be displayed by the DIR
command. The standard error messages that can be displayed by
all commands are not listed here.

XDOS 4.0 User’s Guide Page 07-04

DIR COMMAND 7.2 -- Messages

DRIVE : i DISK I.D. : xxXxXxXXxXxXxX

This is the directory command’s heading line that
is displayed each time the command is’ invoked.
"i" is the logical unit number. "xxxxxxxx" is the
diskette’s ID that was assigned to it when it was
generated.

TOTAL NUMBER OF SECTORS : dddd/$hhh

This message is displayed if either the "E" or
the "A" option was specified on the command line,

and if one or more directory entries were found.
It gives the total number of sectors that is
allocated to the files whose names are displayed.
"dddd" is the decimal value of the total. "hhh"
is the hexadecimal value of the total. This
message is displayed after all file names have
been printed.

TOTAL DIRECTORY ENTRIES SHOWN : ddd/$hh

This message is shown at the end of each
directory search that found at least one file
name. It gives the total number of directory
entries included in the display. "ddd" gives the
decimal value of the total. "hh" gives’ the
hexadecimal value of the total.

NO DIRECTORY ENTRY FOUND

This message is displayed if the <name> specified
on the command line does not result in any
matches with directory entries on the diskette.
Tf <name> contains a family indicator, the
message means that no members of that family were
found on the diskette.

NO SDW°S

This message will only be displayed if the "A"
option is in effect and if an invalid RIB is
found for a file. The message is displayed in
place of the segment descriptor information that
appears to the right of the entire directory
entry. When such a message is seen, it indicates
that the file has probably been damaged. Since no
segment descriptors are found in the RIB, the
file will not be accessible any longer. The
system tables are probably corrupted: The best
way to recover the good files is a "BACKUP ;R"
command (chapter 3). This will re-build the
system tables on a scratch diskette.

XDOS 4.0 User’s Guide Page 07-05

DIR COMMAND 7.2 -- Messages

NO TERMINATOR FOUND IN FILE’S R.I.B.

This message can only be displayed if the "A"
option was specified on the command line. Like
the previous message, this one indicates that a
file*’s RIB has been damaged. It indicates that
the terminator was missing from the RIB. The

allocation information displayed for the file is
meaningless since 56 segment descriptors have
been displayed. The file*s content is no longer
accessible. Again, the "BACKUP ;R" command

(chapter 3) must be issued to recover the good
files and the system tables.

7.3 Examples

When the DIR command is invoked without any options on a
newly received system diskette, this is what will be seen on
the system console:

=DIR

DRIVE : 0 DISK I.D. : XDOS0300

NO DIRECTORY ENTRY FOUND

A new system diskette has only file names with the "system"
attribute. Those file names will be excluded from. the
directory unless the "S" option is specified. Thus, the
default family *.*:0 (since no <name> was specified) contains

no members. Using the "S" option on the above example would
result in the following display:

XDOS 4.0 User’s Guide Page 07-06

DIR COMMAND 7.3 -- Examples

=DIR ;S

DRIVE : 0 DISK I.D. : XDOS0300

XDOSOV6 .SY

LIST ~CM
XDOS -SY

MERGE ~CM

DIR ~CM

XDOSER' .SY

XDOSOV1 .SY

XDOSOV3 .SY

ROLLOUT .CM

FREE ~CM

EQU -SA
XDOSOV5 .SY

DUMP ~CM
NAME ~CM

XDOSOV2 .SY

EDIT -CM

LOAD ~CM
DEL ~CM

XDOSOVO .SY
CHAIN ~CM
BACKUP .CM
XDOSOV4 .SY
DOSGEN .CM
FORMAT .CM
COPY ~CM
TOTAL NUMBER OF ENTRIES SHOWN : 025/819

No file attributes or file sizes are displayed since neither
the "E" nor the "A" option was specified.

If a diskette is in drive one which contains
XDOS-Supported software products (see Appendix 4H), the
following shows how the directory entries with suffix "CM" on
that drive can be displayed:

=DIR *.CM:1:AS
DRIVE : 1 DISK I.D. : EDITO300

ASM ~CM -DSC.2 OOBO 002C 70 00 OOBO 02C

EDIT ~CM ~DSC.2 0230 0018 72 00 0230 018
TOTAL NUMBER OF SECTORS : 0068/$044

TOTAL DIRECTORY ENTRIES SHOWN : 002/502

Both the EDIT and ASM commands reside on drive one. From
their attributes it can be seen that those files are not
write protected, are delete protected, are system files, are
contigously allocated on diskette, and are of file format 2
(memory-image). The ASM command is located starting at
physical sector $B0 and is $2C sectors long. The EDIT command
is located starting at sector $230 and is $18 sectors’ long.
Both files have only one segment descriptor. The ASM
command’s file name is the first directory entry in physical
sector $E (found by shifting its directory entry number to
the right three bit positions). The EDIT command’s' directory
entry is in the same sector, but is the third entry in that
sector.

XDOS 4.0 User’s Guide Page 07-07

DIR COMMAND 7.3 -- Examples

In all of the above examples, the "L" option could have
been used in addition to any other options to direct the
output from the DIR command to the line printer.

It is recommended that a copy of the directory printout
containing the entire directory entry and the allocation
information be kept with each diskette. Since files can
dynamically expand and contract, their location on diskette
may change. If something happens to the diskette to damage
the directory, there is no way to recover any information
from it if a prior printout has not been saved. Normally, the
printout will never be needed, but as a precaution it is
indispensable.

Page 07-08

CHAPTER 8

8. DOSGEN COMMAND

The DOSGEN command allows specialized XDOS diskettes to
be prepared. Diskettes that have bad sectors can have those
sectors locked out so that the diskette can be used in an
XDOS environment. DOSGEN will also create all system tables
and files on the generated diskette.

8.1 Use

New diskettes never before used on an XDOS system, must

first be prepared for use with XDOS. One way to generate a
new XDOS diskette is by invoking the BACKUP command (Chapter
3)3 however, the BACKUP command does not perform the
write/read test that can be invoked via DOSGEN; nor is’ there
the guarantee that all system files are copied to the
destination diskette since the operator can _ selectively
prevent files from being copied. Another way to generate a
new XDOS diskette is by invoking the DOSGEN command from an
already up-and-running XDOS system.

DOSGEN does not create the sector addressing
information: The user is then responsible to create it via
the FORMAT command (Chapter 10). Then, the DOSGEN command may
be used to write other information on the new diskette in
order to make it recognizable by XDOS. DOSGEN creates the
system tables required by XDOS (see Chapter 17). These tables
include a skeleton directory; a bit map showing which sectors
of the diskette are available for space allocation; a lockout
map showing which sectors of the diskette are bad or locked
out by the user; and an identification sector containing a
name to identify the diskette, the generation date, and the
XDOS version number. The DOSGEN command also copies across
the required XDOS family of system files which must be
present on any diskette used in the XDOS environment. These
files and tables must not be moved or changed in any way
other than through the DOSGEN command or the BACKUP (Chapter
3) command. Optionally, the XDOS commands may be copied to
the diskette.

The DOSGEN command is invoked with the following command
line:

DOSGEN [:<dn>] [;<options>]

where <dn> is the logical drive number of the destination
drive. The default value for <dn> is 1.
<options> can be one or both of the option letters described
below:

T Perform write/read test.

XDOS 4.0 User’s Guide Page 08-01

DOSGEN COMMAND 8.1 -- Use

U Generate minimum system (user diskette).

The diskette to be DOSGENed may reside in any drive.

DOSGEN will respond with the following question asking
if drive one contains a diskette that can be written to:

DOSGEN DRIVE <dn>?

where <dn> is the logical drive number of the destination
drive. The response should be the letter "Y", if the diskette

in the specified drive is to be DOSGENed. Any other response
will terminate the DOSGEN command and return control to XDOS.

In this case, the diskette in drive <dn> is not affected.

If a "Y" is given as a response, certain information for
the diskette’s identification sector must be supplied by the
operator. This information is entered in response to_ the
following DOSGEN prompts:

Prompt Operator Input

DISK NAME: An alphanumeric name, a maximum of 8
characters in length, which will
appear on subsequent heading lines
from the DIR and FREE commands. The
name must begin with an alphabetic
character.

DATE (MMDDYY): The date of generation in six-digit,
numeric form as indicated by the
parenthetical inset.

USER NAME: A maximum of twenty displayable
characters used for descriptive
information only.

The version and revision numbers of XDOS will be

automatically supplied by the DOSGEN command.

The operator is then given a chance to lock out an area
of the diskette. This area will not be accessed by any XDOS
command or function since it is an allocated block without a
RIB. This permits the operator to set aside a part of the
diskette for his own use. All XDOS information must be in
files in order to be accessed by XDOS. The message

LOCKOUT ADDITIONAL SECTORS?

is displayed to allow sector lockout. An "N" response will
cause DOSGEN to continue with the next step; no sectors will
be locked out, leaving as much diskette space as possible for
conventional file use. A "Y" response will cause’ the
following messages to be shown:

ENTER STARTING SECTOR (HHH) :
ENTER ENDING SECTOR (HHH) :

The operator can respond with only a carriage return, which

XDOS 4.0 User’s Guide Page 08-02

DOSGEN COMMAND 8.1 -- Use

will casue the lockout request to be bypassed. Otherwise, the
response must be a valid hexadecimal sector number for each
prompt. The sector numbers entered must meet the following
criteria in order to cause the specified diskette area to be
locked out:

1. The sector numbers must be hexadecimal.

2. The starting sector number must be the
physical sector number of the first cluster
to be locked out. The ending sector number
must be the physical sector number of the
last cluster to be locked out.

3. The starting sector number must be less than
or equal to the ending sector number. If the

two numbers are equal, only one cluster will

be locked out.

4. Both sector numbers must be greater than $18
and less than $280. The locked out area
should be located such that the largest block
of free space resides in sectors with numbers
less than that of the start of the locked out
area.

DOSGEN will then write the ID sector, an initialized
allocation table, a lockout table, an empty directory, and a
Bootblock to the destination diskette. Normally, DOSGEN will
then copy all files that have the "system" attribute from the
diskette in drive zero to the destination diskette. When
DOSGEN is finished, a complete XDOS system will have been

generated on the destination diskette.

8.2 Diskette Surface Test

If DOSGEN is invoked with the "T" option, a write/read
test will be performed to ensure that the sectors on_ the
destination drive are good. Any sectors which fail the
write/read test will be flagged with the deleted data mark.
If sectors cannot be flagged in this manner, the diskette
cannot be generated. Such diskettes may be made usable again

by using the FORMAT command (Chapter 10). If a sector can be
marked as bad, then the cluster to which the bad_ sector
belongs will be automatically locked out from XDOS usage.
This individual cluster lockout is independent of the area of
diskette that can be locked out by the operator. It will
allow diskettes with bad spots to be generated and made
usable as XDOS system diskettes.

Diskettes that have such bad sectors can be used as
normal diskettes with the following exception. The BACKUP
command should not be invoked without a Main Option (unless
the "D" option is used) to make a complete copy of the
allocated space. Without the "D" option, the complete copy
process will abort if a fatal read error occurs. Since the
complete copy is based on the allocation table, it is
inevitable that the bad sectors locked out via DOSGEN will be
read. Thus, the resultant copy of the diskette will always be

XDOS 4.0 User”s Guide | Page 08-03

DOSGEN COMMAND 8.2 -- Diskette Surface Test

incomplete. Therefore, BACKUP should always be run with the

"R" option to force file reorganization. In this manner, the
bad sectors will never be read since they are not a part of
any allocated file.

Diskettes which have had bad sectors locked out should

not be used as the destination diskette with BACKUP.

If sectors get locked out into which the XDOS_~ system
files normally are copied (in the first several tracks) the
DOSGEN process will fail. Such diskettes cannot be used as
XDOS system diskettes unless the FORMAT command (Chapter 10)

can be used to correctly rewrite the bad sectors.

8.3 Minimum System Generation

If the DOSGEN command is invoked with the "U" option,
the resultant diskette will not contain any of the XDOS
commands from drive zero. Only the xXDOS family of system
files that must reside on every diskette used in an XDOS
environment will be copied. The "U" option is useful in
generating user diskettes which are to contain only data
files and will almost always be used in drive one.

8.4 Messages

The following messages can be displayed by the DOSGEN
command. Not all messages are error messages, although error

messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

DOSGEN DRIVE 1?

This message permits the operator to exit the
DOSGEN command or allows’ him time to insert a
scratch diskette before continuing. A ny"
response will cause DOSGEN to continue. Any other
response will cause control to be returned to
XDOS.

DISK NAME:

This prompt is used to obtain the eight character
ID field that is subsequently displayed by all
DIR and FREE commands when used on the generated

diskette. The ID field has the same format as an
XDOS file name.

DATE (MMDDYY) :

This prompt is used to obtain the date of
diskette generation. The date must be six numeric
characters.

XDOS 4.0 User’s Guide Page 08-04

DOSGEN COMMAND 8.4 -- Messages

USER NAME:

This prompt is used to obtain the descriptive
information for the ID sector. Up to twenty
displayable characters may be entered.

LOCKOUT ADDITIONAL SECTORS?

This message allows the user to specify whether
or not he wishes to reserve a block of the

diskette for his own use. The block will be
excluded from use by XDOS. A "Y" response will
cause the next two prompts’ to be issued. Any
other response will cause the lockout request to
be bypassed.

ENTER STARTING SECTOR (HHH) :

This prompt is used to obtain the starting
hexadecimal sector number of the first cluster

that is to be locked out.

ENTER ENDING SECTOR (HHH) :

This prompt is used to obtain the’ starting
hexadecimal sector number of the last cluster
that is to be locked out.

ABOVE SECTORS HAVE BEEN LO?CKED OUT

This message will be displayed if valid starting
and ending sector numbers have been specified for
the area to be locked out.

INVALID SECTOR NUMBER

This message is displayed if either the starting
Or ending sector number does not meet the
criteria set forth in section 8.1. The operator
is given another chance to enter the sector
number range.

SECTOR nnnn LOCKED OUT

When a bad sector is detected during the
write/read test ("T" option), this message is
displayed to indicate which sector failed the
test. The "nnnn" is the hexadecimal, physical
sector number. The cluster in which the sector
resides will be automatically locked out.

COPYING FILE <name>

This message is displayed for each system file as
it is being copied to the destination diskette.
It serves only to monitor the DOSGEN operation.

XDOS 4.0 User’s Guide Page 08-05

DOSGEN COMMAND 8.4 -- Messages

XDOS.SY DOES NOT START AT SECTOR $18

This message indicates that the destination
diskette cannot be generated. Either the operator

or the write/read test locked out sectors which
prevented the resident operating system file
XDOS.SY from residing at the specified physical
location. If the operator locked out’ those
sectors, the diskette should be regenerated with
a different range locked out. If the write/read
test locked out those sectors, the diskette is
unusable as a system diskette. Chapter 10 should
be consulted for making such a diskette usable
again.

8.5 Examples

The following example shows the operator-system

interaction during a DOSGEN process:

=DOSGEN ;TU
DOSGEN DRIVE 1? Y¥

DISK NAME: USEROOOL]

DATE (MMDDYY): 072578

USER NAME: SYSTEM DEVELOPMENT 1

LOCKOUT ADDITIONAL SECTORS? N
COPYING FILE XDOS ooY

COPYING FILE XDOSOVO .SY

COPYING FILE XDOSOV1 .SY

COPYING FILE XDOSOV2 .SY

COPYING FILE XDOSOV3 .SY

COPYING FILE XDOSOV4 .SY
COPYING FILE XDOSOV5 .SY

COPYING FILE XDOSOV6 .SY

COPYING FILE XDOSER .SY

The diskette to be generated was tested with the write/read
test ("T" option) to ensure that all sectors were good. A
minimum system was generated ("U" option). The new ID,
USEROOO], the generation date, July 25, 1978, and_ the
descriptive information, SYSTEM DEVELOPMENT 1, were placed
into the ID sector. Since no additional sectors were locked
out, DOSGEN proceeded to copy the XDOS family of system files
that must reside on each diskette.

The following example shows what might happen if a bad
diskette is used in the generation process:

XDOS 4.0 User’s Guide Page 08-06

DOSGEN COMMAND 8.5 -- Examples

=DOSGEN ;T
DOSGEN DRIVE 1? Y
DISK NAME: USEROOO2
DATE (MMDDYY): 072578
USER NAME: TEST SYSTEM
SECTOR 0030 LOCKED OUT
SECTOR 0031 LOCKED OUT
SECTOR 0056 LOCKED OUT
LOCKOUT ADDITIONAL SECTORS? N
COPYING FILE XDOS .SY
XDOS.SY DOES NOT START AT SECTOR $18

Three bad sectors were found during the write/read test. When
the XDOS family of files was copied, it was detected that the
locked out sectors prevented the resident operating system
file XDOS.SY from residing at the specified physical
location. If the operator locked out those sectors, the
diskette should be regenerated with a different range locked
out. If the write/read test locked out those sectors, the
diskette is unusable as a system diskette. Chapter 10 should
be consulted for making such a diskette usable again.

Page 08-07

CHAPTER 9

9. DUMP COMMAND

The DUMP command allows the user to examine the entire
contents of any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
equivalent of every byte in the sector. The DUMP command
allows the opening of files so that they can be examined
using logical sector numbers. Sectors can also be moved into
a temporary buffer where changes can be applied before they
are written back to diskette.

9.1 Use

The DUMP command is invoked with the following command
line:

DUMP [<name>]

where the presence of the optional file name determines the
initial mode of operation. The DUMP command is an interactive
program that has its own command structure. Once DUMP is
running, it will display a colon (:) as an input = prompt
whenever it is ready to accept a command from the operator.
Commands exist for selecting logical units, for opening and
closing files, for displaying sectors, for modifying single
sectors, and for displaying the directory and cluster
allocation table.

9.1.1 Physical Mode of operation

If no <name> is specified on the command line, or if
<name> only consists of a logical unit number, then DUMP will
be in the "Physical Mode" when it displavs its input prompt.
The heading

PHYSICAL MODE

will be displayed prior to the prompt the first time that
DUMP is activated. From that point on, it is the operator’s
task to keep track of which mode of operation DUMP is in. The
Physical Mode of operation means that all subsequent commands
referring to sector numbers will be interpreted as_ physical
sector numbers. The Physical Mode of operation remains active
as long as no files are opened.

If no <name> is specified on the command line, DUMP will
default to logical unit zero for all subsequent commands. The
unit will remain selected until another unit selection
command is issued by the operator. To override the default

-unit selected, the operator can specify only a logical unit
number on the command line in place of <name>. In this case,
the initial unit selected will be the logical unit number

XDOS 4.0 User’s Guide Page 09-01

DUMP COMMAND 9.1 -- Use

entered on the command line (0-1). The logical unit number

must be preceded by a colon, the logical unit number
delimiter.

When a logical unit number is specified on the command

line, the diskette to be inspected with DUMP should already

be in the indicated drive. If no diskette is in the specified

drive, the message

**PROM I/O ERROR-STATUS=33 AT h DRIVE i-PSN j

is displayed, indicating that the drive is not ready. The nye

command (section 9.2.2) must be used to restore the diskette

drive after the diskette has been inserted.

9.1.2 Logical Mode of operation

If a <name> which exists in the directory is specified
on the command line, then DUMP will be in the "Logical Mode"
of operation when it displays the input prompt. <name> must
contain an explicit suffix. No default suffix is supplied by
the DUMP command. The logical unit number, however, is given
a default value of zero if it is not specified on the command
line.

If the <name> cannot be found in the directory, a
standard error message will be displayed indicating that the
file name does not exist. In that case, the Physical Mode of

operation will be entered; however, the physical mode message
will not be displayed since the error message has already

indicated that the file could not be opened.

The Logical Mode of operation means that all subsequent
references to sector numbers will be interpreted as logical
sector numbers of the file <name>. A special convention is
used when referring to the RIB of a file. The logical sector
number of the RIB is FFFF. Since logical sector number zero
is the first data sector of the file, the RIB has a_ logical
sector number of minus one (FFFF). DUMP will remain in the
Logical Mode of operation until the file is closed or until
another unit is selected.

9.1.3 Sector change buffer

Certain commands can reference a temporary sector buffer
known as the "sector change buffer". This buffer is large
enough to accommodate one sector from diskette. The sector
change buffer can be used in either mode of operation. The
contents of the sector change buffer will not be destroved or
altered unless the operator issues a command to do so.

Associated with the sector change buffer is a "sector
address validity flag". This flag indicates whether or not a
critical command has been executed between the time the
sector change buffer was read into and the time that the
sector change buffer is written back to diskette. When the
sector change buffer is read into, a sector address is

specified. This address is retained so that if the sector is

XDOS 4.0 User’s Guide Page 09-02

DUMP COMMAND 9.1 -- Use

to be written back to diskette, the address need not be

specified again; however, certain actions, described under
the separate command descriptions that follow, can cause the
sector address to be invalidated. Then, the writing of the

sector change buffer requires a respecification of the
sector address into which the buffer is to be written.

The sector change buffer is very useful in modifying
sectors. Most frequently, the sector change buffer is used to
fix critical system tables which have been found in error. Of
course, this procedure is not recommended unless the operator
has detailed knowledge of the system table structure.
Situations do arise when critical file information can only
be recovered through the manual reconstruction of certain
system tables. The DUMP command*s' sector change buffer
provides the ideal means for doing this.

9.2 DUMP Command Set

Each command to DUMP must be entered by the operator
after the input ovrompt (:) is displayed on the system
console. Like all XDOS input, all DUMP commands must _ be
terminated by a carriage return. In the following command
descriptions these symbols are used:

Symbol Meaning

m,n Both "m" and "n" are one to four digit

hexadecimal numbers used for specifying a
sector number or a cluster number.

i "i" is a one digit number used _ for
referring to the logical unit number.

b "b" is a one or two digit hexadecimal
number used as an offset into the sector
change buffer.

c "Cc" is a one or two digit hexadecimal
number.

a "a" is an ASCII character.

<str> "<str>" is a string of elements separated
by commas. Each element can be a "c" or a

group of "a"s enclosed in double quotes.

<cr> "<cr>" is a carriage return.

9.2.1 Quit -- Q

The Q command is used to terminate DUMP and return
control to xXDOS. The format of the Q command is simply the
letter "Q". Any information in the sector change buffer is
lost. The Q command is valid in either mode of operation. If
a file is open, it is unaffected by the execution of the Q

command.

XDOS 4.0 User’s Guide Page 09-03

DUMP COMMAND 9.2 -- DUMP Command Set

9.2.2 Select logical unit -- U

The U command is used to select the logical unit number.
The format of the U command is

Ui

where "i" can be any of the digits 0-1. The U command is
valid in either mode of operation; however, if the current
mode of operation is the Logical Mode, then the file that is

open will be automatically closed. After the U command is
executed, the Physical Mode of operation will be in effect.
The sector address associated with the sector change buffer
is invalidated by the U command.

I£ DUMP was invoked with only a logical unit number’ on
the command line, and if a diskette was not in the drive at
the time DUMP was invoked, then the U command must be used to

restore the diskette drive after a diskette has been inserted
into the drive. If this procedure is not followed, timeout
errors may occur on that drive since the head may not have
been properly positioned to track zero.

9.2.3 Open diskette file -- 0

The O command is used to open a file and thereby enter
the Logical Mode of operation. The format of the O command is

O <name>

where <name> consists of at least a file name and a suffix.
If no logical unit number is specified for <name>, the last
logical unit selected via the U command will be used as a
default. If a logical unit number is specified for <name>,
then it will become the selected unit number even if the
Physical Mode of operation is entered later. If a file is
currently open, it will be automatically closed when the O
command is executed. If the file <name> is not found, then

the Physical Mode of operation will be in effect after an
error message is displayed. The sector address associated
with the sector change buffer is invalidated by the O
command.

9.2.4 Close diskette file -- C

The C command is used to close the file that is
currently open. The format of the close command is simply the
letter "C". If the current mode of operation is already the
Physical Mode, then no action results from the execution of
the C command. If a file is open, then the Physical Mode of
operation will be entered after the file is closed. The
sector address associated with the sector change buffer is
invalidated by the C command.

XDOS 4.0 User’s Guide Page 09-04

DUMP COMMAND 9.2 -- DUMP Command Set

9.2.5 Show sector -- S
(SO ae eee ee ee ee oe ere ee ee ee ee ee ee

The S command is used to display a sector’s contents on
the system console. There are several forms of the S command.

Command Effect

rs) Display the contents of the sector change
buffer.

SB Display the contents of the Cluster
Allocation Table. The SB command is’ only
valid in the Physical Mode of operation.

S m[{,n] Display the contents of sector "m" or the
contents of sectors "m" through "n". The
values of "m" and "n" are either physical
Or logical sector numbers depending on
the current mode of operation.

SD [m[,n]] Display the contents of the directory
sectors. The entire directory will be
displayed if no "m" and no "n" are given.
Otherwise, the logical sector "m" or the
logical sectors "m" through "n" of the
directory will be displayed. The SD

command is only valid in the Physical
Mode of operation.

SC m[,n] Display the contents of cluster "m" or
the contents of clusters "m" through "n".
In this case, "m" and "n" are _ physical
cluster numbers rather than physical
sector numbers. The SC command is’ only
valid in the Physical Mode of operation.
For each cluster, four sectors will be

displayed.

The format of a displayed sector is shown in section 9.4.

9.2.6 Print sector -- L

The L command is used to print a sector’s contents on
the line printer. There are several forms of the L command.

XDOS 4.0 User’s Guide Page 09-05

DUMP COMMAND 9.2 -- DUMP Command Set

Command Effect

L Print the contents of the sector change
buffer.

LB Print the contents of the Cluster

Allocation Table. The LB command is’ only
valid in the Physical Mode of operation.

L m[,n] Print the contents of sector "m" or the
contents of sectors "m" through "n". The
values of "m" and "n" are either physical
or logical sector numbers depending on
the current mode of operation.

LD [m[,n]] Print the contents of the directory

sectors. The entire directory will be
printed if no "m" and no "n" are given.
Otherwise, the logical sector "m" or the
logical sectors "m" through "n" of the
directory will be printed. The LD command
is only valid in the Physical Mode of
operation.

LC m[,n] Print the contents of cluster "m" or the
contents of clusters "m" through "n". In
this case, "m" and "n" are physical
cluster numbers rather than physical
sector numbers. The LC command is’ only
valid in the Physical Mode of operation.
For each cluster, four sectors will be
printed.

The format of a printed sector is shown in section 9.4.

9.2.7 Read sector into change buffer -- R

The R command is used to read a specified sector into
the sector change buffer. Once the sector is in the change
buffer, changes can be applied to it. The sector change
buffer can then be written back to diskette. The R command
has several forms. Each form of the R command will initialize
the sector address validity flag associated with the sector
change buffer. This flag allows the change buffer to be
re-written to the same sector from which it was read without
specifying the sector address again.

XDOS 4.0 User’s Guide Page 09-06

DUMP COMMAND 9.2 -- DUMP Command Set

Command Effect

RB Read the Cluster Allocation Table into
the sector change buffer. The RB command
is only valid in the Physical Mode of
operation.

RD m Read the specified logical sector of the
directory into the change buffer. The RD
command is only valid in the Physical
Mode of operation.

Rm Read the specified sector into the change
buffer. The current mode of operation
will determine whether "m" is a logical
or a physical sector number.

9.2.8 Write change buffer into sector -- W

The W command is used to write the contents of the
sector change buffer into a sector. The W command has several
forms.

Command Effect

W Write the change buffer back into’ the
sector from which it was originally read.
This form of the W command is only valid
if the U, O, C, or F commands have not
been used since the sector change buffer
was read into.

CAUTION: THE FOLLOWING FORMS OF THE W COMMAND

CAN DESTROY SYSTEM TABLES OR USER DATA IF USED

INDISCRIMINATELY. USE OF THE FOLLOWING FORMS

SHOULD BE RESTRICTED TO DISKETTE REPAIR

FUNCTIONS.

WB Write the contents of the sector change

buffer into the Cluster Allocation Table.

The WB command is only valid in the
Physical Mode of operation.

WD m Write the contents of the sector change

buffer into logical sector "m" of the
directory. The WD command is only valid
in the Physical Mode of operation.

Wm Write the contents of the sector change
buffer into sector "m". The current mode
of operation will determine whether "m"
is a logical or a physical sector number.
If the current mode of operation is the
Logical Mode, then writing past the
end-of-file sector will cause the CAT and
the file’s RIB to be updated in the event
that additional diskette space is

XDOS 4.0 User’s Guide Page 09-07

DUMP COMMAND 9.2 -- DUMP Command Set

allocated.

9.2.9 Fill change buffer -- F

The F command is used to fill the sector change buffer
with a certain bit pattern or a certain ASCII character. The
format of the F command is:

F cor F "a"

where the first form will fill the buffer with the

hexadecimal bit pattern "c", and the second form will fill

the buffer with the character "a". The sector address

associated with the sector change buffer is invalidated by
the F command.

9.2.10 Examine/change sector buffer
ee ee ee cee eee re eee ee ee es ee ee co ee ee ee

A special command is used for examining/changing the
individual bytes of the sector change buffer. In order to
gain access to a specific byte of the sector change buffer,
the offset must be specified in the following manner:

b/<cr>

where "b" is a hexadecimal number (S00-7F). The slash
character causes the location at offset "b" to be "opened"
and its contents displayed. After a particular location has
been opened in this manner, the change buffer can be examined

or changed a byte at a time by using the following commands:

[<str>]<cr>

or

[<str>]*<cr>

or

(<str>]/<cr>

The element string <str> will cause successive bytes of the
change buffer to be changed to the respective values of
<str>. If <str> is not specified, no changes will be applied
to the change buffer. The <cr> only will cause the next
offset of the change buffer to be opened and displayed. The
"“<cr>" will cause the previous location of the change buffer
to be opened and displayed. The "/<cr>" will cause the
current location to be closed and the examine/change mode to
be terminated.

The initial command used to enter the examine/change
mode can also take on the following forms:

b/<str><cer>

which will cause the locations of the change buffer starting
at offset "b" to be changed according to the string <str>.

XDOS 4.0 User’s Guide Page 09-08

DUMP COMMAND 9.2 -- DUMP Command Set

Then the location after the last one changed will be
displayed. The operator can then enter other examine/change
commands. If the initial command has the form:

b/<str>/<cer>

then the same function will be performed as in the previous
command; however, instead of remaining in the examine/change
mode, the normal command mode is entered.

9.3 Messages

The following messages can be displayed by the DUMP
command. Not all messages are error messages; however, error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

WHAT?

The command issued in response to the DUMP input
prompt was not recognized. A new input prompt is
displayed.

SYNTAX ERROR

The command issued in response to the DUMP input
prompt was recognized; however, it was
parameterized illegally. A new input prompt is
displayed. The command has not been processed.

MODE ERROR

The B, C, or D qualifier was used with the S, L,
R, Or W command while in the Logical Mode of
operation. These forms of the commands are only
valid in the Physical Mode.

BOUNDARY ERROR

The offset "b" in the examine/change command was
outside the range of the sector change buffer
($00-7F), or a subsequent location was to be

displayed which was outside the range of the
sector change buffer. The examine/change mode is
terminated.

INVALID SECTOR ADDRESS

The sector address associated with the sector

change buffer has been invalidated. In this case,
the W command cannot be used without specifying a
sector address.

XDOS 4.0 User’s Guide Page 09-09

DUMP COMMAND 9.3 -- Messages

PHYSICAL MODE

This message is displayed initially when the DUMP

command is entered and the mode of operation is

the Physical Mode. If the message is not

displayed and if no error messages are shown, the

Logical Mode of operation is initially in effect.

Subsequent mode changes must be kept track of by

the operator.

** 21 END OF FILE

This message indicates that a logical sector
beyond the logical end-of-file was to be read
with one of the DUMP commands. In the Logical
Mode of operation only sectors allocated to the
file can be read.

**PROM I/O ERROR-STATUS=36 AT h DRIVE i-PSN j

This message indicates that a physical sector
beyond the end of the diskette was to be accessed
with one of the DUMP commands. In the Physical
Mode of operation, only sectors 0-$27F can be
accessed. A memory address (only meaningful for
system diagnostics) is substituted for the letter
"h"s the logical unit number is substituted for
the letter "i": and the physical sector number
(PSN) at which the error occurred is substituted
for the letter "j"

The display format of a sector’s contents is shown in

section 9.4. The messages associated with that display are

explained here. The sector display will contain headings to

identify what sector is being displayed.

"UNIT" will always specify the currently selected

logical unit number.

The heading "CHANGE BUFFER" will be displayed if the

sector change buffer is being shown.

The heading "CLUSTER ALLOCATION MAP" indicates that the

B qualifier was used with either the S or L command.

Likewise, the heading "DIRECTORY" indicates that the D

qualifier was used with either the S or L command.

The heading "PILE=xxxxxxxx.xx" indicates that the

Logical Mode of operation is in effect. The file“s name and

suffix are displayed to the right of the equal sign.

"PSN" gives the displayed sector’s physical sector

number, regardless of the mode of operation. "LSN", or

logical sector number, is only shown if the directory is

being displayed or if the current mode of operation is the

Logical Mode.

The digits 00-70 down the left edge of the display are
the hexadecimal offsets into the sector. The contents of the

sector are shown both in hexadecimal and in displayable

XDOS 4.0 User’s Guide Page 09-10

DUMP COMMAND 9.3 -- Messages

ASCII. Non-displayable characters are printed as periods (.).

If sectors are displayed on the line printer, they will
appear five sectors per page. The unit number and associated
heading will be automatically printed at the top of each
page. The paper alignment will be restored once the Q command
is issued.

9.4 Examples

The following example shows how the Cluster Allocation
Table is displayed with the DUMP command.

=DUMP

PHYSICAL MODE
: SB

UNIT=0 CLUSTER ALLOCATION MAP

PSN=0001
00 FF FF FF FF FF FF FF FF FF FF FF FF FC 00 00 00 cocccccces °

10 OO 00 00 OO FF FF FF FF FF FF FF FF FF FF FF FF ccoccesccccccces

20 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .ccccesccoce coe.

30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF cccccescccceccos

40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FPF wccccccccccce eee

50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF cccccesccccccccs

60 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF wccccccccccccccs

70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .ccccccccscccccs

The next example illustrates how the logical sectors
zero through three of the directory are displayed.

=DUMP

PHYSICAL MODE

SD 0,3

UNIT=0 DIRECTORY

PSN=0003 LSN=0000
00 58 44 4F 53 5F 56 36 20 53 59 00 74 F2 00 00 00 XDOSOV6 SY.t....

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO .ecoeeenenevvees
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O00) .cceceeseccevece
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..cecseeseees eee

PSN=0004 LSN=0001
00 58 44 4F 53 20 20 20 20 53 59 00 18 F2 00 00 00 xDOS SY. cece.
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cece eens

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..wwrecerceeoeee

XDOS 4.0 User’s Guide Page 09-11

DUMP COMMAND 9.4 -- Examples

PSN=0005 LSN=0002
00 44 49 52 20 20 20 20 20 43 4D 00 8C F2 00 00 00 DIR CM. cease
10 4D 45 52 47 45 20 20 20 43 4D 01 28 F2 00 00 00 MERGE CM. (2...
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO ..-.eeeeeee eseee
30 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 OO ...eceeeeeeee eee

40 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 O00 .wcerereereecees
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO .ucneeeeecveveee

60 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 ee wie we wwe

70 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 00 .eunveveeereoece

PSN=0006 LSN=0003
00 58 44 4F 53 45 52 20 20 53 59 00 7C ES 00 00 00 XDOSER SY......

10 58 44 4F 53 4F 56 31 20 53 59 00 48 F2 00 00 00 XDOSOVI1 SY.H....

20 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 OO .cweeeeevereveee

30 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 00 .ccceeeeveeees os

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O00) wewseseerecoeene
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O00) ences eerereeene
60 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 00 .wunsereecceoecs

70 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 00 ccc crc cece

7 Q

In the following example, the DUMP command is _ invoked
with a file name on the command line; however, the file name
does not exist as it is specified (i.e., a suffix of spaces).
The Physical Mode of operation is entered automatically. Then
the O command is used to open the file. Subsequently, two
sectors of the file are displayed. The logical sector numbers
allow a user to examine the file*s contents without knowing
where the file is physically located on the diskette.

=DUMP XDOSER
** QO4 FILE NAME NOT FOUND

O XDOSER.SY

S$ 1,2

UNIT=0 FILE=XDOSER- .SY

PSN=00A6 LSN=0001
00 81 30 36 81 44 55 50 4C 49 43 41 54 45 81 46 49 .06.DUPLICATE.FI
10 4c 45 81 4E 41 4D 45 OD 30 44 81 30 37 81 4F 50 LE.NAME.0D.07.0P
20 54 49 4F 4E 81 43 4F 4E 46 4C 49 43 54 OD 33 30 TION.CONFLICT. 30

30 81 30 38 81 43 48 41 49 4E 81 41 42 4F 52 54 45 .08.CHAIN.ABORTE

40 44 81 42 59 81 42 52 45 41 4B 81 4B 45 59 OD 33 D.BY.BREAK.KEY.3

50 31 81 30 39 81 43 48 41 49 48 81 41 42 4F 52 54 1.09.CHAIN.ABORT

60 45 44 81 42 59 81 53 59 53 54 45 4D 81 45 52 52 ED.BY.SYSTEM.ERR

70 4F 52 81 53 54 41 54 55 53 81 57 4F 52 44 OD 31 OR.STATUS.WORD.1

PSN=00A7 LSN=0002
00 43 81 31 30 81 46 49 4C 45 81 49 53 81 44 45 4C C.10.FILE.IS.DEL
10 45 54 45 81 50 52 4F 54 45 43 54 45 44 OD 32 34 ETE.PROTECTED. 24
20 81 31 31 81 44 45 56 49 43 45 81 4E 4F 54 81 52 .11.DEVICE.NOT.R

30 45 41 44 59 OD 30 45 81 31 32 81 49 4E 56 41 4C EADY.O0E.12.INVAL
40 49 44 81 54 59 50 45 81 4F 46 81 4F 42 4A 45 43 ID.TYPE.OF.OBJEC
50 54 81 46 49 4c 45 OD 30 46 81 31 33 81 49 4E 56 T.FILE.OF.13.INV
60 41 4C 49 44 81 4C 4F 41 44 81 41 44 44 52 45 53 ALID.LOAD.ADDRES
70 53 OD 31 33 81 31 34 81 49 4E 56 41 4C 49 44 81 §S.13.14.INVALID.

XDOS 4.0 User”s Guide Page 09-12

DUMP COMMAND 9.4 -- Examples

The following example illustrates how the DUMP command
can be used to relocate a memory-image position independent
file. The load and execution start addresses are located in
the RIB of the file. Using the change buffer, the user can
read the RIB sector, modify it and write it back at the same
place. The load start address is originally $2800 and _ the
execution start address, $2804. They will be changed

respectively to $6000 and $6004.

=DUMP RUNTIME.LO

: R FFFF

: S
CHANGE BUFFER

PSN=0128 ; LSN=FFFF
00 6C 4A 80 6C 00 00 00 00 00 00 00 00 00 00 00 00 1J.1.........66.
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .useeeeeereeeees
20 00 00 00 00 00 00 00 00 O00 00 00 00 00 00 00 00 ...eeeeeee ao se
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..owescrccccveee
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O00 ..crcceneecevace
50 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 ..cuoceveccecoe 6

60 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 ..ecccees Ribs we D

70 y 00 00 00 00 18 00 6D 28 00 28 04 00 00 O00 00-M(o (eevee
: 78

78 28 60

79 OO
7A 28 60,4/
: S

CHANGE BUFFER

PSN=00FO LSN=FFFF

00 6C 4A 80 6C 00 00 00 00 00 00 00 00 00 00 00 00 Id.1..wcccccccoes
10 OO 00 00 00 00 00 00 00 O00 00 00 00 00 00 OO 00... uuu cc vcce

70 00 00 00 00 00 18 00 6D 60 00 60 04 00 00 00 00m~.~.....

Page 09-13

CHAPTER 10

10. FORMAT COMMAND

The FORMAT command attempts to write the sector

addressing information on diskettes. Non-formatted diskettes
or diskettes on which the sector addressing information is
destroyed must be formatted with this command before they can
be used with XDOS.

10.1 Use

The FORMAT command is invoked with the following command
line:

FORMAT [en]

The diskette to be formatted must reside in drive n. Since
the FORMAT command will destroy all information on _ the
diskette in drive n, the prompt

FORMAT DRIVE n ?

will be displayed.
Any response other than "Y" will cause the FORMAT command to
be terminated and control returned to XDOS. In this case, the
diskette in the drive n is unaffected. If the "Y" response
is entered, the operator shouJ]d have placed a diskette that
needs to be formatted into the drive n.

FORMAT will then proceed to:

1. Rewrite the soft sector addressing information on
each track (Appendix F contains a description of
the diskette format) ,

2. Initialize every byte of each sector’ to the
hexadecimal value $E5,

3. Re-read each track to verify that the CRC“s are
good and that the diskette is readable.

The above process terminates when the diskette is
completely formatted or when a diskette controller error
occurs repeatedly. In the former case, control is returned to
XDOS. In the latter case, the FORMAT command will display the
diskette controller error with the standard "PROM I/O" error
message. The diskette is not necessarily unusable if such
errors occur. The FORMAT command should be re-run after
having noted the physical sector number at which the error
occurred. If the same error occurs at the same physical

sector number after three attempts at running the FORMAT
command, then the oxide on the diskette is probably damaged.
The diskette is unusable in such cases. If the unusable
diskette is inspected carefully by manually turning the
diskette within its protective envelope, a mark Or

XDOS 4.0 User’s Guide Page 10-01

FORMAT COMMAND 10.1 -- Use

indentation can usually be found on its surface.

10.2 Messages

The only messages that the FORMAT command can display

are the prompt shown above, asking if the diskette in the

drive n is to be formatted, and the standard PROM I/O error
message, indicating that a diskette controller error was
encountered during the formatting process.
In addition xXDOS will, in the case that the destination
diskette is a minidiskette issue the user is prompted with
the following question.

SINGLE- OR DOUBLE-SIDED DISK (S/D) ?

Answering "S" causes side 1 of the minidisk to be formatted,
while "D" initiates the formatting of both sides.

10.3 Example

The following example shows the FORMAT command being
used repeatedly after an error is detected. Since the
physical sector number of the error keeps increasing, it
indicates that the FORMAT command is able to rewrite more and
more of the diskette; however, at one point, the physical
sector number is always the same. At that time the FORMAT
command is not used any longer since the diskette in drive

one is unusable.

=FORMAT
FORMAT DRIVE 1 ?
Y
**PROM I/O ERROR-STATUS=38 AT 2006 ON DRIVE 1-PSN 00DO
=FORMAT
FORMAT DRIVE 1 ?
Y
**PROM I/O ERROR-STATUS=38 AT 2006 ON DRIVE 1-PSN OOFO
=FORMAT
FORMAT DRIVE 1?
XY
**PROM I/O ERROR-STATUS=38 AT 2006 ON DRIVE 1-PSN 0150
=FORMAT
FORMAT DRIVE 1?
Y
**PROM I/O ERROR-STATUS=31 AT 2006 ON DRIVE 1-PSN 0150
=FORMAT
FORMAT DRIVE 1?
XY

**PROM I/O ERROR-STATUS=31 AT 2006 ON DRIVE 1-PSN 0150

Page 10-02

After

CHAPTER 11

11. FREE COMMAND

The FREE command displays the number of unallocated
sectors and the number of empty directory entries remaining
on a diskette.

11.1 Use

The FREE command program is invoked with the following
command line:

FREE [:<unit>] [;<options>]

where <unit> can be the logical unit number, _ and
<options> can he the letter "L". If the <unit> is not
specified on the command line, the default value zero will be

used.

The FREE command normally displays its summary data on
the system console. The option "L", however, can be used _ to

direct this data to the line printer instead. A "C" option
can be added to the existing "L" option; both options can be
specified in the command line option field, without
separating comma.

Option "C" causes the configuration parameters of a
diskette to be displayed, following the standard display of
the number of unallocated sectors and empty directory

entries. ,

Example

Display on the line printer the amount of free sectors,
empty directory entries, and configuration parameters of
the diskette in drive 5.

=FREE :5:;:LC

DRIVE 5 : xpDOS4SYS

0268/S10C SECTORS 136/$88 FILES

0268/$S10C LARGEST CONTIGUOUS BLOCK

CONFIGURATION PARAMETERS :
« MAIN DRIVES 3:

16(SS) OR 32(DS) SCT/CYL,

0640(SS) OR 1280(DS) USABLE SECTORS.

- AUXILIARY DRIVES :

26(SS) OR 52(DS) SCT/CYL,

2000(SS) OR 4004(DS) USABLE SECTORS.

the FREE command has determined the available space on the
diskette, the data will be displayed in the following format:

XDOS

DRIVE i : xXxXxXxXXXxXX

4.0 User“s Guide Page 11-01

FREE COMMAND 11.1 -- Use

aaaa/Sbbb SECTORS ccc/$dd FILES
eeee/Sf£F LARGEST CONTIGUOUS BLOCK

The symbols have the following meanings:

Symbol Meaning

i Logical unit number selected.
XXXXXXXX Eight character diskette ID.
aaaa Available sectors in decimal.
Sbbb Available sectors in hexadecimal.
ccc Available directory entries in

decimal.
$dda Available directory entires in

hexadecimal.
eeee Size of largest, available block of

contiguous sectors in decimal.
Sfff Size of largest, available block of

contiguous sectors in hexadecimal.

Page 11-02

CHAPTER 12

12. LIST COMMAND

The LIST command is used to print any ASCII file on

either the system console or the printer. Options exist for

numbering lines, specifying page formats, printing headings,

and indicating starting and ending points. In addition, files

can be accessed by their logical sector numbers for rapid

access to any portion of a file.

12.1 Use

The LIST command is invoked with the following command

LIST <name>[,[<start>][,<end>]] [#<options>]

where <name> is the file specification of an ASCII file that

is to be displayed, <start> and <end> are the optional

starting and ending points of the display, and <options> can

be one or more of the option letters described below.

Option Function

L Display file on line printer.

H Get heading information from system
console.

N Display physical line numbers for each
line.

F Use a non-standard page format.

The <name> parameter must be specified with the LIST

command. If no suffix is’given, the default value "SA" will
be supplied. The default logical unit number is zero.

The following sections describe each of the options in
detail. The "L" option can be used with any other options’ to
specify that the output from the LIST command is to be
directed to the line printer. If the "L" option is missing,
the system console will be used instead.

If the ASCII file contains any non-displayable
characters, the LIST command will convert them into a percent
sign (%) so that they will be visible. If records are

contained in the file that are longer than the selected page

format, they will be truncated on the right before they are

displayed.

XDOS 4.0 User”s Guide Page 12-01

LIST COMMAND 12.1 -- Use

12.1.1 Start/end specifications

The default starting point for the display is the first
physical line of <name>. The default ending point is the last
physical line. The <start> specification can be used to start
the display of the file at a specific physical line number or
at a specific logical sector number. If the <start>
specification is present on the command line it must be in
one of the following two formats:

Lnnnnn

Or

Smmm

The "Lnnnnn" form is used to specify a starting physical line
number. The value "nnnnn" must be a 1-5 digit decimal number
in the range 1-65535, inclusive. The "Smmm" form is used to
specify a starting logical sector number. The value "mmm"
must be a 1-3 digit hexadecimal number in the range S$0-FFF,
inclusive. The default <start> specification is "L1".

The <end> specification can be used to specify where the
display of the file is to stop. The <end> specification has
the same two forms as the <start> specification. If no
<start> specification is entered on the command line, then
the <end> specification can be of either form; however, if
the <start> specification is entered, then the <end>
specification must be of the same form. For example, it is
invalid to specify a <start> specification of logical sector
five and an <end> specification of physical line 216. The
<end> specification must be larger than the <start>
specification. The default <end> specification is the logical
end of the file.

12.1.2 Physical line numbers

Normally, the displayed file will not be shown with
physical line numbers. Only the actual data of the lines in
the file will be shown. The "N" option can be used to cause
physical line numbers to be generated by the LIST command and
displayed with each line of data from the file. The physical
line numbers’ will be printed as five digit decimal numbers.
If the standard page format is used, each data line that is
longer than the eighty characters will be displayed with
eight fewer data characters, truncated from the right. The
physical line numbers are useful when trying to find verify
errors from the COPY command (Chapter 5) between a diskette
file and a tape file.

The physical line number option "N" is’ fairly
meaningless if the logical sector form of the <start>
specification is used. Since no count is available for the
number of lines between the beginning of the file and the
specified logical sector, the physical line numbers (if
printed) would only be relative to the part. of the file that
was displayed. A partial line will usually be seen as the

XDOS 4.0 User’s Guide Page 12-02

LIST COMMAND 12.1 -- Use

first line since’ the records randomly cross sector
boundaries.

12.1.3 User-supplied heading

Normally, the LIST command will print a page number and
the file name specification of the file being listed as a
heading. The "H" option can be used to cause additional
information to be displayed on the heading line. The "H"
option will cause the following prompt to be shown on the
system console before the file is listed:

ENTER HEADING:

The operator can then respond with a line of text that is to
be used as the heading. The maximum length of the entered
heading is 100 (decimal) characters. The heading line
containing the page number, file name specification, and
user-supplied text will automatically be printed on. the
second line of each page.

12.1.4 Non-standard page formats

Normally, the LIST command will display a maximum of
eighty characters per line and sixty-six lines per page. The
"F" option can be used to override the standard page format.
The format of the "F" option is as follows:

F [ccc] . [pp]

where at least one of the two parameters must be present. The
"ccc" parameter is used to specify the number of columns to
be printed per line. It must be a decimal number in the range
1-132, inclusive. The "pp" parameter is used to specify the
number of lines per page. It, too, must be a decimal number,
but in the range 10-99, inclusive. An error message will be
displayed if an illegal page format is given. Either the line
length or the page length can be specified without the other
(e.g., "F20." or "F.58", respectively). Only the line length
need be specified if - longer lines are to be printed on a
standard length page.

12.2 Messages

The following messages can be displayed by the LIST
command. Not all messages are error messages; however, error
messages are included in the list. The standard error
nessages that can be displayed by all commands are not listed
ere.

PAGE ddd <name>

This is the standard heading supplied by the LIST
command. "ddd" is the decimal page number and
<name> is the file name specification of the file
beeing printed.

XDOS 4.0 User’s Guide Page 12-03

LIST COMMAND 12.2 -- Messages

ENTER HEADING:

This message is displayed when the "H" option is

used to print additional heading text on _ each

page. A maximum of 100 (decimal) characters can
be entered.

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

‘ This error is caused when a <start> specification
references a logical sector number that is
greater than the logical sector number of the end
of file.

** 34 INVALID START/END SPECIFICATIONS

The <start> and <end> specifications on _ the

command line were not both of the same form ("L"

or "S"), or the <end> specification had a value

that was less than the value of the <start>

specification. This error can also be caused if
the <start> or <end> specifications begin with
letters other than "L" or "S".

** 35 INVALID PAGE FORMAT

The parameters of the "F" option did not meet the
criteria explained in section 12.1.4.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

The <start> specification on the command line

specified a physical line number whose value was

larger than the total number of lines in the

file.

12.3 Examples

The XDOS equate file is used in all of the following

examples. The following example shows what is probably the

most commonly used form of the LIST command. No options are

used. The default values for suffix, logical unit number,

<start> and <end> specifications, page format, and output

device are used. It is assumed that the CTL-P key was

depressed to terminate the LIST command and return control to

XDOS in this example.

XDOS 4.0 User’s Guide Page 12-04

LIST COMMAND 12.3 -- Examples

=LIST EQU

PAGE 001 EQU -SA:0

OPT NOL
PAGE

x

* XDOS VERSION 03.00 -- SYSTEM EQUATE FILE -- AUGUST 14, 1979
*

SPC 3
*

* SYSTEM FUNCTION DEFINITION
k

The following example uses the <end> specification to
stop on the tenth line of the file. Since the default value
for the <start> specification is to be used, a null parameter
must be specified for it. This is done by entering the two
adjacent commas. The "N" option causes the display of the
physical line numbers.

=LIST EQU,,L10;N

PAGE 001 EQU -5A:0

00001 OPT NOL
00002 PAGE
00003 *
00004 * XDOS VERSION 03.00 -- SYSTEM EQUATE FILE -- AUGUST 14, 1979
00005 x
00006 SPC 3
00007 *
00008 * SYSTEM FUNCTION DEFINITION
00009 *

* 00010

The following example uses both <start> and <end>
specifications to cause the display of physical lines 30
through 40, inclusive.

=LIST EQU,L30,L40

PAGE 001 EQU -SA:0

-STCHR EQU .STCHB+1 STORE CHARACTERS

-ALPHA EQU .STCHR+1 CHECK ALPHABETIC CHARACTER

»NUMD EQU .ALPHA+1 CHECK DECIMAL DIGIT

-ADDAM EQU .NUMD+1 INCREMENT MEMORY (DOUBLE BYTE) BY A
-SUBAM EQU .ADDAM+1 DECREMENT MEMORY (DOUBLE BYTE) BY A

e-MMA EQU .SUBAM+1 MULTIPLY (SHIFT LEFT) MEMORY BY A

-DMA EQU .MMA+1]1 DIVIDE (SHIFT RIGHT) MEMORY BY A
eMDENT EQU .DMA+1l ENTER XDOS WITHOUT RELOADING

-LOAD EQU .MDENT+1 LOAD A FILE FROM DISK

-DIRSM EQU .LOAD+1 DIRECTORY SEARCH AND MODIFY

~-PFNAM EQU .DIRSM+1 PROCESS FILE NAME

XDOS 4.0 User’s Guide Page 12-05

LIST COMMAND | 12.3 -- Examples

The following example illustrates how the logical sector
number can be used to rapidly access any part of a file. When
the <start> and <end> specifications refer to physical line
numbers, the file must be read from the beginning, a _ record
at a time, in order to find the correct lines; however, the
logical sector form of the <start> specification permits the
LIST command to go directly to the sector. The physical line
number option "N" is fairly meaningless if the logical sector
form of the <start> specification is used. Since no count is
available for the number of lines between the beginning of
the file and the specified logical sector, the physical line
numbers (if printed) would only be relative to the part of
the file that was displayed. A partial line will usually be
seen as the first line since the records randomly cross
sector boundaries. The CTL-P key was used in this example to
terminate the display of the file.

=LIST EQU,S5

PAGE 001 EQU -SA:0

T (TERM W/ EOT, NO CR/LF)
-CKBRK EQU .DSPLZ+1 CHECK CONSOLE FOR BREAK KEY
.DREAD EQU .CKBRK+1 EROM DISK READ
.DWRIT EQU .DREAD+1 EROM DISK WRITE
-MOVE EQU .DWRIT+1 MOVE A STRING
.CMPAR EQU .MOVE+1 COMPARE STRINGS
-STCHB EQU .CMPAR+1 STORE BLANKS
.STCHR EQU .STCHB+1 STORE CHARACTERS
-ALPHA EQU .STCHR+1 CHECK ALPHABETIC CHARACTER
.NUMD EQU .ALPHA+1 CHECK DECIMAL DIGIT

The following example displays the xXDOS equate file
using a non-standard line length specification. Only the
first twenty characters of each line will be shown. Notice
that this format also applies to the printed heading. The
CTL-P key was used to terminate the display.

=LIST EQU;F20

PAGE 001 EQU -S

OPT NOL

PAGE
*

* XDOS VERSION 03.00
x

SPC 3
x

* SYSTEM F
*

u

The last example lists the first nine lines of the xXDOS
equate file. In addition to the previously shown features,
the "H" option is used to specify a heading. This heading
would be printed at the top of each page if multiple pages
were printed.

XDOS 4.0 User’s Guide Page 12-06

LIST COMMAND 12.3 -- Examples

=LIST EQU,,L9;HN
ENTER HEADING: THIS IS THE XDOS SYSTEM EQUATE FILE

PAGE 001 EQU -SA:0 THIS IS THE XDOS SYSTEM EQUATE FILE

00001 OPT NOL
00002 PAGE
00003 *
00004 * XDOS VERSION 03.00 -- SYSTEM EQUATE FILE -- AUGUST 14, 1979
00005 7
00006 SPC 3
00007 *
00008 * SYSTEM FUNCTION DEFINITION
00009 *

- Page 12-07

CHAPTER 13

13. LOAD COMMAND

The LOAD command is used to load a program from a
memory-image file on the diskette into memory. Options exist
for entering the debug monitor after loading a program, for
automatically executing a program, for loading a program into
the Alternate Memory Map of the EXORset, © and for loading a
program over the resident operating system.

13.1 Use

The LOAD command is most frequently used to load a
program into memory for testing; however, certain types of
programs, specifically those that overlay XDOS, that load
outside range of contiguous memory known to xXDOS, or that
execute in the Alternate Memory Map of the EXORset 30
correctly configured, can only be executed via the LOAD
command and one of its options (G). The LOAD command is
invoked with the following command line:

LOAD [<name>] [;<options>]

where <name> is the file name specification of a file from
which the program is to be loaded into memory, and <options>
specifies how to load the program. If <name> is specified, it
must be the name of a file that has the memory-image format.
The default suffix "LO" will be supplied if no explicit
suffix is given. The default logical unit number is zero.

The <options> are divided into "Main Options" and "Other
Options". Main Options are mutually exclusive. That is, only
one Main Option can be specified on the command line at a
time. The Other Options can be included with any one of the
Main Options. The following tables show both Main and Other
Options.

Main Option Function

none Load program into contiguous
memory above XDOS; keep xXDOS
vectors to allow system function
access.

U Load program into the Alternate
Memory Map of the EXORset 30. The
Memory Maps must be correctly
configured; disable XDOS vectors.

Vv Allow program to load over xXDOS
or anywhere else in memory;

disable XDOS vectors.

XDOS 4.0 User’s Guide Page 13-01

LOAD COMMAND 13.1 -- Use

Other Option Function

none Enter debug monitor after loading
program.

rep
)

Execute program after loading.

(<str>) Initialize XDOS command line

buffer with the character string
<str> as indicated in the
enclosed parentheses.

The <options> are discussed in detail in the following
sections.

The LOAD command does not verify that memory exists for
the areas into which a program gets loaded.
Command-interpreter-loadable programs (section 13.1.1) are
guaranteed that memory exists since the memory was sized at
initialization time; however, programs loading into
discontiguous areas of memory are not guaranteed that memory
exists. Programs loaded in the Alternate Memory Map are only
guaranteed the memory exists at their load address. The
operator is responsible for knowing where memory is
configured in his system and where his programs are loaded.
Also, due to the nature of the diskette controller, it is not
possible for the LOAD command to compare what is read from
the file with what is stored into memory. Only diskette
controller read errors can be detected.

Programs brought into memory from the diskette will be
loaded in multiples of eight bytes. This fact must be
considered when programs are loaded into adjacent blocks of
memory close to other programs, or if programs are loaded
into the upper end of a block of memory.

13.1.1 Command-interpreter-loadable programs

Programs that can be loaded by the xpDOS command
interpreter are usually loaded for testing by not specifying
anything in the <options> field. The "G" option can be used
to load and execute the program in one step; however, for
such programs this is awkward. They are usually loaded and
executed directly by the XDOS command interpreter by entering
their file names as the first file name specification on an
XDOS command line. The command line

LOAD TESTPROG

would attempt to load the file TESTPROG.LO from logical unit
zero above the resident operating system (the program must
have already been assembled at memory locations at the proper
addresses so it loads above XDOS). After the file was loaded,
control would be given to the debug monitor.

The following command lines

XDOS 4.0 User’s Guide Page 13-02

LOAD COMMAND 13.1 -- Use

TESTPROG.LO

or

LOAD TESTPROG;G

would load the program from TESTPROG.LO from logical unit
zero and execute the program. It should be noted that these
two command lines will accomplish the same function. Since
the first form of the command line is shorter, especially if
the suffix were change to "CM", the second form is seldomly
used.

Command-interpreter-loadable programs must meet the
following requirements:

1. The program must load above the resident
operating system; it must be origined to load
above hexadecimal location S$1FFF. The program
can access the direct addressing area below
hexadecimal address $100 (BSCT) during execution;
however, that area of the memory cannot be loaded
into. Thus, variables in BSCT cannot’ be
initialized during loading. In addition, if a
program is going to use diskette I/O, none of the
locations below address $20 can be used by the
program for its own variables.

2. The program must load within the range of
contiguous memory that was established during
XDOS initialization. Such programs require an
additional fifty bytes of memory beyond their
highest loaded address to allow room for a stack
for the diskette controller. These fifty bytes
must be within the contiguous memory block known
to XDOS.

If either of these criteria is not met, the standard error
message will be displayed indicating that the program has an
invalid load address.

After the program is loaded (without any options), the
debug monitor will be entered (as seen by the input prompt of
the resident monitor). The pseudo registers of the debug
monitor will have been initialized by the LOAD command to the
following values:

Pseudo register Contents

P Starting execution address
x Lowest address loaded into
Y Highest address loaded into
Ss Highest address loaded into +50
U Highest address loaded into
DP Zero
A Zero

B Zero
CC $50 (F and I set, E, H, N, Z, V andc

clear)

XDOS 4.0 User’s Guide Page 13-03

LOAD COMMAND 13.1 -- Use

When the G option is used, the registers are initialized
as above, except the condition code: F and I are set, the
remainder is indeterminate.

Normally, command-interpreter-loadable programs’ take
advantage of the fact that the stack pointer is initialized
to the end of the program area by using that part of memory
for the actual stack during execution. Such stacks must be a
minimum of 100 (decimal) bytes in size.

In addition to setting up the pseudo registers, the LOAD
command will change the XDOS variable ENDUSS$ (Chapter 17) to
contain the last address loaded into by the program. This
allows the program to dynamically allocate additional
contiguous memory for buffers, etc., via the ".ALUSM"

function (Chapter 20).

13.1.2 Non-command-interpreter-loadable programs

Programs are not loadable by the XDOS command
interpreter must be loaded into memory for either testing or
execution via the LOAD command. Normally, such programs will
overlay the resident operating system or will load into areas
outside of the contiguous memory known to XDOS. Such programs

Cannot be executed directly via the XDOS command interpreter.

The "V" option will inhibit the memory boundary tests
explained in the previous section. A program loaded with the
"y" option, however, must still meet the following
requirements:

1. The: program must load above the RAM variables
required by the diskette controller. That is, the
program must’ be assembled to load above

hexadecimal location $1F. The program can access
the direct addressing area below hexadecimal
location $20 during execution; however, that area
of memory cannot be loaded into. Thus, variables

in the first direct addressing area cannot be
initialized during loading if their addresses are
between $0000 and $O0O1F, inclusive.

2. The program’s ending load address, as calculated
from the parameters in the RIB, must not be
greater than SFFFF. Specifically, the starting
load address plus the number of sectors to load
minus one (expressed in numbers of bytes), plus

the number of bytes to load from the last sector
minus one, must’ be less than or equal to $FFFF

(see section 17.2).

If either of these criteria is not met, the standard error

messages will be displayed indicating that the program has an
invalid load address.

If the program is to be loaded for testing, only the "Vv"
option should be specified. Thus, the command line

LOAD TESTPROG;V

XDOS 4.0 User’s Guide Page 13-04

LOAD COMMAND 13.1 -- Use

will cause the debug monitor to be entered after the program
is loaded from the file TESTPROG.LO from logical unit zero.
The pseudo registers will contain the following values:

Pseudo register Contents

P Starting execution address
Xx Lowest address loaded into
Y Highest address loaded into
Ss EXORbug stack address
U Highest address loaded into
DP Zero ‘
A Zero

B Zero

CC $50 (F and I set, E, H, N, 2, V and C

clear)

When the G option is used, The registers are initialized
as above, except the condition code register: The F and I bit
are set, the remainder is indeterminate.

Since the memory boundary check is bypassed with the "Vv"
option, the program can be assembled to load anywhere above
location $1F; however, no check is made to verify that memory
exists where the program is loaded.

Once programs have been tested, they can be executed via
the LOAD command by specifying the additional option "G", as
in the following command line:

LOAD TESTPROG; VG

The "G" option will bypass entering the debug monitor and
cause control to be passed directly to the loaded _ program.
The stack pointer is still configured as explained above.

If the "v" option is used (with or without the "G"
option), the vector link will be restored to its original
value that points back to the debug monitor. Thus, programs
loaded with the "V" option cannot use the resident xXDOS
functions. .

13.1.3 Programs in the Alternate Memory Map

By using the "U" option as shown in the following
command line, the LOAD command can be used to load a_ program

into the Alternate Memory Map of the EXORset 30.

LOAD TESTPROG;U

The alternate map configuration is tested prior to load the
program If the alternate memory map is not configured
correctly for the program to be loaded, an error message will
be displayed.

The only requirement placed on programs loading into the
Alternate Memory Map is that the ending load address not be
greater than SFFFF. Otherwise, any memory locations

XDOS 4.0 User’s Guide Page 13-05

LOAD COMMAND 13.1 -- Use

(SOOO00-FFFF) can be loaded into; however, no check is made to
ensure that memory exists where the program is loaded, except
at its load address. If the "G" option is omitted, the debug

monitor will be entered after the program is loaded. The
debug monitor will display the Alternate Memory Map prompt,
not the Current Memory Map prompt. The pseudo registers will
contain the following values:

Pseudo register Contents

P Starting execution address
Xx Lowest address loaded into
Y Highest address loaded into
Ss EXORbug monitor stack address
U Highest address loaded into
DP Zero

A Zero

B Zero

CC $50 (F and I set, E, H, N, 2, V and
C clear)

When the G option is used, registers are initialized as
above, except the condition code register: The F and I bit
are always set, the others are indeterminate.

The LOAD command’s "G" option can be used in addition to
the "U" option to give control to the program immediately
after it has been loaded:

LOAD TESTPROG;UG

The "M6809 EXORset 30 User”’s Guide" should be consulted for a
complete discussion of the Alternate Memory Map.

If the "U" option is used (with or without the "G"
option), the vector link will be restored to its original
value that points back to the debug monitor. Thus, programs
loaded with the "U" option cannot use the resident xXDOS
functions.

13.1.4 XDOS command line initialization

The Other Option (<str>) is used while testing
command-interpreter-loadable programs (section 13.1.1). Such
programs usually obtain parameters via the initial command
line that activated the program. When testing such programs,
however, the command line buffer will contain the command
line that invoked the LOAD command. Thus, the (<str>) option

is used to allow testing of the loaded program as if it had
been invoked from the command line directly, simulating its
execution-time environment. The quantity <str> will be placed
into the XDOS command line buffer. The command line buffer
pointer, CBUFPS$S (Chapter 17), will be adjusted to point to a
null character which precedes the string (a valid terminator
for the .PFNAM function, Chapter 20). Any displayable
characters, except the right parenthesis ")", can be included

in the string <str>. The string will be terminated with a
carriage return after it is placed into the command line

XDOS 4.0 User“’s Guide Page 13-06

LOAD COMMAND 13.1 -- Use

buffer. Thus, the use of the null string "()", will cause a
single carriage return to be placed into the buffer.

The (<str>) option can be used with any of the Main
Options; however, it only makes sense when no Main Option is
used (command-interpreter-loadable programs) .

13.1.5 Entering the debug monitor

The LOAD command can be invoked without entering a_ file
specification. For example, the command line

LOAD

will cause the debug monitor to be entered directly.

The LOAD command has configured itself so that the ";P"
command will cause a normal return to the XDOS command
interpreter.

If the "V" option was used without a file name specified
on the command line, the ";P" command will cause xXDOS_ to
reinitialize as if an "XDOS" command had been given to the
debug monitor.

The "U" option is invalid with this form of the LOAD
command.

The Other Options "G" and "(<str>)" are invalid when the
LOAD command is invoked without a file name specification on
the command line.

13.2 Error Messages

The LOAD command displays error messages from the
Standard error message set; however, since some of these
messages have special significance to the LOAD command only,
they are listed here.

** 07 OPTION CONFLICT ‘

This error message can be displayed for’ the
following reasons: More than one Main Option was
specified at the same time; the LOAD command was
invoked without a file name with the "U" option;
or the "U" option was used and the Alternate Map
was not correctly configured.

** 12 INVALID TYPE OF OBJECT FILE

This error message is displayed if the file
specified on the command line was not a
memory-image file. In odd cases, this message is
also be displayed if the Retrieval Information
Block of the file has been damaged. If this is
the suspected cause, then the DUMP command
(Chapter 9) should be run to verify that the RIB
is in error.

XDOS 4.0 User’s Guide Page 13-07

LOAD COMMAND 13.2 -- Error Messages

** 13 INVALID LOAD ADDRESS

If the LOAD command was invoked with the null
Main Option, the program cannot be loaded for one
of the following reasons:

1. It loads over the resident operating
system. That is, it loads’ below

hexadecimal location $2000.

2. It loads beyond the range of contiguous
memory known to xXDOS (established at

initialization time).

If the LOAD command was invoked with the Main
Option "Vv", the program cannot be loaded because
it loads below hexadecimal location $20, or the
program’s ending load address is greater than
SPFFF.

If the LOAD command was invoked with the Main
Option "U", ending load address is greater than
SFOOO.

In the cases where the ending load address
exceeds S$F0O00, the RIB of the file has been
invalidly created. Usually, this occurs when a
program loads into the highest memory location
(SFFFF) but does not start loading at an address
that is a multiple of eight. Since the only
information available to the LOAD command is’ the
Starting load address and the program’s size (a
multiple of eight bytes), the ending load address

may exceed SFFFF (diskette controller forces the

multiple of eight byte criterion). Then, the
program should be re-assembled so that’ the
starting load address is a multiple of eight. If
this is not the case, the diskette is probably
damaged. The BACKUP command (Chapter 3) should be

invoked to save the valid data residing on the
diskette.

** 30 INVALID EXECUTION ADDRESS

The file from which a program is to be loaded has
an invalid RIB. The starting execution address
lies outside of the block of memory that would be
loaded by the program.

13.3 Examples

The following command line:

LOAD TESTPROG:1; (FILE1,FILE2;S=1000)

will load the program from the file TESTPROG.LO from logical
unit one into memory. The program must be origined to load
above the resident XDOS and below the end of contiguous
memory. The XDOS command line buffer will be initialized with

XDOS 4.0 User’s Guide Page 13-08

LOAD COMMAND 13.3 -- Examples

the string

FILE1L,FILE2;S=1000

to allow the program to be tested as if it had been invoked
from the command line directly. After the program is’ loaded,
control is given to the debug monitor.

The next example illustrates how user-written programs
are executed from diskette directly. The program can load
anywhere in memory except below hexadecimal location $20. The
program cannot use any of the resident XDOS functions:

LOAD BLAKJACK; VG

Page 13-09

CHAPTER 14

OS ee ee ee eames ee ee ee ee ee ee ee oe

The MERGE command allows one or more files to be
concatenated into a new file. This command is useful in
combining several smaller program files into one large file,
or in updating memory-image files.

The MERGE command is invoked with the following command
line:

MERGE <name 1>[,<name 2>,...,<name n>] ,<dname>[;<options>]

where <name i> (i=l to n) are the names of the files to be
merged together, <dname> is the name of the destination file,
and <options> can be one or both of the options listed below.
A maximum of 38 (decimal) file names can be accommodated by
the MERGE command.

Option Function

Ww Use automatic overwrite if destination
file already exists on diskette.

<addr> Use hexadecimal <addr> as starting
execution address of destination file.

The <options> are described in detail in the following
sections.

Only <name 1> and <dname> are required. All file name
specifications on the MERGE command line must contain at
least a file name. For all <name i>, the default suffix "SA"
and the default logical unit number zero will be used if none
are explicitly given. The default suffix and logical unit
number for <dname> are taken from <name 1>.

MERGE will perform two different functions depending on
whether <dname> is the same as <name 1> or not. If <dname> is
different from <name 1>, then all of the files specified by
<name i> will be combined into the destination file <dname>.
Each of the <name i> files will remain unaffected. If <dname>
is the same as <name 1>, however, then MERGE will append the
files specified by <name 2> through <name n> to the end of
the file <name 1>. In this case, the file <name 1> will be
changed.

The file names <name 2> through <name n> are optional.
If they are specified, they must be of the same file format
and have similar allocation and space compression attributes
as <name 1>. In addition, their names cannot be the same as
that of <dname> unless <dname> is the same as <name 1>. If

XDOS 4.0 User”s Guide Page 14-01

MERGE COMMAND 14.1 -- Use

file names <name 2> through <name n> are not specified, the
MERGE command performs the same function as the COPY command.

That is,

MERGE <name 1>,<dname>

is identical to the command line

COPY <name 1>,<dname>

assuming that <name 1> is not the same as <dname>.

Only four types of files can be processed by the MERGE
command. The files specified by <name i> must have one of the
following formats:

File format as File format
shown by DIR

0 User-defined
2 Memory-image
3 Binary record
5 ASCII record

Memory-image files can be merged together. The file
<dname>, however, cannot exist in such cases because MERGE

must ensure that the destination file is allocated contiguous
space to accommodate the memory-images of all <name i> files.
If <dname> already exists, MERGE cannot ensure such
allocation. For all other file formats that <name i> can
assume, <dname> can already exist. In such cases’ where
<dname> is different from <name 1> and already exists in the
directory (and no "W" option on command line), the message

<dname> EXISTS. OVERWRITE?

will be displayed. The operator must respond with a "“y" if
MERGE is to perform the merge operation. Any other response
will terminate the MERGE command and return control to XDOS.

14.1.1 Merging non-memory-image files
a ee ee eee

If the files specified by <name i> are all of the
user-defined format, the binary record format, or the ASCII

record format, then the destination file <dname> will be a
direct concatenation of all of the source files. For example,

if five ASCII record files are merged, the destination file
can be represented by:

Destination File

ee ee ee me ee ee ee ee ee ee ee ee ee we ee ee ee ee we re we ee ee ee we ne ee ee ee ee

File 3] File 4

ee ce es me eee ee ee ee ee ee ree ee es we es ee ee ee ee ce ee ee ee ee re

fe6ee. Start of file end of file....3:

XDOS 4.0 User’s Guide Page 14-02

MERGE COMMAND 14.1 -- Use

The same type of concatenation would take place if the
file format was either user-defined or binary record. The
MERGE command can be used in this manner to create one large
data or source program file from smaller files.

14.1.2 Merging memory-image files

If all of the files specified by <name i> are
memory-image format files, then the destination file <dname>
will be a memory-image file also; however, it will span all
memory locations between the lowest and the highest address
Spanned by the <name i> files. If the files to be merged
occupy overlapping areas in memory, then the destination file
will contain the contents of the last file to be merged that
occupies those common locations. The MERGE command produces a
file that is the memory image of files l-n as iff they were
loaded into memory in the sequence in which they appear on
the command line. Regions of memory spanned by <dname> that
are not "loaded" into by the <name i> files will contain
binary zeroes.

For example, if three memory-image files as described in
the following table were merged together,

<name i> Lowest Highest
file address address

1 600 FFF

2 100 7FF
3 1200 13FF

then the resulting destination file can be represented by:

Memory 1 1
Location 1 6 8 F 2 3

0 0 0 F 0 F
0 0 0 F 0 F

2222222222222222222222211111111 33333333
2222222222222222222222211111111 33333333
2222222222222222222222211111111 33333333

:..-Overlayed <name 1>

Seceeeee- Start of <dname> End of <dname>....

The numbers in the body of the rectangle above indicate
the data of the respective <name i> file. Thus, "2" indicates
the data of <name 2>, etc. Between locations $600 and S$7FF,
the data of <name 2> is seen. It overlayed any information
put into <dname> by <name 1>. Since none of the <name i>
files spanned the addresses from $1000 to $11FF, inclusive,
that part of <dname> is initialized to binary zeroes.

It should be noted that programs from memory-image files

XDOS 4.0 User’s Guide Page 14-03

MERGE COMMAND 14.1 -- Use

loaded into memory are always a multiple of eight bytes in
length. This is a function of the diskette controller.
Regardless of the actual data of a file, a multiple of eight

_ bytes will always be loaded. This fact must be kept in mind
when merging files which span memory locations that are close
together. :

Memory-image files have associated with their load
information a starting execution address. If no <options>
field is specified on the MERGE command line, <dname> will
have the starting execution address of <name 1> assigned to
it; however, aS can be seen from the above example, this

default execution address can be meaningless. An _ explicit
starting execution address can be specified in the <options>
field as a one to four digit hexadecimal number. The address
must lie within the range of memory addresses spanned by
<dname>.

14.1.3 Other options
ee ee em ee em ee ee om es ee ee we ee

The "W" option is used to allow the destination file to
be overwritten if its file name already exists; the
"OVERWRITE" prompt is not displayed and MERGE performs its
expected function. If the "W" option is not used, the MERGE
command will prompt the operator before overwriting the
destination file. The "W" option is not valid if <name 1> is
a memory-image file because the destination file cannot exist
in that case.

14.2 Messages

The following messages can be displayed by the MERGE
command. Not all. messages are error messages, although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

<name> EXISTS. OVERWRITE?

The specified file name already exists in the
directory. The operator is prompted before’ the
file is overwritten. A "Y" response will cause
the merge to take place. Any other response will
cause control be to returned to XDOS.

** 15 <name> HAS INVALID FILE TYPE

The file indicated by <name> is not of the proper
format (i.e., ASCII record, binary record,

memory-image, or user-defined), or the RIB of the
file is damaged. A memory-image file“s RIB is
considered to be damaged if the number of sectors
to load is zero, the number of bytes to load from
the last sector is zero, or if the ending load
address is larger than SFFFF. If a damaged RIB is
suspected, the DUMP command (Chapter 9) should be
invoked to correct the error.

XDOS 4.0 User“s Guide Page 14-04

MERGE COMMAND 14.2 -- Messages

** 16 CONFLICTING FILE TYPES

The files specified by <name i> have different
file formats. They must all be the same format.
Even if the format (ASCII record, etc.) is the

same, the contiguous allocation attribute and the
space compression attribute must also agree
between all <name i>. This error can also occur

if <dname> (not the same as <name 1>) exists and

has a different file format than <name 1>.

** 33 TOO MANY SOURCE FILES

More than 38 (decimal) file names were specified
for <name i>.

14.3 Examples

The following example combines the first four files
specified on the command line into a new file (the last name
on the command line). The first four files all have the’ same
attributes. The last name is the name of a new file since the
OVERWRITE prompt was not displayed.

MERGE PART1,PART2:1,PART3:1,PART4:0,BOOK

The default suffix "SA" was used for each file name. The
destination file BOOK is created on the default logical unit
number used for PART1, unit zero.

The last example illustrates how a patch file can _ be
attached to a test program file. A new starting execution
address is specified as $1F20.

MERGE TESTPROG.LO,PATCH1.LO,NEWTEST.LO:;:1F20

The file name NEWTEST.LO must not already exist. Both of the
other two files must be memory-image in format.

Page 14-05

CHAPTER 15

15. NAME COMMAND

The NAME command allows the names, suffixes and/or
attributes of a file to be changed in the directory. A single
file name or a family of file names can be affected. The
contents of a file remain unchanged.

15.1 Use

The NAME command is invoked with the following command
line:

NAME <name 1> [,<name 2>] [;<options>]

where <name 1> is the file name specification of an existing
file, <name 2> is the new name the file is to be given, and

<options> can be one or more of the option letters listed
below.

Option Function

D Set delete protection

W Set write protection

Xx Remove protections

S Set system attribute

N Remove system attribute

The <options> are discussed in detail in the following
sections.

15.1.1 Changing file names
OD Oe ee ee ee ee ee ee ee oe ee ee ee

If <name 2> is specified on the command line, the NAME
command will attempt to change the name and/or suffix of
<name 11>. <name 1> must always be specified. The default
suffix "SA" and the default logical unit number zero are
supplied if none are explicitly given for <name 1>.

If only a file name is specified for <name 2>, then only
<name 1>“s file name will be changed; its suffix will remain
the same. For example, the following command line

NAME TESTPROG , BLAKJACK

will change the file name TESTPROG.SA:0 to the new name
BLAKJACK.SA. The default suffix and logical unit number’ were
applied to <name 1> before performing the name change.
Likewise, if only a suffix is supplied for <name 2>, then

XDOS 4.0 User’s Guide Page 15-01

NAME COMMAND 15.1 -- Use

<name 1>°s file name will not be changed; only its suffix
will be affected. Thus, the following command line

NAME TESTPROG.LX:1,.EY

will change the suffix of the file name TESTPROG.LX on drive
one to "EY".

A logical unit number should not be specified for <name
2> since the file <name 1> cannot be moved from one _ logical
unit to another when its name is being changed; however, if a
logical unit number is specified for <name 2>, it must agree
with the logical unit number of <name 1>.

When changing file names, the family indicator can be
used in either the file name portion or in the suffix portion
of <name 1>. The family indicator cannot appear in both
places. The family indicator can be used to change the names
or the suffixes of an entire family of file names. For
example, the command line

NAME *.LX,.SA

would change all file names on drive zero that had the suffix
"LX" (as would be created by the assembler when requesting
EXORbug-loadable file format) so that they had the new suffix
"SA". Similarly, the command line

NAME TESTPROG. *:1,BLAKJACK

would change all files named TESTPROG (any suffix) on drive
one to have the new name BLAKJACK. The suffixes would remain
the same, preserving the identity of source, EXORbug-loadable

object, and memory-image files as designated by their
respective suffixes.

Regardless of how the NAME command is invoked to change
a file“*s name and/or suffix, the new name must not already
exist in the directory. Similarly, the old name specified by
<name 1> must exist in the directory. If either one of these
two conditions is not true, one of the standard error

messages will be displayed.

15.1.2 Changing file attributes

In addition to changing a file’s name and/or suffix, the
NAME command can be used to change a file’s attributes. The
way in which the attributes are to be changed is specified in
the <options> field. Thus, it is possible to change both a
file’s name and/or suffix and its attributes with the same
invocation of the NAME command.

The inherent attributes of a file that define its
physical format on the diskette (contiguous allocation, space
compression, memory-image, etc.) cannot’ be changed. These
attributes remain with a file from the time it is created
until the time it is deleted; however, the protection

attributes and the system attribute can be changed at any
time.

XDOS 4.0 User’s Guide Page 15-02

NAME COMMAND 15.1 -- Use

The protection attributes of a file are changed by
specifying the letter "X" (remove protections), "W" (set

write protection), or "D" (set delete protection) in the
<options> field. The system attribute is changed by
specifying the letter "S" (set system attribute) or "N"
(remove system attribute). A maximum of five option letters
can be specified at one time. The option letters are
processed from left to right. For example, if a file with
write protection set is to have only delete protection set,
the command line

NAME TESTPROG; XD

could be used. If the "X" and "D" options were reversed, the
file would be unprotected.

If no. <name 2> is specified, then an <options> field
must be present. In such cases, the family indicator can be
used for both the file name and the suffix of <name 1>. Thus,
a diskette can have all of its files protected or unprotected
with a single invocation of the NAME command.

15.2 Error Messages

The following error messages can be displayed by the
NAME command. The standard error messages that can _ be
displayed by all commands are not listed here.

** 25 INVALID FILE NAME

This error message is displayed for the following
reasons: both <name 1> and <name 2> were
specified on the command line and the family
indicator was present in both the file name _ and
the suffix portion of <name 1>; both <name 1>
and <name 2> were entered with the family
indicator; or a device name was used for <name 1>
Or <name 2>.

15.3 Examples
ao eo ee oe ee ae es os ew oe ee

¢

The following command line

NAME *.*:13:X

will remove both delete and write protection from every file
named in the directory of drive one.

The next command line shows how files* names and their
attributes can be changed at the same time.

NAME *.LX,.SA;X

This example will take all file names with the suffix "LX",

change it to "SA", and remove any protection that may be
present.

The last example illustrates how a user-written program

XDOS 4.0 User’s Guide Page 15-03

NAME COMMAND 15.3 -- Examples

can be incorporated as a system command file.

NAME TESTPROG.LO:0,SURFACE.CM;SD °

This command line changes both file name and suffix. In
addition, the system attribute and delete protection are set.
Thus, the program file named SURFACE.CM will now be treated
as a system file by the DIR, DEL, and DOSGEN programs.

Page 15-04

CHAPTER 16

16. ROLLOUT COMMAND

The ROLLOUT command is used for writing the contents of
memory to diskette. The ROLLOUT command supports the current
and alternate memory maps of the EXORset. Options exist for
writing memory directly into a diskette file or for writing
to a scratch diskette.

16.1 Use

The ROLLOUT command is invoked with the following
command line:

ROLLOUT [<name>] [;<options>]

where <name> is the name of a diskette file and <options> is
one of the options described below. The file name, if used,
is given the default suffix "LO" and the default logical unit
number zero. In some cases, it is invalid to have the file
name specified with logical unit number one (see section
16.1.4). If a file name is specified on the command line, it
must be the name of a file which does not already exist in
the directory. Whenever the file is created, it will be in
the memory-image format and allocated contiguously on the
diskette.

There are four different ways in which the ROLLOUT
command can be used. Each of the four uses of ROLLOUT is
specified via the <options> field.

Option Function

U Write memory into a file from the
Alternate Memory Map.

none Write memory into a file. Only memory not
overlayed by XDOS or ROLLOUT command can
be accessed.

Vv Write memory to scratch diskette (not to
a file). Any memory block can be written
out.

D Copy the scratch diskette*s data ("v"
option) into a diskette file.

The ROLLOUT command cannot be invoked from within a
CHAIN file (Chapter 4). Since most of the processing is done
by a position-independent routine that must work without XDOS
being resident, the resident xXDOS I/O functions cannot be
used. Therefore, the special keyboard keys CTL-X, CTL-D,
CTL-W, CTL-P, and RUBOUT are non-functional during the
ROLLOUT command; however, each operator response must. still

XDOS 4.0 User’s Guide Page 16-01

ROLLOUT COMMAND 16.1 -- Use

be terminated with a carriage return.

Caution must be used when writing out blocks of memory
that include the ‘highest addressed memory location S$FFFF.
Since XDOS can only load programs in a multiple of eight
bytes, the starting load address of such programs must be an
address that is a multiple of eight. Otherwise, the ending
load address will be greater than SFFFF.

16.1.1 Alternate Memory Map
(Om ee ee cee ee ee ee ee ee ee ee ee ee

When the ROLLOUT command is invoked with the command

line

ROLLOUT <name>;U

the memory from the Alternate Memory Map will be written into
the diskette file <name> on the specified logical unit. If
the alternate memory map is not configured, ROLLOUT will
terminate after displaying the following message:

ALTERNATE MEMORY MAP NOT CONFIGURED

If the alternate memory map is configured, then ROLLOUT
will continue and display the messages

START ADDRESS:

END ADDRESS:

The user responds by entering the starting and ending memory
addresses in the Alternate Memory Map which are to be written
into the diskette file. The addresses must’ be input in
hexadecimal (SOOQOO0O-FFFF), and the starting address must be
less than or equal to the ending address. If these two
conditions are not met, the message

INVALID ADDRESS RANGE

will be displayed and the operator will be given another
chance to enter the addresses. After having supplied the
memory range to be written to diskette, the message

ARE YOU SURE (Y, N, Q)?

will be displayed. The operator must respond with a "Y" to
have the memory written into the diskette file. The memory
block is only written into the file if sufficient contiguous
Space can be allocated. ROLLOUT will then terminate and
return control to XDOS.

The "N" response will cause the memory start and end
address messages to be redisplayed in order to allow another
set of addresses to be entered. The "Q" response will
terminate the ROLLOUT command and return control to XDOS.

XDOS 4.0 User“s Guide Page 16-02

ROLLOUT . COMMAND 16.1 -- Use

16.1.2 Non-overlayed memory

If the ROLLOUT command is invoked with the command line

ROLLOUT <name>

then any block of memory not overlayed by XDOS or the ROLLOUT
command can be written to the diskette file specified by
<name>. The file can be specified to reside on any logical
unit number.

As described in section 16.1.1, the start/end address

message prompts will be displayed; however, in addition to
the criteria set forth in that section for valid addresses,
the address range must not have been overlayed by XDOS or the
ROLLOUT command. If an address range is specified that falls
into the overlayed memory, the message

START ADDRESS MUST BE GREATER THAN Snnnn

will be displayed. The "nnnn" is the last address that has
been used by XDOS or the ROLLOUT command. The operator is
then given a chance to re-enter the addresses. Otherwise, the
function of the ROLLOUT command is similar to the function
described in the previous section.

16.1.3 Overlayed memory

If the ROLLOUT command has been invoked with the command
line

ROLLOUT ;V

then any block of memory can be subsequently written to a
scratch diskette. A position-independent routine will be
moved into memory. This routine can subsequently be activated
by the user from the debug monitor after loading his test
program into memory. The routine will be used to write memory
to a formatted scratch diskette that has been placed into
drive one. ’

No file name specification can be entered with the "Vv"
option. The diskette that will be written to in drive one
must not contain an XDOS system that is to be used again. The
system tables on that diskette will be overwritten. The
diskette will have to be regenerated in order to be used as
an XDOS system diskette.

ROLLOUT will display the following message once it has
been invoked with the "V" option:

LOAD ADDRESS:

to which the operator must respond with the Starting
. hexadecimal address of a memory block into which the ROLLOUT
command will attempt to move the position-independent
routine. The address must be for memory above that required
by XDOS and the ROLLOUT command. If the address entered is

XDOS 4.0 User’s Guide Page 16-03

ROLLOUT COMMAND 16.1 -- Use

too low, ROLLOUT will display the message

LOAD ADDRESS MUST BE GREATER THAN Snnnn

and return control to XDOS. "nnnn" is the hexadecimal address
of the last location in memory occupied by XDOS or _ the
ROLLOUT command. If the entered address’ specified spans
non-existent memory, ROLLOUT will display the standard error
message

** 53 INSUFFICIENT MEMORY

and return to XDOS.

Caution must be used in locating the
position-independent routine in memory. Since XDOS uses’ the
upper end of memory when the command interpreter is running,
the routine should not be loaded within 100 (decimal) bytes .

of the end of contiguous memory. Care must also be taken to
ensure that the program being tested does not destroy the
$200 locations occupied by the position-independent routine.

If the position-independent routine was successfully
transferred, ROLLOUT will terminate and return control to
XDOS. The user can then invoke the LOAD command to bring his
test program into memory. Then, whenever the time is reached
that memory is to be written to diskette, the user need only
give control to the still resident position-independent
routine at the address that was entered in response to the
"LOAD ADDRESS" prompt discussed above. This is done via_ the
EXORbug command

nnnn;G

When the position-independent routine receives control in
this manner, it will prompt the operator for the starting and
ending addresses as described in section 16.1.1. After the
address range has been entered and the "Y" response given to
the "ARE YOU SURE?" question, the message

DRIVE 1 SCRATCH?

will be displayed. At this point, a formatted scratch
diskette must be placed into drive one. A "Y" response will
then cause the block of memory to be written to the scratch
diskette. Any other response will give control to the debug
monitor.

The "N" response to the "ARE YOU SURE?" prompt will
allow the address range to be reentered. The "Q" response,
however, will return control to the debug monitor, rather

than to XDOS. After the block of memory has been rolled out,
the debug monitor will receive control again.

The ROLLOUT command can be subsequently used (see
section 16.1.4) to copy the raw data from the scratch
diskette into a file on drive zero.

XDOS 4.0 User’s Guide Page 16-04

ROLLOUT COMMAND 16.1 -- Use

16.1.4 Scratch diskette conversion

If the ROLLOUT command is invoked with the command line

ROLLOUT <name>:;D

then the memory written to the scratch diskette with the "Vv"
option will be copied into the file <name>. ROLLOUT will
assume that a scratch diskette is in drive one that has been
created via the ROLLOUT command with the "V" option. The
<name> specified must be for logical unit zero. Since the
diskette in drive one is scratch, no file can be created
there.

The ROLLOUT command will display the following message
once it has been invoked with the "D" option:

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT?

to which the operator must respond with a "Y" if the ROLLOUT
command is to continue. Any other response will terminate the
ROLLOUT command and return control to XDOS.

If the "Y" response is given to the above message,
ROLLOUT will check that the diskette in drive one was
generated with the "V" option. If an invalid diskette has
been placed into drive one, the message

INVALID DISKETTE IN DRIVE 1

will be displayed and ROLLOUT will be terminated. If a valid
diskette is found, then ROLLOUT will proceed to build a_ file
on drive zero that contains the memory information from the
scratch diskette.

16.2 Messages
ee eee oe oe oe en ee ee ee

The following messages can be displayed by the ROLLOUT
command. Not all messages are error messages, although error
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

START ADDRESS:

The starting address of the block of memory to be
written out must be entered.

END ADDRESS:

The ending address of the block of memory to be
written out must be entered.

INVALID ADDRESS RANGE

The starting address was greater than the ending
address, or one of the two addresses contained an

invalid hexadecimal number.

XDOS 4.0 User’s Guide ; Page 16-05

ROLLOUT COMMAND 16.2 -- Messages

ARE YOU SURE (Y, N, Q)?

This message allows the operator to verify that
the starting/ending addresses entered are what he
wants. The "Y" response will cause ROLLOUT to
continue. The "N" response will allow a new
address range to be entered. The "Q" response
will terminate the ROLLOUT command.

DRIVE 1 SCRATCH?

This message is displayed by the
position-independent routine to allow the
operator a chance to insert a scratch diskette

into drive one. A "Y" response will cause the
memory to be written to the diskette. Any other
response will return control to the debug
monitor.

START ADDRESS MUST BE GREATER THAN Snnnn

The start/end addresses include memory occupied
by XDOS and/or the ROLLOUT command. If this
memory is to be written out, the ROLLOUT command

should be invoked with the "V" option. Otherwise,

the start/end addresses must be greater that
"nnnn".

LOAD ADDRESS MUST BE GREATER THAN $nnnn

The address specified for locating the
position-independent routine in memory includes
memory occupied by xXDOS and/or’ the ROLLOUT
command. The address must be greater than $nnnn
shown in the message.

ALTERNATE MEMORY MAP NOT CONFIGURED

The "U" option has been specified when the map
decoding prom was not configured properly (see
"EXORset 30 User*®s Guide" for more information).

LOAD ADDRESS:

The operator must specify an address at which the
position-independent routine will be located for
subsequent access via the debug monitor. The load
address entered will be the starting execution
address that is used to activate the ROLLOUT
routine from the debug monitor.

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT?

This message allows the operator time to insert
the scratch diskette created via a previous
ROLLOUT process with the "V" option into drive
one before ROLLOUT will convert the data into a
diskette file on drive zero. A "Y" response will
cause ROLLOUT to continue. Any other response
will cause control to be returned to XDOS.

XDOS 4.0 User’s Guide Page 16-06

ROLLOUT COMMAND 16.2 -- Messages

INVALID DISKETTE IN DRIVE 1

This message indicates that the diskette in drive
one waS not created by the ROLLOUT command with
the "V" option.

** 53 INSUFFICIENT MEMORY

The operator specified an address which started a
block of memory that does not exist or that
contains bad memory. This block is used to
receive a copy of the position-independent
routine that is given control from the debug
monitor. $200 bytes of memory must be available
starting at the address entered by the operator.
The cautions listed in section 16.1.3 should also
be reviewed.

16.3 Examples

The following example shows the operator-system dialogue
for writing a block of memory to a file from the Alternate
Memory Maps:

=ROLLOUT AMBLOCK;U
START ADDRESS: 9000
END ADDRESS: 97FF
ARE YOU SURE (Y, N, Q)? Y¥

The file named AMBLOCK.LO will be created on drive zero. It
will contain the block of memory from $9000 to S97FF,
inclusive, from the Alternate Memory Map.

The following example illustrates how a copy of the
diskette controller ROM can be written into a diskette file:

=ROLLOUT DISKROM:1
START ADDRESS: E800
END ADDRESS: EBFF
ARE YOU SURE (Y, N, Q)? Y

The file named DISKROM.LO will be created on drive one.

The following example shows how the ROLLOUT command is
used to write memory to disk during a test session of a user
program that overlays XDOS. A maximum contiguous memory range
of 32K is assumed.

XDOS 4.0 User’s Guide Page 16-07

ROLLOUT COMMAND 16.3 -- Examples

=ROLLOUT :V

LOAD ADDRESS: 7F80

** S53 INSUFFICIENT MEMORY

=ROLLOUT ;V

LOAD ADDRESS: 7A00

=LOAD TESTPROG; V

- (User does testing here via EXORbug)
- 7A00;G

START ADDRESS: 100

END ADDRESS: SFFF

ARE YOU SURE (Y, N, Q)? N

START ADDRESS: 100

END ADDRESS: 2FFF

ARE YOU SURE (Y, N, Q)? Y¥

DRIVE 1 SCRATCH? Y

In the above example, the operator initially specified a
block of memory which was too small _ to receive the
position-independent routine. $200 bytes are required to
contain the routine; however, since the end of memory is used
by the XDOS command interpreter, an additional block of
memory is allowed for the XDOS stack. Thus, the ROLLOUT

command had to be invoked again. Then, after loading and
testing his program, the operator invoked the routine via the
"7A00;G" EXORbug command. After entering the end address, the
user realized an error, and responded "N" to the "ARE YOU
SURE?" question. Testing can be continued after the block of
memory has been written to the diskette.

The last example illustrates how the scratch diskette
generated above is converted into a file:

=ROLLOUT TESTROLL;D
DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT? Y

The file named TESTROLL.LO will be created on drive zero.

Page 16-08

CHAPTER 17

This chapter contains the detailed descriptions of the
Structure of an xXDOS diskette, the structure of XDOS files

and their formats, the system overlays, the memory map, the
command interpreter, interrupt handlers, the system function
handler, and the XDOS equate file. The subsequent’ three
chapters contain the detailed descriptions of the individual
system functions and how they are parameterized.

17.1 Diskette Structure

XDOS is based on a_ single and/or double sided 5.25"
and/or 8" flexible disks. The diskettes are compact in size,
portable, fairly durable, and easily inserted into and
removed from the diskette drives. Due to the diskette’s
portability and interchangeability, each diskette is treated
by XDOS as a complete, self-contained entity. Each diskette
has its own system tables, operating system, and files.

Information on an XDOS diskette is stored in sectors 128
(decimal) bytes in size. The number of sectors per cylinder
varies according to the diskette size and number of recording
surfaces on each diskette.

In order to minimize access time and yet provide for a
dynamic allocation scheme, all diskette space allocation is
done in terms of clusters, rather than sectors. XDOS clusters
consist of four, physically sequential sectors. A cluster is
the smallest structural unit of information on the diskette.
Thus, the smallest possible size that a file can have is one
cluster.

The following table summarizes these diskette
statistics.

5.25" SS 5.25" DS 8" SS 8" DS
Quantity Dec/Hex Dec/Hex Dec/Hex Dec/Hex

Surfaces/diskette 1/1 2/2 1/1 2/2
Bytes/Sector 128/80 128/80 128/80 128/80
Sectors/track 16/10 16/10 26/1A 26/1A
Tracks/cylinder 1/1 2/2 1/1 2/2
Sectors/cylinder 16/10 32/20 26/1A 52/34
Cylinders/diskette 40/28 40/28 77/4D 77/4D
Sectors/sur face 640/280 640/280 2002/7D2 2002/7D2 ~
Sectors/diskette 640/280 1280/500 2002/7D2 4004/FA4
Sectors/cluster 4/4 4/4 4/4 4/4
Clusters/diskette 160/A0 320/140 500/1F4 1001/3E9

XDOS accesses sectors on the diskette via physical
sector number (PSN). The diskette controller decodes the PSN
into the

XDOS 4.0 User’s Guide

appropriate track/sector position. To avoid

Page 17-01

SYSTEM DESCRIPTION 17.1 -- Diskette Structure

confusion, all sector numbers’ given in this section will

refer to physical sector numbers. If a need should arise to
convert between track/sector and physical sector numbers,
Appendix A has been provided. It contains the physical sector
numbers of the first sector of each track.

A portion of each diskette is reserved for some special
system tables. These tables reside in the outermost track of
the diskette, track zero. Each table, with the exception of
the directory, occupies a single sector. The following table
summarizes the location of the system tables:

System table PSN

Diskette Identification Block $00

Cluster Allocation Table $01
Lockout Cluster Allocation Table $02
Directory $03-16
Bootblock, XDOS RIB $17,18

17.1.1 Diskette Identification Block

The Diskette Identification Block is created during
system generation. It contains an ID, the version and
revision number of the resident operating system, the date
the diskette was generated, a user name identification area,
and a dynamic area for the XDOS overlay RIB addresses. The ID
is displayed by the DIR and FREE commands. The Diskette
Identification Block has the following format:

Bytes Size Contents

0-7 8 Diskette ID

8-9 2 Version number
SA-B 2 Revision number

$C-11 6 Generation date

$12-25 $14 User name
$26-39 $14 XDOS overlay RIB addresses
$3A-S7F $46 zeroes

17.1.2 Cluster Allocation Table

The Cluster Allocation Table (CAT) contains a bit map of
the areas on the diskette that are available for new space
allocation. Each bit in the CAT represents a physical cluster
of diskette storage. The first bit of the first byte of the
CAT (bit 7 of byte 0) represents cluster 0. The subsequent

bits represent subsequent clusters. A bit set to one
indicates that the cluster is allocated. If a bit is set to
zero, it indicates that the corresponding cluster is
available for allocation. Since not all 128 bytes of the CAT
correspond to physical clusters, the parts of the CAT that
represent clusters beyond the physical end of the diskette
are marked as allocated so that they cannot be used by any

XDOS 4.0 User’s Guide Page 17-02

SYSTEM DESCRIPTION 17.1 -- Diskette Structure

XDOS functions.

Bytes 0-$13 of the CAT correspond to the physical
locations on the diskette. Bytes $14-7F are set to all ones.

17.1.3 Lockout Cluster Allocation Table

The Lockout Cluster Allocation Table, or LCAT, is
similar to the CAT in structure; however, it is only used
during the DOSGEN process. The LCAT provides a map of which
areas of the diskette have been flagged as bad during the
DOSGEN write/read test. In addition, the LCAT is configured
so that those sectors of the diskette occupied by the system
tables in track zero and any user locked out areas (see
Chapter 8, DOSGEN command) are flagged as unavailable for
normal allocation.

17.1.4 Directory

The directory occupies twenty sectors. Each directory
sector contains eight entries of sixteen bytes each. Each
entry contains a file name, a suffix, the address of the
file’s first cluster, the file*s attributes, and some room
for expansion.

A file is one or more clusters containing related
information. This information may be ASCII source programs,
binary object records, user-generated data, etc. Each file
must reside wholly on a single diskette. Files are identified
to the system by their names, suffixes, and logical unit
numbers.

The name as stored in the directory consists of ten
bytes; however the XDOS command interpreter deals with an
eight-byte name and a two-byte suffix. This is merely a
convention of the command interpreter and has no significance
in relation to the internal format of the directory. System
routines and functions dealing with file names as a parameter
use a ten-byte block which is always dealt with asa
monolithic item. Z

File names assigned by the user must be from one to
eight alphanumeric characters in length. The first character
must be alphabetic. A file’s suffix is used to further
identify the file. The suffix is primarily used to identify
the format of the file content; however, this is purely a
convention; the attribute field of the directory entry
describes the file’s physical format. Suffixes are considered
as an extension of the file name. They can be one or two
alphanumeric characters in length. The first character of the
suffix must be alphabetic. Both the file name and the suffix,
if shorter than their maximum allowable lengths, are left
justified and space-filled in the directory entry.

In most cases, the XDOS commands make certain default
assumptions about a file’s suffix if it is not explicitly
specified by the operator; however, explicit suffixes can be
used whenever the default is to be overridden. The standard

XDOS 4.0 User’s Guide Page 17-03

SYSTEM DESCRIPTION 17.1 -- Diskette Structure

XDOS default suffixes are:

Suffix Implied meaning

AL Assembly listing file
CF Chain procedural file
CM Command file file
LO Loadable, memory-image file
LX EXORbug-loadable file
SA ASCII source file
SY Internally-used system file

Logical unit numbers’ identify the drive that contains
the file. Since each diskette carries with it its own
directory, different files with identical names and suffixes
can reside on different diskettes.

The standard format for specifying file names, suffixes
and logical unit numbers is:

<file name>.<suffix>:<logical unit number>

where the period (.) and colon (:) serve to delimit the start
of the suffix and_ the logical unit number fields,

respectively.

In addition to a name, each directory entry contains a
set of attributes which characterize the file*s content. A
file*s attributes include inherent attributes and assignable
attributes. The inherent attributes of a file describe its
allocation scheme (contiguous or segmented), the file format
(ASCII record, binary record, memory-image, or user-defined) ,

and whether space compression is used for ASCII records. The
file formats are described in section 17.3.

The assignable attributes include write protection,
delete protection, and the system file attribute. If a file

is write protected, it cannot be written into or deleted. If
a file is delete protected, it cannot be deleted. If a file
has the system attribute, it will be included in the system
generation process (DOSGEN) and is handled differently by the
DEL and DIR commands.

The format of a directory entry is described in the
following table:

Bytes Size Contents

$0-7 8 File name
$8-9 2 Suffix

SA-B 2 PSN of first cluster
SC-D 2 Attributes
SE-F 2 zeroes

XDOS 4.0 User’s Guide Page 17-04

SYSTEM DESCRIPTION 17.1 -- Diskette Structure

The attribute field of a directory entry has the
following format:

3 : : : <-------- Not Used (=0) -----~-- >

: : : : : 2... File format (0=user-defined,
: : c 2=memory-image,
: : : 3=binary record,

: 5=ASCII record,
: 7=ASCII-converted-

binary record)

: eeccceeeeeee NON-Compressed space bit
Secccecceeccceee CONtiguous allocation bit

See eercrescvvoccccecee SYStem file bit
Se ccccccrcesevrcccceceee Delete protection bit

Se eccccrcccccceesccccrceeeeee Write protection bit

Associated with each directory entry is an eight-bit
number, the directory entry number (DEN), which is a function
of the physical location of the entry within the directory.
The DEN is not found anywhere’ in the directory. It is a
calculated quantity and is interpreted as follows:

; t.ee. Position within sector
2 (0-7)

Secor ercececvecccceee Physical sector number
($3-$16)

17.1.5 Bootblock
ee ee ee oe ee

2

The Bootblock is a small loader program that is brought
into memory along with the next physical sector by the
diskette controller during system initialization. The second
sector that is loaded contains information regarding the size
of the resident operating system. From this information, the
Bootblock program configures the diskette controller to load
into memory the actual resident operating system.

17.2 File Structure
oe mm ee ee ee es ne ee

While the contents of a file can be thought of as a
logically contiguous block of information, the actual
diskette area allocated to the file may or may not be
physically contiguous. Space can be allocated to one or more
groups of physically contiguous clusters on the diskette.
Each contiguous group of clusters is called a segment. This

XDOS 4.0 User”s Guide Page 17-05

SYSTEM DESCRIPTION 17.2 -- File Structure

segmentation allows the dynamic allocation and deallocation
of space to occur without having to move any of the
information contained in the file or in other files.

Each file must, therefore, have a table that describes

which segments are allocated to the file. This table is kept
in the first physical sector of each file and is called the
Retrieval Information Block (RIB). It is the address of the

RIB that is contained in the directory entry of a file.

XDOS accesses sectors within a file by logical sector
number (LSN). Since the first physical sector of a file is
not really a data sector, the RIB is given an LSN of minus

one (SFFFF). Therefore, logical sector zero of a file (the

first data sector) is actually the second physical sector of
the file. Logical sector numbers for data sectors are
numbered sequentially beginning with zero. Thus, even’ though
a file may be segmented (not physically contiguous on the
diskette), it is treated as a logically contiguous collection

of sectors when accessed by logical sector number. The system
I/O functions decode the LSN into the actual PSN.

17.2.1 Retrieval Information Block
me www we ww we ew ww we we ee ee me

For all files, the RIB contains a series of two-byte
entries called segment descriptor words (SDWs). A special SDW
is used as a terminator to indicate the end of the segment
descriptors within the RIB. Each SDW (other than the

terminator) contains two pieces of information: the cluster
number of the first cluster in the segment, and the length of
the segment. Since each segment consists of physically
contiguous clusters, this information is all that is needed
to describe where a segment of the file is located on _ the
diskette. A RIB can contain a maximum of 57 (decimal) SDWs

and one terminator.

The RIB of a memory-image file contains some additional
information that describes where the contents of the file are
to be loaded in memory. This information includes’ the
Starting load address, the number of sectors to load, number

of bytes in the last sector, and the starting execution
address.

The memory-image file load information is described in
the following paragraphs. Both the content and the location
of each field are described. The offsets used to refer to the
various bytes are relative to zero (zero being the first byte
of the RIB sector). All offsets are given in decimal.

1. Byte 117, the number of bytes to load from
the last sector, must be non-zero, a multiple

of 8, and less than or equal to 128 ($80).

2. Bytes 118-119, the number of sectors to load,

must contain a number that is non-zero, less

than the total number of sectors allocated to
the file, and less than or equal to 512
($200).

XDOS 4.0 User’s Guide Page 17-06

SYSTEM DESCRIPTION 17.2 -- File Structure

3. Bytes 120-121, the starting load address. It
is the first memory location address occupied
by the program once loaded into the memory.
This value must be greater than hexadecimal
location $1F if the program is to be loaded
via the XDOS loader.

4. The ending load address is calculated from
bytes 117-121 in the following manner:

EL = (NSL - 1) * 128 + NBLS + SL - 1

where EL is the ending load address, NSL is
the number of sectors: to load (bytes

118-119), NBLS is the number of bytes in the

last sector (byte 117), and SL is the
starting load address (bytes 120-121). The

ending load address must be less than 65536.

5. Bytes 122-123, the starting execution

address, must lie within the range of
addresses spanned by the file (greater than
Or equal to the starting load address, and
less than or equal to the ending load
address).

6. Bytes 124-127 are not used and must be zero.

The following diagrams illustrate the format of a
segment descriptor word and the terminator.

SEGMENT DESCRIPTOR WORD

Se ee 9 8 > 0 oe we 8 me ee we me ee es ee ee es ee oe ee

Seeeceeeee Number of contiguous clusters - 1

Sooccccccccccccecccees LELO (NOn-terminator bit)

TERMINATOR

The SDW terminator is used to monitor the logical
end-of-file. It contains the logical sector number of the
end-of-file. The sector which is the end of a file may _ be

XDOS 4.0 User’s Guide Page 17-07

SYSTEM DESCRIPTION 17.2 -- File Structure

partially filled with null characters. Thus, no _ actual

end-of-file record will be found within a file. This feature
allows files to be merged together without having to read
through the entire file looking for an end-of-file record.

The actual format of a RIB is shown in the _ following
diagram. For non-memory-image files, the bytes following the
terminator must all be zero. Only memory-image files can have
non-zero bytes following the terminator, and then those bytes
must meet the six criteria listed above.

00 | SDW 0 |

2, ©. swl —*|

~ Other SDWs

| |

to TERMINATOR = = = ——‘|

| |
~ zeroes ~

|

74 | BYTES IN LAST SECTOR |
6 | NUMBER OF SECTORS TO LOAD
Tn STARTING LOAD ADDRESS ——S—=s:
mo STARTING EXECUTION ADDRESS —_—‘|
7 | ERO sss—~—S—~SY;

(So ee ee em ee es ce ee es ee coe ee ee eee ee ee ee ee ee ee ee ee

XDOS deals with four types of file formats on diskette:
user-defined, memory-image, binary record, and ASCII record.

User-defined files are dealt with by XDOS at the sector
level. XDOS will keep track of where the file is and will
only allow access to the file by logical sector number. The
user has the responsibility of formatting the data within the
sectors in the manner suited to his application.

Memory-image files include all files whose contents are
to be loaded into memory directly from the diskette by the
XDOS loader. Memory-image files are allocated contiguous
space on the diskette. The only information retained about
where the content is to be loaded is kept in the file’s RIB.
The data within the sectors of the file contain no load or

XDOS 4.0 User’s Guide Page 17-08

SYSTEM DESCRIPTION 17.2 -- File Structure

record information. It is merely an image of a block of
memory to be loaded into. Due to the nature of the diskette
controller, XDOS programs can only be loaded in multiples of
eight bytes. A further restriction placed on memory-image
files is that their content cannot be loaded below memory
location $20.

Binary record files may be used to record structured
binary (not listable) information to the diskette. It offers
a suitable alternative to the user defined file, since the

record i/o is allowed with this files.

ASCII record files are used to contain all other
XDOS-supported data. Such files can be in either
Sspace-compressed or non-space-compressed form. Normally, XDOS
will always create ASCII files with the space-compression
attribute to conserve diskette space.

The non-memory-image files can be allocated in either
contiguous or segmented fashion. Normally, XDOS will create
such files in a segmented manner to take advantage of the
dynamic allocation scheme. If files are segmented, they can
expand to the full capacity of the diskette when they need to
grow in size; however, if files have contiguously allocated
space, then they can only be expanded if they are allocated
space that is contiguous to the originally allocated space.
Normally, contiguous files are created with the maximum space
that they will ever need.

17.3 Record Structure

This section describes in detail the two record types
Supported for diskette files. In addition, a special record
type used for copying binary files to a non-diskette device
is also discussed. The actual use of such records is fully
discussed in Chapter 18 which describes the supported I/0
functions. All records supported by XDOS are terminated by a
carriage return, line feed, and null sequence; however, on
the diskette, only the carriage return character is retained
in order to conserve diskette space. When diskette files are
copied to a non-diskette device, the other two characters are
automatically supplied by XDOS.

17.3.1 Binary records

Binary records contain a special record header, a byte
count, and a checksum. The checksum is a two*s-complemented
sum of all bytes in the record from the byte count through
the last data byte, inclusive. A maximum of 254 (decimal)
data bytes can be contained in each binary record. ,

The format of a binary record can be illustrated as
follows:

XDOS 4.0 User’s Guide Page 17-09

SYSTEM DESCRIPTION 17.3 -- Record Structure

The symbols take on the following meanings:

Symbol Meaning

D The binary record header character "D"
($44).

BC A one byte "byte count" that contains the
number of data bytes in the record plus
one (for the checksum byte).

DATA A maximum of 254 (decimal) data bytes.
Any eight-bit values are valid for the
data bytes.

CK The two*’s-complemented sum of the byte
count and all data bytes. CK is a one
byte field.

CR The terminating carriage return. For
non-diskette devices this will actually
be a carriage return, line feed, and null

sequence.

Since diskette files contain the logical end-of-file
indicator in the RIB, the binary EOF record only will be seen
on non-diskette devices. The binary EOF record has the
following format:

The symbol "E" is the end-of-file record header which is the
letter "E" ($45). The other symbols are the same as in the
above table. The EOF record has no data bytes. Thus, the byte
count will be equal to one.

17.3.2 ASCII records

ASCII records are used primarily for source files on the
diskette; however, EXORbug-loadable format files are ASCII

even though they are object files output from the assembler.

ASCII records contain no record headers, byte counts, or

checksum fields. The first ASCII record in a file begins with
the first data character of a file and is terminated by the
first carriage return. All other ASCII records in the file
begin with the first data character following a carriage
return. When ASCII records are copied _ to non-diskette
devices, the terminating carriage return is actually a
combination of three control characters: carriage return,
line feed, and null. ASCII records should contain only

displayable characters.

When XDOS writes ASCII records to diskette, they
normally contain space compression characters to conserve

diskette space. A space compression character is indicated by

XDOS 4.0 User’s Guide Page 17-10

SYSTEM DESCRIPTION 17.3 -- Record Structure

a data byte having the sign bit (bit 7) set to a one. The
remaining bits (0-6) contain a binary number representing the
number of spaces ($20) to be inserted in place of the
compressed character. XDOS automatically expands these
characters into spaces when such files are read. XDOS will
also automatically create these compressed characters when
such files are written.

Since XDOS maintains the logical end-of-file indicator
in a file*s RIB, no ASCII EOF record will be seen in a

diskette file; however, when ASCII record files are written

to a non-diskette device, the following EOF record will he
supplied:

wee ee ees oe ee oe

where the "lA" symbol represents the end-of-file indicator.
It is the hexadecimal value $1A or SUB control character
(CTL-Z). The CR symbol is the carriage return, line feed, and
null sequence.

If ASCII record files generated on another system are to
be processed by xDOS, it is important that the carriage

- return, line feed, and null sequence be present at the end of

each record. Otherwise, it is possible for each data record
to lose one or two characters from its beginning.

17.3.3 ASCII-converted-binary records

A special form of the binary record exists when copying
to a non-diskette device that can only accept seven-bit data.
This record format is usually never kept in a diskette file.
The format of the ASCII-converted-binary record is identical
to the binary record; however, each byte, with the exception

of the special header character and the terminating carriage
return, line feed, and null sequence, is converted into two
eight-bit bytes with bit seven set to zero. This is
accomplished by taking each half of the original byte and
converting them to their ASCII-hexadecimal equivalent. The
result is a displayable two-byte sequence. For example, the
hexadecimal data byte $85 would be converted into the two
byte sequence $38 and $35.

Page 17-11

17.3.4 File descriptor records

XDOS I/O operations with non-diskette devices can be in

one of two modes: file format or non-file format. The
non-file format mode requires no special processing and uses
only the ASCII record format.

The file format mode allows XDOS to treat the data _ on
certain non-diskette devices as a "file", similar to a file

on diskette. The File Descriptor Record (FDR) is employed to
serve the same function as a directory entry for a diskette
file. The FDR c ontains a file name, suffix, and a file format
descriptor. Thus, XDOS can search for a named file ona

sequential mass storage, if it was originally created using
the file format mode.

All FDRs are identical in format, regardless of the
record format of the data file. Since the FDR must be
acceptable to any device, it is written in the
ASCII-converted-binary form, even if the remaining data of
the file is in binary or ASCII. The FDR format is shown in
the following diagram:

The symbols take on the following meanings:

XDOS 4.0 User’s Guide Page 17-13

Symbol Meaning

H The FDR header character "H" ($48).

BC A one-byte "byte count" that contains the
number of bytes in all fields from NAME
through CK, inclusive. This number is

fixed for FDR records at 17 (decimal).
This number reflects the real data bytes
in the unconverted binary form, not the
bytes written in the
ASCII-converted-binary form.

NAME The eight-character file name.

SUFX The two-character suffix.

NU A two-byte field which is not used. It
contains zeroes.

FDF A two-byte field similar in format to the
attribute field of a directory entry.
Only bits $8-SA are used to describe the
file format.

CK The two*s-complemented sum of the byte
count and all other data bytes. CK is a
one byte field.

CR The terminating character sequence of
carriage return, line feed, and null.

The length of all fields of the FDR (except H and CR) is
doubled when written (ASCII-converted-binary format). Thus,

if the CR field is counted as three characters (carriage
return, line feed, null), then the physical length of an FDR
in the ASCII-converted-binary format is 36 (decimal) bytes.

17.4 System Files

On every XDOS diskette there are nine files which
comprise the operating system. These files contain the
resident operating system, a series of overlays to reduce the
main memory requirements of the system, and standard error
messages. The resident operating system file xXDOS.SY must
reside in a fixed place on the diskette if the Bootblock
program is to work after being activated by the diskette
controller. The other system files must remain in fixed
positions after XDOS has been initialized since they are
referenced by their physical sector numbers.

17.4.1 System overlays

The system overlay files are loaded into memory into one
of the four overlay regions discussed in the subsequent
section. The overlay handler only brings an overlay into
memory if it is not already in memory at the time a_ specific

XDOS 4.0 User“’s Guide Page 17-14

SYSTEM DESCRIPTION 17.4 -- System Files

function is required. If an overlay remains in memory, access
to its function is faster than if it has be to loaded from
the diskette. The functions contained in the seven overlay
files are shown in the following table:

Overlay Function

XDOSOVO.SY Diskette space allocation and
deallocation.

XDOSOV1.SY Processing standard file names,
allocating contiguous memory,
reserving a device, releasing a
device, writing writing standard
records, writing FDR*s, writing
end-of-file records, issuing next
command.

XDOSOV2.SY Reading Standard records, reading
FDRs.

XDOSOV3.SY Closing a file/device, rewinding
diskette files, changing file names
and attributes.

XDOSOV4.SY Opening a file/device.

XDOSOVS.SY CHAIN file execution.

XDOSOV6.SY Command line interpretation.

When XDOS is initialized, the directory is searched for
the seven overlays by name. The physical diskette addresses
are then retained so that a subsequent reference to an
overlay function does not involve another directory search.
Thus, XDOS must be reinitialized each time the diskette in
drive zero is changed so that the overlays can be located
again.

Overlays XDOSOVO and XDOSOV1 use overlay region one.
Overlays XDOSOV2 and XDOSOV3 use overlay region two. Overlays
XDOSOV4 and XDOSOVS use overlay region three, and overlay
XDOSOV6 uses the User Program Area into which the XDOS
commands also are loaded. The overlay regions are shown in
the memory map diagram of section 17.5.

17.4.2 System error message file

In an attempt to use English language descriptions for
the various error conditions that May arise, all standard
error messages are kept in the system file XDOSER.SY. This
file is accessed by the error message function .MDERR
(Section 20.4). The error messages are placed in this file so
that the most frequently used messages are near the
beginning.

If the error message file cannot be read or accessed,
the error message function will display a message indicating

XDOS 4.0 User’s Guide Page 17-15

SYSTEM DESCRIPTION 17.4 -- System Files

that an invalid error message has been requested.

17.5 Memory Map

The memory mapping of XDOS within the EXORset system
is illustrated in the following diagram:

XDOS 4.0 User’s Guide Page 17-16

SYSTEM DESCRIPTION 17.5 -- Memory Map

0000 | DISKETTE CONTROLLER VARIABLES |

0020 ~ UNUSED DIRECT ADDRESSING ~
~ AREA ~

ooxE | COMMAND LINE BUFFER _—|.
OOFE | COMMAND LINE BUFFER POINTER |
0100 XDOS VARIABLES,

IOCBs and SYSTEM BUFFERS

SWI HANDLER

KERNEL SYSTEM FUNCTIONS
Oe ee es ee we ee we ee ee ee ee ee ee

mn ee ee ee ne ee ee ee ee ee ee ee ee

(me ee ce ee em em ee ee ee ee ee ee

SO ee ee cw ee ee me eee ee ee ee ee ee oe oe

ee me ee cee eee se me eh ee ee ee ee

2000 OVERLAY REGION 4

and
USER PROGRAM AREA

3FFF | END OF MINIMUM SYSTEM MEMORY |

BFFF | END OF CONTIGUOUS MEMORY |

— RAM-Discontinuity
ae NON-XDOS RAM ;

F000 | ALPHANUMERIC DISPLAY MEMORY |
F800 | DISKETTE CONTROLLER PROM |
Eeoo Of” SYSTEM I/O (FDC) =|
Foo Of” EXORbug MONITOR Ss

Locations $0000-001F, inclusive, are reserved for the
variables of the diskette controller. These locations cannot
be initialized by a program loading from the diskette. In
addition, if a program requires the use of the diskette
functions (either directly through the diskette controller or

XDOS 4.0 User’s Guide Page 17-17

SYSTEM DESCRIPTION 17.5 -- Memory Map

through the xXDOS functions), then these locations cannot be
used by the program for storage. Locations SQOAE-OOFD,
inclusive, contain the XDOS command line as it was entered by
the operator. Command-interpreter-loadable programs must load
above location S$1FFF. They can use the direct addressing area
for variable storage; however, this area cannot be
initialized while the program is being loaded into memory.
Programs that do not make use of XDOS system functions can
load anywhere in memory above location S$O0O01F. If such
programs do not use the diskette controller entry points
(Appendix D), the direct addressing area below location $0020
can be used, but only after the program is resident in
memory.

The xXDOS variables (locations $FE and higher) contain
pointers to several areas in memory that might be required bv
a user program. The absolute addresses of these pointers
should be obtained from the XDOS equate file. The pointers
most often required are:

Pointer Name Content

CBUFPS The address in the command line
buffer to the terminator of the
command being executed. Parameters
following the command name should be
scanned for by using the contents of
this variable.

ENDOSS The address of the last location of
resident xXDOS. The value of this
address plus’ one is the first
location that a
command-interpreter-loadable program
can load into.

ENDUSS The address of the last location
loaded into by the current’ program.
The program can allocate additional
memory (between the last loaded

location and the end of contiguous
memory) via one of the system
functions.

ENDSYS The address of the last byte of
contiguous memory (RAM).

SWISUV The address of a user-defined SWI
handler. This vector must be
initialized by a user program if it
is using SWIs other than t?hose
defined for XDOS system functions.
This vector is set to point to an RTI
instruction each time the XDOS
command interpreter is given control.

IRQSVC The address of an IRQ handler. This

vector must be initialized by a user
program if it is using IRQs. This

XDOS 4.0 User’s Guide Page 17-18

SYSTEM DESCRIPTION 17.5 -- Memory Map

vector is set to point to an error
routine each time the XDOS command
interpreter is given control.

FIRSVC The address of a FIRQ handler. This
vector must be initialized by a user
program if it is using FIRQs. This
vector is set to point to an error

routine each time the xXDOS command
interpreter is given control.

NMIS$VC The address of a NMI handler. This
vector must be initialized by a user
program if it is using NMIs. This
vector is set to point to an error
routine each time the XDOS command
interpreter is given control.

SW2$vc The address of a SWI2 handler. This
vector must be initialized by a user
program if it is using SWI2s. This
vector is set to point to an error
routine each time the XDOS command
interpreter is given control.

SW3SVC The address of a SWI3 handler. This
vector must be initialized by a_ user
program if it is using SWI3s. This
vector is set to point to an error
routine each time the XDOS command
interpreter is given control.

17.6 XDOS Command Interpreter

The XDOS command interpreter is one of the XDOS overlays
that gets control whenever xXDOS has been initialized or
whenever a command has completed and returned control to
XDOS. This overlay will cause the standard command line input
prompt (=) to be displayed whenever it is activated.

Once in control, the interpreter waits for operator
input. After a line has been entered, it is scanned for the
first valid file name specification. If no valid file name is
recognized, the standard message

WHAT?

will be displayed and a new input prompt shown. If the first
encountered file name specification contains a valid file
name, it will be used to search the directory. The default
suffix "CM" and the default logical unit number zero will be
supplied by the xXDOS command interpreter if none are
explicitly entered by the operator. If the file name is not
found in the directory specified by the logical unit number,
the "WHAT?" message shown above will be displayed and another
input prompt shown. If the file name is found, it must be the
name of a file that contains a command-interpreter-loadable
program. That is, the file must be in the memory-image format
and must have a starting load address that is greater than

XDOS 4.0 User’s Guide Page 17-19

SYSTEM DESCRIPTION 17.6 -- XDOS Command Interpreter

the value contained in the XDOS variable ENDOSS (greater that
SIFFF). If the file passes these tests, its contents are
automatically loaded into memory and given control at the
Starting execution address contained in the file’s RIB.

The loaded program can then extract parameters from the
XDOS command line buffer. The pointer into the buffer
(CBUFPS) was left pointing to the terminator that stopped the
scan for the first valid file name specification when the
XDOS command interpreter processed the input buffer. After
completing its function, the command can return to XDOS
through one of the system functions (.MDENT) which will pass
control back to the XDOS command interpreter, repeating the
cycle.

It should be noted here that commands invoked via_ the
XDOS command interpreter do not necessarily have to have the
suffix "CM" or reside on drive zero. If a user program with
an "LO" suffix is being tested, it can be loaded and executed

directly from the command line (if it meets the requirements
for command-interpreter-loadable programs) by explicitly
entering the suffix after the file name. Similarly, if a

required command does not happen to reside on drive zero, its
name can be followed with a logical unit number to cause it
to be looked for and loaded from the specified unit. For
example, the command line

DIR:1

will invoke the directory command from drive one to display
the directory of the diskette in drive zero.

Whenever the XDOS command interpreter regains control
after a command terminates, it checks that the diskette in
drive zero still has the same parameters (version number,
overlay RIB addresses) as the diskette used during the last
XDOS initialization. If these parameters differ, one of the

standard error messages EI, ER, EU, EV (Chapter 21) will be

displayed and control given to the debug monitor. XDOS will
then have to be reinitialized before the xXDOS command
interpreter will accept further commands.

In addition, the following parameters are reinitialized
each time the XDOS command interpreter is given control. The
user-defined SWI vector (SWISUV) is reset to point to an RTI
instruction. Since the user program is no longer’ resident,
the interrupt handlers are deactivated and vectors are reset
to point to error routines. The stack pointer is reset to the
end of contiguous memory for the duration of the command
interpreter”’s execution. The Error Status and Error Type

parts of the system error status word are set or cleared
depending on whether or not a valid command name was’ entered
On the command line.

17.7 Interrupt Handling

When XDOS initializes, it saves the contents of the
interrupt vector link required by the debug monitor. The
interrupt vector link is then changed to point into the XDOS

XDOS 4.0 User’s Guide Page 17-20

SYSTEM DESCRIPTION 17.7 -- Interrupt Handling

interrupt vector table. (See "EQU" file listing, appendix I).
SWI vector is initialized to point into the XDOS function
handler. The other interrupt vectors are configured to point
to error routines.(See chapter 21). User programs, however,
can configure the XDOS variables IRQSVC, NMISVC, SW2SVC_ and
SW3SVC so that if one of these interrupts occur, the routine
specified by the user will be given control.

Such user-defined interrupt handlers are accessible as
long as the xXDOS command interpreter is not re-entered.
Whenever control is returned to the XDOS command interpreter,
the interrupt vectors will be changed to point back into
XDOS. Thus, interrupts cannot occur after the user program
has terminated. Otherwise, XDOS will output an error message
and return to the monitor. This is to be expected, since XDOS
has no way of knowing what device generated the interrupt,
where the device is, or how to respond to the interrupt. An
interrupt must not be pending or occur when the XDOS command
interpreter is given control. The XDOS variable SWISVC is not
to be modified, since it is used for the XDOS functions
access. The XDOS variable SWISUV is provided to allow the
user to implement is own SWI routine.

Certain precautions must be remembered if a user program
is to process IRQ°S and use the XDOS diskette functions. The
XDOS diskette controller uses IRQ as a ready signal from the
Floppy Disk Contoller. A non-disk IRQ which occurs during a
disk access will always cause the disk data transfer to be
erroneous. The user*s program must then inhibit IRQ’s at the
peripheral level when the disk must be accessed.

FIRQ is masked during disk controller program execution.
If a FIRQ occurs at this time, interruption will be in effect
at the completion of the disk operation only. No NMI may
occur during a diskette function execution, since it will
break the critical delay sequence of the disk data transfer.
Thus, a user program cannot capture an interrupt (IRQ, FIRQ
or NMI) during a diskette function execution.

The system functions provided by XDOS are accessible
through use of the software interrupt or SWI instruction. A
full explanation regarding the XDOS SWIs is given in the next
section; however, XDOS allows a user-defined SWI vector to be
configured through the variable SWISUV. The user-defined SWI
handler is only accessible as long as the XDOS' command
interpreter is not reentered. Whenever control is returned to
the XDOS command interpreter, the user-defined SWI vector
will be changed to point back into XDOS. Thus, user-defined
SWIs cannot be processed after the user program has
terminated. This is to be expected, since XDOS commands and
user programs all load into one area of memory. Thus, the
user-defined SWI handler is not resident after the XDOS
command interpreter regains control.

17.8 System Function Calls

All of the system functions that XDOS commands use. are
also available to the user and can be incorporated into his
program development. All XDOS system functions are accessed

XDOS 4.0 User“s Guide | Page 17-21

SYSTEM DESCRIPTION 17.8 -- System Function Calls

via the software interrupt or SWI instruction. Each SWI must
be followed by a byte that contains the number of the

function to be executed. XDOS’*s resident software interrupt
handler can access up to 128 (decimal) functions; however,

not all of these functions are defined. An error message will

be printed if the software interrupt handler is activated and
the function number is not defined.

A special convention is used to allow the user to define
a maximum of 128 functions also (to be processed by the
user’s software interrupt handler that is configured via
SWISUV). If the sign bit of the function number byte (bit 7)
is set to one, a user-defined software interrupt is

indicated. All XDOS software interrupts have function number
bytes with the sign bit set to zero. The user-defined SWI.

handler gets control with the registers on the stack as if it
intercepted the SWI directly. The B accumulator will have the
value of the function number (with the sign bit set to zero)
to facilitate indexing into the user’s function table.

XDOS system function calls or user-defined function
calls are programmed by using the SWI instruction mnemonic
and the FCB assembler directive. If programs are assembled
with the XDOS assembler, the provided definitions with the
names SCALL and UCALL can be used to generate the code for
XDOS system functions and user-defined functions,
respectively. They require an argument to be passed. This
argument is the name or value of the function to be executed.
The names of XDOS’ functions are assigned symbols in the XDOS
equate file (next section) so that the use of absolute

numbers is not necessary. Use of the SCALL or UCALL

pseudo-instructions makes the program a bit easier to read,
especially if names are used for the pseudo-instruction
arguments.

XDOS system functions receive their parameters in the
registers or in tables that are pointed to by the registers.
Chapters 18 and 20 contain the detailed entry parameters and
exit conditions for all XDOS system functions.

Some system functions may not be able to perform their
expected action. These functions will return an indication of
whether a normal return or an abnormal return is being made.
This condition is always passed back in the processor status
(condition code) register. In addition, a status byte may be
returned in one of the parameter tables or registers.

Some of the more complex system functions involving
input or output can encounter fatal error conditions as well
as non-fatal error conditions. Fatal errors suggest that’ the
program is hopelessly confused. In these cases, the only
logical action is to display what the problem appears to be
and to re-enter the xXDOS command interpreter. Non-fatal
errors can include such things as illegal record formats,

checksum errors, file protection violation, lack of space on

the diskette, etc. Such conditions are noted and returned to
the calling program. In these instances, it is the
responsibility of the calling program to identify the source
of the error and decide what the course of action should be.

XDOS 4.0 User’s Guide Page 17-22

SYSTEM DESCRIPTION 17.9 -- XDOS Equate File

17.9 XDOS Equate File

With each XDOS system diskette comes a file, EQU.SA,
known as the XDOS equate file. The XDOS equate file contains
the definitions of all symbols that are required by the
resident XDOS and all of the XDOS commands. Not all of these
symbols will be required by the user; however, the file is
left as is to make it as useful as possible.

The XDOS equate file contains th?e following definitions.
The sequence of the descriptions more or less follows the
sequence of the file from beginning to end.

First is a list of names that identifies all of the
system functions accessible via the SCALL pseudo-instruction
(or a SWI instruction followed by a function byte). The first
function is given the value of zero. Subsequent functions are
assigned a number one higher than the previous function. If
the SCALL pseudo-instruction is used in writing programs, it
is suggested that the system symbols for the system functions
also be used.

After the definitions of the system function symbols is
a set of equates for all of the ASCII control characters
including space and rubout characters. These symbols are
followed by equates for the special XDOS delimiters used for
suffixes, options, logical unit numbers, device names, and
family indicators.

Next is a list of XDOS sector equates that defines where
the various system tables are located. In addition, the
sector size and the sectors/track, etc., are defined.

Then, offsets into the various system tables are
defined. These equates are followed by the definitions of the
fields in the I/O control block (IOCB), which, in turn, are
followed by another series of sequenced definitions for the
various I/O function error statuses.

Following the error statuses, the locations of all of
the XDOS internal variables are defined. These include the
locations of the variables needed by the user for accessing
the command buffer, the memory sizes established at
initialization, and the user-defined interrupt vectors.

After the variables is a series of equates that defines
the various bit positions of the IOCB, the offsets into the
controller descriptor block (CDB), bit definitions within the
CDB, and the offsets to the entry points of the device
drivers.

Lastly, the diskette controller variables, entry points,
and error statuses are equated to symbols. These equates are
followed by a partial list of the locations in EXORbug
required by xXDOS. The EXORbug equate list is not complete.
Thus, users requiring other entry points into EXORbug must
provide them within their programs.

If programs are being written that use the resident XDOS

XDOS 4.0 User”s Guide Page 17-23

SYSTEM DESCRIPTION 17.9 -- XDOS Equate File

functions, it is suggested that the XDOS equate file be
included as a part of the assembly. Symbols within the XDOS
equate file may have their values changed by Motorola in
subsequent versions of XDOS; however, all attempts will be
made to ensure a minimal number of such changes. Therefore,
the XDOS equate file should not be copied from one version of
XDOS to another. Like the resident system and command files
that comprise the operating system, the XDOS equate file is
associated with a specific version and revision of the
operating system.

‘A listing of the xXDOS equate file is contained in
Appendix H.

Page 17-24

CHAPTER 18

18. INPUT/OUTPUT FUNCTIONS FOR SUPPORTED DEVICES
(ey ces ee ee eee ee ee es em ee en se ee ee me ee ee ee ew ee ee ee oe

In the following description of the I/O functions’ for
supported devices these symbols will be used:

Symbol Meaning
eee ae oe om ee em oe oe ee

A accumulator
B accumulator
Index register X
Index register Y
User stack pointer
Direct page register
Condition code register
zero flag of condition code register (bit
2)

Cc Carry flag of condition code _ register
(bit 0)

CR Carriage return

N
Q
U
G
C
K
x
X
W
Y

o
m
)

It is assumed that the reader is familiar with what
system functions are, how they are invoked, what precautions
must be taken when testing programs using system functions,
and how errors are handled by system functions (see section
17.8).

18.1 Supported Devices

XDOS provides input and output functions to access the
following supported devices:

XDOS Name Physical Device

CN ’ Console keyboard and/or display
DK Diskette drive
LP Line printer

The following sections describe the system functions that are
available for accessing these devices.

18.2 Device Dependent I/O Functions
> ee ee re ee ee ee ee om ee ee

XDOS provides system functions for directly accessing
the console keyboard, display, line printer, and diskette
drives. All of the functions are accessed by executing an SWI
instruction followed by a function byte. The value of the
function byte indicates the function to be executed and can
be obtained from the XDOS equate file. All system functions
that perform input/output operations require a stack in the
user program area. The size of the stack must be at least 120
bytes (decimal). Each system function call pushes twelve

XDOS 4.0 User’s Guide Page 18-01

INPUT/OUTPUT FUNCTIONS 18.2 -- Device Dependent I/O Functions

bytes on the stack. Since function calls may be nested within
XDOS, a large stack is required.
EXORbug does not have sufficient stack space

It should be noted that

available: the

stack area must be provided by the user elsewhere.

The device
line printer use the device
18.3)
of memory. Any error
functions will cause’ the

dependent functions for the console and the
independent

via parameter tables held in the XDOS variable section
conditions

functions (section

detected by these system
calling program to be aborted, a

standard system error message to be displayed, and control to
be

except "Buffer
fatal error.

Overflow"

given to the XDOS command interpreter. Since XDOS manages
these parameter tables (reserving, opening, etc.), any

during
error

a console input will be a

If, while accessing the console or the line printer, the
errors are to be handled by the calling program, the device
independent I/O functions (section 18.3) must be used

instead.

18.2.1 Console input -- .KEYIN

The .KEYIN function inputs a specified number of
characters from the system console keyboard. All characters
entered (with the following exceptions) are stored into an
input buffer. The function does not return until a
terminating carriage return is

The following characters
characters when encountered by

Value Character

RUBOUT or DEL

CTL-X or CAN $18

XDOS 4.0 User’s Guide

supplied from the keyboard.

are treated as special control
the .KEYIN functions:

Function

Removes last character

entered into buffer unless

buffer is empty. The removed
character is displayed on the
system console to indicate
that it has been removed from
the buffer. No action occurs
if the buffer is empty.

Deletes all characters from
the input buffer. A carriage
return/line feed is displayed
on the console to indicate
that a new input line must be
entered.

Page 18-02

INPUT/OUTPUT FUNCTIONS

CTL-D or EOT $04

CTL-M or CR SOD

All characters are normally e
mechanism to indicate that
input buffer; however, the fo
but are not placed into the i

Character

Null
Line feed

DC1

DC2

DC3

DCc4

ENTRY PARAMETERS : B = The

be i

inclu
Chara

has

18.2 -- Device Dependent I/O Functions

Displays the current contents
of the input buffer from the
first character to the last
character entered. The input
is not terminated. This

feature offers a means of

displaying a "clean" line
after many characters have
been backed out via the
RUBOUT key.

Terminates the input. The
carriage return is the last
character placed into the
input buffer. A carriage
return/line feed is displayed
on the console.

choed on the console display
they have been entered into the

llowing characters are echoed
nput buffer:

Value
oe a en oe

maximum number of characters to
nput from the keyboard (not
ding the terminating CR).
cters entered after the maximum
already been input will not be

echoed on the console, nor will they
be placed into the input buffer. If
B = 0, then only a CR will be

accepted from the keyboard. The
function does not return until a CR
is entered.

Xx = The address of the input buffer that
is to receive the data obtained from
the console keyboard. The buffer must
be large enough to accommodate one
more character than is specified in
B. This extra space must be provided
for the terminating carriage return
which is placed into the buffer. If X
happens to contain the address of the
XDOS

speci
command line buffer, then a

al test is made to ensure that B

is less than 80 (decimal). If B is
greater than 719, it will be
automatically changed to 79 to
preve

XDOS 4.0 User’s Guide

nt the resident XDOS from being

Page 18-03

INPUT/OUTPUT FUNCTIONS 18.2 -- Device Dependent I/O Functions

overwritten with keyboard data.

EXIT CONDITIONS: A is indeterminate.

B = The number of characters input (not
including the terminating CR). If B =
0, then only a CR was entered.

X, Y, U and DP are unchanged.

cc is indeterminate.

The input buffer contains the entered
data, including the terminating
carriage return.

18.2.2 Check for BREAK key -- .CKBRK
(eo se ere ek ce ee me em ee ee ee ee ee ee ere ee ee ee

The .CKBRK function examines the system console PIA _ to
see if a CTL-P has been depressed since the last character
was input from the console keyboard. This function also
checks to see if the CTL-W key has been depressed. If the
CTL-W is detected, the .CKBRK function will enter a_ loop
waiting for any other character on the keyboard to be entered
before returning to the calling program.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: A, B, DP, U, Y and X registers are
unchanged.

C= 0, 2 = 1 if CTL-P has not been
depressed. The remainder of CC is
indeterminate.

C= 1, 2 = 0 if CTL-P has been depressed.
The remainder of CC is indeterminate.

No indication is returned concerning the CTL-W key. This
feature merely allows’ the operator at the console to pause
the system.

If CTL-P is depressed during a console input, it is not
considered as a break request, but as an input character.

18.2.3 Console output -- .DSPLY, .DSPLX, .DSPLZ
Se ee cee meee ees ce ee ee ee ee es ee ee ee em een ee ee ee ee

The .DSPLY, .DSPLX, and .DSPLZ functions are all used to
display a specified character string on the system _ console.
The function .DSPLY displays a string that is terminated by a
carriage return character. The functions .DSPLX and .DSPLZ
display strings that are terminated by an EOT character,
facilitating the use of embedded carriage returns within the
string to output multiple-line messages with one function
call. Both .DSPLY and .DSPLX will send a carriage return/line
feed sequence to the console so that subsequent input or
output is performed on a new line. The .DSPLZ function does
not send the terminating carriage return/line feed sequence

XDOS 4.0 User’s Guide Page 18-04

INPUT/OUTPUT FUNCTIONS

so that subsequent input or output can be performed on the
same line as the displayed string.

ENTRY PARAMETERS: X = The address of a displayable ASCII
string. The string must be terminated
by a carriage return (SOD) if using
-DSPLY. Otherwise, the string must be

terminated by an EOT ($04). The
functions .DSPLX and .DSPLZ will
convert embedded carriage return
characters into carriage return/line
feed sequences automatically.

EXIT CONDITIONS: U, Y, DP, A and B registers are
unchanged.

X = The address of the string’s
terminating character.

CC is indeterminate.

18.2.3.1 Example of console I/O

The following example illustrates the use of the .KEYIN
and .DSPLY system functions. The example initially displays a
message on the console to prompt the operator for input. The
entered string is then displayed back on the console, but all
characters have been reversed (the last character input is
the first character output, etc.). If only a carriage return
is entered, XDOS is given control via the system function
-MDENT. This function is described in Chapter 20. A maximum
string length of ten is allowed. The example has been
assembled with the XDOS equate file.

It is assumed in this example that the program is
origined above location $1FFF since it is using the resident
XDOS functions. The program can either be loaded with the
LOAD command or invoked from the XDOS command interpreter
directly. At the time the program is loaded, the’ stack
pointer is automatically initialized to the last-loaded
program location. In this example, this location is used as
the top of the stack.

XDOS 4.0 User’s Guide Page 18-05

18.2 -- Device Dependent I/O Functions

INPUT/OUTPUT FUNCTIONS 18.2 -- Device Dependent I/O Functions

START LDX #PROMPT

SCALL .DSPLY SHOW INPUT PROMPT
*

* INPUT THE STRING FROM CONSOLE
*

INPUT LDB #10 MAX 10 CHAR
LDX #IBUFF
SCALL .KEYIN GET INPUT STRING
TSTB CHECK FOR ZERO INPUT
BNE SWAP
SCALL .MDENT EXIT IF NO INPUT

*

* INVERT STRING INTO OBUFF
*

SWAP LDY #OBUFF POINT TO OUTPUT BUFFER

LDX #IBUFF POINT TO END OF INPUT BUFFER

ABX

LOOP LDA 0,-X GET CHAR

STA 0,Y+ STORE CHAR

DECB TALLY COUNTER

BNE LOOP LOOP UNTIL ZERO

LDA #CR STORE TERMINATOR

STA 0,Y INTO OUTPUT BUFFER
LDX #OBUFF

SCALL .DSPLY SHOW INVERTED STRING

BRA INPUT
*

* WORKING STORAGE
*

IBUFF BSZ 10+1 INPUT BUFFER

OBUFF BSZ 10+1 OUTPUT BUFFER

PROMPT FCC "ENTER STRINGS < 11 CHARACTERS"
FCB CR

BSZ 120 STACK SET HERE BY LOAD
*

END START BEGIN EXECUTION AT THIS LABEL

18.2.4 Printer output -- .PRINT, .PRINX
(SP ee tn ne eee eae eee ee me ee ems mm mee mm eee OD OED nD Oe? GD Oem SD ED ED nD nD Oe ee

The .PRINT and .PRINX functions are both used to print a
specified character string on the line printer. The function
-PRINT prints a string that is terminated by a carriage
return character. The function .PRINX prints a string that is
terminated by an EOT character, facilitating the use of

embedded carriage returns within the. string to print
multiple-line messages with one function call. Both functions
will send a carriage return/line feed sequence to the printer
at the end of each string. The .PRINX function will, in
addition, send a carriage return/line feed sequence for each
embedded carriage return character.

ENTRY PARAMETERS: X = The address of a displayable ASCII
string. The string must be terminated
by a carriage return (SOD) if using
ePRINT. Otherwise, the string must be
terminated by an EOT ($04). The

-PRINX function will convert embedded
carriage return characters into

XDOS 4.0 User’s Guide Page 18-06

INPUT/OUTPUT FUNCTIONS

carriage return/line feed sequences
automatically.

EXIT CONDITIONS: U, Y, DP, A and B registers are

unchanged.

X = The address of the string’s
terminating character.

CC is indeterminate.

18.2.4.1 Example of printer output
Se ee ee se ee es ews ws eo

The following example illustrates the use of the .PRINT
system function. The example will print strings of eighty
identical characters, beginning with spaces ($20) and
proceeding through the entire displayable ASCII character
set. The system function .STCHR is used to fill a buffer with
the character contained in the A accumulator. The system
function .MDENT is used to return control to XDOS. Both of
these functions are described in Chapter 20. The example was
assembled with the XDOS equate file.

It is assumed in this example that the program is
origined above location $1FFF since it is using the resident
XDOS functions. The program can either be loaded with the
LOAD command or invoked from the XDOS command interpreter
directly. At the time the program is loaded, the stack
pointer is automatically initialized to the last-loaded
program location. In this example, this location is used as
the top of the stack.

START LDA #SPACE INITIAL CHARACTER
LOOP LDX #OBUFF

LDB #80
SCALL .STCHR FILL BUFFER
SCALL_ .PRINT PRINT THE STRING
INCA BUMP CHARACTER
CMPA #RUBOUT END OF DISPLAYABLE SEQUENCE
BNE LOOP
SCALL .MDENT- EXIT TO XDOS

*

* WORKING STORAGE
*

OBUFF BSZ 80 OUTPUT BUFFER
FCB CR
BSZ 120 STACK SET HERE BY LOAD

x

END START BEGIN EXECUTION AT THIS LABEL

18.2.5 Physical sector input -- .DREAD, .EREAD
SS ee ee er mm ee 8 ee eee oe ew ee es ee ee ee ee os

The .DREAD and .EREAD functions are both used to read a
single physical sector from the diskette into a specified
buffer. For multiple physical sector input the functions in
section 18.2.7 should be used. The .DREAD function will only
return to the calling program if no diskette controller
errors are detected during the read attempt. The .EREAD

XDOS 4.0 User”s Guide Page 18-07

18.2 -- Device Dependent I/O Functions

INPUT/OUTPUT FUNCTIONS 18.2 -- Device Dependent I/O Functions

function, on the other hand, will return to the calling
program whether an error occurred or not. The .EREAD function
will return the error status that was detected by the
diskette controller.

In either case, if a diskette error occurred that was
retryable (CRC, deleted data mark, data address mark, seek or

address mark CRC errors), the following steps were taken in

an attempt to recover from the errors:

l. The sector was’ reread five times without

repositioning the read head.

2. The read head was stepped outward (towards track
zero) a maximum of five tracks, repositioned over
the track in which the sector to be read resides,

and another five read attempts were performed.

3. The read head was stepped inward (towards track
39) a maximum of five tracks, repositioned over

the track in which the sector to be read resides,
and another five read attempts were performed.

4. The drive is restored (forced seek to track

zero), repositioned over the track in which the
sector to be read resides, and another five read
attempts were performed.

5. The read head was stepped outward (towards track
zero) a maximum of five tracks, repositioned over
the track in which the sector to be read resides,
and another five read attempts were performed.

6. The read head was stepped inward (towards track
39) a maximum of five tracks, repositioned over
the track in which the sector to be read resides,
and another five read attempts were performed.

If an error occurs during the .DREAD function, the
standard "PROM I/O" error message will be displayed giving
the status of the error and the sector number that was’ being
accessed. Control will then be given to the XDOS command
interpreter. If an error occurs during the .EREAD function,

the EXIT CONDITIONS described below apply (for C = 1).

The diskette controller variables below location $0020
will be changed by these functions.

ENTRY PARAMETERS: B The logical unit number. Bits 2-7 are
ignored.

X = The address of a five-byte I/0
parameter packet. The packet has’ the
following format:

XDOS 4.0 User’s Guide Page 18-08

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

XDOS 4.0 User’s Guide

18.2 -- Device Dependent I/O Functions

0 | Return status |

1 | Physical sector |
ee number =

2 | to be read |

3 | Address of 128 |
= byte _

4 | sector buffer |

if no errors occurred. The
remainder of the CC is indeterminate.

The A register is indeterminate.

The U, Y, DP and X register are
unchanged.

B register contains the return
status returned in the packet ($30).

first byte of the parameter
packet (Return Status) is set to $30

(ASCII zero). The remainder of the
parameter packet is unchanged.

sector buffer contains the 128
read from the specified

physical sector.

l if an error occurred (.EREAD only).
remainder of the cc is

indeterminate.

The A register is indeterminate.

U, Y, DP and X register are

unchanged.

The B register contains the return
status returned in the first byte of
the parameter packet.

first byte of the parameter
packet contains the diskette
controller error ($31-$39). Section
21.1 has a complete description of
the diskette controller errors.

The contents of the 128 byte sector
buffer are indeterminate.

Page 18-09

INPUT/OUTPUT FUNCTIONS 18.2 -- Device Dependent I/O Functions

18.2.6 Physical sector output -- .DWRIT, .EWRIT
Ce)

The .DWRIT and .EWRIT functions are both used to write a
single physical sector to the diskette from a_ specified
buffer. For multiple physical sector output the functions
described in section 18.2.8 should be used. The .DWRIT
function will only return to the calling program if no
diskette controller errors are detected during the write
attempt. The .EWRIT function, on the other hand, will return
to the calling program whether an error occurred or not. The
-EWRIT function will return the error status that was
detected by the diskette controller.

If an error occurred, the same type of recovery
procedure described in section 18.2.5 (.DREAD, .EREAD) was

attempted.

ENTRY PARAMETERS : Same as for .DREAD and .EREAD; however,

the sector buffer must contain the
128 bytes that are to be written to
the diskette.

EXIT CONDITIONS: Same as for .DREAD and .EREAD: however,

the the contents of the sector buffer

are unchanged after returning to the
calling program.

18.2.7 Multiple sector input -- .MREAD, .MERED

The .MREAD and .MERED functions are both used to read a
multiple number of physically contiguous sectors from the
diskette into a specified buffer. The .MREAD function will
only return to the calling program if no diskette controller
errors are detected during the read attempt. The .MERED
function, on the other hand, will return to the calling
program whether an error occurred or not. The .MERED function
will return the error status that was detected by the
diskette controller.

If an error occurred, the same type of recovery
procedure described in section 18.2.5 (.DREAD, .EREAD) was
attempted.

ENTRY PARAMETERS : B The logical unit number. Bits 2-7 are
ignored.

X = The address of a seven-byte I/0

parameter packet. The parameter

packet has the following format:

XDOS 4.0 User’s Guide Page 18-10

INPUT/OUTPUT FUNCTIONS

1 | Starting physical |
-- sector number --

2 | to be read |

3 | Address of |
-- multiple --

4 | sector buffer |

5 | Number of |
-- sectors --

6 | to be read

The sector buffer must be an integral
number of sectors in size, and must
be large enough to accommodate the
number of sectors specified in bytes
5 and 6 of the parameter packet.

EXIT CONDITIONS: Same as for .DREAD and .EREAD; however,
the sector buffer contains data from
the number of sectors specified in
bytes 5 and 6 of the parameter packet
(only if no error occurred).

18.2.8 Multiple sector output -- .MWRIT, .MEWRT

The .MWRIT and .MEWRT functions are both used to write a
multiple number of physically contiguous sectors from a
specified buffer to the diskette. The .MWRIT function will
only return to the calling program if no diskette controller
errors are detected during the write attempt. The .MEWRT
function, on the other hand, will return to. the calling
program whether an error occurred or not. The .MEWRT function
will return the error status that was detected by the
diskette controller.

If an error occurred, the same type of recovery
procedure described in section 18.2.5 (.DREAD, .EREAD) was
attempted.

ENTRY PARAMETERS s Same as for .MREAD and .MERED: however,

the sector buffer must contain the
bytes that are to be written to the
diskette.

EXIT CONDITIONS: Same as for .MREAD and .MERED;: however,
the contents of the sector buffer are
unchanged after returning to the
calling program.

XDOS 4.0 User’s Guide Page 18-11

18.2 -- Device Dependent I/O Functions

INPUT/OUTPUT FUNCTIONS 18.2 -- Device Dependent I/O Functions

18.2.9 Diskette controller entry points

The diskette controller has various entry points that
allow the diskette to be accessed on a physical sector basis;
however, since these entry points are independent of XDOS,
they are described in a separate section (Appendix D). That
appendix also describes some entry points for accessing the
line printer on an XDOS-independent basis.

18.3 Device Independent I/O Functions
(es ee ee ee ee ee eee oe ee ee es ee oe oe ee ee

The following sections describe functions which
facilitate writing software for input/output operations
independent of the physical hardware device. In addition,
these functions are used to access files on the diskette
without having to perform physical sector I/O.

Through the use of a single parameter table, the I/0

Control Block or IOCB, a common. set of functions can be

accessed independently of the I/O device. Thus, the same
function would be called for writing a record to a diskette
file or for writing a record to a line printer. The only
difference is in the initial parameterization of the IOCB.

The normal sequence for calling the I/0 functions,
regardless of the device being used, is:

»-RESRV Reserve a device
-OPEN Open a file
eGETRC Read a record

»~PUTRC Write a record

~CLOSE Close a file

»RELES Release a device

The reading/writing of records, of course, may not
necessarily be used for the same device. Once the file is
open, the record I/O functions can be called as many times as
required.

Use of the device independent I/O functions will cause
the diskette controller variables below location $0020 to be
changed, regardless of whether or not a diskette device is
being used for a given I/O process.

In order to fully describe each device independent 1/0
function, the structure of the IOCB must: first be described.
In the description of the errors that can be returned by each
function, the names of the system symbols from the XDOS
equate file are used. These are noted in the description of
the status byte of the IOCB, section 18.3.1.1. A summary of
all possible input parameters that are required by the twelve
different modes in which an IOCB can be used is contained in
Appendix K.

XDOS 4.0 User’s Guide Page 18-12

18.3.1 I/O Control Block -- IOCB

The device independent I/O functions are parameterized
through the IOCB. The I/O functions, in turn, interface to a
device driver through another table, the Controller

Descriptor Block or CDB (see section 19.2). It is only the
device driver which interfaces directly to the device.

The IOCB is a table of flags, buffer pointers, and other
information which is maintained by the calling program for
the duration of the I/O accesses that are to be performed.
Some of the entries in the IOCB must be initialized by the
program before calling an I/O function. Other entries of the
IOCB are initialized and changed by the I/O functions
themselves. The entries of the IOCB must not be changed
between I/O accesses unless specifically indicated in the
ENTRY PARAMETERS section of each I/O function’s description.
The IOCB has the following format:

XDOS 4.0 User’s Guide Page 18-13

| 7 6 5 4 3 2 #1 #0 <-- Bit position
V0 rr rt rrr res

00 | Error status | IocstTa

01 | 10 |s|o|r|F| mM | tocprr - Data transfer
me mmm type

02 | Data buffer |
-- pointer -- IOCDBP

03 |

04 | Data buffer |
-- start address -- IOCDBS

05 | |

06 | Data buffer |
ee end address -- IOCDBE

07 | |

os | Generic device word |
= or -- IOCGDW

09 | CDB address |

oA | | R | LUN | IOCLUN -- Logical unit
SSS i eer number

0B | File name |
al or -- IOCNAM / IOCMLS

oc | Maximum LSN referenced |

oD | File name continued |
-- or -- TIOcCSDW

OE |Current segment descriptor word|

OF | File name continued |
— or -- IOCSLS

io | Starting LSN of SDW |

| File name continued
= or -- IOCLSN

12 | Next logical sector number |

13° | Suffix |
— Or -- IOCSUF / IOCEOF

14 | Logical sector number of EOF |

15 | Physical sector number |
-- of file’s RIB -- IOCRIB

16 | |

17 |wilo]|s|{[c|{ni FMT | IOCFDF - File descrip-
-- -- tor flags

18 | (reserved; =0) |

XDOS 4.0 User’s Guide Page 18-14

19

1A

1B

1c

1D

1E

1F

20

21

22

23

24

ee een ee ees se ee ee es ee ee ee ee ee ee

| Initial new file size |

| Sector buffer pointer |
(eo De me Ome erm nD OD GSD GD ND ED OD DO DD oe ee

| Sector buffer |
-- Start address --

| Sector buffer |
st end address a

| Sector buffer |
-- internal pointer --

XDOS 4.0 User“s Guide

IOCDEN - Directory

IOCSBP

IOCSBS

IOCSBE

IOCSBI

entry number

Page 18-15

IOCB FLAG DESCRIPTION SUMMARY

IOCDTT IO 6-7 I/O transfer flag
Bit 6: 1 => Output transfer
Bit 7: 1 => Input transfer

S 5 Sector/record flag
0 => Record I/O
1 => Sector I/O

O 4 Open/closed flag
0 => File open
1 => File closed

T 3 Truncate flag
0 => Ignore truncate action

=> Truncate file upon closing
F 2 Non-file format flag

0 => File format mode
1 => Non-file format mode

M 0-1 Mode flag
00 => Update mode, existing file
01 => Input mode, existing file
10 => Output mode, new file
11 => Update mode, any file

IOCLUN - 7 Not used (=0)

R 6 Reserved flag
Q => IOCB released
1 => IOCB reserved

LUN 0-5 Logical unit number ($30-$39)

IOCFDF W F Write protection bit
0 => No write protection
1 => Write protected

D E Delete protection bit
0 => No delete protection
1 => Delete protected

S D System file bit
0 => Non-system file
1 => System file

Cc Cc Contiguous allocation bit
0 => Segmented allocation
1 => Contiguous allocation

N B Non-compressed space bit
0 => Spaces compressed
1 => Spaces non-compressed

XDOS 4.0 User’s Guide Page 18-16

IOCB FLAG DESCRIPTION SUMMARY continued

IOCFDF FMT 8-A File format

000 => User-defined format

001 => Use device’s default format for
binary records

010 => Memory-image format
011 => Binary record format
100 => Undefined format
101 => ASCII record format
110 => Undefined format
111 => ASCII-converted-binary record

format

- 0-7 Not used (=0)

IOCDEN PSN B-F Physical sector number ($03-16)
EN 8-A Entry number within sector (0-7)
- 0-7 Not used (=0)

18.3.1.1 IOCSTA -- Error status

The IOCSTA byte contains the return status from an I/O
function. A zero in this byte indicates that an I/O function
completed normally without any errors. A non-zero value
indicates that an I/O function encountered some sort of an
error. The following table contains all of the currently
defined values that can be returned in the IOCSTA. Along with
each value the system symbol equated to the value (XDOS
equate file), and the standard error message that would be

displayed if the error message function were invoked to show
a message are given. The two-digit reference number displayed
along with the error message should be used to locate’ the
error message’s description in Chapter 21. It should be noted
that in order to decode the IOCSTA byte into the proper error
message. the error message function, .MDERR, must be called
with the B register equal to zero. Section 20.4 describes the
error message handler.

XDOS 4.0 User”’s Guide Page 18-17

IOCSTA System Standard Error Message Displayed
Value Symbol by .MDERR (B=0, X=IOCB address)

00 ISNOER Normal return, no error
01 ISNODV *k 28 DEVICE NAME NOT FOUND

02 ISRESV ** 18 DEVICE ALREADY RESERVED

03 ISNORV ** 19 DEVICE NOT RESERVED

04 ISNRDY *k 11 DEVICE NOT READY

05 ISIVDV *k 31 INVALID DEVICE

06 ISDUPE ** 06 DUPLICATE FILE NAME

07 ISNONM *k 04 FILE NAME NOT FOUND

08 ISCLOS ** 20 INVALID OPEN/CLOSED FLAG

09 ISEOF *k 21 END OF FILE

OA ISFTYP ** 14 INVALID FILE TYPE

OB ISDTYP ** 17 INVALID DATA TRANSFER TYPE

0c ISEOM ** 37 END OF MEDIA

OD ISBUFO *k 22 BUFFER OVERFLOW

OE ISCKSM *k 23 CHECKSUM ERROR

OF ISWRIT **k* 26 FILE IS WRITE PROTECTED

10 ISDELT ** 10 FILE IS DELETE PROTECTED

ll ISRANG ** 24 LOGICAL SECTOR NUMBER OUT OF

RANGE

12 ISFSPC ** 41 INSUFFICIENT DISK SPACE

13 ISDSPC **k 40 DIRECTORY SPACE FULL

14 ISSSPC *k 42 SEGMENT DESCRIPTOR SPACE FULL

15 ISIDEN ** 43 INVALID DIRECTORY ENTRY NO. AT

nnnn
16 ISRIB **k 32 INVALID RIB

17 ISDEAL ** 44 CANNOT DEALLOCATE ALL SPACE,

DIRECTORY ENTRY EXISTS AT

nnnn
18 ISRECL ** 45 RECORD LENGTH TOO LARGE

19 ISSECB ** 52 SECTOR BUFFER SIZE ERROR

1A ISIFNM *k 25 INVALID FILE NAME

18.3.1.2 IOCDTT -- Data transfer type
(eee eee eee ee eae em tae en Oe SE eee ED DD OD EO DO OO OD OD OO ww

The IOCDTT byte contains the basic information about an

I/O access: whether an input or an output transfer is to take
place, whether sector or record I/O is to be performed,

whether the file is currently open or closed, whether a file
(diskette only) should be truncated when it is closed, and

whether the file or non-file format mode is to be used.

The format of the IOCDTT byte is shown below:

| to |sj|o|tTl|Fril m |

: 5 : : 2eeee. Mode flag
: : : Secccccceeee NOn-file format flag

: Soccer ccccccveee Truncate flag

: Secccccecccoscsvcecees Open/closed flag
: Lecce cc cccccccccsesseess SECtor/record flag
Sig bG eS 4008 CC tS ee KT Oe eee LAO Peaneter Flag

Regardless of the type of device being accessed, the

XDOS 4.0 User’s Guide Page 18-18

non-file format flag (F) and the mode flag (M) are to be
initialized by the user. If the device is a diskette drive,
the user may also change the sector/record flag (S) or the
truncate flag (T) between I/O function calls. If the flags

are to be changed after the IOCDTT byte has been initialized,
care must be taken so that none of the system supplied flags
are destroyed. Flags must be "or-ed" into the IOCDTT to be
set, and "and-ed" out of the IOCDTT to be cleared, once the
IOCB has been reserved.

The properties controlled by the various bits of the
IOCDTT are explained below.

IO (Bits 6-7) -- I/O transfer flag

These two bits are controlled exclusively by the
I/O functions themselves. They should not be set or
changed by the user in any case. If bit 6 is set to
one, the device driver recognizes an output transfer.

If bit 7 is set to one, the device driver recognizes
an input transfer. The device driver will not be able
to input or output a character if both of these bits
are zero or one.

S (Bit 5) -- Sector/record flag

This bit controls whether sector or _ record
processing is performed during an I/O function. For
non-diskette devices, this bit must always be zero.
For diskette devices, this bit can be in either
state. A one implies that logical sector I/O will be
performed. A zero implies that record I/O will be
performed; however, care must be taken that the
corresponding I/O function is called for the proper
State of the bit. That is, the record I/O functions
(.GETRC and .PUTRC) cannot be called if "S" is set to
one. Likewise, the logical sector I/O functions
(.GETLS and .PUTLS) cannot be called if "S" is set to

Zero.

O (Bit 4) -- Open/closed flag

This bit is supplied by the system I/O functions
if they are properly called in their correct
sequence. The "O" bit must not be changed once I/O
transfers have been made. A one indicates that the

file (or device) is closed. A zero, on the other
hand, indicates that the file (or device) is open.

XDOS 4.0 User“s Guide ; Page 18-19

T (Bit 3) -- Truncate flag

The truncate flag is only applicable to I/O on a
diskette device. Normally, the user will not have to
set or change this bit; however, certain cases will
arise where changing of the truncate flag by the user
may be necessary (see .CLOSE function, section

18.3.6). The truncate flag is used as an indication
that new space was allocated to a diskette file. If
it is set to one, any unused parts of the newly
allocated space (space beyond the maximum logical
sector number referenced in IOCMLS) will be

deallocated (returned to the available diskette
Space) when the file is closed. If the truncate flag
is zero, no truncation will occur upon closing.

A special case exists if IOCMLS contains’ the
value SFFFF when the truncate flag is set to one. In
addition to having all of the file’s space
deallocated, the directory entry belonging to the
file is removed from the directory. The file is, in
effect, deleted.

F (Bit 2) -- Non-file format flag

If "F" is set to one, the non-file format mode
is indicated. In this mode, all I/O must be to a
non-diskette device. No FDR (File Descriptor Record)
processing is performed. The only valid file format
that can be supported in this mode is ASCII (FMT = 5
of IOCFDF).

If the "F" flag is set to zero, then the file
format mode is indicated. In this mode, I/O can be
either to a diskette or to a non-diskette device. If
a non-diskette device is being used, FDR processing
will be performed. That is, an FDR will be written to
the device if opened for output, or an FDR will be
searched for on the device if opened for input. The
file format mode (F = 0) must be used for accessing

the diskette.

XDOS 4.0 User*s Guide Page 18-20

M (Bits 0-1) -- Mode flag

The mode flag can take on one of four different
values:

00 => Open an existing file (diskette only) for
either input or output.

01 => Open an existing diskette file or open a
device for input only.

10 => Create a new diskette file or open a device
for output only.

ll => Open an existing file or create a new file
(diskette only) for either input or output.

The update modes (M = 00 or 11) can only be used
when accessing diskette files. The way in which the
four different modes are used is described in the
-OPEN function, section 18.3.3.

18.3.1.3 IOCDBP -- Data buffer pointer
ec es ee ee ee ee se ee ee we ee ee

This two-byte field of the IOCB is used as a_ working
storage area by the record I/O functions. This entry should
not be changed by the calling program once I/O functions have
been called.

18.3.1.4 IOCDBS -- Data buffer start

This two-byte field of the IOCB must be initialized by
the calling program before any record I/0 functions are
called. IOCDBS must be configured to contain the address of
the first byte of a buffer into which a record is to be read,
or from which a_ record is to be written. None of the I/O
functions will alter IOCDBS. The data buffer may be used for
FDR processing by the .OPEN function (section 18.3.3) when
dealing with non-diskette devices.

18.3.1.5 IOCDBE -- Data buffer end

This two-byte field of the IOCB must be initialized by
the calling program before any record I/O functions are
called. IOCDBE must be configured to contain the address of
the last byte of a buffer into which a record is to be read,
or from which a record is to be written. During record input,
IOCDBS and IOCDBE define the maximum size record that the
buffer can accommodate. During record output, IOCDBS and
IOCDBE describe the first and last byte of the record to be
written. None of the I/O functions will alter IOCDBE. The
data buffer may be used for FDR processing by the .OPEN
function (section 18.3.3) when dealing with non-diskette
devices.

XDOS 4.0 User“s Guide Page 18-21

18.3.1.6 IOCGDW -- Generic device word

This two-byte field of the IOCB serves a dual function.
Before any I/O functions can be invoked, IOCGDW must’ contain
the XDOS device name that is to be accessed (see section
18.1). The device name consists of two ASCII characters. Once
the .RESRV function (section 18.3.2) has been called, IOCGDW

will contain the address of the controller descriptor block
(CDB, section 19.2.1) associated with that device. After the

CDB address has been put into IOCGDW, the contents of this
field must not be changed by the calling program. Section
19.2 contains a description of how to configure the IOCGDW
field for non-supported devices.

18.3.1.7 IOCLUN -- Logical unit number

The IOCLUN byte contains two pieces of information.
Initially, the calling program must store the logical unit
number of the device to be accessed in this byte. The logical
unit number identifies a specific device within a generic
device family (e.g., drive zero of the family DK). If there
is only one device in a generic device family, a logical unit
number of zero must be placed in IOCLUN. Logical unit numbers
should be ASCII numbers in the range $30-$39 (0-9). Bit "R"
of IOCLUN indicates whether or not the IOCB has been reserved
(.RESRV function). Initially, when the logical unit number is
stored in IOCLUN, bit "R" will be set to zero. After the

-RESRV function has been successfully invoked, bit "R" will
be set to one, indicating that the IOCB has been reserved.

The IOCLUN field must not be changed by the calling program
after the .RESRV function has been called.

18.3.1.8 ITOCNAM -- File name

These eight bytes of the IOCB serve a dual purpose. If
the non-file format mode is being used (F = 1 of IOCDTT),
IOCNAM is not used at all; however, in the file format mode,

IOCNAM must contain the name of the file to be accessed. The
file name must be in the valid XDOS file name format. Any
unused parts of the name must be spaces ($20). The file name
should be placed into IOCNAM before the .OPEN function is
invoked. After a file has been opened, the eight bytes will
be replaced with the four two-byte fields IOCMLS, IOCSDW,
IOCSLS, and IOCLSN (only if the device is diskette).

When dealing with non-diskette devices in the file
format mode, the IOCNAM entry can be configured so that the
first byte is a binary zero. In this case, the .OPEN function
will search for the first FDR on the non-diskette device, and
place the found file name (and suffix) into IOCNAM (and
IOCSUF).

18.3.1.9 IOCSUF -- Suffix

This two-byte field of the IOCB serves a dual purpose.
If the non-file format mode is being used (F = 1 of IOCDTT),

XDOS 4.0 User’s Guide Page 18-22

IOCSUF is not used at all; however, in the file format mode,
IOCSUF must contain the suffix of the file to be accessed.
The suffix must be in the valid XDOS suffix format. Any
unused parts of the suffix must be spaces ($20). The suffix

should be placed into IOCSUF before the .OPEN function is
invoked (at the same time that the file name is placed into
IOCNAM). After a file has been opened, IOCSUF will be

replaced with the two-byte field IOCEOF (only if the device
is diskette). If the device being accessed is the system
console, the first character of the IOCSUF field may be
changed by the user to a displayable ASCII character
($20-S$5F). Then, whenever an input request is made on that
device, the character will be displayed as an input prompt.

When dealing with non-diskette devices in the file
format mode, the IOCNAM entry can be configured so that the

first byte is a binary zero. In this case, the .OPEN function
will search for the first FDR on the non-diskette device, and
place the found file name (and suffix) into IOCNAM (and
IOCSUF).

18.3.1.10 IOCMLS -- Maximum LSN referenced
Siete tee ieee te ieee ee ee eee ee ee ee rere rr

This two-byte field of the IOCB overlays the first two
bytes of the IOCNAM after the .OPEN function has been called
(diskette I/O only). It is a system-maintained field that
contains the maximum logical sector number ever referenced by
any of the I/O functions. IOCMLS and the truncate flag (T of
IOCDTT) are used in determining the amount of newly allocated
diskette space that is to be deallocated from a file when it
is closed. Space will only be deallocated if the truncate
flag is set to a one. Since XDOS automatically sets the
truncate flag to a one if new diskette space is allocated to
a file, any unused space will always be returned to. the
available space pool.

Normally, the user never changes the IOCMLS or the
truncate flag in the IOCDTT since the truncate flag is
automatically set whenever additional space allocation is
performed or whenever a new file is created. When accessing
an existing file using both input and output (M = 00 or 11 of
IOCDTT), however, the truncate flag may have to be set to one
by the user if the file is to be shortened or if the
end-of-file pointer in the RIB is to be updated. If an extant
file does not grow in size, the truncate flag will be zero.

In addition, when files are to be deleted (upon a
subsequent .CLOSE function call), the IOCMLS must be set to a

value of S$FFFF and the truncate flag must be set to one.

18.3.1.11 IOCSDW -- Current SDW

The IOCSDW field overlays the second two bytes of IOCNAM
after the .OPEN function has been called (diskette I/O only).

This field contains the segment descriptor word which
identifies the current file segment that can be accessed. If
another segment of the file is to be accessed, the disk
driver will automatically reread the file*s RIB and extract

XDOS 4.0 User’s Guide Page 18-23

the appropriate SDW into IOCSDW. The contents of IOCSDW
should never be changed by the calling program.

18.3.1.12 IOCSLS -- Starting LSN of SDW

The IOCSLS field overlays the third two bytes of IOCNAM
after the .OPEN function has been called (diskette I/O only).

This field contains the starting logical sector number of the
current segment descriptor word. The contents of IOCSLS
should never be changed by the calling program.

18.3.1.13 IOCLSN -- Next LSN

The IOCLSN field overlays the fourth two bytes of IOCNAM
after the .OPEN function has been called (diskette I/O only).

This field is never changed by the calling program if record
I1/o (S = 0 of IOCDTT) is being used. If logical sector I/O
is being used (S = 1 of IOCDTT), then IOCLSN can be changed
by the calling program to specify which logical sectors are
to be read from or written to the file. This feature allows
the calling program to randomly access the file (by logical
sector number) without having to know physically where the
file resides on the diskette. After an I/O access has been
completed, IOCLSN will contain the logical sector number of

the next sector on the diskette to be accessed. When uSing a
multiple sector buffer, IOCLSN may have been incremented by
more than one, depending on the number of sectors processed.

18.3.1.14 IOCEOF -- LSN of end-of-file
SO em eae a et se em ee ee aD ee ce dD DD OD SD em OD Oe ee

The IOCEOF field overlays IOCSUF after the .OPEN
function has been called (diskette I/O only). IOCEOF is a
system-maintained parameter that represents the logical
sector number of the logical end-of-file. This value must not
be changed by the calling program once the .OPEN function has
been invoked.

18.3.1.15 IOCRIB -- PSN of RIB

This two-byte field of the IOCB is initialized with the
physical sector number of the file*’s RIB after the .OPEN
function has been called (diskette I/O only). The RIB is used

to access the file via its SDWs to allocate additional space,
to deallocate unused space, and to monitor the LSN of the
file“s logical end-of-file. The IOCRIB entry should never be
changed by the calling program.

18.3.1.16 IOCFDF -- File descriptor flags

This two-byte field contains the flags that describe the
inherent and the changeable attributes of a file. The format
of the IOCFDF entry is shown below:

XDOS 4.0 User*s Guide. Page 18-24

: 2.2. File format bits
7 : Seeceeceeee» NOn-compressed space bit
4 Secceccceveceeee CONtiguous allocation bit

3 Se ce cer ccccccvrvoececcee SYStEeM file bit
: oe ee we ee be Re he wee wee Delete protection bit
Se ccc ccc cccereccccccccecccee Write protection bit

°

ee

08

08

c@

©

The functions of the various bits are described below:

W (Bit F) -- Write protection bit

The "W" bit only applies to diskette files. If
this bit is set to one, the file can only be accessed
with input requests. Any I/O functions that attempt
to write to a file with the "W" bit set will return

an error. In addition, the file cannot be deleted. If

the "W" bit is set to zero, the file can be read
from, written to, or deleted (the "D" bit must’ be

zero also). The "W" bit is one of the changeable
attributes of a file.

D (Bit E) -- Delete protection bit

The "D" bit only applies to diskette files. If
this bit is set to one, the file cannot be deleted.
If the "D" bit is set to zero, the file can be
deleted (the "W" bit must be zero also). The "D" bit
is one of the changeable attributes of a file.

S (Bit D) -- System file bit

The "S" bit only applies to diskette files. If
this bit is set to one, the file is considered to be

a system file. System files are treated specially by
the DIR, DEL, and DOSGEN commands. If the "S" bit is

set to zero, the file is not a system file. The "Ss"
bit is one of the changeable attributes of a file.

C (Bit C) -- Contiguous allocation bit

The "C" bit only applies to diskette files. If
this bit is set to one, only contiguous diskette
space can be allocated to the file. All files whose
contents are to be loaded into memory directly from
the diskette must be allocated contiguous space. If
the "C" bit is set to zero, the file may be allocated
segmented diskette space. The "C" bit is one of the
inherent attributes of a file. It is specified at the
time the file is created and cannot’ be changed
thereafter.

XDOS 4.0 User’s Guide Page 18-25

N (Bit B) -- Non-compressed space bit

The "N" bit only applies to diskette files. If
this bit is set to one, ASCII records written to the
file will not have spaces compressed. If the "N" bit
is set to zero, ASCII records written to the file
will have spaces compressed into a byte of the
following format:

: tee.e. Number of compressed spaces
Sec c cece ccc veeeeeeee Compression flag (=1)

All XDOS commands create ASCII files with space
compression (N = 0) in order to minimize the amount

of diskette space consumed. The "N" bit is one of the
inherent attributes of a file. It is specified at the
time the file is created and cannot’ be changed
thereafter. The space compression attribute is only
meaningful if the file format is ASCII record (FMT =
5). For other formats, the space compression
attribute is ignored.

FMT (Bits 8-A) -- File format bits

The file format bits describe the internal data
structure of the file. The file format is one of the
inherent attributes of a file. FMT is specified at
the time the file is created and cannot be_ changed
thereafter. The following table lists the values of
FMT and their meanings:

FMT File format
ee ee a ow oe oe oe oe oe

0 User-defined format. This format is. only
valid for diskette files. The record I/O
functions cannot be used to access files with
this format. Only logical sector I/O can be
performed with this format. The calling
program is responsible for extracting data
from the sectors according to his data
structure.

XDOS 4.0 User’s Guide Page 18-26

1 Use device’s default format for binary
records. Each device has associated with its
CDB (section 19.2) a flag that indicates what
the default binary record format is (either
FMT = 3 or FMT = 7). Since some devices can

Only process seven-bit data while other
devices can process both seven-bit and
eight-bit data, this format (FMT = 1) allows

a program to process binary records without
knowing the specific format supported by a
particular device. The program will always be
dealing with eight-bit data in memory. The
FMT field is automatically changed to either
a "3" or "7" depending on the device by the
-OPEN function.

2 Memory-image format. This format applies only
to diskette files. Any file whose contents
are to be loaded into memory directly from
the diskette must be in the memory-image
format. Due to the nature of the diskette
controller, memory-image format files must be
allocated contiguous diskette space (C = 1 of
IOCFDF). Memory-image files have no-_ record
information within the data sectors. All
information concerning the starting load
address, number of bytes to load, etc., is
contained in the file’s RIB. The load
information must be written into the RIB by
the program that is creating the memory-image
file; the information is not automatically
supplied by any system function. The load
information must meet the requirements
defined in section 17.2. The record 1/0
functions cannot be used to access files with
this format. Only logical sector I/O can _ be
performed with this format.

3 Binary record format. This format applies to
both diskette and non-diskette files;
however, non-diskette files can only be

accessed in the file format mode (F = 0 of
IOCDTT) using this format.

4 This format is undefined and should not be
used.

5 ASCII record format. This format applies to
both diskette and non-diskette files.

Non-diskette files of this format can be
accessed in either the file format or the

non-file format modes. ASCII record files can
be space compressed, but only if they reside
on diskette.

6 This format is undefined and should not be
used.

XDOS 4.0 User“s Guide Page 18-27

7 ASCII-converted-binary record format. This
format usually applies to non-diskette files.
This format is intended to be used for
writing binary record files from the diskette
to a non-diskette device that can only accept
seven-bit data bytes. Otherwise, this format
is identical to FMT = 3,

NOT USED (Bits 0-7) -- Reserved area

The least significant byte of the IOCFDF field
is reserved for future expansion. This byte must be
zero for all files.

18.3.1.17 IOCDEN -- Directory entry number
Oe ee ee ee ceo em ss em ee ee ee ee ee ee ee ee ee ee ee ee ee

Associated with each directory entry is a number, the

directory entry number, which is a function of the physical
location of the entry within the directory. The directory
entry number is not found anywhere in the directory, rather
it is a calculated quantity. The two-byte IOCDEN field is
Supplied by the system after the .OPEN function (section
18.3.3) has been called. It only applies to diskette files.
The contents of IOCDEN should never be changed by the calling
program. The IOCDEN field has the following format:

me ee ee ae em mee cee eae em cee ee ee ee es ee ee es em me ee ee ee ee ee we ee ee ee ee es

| PSN | EN |

eg a ee eed feb) eannooos

: te omen Position within sector (0-7)

PTTreTeTerere ey dnd acas Physical sector number ($3-$16)

Page 18-28

18.3.1.18 IOCSBP -- Sector buffer pointer

The IOCSBP field only applies to diskette I/O. This
two-byte field of the IOCB serves a dual purpose. If an
existing file is being opened, the initial value of IOCSBP is
ignored. If a file is being created, this field must contain
the initial number of sectors that are to be allocated to the
file. If the value of zero is specified, XDOS will default
the initial file size to a full segment descriptor (32
clusters) and no error will occur during the file’s initial
Space allocation if fewer than 32 clusters are available. If
a non-zero (non-default) initial size is specified, however,
an error will occur if that initial size cannot be allocated.
The .ALLOC system function description (section 20.4)
contains a more detailed explanation of the allocation
mechanism.

After a file has been opened, the IOCSBP contains a
pointer into the sector buffer that is used by the record 1/0
functions. Therefore, the contents of IOCSBP must not be
changed by the calling program once a file is open when using
the record I/O functions. If the sector I/O functions are
used, then IOCSBP can be altered by the calling program in
any way after a file is open.

18.3.1.19 IOCSBS -- Sector buffer start

This two-byte field of the IOCB only applies to diskette
I/O. It must be initialized by the calling program before any
of the I/O functions are invoked. IOCSBS must be configured
to contain the address of the first byte of a buffer into
which one or more 128-byte sectors can be read. This sector
buffer will be used for directory searches as well as for
data transfers. IOCSBS will not be altered by any of the 1/0
functions.

18.3.1.20 IOCSBE -- Sector buffer end
SO DOD ea aD OD oe De SD Ge OD OD Gem OD Gm Oe ee eee ee OD ce Oe oe ee es ee

This two-byte field of the IOCB only applies to diskette
I/O. It must be initialized by the calling program before any
of the I/O functions are invoked. IOCSBE must be configured
to contain the address of the last byte of a sector buffer
that is exactly large enough to accommodate an integral
number of 128-byte sectors. An error will occur if the size
of the sector buffer described by IOCSBS and IOCSBE is not
correct. Specifically, the following relationship must be
trues:

IOCSBE-IOCSBS+1
ween --------- = INTEGER (Maximum # of Sectors)

128

IOCSBE will not be altered by any of the I/O functions.

XDOS 4.0 User’s Guide Page 18-29

18.3.1.21 IOCSBI -- Internal buffer pointer
ee ee es ee ee ee es ee ee ee ee ee ee ee en ee ee ee ee ee ee

This two-byte field of the IOCB applies only to diskette
I/O. IOCSBI is used to indicate the end of valid data within

sector buffers. Since partial buffers (an integral number of

sectors less than or equal to the maximum sector buffer size)

may be read or written, IOCSBI is used to locate the last

valid data byte within a sector buffer.

IOCSBI is initialized and changed by the I/O functions.

The contents of IOCSBI must not be changed by the calling

program after a file has been opened when using the record

I/O functions; however, when using logical sector I/O, the

contents of IOCSBI may be changed. The value of IOCSBI will

always be less than or equal to the value of IOCSBE. The
following relationship must always be true:

IOCSBI-IOCSBS+1
lets ententeieteientestesteteneatan = INTEGER (Actual # of Sectors)

128

(ee ee an eee en SD DD eee) SD TO ee ED Oe OD eS OD DD oD OY DD OD DD

The .RESRV system function links the appropriate

controller descriptor block (CDB) to the calling program’s

IOCB. The .RESRV function must be called before any other of

the device independent I/O functions can be invoked. Section

19.2.4 should be consulted for a description of the impact on
the .RESRV call and the IOCB when using non-standard devices.

ENTRY PARAMETERS: X = The address of an IOCB.

LIOCGDW must contain one of the valid
generic device names: CN, DK, or LP.

IOCLUN must contain the logical unit
number of the device to be reserved.
Bit "R" of IOCLUN must be set to zero
(this will normally be the case when
the ASCII logical unit number,
$30-$39, is stored into IOCLUN).

All other entries of the IOCB need not be

initialized.

XDOS 4.0 User’s Guide Page 18-30

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A
non-zero value indicates that an

error occurred.

U, Y, DP and X are unchanged.

C =0 and Z= 1 iif no errors occurred (B
= 0). The remainder of CC is

indeterminate.

C=1 and Z% = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: ISIVDV, ISRESV, ISNODV.

“The remainder of the IOCB is not changed.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = 0.

TOCDTT has the “IO" bits set to zero and
the "O" bit set to one (file closed).

The remainder of the IOCDTT is not
changed.

IOCGDW contains the address of the CDB
that is associated with the generic
device. The original contents of
IOCGDW are destroyed.

IOCLUN has the "R" bit set to one (IOCB

reserved). The remainder of IOCLUN is

not changed.

The remainder of the IOCB is not changed.

The .OPEN function prepares a file for subsequent access
by the record or logical sector I/O functions. Data cannot be
transferred between the file (or device) and the calling

program until the .OPEN function has been invoked. The

specific function performed by .OPEN depends on the device
type and on the contents of the IOCDTT entry (specifically,
the non-file format flag (F) and the mode flag (M)).

There are four modes in which a file can be opened. The
input mode (M = 01 of IOCDTT) will allow only input requests

XDOS 4.0 User’s Guide Page 18-31

to be issued to the file. The output mode (M = 10 of IOCDTT)
will allow only output requests to be issued to the file, and
the update modes (M = 00 or 11 of IOCDTT) will allow both
types of requests to be issued to the file. The update modes
are only valid if the device type is DK.

The non-file format flag also has an effect on what
-OPEN does. If the file format mode is specified (F = 0 of

IOCDTT) , then FDR processing will be performed. FDR
processing consists of searching for a file descriptor record
or a directory entry if the file is being opened for input.
FDR processing consists of creating a file descriptor record
or a directory entry if the file is being opened for output.
One form of update mode processing (M = 11 of IOCDTT) will be
identical to the input mode processing if the file already
exists in the directory; or, it will be identical to the

output mode processing if the file does not exist in the
directory. The other form of update mode processing (M = 00
of IOCDTT) will always be the same as the input mode

processing since the file must exist for this mode.

If a memory-image file is being created, the load
information must be written into the RIB by the program that
is creating the file and must meet the requirements described
in section 17.2. The RIB can be accessed using logical sector
I/O. It has the logical sector number SFFFF.

If the non-file format mode is specified (F = 1 of
IOCDTT), then no FDR processing is performed. The non-file
format mode is invalid for diskette devices.

ENTRY PARAMETERS: X = The address of an IOCB which has been
properly reserved (i.e., no errors
occurred) via the .RESRV function.
Since the IOCB needs to be reserved
only once per device of a given
logical unit number, it is possible
to open and close a file and _ then
reopen another file using the same
IOCB without issuing another .RESRV
call. In these instances, the IOCB
must not contain information for an
open file (i.e., the first file must
have been properly closed). The .OPEN
function does not force an
already-open file to be closed.

IOCDTT must have the "M" bits set for
input, output, or update modes. The
update modes are only valid for
diskette devices. In addition, the
"F" bit must specify file or non-file
format. The non-file format mode is
invalid for diskette devices. The "S"
bit must indicate the subsequent
access method to be used. Sector I/0

is invalid for non-diskette devices.

IOCDBS must contain a buffer start

address unless diskette I/0 (either

XDOS 4.0 User’s Guide Page 18-32

record or logical sector) or _ the
non-file format mode has been
specified in the IOCDTT. The data
buffer described by IOCDBS and IOCDBE
is used for FDR processing with
non-diskette devices. If used, it

must be large enough to accommodate
an FDR (section 17.3.4).

IOCDBE must contain a buffer end address
unless diskette I/O (either record or
logical sector) or the non-file

format mode has been specified in the
IOCDTT. The data buffer described by
IOCDBS and IOCDBE is used for FDR
processing with non-diskette devices.
If used, it must be large enough to
accommodate an FDR (section 17.3.4).

IOCNAM must contain a valid
XDOS-formatted file name unless the
non-file format mode has been
specified in the IOCDTT or unless the
first byte of file name is binary
zero. In the file format mode ona
non-diskette device being opened for
input, the .OPEN function will cause
a search to be performed for the
first FDR if the first byte of IOCNAM
is a binary zero. This file will then
be used by the subsequent record
input requests. Otherwise, the file

name supplied in IOCLUN, IOCNAM, and

IOCSUF is searched for or created
(depending on M of IOCDTT).

IOCSUF must contain a valid
XDOS-formatted suffix unless the

non-file format mode has been

specified in the IOCDTT or unless the
first byte of IOCNAM contained a
binary zero (see above).

IOCFDF must only be initialized to
specify the file format (FMT bits) if
the output mode (M = 10 of IOCDTT) or
the update mode to a non-existing
file (M = 11 of IOCDTT) is indicated.
In addition, if the device type is
DK, the other bits of IOCFDF must be
specified for these two open modes. A
special case exists if the non-file
format mode is indicated in the
IOCDTT. In this instance, the FMT
bits of IOCFDF must be set to the
ASCII record format (FMT = 5).

It is not recommended that diskette
files be created with the protection
attributes set, since they will

XDOS 4.0 User’s Guide Page 18-33

prevent a file from being deleted
upon closing if no information was
written into the file. The protection
attributes should be set via_ the
-CHANG system function or via the
NAME command.

IOCSBP must be initialized if the device
type is DK and either the output mode
(M = 10 of IOCDTT) or the update mode
to a non-existing file (M=1ll of
IOCDTT) is specified. A value of zero
will cause the default space to be
initially allocated to the file. A
non-zero value will cause that number

of sectors to be used for the initial
allocation.

A non-zero value in IOCSBP when
opening an existing file will have no
affect on the allocation of the file.
Existing files only change in size
when writing beyond the end-of-file
or when closing them with the
truncate flag set.

IOCSBS must contain the starting address
of a sector buffer only if the device
type is DK. The sector buffer must be
an integral number of sectors in size
(see section 18.3.1.20).

IOCSBE must contain the address of the
last byte of a sector buffer only if
the device type is DK. The sector
buffer must be an integral number of
sectors in size (see section
18.3.1.20).

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A
non-zero value indicates’ that an
error occurred.

U, Y, DP and X are unchanged.

C= 0 and Ze= 1 if no errors occurred (B

= 0). The remainder of cc is

indeterminate.

C= 1 and 2= 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The

XDOS 4.0 User’s Guide Page 18-34

following error statuses can be
returned: ISCKSM, ISCLOS, ISDSPC,

ISDTYP, ISDUPE, ISEOF, ISFSPC,

ISFTYP, ISEOM, ISIVDV, ISNONM,

ISNORV, ISNRDY, ISRIB, ISWRIT,

ISIFNM.

The remainder of the IOCB and the
contents of the data buffer

(non-diskette device) and the sector
buffer (diskette device) are

indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

XDOS 4.0 User’s Guide

IOCSTA = 0.

IOCDTT has the "O" bit set to zero (file
open). The "T" bit will have been set
to one if a new file had _ to be

created on the diskette. The "Io"
bits are indeterminate. The remainder
of IOCDTT is not changed.

IOCDBP is indeterminate.

IOCNAM is unchanged if the device type is
not DK. If the device type is DK,
then IOCNAM will have been replaced
with the four entries IOCMLS, IOCSDW,
IOCSLS and IOCLSN.

IOCMLS contains the value SFFFF if the
device type is DK.

IOCSDW contains the first SDW from the
file*’s RIB if the device type is DK.

IOCSLS contains the value
device type is DK.

SFFFF if the

IOCLSN contains the value zero if the
device type is DK.

IOCSUF is unchanged if the device type is
not DK. If the device type is DK,
then IOCSUF will have been replaced
with the IOCEOF entry.

IOCEOF contains the logical sector number
of the logical end-of-file if the
device type is DK.

IOCRIB contains the physical sector
number of the file*s RIB if the
device type is DK.

file’s
device

directory
type is

IOCDEN contains the
entry number if the

Page 18-35

DK.

IOCFDF contains the FDF field from the

directory entry or the FDR (if open
mode is input or update to existing
file). Otherwise, the IOCFDF field

contains its initial value; however,
if the initial FMT bits contained a
"1", FMT will have been changed to
either a "3" or a "7" as described in
section 18.3.1.16.

IOCSBP contains the value of zero if the
device type is DK.

IOCSBI contains the value in IOCSBE.

The remainder of the IOCB is unchanged.

The contents of the data buffer
(non-diskette device) and the sector

buffer (diskette device) are
indeterminate.

18.3.4 Input a record -- .GETRC

The .GETRC function reads a record from an opened file
or device into a data buffer. The specific processing
performed by .GETRC depends on the FMT bits of IOCFDF and on
the device type. The record input function will process three
file formats: binary record (FMT = 3), ASCII record (FMT =
5), and ASCII-converted-binary record (FMT = 7).

Binary records will be stripped of their record header
(see section 17.3), their byte count, and their checksums.
Only the data characters between the byte count and checksum
fields will be returned. A carriage return will be the last
data character in the data buffer. If characters are
encountered after the checksum field of one binary record but
before the header field of the next record, they will be

ignored.

ASCII records will be stripped of null characters, line
feeds, rubouts, and the device control characters DC1-DC4.
When reading records from the diskette, compressed spaces
(bytes with bit 7 set to 1) will be automatically expanded
into the appropriate number of spaces before being placed
into the data buffer. This automatic space expansion occurs
regardless of the compression bit in IOCFDF (bit "N"). A
carriage return will be the last data character in the data
buffer.

ASCII-converted-binary records are handled similarly to
binary records; however, the conversion of two seven-bit data
bytes into a single eight-bit data byte is automatically
performed.

The .GETRC function treats the system console (CN) in a
slightly different way than it does other devices, since the

XDOS 4.0 User’s Guide Page 18-36

input from this device is usually in an interactive mode with
the operator. In addition to the normal ASCII record
processing, .GETRC will perform the following. First, if the
First byte of the IOCSUF field contains a displayable
Character in the range $20-S5F, it will be automatically
displayed as an input prompt each time the .GETRC function is
invoked. Next, the special keyboard characters rubout (S$7F),
cancel (CTL-X, $18), and EOT (CTL-D, $04) will cause the
standard XDOS keyboard functions to be performed (section
2.5). Rubout will delete the previously entered character,
cancel will delete the entire input line entered thus far,
and EOT will cause the input line entered thus far to be
redisplayed on a new line of the console. Lastly, the
carriage return character will cause a carriage return, line
feed, and null sequence to be sent to the console. All other
data characters will be echoed back to the console display
mechanism as they are entered from the keyboard. This
function is the same as for the .KEYIN system function
described earlier in this chapter (section 18.2.1).

ENTRY PARAMETERS: X = The address of an IOCB which has been
properly reserved and opened (i.e.,
no errors occurred) via the .RESRV
and .OPEN functions, respectively.

IOCDTT must have the "S" bit set to zero
(record I/O). The mode flag (bit "M")
must specify either the input or the
update modes as configured prior to
opening the file.

IOCDBS must contain the address where the

first byte of the record is to be
stored.

IOCDBE must contain the address where the
last byte of the maximum size record
is to be stored. The buffer described
by IOCDBS and IOCDBE must be large
enough to accommodate the largest
possible record that may be
encountered in the file.

IOCSUF may be configured by the calling
program to contain a displayable
character in its first byte if the
input device is the system console.
In this case, the character will be

shown on the console as an_ input
prompt each time the .GETRC function
is invoked. IOCSUF must not be
changed after opening a file when
other devices are used.

IOCFDF must have been configured for a
valid file format on a previous .OPEN
call (FMT = 3, 5, or 7).

EXIT CONDITIONS: A is indeterminate.

XDOS 4.0 User’s Guide Page 18-37

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A

non-zero value indicates’ that an
error occurred.

U, Y, DP and X are unchanged.

C = 0 and Z= 1 if no errors occurred (B

= 0). The remainder of cc is

indeterminate.

C= 1 and 2% = 0 if an error occurred (B

not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The

following error statuses can be
returned: ISBUFO, ISCKSM, ISCLOS,
ISDTYP, ISEOF, ISFTYP, ISEOM, ISNRDY,
ISRANG, ISSECB.

IOCDBP is indeterminate.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCSBP,

and IOCSBI are indeterminate if the
device type is DK. Otherwise, IOCNAM,
IOCSBP, and IOCSBI are unchanged.

The remainder of the IOCB is unchanged.

If a buffer overflow error occurred

(IOCSTA = ISBUFO), then the last data
character of the record (carriage
return) will be the last character of
the buffer. The first "n" characters

(n being the size of the data buffer
minus one) of the record are intact.
Otherwise, the contents of the data

buffer are indeterminate.

If the device type is DK, then the
contents of the sector buffer are

indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = 0.

IOCDTT has the I/O transfer flag set to
indicate input (IO = 10). The
remainder of IOCDTT is unchanged.

IOCDBP contains the address of the last
character read into the input buffer.
This character will always’ be a
carriage return.

XDOS 4.0 User’s Guide Page 18-38

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and IOCSBI contain the

system-maintained parameters as
described in section 18.3.1 if the
device type is DK. They reflect the
current diskette file pointers,
IOCNAM, IOCSUF, IOCSBP, and IOCSBI

are unchanged if the device is not
DK.

The remainder of the IOCB is unchanged.

The data buffer contains the record.

The sector buffer contains data from the

logical sectors read. This number is
given by IOCLSN minus the valid
buffer size in sectors

((IOCSBI-IOCSBS+1)/128) if the device
is DK.

18.3.5 Output a record -- .PUTRC

The .PUTRC function writes a record from a data buffer
to an opened file or device. The specific processing
performed by .PUTRC depends on the FMT bits of IOCFDF and on
the device type. The record output function will process
three file formats: binary record (FMT = 3), ASCII record
(FMT = 5), and ASCII-converted-binary record (FMT = 7).

Binary records will be automatically supplied with their
record header (see section 17.3), a byte count, and a

checksum. In addition, a terminating carriage return is
supplied by the .PUTRC function. If the output device is a
non-diskette device, the terminating carriage return will
actually be a carriage return, line feed, null sequence. None

of these automatically supplied fields are present in the
data buffer described by the IOCB.

ASCII records will be automatically space compressed if
the output device is diskette and if the "N" bit of IOCFDF is
zero. Otherwise, spaces will not be compressed. A _ carriage
return character will be automatically written to the output
device after the last data character has been sent unless the
last data character happens to be a carriage return. All
carriage returns, those encountered within the data buffer as
well as the automatically supplied terminating one, are
converted into a carriage return, line feed, null sequence
when being written to a non-diskette device. The line feed
and null characters generated from embedded carriage returns
will not be written to the diskette.

ASCII-converted-binary records are handled similarly to
binary records; however, the conversion of one eight-bit data
byte into two seven-bit data bytes is automatically
performed.

If a record is being written into a diskette file,
additional space may be allocated to accommodate’ the

XDOS 4.0 User’s Guide Page 18-39

increased space requirements of the file. The file allocation
is done automatically. The amount of secondary allocation
will depend on the available file space; however, an attempt
will be made to allocate the default number of clusters. If
less space is available than the default, then the largest
available block will be allocated.

ENTRY PARAMETERS: X = The address of an IOCB which has been

properly reserved and opened (i.e.,
no errors occurred) via the .RESRV

and .OPEN functions, respectively.

IOCDTT must have the "S" bit set to zero
(record I/O). The mode flag (bit "M")
must specify either the output or the
update modes as configured prior to
opening the file.

TOCDBS must contain the address of the

first byte of the record that is to
be written.

IOCDBE must contain the address of the
last byte of the record that is to be
written. A terminating carriage
return is not required in the data
buffer.

IOCFDF must have been configured for a
valid file format during the previous
OPEN call (FMT = 3, 5, or 7). The

non-compressed space bit (bit "N")
determines whether or not spaces are
compressed (only applies to ASCII
files being written to diskette).

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A
non-zero value indicates’ that an

error occurred.

U, Y, DP and X are unchanged.

C = 0 and Z= 1 if no errors occurred (B

= 0). The remainder of cc is
indeterminate.

C= 1 and 2= 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: ISCLOS, ISDTYP, ISFTYP,
ISNRDY, ISRECL, ISRANG, ISSECB,

XDOS 4.0 User’s Guide Page 18-40

ISRIB, ISFSPC, ISSSPC.

IOCDBP is indeterminate.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and IOCSBI are indeterminate
if the device type is DK. IOCNAM,
IOCSUF, IOCSBP, and IOCSBI are
unchanged otherwise.

The remainder of the IOCB is unchanged.

The contents of the data buffer are

unchanged.

The contents of the sector buffer are
indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = 0.

IOCDTT has’ the I/O transfer flag set to
indicate output (I0 = 01). If
additional file space was allocated,
the truncate flag (T) is set to one
if it was not already one prior to
the output transfer. The remainder of
IOCDTT is unchanged.

IOCDBP contains the address of the last
character in the data buffer (same as
IOCDBE).

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and IOCSBI contain the
system-maintained parameters as

described in section 18.3.1 if the
device is DK. They reflect’ the
current diskette file pointers. If
ePUTRC has been called for the first
time, and if IOCMLS contained the
value S$FFFF upon entry, IOCMLS will

contain the value $0000 upon exiting
the function. In this way, the file
will not be deleted upon closing,
even if only a single record has been
written into the sector buffer.

IOCNAM, IOCSUF, IOCSBP, and IOCSBI

are unchanged if the device is not
DK.

The remainder of the IOCB is unchanged.

The contents of the data buffer. are

unchanged.

The’ sector buffer contains the data that

XDOS 4.0 User”s Guide Page 18-41

are going to be written to diskette
starting with the logical sector
specified by IOCLSN. The sector
buffer is not cleared after having
been written. Thus, the parts of the
sector buffer not affected by the
ePUTRC call will still contain the
data from the buffer last written.

Page 18-42

18.3.6 Close a file -- .CLOSE

The .CLOSE function is used to signify completion of all
I/O transfers to a file or device in the current open mode.

Data cannot be transferred between the file (or device) and

the calling program after the .CLOSE function has been
invoked. The specific function performed by .CLOSE depends on
the mode flag (M of on the mode flag (M of IOCDTT), the I/O
transfer flag (IO of IOCDTT), and the device type.

If the IOCB has been opened in the input mode (M = 01 of
IOCDTT), then the .CLOSE function will simply change the IOCB
to indicate that the file is closed.

If the IOCB has been opened in the output mode (M = 10
of IOCDTT), then .CLOSE will perform the following. For a
device type of DK, .CLOSE will zero-fill any unused portions
of the unwritten sector buffer to a sector boundary before
writing the buffer to the diskette (only if record I/O is
being performed; logical sector I/O will not cause the last
sector buffer to be changed or written). All space that has
been newly allocated but not written into (those logical
sectors greater than IOCMLS) will normally be deallocated on

a cluster boundary and returned to the free space pool
(assumes that the truncate flag and IOCMLS have not been
changed by the calling program). The end-of-file LSN will be
adjusted in the RIB. If the device is not DK, then .CLOSE
will cause an end-of-file record to be written to the device
(file format mode only). In the non-file format mode, .CLOSE

will only write an end-of-file record to the device if it is
a file-type device. File-type devices are those which use a
medium that can be re-read later.

If the IOCB has been opened in the update modes (M = 00
or 11 of IOCDTT), then .CLOSE will perform the same functions

as in the input or the output mode depending on the last I/O
transfer type. The .GETRC and .GETLS functions will set IO of
IOCDTT to indicate an input transfer, while the .PUTRC and
-PUTLS functions will set IO of IOCDTT to indicate an output
transfer. In the latter case, space is only deallocated if

the truncate flag (fT of IOCDTT) is set to one (done
automatically when new space is allocated, or done bv user to
indicate file shortening or updating of end-of-file pointer
in RIB).

ENTRY PARAMETERS: X = The address of an IOCB which has been
properly reserved and opened (i.e.,
no errors occurred) via the .RESRV

and .OPEN functions, respectively.

Normally, no additional parameters
are required; however, when dealing
with diskette files in the update
mode (M = 00 or 11 of IOCDTT), the
truncate flag (T of IOCDTT) and the

maximum referenced logical sector
number (IOCMLS) can be configured by
the calling program. Since the update
modes only set the truncate flag to

XDOS 4.0 User’s Guide Page 18-43

one if a new file is created during
the open process or if additional
space is allocated during the output
process (file grows), space will not
be deallocated or the end-of-file
pointer updated from existing files
unless the truncate flag and IOCMLS
are explicitly set up by the calling
program. When IOCMLS is set to the
value SFFFF (value set up during
-OPEN), then the file will have its

directory entry deleted in addition
to having all of its space
deallocated (if truncate flag is set

to one when .CLOSE is invoked).

IOCDBS and IOCDBE must describe a _ valid
data buffer when dealing with
non-diskette devices (output only)
since an end-of-file record is
written (file-type devices only).

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If

no errors occurred, B will be zero. A

non-zero value indicates that an
error occurred.

U, Y, DP and X are unchanged.

C = 0 and Ze= 1 if no errors occurred (B

= 0). The remainder of cc is
indeterminate.

C= 1 and 2= 0 iff an error occurred (B
not zero). The remainder of CC is

indeterminate.

Th?e IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be

returned: ISCLOS, ISDELT, ISIDEN,
ISRANG, ISSECB, ISFSPC, ISSSPC,

ISRIB, ISDEAL.

The remainder of the IOCB and the
contents of the data buffer and the

sector buffer are indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = Q.

IOCDTT has the "O" bit set to one (file
closed). The remainder of the IOCDTT

is unchanged.

XDOS 4.0 User’s Guide Page 18-44

IOCRIB will be zero if the file was
deleted from the diskette. Otherwise

it will be unchanged.

IOCEOF will contain the LSN of the
logical end-of-file if the device
type is DK. IOCEOF will be unchanged
if the truncate flag was zero upon
entry.

The remainder of the IOCB is unchanged.

The contents of the data buffer and the

sector buffer are indeterminate.

18.3.7 Release a device -- .RELES

The .RELES function breaks the _ link between the
appropriate controller descriptor block and the calling
program’s IOCB. The .RELES function should be the last I/O

function called after all I/O has been completed.

ENTRY PARAMETERS: X = The address of of an IOCB which has

been properly reserved (i.e., no
errors occurred) via the .RESRV

function. If the .OPEN function has

been invoked at any time after
reserving the IOCB, the file (or
device) must first be closed via the
CLOSE function before the IOCB’ can

be released.

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A
non-zero value indicates that an
error occurred.

U, Y, DP and X are unchanged.

C = 0 and Z = 1 if no errors occurred (B

= 0). The remainder of CC is

indeterminate.

C = 1 and Z@ = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error’ status. The
following error statuses can be
returned: ISNORV, ISCLOS.

The reImainder of the IOCB and the

contents of the data buffer and _ the

sector buffer are unchanged.

XDOS 4.0 User’s Guide Page 18-45

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA 0.

IOCGDW 0.

IOCLUN has the "R" bit set to zero (IOCB

released). The remainder of IOCLUN is

unchanged.

The remainder of the IOCB and the
contents of the data buffer and the

sector buffer are unchanged.

18.3.8 Example of device independent I/0

The following example uses the device independent I/O

functions described thus far. The IOCB shown below is used in
the example as the control block for writing to a diskette
file. The initial values set up in this IOCB are typical for
most output operations. A four-sector buffer is used to allow
a maximum of four sectors to be written to the diskette each
time it is accessed. The larger a sector buffer is, the fewer
will be the number of diskette accesses. The logical unit
number, file name, and suffix are going to be initialized
from an operator-supplied parameter on the command line. The
system symbols from the XDOS equate file are used throughout

this example.

OUTPUT EQU * START OF OUTPUT IOCB

FCB 0 IOCSTA
FCB DTSOPO+DTSCLS IOCDTT

FDB 0 IOCDBP

FDB RBUFF IOCDBS
FDB RBUFFE IOCDBE

FCC 2,DK IOCGDW

FCB “0+0 IOCLUN -- DEFAULT = 0
FCC 8, ITOCNAM

FCC 2,SA IOCSUF -- DEFAULT = SA

FDB 0 IOCRIB
FDB FDSFMA!<8 IOCFDF -- ASCII

FDB 0 RESERVED

FDB 0 IOCDEN
FDB 0 IOCSBP

FDB SCTBUF IOCSBS

FDB SCTBUF+ (SC$SIZ*4)-1 IOCSBE

FDB 0 IOCSBI
*

SCTBUF BSZ SCSSIZ*4 SECTOR BUFFER (4 SECTORS)
RBUFF BSZ 80 RECORD BUFFER

RBUFFE EQU ¥— 1,

The code that is shown’ below performs the following
functions. First, a file name specification which has been

entered on the xXDOS command line is extracted from the
command line buffer and placed into the IOCB. This is
accomplished with the .PFNAM system function described in
Chapter 20. Then, the IOCB is reserved and opened. Next, an

XDOS 4.0 User’s Guide Page 18-46

input prompt is displayed on the system console and an line
of text is accepted from the keyboard. If the entered line
consisted of only a carriage return, the IOCB is closed,
released, and control returned to the XDOS command

interpreter (via the function .MDENT). Otherwise, the entered

line is written into the diskette file. The input process’ is
repeated until only a carriage return is entered.

The error message function, .MDERR, is used to display
standard error messages if an invalid file name specification
is entered, if a file name is missing, or if one of the I/0

functions returns an error condition (e.g., if the file name
already exists in the directory, or if insufficient diskette
space is available). This function is discussed in detail in
Chapter 20.

In this example, the assumption is made that the program
is invoked from the XDOS command line. Thus, it must be
origined to load above location $1FFF. The stack pointer is
automatically initialized through the loading process’ to
point to the last-loaded program location. The stack area has
been set up so that the default value of the stack pointer
can he used without having to execute a load stack pointer
instruction.

x

* DEFINE SOME WORKING STORAGE
*

PFNPAK FDB 0,0 PROCESS FILE NAME PACKET
PROMPT FCB *“:,EOT INPUT PROMPT
*

* EXTRACT THE FILE NAME FROM THE COMMAND LINE
*

START LDX #PFNPAK ADDRESS OF PROCESS FILE NAME PACKET

LDD #OUTPUT+IOCLUN STANDARD FILE NAME AREA ADDRESS

STD 2,X DESTINATION OF FILE NAME
LDD —- CBUFP$ POINTER INTO CMD BUFFER
sTD 0,X SOURCE OF FILE NAME -
SCALL .PFNAM FORMAT STANDARD FILE NAME
TSTB CHECK FOR ERRORS
BEQ STARTA EQ => GOOD NAME
ASLB
BCS _—_ ERR1. CS => NAME MISSING
BSR —_ ERROR ILLEGAL NAME MSG NUMBER
FCB 7

*

ERRL BSR ERROR NAME REQUIRED MSG NUMBER
FCB 5

*

ERR3 BSR ERROR I/O ERR MSG NUMBER; DECODED
FCB oO

*

ERROR LDB [0,S++] FETCH ERROR NUMBER
SCALL .MDERR OUTPUT ERROR MESSAGE
BRA —_ XDOS GO EXIT

*

* OPEN AND RESERVE THE IOCB -- CREATE THE OUTPUT FILE

STARTA LDX = $OUTPUT
SCALL .RESRV

XDOS 4.0 User’s Guide Page 18-47

BCS ERR3 CS => ERROR
SCALL .OPEN

BCS ERR3 CS => ERROR
*

* GET LINE FROM CONSOLE
*

LOOP LDX #PROMPT DISPLAY THE INPUT PROMPT, NO CR/LF

SCALL .DSPLZ

LDX #RBUFF GET THE INPUT LINE

LDAB #RBUFFE-RBUFF
SCALL .KEYIN

LDA 0,X GET 1ST CHAR IN BUFFER
CMPA #CR CHECK FOR TERMINATOR

BEQ EXIT EQ => THIS IS THE TERMINATING LINE

STX OUTPUT+IOCDBS SETUP START RECORD POINTER
DECB CALC END OF RECORD BUFFER

ABX B = NUMB CHARS INPUT

STX OUTPUT+IOCDBE SETUP END RECORD POINTER

LDX #OUTPUT

SCALL .PUTRC WRITE THE RECORD

BCC LOOP CC => NO ERRORS

BRA ERR3
*

* CLOSE AND RELEASE THE IOCB, RETURN TO XDOS
*

EXIT LDX #OUTPUT POINT TO THE IOCB
SCALL .CLOSE
BCS ERR3 CS => ERROR

SCALL .RELES

BCS ERR3 CS => ERROR
XDOS SCALL .MDENT RETURN TO XDOS
*

* LEAVE SOME ROOM FOR STACK
*

BSZ 120 STACK SET HERE BY LOAD

END START

18.3.9 Specialized diskette I/O functions

Three additional I/O functions exist that also use’ the
IOCB as a parameter table; however, they are dependent on the

device type being DK. An error will be returned if any other
device type is specified.

The .GETLS function reads one or more logical sectors
from an opened file into a sector buffer.

ENTRY PARAMETERS: X = The address of an IOCB which has been
properly reserved and opened (i.e.,

no errors occurred) via the .RESRV
and .OPEN functions, respectively.

IOCDTT must have the "S" bit set to one
(sector I/O). The mode flag (bit "M")

must specify either the input or the
update modes as configured prior to

XDOS 4.0 User’s Guide Page 18-48

opening the file.

IOCLSN must contain the logical sector
number that is to be read. The actual

number of sectors read depends on the

size of the sector buffer (see

below). The data sectors of the file
begin with logical sector zero. If
the RIB is to be accessed via the
eGETLS function, then IOCLSN must

contain the value SFFFF.

IOCSBS must contain the starting address
of a sector buffer. The sector buffer
must be an integral number of sectors
in size (see section 18.3.1.20). This

buffer does not necessarily have to

be the same one used to open the
file. The sector buffer can be ina

different location for each .GETLS
call; however, if the sector buffer
is to be moved after a file has’ been
opened, then IOCSBS, IOCSBE, and

IOCSBI must be changed by the calling
program.

IOCSBE must contain the address of the
last byte of a sector buffer. The
Sector buffer must be an integral
number of sectors in size (see
section 18.3.1.20). The buffer
described by IOCSBS and IOCSBE
indicates the Maximum number of
sectors that can be processed
starting with the logical sector
whose number is in IOCLSN.

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A

non-zero value indicates’ that an
error occurred.

U, Y, DP and X are unchanged.

C = 0 and Z= 1 if no errors occurred (B

= 0). The remainder of cc is
indeterminate.

C=1 and 2 = 0 if an error occurred (B
not zero). The remainder of CC is
indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The

following error statuses can be
returned: ISCLOS, ISDTYP, ISEOF,

XDOS 4.0 User’s Guide Page 18-49

ISSECB, ISRANG.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCSBP,
and IOCSBI are indeterminate.

The remainder of the IOCB is unchanged.

The contents of the sector buffer are

indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = 0.

IOCMLS, IOCSDW, and IOCSLS contain the

system-maintained parameters as
described in section 18.3.1. They
reflect the current diskette file

pointers.

IOCLSN has been incremented by the number
of sectors read into the buffer
((IOCSBI-IOCSBS+1) /128) .

IOCSBP contains the starting address of
the sector buffer (the same as
IOCSBS) .

IOCSBI contains the address of the last
valid data byte in the sector buffer.
If only a partial segment was read
into the buffer, IOCSBI will not be

the same as IOCSBE (maximum end of

buffer). The following relationship
should be used to calculate the

number of sectors read:

IOCSBI-IOCSBS+1
~-------------- = # SECTORS READ

128

The remainder of the IOCB is unchanged.

The sector buffer contains the data from
the sectors read beginning with the
logical sector whose number was in

IOCLSN.

18.3.9.2 Output logical sectors -- .PUTLS

The .PUTLS function writes one or more logical sectors
from a sector buffer to an opened file. Additional space may
be allocated to the file to accommodate the increased space
requirements. The space allocation is performed
automatically. The amount of secondary allocation will depend
on the available space; however, an attempt will be made to
allocate the default number of clusters. If less space is
available than the default, then the largest available block

XDOS 4.0 User“s Guide Page 18-50

will be allocated.

ENTRY PARAMETERS: X = The address of an IOCB which has been
properly reserved and opened (i.e.,
no errors occurred) via the .RESRV
and .OPEN functions, respectively.

IOCDTT must have the "S" bit set to one
(sector I/O). The mode flag (bit "M")
must specify either the output or the
update modes as configured prior to
opening the file.

IOCLSN must contain the logical sector
number that is to be written into.

The actual number of sectors written

depends on the size of the sector
buffer (see below). The data sectors

of the file begin with logical sector
zero. If the RIB is to be accessed

via the .PUTLS function, then IOCLSN
must contain the value SFFFF.

IOCSBS must contain the starting address
of a sector buffer containing the
data to be written. The sector buffer
must be. an integral number of sectors
in size (see section 18.3.1.20). This
buffer does not necessarily have to
be the same one used to open the
file. The sector buffer can be in a
different location for each .PUTLS
call: however, if the sector buffer
is to be moved after a file has been
opened, then IOCSBS, IOCSBE, and

IOCSBI must be changed by the calling
program.

IOCSBE is not used during the .PUTLS
function; however, it should not have
been changed since the file was
opened (with restrictions mentioned
above for IOCSBS).

IOCSBI must contain the address of the
last data byte to be written from the
sector buffer. The sector buffer, as

described by IOCSBS and IOCSBI, must
be an integral number of sectors’ in

size (see section 18.3.1.20).

EXIT CONDITIONS: A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero. A

non-zero value indicates that an
error occurred.

U, Y, DP and X are unchanged.

XDOS 4.0 User’s Guide Page 18-51

a
 i] 0 and Z = 1if no errors occurred (B

= 0). The remainder of CC is
indeterminate.

C = 1 and Z2= 0 iif an error occurred (B
not zero). The remainder of CC is

indeterminate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: ISCLOS, ISDYTP, ISSECB,
ISRANG, ISRIB, ISFSPC, ISSSPC.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF,

IOCSBP, and IOCSBI are indeterminate.

The remainder of the IOCB and the

contents of the sector buffer are

unchanged.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = 0.

IOCMLS, IOCSDW, and IOCSLS contain’ the
system-maintained parameters as
described in section 18.3.1. They
reflect the current diskette file
pointers.

IOCLSN has been incremented by the number
of sectors written

((IOCSBI-IOCSBS+1) /128) . If the

sector specified by the entry value
of IOCLSN or any of the sectors

written from the buffer was outside
of the range of the file“s allocated
Space, additional file space will
have been allocated (if available).

IOCEOF contains the logical sector number
of the logical end-of-file. If
additional file space was allocated,

IOCEOF will contain the new
end-of-file LSN. IOCEOF is unchanged
otherwise.

IOCSBP contains the starting address of
the sector buffer (the same as

IOCSBS) .

The remainder of IOCB and the contents of
the sector buffer are unchanged.

XDOS 4.0 User’s Guide Page 18-52

The .REWND function resets the pointers of the IOCB’ so
that subsequent I/O functions will access the peripheral file
as if it had just been opened, i.e., from the beginning.

XDOS 3 drivers are compatible if the DDSRWD bit is
clear.

Files opened in any mode can be rewound. If the
peripheral can perform logical sector I/O (DD$LOG set), the
sector pointers are reset to perform the next I/O at the
beginning of the file. Disk files are handled as follows:

-Do nothing if already at beginning of file.
-If last transfer was an output:

-If record I/O mode, flush data in sector buffer.
If truncate bit set, truncate file.

-set IOCLSN=0, IOCSBI=IOCSBE, IOCSBP=0.

-IOCMLS and DTS$TRU are not changed.

18.3.9.3.1 .REWND entry and exit conditions

ENTRY PARAMETERS :; X = the address of an IOCB which has been
properly reserved and opened (i.e.,
no errors occured) via the .RESRV
and .OPEN functions, respectively.

IOCDTT can have the "S" bit set to

indicate either record or sector I/O.

IOCSBS must contain the starting address

of a sector buffer if logical sector
I/O can be performed by the device
involved. The sector buffer must be
an integral number of sectors in size
(see section 18.3.1.20).

IOCSBE must contain the address of the

last byte of the sector buffer.

EXIT CONDITIONS : A is indeterminate.

B = the contents of the IOCSTA entry. If
no errors occured, B will be zero. A
non-zero value indicates that an error
occured.

X, Y, DP, and U are unchanged.

Cc O and Z = 1 if no error occured (B=0)

ce: l and Z = 0 if an error occured (B#0)

The remainder of CC is indeterminate.

The IOCB is affected in the following manner if an
error occured:

XDOS 4.0 User’s Guide Page 18-53

IOCSTA contains the error status: ISNORV,
ISCLOS,ISRWND and any error status
returned by the driver.

The IOCB is affected in the following manner if no
error occured:

IOCSTA = 0.

IOCSDW contains the first SDW from the

file’s RIB if the device is DK and
the file has been truncated.

IOCSLS contains the value SFFFF if the

device is DK and the file has been
truncated. :

IOCLSN contains 0 if logical sector I/O is
allowed, unchanged otherwise.

IOCEOF has been set up if device is DK and
file has been truncated.

IOCSBI contains the value in IOCSBE if

logical sector I/O is allowed.

The remainder of the IOCB is unchanged.

18.3.9.3.2 .REWND Error Message

-A standard error message has been added in the error file

XDOSER.SY.

HEX INDEX NUMBER ERROR MESSAGE

37 ** 54 DEVICE MAY NOT BE REWOUND

-The independent I/O error status code that matches the above
error message is:

ISRWND = S$1B (27 dec.)

.The standard name for the device driver rewind entry offset
is:

DVSRWD = 15 (dec.)

18.3.9.4 Example of logical sector I/O

The following example uses the logical sector I/O functions.
The IOCB shown below is used in the example as the control _ block
for reading from and writing to a diskette file. The initial
values set up in this IOCB are similar to those in the example
given in section 18.3.8; however, the sector I/O and update modes

are specified in the IOCDTT entry. Only a single sector is used
for a sector buffer to make the management of logical sectors

XDOS 4.0 User’s Guide Page 18-54

easier (eliminates calculation of the number of sectors read or
written). The logical unit number, file name, and suffix are going

to be initialized by an operator-supplied parameter obtained from
the command line. The system symbols from the XDOS equate file are
used throughout this example.

TEXFIL EQU * START OF TEXFIL IOCB
FCB 0 IOCSTA
FCB DTSOPU+DTSSIO+DTSCLS IOCDTT
FDB 0 LOCDBP
FDB 0 IOCDBS
FDB 0 LOCDBE
FCC 2,DK IOCGDW
FCB °0+0 ' -TOCLUN -- DEFAULT = 0
FCC 8, IOCNAM
FCC 2,SA IOCSUF -- DEFAULT = SA
FDB 0 IOCRIB
FDB FDSFMA!<8 IOCFDF -- ASCII
FDB 0 RESERVED
FDB 0 ~ -TOCDEN
FDB 0 ILOCSBP
FDB SECBUF IOCSBS
FDB SECBUF+SC$SIZ-1 IOCSBE
FDB 0 LOCSBI

*

SECBUF BSZ SCSSIZ SECTOR BUFFER

The code that is shown below performs the following
functions. First, a file name specification which must have
been entered on the XDOS command line is extracted from the
command line buffer and placed into the IOCB. This is
accomplished with the .PFNAM system function described in
Chapter 20. Then, the IOCB is reserved and opened. Next, one
sector is read from the file and all upper case alphabetic
characters are converted into lower case characters. A
special check is made for punctuation marks (period,
exclamation point, and question mark) so that the first
alphabetic character following such punctuation is left upper
case. After all bytes within the sector have been processed,
they are rewritten into the same sector from which they were
read. The process is repeated until an end-of-file condition
is encountered. Finally, after the file is closed and
released, control is returned to the XDOS command interpreter
via the function .MDENT. Since the file does not expand, it
was opened in the update mode so that sectors could be both
read from and written to the file. It should be noted that
the logical sector number should be decremented before a
sector is written back from where it was read.

The error message function, .MDERR, is used to display
standard error messages if an invalid file name specification
is entered, if a file name is missing, of if one of the I/O

functions returns an error condition. The system function
-ALPHA is used to test for alphabetic characters. Both of
these functions are discussed in detail in Chapter 20.

In this example, the assumption is made that the program
is invoked from the XDOS command line. Thus, it must be
origined to load above location S$1FFF. The stack pointer is
automatically initialized through the loading process’ to

XDOS 4.0 User’s Guide Page 18-55

point to the last-loaded program location. The stack area has
been set up so that the default value of the stack pointer
can be used without having to execute a load stack pointer
instruction.

*

* DEFINE SOME WORKING STORAGE
*

PFNPAK FDB 0,0 PROCESS FILE NAME PACKET
UCFLG FCB 0 UPPER CASE CONVERSION FLAG
*

*

* EXTRACT NAME FROM COMMAND LINE
*

START LDX #PFNPAK PROCESS FILE NAME PACKET ADDRESS
LDD #TEXFIL+IOCLUN STANDARD FILE NAME AREA ADDRESS
STD 2,X
LDD CBUFP$ SOURCE OF NAME
STD 0,x
SCALL .PFNAM EXTRACT FILE NAME
TSTB CHECK FOR VALID NAME
BEQ STARTA EQ => GOOD
ASLB
BCS ERR1 CS => NAME MISSING
BSR ERROR ILLEGAL NAME MSG NUMBER
FCB 7 ;

*

ERR1 BSR ERROR NAME REQUIRED MSG NUMBER
FCB 5

*

ERR3 BSR ERROR I/O FUNCTION ERROR MSG NUMBER
FCB 0

*

ERROR LDB [0,S++] FETCH ERROR NUMBER
SCALL .MDERR
BRA EXIT DISPLAY ERROR, THEN EXIT PROGRAM

* RESERVE AND OPEN THE IOCB
*

STARTA LDX #TEXFIL
SCALL .RESRV

BCS ERR3 CS => ERROR
SCALL .OPEN

BCS ERR3 CS => ERROR

* READ A LOGICAL SECTOR INTO BUFFER

LOOP1 LDX #TEXFIL
SCALL .GETLS

BCS EOF CS => ERROR, POSSIBLE END OF FILE

* CONVERT DATA WITHIN SECTOR BUFFER
*

LOOP2 ULDX TEXFIL+IOCSBP

LDA 0,X GET CHAR FROM BUFFER

BSR CONVRT

STA 0,X+ PUT CHARACTER BACK
STX TEXFIL+IOCSBP SAVE POINTER

CMPX TEXFIL+IOCSBE CHECK FOR LAST CHARACTER

BLS LOOP 2 NE => MORE DATA TO CONVERT

XDOS 4.0 User’s Guide Page 18-56

* WRITE LOGICAL SECTOR BACK INTO FILE

LDX #TEXFIL IOCB ADDRESS

LDD IOCLSN ,X PICK LSN PLUS ONE

SUBD #1 POINT BACK TO LAST READ SECTOR
STD IOCLSN ,X

SCALL .PUTLS WRITE THE SECTOR BACK

BCS ERR3 CS => ERROR

BRA LOOP1 READ NEXT SECTOR AND CONTINUE
*

* END-OF-FILE DETECTED ON INPUT
*

EOF CMPB #ISEOF
BNE ERR3 NE => I/O ERROR
LDX #TEXFIL
SCALL .CLOSE

BCS ERR3 CS => ERROR
SCALL .RELES

BCS ERR3 CS => ERROR
EXIT SCALL .MDENT RETURN TO XDOS COMMAND INTERPRETER
*

* CONVERT ALL UPPER CASE ALPHABETIC CHARACTERS TO LOWER
* CASE CHARACTERS. FIRST ALPHABETIC
* CHARACTER FOLLOWING A PERIOD, EXCLAMATION POINT, OR
* QUESTION MARK IS NOT CHANGED.
*

CONVRT SCALL .ALPHA CHECK FOR U/C ALPHABETIC
BCS CONTRM
TST UCFLG
BNE CONVEX NE => DON’T CONVERT
ORA #SPACE CONVERT TO L/C

CONVEX CLR UCFLG RESET FLAG TO CONVERT NEXT ALFA
RTS

*

CONTRM CMPA #°. PERIOD
BEQ SETFLG
CMPA #7! EXCLAMATION
BEQ SETFLG
CMPA #°? QUESTION
BNE CONEX2

SETFLG INC UCFLG
CONEX2 RTS DONE, RETURN
*

* SAVE SOME ROOM FOR STACK
*

BSZ 120 STACK POINTER SET HERE BY LOAD
*

END START

18.3.10 Error handling

All of the I/O functions discussed in this section use
the IOCB. The first entry of the IOCB will contain an error
Status upon returning from one of these functions. The
calling program is responsible for processing these error
conditions. If the error status is to be decoded and
displayed as a message on the system console, the system
error message function, .MDERR, can be used. This function is

XDOS 4.0 User’s Guide Page 18-57

described in detail in Chapter 20; however, it should be

noted here that a common mistake is made in calling the error
message function with the value returned in the B accumulator
by the I/O functions. It is true that this value is the same
as IOCSTA’s contents; however this is not the parameter that
should be used to invoke the error message function. The
error message function will decode the contents of IOCSTA
only if it is called with the B accumulator equal to zero and
with the X register pointing to the IOCB.

None of the I/O functions described here will return
control to the calling program if a diskette controller error
is detected (only applicable if the device type is DK). These
errors are fatal errors and will cause the program to _ be
aborted (i.e., the files will not be closed). An error
message is displayed on the system console before giving
control to XDOS.

In order to guarantee the integrity of data files
(especially on the diskette), it cannot be stressed often
enough that it is necessary for the calling program to check
for an error condition after each I/O function call. A common
mistake is to fail to check for errors after a file has been
closed. Since output can still take place during the closing,
data at the end of the file can be lost without being
apparent. Another common mistake is to initialize the IOCB
with the "O" flag of IOCDTT and the "R" flag of IOCLUN in the
wrong sense. If the "R" flag is cleared before the IOCB is
reserved, the "O" flag will be properly set by the functions
themselves.

Page 18-58

CHAPTER 19

19. INPUT/OUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES

It is assumed that the reader is familiar with the

device dependent I/O functions described in section 18.3
before this chapter is read.

This chapter describes how the I/O functions interface
with the hardware device and how a user can interface

non-standard devices for use with the device independent I/O
functions.

19.1 Device Dependent I/0

The device dependent I/O functions described in Chapter
18 for accessing the console and the line printer cannot’ be
changed to access non-standard devices. These routines are a
part of XDOS and its basic environment requirements; however,
a user can construct his own device drivers that are accessed
by his programs. It is not possible to use a non_ standard
device/driver with the standard XDOS commands. The COPY
command (Chapter 5) is an exception. It can load a

user-defined device driver into memory to copy a file from
that device to the diskette or from the diskette to that
device.

19.2 Device Independent I/O

This section describes how the device independent I/O
functions interface to the device drivers which, in turn,
interface directly to the hardware device. This description
applies to both standard and non-standard devices.

19.2.1 Controller Descriptor Block -- CDB
ce ee ee ee ee ee ee ee ee ee ee ee we we oe ee

The Controller Descriptor Block, or CDB, is a table that

describes a physical device and the types of input and output
operations that can be performed by the device. Unlike the
IOCB, the CDB is configured only once for each device. It is

the memory location of the CDB that replaces the contents of
the IOCGDW entry of an IOCB after the .RESRV function has
been called. The format of the CDB is shown in the’ following
diagram.

XDOS 4.0 User”s Guide Page 19-01

INPUT/OUTPUT PROVISIONS

Byte

| 7 6 5
| ee

00 |

-- IOCB address

ol |

02 | Device driver
-- address

03 |

04 |
-- Hardware address

05 |

07 | N |

os | Device dependent

09 |

OA |
-- Working storage

OB |
ee eee ee ee ee co we we we ee we ee me ee

XDOS 4.0 User’s Guide

19.2 -- Device Independent I/O

<-- Bit position

CDBIOC

CDBSDA

CDBHAD

CDBDDF - Device descrip-
tor flags

CDBVDT - Valid data
types

CDBDDA

CDBWST

Page 19-02

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/O

CDB FLAG DESCRIPTION SUMMARY

CDBDDF R 7 Reservable device flag
0 => Not reservable
1 => Reservable

O 6 Output device flag
0 => Cannot perform output
1 => Can perform output

I 5 Input device flag
0 => Cannot perform input
1 => Can perform input

F 4 File~type device flag
0 => Cannot open/close files
1 => Can open/close files

W 3 Rewindable device flag
0 => Cannot rewind files
1 => Can rewind files

tS) 2 System console flag
0 => Not system console device
1 => System console device

L 1 Logical sector I/O flag
0 => Cannot perform logical sector

I/O

1 => Can perform logical sector I/O
D 0 Default binary record format flag

0 => Binary record is default binary
format

1 => ASCII-converted-binary record is
default binary format

CDBVDT N 7 Non-file format flag
0 => Non-file format mode is invalid

1 => Non-file format mode is valid
- 3-6 Not used (=0)

B 2 Binary I/O flag
0 => Eight-bit data is invalid
1 => Eight-bit data is valid

- 0-1 Not used (=0)

XDOS 4.0 User’s Guide Page 19-03

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/0

19.2.1.1 CDBIOC -- Current IOCB address

These two-bytes of the CDB are reserved for expansion.
They are currently not being used by the device drivers.
These two bytes should be initialized to zero.

19.2.1.2 CDBSDA -- Software driver address

This two-byte field of the CDB must contain the starting
address of the device driver program that controls’ the
device. It is this address that is used to access the
individual device driver entry points. Therefore, this entry
must be provided in every CDB. The format of the device
driver is explained in section 19.2.2.

19.2.1.3 CDBHAD -- Hardware address

These two bytes of the CDB are intended to contain the
lowest address of the hardware device (PIA, ACIA, etc.) used

to interface with the external device. The actual usage of
this CDB entry depends exclusively on the device driver
program. The device independent I/O functions do not access
this entry.

19.2.1.4 CDBDDF -- Device descriptor flags

The CDBDDF byte contains the basic description about the
types of I/O accesses that the device can perform. The format
of the CDBDDF byte is shown below:

: $: : : : 2..e. Default binary format
: : : : : : Zececeseeee LOGical sector I/O flag
F : : : Soe wie eles ie we System console flag
: See ne ee Rae Oe Be Rewindable device flag
: : Se coeccccccccccccccee File-type device flag
: Ye awaee ns ce ee ee eee eecoeeee Input device flag

Seow os ecco eee eee occccceoeeeeee Output device flag
Ie se we Ke BS o GE TSEST EGET Se os -.-. Reservable device flag

These flags are constant once defined. The flags are
interrogated by the various device independent I/O functions
in order to verify that the requested function can be
performed on the specified device. The properties controlled
by the various bits of the CDBDDF are explained below.

XDOS 4.0 User’s Guide Page 19-04

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/0

R (Bit 7) -- Reservable device flag

This bit determines whether a device can be
reserved by multiple IOCBs at the same time. Certain
devices, like diskette devices, by nature of their
operation, can allow input/output accesses to be
performed from different callers (IOCBs). Other
devices, like a line printer, cannot logically allow
multiple output accesses from different IOCBs to be
processed. If the "R" bit is set to one, it means
that the device is reservable. In other words, only
one IOCB can communicate with the device at a_ time.
Tf the "R" bit is set to zero, it means that the
device is non-reservable (i.e., the device can
communicate with multiple IOCBs).

O (Bit 6) -- Output device flag

This bit indicates whether a device can be used
by output functions. If the "O" bit is set to one,
then the device can be used for output. If the "0"
flag is set to zero, then the device cannot be used
for output.

I (Bit 5) -- Input device flag

This bit indicates whether a device can be used
by input functions. If the "I" bit is set to one,
then the device can be used for input. If the "I"
flag is set to zero, then the device cannot be used
for input.

F (Bit 4) -- File-type device flag

This bit determines whether or not a device can
open and close files. A file-type device (e.g.,
diskette drive) will be handled differently by the
-OPEN and .CLOSE functions than a non-file-type
device (e.g., console printer, line printer,
keyboard). In addition to having FDR processing
performed on them, file-type devices are also
sensitive to end-of-file records. Non-file-type
devices are not subject to FDR processing, nor are
end-of-file records read from them or written to
them. A file-type device is indicated by the "F" bit
being set to one. Non-file-type devices have the "F"
bit set to zero.

W (Bit 3) -- Rewindable device flag

This bit indicates whether the .REWND function
is valid for the device. In the current version of
XDOS, it may appear as if the "W" flag and the "L"
flag are redundant, because only the diskette device
can be used for logical sector I/O and only the
diskette device can be "rewound": however, in order
to allow for expansion, the .REWND function’s
process ing depends on the "W" flag. If the "W" flag
is set to one, the device can be rewound. If the "w"
flag is set to zero, the device cannot be rewound.

XDOS 4.0 User’s Guide Page 19-05

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/0

S (Bit 2) -- System console flag

This flag distinguishes the system console from
all other devices. This is needed since the record
input function does special processing for the
certain control characters which are treated
differently when being input from another device.
These special characters are described in section
18.3.4. If the "S" bit is set to one, the device is
the system console. If the "S" bit is set to zero,
the device is not the system console.

L (Bit 1) -- Logical sector I/O flag

This flag is used to distinguish the diskette
drives from all other devices. Since the two
specialized I/O calls, .GETLS and .PUTLS, are only
valid for the diskette drives, a flag is necessary
that identifies that device. If the "L" flag is set
to one, logical sector I/O is valid (i.e., the device

is the diskette drive). If the "L" flag is set to
zero, logical sector 1/0 is invalid (i.e., the device

is not the diskette drive).

D (Bit 0) -- Default binary record format flag

Some devices cannot receive or transmit
eight-bit data bytes. For those types of devices a
special record format has been designed so that
binary records can be processed. Devices that can
process eight-bit data can process either type of
record format. The "D" bit controls the default
record format to be used when dealing with "binary"
records. The FMT field of the IOCFDF entry in the
IOCB has a special value that will cause the default
binary record format to be used for the indicated
device. If the "D" bit is set to one, the default
record format will be the ASCII-converted-binary
format (only if binary records are being processed).
If the "D" bit is set to zero, then the default
record format will be the binary format (only if
binary records are being processed). If the device
can process eight-bit data, then the setting of the
"D" bit is independent of the device type; however,
for devices which can only process seven-bit data,
the "D" bit must be set to one. Otherwise, the device

may respond unpredictably when binary data are being
transmitted to it.

19.2.1.5 CDBVDT -- Valid data types

This byte of the CDB is an extension of the CDBDDF
entry. It contains some additional flags that govern the
types of I/O accesses that can be made on the device. The
format of the CDBVDT entry is shown below.

XDOS 4.0 User’s Guide Page 19-06

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/0

: Seeeeee NOt used (=0)

Seeccececseee Binary device flag
TELELSELCCL ET See CTC Not used (=0)

ee coeccccecccccreccccccccccccsees NON-file format flag

The properties controlled by the various bits of the
CDBVDT entry are explained below.

N (Bit 7) -- Non-file format flag

This bit indicates whether or not the device can
be used to perform FDR processing. Certain devices
(i.e., those with the file-type bit set to zero in
CDBDDF) can never perform FDR processing; however,
devices which are file-type devices can, in some
cases, be used in either the file format or the
non-file format mode (see IOCDTT description, section
18.3.1.2). If the "N" bit is set to one, then’ the
device can be used in the non-file format mode. If
the "N" bit is set to zero, then the device cannot be
used in the non-file format mode. The diskette drive
is an example of a device that can only be used in
the file format mode. The line printer is an example
of a device that can only be used in the non-file
format mode.

NOT USED (Bits 3-6, 0-1) -- Reserved area

These bits of the CDBVDT byte are reserved for
future expansion. They must be zero. ,

B (Bit 2) -- Binary device flag

This bit indicates whether a device can process
eight-bit data or not. If the "B" flag is set to one,
then eight-bit data are valid. If the "B" flag is set
to zero, then eight-bit data are invalid.

19.2.1.6 CDBDDA -- Device dependent area

These two-bytes of the CDB are available to the device
drivers as working storage. For the XDOS-supported devices,
this field has been provided for future expansion. For other
devices, this field can be used for whatever purposes are
deemed appropriate.

19.2.1.7 CDBWST -- Working storage

These two-bytes of the CDB are available to the device
drivers as working storage.

XDOS 4.0 User’s Guide Page 19-07

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/0

19.2.2 Device drivers

Each device type that is to be accessed via the device
independent I/O functions (section 18.3) must have its own

driver program. All device drivers must be accessible for the
following five functions:

Turn the device on,
Turn the device off,

Perform device initialization,

Perform device termination, —

Input and/or output a single character. O
P

W
N
E

e
e

©

Not necessarily all of the five functions apply to each
device; however, an entry point must be provided in each
device driver for each of the five functions, regardless of

whether or not the function is performed.

Since the only address that is available to the device
independent I/0 functions is the starting address of the
device driver (CDBSDA of CDB), the following convention must

be used by each device driver. The starting address contained
in the CDBSDA entry must be the address of the beginning of a
jump table, one jump for each of the five functions listed
above. An example of such jump table is given below:

DVDRVS$ EQU * ADDRESS KEPT IN CDBSDA
JMP DEVON DEVICE ON ROUTINE

JMP DEVOFF . DEVICE OFF ROUTINE
JMP DEVINT INITIALIZATION ROUTINE

JMP DEVTRM TERMINATION ROUTINE

JMP DEVIO CHARACTER I/O ROUTINE

DEVRWD EQU x DEVICE REWIND ROUTINE

Each entry point to the device driver is accessed from
the device independent I/O functions by executing an indexed
subroutine call. The offset (index value) is defined by the
displacement of the entry point from the beginning of the
device driver. Since these offsets must be the same for all
device drivers, a set of system symbols is defined in the
XDOS equate file for the device driver entry point offsets.

The device on and off entry points are accessed at the
beginning and at the end of every record I/O function call
(.GETRC and .PUTRC). These entry points allow the device
driver to turn the device on and off, respectively. If such
actions are not defined for the device, then the entry points
should jump to a routine which simply exits the driver with a
"no error" status condition.

The device initialization and termination entry points
are called once by the .OPEN and .CLOSE' functions,
respectively. These entry points are intended to allow leader
to be punched on a paper tape device, for example. If such
actions are not defined for the device, then the entry points
should jump to a routine which simply exits the driver with a
"no error" status condition.

The character I/O entry point to the driver is used to

XDOS 4.0 User’s Guide Page 19-08

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/O

receive or transmit one byte of data. The transmitted or
- received byte is passed between the I/O functions and the
device driver in the "B" accumulator. For devices that can
process both input and output, the IOCB must be interrogated
("I0O" of IOCDTT) by the device driver to determine which

function is to be performed. Since the index register is
required to execute the jump to subroutine instruction, the
address of the IOCB is passed to the device driver using the
following convention:

JSR DVSIO,X CALL TO DRIVER

FDB IOCPTR POINTER TO IOCB“S POINTER

BCS ERROR RETURN HERE FROM DRIVER

IOCPTR FDB IOCB ADDRESS OF IOCB

With this convention, the address pushed on the stack as
a result of executing the jump to subroutine instruction will
point to the double byte which contains a pointer. It is the
data at the address identified by the pointer that is the
actual address of the IOCB itself. As a result, the device
driver cannot just execute a return from subroutine
instruction to get back to the I/O function. This calling
sequence applies to all entry points into all device drivers.

Before returning to the I/O function, the device driver
must set an error status condition indicating the state of
the performed action. Two things must be configured by the
driver to indicate an error. First, the IOCSTA byte of the
IOCB must be initialized with one of the standard I/O error

Statuses (section 18.3.1.1). Second, the carry condition
code must be set to one. If no error occurred, only the carry
condition code must be set to zero. The IOCSTA entry of the
IOCB need not be changed to zero since the I/O function will
set anormal return status before exiting. The "A", "Xx", "y"
and "U" registers need not be preserved by the device driver
in any case. The "B" register returns the character received
if the device driver was called upon for an input request.

19.2.3 Example of device driver

The following example illustrates a CDB and its
associated device driver for a high-speed paper tape reader.
The system symbols from the xXDOS equate file are used
throughout this example. First, the CDB is shown:

*

* CONTROLLER DESCRIPTOR BLOCK (CDB)
*

HRSCDB EQU *
FDB 0 CDBIOC
FDB HRDRVS CDBSDA
FDB SEEO4 CDBHAD
FCB DDSRES+DDSINP+DDSOCF CDBDDF
FCB VDSNFF+VDSBIN CDBVDT
FDB 0 CDBDDA
FDB 0 CDBWST

XDOS 4.0 User’s Guide Page 19-09

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/O

Logically, the paper tape reader should not be accessed

by multiple IOCBs at the same time. Thus, the device is
considered to be reservable (Bit "R" of CDBDDF set to 1). The
paper tape reader is an input device only. Therefore, bit "O"
of CDBDDF is zero and bit "I" is one. The paper tape reader
is sensitive to end-of-file records. Thus, it must be a
file-type device (Bit "F" of CDBDDF set to 1). Bits "Ww", "S",

and "L" are all zero since the paper tape reader is not
rewindable (according to the definition in section 19.2.1.4),
is not the system console, and is not able to perform logical
sector I/O. The default binary format has been arbitrarily
identified as binary record.

The paper tape reader is capable of being used in the
non-file format mode and is capable of transmitting eight-bit
data to the device. Thus, both bits "N" and "B" of CDBVDT are
set to one.

The only other required field of the CDB is the address
of the device driver in CDBSDA. The remainder of the CDB is

reserved for expansion or is used for working storage by the
device driver.

Next, the device driver itself is shown. Of the five
entry points that are required by each device driver, only
two are used for the paper tape reader driver. The other
three (device on, device off, and device termination) are
dummy vectors that set a "no error" return status and then
return to the I/O function.

XDOS 4.0 User*s Guide Page 19-10

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/0

*

*PIA EQUATES
*

PTCTL EQU 1 PIA CONTROL REGISTER
PTDTA EQU 0 PIA DATA REGISTER
*

*DEVICE DRIVER ENTRY POINTS
*

HRDRVS EQU x

JMP GOODR TURN DEVICE ON
*

JMP GOODR TURN DEVICE OFF
x

JSR INITR DEVICE INITIALIZATION
*

JMP GOODR DEVICE TERMINATION
x

BSR GETCP CHARACTER INPUT
TFR A,B RETURN WITH CHAR IN "B"

BCC RETURN CC => NO ERROR

LDX [0,S] CS => END OF MEDIA (TIMEOUT)

LDX 0,X GET ADR OF IOCB

LDA #ISEOM SET END OF MEDIA STATUS
STA IOCSTA,X

RETURN PULS Xx RETURN TO CALLER

JMP 2,X JUMP TO ADR FOLLOWING FDB

GOODR CLRA 1-BYTE CLEAR CARRY

BRA RETURN EXIT DRIVER
*

* READER INITIALIZATION ROUTINE
*

INITR LDX HRSCDB+CDBHAD GET THE PIA ADDRESS
CLR PTCTL,X
CLR PTDTA,X
LDA #$3C
STA PTCTL,X
RTS

*

* INPUT ONE CHARACTER
*

GETCP LDX HR$CDB+CDBHAD GET THE PIA ADDRESS
LDA PTDTA, X CLR INTERRUPT
LDA #$34 STROBE READER
STA PTCTL,X
LDA #$3C
STA PTCTL,X
CLR HRSCDB+CDBWST INIT THE TIMEOUT COUNTER
CLR HRSCDB+CDBWST+1 AND CLEAR CARRY

GETC] LDA PTCTL,X READY TO READ?
BMI GETC2 MI => YES

DEC HRSCDB+CDBWST+1 PL => CHECK TIMEOUT

BNE GETC1 NE => KEEP LOOPING

DEC HRS$CDB+CDBWST
BNE GETC1 NE => KEEP LOOPING

COMA SET CARRY FOR TIMEOUT
GETC2 LDA PTDTA,X GET CHAR

BCS GETC4 CS => TIMEOUT
*

* IF ASCII FILE, STRIP PARITY

XDOS 4.0 User’s Guide Page 19-11

INPUT/OUTPUT PROVISIONS 19.2 -- Device Independent I/O

LDX [2,S] GET ADR OF IOCB POINTER

LDX 0,X GET ADR OF IOCB

LDB IOCFDF , X PICK UP FILE ATTRIBUTES

ANDB #7 ISOLATE FMT BITS

CMPB #FMSFMA ASCII FILE ?

BNE GETC3 NE => NO, LEAVE 8 BITS

ANDA #S7F STRIP PARITY IF ASCII

GETC3 CLRB SET STATUS TO OK (CLEAR CARRY)
GETC4 RTS

19.2.4 Adding a non-standard device

If the device driver defined in the above example is to
be used by a user’s program with the device independent I/O
functions, then the only function that is treated differently
is the .RESRV function. Since .RESRV must be used to link the
IOCB with a known CDB, the .RESRV call is bypassed altogether
by the user program; however, before the .OPEN function is
invoked, the IOCB must’ be parameterized as if it had been
properly reserved.

Thus, the IOCGDW entry of the IOCB must be configured to
contain the address of the CDB with which communication is to
take place. In addition, bit "R" of IOCLUN must indicate that
the IOCB has been reserved. This information is also found in
the EXIT CONDITIONS description of the .RESRV function
(section 18.3.2).

Once the IOCB' has been configured in this manner, the
other I/O functions can be used in the normal fashion.

Page 19-12

CHAPTER 20

In the following description of the system functions
these symbols will be used:

Symbol Meaning

A accumulator
B accumulator
Index register X
Index register Y
Stack pointer register
User stack pointer register
Direct page register
Condition code register
Entire status flag of condition code
register (bit 7)

FIRQ mask of condition code register (bit
6)
Half-carry flag of condition code
register (bit 5)

I IRQ mask of condition code register (bit

4)
N Negative flag of condition code register

(bit 3)
Z zero flag of condition code register (bit

2)
Vv Overflow flag of condition code register

(bit 1)
Cc Carry flag of condition code register

(bit 0)
XH Most significant byte of xX
XL Least significant byte of xX
B,A The register pair B and A treated as a

sixteen bit register

K
x

w
D

Q
e

H
O
Q
O
U
G
N
H

ra]

It is assumed that the reader is familiar with what
system functions are, how they are invoked, what precautions
must be taken when testing programs using system functions,
and how errors are handled by system functions (see section
17.8).

The remainder of this chapter is devoted to the
description of all system functions not described thus far.
The description is divided into the following sections:
register functions, double-byte arithmetic functions,
character string functions, diskette file functions, and
miscellaneous functions.

20.1 Register Functions

The register functions was primarily intended for use as
an extension of the M6800 instruction set (in 6800 MDOS III).

XDOS 4.0 User’s Guide Page 20-01

OTHER SYSTEM FUNCTIONS 20.1 -- Register Functions

It should be noted that some of these functions are useless,

since the equivalent hardware instructions are available in
the M6809 instruction set. However, these entry points are
still available, to preserve compatibility with MDOS III.

Care should be taken when using the double-byte register
functions: they consider the B register as the most
significant byte and the A register as the least significant.
The M6809 D register is the concatenation of the A register
as the most significant byte and the B register as the least
signifcant. Using XDOS double-byte register functions in
conjunction with the double-byte hardware features requires
the A and B- register swapping (via "EXG A,B") before and

after each function call. It is then recommended to avoid the
use of these functions in new programs to the benefit of the
hardware instructions; old programs coming from M6800 MDOS
III generally use these functions, they need not be adapted
to the 6809 hardware and may carry on with the use of these
functions.

The .TXBA function transfers the contents of the X

register into the register pair B,A.

ENTRY PARAMETERS s None.

EXIT CONDITIONS: A contains XL.

B contains XH.

U, Y, DP and X are unchanged.

Cc is indeterminate.

Equivalent hardware code :

TFR X,D

EXG A,B

20.1.2 Transfer B,A to X -- .TBAX
eee

The .TBAX function transfers the contents’ of the
register pair B,A into the X register.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.

XH contains B.
XL contains A.
cc is indeterminate.

Equivalent hardware code :

EXG A,B
TFR D,X
EXG A,B

XDOS 4.0 User’s Guide Page 20-02

OTHER SYSTEM FUNCTIONS 20.1 -- Register Functions

20.1.3 Exchange B,A with X -- .XBAX

The - XBAX function exchanges the contents of the
register pair B,A with the contents of the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A contains entry value of XL.
B contains entry value of XH.
XH contains entry value of B.
XL contains entry value of A.
U, Y, DP and CC are unchanged.

Equivalent hardware code:

EXG A,B
EXG D,X

20.1.4 Add B to X -- .ADBX

The .ADBX function adds the contents of the B- register
to the contents of the X register. The addition is performed
as if B were an unsigned binary number.

ENTRY PARAMETERS :

EXIT CONDITIONS:

20.1.5 Add A to X --

None.

U, Y, DP, A and B are unchanged.
X has been incremented by the contents of

B.

CC has been set as in a normal unsigned
addition.

This function is equivalent to the
hardware instruction "ABX". However,

unlike this instruction, the
condition code is modified.

e ADAX

The .ADAX function adds the contents of the A register
to the contents of the X register. The addition is performed
as if A were an unsigned binary number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

U, Y, DP, A and B are unchanged.
X has been incremented by the contents of

A.

CC has been set as in a normal unsigned
addition.

Equivalent hardware code (CC not modified):

EXG A,B
ABX

EXG A,B

XDOS 4.0 User’s Guide Page 20-03

OTHER SYSTEM FUNCTIONS 20.1 -- Register Functions

20.1.6 Add B,A to X -- .ADBAX

The .ADBAX function adds the contents of the register
pair B,A to the contents of the X register.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.

X has been incremented by the contents of
B,A.

CC has been set as in a normal unsigned
addition.

Equivalent hardware code (CC: Z tested only):

EXG A,B
LEAX D,X
EXG A,B

20.1.7 Add X to B,A -- .ADXBA
Sem ee ee me wee me ee ee ee ew ee mw mm

The .ADXBA function adds the contents of the X register
to the contents of the register pair B,A.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: A has been incremented by XL.
B has been incremented by XH and C.
U, Y, DP, X are unchanged.
CC has been set as in a normal unsigned

addition.

Equivalent hardware code (r?equires 2 stack bytes):

PSHS Xx

EXG A,B

ADDD 0,S++
EXG A,B

20.1.8 Subtract B from X -- .SUBX

The .SUBX function subtracts the contents of the B
register from the contents of the X register. The subtraction
is performed as if B were an unsigned binary number.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.

X has been decremented by the contents of
B.

CC has been set as in a normal, unsigned

subtraction.

XDOS 4.0 User’s Guide Page 20-04

OTHER SYSTEM FUNCTIONS 20.1 -- Register Functions

The .SUAX function subtracts the contents of the A
register from the contents of the X register. The subtraction
is performed as if A were an unsigned binary number.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.
X has been decremented by the contents of

A.

CC has been set as in a normal unsigned
subtraction.

The .SUBAX function subtracts the contents of the
register pair B,A from the contents of the X register.

ENTRY PARAMETERS: None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.
X has been decremented by the contents of

B,A.

CC has been set as in a normal unsigned
subtraction.

20.1.11 Subtract X from B,A -- .SUXBA

? The .SUXBA function subtracts the contents of the xX
register from the contents of the register pair B,A.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: A has been decremented by XL.
B has been decremented by XH and C.
U, Y, DP and X are unchanged.
CC has been set as in a normal unsigned

Subtraction.

20.1.12 Compare B,A with X -- .CPBAX

The -CPBAX function compares the contents of the
register pair B,A to the contents of the X register.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, X, DP, A and B are unchanged.
CC has been set as in a normal unsigned

subtraction.

20.1.13 Shift X right -- .ASRX

The .ASRX function shifts the contents of the xX register
to the right by one bit position. Bit 15 is held constant and

XDOS 4.0 User’s Guide Page 20-05

OTHER SYSTEM FUNCTIONS 20.1 -- Register Functions

bit 0 is moved into C.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.

X is shifted right one bit position. The
sign bit is propagated into the lower
bits upon subsequent shifts.

C contains bit zero of the entry value of
X. The remainder of cc is
indeterminate.

20.1.14 Shift X left -- .ASLX

The .ASLX function shifts the contents of the X register
to the left by one bit position. Bit 0 is filled with zero.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, DP, A and B are unchanged.
X is shifted left one bit position. Bit

zero is filled with zero.
C contains bit 15 of the entry value of

X. The remainder of CC is

indeterminate.

20.1.15 Push X on stack -- .PSHX

The .PSHX function pushes the contents of the X register
on the current stack.

Since the equivalent hardware instruction PSHS Xx
occupies only 2 bytes, this function has been modified to
(try to) replace the function call in memory by the PSHS X
op-code value. However, it pushes the content of the X
register anyway. The next time that the same sequence will be

executed, The hardware instruction will have replaced the

call and will be executed.

ENTRY PARAMETERS : None.

EXIT CONDITIONS: U, Y, X, DP, A, B and CC are unchanged.
S has been decremented by 2. The contents

of XL have been pushed on the stack
followed by the contents of XH.

Equivalent hardware code:

PSHS Xx

The .PULX function pulls the contents from the stack
into the X register.

Since the equivalent hardware instruction PULS X

XDOS 4.0 User’s Guide , Page 20-06

OTHER SYSTEM FUNCTIONS 20.1 -- Register Functions

occupies only 2 bytes, this function has been modified to
(try to) replace the function call in memory by the PULS X
op-code value. However, it pulls the contents from the’ stack
into the xX register anyway. The next time that the same
sequence will be executed, The hardware instruction will have
replaced the call and will be executed.

ENTRY PARAMETERS: None.

EXIT CONDITIONS: U, Y, DP, A, B and CC are unchanged.

XH contains the contents located at the

entry value of S +1.
XL contains the contents located at the

entry value of S + 2.
S has been incremented by 2.

Equivalent hardware code:

PULS Xx

20.2 Double-byte Arithmetic Functions

The double-byte arithmetic functions are used by some of
the other system functions and the XDOS commands as_ an
extension of the M6809 instruction set. These functions are
not as general purpose as the register functions, but they
are useful in special cases.

The .ADDAM function increments a double byte in memory
by the contents of the A register. The addition is performed
as if A is an unsigned binary number.

ENTRY PARAMETERS: X = The address of most significant byte
of a double byte in memory.

EXIT CONDITIONS: A is indeterminate.

U, Y, X, DP and B are unchanged.
CC is indeterminate.
The double byte in memory has been

incremented by the contents of A.

The .SUBAM function decrements a double byte in memory
by the contents of the A _ register. The subtraction is
performed as if A is an unsigned binary number.

ENTRY PARAMETERS: X = The address of the most significant
byte of a double byte in memory.

EXIT CONDITIONS: A is indeterminate.
U, Y, X, DP and B are unchanged.

CC is indeterminate.
The double byte in memory has been

XDOS 4.0 User’s Guide Page 20-07

OTHER SYSTEM FUNCTIONS

decremented by the contents of A.

20.2.3 Shift memory right -- .DMA

The .DMA function shifts the contents of a double byte
in memory to the right by the number of bit positions
represented by the contents of the A register. The effect is
to divide the double byte by a power of 2. The exponent is
given by the value of the A register.

ENTRY PARAMETERS : X = The address of the most significant
byte of a double byte in memory.

EXIT CONDITIONS: U, Y, X, DP, A and B are unchanged.
CC is indeterminate.
The double byte in memory has been

shifted to the right by the number of
bits represented by the contents of
A. Zero bits are brought in from the
left as the shift takes place.

20.2.4 Shift memory left -- .MMA

The .MMA function shifts the contents of a double byte
in memory to the left by the number of bit positions
represented by the contents of the A register. The effect is
to multiply the double byte by a power of 2. The exponent is
given by the value of the A register.

ENTRY PARAMETERS: X = The address of the most’ significant
byte of a double byte in memory.

EXIT CONDITIONS: U, Y, X, DP, A and B are unchanged.

CC is indeterminate.
The double byte in memory has_ been

shifted to the left by the number of
bits represented by the contents of
A. Zero bits are brought in from the
right as the shift takes place.

20.3 Character String Functions

The character string functions are used by some of the
more complex system functions and the XDOS commands as macro
instructions or subroutines.

The .MOVE function transfers a series of contiguous
bytes in memory from one location into another location. The
move is made starting with the lowest addressed byte of the

source string.

ENTRY PARAMETERS : B = The number of bytes to be moved. If B
is intially zero, 256 (decimal) bytes
will be moved.

XDOS 4.0 User’s Guide Page 20-08

20.2 -- Double-byte Arithmetic Functions

OTHER SYSTEM FUNCTIONS 20.3 -- Character String Functions

X = The address of the first byte of a
four-byte parameter packet. The

parameter packet has the following
format:

0 | Address of |
-~ the ee

1 | source string |

2 | Address of |
-- the -—

3 «| destination string |

EXIT CONDITIONS: A is indeterminate.
B= 0.
J, Y, X and DP are unchanged.
CC is indeterminate.
The addresses of the source and

destination strings in the parameter
packet have both been incremented by
the entry value of B.

The source string has been moved into the
destination string.

20.3.2 String comparison -- .CMPAR

The .CMPAR function compares a series of contiguous
bytes in memory from one location with a series of bytes at
another location. The comparison is made starting with the
lowest addressed byte of the source string.

ENTRY PARAMETERS: B = The number of bytes to be compared.
If Bis intially zero, 256 (decimal)
bytes will be compared.

X = The address of the first byte of a
four-byte parameter packet. The
parameter packet has the following
format:

0 (| Address of |
aad the --

1 | source string |

2 | Address of |
-- the -

3 | destination string |

EXIT CONDITIONS: A is indeterminate.
B = The number of bytes remaining in the

string which did not compare. If B is
zero, the strings were identical. If
the strings mis-compared on the first
byte, B is unchanged.

U, Y, X and DP are unchanged.

Z2=1 if the strings compared (B = 0).

XDOS 4.0 User’s Guide Page 20-09

OTHER SYSTEM FUNCTIONS 20.3 -- Character String Functions

The remainder of CC is indeterminate.
Z= 0 if the strings mis-compared. The

remainder of CC is indeterminate.
The addresses of the source and

destination strings in the parameter
packet have both been incremented by
the entry value of B if the two
strings compared. Otherwise, the
source string pointer will contain
the address of the character
following the mis-comparison, and the
destination string pointer will
contain the address of the character
of the mis-comparison.

The source and destination strings are
unchanged.

20.3.3 Character-fill a string -- .STCHR

The .STCHR function stores a specific character into a
series of contiguous bytes in memory.

ENTRY PARAMETERS : A The character to be stored into the
string.

B = The number of bytes to be filled with
the character. If B is initially
zero, 256 (decimal) bytes will be
filled.

X = The address of the first byte of the
string to be filled.

EXIT CONDITIONS: U, Y, X, DP and A are unchanged.
B= 0.
cc is indeterminate. ;
The string is filled with the character

in A.

oe ee ee tae ee ee ee ee we 0 ee ee ee ee ee ee

The .STCHB function stores blanks ($20) into a series of

contiguous bytes in memory.

ENTRY PARAMETERS : B The number of bytes to be filled with
blanks. If B is initially zero, 256
(decimal) bytes will be filled.

X = The address of the first byte of the
string to be filled.

EXIT CONDITIONS: A = $20 (space).
B 0.
U, Y, X, DP are unchanged.
cc is indeterminate.
The string is filled with blanks.

XDOS 4.0 User’s Guide Page 20-10

OTHER SYSTEM FUNCTIONS 20.3 -- Character String Functions

20.3.5 Test for alphabetic character -- .ALPHA

The .ALPHA function examines the character in the A
register for being an upper case alphabetic character (A-Z).

ENTRY PARAMETERS : A = The character to be tested.

EXIT CONDITIONS: U, Y, X, DP, A and B are unchanged.
C = 0 if A contains a valid alphabetic

character. The remainder of CC is

indeterminate.
C = 1 if A contains an invalid alphabetic

character. The remainder of CC is

indeterminate.

ee ceo ee ee ee ee ee ee ee en we ee ee ee es

The .NUMD function examines the character in the A
register for being a valid ASCII decimal digit (0-9).

ENTRY PARAMETERS : A = The character to be tested.

EXIT CONDITIONS: A is unchanged if it contained an invalid
digit. Otherwise, A contains the
binary equivalent of the decimal
digit (bits 4-7 will be zero).

U, Y, X, DP and B are unchanged.

C = 0 if A contained a valid digit. The
remainder of CC is indeterminate.

C= 1 if A contained an invalid digit.
The remainder of CC is indeterminate.

20.4 Diskette File Functions
em ee me ce cee me oo we ee ee oe ee ee ee

The diskette file functions can be used in conjunction
with the device dependent I/O functions (section 18.2) for
diskette accessing. These functions are used by the device
independent I/O functions to perform directory searches and
diskette space allocation and deallocation. The XDOS commands
use these functions for changing file names and attributes
and for loading programs from memory-image files from the
diskette into memory.

All of the functions described in this secticn require a
twenty-five byte parameter table called the diskette file
table, or DFT. The format of the table is shown here so that

it will not have to be repeated for each function. It will be
seen that the first sixteen bytes of the DFT are identical in
format with an XDOS directory entry. Also, the entire DFT is

of the same format as part of an IOCB (starting with IOCLUN
and ending with IOCSBE). The contents of the individual
fields are not described in this section since they have been
adequately discussed in sections 17.1.4 and 17.3.1. All of
the diskette file functions will change the diskette
controller variables below location $0020.

XDOS 4.0 User’s Guide Page 20-11

OTHER SYSTEM FUNCTIONS

00 | Logical unit number

o1 |

02 |

03 |

04 | File Name

05 |

06 |

07 |

08 |

09 |
-- Suffix

OA |

OB | Physical sector number
-- of file*s RIB

oc |

o |wilo|]s|c|{n i] FMT

OE | (reserved; =0)

OF |
-- (reserved; =0)

10 |

11 | PSN | EN

12 | (reserved; =0)

13. |
-- Initial new file size

14 |

15 | Sector buffer
= start address

16 |

17 | Sector buffer
= end address

18 |

20.4.1 Directory search -- .DIRSM

various criteria. This function

20.4 -- Diskette File Functions

-- NAM

-- SUF

-- RIB

FDF - File descrip- F ile d i

-- tor flags

| DEN - Directory
-- entry number

-- SIZ

-- SBS

-- SBE

The .DIRSM function performs directory searches based on
can be used for finding,

creating, or deleting directory entries on an XDOS diskette.

XDOS 4.0 User’s Guide Page 20-12

OTHER SYSTEM FUNCTIONS 20.4 -- Diskette File Functions

ENTRY PARAMETERS: B contains a function code that specifies
the action to be performed by .DIRSM.

X = The address of the DFT. All calls to
-DIRSM require that LUN contains’ the
logical unit number’ to be accessed
(ASCII number 0-1, $30-$31), that SBS
contains the starting address of a
128 (decimal) byte sector buffer, and
that SBE contains the ending address
of the sector buffer. If the sector
buffer is larger than aé_e single
sector, only the first 128 bytes will
be used.

The following function codes for the B
register are defined:

B = 1 indicates to search for and

retrieve the next, non-deleted

directory entry. The DFT must have
DEN = 0 for the initial call. The DEN
must then remain unchanged for
subsequent calls since it is used to
determine where to resume the search.

The contents of the sector buffer

must also remain unchanged between
successive calls for this function
code.

B= 2 indicates to search for and
retrieve a directory entry with a
specific file name and suffix. The
DFT entries NAM and SUF are used to
specify the file name.

B = 4 indicates to create a new unique
directory entry of a given name and
suffix. Initial diskette space
allocation is performed if the
directory entry is created. The DFT
entries NAM and SUF are used to
specify the directory entry to be
created. A search of the directory is
performed for this entry to ensure
that it does not already exist. The
DFT entries FDF and SIZ must also. be
specified. FDF must specify both the
inherent and the changeable
attributes to be initially assigned
to the file. SIZ is used to describe
the initial diskette space that is to
be allocated. If SIZ is zero, the
default space allocation will be
performed. If SIZ is non-zero, the
allocation will be performed using
the contents of SIZ as the minimum
number of sectors to be allocated.

B = 8 indicates a similar function to be

XDOS 4.0 User’s Guide Page 20-13

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

XDOS 4.0 User’s Guide

20.4 -- Diskette File: Functions

performed as for the B=4 case;
however, in the event that a
directory entry already exists with
the NAM and SUF found in the DFT,
that file’s directory entry
information will be returned in the

DFT. Otherwise, the DFT is

parameterized identically to the B=4

case.

= 16 ($10) indicates that a specific
directory entry is to be deleted from
the directory. The DFT entries NAM
and SUF are used to specify the entry
to be deleted.

= 32 ($20) indicates to search for the
next, non-deleted directory entry
with a specific set of file
attributes. Entries encountered with
different attributes will not be
returned by the search. The DFT must
have DEN = 0 for the initial call.
The DEN must’ then remain unchanged
for subsequent calls since it is used
to determine where to resume the

search. The contents of the sector

buffer must also remain unchanged
between successive calls for this
function code. The FDF entry must
contain the specific attributes to be
searched for.

is indeterminate.

contains the return status. The

following return statuses are
defined:

= 0 indicates that no errors occurred

(normal return).

= 1 indicates that the directory entry
specified by LUN, NAM, and SUF was
not found in the directory.

= 2 indicates that B- contained an
invalid function code upon entry to
e~DIRSM.

= 3 indicates the physical end of the
directory was encountered during a
"search for next directory entry"
request (Entry value of B = 1 or 32).

= 4 indicates that the directory is
full and cannot accomodate a new
entry.

= 5 indicates that insufficient

Page 20-14

OTHER SYSTEM FUNCTIONS 20.4 -- Diskette File Functions

diskette space exists to satisfy the
initial space requirements of SIZ
when attempting to create a new
directory entry. The .ALLOC function
(section 20.4.4) should be consulted
for a full description of the
allocation scheme and the reasons for
arriving at this error.

B = 6 indicates that the file name
supplied was illegal.

B = 7 indicates that an attempt was made
to create a duplicate entry in the
directory. The file name identified
by LUN, NAM, and SUF already exists
in the directory.

B = 8 indicates that a new directory
entry was created as_ specified by
LUN, NAM, and SUF.

B = 9 indicates that an attempt was made
to delete a protected file.

U, Y¥, X and DP are unchanged.

Q 7) 0 if no errors occurred (B = 0). The
remainder of CC is indeterminate.

C = 1 if an error occurred (B not’ zero).

The remainder of CC is indeterminate.

The DFT entries were changed in the
following manner depending on the
various entry values of B:

B= 1. I£ a non-deleted directory entry
was found, then NAM, SUF, RIB, FDF,
and RES contain the full image of the
directory entry. DEN will contain the
computed directory entry number. The
remainder of the DFT is unchanged.
The sector buffer contains the
current directory sector. If no
directory entry was found, the
directory entry fields NAM through
RES, inclusive, will be unchanged.
DEN and the contents of the sector
buffer are indeterminate.

B= 2. The DFT is affected the same as
for B=l.

B= 4. If a new directory entry was
created, RIB and DEN will reflect the
appropriate values for the new entry.
The sector buffer will contain the
current directory sector. If a new
entry was not created (duplicate file

XDOS 4.0 User’s Guide Page 20-15

OTHER SYSTEM FUNCTIONS 20.4 -- Diskette File Functions

name), then the DFT will be affected

in the same way as for B=1l.

B = 8. The exit conditions for this case
are the same as for B=4. In addition,
if a duplicate entry already existed
in the directory, the directory entry
fields NAM through RES, inclusive,

will contain the full image of the
duplicate entry. DEN will also
contain the duplicate entry’s
directory entry number.

B= 16. If the entry is deleted, the
complete directory entry will be
returned in fields NAM through RES,
inclusive. In addition, RIB will be

zero. The contents of the sector
buffer are indeterminate. If the
entry is not deleted, all parameters
except RES and DEN will be unchanged.
RES, DEN and the contents of the

sector buffer will be indeterminate.

B = 32. The DFT is affected in the same
way as for B=1.

Page 20-16

(20.4.2 Change file name/attributes -- .CHANG
ere ee ee ee ee eee re ee ee wee ee me ee me ee ee ee ee ee ee ee

The .CHANG function allows a directory entry to have its
name, suffix, and/or attribute fields changed.

ENTRY PARAMETERS: B= A _ function code that specifies the
action to be taken by .CHANG. If bit
0 is set to one, .CHANG will change
the file name and suffix fields of a
directory entry. If bit 1 is set to
one, the function will change’ the

attribute field of a directory entry.
Bits 2-7 are not used and should be

zero. Bits 0 and 1 are independent of
each other. Thus, .CHANG can be’ used

to change file name, suffix, and

attributes at the same time.

X = The address of a file table packet.
The packet has the following format:

0 | Address of |
== old DFT -=

1 | |

2 | Address of |
-- new DFT --

3 | |
ee ce oe ee ee ee ee we ee ee ee ee ee

The "old DFT" contains the LUN, NAM,
and SUF fields of an existing
directory entry that is to be
changed. The SBS contains the
Starting address of a 128 (decimal)
byte sector buffer. SBE contains’ the
ending address of the sector buffer.
If the sector buffer is larger than
One sector, only the first 128 bytes

will be used. The "new DFT" contains
the information that is to be placed
into the directory entry. LUN in both
DFTs must be the same (ASCII number
0-3, $30-$33). The new DFT must
contain NAM, SUF, and/or FDF fields
as indicated by the function code in
the B register. A sector buffer is
not required by the new DFT.

EXIT CONDITIONS: A is indeterminate.

B contains’ the return status. The
following return statuses are
defined:

B = 0 indicates that no errors occurred

(normal return).

XDOS 4.0 User”s Guide Page 20-17

XDOS 4.0 User’s Guide

w WW

C=

1 indicates that B contained an
invalid function code upon entry to
» CHANG.

2 indicates that the file name in the

old DFT is invalid.

3 indicates that the directory entry
specified by LUN, NAM, and SUF of the
old DFT could not be found in the
directory. The old DFT directory
entry must exist in order for the
change to be possible.

4 indicates that the directory entry
specified by LUN, NAM, and SUF of the
new DFT already existed in the
directory. The new DFT directory
entry must have a unique file name
and suffix (only if changing the old
entry’s file name).

5 indicates that an invalid attribute

change’ was attempted. Only the
changeable attributes (system file,
write protection, delete protection)
can be changed. The inherent
attributes of a file remain constant
for the duration of the file’s
existence.

6 indicates that the file name in the
Y, X and DP are unchanged.

0 if no errors occ urred (B = 0). The

remainder of CC is indeterminate.

1 if an error occurred (B not zero).

The remainder of CC is indeterminate.

four-byte file packet is unchanged.

old DFT and its sector buffer have
been changed as a result of
performing a directory search (.DIRSM
with B = 2). The new DFT has_ been
changed as a result of performing a
directory search (.DIRSM with B = 4);
however, no diskette space allocation

was performed. A file name change is
affected by deleting the old
directory entry and by creating a new
directory entry. Thus, the directory
entry’s DEN (and its position within
the directory) may have changed;
however, no space is deleted or
reallocated.

Page 20-18

The .LOAD function reads a program from a memory-image
file from the diskette into memory. Control can be passed to
the resident debug monitor, to the calling program, or to the
loaded program. In addition, the program can be loaded into
the Alternate Memory Map of the EXORset if it is properly

configured.

The .LOAD function does not verify that memory exists
for the areas into which a program gets loaded. Programs
which load above location $1F and below the end of contiguous
Memory known to XDOS are guaranteed that memory exists since

the memory was sized during XDOS initialization; however,
programs loading beyond the end of contiguous memory known to
XDOS or programs loading into the Alternate Memory Map are
not guaranteed that memory exists. The operator is
responsible for knowing where memory is configured in his
system and where his programs are loaded. Also, due to the

nature of the diskette controller, it is not possible for the
e-LOAD function to compare what is read from the file with
what is stored into memory. Only diskette controller’ read
errors can be detected during the load process.

Programs brought into memory from the diskette will be
loaded in multiples of eight bytes. This fact must be
considered when programs are loaded into adjacent blocks of
memory close to other programs, or if programs are loaded
into the upper end of a block of memory.

20.4.3.1 Load from main controller drive
SS mem em ee eee ee me ee me ee ee wm es ee ee ee ee ee ee ee

Uses program end address + 64 as stack if control is not
to be passed to calling program. If region bit set, updates
ENDUSS.

20.4.3.1.2 Load in alternate map

Checks that RAM memory exists in alternate map (whole
program area); this memory may not be shared with current
map. If control is not to be passed to calling program,
disables XDOS interrupt vectors, uses EXORbug stack and
toggles maps.

20.4.3.1.3 Load anywhere in current map

Disables XDOS interrupt vectors, uses EXORbug stack,
transfers control to disk firmware.

20.4.3.2 Load from alternate controller

These functions, although feasible, are slower because

XDOS 4.0 User’s Guide Page 20-19

of cross map operations.

20.4.3.2.1 Load in system available memory

Same as 10.1.1.1; the EXORbug stack is used to access
the alternate drive but the stack pointer is restored at the
end of the function to reflect the conditions under 10.1.1.1.

20.4.3.2.2 Load in alternate map

Checks that memory in the alternate map (not shared with
the current map) exists in the whole program loading area,
uses EXORbug stack and executes alternate controller
firmware, restores stack pointer if control is to be passed
to the calling program, else, disables XDOS interrupt vectors
and toggles maps.

20.4.3.2.3 Load anywhere in current map
ce ee ns ee ee ee ee eee ee ee ee ee ee ee ee ee ee ee

This is a special case: the program must not be loaded
above $E000 (alphanumeric display memory). The screen memory
is used for cross map operations. During load time, the
screen memory is disabled (screen is blank). Upon completion
of the load operation, the screen is erased and the following
message is displayed:

LOAD COMPLETE

The XDOS interrupt vectors are disabled and the stack pointer
is initialized to point to the EXORbug stack. If control is
to be passed to the loaded program, NO REGISTER
INITIALIZATION IS PERFORMED.

ENTRY PARAMETERS: B = A function code that specifies the
action to be performed by .LOAD. This
action includes selecting the memory
map; checking the limits of the
loaded program against the memory
map; and the passing of control to
the debug monitor, loaded program, or
calling program. The following
function codes are defined:

Bit 0 = 1 indicates that control is to be
given to the loaded program at its
starting execution address as
obtained from the file*s RIB. Bit 0
is mutually exclusive with bits 1 and
2

Bit 1 = 1 indicates that control is to be
given to the resident debug monitor
after the program is loaded. Bit 1 is
mutually exclusive with bits 0 and 2.

Bit 2 = 1 indicates that control is to be

XDOS 4.0 User’s Guide Page 20-20

XDOS 4.0 User’s Guide

Bit

Bit

Bit

Bit

given to the loaded program ata
starting execution address specified
in the DFT, not at the address
contained in the file*s RIB. The
Starting execution address must be
specified in DEN of the DFT. Bit 2 is
mutually exclusive with bits 0 and 1.

4 = 1 indicates that the program can
only be loaded above the _ resident
XDOS (location SI1FFF) and below the
last location of contiguous memory
established during XDOS
initialization. Programs loaded in
this manner require an additional
fifty bytes of memory beyond the last
address loaded into by the program.
The XDOS variable ENDUSS will be
changed to reflect the last address
loaded into by the program. The XDOS
interrupt vector link will be
unchanged to allow access to XDOS
system functions. Bit 4 is mutually
exclusive with bits 5 and 7.

5 = 1 indicates that the program can
Only be loaded into’ the Alternate
Memory Map of the EXORset. The XDOS
interrupt link will be restored to
point back to the debug monitor if
control is passed to the loaded
program or to the monitor. If control
is returned to the calling program,
the XDOS interrupt vector link will
be unchanged. The only requirement
placed on programs loading into the
Alternate Memory Map is that the
ending load address not be greater
than SFFFF. Otherwise, any memory
locations (SOO00-FFFF) can be loaded
into. It must be avoided to load a
program in the monitor ram _ region,
since it will destroy the monitor
parameters and stack: That may cause
the .LOAD function to blow up. Bit 5
is mutually exclusive with bits 4 and
te

6 = 1 indicates that no directory
search is to be performed. The RIB
entry of the DFT contains the
physical sector number of the RIB of
the file from which the program is to
be loaded.

7 = 1 indicates that the program can
be loaded anywhere in memory above
location S1F. The only other
requirement is that the ending load
address not exceed S$FFFF. No checks

Page 20-21

are made for overlaying the resident
XDOS or for loading into
discontiguous memory. As a result,
the XDOS interrupt vector link is
restored to point back into the debug
monitor, making XDOS system functions
unaccessible. This function requires
one of the control passage bits (0,
1, or 2) to be set to one. Control

must be passed to either the loaded
program or to the debug monitor.
Control cannot be returned to the
calling program. It must be avoided
to load a program in the monitor ram
region, since it will destroy the
monitor parameters and stack: That
May cause the .LOAD function to blow
up. Bit 7 is mutually exclusive with
bits 4 and 5.

If none of bits 0-2 are set, then control

will be returned to the calling
program after the program is loaded.

X = The address of the DFT. All calls to

the .LOAD function require that LUN
contains the logical unit number to
be accessed (ASCII number 0-1,
$30-$31), that SBS contains’ the
Starting address of a 128 (decimal)

byte sector buffer, and that SBE
contains the ending address of the
sector buffer. If the sector buffer

is larger than one sector, only the
first 128 bytes will be used. For all
cases but one (Bit 6 set to 1), the
DFT must also contain the file name
and suffix in NAM and SUF. For’ the
Bit 6 case, NAM and SUF are not
required. Instead, the physical
sector number of the file*s RIB must

be placed into RIB.

EXIT CONDITIONS: A is indeterminate.

B contains’ the return status. The
following return statuses are defined
(only if control is returned to the
calling program):

B = 0 indicates that no errors occurred
(normal return).

B= 1 indicates that B- contained an
invalid function code upon entry to
-LOAD. An invalid function may be one
that is not defined, or use of more

than one of the mutually exclusive
bits. This error will also occur when
attempting to load into the Alternate

XDOS 4.0 User’s Guide Page 20-22

Memory Map in a system which is not
properly configured.

B = 2 indicates that the file name

supplied is illegal.

B = 3 indicates that the directory entry
specified by LUN, NAM, and SUF was
not found in the directory.

B = 4 indicates that the directory entry
specified by LUN, NAM, and SUF does

not have the memory-image format.
Only programs from memory-image file
can be loaded from the diskette.

B = 5 indicates that an attempt was made
to load a program into ané_ invalid
range of memory. If bit 4 was set,
the program must load above S$1FFF and
eight bytes below the end of
contiguous memory. If bit 5 was” set,
the program must load within the
range $O000-SFFFF, inclusive, in the
Alternate Memory Map of the EXORset

properly configured. If bit 7 was
set, the program must load within the
range $20-SFFFF, inclusive.

B = 6 indicates that the starting
execution address is invalid. The
Starting execution address must be
within the range of memory loaded by
the program.

B = a diskette controller error’ status
($31-$39) if a diskette controller
error occurred during the load
attempt. This status can only be
returned if control was to be passed
back to the calling program (Bits 0-2
all zero and Bit 5 zero in entry
value of B) or if the program was to
be loaded into the Alternate Memory
Map and executed (Bit 5 set to one

and bits 0 or 2 set to 1). Otherwise,
any diskette controller errors that
are detected while the program is
being loaded will cause the
two-character diskette controller

error message to be displayed and
control passed to the debug monitor.
These two-character error messages
are discussed in detail in section
21.1.

X is unchanged if control is returned to
the calling program (Bits 0-2 all
zero in entry value of B). Otherwise,
X will contain the starting load

‘XDOS 4.0 User’s Guide Page 20-23

address of the program (lowest
address loaded into).

C = 0 if no errors occurred (B = 0). The

remainder of CC is indeterminate.

C = 1 if an error occurred (B not zero).

The remainder of CC is indeterminate.

S is configured depending on which’ range
of memory is loaded into. If loading
above the resident XDOS (Bit 4 set to
one in entry value of B), the stack

pointer will contain the highest
address loaded into (fifty bytes

greater than the highest program

location). If loading over the
resident XDOS or into discontiguous
memory (Bit 7 set to one in entry
value of B) or into the Alternate

Memory Map (Bit 5 set to one in entry
value of B), the stack pointer will
contain the address of the EXORbug
stack area.

The DFT has been changed as if a
directory search has been performed
(.DIRSM with B = 2). In addition, RES
contains the starting load address
and DEN contains the starting
execution address as found in the
file*s RIB. The DFT contents can only
be accessed if control is returned to
the calling program.

If the resident debug monitor is given control (Bit 1
set to one in entry value of B), the pseudo registers are

initialized as follows:

Pseudo register Contents

Starting execution address
See description of S above. Contents
vary depending on load mode.
Ending load address.
Ending load address.
Starting load address.
Zero.

Zero.

Zero.
$50 (F and I set, E, H, N, 2, V andcC
clear).

n
r
g

Q
U
r
u
o
x
K
G

ae)

QD

This feature facilitates starting the execution of a program
from the debug monitor since the starting execution address
need not be remembered by the operator. If the program is
given control, the registers are initialized as above, except
the condition code register: the F and I bits are always set,
the others are indeterminate.

XDOS 4.0 User’s Guide Page 20-24

20.4.4 Allocate diskette space -- .ALLOC

The .ALLOC function allocates contiguous segments of
diskette space for a file. The file“s Retrieval Information
Block and _ the system’s Cluster Allocation Table are updated
to account for the allocated space. Since space allocation is
performed automatically by the device independent I/0
functions, the .ALLOC function should only be used by
programs that are doing physical sector I/O on _ xXDOS
compatible diskettes.

ENTRY PARAMETERS : X = The address of the DFT.

The DFT must’ contain the following
parameters:

LUN must contain the logical unit number
on which the file resides (ASCII
number 0-3, $30-$33).

RIB must contain the physical sector
number of the file”s RIB if the
directory entry has already been
created (additional space

allocation). Otherwise, RIB must

contain the value zero to indicate
that no Retrieval Information Block

exists for the file (initial space

allocation).

FDF should have the "C" bit set to
indicate whether space is to be
allocated contiguously to the already
existing space (RIB not zero). If the
"C" bit is set to zero, additional
Space can be allocated anywhere on
the diskette. If RIB is zero, the FDF
entry is not required.

SIZ must contain the number of sectors
that are to be allocated. If SIZ is

zero, the default allocation size (32

clusters) will be used.

SBS must contain the starting address of
a 128 (decimal) byte sector buffer.

SBE must contain the ending address of
the sector buffer. If the sector
buffer is larger than one_ sector,
only the first 128 bytes will be
used.

EXIT CONDITIONS: A is indeterminate.

B contains the return status. The return

statuses are taken from the set of

codes defined for the device

independent I/O functions. Only the

XDOS 4.0 User”s Guide Page 20-25

XDOS 4.0 User’s Guide

system symbols are given here _ for
those return statuses. The exact
values can be found from the XDOS
equate file, section 18.3.1.1, or

section 21.3. The following return
statuses are defined:

0 indicates that no errors occurred
(normal return).

ISRIB indicates that the file had an
existing Retrieval Information Block
that was invalid (see section 17.2).

ISFSPC indicates that insufficient
space is available to accommodate the
allocation requirements. Tf SIZ
contained a non-zero value at the

entry to .ALLOC, this error indicates
that the specific amount of space
requested could not be allocated.
This can occur for two reasons.
First, if the file is segmented ("Cc"

of FDF set to zero), the number of

sectors specified in SIZ could not be
allocated in a_ single, contiguous
block anywhere. Second, if the file
is contiguous ("C" of FDF set to
one), the number of sectors specified
in SIZ could not be allocated
contiguously with the existing space.
If SIZ contained a zero value, this
error indicates that no space is
available at all on the diskette, or
that no space is available that is
contiguous to the existing space,
depending on "C" being zero or one in
FDF. If the default of 32 clusters
(SIZ = 0) cannot be allocated, .ALLOC
will allocate whatever space it can
without generating an error. If SIZ
is non-zero, an error will be

generated if the exact number of
sectors cannot be allocated.

ISSSPC indicates that the file’s
Retrieval Information Block could not
accommodate the required number of
SDWs for the requested allocation.
This error occurs if a file is very
fragmented.

U, Y, X and DP are unchanged.

Cc 0 if no errors occurred (B = 0). The
remainder of CC is indeterminate.

1 if an error occurred (B not zero).

The remainder of CC is indeterminate.

Page 20-26

The DFT is’ unchanged if an error
occurred. If no errors occurred, the

DFT has been changed in the following
Manner. Bytes 3 and 4 contain the SDW
of the last allocated segment. Bytes
5 and 6 contain the starting, logical
sector number of the last allocated
segment. SUF contains the _ logical
sector number of the logical
end-of-file, and RIB, if originally
zero, contains the physical sector
number of the file”’s Retrieval
Information Block. The contents of
the sector buffer are indeterminate.

20.4.5 Deallocate diskette space -- .DEALC

The .DEALC function deallocates segments of diskette
Space from a file. The file*s Retrieval Information Block and
the system’s Cluster Allocation Table are updated to account
for the deallocated space. Since space deallocation is
performed automatically by the device independent I/0
functions, the .DEALC function should only be used by
programs that are doing physical sector I/O on _ xXDOS
compatible diskettes.

ENTRY PARAMETERS : X = The address of the DFT.

The DFT must’ contain the following
parameters:

LUN must contain the logical unit number
on which the file resides (ASCII

number 0-3, $30-$33).

Bytes 1 and 2 must contain the files
logical sector number beyond which
space is to be deallocated. If these
two bytes contain the value SFFFF,
then the entire space belonging to
the file will be deallocated;
however, in this special case, the
file*s directory entry must already
have been flagged as deleted.

RIB must contain the physical sector
number of the file’s Retrieval
Information Block.

DEN must contain the file*’s directory
entry number.

SBS must contain the starting address of
a 128 (decimal) byte sector buffer.

SBE must contain the ending address of
the sector buffer. If the sector
buffer is larger than one sector,
only the first 128 bytes will be

XDOS 4.0 User”s Guide Page 20-27

EXIT CONDITIONS: Ai

B

w i]

w i)

w u

w i]

w i]

Q i)

Q u

The

used.

s indeterminate.

contains the return status. The return
statuses are taken from the set of

codes defined for the device
independent I/O functions. Only the
system symbols are given here for
those return statuses. The exact

values can be found from the XDOS

equate file, section 18.3.1.1, or
section 21.3. The following return
statuses are defined:

0 indicates that no errors occurred

(normal return).

ISRIB indicates that the file had an
existing Retrieval Information Block
that was invalid (see section 17.2).

ISRANG indicates that the maximum
referenced logical sector number
specified in bytes 1 and 2 does not
belong to the file. That is, the LSN

specified is greater than the number
of sectors belonging (allocated) to
the file.

ISIDEN indicates that an invalid DEN

was specified.

ISDEAL indicates that an attempt was
made to deallocate all of a file’s
Space (bytes 1 and 2 set to SFFFF),

but the directory entry for the file
was not flagged as deleted.

Y, X and DP are unchanged.

0 if no errors occurred (B = 0). The
remainder of CC is indeterminate.

1 if an error occurred (B not zero).

The remainder of CC is indeterminate.

DFT is only changed if the all of a
file“s space was to be deallocated.
In that case, RIB will contain the
value zero. Otherwise, the DFT is
unchanged. The contents of the sector
buffer are indeterminate.

Page 20-28

The .MDERR function displays on the system console one
of the standard system error messages contained in the XDOS
error message file. The error message to be displayed is

indicated by an index number which is passed in one of the
registers. This index number will also be used to modify the
system error status word (see section 21.4).

Certain error messages contain references to external
parameters that must be supplied by the calling program
(e.g-, a file name specification or an address). These
parameters are shown in the list of error messages below as a
backslash character (\) followed by a numeric digit which
indentifies the format of the parameter. When an _ external
parameter reference is encountered in the message, the
corresponding parameter from the calling program will be
inserted into the message before it is displayed on the
system console. The following external parameters are
defined:

Parameter reference Calling program specification

\O The X register contains the address
of a standard XDOS file name. Eleven
bytes comprise an xXDOS file name:
logical unit number (1 byte), file
name (eight bytes), suffix (two
bytes).

\l The X register”s contents are to be

converted into four displayable
hexadecimal digits.

\3 The X register contains an address of
a byte in memory whose contents are

to be converted into two displayable
hexadecimal digits.

\8 The return address’ on the stack is
decremented by two (pointing to the
system call of the error message
function) and converted into four
displayable hexadecimal digits. This
parameter allows the location of the
call to .MDERR to. be incorporated
into the error message for system

diagnostic purposes.

The following table lists the standard error messages
from the XDOS error message file in order of their error
message index numbers (number required as entry parameter to
display the message). This number is not to be confused with
the two-digit decimal reference number that is displayed with
each message on the system console. The displayed reference
number only serves as a quick way of locating the error
messages” descriptions in Chapter 21.

XDOS 4.0 User’s Guide Page 20-29

INDEX

NUMBER ERROR MESSAGE

02 ** 40 DIRECTORY SPACE FULL
03 ** 4) INSUFFICIENT DISK SPACE
04 ** 29 INVALID LOGICAL UNIT NUMBER
05 ** 02 NAME REQUIRED
06 ** 03 \O DOES NOT EXIST
07 *k 25 INVALID FILE NAME
08 ** 05 \O DUPLICATE FILE NAME
09 ** 28 DEVICE NAME NOT FOUND
OA ** 31 INVALID DEVICE
0B ** 01 COMMAND SYNTAX ERROR
oc ** 46 INTERNAL SYSTEM ERROR AT \8
OD ** 07 OPTION CONFLICT
OE ** 12 INVALID TYPE OF OBJECT FILE
OF ** 13 INVALID LOAD ADDRESS
10 ** 42 SEGMENT DESCRIPTOR SPACE FULL
ll ** 32 INVALID RIB
12 ** 30 INVALID EXECUTION ADDRESS
13 ** 14 INVALID FILE TYPE
14 ** 36 FILE EXHAUSTED BEFORE LINE FOUND
15 ** 24 LOGICAL SECTOR NUMBER OUT OF RANGE
16 ** 34 INVALID START/END SPECIFICATIONS
17 ** 35 INVALID PAGE FORMAT
18 ** 38 INVALID LINE NUMBER OR RANGE
19 ** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE
1A ** 06 DUPLICATE FILE NAME
1B ** 04 FILE NAME NOT FOUND
1c ** 10 FILE IS DELETE PROTECTED
1D ** 33 TOO MANY SOURCE FILES
1E ** 16 CONFLICTING FILE TYPES
1F ** 15 \O HAS INVALID FILE TYPE
20 ** 27 \0 IS WRITE PROTECTED
21 ** 47 INVALID SCALL
22 ** 18 DEVICE ALREADY RESERVED
23 ** 19 DEVICE NOT RESERVED
24 ** 11 DEVICE NOT READY
25 ** 20 INVALID OPEN/CLOSED FLAG
26 ** 21 END OF FILE
27 ** 17 INVALID DATA TRANSFER TYPE
28 ** 37 END OF MEDIA

XDOS 4.0 User’s Guide Page 20-30

INDEX

NUMBER ERROR MESSAGE

29 ** 22 BUFFER OVERFLOW

2A ** 23 CHECKSUM ERROR

2B ** 26 FILE IS WRITE PROTECTED

2C ** 43 INVALID DIRECTORY ENTRY NO. AT \8

2D ** 44 CANNOT DEALLOCATE ALL SPACE, DIRECTORY
ENTRY EXISTS AT \8

2E ** 45 RECORD LENGTH TOO LARGE

2F ** 48 CHAIN OVERLAY DOES NOT EXIST

30 ** 08 CHAIN ABORTED BY CONTROL-P KEY

31 ** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS

WORD

32 ** 49 CHAIN ABORTED BY ILLEGAL OPERATOR

33 ** 50 CHAIN ABORTED BY UNDEFINED LABEL

34 ** 51 CHAIN ABORTED BY PREMATURE END OF FILE
35 ** 52 SECTOR BUFFER SIZE ERROR

36 ** 53 INSUFFICIENT MEMORY

In addition, two error messages have specific calling
sequences. These two messages have the following format when
displayed:

INDEX

NUMBER ERROR MESSAGE

00 **UNIF. I/O ERROR -- STATUS = \3 AT \8
ol **PROM I/O ERROR -- STATUS = \3 AT h DRIVE i

- PSN j

The first case (index number 00) should be used for
displaying standard error messages as a result of the device
independent I/O functions. The .MDERR function expects the X
register to contain the address of an IOCB. The status byte
of the IOCB will be decoded into one of the standard system
error messages shown above. In the event that an illegal
status code is contained in the IOCB, the error message will
take on the form as_ shown above. The "\3" parameter will
contain the value of the status byte, and the "\8" parameter
will contain the address of the call to the error message
function.

The second case (index number 01) should be used for
displaying standard diskette controller error messages (as
returned by .EREAD, ~EWRIT, -MERED, -MEWRT). The .MDERR
function expects the X register to contain the address of a
three-byte packet. The format of the packet is shown below:

0 | Controller error status |

1 | Address of |
— function call =

2 | to sector I/O function |

In addition, the .MDERR function will pick up the logical

XDOS 4.0 User’s Guide Page 20-31

unit number and the physical sector number from the diskette
controller variables in locations $0000-$0002, inclusive.
When the error message is displayed, the parameter "h" will
have been replaced with the address of the call to the’ error
message function, the parameter "i" will have been replaced
with the logical unit number, and the parameter "j" will have
been replaced with the physical sector number at which the
error occurred.

ENTRY PARAMETERS : B = The index number of the error message

as shown in the above tables.

X may not have to be parameterized. If

the error message calls for an

external parameter, X will have to
contain the parameter or the address
of the parameter that is to be placed
into the error message. The contents
of xX depend on the type of message
displayed as shown in the above
tables.

EXIT CONDITIONS: A is indeterminate.

B is indeterminate.

X is indeterminate.

U, Y and DP are unchanged.

C= 0. The remainder of cc is

indeterminate.

The Error Type of the system error status
word has been changed to contain the
index number of the displayed error
message. In addition, the Error
Status Flag of the system error
status word has been set’ to one.
Section 21.4 contains a complete
description of the system error
status word.

If the .MDERR function is called with an index number
for which no valid error message exists, or if the XDOS error
message file cannot be accessed on the diskette without an
error, a special message will be displayed. This message has
the format:

**k INVALID MESSAGE \3 AT \8

The "\3" parameter will have been replaced with the index
number of the error message that the .MDERR function was
trying to display. This may or may not be a valid index
number, depending on whether or not the XDOS error message
file could be properly accessed. The "\8" parameter will have
been replaced with the address of the call to the .MDERR
system function. In the event that this message is displayed,
the Error Type portion of the system error status word will
contain the value S$FF (the Error Status Flag will also be set

XDOS 4.0 User’s Guide Page 20-32

to one).

20.5 Other Functions

The remaining system functions are so diverse that they
fail to fall into one of the previous categories. These
functions are used by the XDOS commands and are available for
user programs in order to extract file name or device
specifications from the XDOS command line, allocate program
memory in the remaining block of contiguous memory, set the
system error status word when non-standard error messages are
displayed so that CHAIN processing will work properly, and to
return control to the XDOS command interpreter.

The .PFNAM function scans a specified input buffer for a
File name or device specification. The information is
returned in a format which is called the standard xDOS file
name format. This format fits into the other parameter tables
required by the device independent I/O functions (IOCB) and
the diskette file functions (DFT). The .PFNAM function will
also recognize family indicators in either the file name or
the suffix.

Due to the nature of the free-format of the XDOS command
line, any character that will not be confused with a device
name indicator, a family indicator, a suffix delimiter, a
logical unit delimiter, an option field delimiter, or an end
of line delimiter will be used to terminate the scan for a
valid file name or device specification.

The scan will never continue beyond an option delimeter
(;) or an end of line delimeter (carriage return), regardless
of the number of times .PFNAM is called with the scan pointer
pointing to such a character.

ENTRY PARAMETERS : X = The address of a file name _ packet.
This packet has the following format:

0 | Address of
== input buffer --

1

2 | Address of |
= standard --

3 | file name area |

Since .PFNAM is designed to be called
more than once to extract multiple
file name or device specifications
from a single input buffer, the first
pointer of the file name packet, or
scan pointer, must be pointing to a
character which previously terminated
the scan. When .PFNAM is called the

XDOS 4.0 User’s Guide Page 20-33

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

first time, special care must be
taken to ensure that the first byte
of the input buffer is a valid
terminator (this is automatically
handled by the XDOS command
interpreter in using the XDOS command
line buffer). This character is
normally a space or a comma; however,
any other valid terminator will
suffice.

The second pointer of the file name
packet defines where the _ standard
file name is to be placed. This area
must be eleven bytes long. The first
byte will contain the logical unit
number. The next eight bytes will
contain the device name or the file
name, and the last two bytes will
contain the suffix.

EXIT CONDITIONS: A = The character that terminated the
scan.

B contains the return status. The
£ollowing return statuses are
defined:

B = 0 indicates that a standard XDOS file
name specification was found.

Bit 0O = 1 indicates that a family
indicator was found in the file name.

Bit 1 = 1 indicates that a family
indicator was found in the suffix.

Bit 2 = 1 indicates that a device
specification was found.

Bits 3-6 are unused and will be zero.

Bit 7 = 1 indicates a null file name was
found. This does not necessarily mean
that a null suffix or a null logical
unit number was found.

U, Y, X and DP are unchanged.

Cc is indeterminate.

The scan pointer (first two bytes of file
packet) will contain the address of
the character that terminated the
scan.

The standard file name pointer (second
two bytes of file packet) will have
been incremented by eleven (points to
location following the suffix).

XDOS 4.0 User’s Guide Page 20-34

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

The standard file name area is only changed if a
corresponding element is found in the input buffer. Thus, if
no logical unit number is found in the input buffer, the
logical unit part of the standard file name area will not be
changed. The same is true for the file name and for the
suffix fields. This feature allows appropriate default values
for the logical unit number, file name, and suffix to be
placed into the standard file name area before .PFNAM is
invoked. Then, after the input buffer is scanned, those parts
of the file name specification which were not explicitly
found will assume the default values which were unchanged.

No delimiters of any sort are placed into the standard
file name area. The presence of device name indicators and
family indicators is indicated by the return status in the B
register only. The file name (or device name) and suffix will
be left justified within the file name area. Unused parts of
the file name or suffix will be space-filled automatically.

When the scan is initiated, leading spaces in front of
the file name or device specification will be treated as a
Single space (ignored). Any space, however, encountered after
the first character of a specification is found will be
treated as a terminator.

If the file name, suffix, or logical unit number
contains more valid characters than required, they will be
automatically flushed from the input stream. Thus, even if a
ten character file name is specified, only the first eight
characters will be returned in the file name area.

The following examples illustrate how .PFNAM extracts
the file name or device specification from the input buffer.
The left column’ shows a string as it is encountered in the
input buffer. The double quotation marks delimit the start
and end of the string. It should be noted that an initial
terminator begins each string. The right column’ shows’ the
extracted information as it would appear in the standard file
name area. The dashes indicate unchanged parts of the
standard file name area (those areas where the default values
would be found).

Input string Extracted file name

" FILE," -FILE _

" FILEL:0," OFILE1 =

" F.SA," -F SA

" FILE.RO:1," 1FILE RO
w 20," 0 ee

" .UX:1," 1-------- LX
" FILENAMETOOLONG.AB:1," 1FILENAMEAB

" FILESAB:1," -FILE —=
iT] #LP," -—T,P -——

" #UD:1," 1UD ==

" FILE*.*:1," 1FILE --

XDOS 4.0 User’s Guide Page 20-35

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

20.5.2 Re-enter resident XDOS -- .MDENT

The .MDENT function passes control from aé_ calling
program to the XDOS command interpreter. It is one of the few
functions which does not return control to the calling
program. .MDENT can only be used if the resident operating
system area has not be changed by the calling program (or any
programs that may have executed prior to it).

ENTRY PARAMETERS: The diskette in drive zero must not have
been replaced with another diskette
since the last time XDOS was
initialized via the resident debug
monitor.

EXIT CONDITIONS: There is no return from this function;

however, the following actions are
per formed:

The interrupt vector link is configured
for the XDOS function handler.

The user SWI vector maintained by xXDOS
(SWISUV) is reset to point to an RTI
instruction. The user program is no
longer resident, thus’ user-defined
SWI interrupt cannot be processed
after XDOS regains control.

The end of user memory pointer, ENDSUS,
is reset.

The command line buffer is initialized.

The version/revision numbers of XDOS_ in
memory are compared with the
version/revision numbers in the ID
sector. The addresses of the system
overlays are also compared in this
fashion. If a discrepancy exists
between memory and _ the diskette,
EXORbug is given control.

The input prompt (=) is displayed and a
new command line accepted from the
system console.

The system error status word is cleared
(Error Type and Error Status Flag) if

a valid command is interpreted.

20.5.3 Reload XDOS from diskette -- .BOOT

The .BOOT function reloads the resident operating system
from the diskette in drive zero via the diskette controller
firmware. This function should be used if the resident
Operating system has been changed by the current program (SWI
handler must still be intact). This function should also be

XDOS 4.0 User’s Guide Page 20-36

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

used if the diskette in drive zero has been replaced with
another XDOS diskette Since the last time xXDOS was
initialized via the debug monitor. .BOOT is one of the few
functions that does not return control to the calling
program.

This function has the same effect as the EXORbug command
"XDOS".,

ENTRY PARAMETERS: A valid xXDOS diskette must be ready in
drive zero.

EXIT CONDITIONS: This function does not return to the
calling program. A new copy of XDOS
is brought from the diskette into
memory. All of the functions
per formed during this type of
initialization are described in
section 2.1 and section 17.6. Control
is given to the XDOS command
interpreter after XDOS has been
initialized.

20.5.4 Set system error status word -- .EWORD

The .EWORD function configures the system error status
word with a specific error type. This allows a_ calling
program to indicate that an error occurred during its
execution. The system error status word can then be tested
from within a CHAIN procedure (Chapter 4).

ENTRY PARAMETERS: B= The value that is to be placed into
the Error Type field of the system
error status word. Any value is
valid. Section 21.4 describes the
format of the error status word.

EXIT CONDITIONS: U, Y, X, DP, A and B are unchanged.

CC is indeterminate.

The lower byte of the system error status
word contains the value passed in B.
The Error Status Flag has also been
set to one. The remainder of the
error status word is unchanged.

20.5.5 Allocate user program memory -- .ALUSM

The .ALUSM function adjusts the XDOS pointer ENDUSS to
reflect the end of the user program area. This function
facilitates the dynamic allocation of variable buffer space
adjacent to the highest loaded program location so that
programs can take advantage of the variable amount of
contiguous memory that may be configured for a given
installation.

The user program area consists of all contiguous memory

XDOS 4.0 User”s Guide Page 20-37

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

between the end of the resident operating system and the end
of contiguous memory. The pointer ENDUSS is automatically
adjusted to reflect the end of a loaded program (only if the
program is loaded directly from the command line or via the
LOAD command without the "U" or "Vv" option). Thus, the
program can obtain information about the remaining amounts of
memory without having to size memory itself.

ENTRY PARAMETERS: B contains a function code that specifies
the action to be taken by .ALUSM. The
following function codes (and their

impact the the X register) are
defined:

B = 0 indicates that the X register
contains the address of the last
address that is to be made a part of
the current user program area.

Be=l indicates that the xX register
contains the number of bytes of
memory that are to be allocated to
the end of the current user program.

B = 2 indicates that all of the remaining
contiguous memory is to be allocated
to the current user program area.

X contains the parameters as described
above.

EXIT CONDITIONS: U, Y, DP and A are unchanged.

B contains the return status. The

following return statuses are
defined:

B = 0 indicates that no errors occurred
(normal return).

B = 1 indicates that the allocation
request would have caused ENDUSS to
be greater than ENDSYS. The user
program area cannot extend beyond the
end of contiguouS memory in the
system.

B= 2 indicates that the allocation
request would have caused ENDUSS$_ to
be less than or equal to ENDOSS. The
allocated memory block must reside
completely above the address
contained in ENDOSS.

X contains an indeterminate value if an
error occurred (exit value of B not

zero) or if the entry value of B_ was
Zero.

X contains the old value plus one (value

XDOS 4.0 User’s Guide Page 20-38

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

before the call to .ALUSM) of ENDUSS

if the entry value of B was one.

Thus, X points to the Starting

address of the newly allocated block.

X contains the number of bytes allocated

if the entry value of B was two.

%Z = 1andcC= 0 if no errors occurred (B

= 0). The remainder of cc is

indeterminate.

Zz = 0 and C = 1 if an error occurred (B

not zero). The remainder of CC is

indeterminate.

The XDOS variable ENDUSS is unchanged if

an error occurred. Otherwise, ENDUS$

will contain the following: if the

entry value of B was zero, ENDUSS

will contain the entry value of the X

register; if the entry value of B was

one, ENDUSS will have been

incremented by the entry value of the

X register; and if the entry value of

B was two, ENDUSS will contain the

value of ENDSYS.

20.5.6 Issue next command -- .COMND
(ee ces ee ee ee es es ee ee we ee ee ee ee

The .COMND function terminates the execution of a

program and initializes the command line with the string

passed as an argument. The operations are equivalent to the

-MDENT function (see section 20.5.2), but the next command to

perform is neither input from the console, nor read from the

CHAIN intermediate file, but taken from the calling program.

This function destroys the contents of locations $2000 tru

$23FF, as well as the upper 200 bytes of system available

memory. When used for program chaining, common data must then

not reside in this area.

ENTRY PARAMETERS: X = address of the command string. The

string must be terminated by a

carriage return ($0D). The maximum

string length is 80 characters

including the carriage return. Nulls

($00), line-feeds ($0A), DCl ($11),

pc2 ($12), DC3 ($13) and pc4 ($14)

characters are ignored. If more than

79 characters are found, the string

is truncated and a carriage return is

forced into the command buffer.

EXIT CONDITIONS: The .COMND function is one of the few

which does not return to the calling

program. However, if the command line

passed in entry parameter is valid,

the control is given to the specified

program as if it was called from the

XDOS 4.0 User’s Guide Page 20-39

OTHER SYSTEM FUNCTIONS 20.5 -- Other Functions

console. The system parameters. are
handled by .MDENT (Section 20.5.2).
If the supplied command is not found

in the directory, the message

WHAT?

is displayed, the error type of the
Error Status Word is set to $80 and
the control is given to the command
interpreter.

Page 20-40

CHAPTER 21

This chapter contains a summary and an explanation of
all of the standard error messages that can be displayed
during the operation of XDOS. Standard error messages include

those displayed by the diskette controller firmware during
initialization, the PROM I/O messages that can be displayed
when any fatal diskette error is detected by an XDOS command
Or overlay, and the standard error messages displayed by the
commands themselves. The standard command error messages’ are
recognizable by the fact that a pair of asterisks followed by
two-digit reference number is displayed before the actual
message. Explanations of messages without the two-digit
number should be looked for in the detailed command
descriptions in chapters 3-16.

21.1 Diskette Controller Errors

The diskette controller errors can be displayed in two
forms depending on the phase xXDOS is in. During the
initialization phase, the error messages from the controller
take on the form of the letter "E" followed by a decimal
digit 0-9. Control is given to the debug monitor after the
message is displayed. After XDOS has been properly
initialized, the diskette controller errors are identified by
the text "PROM I/O ERROR". Control is returned to the xpDOS
command interpreter.

21.1.1 Errors during initialization

If for some reason the drive electronics are not
properly initialized, or if the diskette in drive zero cannot
be read properly to load the Bootblock or the resident
operating system, then a two-character error message will be

displayed and control returned to the debug monitor. The
function resulting in the error has been tried five times.
After the fifth failure, the error message is displayed.

Message Probable Cause

El A cyclical redundancy check (CRC)
error was detected while reading the
resident operating system into
memory.

XDOS 4.0 User’s Guide Page 21-01

ERROR MESSAGES 21.1 -- Diskette Controller Errors

E2 The diskette has the write protection
tab punched out. During the
initialization process, certain
information is written onto’ the
diskette.

The diskette is not damaged and can
still be used for a system diskette;
however, the write protection tab
must first be covered with a piece of
Opaque tape to allow writing on _ the
diskette.

E3 The drive is not ready. The door is
open or the diskette is not yet
turning at the proper speed. If the

diskette has been inserted into the
drive with the wrong orientation, the
"not ready" error will be also
generated.

Closing the door, waiting a little
bit longer before entering the "XDOS"
command, or turning the diskette
around so it is properly oriented
should eliminate this error.

E4 A deleted data mark was detected
while reading the resident operating
system into memory.

E5 This error status is returned when

the track address has not been’ found

after five attempts.

E6 The diskette controller has been

presented with a track-sector address

that is invalid. This error occurs
when the sum of STRSCT and NUMSCT

(see Appendix D) is larger than the
total number of sectors on the

diskette.

This error indicates some type of a
hardware problem. For example, the
error can be caused by missing or
overlapping memory, bad memory, or
pending IRQs that cannot be serviced.

E7 A seek error occurred while trying to
read the resident operating system
into memory.

Like E6 errors, this one may come
from some type of a hardware problem.

E8 A data mark error was detected while

trying to read the resident operating
system into memory.

XDOS 4.0 User’s Guide Page 21-02

ERROR MESSAGES 21.1 -- Diskette Controller Errors

E9 A CRC error was found while reading
the address mark that identifies

sector locations on the diskette.

The diskette controller errors El, E4, E8, and &E9

indicate that the diskette cannot be used to _ load the
operating system; however, a new operating system can be
generated on that diskette, making it useful again. The
DOSGEN (Chapter 8) and/or FORMAT (Chapter 10) commands should
be consulted for generating a new diskette. Depending on the
extent of the errors, the diskette may be used in drive one

to recover any files that may be on it (see section 2.8.8).

The diskette controller error E5 can occur for a variety
of reasons. The most common reason, and the most fatal, is

the destruction of the addressing information on _ the
diskette. If the addressing information has been destroyed
(verified by using the DUMP command to examine areas of the
diskette), the FORMAT command may be used to rewrite the
addressing; however, information on the damaged diskette
cannot be recovered . Occasionally, after a system has just
been unpacked, the read/write head may have been positioned
past its normal restore point on track zero. In this case,
trying the event which caused the error three or more times
may position the head to the proper place. If this fails, the
head will have to be manually repositioned past track zero;
however, this problem rarely occurs. The E7 errors can occur
if a user-written program accesses drive one without using
one of the system functions and without first restoring the
read/write head on that drive.

Even after the resident operating system has’ been
successfully read into memory, certain errors can occur’ in
the subsequent initialization procedure. During
initialization the resident operating system cannot access
the error message processor Since it has not’ been
initialized. Messages similar in format to those generated by
the diskette controller are displayed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-character message is a

non-numeric character. The following errors can occur during
initialization, but only after the resident operating system
has been read into memory.

Message Probable cause

E? This error indicates that the RIB of
the resident operating system file
XDOS.SY is in error. The operating
system cannot be loaded.

The diskette probably is not an XDOS
system diskette, or the system files

have been moved from their original
places.

XDOS 4.0 User”s Guide Page 21-03

ERROR MESSAGES 21.1 -- Diskette Controller Errors

EM This error indicates that there was
insufficient memory to accommodate
the resident portion of the operating
system.

The memory requirements described in
section 1.1 should be reviewed. If
the minimum requirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

EI The version and revision of XDOS
already loaded into memory is not the
same as that on diskette. This error
usually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure outlined in section 2.1.
This error can also occur is the ID
sector has been damaged.

The error can be avoided if the
initialization procedure is followed
correctly every time a new system
diskette is inserted into drive zero.

ER The addresses of the RIBs of the XDOS
overlays are not the same as those at
the time of the last initialization.
This error may occur for the same
reasons as the "EI" error.

EU An input/output system function
returned an error during the

initialization. Errors of this sort
indicate a possible memory problem or
the opening of the door to drive zero
while the initialization is taking
place.

EV One of the system files is missing or
cannot be loaded into memory. If a
system file is missing, the diskette
has been improperly generated or the
file was intentionally deleted. If a
file cannot be loaded, then the
diskette should be regenerated. The
diskette may be used in drive one to
save any files that may be on it
(section 2.8.8). This error may also
occur if the door to drive zero is
opened while initialization is in

progress.

EN A NMI has occured and the XDOS NMI
vector (NMISVC) was not initialized.

This error may also occur after
completion of the initialization.

XDOS 4.0 User’s Guide Page 21-04

ERROR MESSAGES 21.1 -- Diskette Controller Errors

EQ An IRQ has occured and the XDOS_ IRQ
vector (IRQSVC) was not initialized.
This error may also occur after
completion of the initialization.

EF A FIRQ has occured and the XDOS FIRQ
vector (FIRSVC) was not initialized.
This error may also occur after
completion of the initialization.

ES A SWI2 has occured and the XDOS' SWI2
vector (SW2S$VC) was not initialized.
This error may also occur after
completion of the initialization.

EW A SWI3 has occured and the XDOS SWI3
vector (SW3S$VC) was not initialized.

This error may also occur after
completion of the initialization.

21.1.2 Errors after initialization

If a diskette controller error is detected after XDOS
has been initialized, then an error message of the following
format will be displayed.

**PROM I/O ERROR--STATUS=nn AT h DRIVE i-PSN j

This message indicates that an unrecoverable error occurred
while trying to access the diskette. The error status "nn" is
a value returned by the diskette controller. The errors are
of the same type that cause the initialization process to
give control to EXORbug; however, instead of beginning with
the letter "E", the status (nn) begins with the digit "3".
The second digit of the status corresponds directly to the
diskette controller error number discussed in the previous
section. The "E" has been replaced by the "3". Thus, status

31 is the same as El

32 is the same as E2

39 is the same as E9.

A memory address (only meaningful for system diagnostics) is
substituted for the letter "h"; the logical unit number is
substituted for the letter "i"; and the physical sector
number (PSN) at which the error occurred is substituted for
the letter "j".

For errors that are retryable (status 31, 34, 37, 38,
and 39), the following actions have been taken in an attempt
to bypass the error. First, the ROM firmware tried to
re-access the sector five times. The head was then positioned
a maximum of five tracks outward from the sector in error,
repositioned back over the sector, and another five accesses
attempted. Then, the head was positioned a maximum of five
tracks inward from the sector in error, repositioned back

XDOS 4.0 User’s Guide Page 21-05

ERROR MESSAGES 21.1 -- Diskette Controller Errors

over the sector, and another five accesses attempted. If it
fails again, the drive is restored, repositioned back over

the sector, and another five accesses are attempted. A fifth

retry is made by rocking the head five tracks outward.
Lastly, five track inward rock is performed.

Occasionally, if the diskette in drive zero was changed
without properly reinitializing the system, or if an XDOS
system file is moved, renamed, or deleted from the directory,
the error messages EI, ER, EU, or EV can be displayed and

control given to the debug monitor. These error messages are
explained in the previous section.

21.2 Standard Command Errors

The following list contains all of the standard error
messages than can be displayed by the XDOS commands. They are
listed in order of their two-digit reference number for easy
location. This number is not to be confused with the error
message index number that is loaded into the B accumulator
when the system error message function (.MDERR, section 20.4)
is accessed.

In some cases, the error message applies also to
user-written programs using the device independent I/O
functions. Then, the error condition returned in the IOCB

entry IOCSTA (section 18.3.1.20) will contain a value, which
when decoded by the .MDERR' function, would result in the

standard error message being displayed.

The first error message is standard, but is. only

displayed by the XDOS command interpreter, not by a command.
It has no number identifying it. The second error message is
only displayed if the XDOS error message function is called
with an invalid error message index number, or if the system
error message file cannot be accessed without error.

WHAT?

This message indicates that the first file name
specification entered on the command line was not
the name of a file in the diskette’s directory.
Most often this error occurs as the result of a
mistyped command name.

Some commands, such as DUMP, display this message
to indicate an unrecognizable command.

** INVALID MESSAGE mm AT nnnn

This message is displayed by the .MDERR system
function if it is called with an index number for
which no valid error message exists, or if the
XDOS error message file cannot be accessed on the
diskette without an error. The number "mm" shows
the index number of the error message that the
-MDERR function was trying to display. The number
"nnnn" shows the address of the call to the
»MDERR function.

XDOS 4.0 User’s Guide Page 21-06

ERROR MESSAGES 21.2 -- Standard Command Errors

** Q1 COMMAND SYNTAX ERROR

The syntax of the command line parameters as seen
by the command could not be interpreted. Most
often this message refers to undefined characters
appearing in the <options> field of the command
line.

If this message is displayed during the execution
phase of the CHAIN command, it may mean that an
execution operator was encountered that had an

illegal operand field.

** 02 NAME REQUIRED

One or more of the file names required by the
command aS parameters was omitted from the
command line.

** Q3 <name> DOES NOT EXIST

The displayed file name was not found in the
diskette’s directory. The file must exist prior
to using the command. The <name> is displayed to
show which file name of the multiple names
specified as parameters caused the error.

** 04 FILE NAME NOT FOUND

The file name entered on the command line as a
parameter does not exist in the diskette’s
directory. The file must exist prior to using the
command. No file name is displayed since only
One parameter is required by the command.

This error can also occur during the FDR
processing of the .OPEN function when a file is
being opened in the input or update modes.

** 05 <name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette’s directory. The file must not exist
prior to using the command. The <name> is
displayed to show which file name of the multiple
names specified as parameters caused the error.

** 06 DUPLICATE FILE NAME

The file name entered on the command line as a
parameter already exists in the diskettes
directory. The file must not exist prior to using
the command. No file name is displayed since only
One parameter is required by the command.

This error can also occur during the FDR
processing of the .OPEN function when a_ diskette
file is being opened in the output mode.

XDOS 4.0 User’s Guide Page 21-07

ERROR MESSAGES 21.2 -- Standard Command Errors

kk

kk

kk

kk

Kk

Kk

XDOS 4.

07 OPTION CONFLICT

The specified options were not valid for the type

of function that was to be performed by the
command. Several of the options are mutually
exclusive and cannot be specified at the same
time. The specific command descriptions should be
consulted for the restrictions concerning the
various options.

08 CHAIN ABORTED BY CONTROL-P KEY

This message is displayed by the CHAIN command to
indicate that the operator depressed the CTL-P
key during the execution phase, causing it to be
aborted.

09 CHAIN ABORTED BY SYSTEM ERROR STATUS WORD

The last program invoked from the CHAIN process
set an error status into the system error status
word which was not masked by a SET operator. If
no SET operators are used in a CHAIN file, any
error status word change will cause the CHAIN
process to be aborted.

10 FILE IS DELETE PROTECTED

An attempt was made to delete a file which had
the delete protection bit set in its directory
entry. The file is not deleted.

11 DEVICE NOT READY

Most frequently this error indicates that a
command is trying to output to the printer while
the printer is not ready or out of paper;
however, the message can apply to any of the
supported devices whether being used for input or
output.

12 INVALID TYPE OF OBJECT FILE

Most frequently this message indicates that an
attempt was made to load a program into memory
from a file which does not have the memory-image
attribute.

This message can also indicate that the RIB of a
memory-image file has been damaged (LOAD command,
Chapter 13).

0 User’s Guide Page 21-08

ERROR MESSAGES 21.2 -- Standard Command Errors

** 13 INVALID LOAD ADDRESS

This message indicates that an attempt was made
to load a program into memory which, depending on
the method of loading: 1) loads outside of the
range of contiguous memory established at
initialization: 2) loads over the resident
operating system; 3) loads below hexadecimal
location $20; or 4) loads beyond location $FFFF.
The latter case implies that the file*s RIB may
be damaged. If this is the suspected cause, the
DUMP command (Chapter 9) should be used _ to
correct the error. Programs which load into the
highest memory address (SFFFF) which do not have
a starting load address that is a multiple of
eight, can also cause this error.

** 14 INVALID FILE TYPE

The file name entered on the command line as a

parameter has the wrong file format (the numeric

portion of a displayed directory entry’s
attribute field) for the intended operation. No

file name is displayed since only one parameter
is required by the command.

This error can also occur if a binary record
transfer is being requested to a device that does
not support binary transfers; if a non-record
format (e.g., memory-image format) is specified
when opening a non-diskette device; or if a
non-ASCII record format is specified when using
the non-file format mode.

** 15 <name> HAS INVALID FILE TYPE

The displayed file name has the wrong file format
(the numeric portion of a displayed directory
entry’s attribute field) for the intended
operation. The <name> is displayed to show’ which
file name of the multiple names specified as
parameters caused the error.

The MERGE command (Chapter 14) can display this
message if a memory-image file has an invalid
RIB. The DUMP command (Chapter 9) should be’ used

to correct the error.

** 16 CONFLICTING FILE TYPES

A command was expecting files of the same format.
The files specified have different file formats
and/or attributes.

XDOS 4.0 User’s Guide Page 21-09

ERROR MESSAGES 21.2 -- Standard Command Errors

** 17 INVALID DATA TRANSFER TYPE

An attempt was made to read from an output device
or file, to write to an input device or file, to
perform record I/O with the logical sector mode
set, to perform logical sector I/0 with the
record mode set, to open a_= non-input/output
device in the update mode, or _ to open a
non-diskette device in the update mode.

** 18 DEVICE ALREADY RESERVED

Bit "R" of the IOCLUN byte in an IOCB was set to
one when the .RESRV system function was called.

** 19 DEVICE NOT RESERVED

Bit "R" of the IOCLUN byte in an IOCB was set’ to
zero when the .OPEN or .RELES system functions
were called.

** 20 INVALID OPEN/CLOSED FLAG

Bit "O" of the IOCDTT byte in an IOCB was set to
one when the .CLOSE, .GETRC, .GETLS, .PUTRC,

-PUTLS, .REWND, or .RELES system function was
called, or bit "0" of the IOCDTT byte was set to

zero when the .OPEN system function was called.

** 21 END OF FILE

An end-of-file record was read from a
non-diskette device or an attempt was made to
read beyond the logical end-of-file in a diskette
file. Attempting to read from a diskette file
after the end-of-file error has occurred will
result in the same error. Reading from a device
after the end-of-file error occurred may or may
not result in the same error, depending on what
caused the initial end-of-file condition. Reading
a record from a diskette file which contains no
carriage returns will result in this error.

** 22 BUFFER OVERFLOW

An attempt was made to read a record which was
larger than the data buffer provided for the
record. The overflow of the record is truncated.

During the CHAIN command*s execution phase, a
supplied input response exceeded the maximum
number of characters acceptable for the input
request.

xDOS 4.0 User’s Guide Page 21-10

ERROR MESSAGES 21.2 -- Standard Command Errors

** 23 CHECKSUM ERROR

A binary record or an ASCII-converted-binary
record was read whose calculated checksum did not
agree with the checksum byte contained in the
record.

This error can also occur during the FDR
processing of the .OPEN' function. If the- file
format mode is specified, and the device is’ read
in search of an FDR, any record that begins with
the FDR header character but which is not an FDR
(e.g., created in non-file format mode) will
cause this error.

Page 21-11

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

An attempt was made to read a logical sector beyond the
physical end of the file. The physical end of the file is the
highest numbered logical sector allocated to the file. This
error can also be caused if the IOCSDW and IOCSLS entries of
the IOCB are changed by the calling program after the file
has been opened.

** 25 INVALID FILE NAME

A file name was specified that contained the family indicator
(*), began with a device name indicator (#), or began with a

non-alphabetic character.

The NAME command (Chapter 15) limits the use of the family

indicator. Failure to do so may result in this error.

This error can also occur if a diskette function is called

with an invalid or null file name in the DFT. Check that

-PFNAM is called correcly, that the DFT initialization is
correct.

** 26 FILE IS WRITE PROTECTED

An attempt was made to write into a file which has the write
protection attribute set in its directory entry.

This error can also be caused by attempting to open a
diskette file in the update mode which already has the write
protection bit set.

** 27 <name> IS WRITE PROTECTED

The file <name> had the write protection attribute set in its
directory entry when an attempt was made to write to the
file.

** 28 DEVICE NAME NOT FOUND

A device name was specified which is not defined as an
XDOS-supported device. This usually occurs if the device name
is mistyped. The valid device names for the I/O functions are
CN, DK, and LP. If a logical unit number is specified for a
proper device that is greater than the number of units
present for that device, then this error may also occur

(e.g., specifying units greater than 1? for for diskette
drives or units greater than 0 for other devices).

The COPY command (Chapter 5) will also accept the device name
UD.

** 29 INVALID LOGICAL UNIT NUMBER

A logical unit number was specified that is invalid. If the
device is a diskette, the valid logical unit numbers are zero
through one. For non-diskette supported devices only logical
unit numbers of zero are allowed.

XDOS 4.0 User”s Guide Page 21-12

**k 30 INVALID EXECUTION ADDRESS

The starting execution address of a program in a memory-image
file is less than the lowest avuress or greater than the
highest address loaded into by the program. This indicates a
RIB error. The DUMP command (Chapter 9) should be used to
correct the error.

** 31 INVALID DEVICE

A valid device name was used in an illegal context. For
example, the device LP cannot be used in the context of an
input device. The name DK cannot be used on the command line
of any of the XDOS commands. The COPY command does not allow

the CN device to be used as an input specification.

This message can also indicate an attempt to perform logical
sector I/O on a non-diskette device, or an attempt to perform
non-file format I/O on a device that does not support the
non-file format mode.

If a non-standard device is being interfaced to the system
using the device independent I/O functions, this error can
indicate that the IOCGDW entry of an IOCB (address of CDB) is
zero, or that the address of the software driver (CDBSDA of
CDB) is zero.

** 32 INVALID RIB

An attempt was made to open a file (usually a memory-image
file) that has an invalid RIB. The criteria for a valid RIB

are explained in detail section 17.2. The DUMP command
(Chapter 9) should be used to correct the error.

** 33 TOO MANY SOURCE FILES

More file names were specified on the command line than could
be accommodated by a command which can accept multiple file
names aS parameters.

** 34 INVALID START/END SPECIFICATIONS

The start and end specifications entered on the command line
for the LIST command did not start with the letters "S" or
"L". This error can occur if the starting specification
starts with "S" and the ending specification starts with "L",

or vice versa. If the end specification has a value less than
the value of the start specification, then this error will
also occur.

** 35 INVALID PAGE FORMAT

A non-standard page format was specified which had an invalid
number of columns/line or lines/page. The specific command
description should be consulted for the limits of these
specifications.

XDOS 4.0 User”s Guide Page 21-13

** 36 FILE EXHAUSTED BEFORE LINE FOUND

A start specification entered on the command line of the LIST

command (Chapter 12) specified a physical line number whose
value was larger than the total number of lines in the file.

** 37 END OF MEDIA

A File Descriptor Record was being searched for on a
non-diskette device or a record output transfer was taking
place on a non-diskette device when the device ran out of
medium (User Driver only).

**k 38 INVALID LINE NUMBER OR RANGE

This error message is not used by the xXDOS”~ system or

commands. However, it resides in the system error file for
compatibility with MDOS III.

** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE

This error message is not used by the xXDOS' system or
commands. However, it resides in the system error file for

compatibility with MDOS III.

** AQ DIRECTORY SPACE FULL

An attempt was made to add a new entry to the directory when

no empty directory entry could be found (first byte equal to

zero or to S$FF). The directory can accommodate 160 (decimal)

entries.

** Al INSUFFICIENT DISK SPACE

While trying to write to a file or close a file, an
allocation request for more space returned with insufficient
room to accommodate the space requirements. This can occur
when trying to extend a file whose attributes demand
contiguous space allocation. In this case, even though more
space may be available on the diskette than is actually
required, the space is not adjacent to the already allocated
space. This error can also occur when trying to create a file
with contiguous allocation on a diskette where the largest
available contiguous block is smaller than the requested
Size. This error can also occur if the diskette is 100% full
when a new file is being created or when an existing file is
attempting to expand by even a single sector. File
reorganization (section 3.3) will consolidate fragmented
Space, possibly increasing the size of the available
contiguous space.

** 42 SEGMENT DESCRIPTOR SPACE FULL

During an allocation request for additional space, the file’s
Retrieval Information Block was found to have the maximum
number of Segment Descriptors already in use. File
reorganization (section 3.3) will consolidate segment
descriptors.

XDOS 4.0 User’s Guide Page 21-14

** 43 INVALID DIRECTORY ENTRY NO. AT nnnn

An IOCB (or DFT) contained a value in its IOCDEN (or DEN)

entry which was outside of the allowable limits of valid
directory entry numbers. The address "nnnn" gives’ the
location of the call to the error message function.

** 44 CANNOT DEALLOCATE ALL SPACE, DIRECTORY ENTRY EXISTS AT
nnnn

This message indicates a hardware or system software
malfunction if generated by one of the xXDOS commands. A
directory entry must be flagged as deleted prior to having
the file*s space deallocated. The address "nnnn" gives the
location of the call to the error message function.

** 45 RECORD LENGTH TOO LARGE

An attempt was made to write a binary record or an
ASCII-converted-binary record which had more than 254
(decimal) data bytes.

** 46 INTERNAL SYSTEM ERROR AT nnnn

This message indicates a hardware or system software
malfunction. Careful notes should be made regarding the
events leading up to this error. Motorola Microsystems should
be notified. The address "nnnn" gives the location of the
call to the error message function.

** 47 INVALID SCALL

This message indicates that a program attempted to access the
XDOS SWI (system function) handler with a function byte
following the SWI instruction that is not defined. The
Operating system is reloaded when this error occurs.

** 48 CHAIN OVERLAY DOES NOT EXIST

The CHAIN overlay’s file name does not exist in the
directory. The diskette in drive zero must be reconfigured
via DOSGEN or BACKUP command in order to use the CHAIN
feature.

** 49 CHAIN ABORTED BY ILLEGAL OPERATOR

An illegal execution operator waS encountered in the
intermediate file during the CHAIN command’s execution phase.

** 50 CHAIN ABORTED BY UNDEFINED LABEL

A JMP execution operator was encountered which referenced a
label that did not exist in the intermediate file (forward
direction only) during the CHAIN commands execution phase.

XDOS 4.0 User’s Guide Page 21-15

** 51 CHAIN ABORTED BY PREMATURE END OF FILE

An access to the intermediate file returned an end-of-file
condition when an input request was made by a program that
was invoked by the CHAIN process. All input that is expected
by the program must be supplied by the intermediate file.

** 52 SECTOR BUFFER SIZE ERROR

The sector buffer pointers of an IOCB do not describe a
sector buffer that is an integral number of sectors in size.
When a file is opened, the IOCSBS and the IOCSBE entries of
the IOCB must point to the first and last bytes of a _ sector
buffer. The following relationship must be true:

IOCSBE-IOCSBS+1

i ne ns eo = INTEGRAL NUMBER OF SECTORS

When using the logical sector I/O functions (.GETLS, .PUTLS),

the above relationship must be true also. In addition, the
-PUTLS function requires that the sector buffer to be output
be described by the pointers IOCSBS and IOCSBI (instead of
IOCSBE). Then, the buffer described by IOCSBS and IOCSBI must
also be an integral number of sectors in size.

** 53 INSUFFICIENT MEMORY

This message indicates that a command could not allocate
sufficient memory in the user program area to complete its
task. The minimum memory requirements described in section
1.1 is sufficient for all XDOS commands. Thus, this message

indicates a problem with the existing memory, or tampering
with the memory map. The same is true for the XDOS-Supported
software products that display this message; however, the
memory requirements for the particular product that displayed
the error message should be reviewed (Appendix H), rather

than those for the standard XDOS commands in section 1.1.

The ROLLOUT command (Chapter 16) may display this message to
indicate that the address given as the destination of the
position-independent routine is outside of a valid addressing
range (missing memory).

21.3 Input/Ouput Function Errors

The XDOS system functions that perform I/O through an
IOCB parameter table will return an error status in the
IOCSTA entry of the IOCB. These error conditions can be
decoded and displayed as messages by the XDOS error message

function by loading the B accumulator with a zero and leaving
the IOCB’s address in the X register. The errors are part of
the standard error messages explained above. This section
contains the system symbols from the XDOS equate file that
are used to reference the I/O errors. The following table
shows the value of the IOCSTA byte, the system symbol equated
to that value from the XDOS equate file, and the error

message.

XDOS 4.0 User’s Guide Page 21-16

ERROR MESSAGES 21.3 -- Input/Output Function Errors

IOCSTA System Standard Error Message Displayed
Value Symbol by .MDERR (B=0, X=IOCB address)

00 ISNOER Normal return, no error

01 ISNODV ** 28 DEVICE NAME NOT FOUND

02 ISRESV ** 18 DEVICE ALREADY RESERVED

03 ISNORV ** 19 DEVICE NOT RESERVED

04 ISNRDY **k 11 DEVICE NOT READY

05 ISIVDV ** 31 INVALID DEVICE

06 ISDUPE ** 06 DUPLICATE FILE NAME

07 ISNONM ** 04 FILE NAME NOT FOUND
08 ISCLOS ** 20 INVALID OPEN/CLOSED FLAG

09 ISEOF ** 21 END OF FILE
0A ISFTYP ** 14 INVALID FILE TYPE

OB ISDTYP ** 17 INVALID DATA TRANSFER TYPE

Te ISEOM ** 37 END OF MEDIA

OD ISBUFO ** 22 BUFFER OVERFLOW
OE ISCKSM ** 23 CHECKSUM ERROR
OF ISWRIT ** 26 FILE IS WRITE PROTECTED
10 ISDELT ** 10 FILE IS DELETE PROTECTED
11 ISRANG ** 24 LOGICAL SECTOR NUMBER OUT OF

RANGE
12 ISFSPC ** 41 INSUFFICIENT DISK SPACE

13 ISDSPC ** 40 DIRECTORY SPACE FULL
14 ISSSPC ** 42 SEGMENT DESCRIPTOR SPACE FULL
15 IS IDEN ** 43 INVALID DIRECTORY ENTRY NO. AT

nnnn
16 I$SRIB ** 32 INVALID RIB
17 ISDEAL ** 44 CANNOT DEALLOCATE ALL SPACE,

DIRECTORY ENTRY EXISTS AT

nnnn
18 ISRECL ** 45 RECORD LENGTH TOO LARGE
19 ISSECB ** 52 SECTOR BUFFER SIZE ERROR

1A ISIFNM **k 25 INVALID FILE NAME

21.4 System Error Status Word

Within the operating system’s resident variables is a
two-byte error status word. Each XDOS command will set or
clear a bit within this status word to indicate the status of
the command*s completion. The error status word has_ the
following format:

XDOS 4.0 User’s Guide Page 21-17

ERROR MESSAGES 21.4 -- System Error Status Word

Error Error Error Type

ee eee ee ee a ee ee ew ewe

--- Bits 0-7 describe

error

oecccccceveeeee BYror Mask Flag
Bit B (8-A unused)

{ss be CS ORK SN OR eH MOOR ee ee EPROL Status Flag
Bit F (C-E unused)

Normally, after the completion of each command all bits of
the Error Status and the Error Type are cleared (= 0). If an
error occurred during the command, the Error Status Flag (bit
F) will be set by the command. In addition, an Error Type
will be set into the lower half of the status word (bits
0-7). The Error Type is used to indicate which error was
detected by the command.

Usually, the CHAIN process will abort anytime the Error
Status Flag is set by one of the commands invoked from the

intermediate file; however, the Error Mask can be used to

inhibit CHAIN process aborting due to command errors. The
Error Mask Flag (bit B) will inhibit CHAIN process aborting
if it is set to one. The process of setting the Error Mask is
described in section 6.4.

21.5 Commands Affecting Error Status Word

All XDOS commands that are intended to be invoked by the
CHAIN process have been programmed to configure error types
into the system error status word. These error types are
summarized here to facilitate the user who is taking
advantage of the TST execution operator during the CHAIN
process.

All XDOS commands use the system function .MDERR for
displaying the common error messages. Thus, the error types
that correspond to these messages will always be the’ same;
namely, the error message°s index number used to call the
-MDERR function (not the same as the displayed, two-digit,
error message reference number); however, commands have other

error messages that are displayed independently of the .MDERR
function. These errors will cause a value to be set into the
Error Type field of the error status word that is greater
than or equal to 128 ($80). It is these values, which are

unique to each command, that are summarized here. The
following table contains the name of the XDOS command or
system function that sets the Error Type, the value of the
Error Type in hexadecimal, and the error message or condition
that caused the error. If the text in the table is in capital
letters, it is an actual error message. If the text is in

XDOS 4.0 User’s Guide Page 21-18

ERROR MESSAGES

XDOS Function

XDOS Command
Interpreter

-MDERR

BACKUP

CHAIN

COPY

DEL

DIR

DOSGEN

DUMP

FORMAT

FREE

LIST

LOAD

NAME

MERGE

ROLLOUT

XDOS 4.0 User’s Guide

21.5 -- Commands Affecting Error Status Word

upper/lower case letters, then it is an error condition.

Error

Type Error Message or Condition

$80 WHAT?

SFF **TNVALID MESSAGE mm AT nnnn

$80 SOURCE FILE COPY ERROR
$81 OBJECT FILE CREATION COPY ERROR

$82 CANNOT DELETE DUPLICATE NAME

$84 ‘ DIRECTORY READ/WRITE ERROR

$85 SYSTEM SECTOR COPY ERROR
$86 SYNTAX ERROR
$87 Sector verify error

$80 Response other than ny" to
overwrite question

$81 Verify error

$80 <name> DOES NOT EXIST
$81 <name> IS PROTECTED

$80 NO DIRECTORY ENTRY FOUND

$81 NO TERMINATOR FOUND IN FILE‘’S

Ra Ls Bis

$82 *NO SDWS*

$80 INVALID SECTOR NUMBER

$81 SECTOR xxxx LOCKED OUT

$80 SYNTAX ERROR

$81 MODE ERROR
$82 BOUNDARY ERROR
$83 INVALID SECTOR ADDRESS
$84 WHAT?

$80 Response other than Hy to
overwrite question

Page 21-19

APPENDIX

A. Cylinder-Sector/Physical Sector Conversion Table

The following table gives the physical sector numbers
for the first sector of every cylinder.

The following notation is used in the table headings:

NOTATION

CYLINDER

PSN

DEC

HEX

SFC

XDOS 4.0 User’s Guide

MEANING

The numbers in these columns are the
cylinder numbers on the diskette.
They are given in both decimal and
hexadecimal.

The numbers in these columns are the
hexadecimal physical sector numbers
of the first sector on a cylinder
surface.

Numbers in these columns are decimal.

. Numbers in these columns are

hexadecimal.

Double sided diskettes have two
recording surfaces. The top. surface
is called SFCO and the bottom surface
is called SFCl.

Page A-Ol

APPENDIX A Cylinder-Sector/Physical Sector Conversion Table

Single-Sided 5.25" Disks

CYLINDER PSN CYLINDER PSN

DEC HEX HEX DEC HEX HEX

00 00 000 20 14 140
01 O01 010 21 15 150
02 02 020 22 16 160

03 03 030 23 17 170
04 04 040 24 18 180
05 05 050 25 19 190
06 06 060 26 1A 1A0
07 07 070 27 1B 1B0
08 08 080 28 1c 1C0
09 09 090 29 1D 1D0
10 OA OAO 30 LE 1E0
ll OB OBO 31 1F 1F0
12 0c 0co 32 20 200
13 OD ODO 33 21 210
14 OE OEO 34 22 220
15 OF OFO 35 23 230
16 10 100 36 24 240
17 11 110 37 25 250
18 12 120 38 26 260
19 13 130 39 27 270

CYLINDER PSN CYLINDER PSN
DEC HEX SFCO SFC1 DEC HEX SFCO SFC1

00 00 000 010 20 14 280 290
01 O01 020 030 21 15 2A0 2B0
02 02 040 050 22 16 2C0 2D0
03 03 060 070 23 17 2E0 2F0
04 04 080 090 24 18 300 310
05 05 OAO OBO 25 19 320 330
06 06 0cO ODO 26 1A 340 350
07 07 OEO OFO 27 1B 360 370
08 08 100 110 28 1c 380 390
09 09 120 130 29 1D 3A0 3B0
10 OA 140 150 30 1E 3C0 3D0
ll OB 160 170 31 1lF 3E0 3F0
12 oc 180 190 32 20 400 410
13 OD LAO 1B0 33 21 420 430
14 OE 1C0 1D0 34 22 440 450
15 OF 1EO 1F0 35 23 460 470
16 10 200 210 36 24 480 490
17 11 220 230 37 25 5A0 5B0
18 12 240 250 38 26 5CO0 5D0
19 13 260 270 39 27 5E0 5FO

XDOS 4.0 User’s Guide Page A-02

APPENDIX A Cylinder-Sector/Physical Sector Conversion Table

Single-Sided 8" Disks

CYLINDER PSN CYLINDER PSN

DEC HEX HEX DEC HEX HEX

00 00 000 39 27 3F6
01 01 O1A 40 28 410
02 02 034 41 29 42A
03 03 04E 42 2A 444
04 04 068 43 2B 45E
05 05 082 44 2c 478
06 06 09C 45 2D 492
07 07 OB6 46 2E 4AC
08 08 ODO 47 2F 4C6
09 09 OEA 48 30 4E0
10 OA 104 49 31 4FA
11 OB 11E 50 32 514
12 Oc 138 51 33 52E
13 oD 152 52 34 548
14 OE 16C 53 35 562
15 OF 186 54 36 57C
16 10 1A0 55 37 596
17 11 1BA 56 38 5B0
18 12 1D4 57 39 5CA
19 13 1EE 58 3A 5E4
20 14 208 59 3B 5FE
21 15 222 60 3C 618
22 16 23C 61 3D 632
23 17 256 62 3E 64C
24 18 270 63 3F 666
25 19 28A 64 40 680
26 1A 2A4 65 41 69A
27 1B 2BE 66 42 6B4
28 1¢ 2D8 67 43 6CE
29 1D 2F2 68 44 6E8
30 1E 30C 69 45 702
31 1F 326 70 46 71C
32 20 340 71 47 736
33 21 35A 72 48 750
34 22 374 73 49 76A
35 23 38E 74 4A 784
36 24 3A8 75 4B 79E
37 25 3C2 76 4c 7B8
38 26 3DC

XDOS 4.0 User’s Guide Page A-03

APPENDIX A Cylinder-Sector/Physical Sector Conversion Table

Double-Sided 8" Disks

CYLINDER PSN CYLINDER PSN
DEC HEX SFCO SFC1 DEC HEX SFCO SFC1l

00 00 000 O1A 39 27 7EC 806
01 01 034 04E 40 28 820 83A
02 02 068 082 41 29 854 86E
03 03 09C OB6 42 2A 888 8A2
04 04 ODO OEA 43 2B 8BC 8D6
05 05 104 11E 44 2C 8F0 90A
06 06 138 152 45 2D 924 93E
07 07 16C 186 46 25 958 972
08 08 1A0 1BA 47 2F 98C 9A6
09 09 1p4 1EE 48 30 9CO0 9DA
10 OA 208 222 49 31 9OF4 AOE
11 OB 23C 256 50 32 A28 A42
12 oc 270 28A 51 33 A5C A76
13 OD 2A4 2BE 52 34 A90 AAA
14 OE 2D8 2F2 53 35 AC4 ADE
15 OF 30C 326 54 36 AF8 B12
16 10 340 35A 55 37 B2C B46
17 11 374 38E 56 38 B60 B7A
18 12 3A8 3C2 57 39 B94 BAE
19 13 3DC 3F6 58 3A BC8 BE2
20 14 410 420A 59 3B BFC C16
21 15 444 45E 60 3C C30 C4A
22 16 478 492 61 3D C64 C7E
23 17 4AC 4C6 62 3E C98 CB2
24 18 4&0 4FA 63 3F CCC CE6
25 19 514 52E 64 40 plore) DIA
26 1A 548 562 65 41 D34 D4E
27 1B 57C 596 66 42 D68 D82
28 1c 5B0 5CA 67 43 DIC DB6
29 1D 5E4 5FE 68 44 DDO DEA
30 1E 618 632 69 45 E04 ELE
31 1F 64C 666 70 46 E38 E52
32 20 680 69A 71 47 E6C E86
33 21 6B4 6CE 72 48 EAO EBA
34 22 6E8 702 73 49 ED4 EFE
35 23 71C 736 74 4A F08 F22
36 24 750 76A 75 4B F3C F56
37 25 784 T9E 76 4c F70 F8A
38 26 7B8 7D2

Page A-04

APPENDIX

B. ASCII Character Set

BITS 4 TO 6 -- 0 1 2 3 4 5 6 7

oO

Y
m
o
N
W
D
W
P
U
O
D
I
A
N
A
U
N
B
W
N
E
H
O

w
 ip)

Q he)

Zz

e
O
D
Y
I
N
U
N
B
W
N
H
E
H
O

O
S
Z
S
P
T
A
U
H
R
O
A
D
A
A
O
C
N
W
P
e

I
=

A
O
N
K
K
X

S
S

C
H
A
N
n
N
D
W
O
N
V

O
B
S

r
P
w
r
W
U
r

T
Q
M
D
A
N

T
D
W

I
s

—
S
I
O
N
X
S

KX

S
E
S

S
C
T
H
A
Q
D

Q vs)

Q n
 i]

I
V

il
A
s
e

DEL

Page B-Ol

APPENDIX

C. XDOS Command Syntax Summary

Chapter Command Line Options

3* BACKUP [[:<source unit>,]:<destination unit>] [;<options>]

null - Normal copy

N
K

G
M
N
Z
M
r
H
O
U
A
Q

<
n

PY

!

4 CHAIN <command file>

CHAIN N*

CHAIN *

Append
Reorganize
Verify

Disk error continue
Deleted data mark continue
ID sector
Line printer
No printing
Sector number only

Unallocated space

Delete duplicate
Skip duplicate

5 COPY <source name>[,<destination name>] [;<options>]
Be-

Ce-

Automatic verify after copy
Convert binary records

D=<file>[,] - Driver file

Z
B
<
2
3
0

6* DEL [<file>] [;<options>]

K
n

I

7* DIR [<file>] [;<options>]

n
N
n
o
m
S

I

XDOS 4.0 User’s Guide

Line printer
Test driver via debug monitor
Non-file format
Verify
Overwrite

System files
Yes, delete

Allocation information
Entire entry
Line printer
System files

Page C-Ol

APPENDIX C XDOS Command Syntax Summary

Chapter Command Line Options

13

14

15*

16

DOSGEN [:<unit>] [;<options>]
T - Write/read surface test
U - User diskette (minimum system files)

DUMP [<file>]

FORMAT

FREE [:<unit>] [;<options>]
L - Line printer

LIST <ASCII file>[,[<start>][,<end>]] [;<options>]
F[mmm].[nn] - Page format

H - Input heading
L - Line printer
N - Line numbers

LOAD [<memory-image file>] [;<options>]
null - Go to EXORbug

null - Load above XDOS
G - Load and go
U - EXORset Alternate Memory Map

V - Overlay XDOS; discontiguous memory
(<string>) - Initialize command buffer

MERGE <file 1>[,<file 2>,...,<file n>],<destination file> [;<options>]

W - Overwrite
<start address>

NAME <old name>[,<new name>] [;<options>]

- Delete protection
Non-system file

- System file
- Write protection

No protection ~
S
a
n
a
g

I

ROLLOUT [<memory-image file>] [;<options>]
null - Memory above XDOS

D - Build file from scratch diskette
U - EXORsSet Alternate Memory Map
V - Any memory to scratch diskette

* These commands allow the family indicator in the file
name specification.

Page C-02

APPENDIX

D. Diskette Controller Entry Points

The floppy diskette controller module firmware is used
to control all the EXORset’s floppy disk drives hardware
functions. The entry points to the various functions are
described in this section. Parameters required by the
firmware functions are stored in RAM in the locations
described by the following table:

Name Address Definition

CURDRV $0000 This byte contains the binary logical
unit of the drive to be selected (zero or
one). The starting sector must be between

0 and $27F, inclusively.

STRSCT $0001 These two bytes contain the physical
sector number of the first sector to be
used (starting sector).

NUMSCT $0003 These two bytes contain the number of
sectors to be used. This number includes
a partial sector, if a partial sector
read is being requested. The sum of

STRSCT and NUMSCT cannot be greater than

$280.

LSCTLN $0005 This byte contains the number of bytes to
be read from the last sector during a
read operation. This number must be
between 1 and 128 ($80), inclusively.

CURADR $0006 These two bytes contain the first address
in memory that is to be used during a
read or write operation. This location is
updated after each sector is read or
written. During write test operations,
these two bytes contain the address of a
one-byte data buffer.

FDSTAT $0008 This byte contains a status indication of
the performed function. If an error
occurred during a diskette operation, the
carry bit in the condition code register
will be set to one upon returning to’ the
calling program. In addition, FDSTAT will
contain a number indicating the error
type ($31 - $39). The error types are
explained in Chapter 21. If no error
occurs, then the carry bit of the
condition code register will be set to
zero and FDSTAT will contain the value
$30.

XDOS 4.0 User”s Guide Page D-Ol

APPENDIX D Diskette Controller Entry Points

SIDES $O000D This byte was primarily indicating the
type of diskette that is in a drive (MDOS
III supports single and double’ sided
diskettes). Since xXDOS III uses single
sided mini diskettes only, this byte is
unused and the sign bit is always set to
one (to indicate single sided diskette)
for MDOS III program compatibility.

For all of the firmware entry points described below,
the content of the registers is meaningless upon entry. Upon
exit, the registers are unchanged. Each entry point is
accessed by executing a "jump to. subroutine" instruction
(JSR). The parameters must have been set up in RAM as

indicated for each specific function. It should be noted that
the ROM routines for the diskette functions run with the
interrupt mask bits set to one in the condition code
register. No non-disk interrupt must occur during a disk
controller routine execution. The routines also modify the
interrupt vector link. The interrupt vector link, the
interrupt masks and the original register®s contents are
restored before returning to the calling program.

Name Address Function

OSLOAD SE800 This entry point initializes the drive
electronics and loads the bootblock and
XDOS retrieval information block from the
diskette in drive zero. The bootblock is
given control after it has been loaded
from the diskette. It, in turn, causes
the rest of the operating system to be
loaded into memory. No parameters are
required for this entry point. This
function does not return control to the
calling program. If an error occurs
during the bootblock load process, the
error number will be displayed on the
system console and control passed to’ the
resident debug monitor. At least $120
bytes of memory are required starting at
location zero. If less memory exists, the

bootblock program may not be able to

display an error message indicating that
there is insufficient memory in the
system.

FDINIT SE822 This entry point initializes the FDC. No
parameters are required by this routine
and none are modified by it.

CHKERR $E853 This entry point is used to check for a
diskette controller error if called
immediately after returning from another
ROM entry point. The routine will check

the state of the carry flag in the
condition code register. If the carry
flag is set to zero, the CHKERR routine
will simply return to the calling

XDOS 4.0 User’s Guide Page D-02

APPENDIX D Diskette Controller Entry Points

program. If the carry flag is set to one
(an error occurred), then the routine

will print an "E" followed by the
contents of FDSTAT and two spaces on the

system console. Control is given to the
resident debug monitor after printing the
error message. CHKERR does not change any
of the parameters.

PRNTER SE85A This entry point will print an "E"
followed by the contents of FDSTAT
followed by two spaces on the_ system
console. PRNTER does not change any of
the parameters.

READSC S$E869 This entry point causes the number of
sectors contained in NUMSCT beginning
with STRSCT from CURDRV to be read _ into
memory starting at the address contained
in CURADR. CURADR is updated to the next
address that is to be written into after
each sector is read. The parameter LSCTLN
is automatically set to 128 ($80) so that
a complete sector is read into memory
when the last sector is processed. The
parameters CURDRV, STRSCT, and NUMSCT are

not changed. FDSTAT will contain’ the
status of the read operation.

READPS S$E86D This entry point is similar to READSC
with the exception that the last sector
is only partially read according to the
contents of LSCTLN. If LSCTLN contains
128 ($80), then this entry point is

identical to READSC. The restrictions
placed on LSCTLN are described in the
preceding table of the parameters.

RDCRC SE86F This entry point causes’ the number of
sectors contained in NUMSCT beginning
with STRSCT from CURDRV to be read to
check their CRCs. The contents of the
sectors are not read into memory. The
only parameter changed is FDSTAT.

RWTEST $E872 This entry point causes the data located
at the address contained in CURADR to be
written into bytes of NUMSCT' sectors
beginning with STRSCT of CURDRV. After
NUMSCT sectors are written, they are read
back to verify their CRCs. The only
parameter changed is FDSTAT.

RESTOR S$E875 This entry point causes the read/write
head on CURDRV to be positioned to track
zero. The only parameter required is
CURDRV. The only parameter changed is
FDSTAT.

SEEK $E878 This entry point causes the read/write

XDOS 4.0 User”s Guide Page D-03

APPENDIX D Diskette Controller Entry Points

head of CURDRV to be positioned to the
track containing STRSCT (see Appendix A).

The only parameter changed is FDSTAT.

WRTEST SE87B This entry point causes the data located
at the address contained in CURADR to be
written into bytes of NUMSCT sectors
beginning with STRSCT of CURDRV. The only
parameter changed is FDSTAT.

WRDDAM SE87E This entry point causes a deleted data
mark to be written to NUMSCT- sectors

beginning with STRSCT of CURDRV. The only
parameter changed is FDSTAT.

WRVERF SE881 This entry point causes NUMSCT sectors
beginning at STRSCT of CURDRV to be
written from memory starting at the
address contained in CURADR. CURADR is
updated to the address of the next byte
to be read from memory after each sector
is written. After all sectors have been
written to the diskette, they are read

back to verify their CRCs as checked by
the routine RDCRC. The only parameters
changed are CURADR and FDSTAT.

WRITSC SE884 This entry point is identical to WRVERF
with the exception that the written
sectors are not read back to verify their
CRCs. The only parameters changed are
CURADR and FDSTAT.

When an error occurs, the physical sector number at
which the error occurred can be computed from the following

relationship:

PSN = STRSCT + NUMSCT - SCTCNT -1

where PSN is the physical sector number at which the error
occurred, and SCTCNT is a two-byte value contained in
locations $000B-000C.

The following entry points are also in the firmware but
have nothing to do with the diskette functions. These entry
points can be used to access a line printer.

Name Address Function

LPINIT $EBCO This entry point exists for MDOS III
compatibility. Its was originally used to
initialize the line printer PIA. In _ the
EXORset, this is done by the EXORbug

monitor at RESTART time. LPINIT will then
return immediately to the calling
program.

LIST SEBCC This entry point sends the contents of
the A accumulator to the line printer. If

XDOS 4.0 User’s Guide Page D-04

APPENDIX D Diskette Controller Entry Points

the "paper empty" or "printer not
selected" status condition is detected,
the LIST entry point will return with the
carry flag of the condition code register
set to one. If these conditions are not
detected, the carry flaq will be set to
Zero.

LDATA SEBE4 This entry point sends a character string
to the line printer. The string is
pointed to by the X register and must’ be
terminated with an EOT ($04). Prior to

printing the string, a carriage return
and a line feed are sent to the printer.
If a printer error is detected by LDATA,
it will loop until aborted or until the
error is corrected.

LDATA1L S$EBF2 This entry point performs the same
function as LDATA with the exception that
the initial carriage return and line feed
are not printed.

For a complete description of the diskette controller
module the "EXORset User”’s Guide" should be consulted.

Page D-05

APPENDIX

E. Mini-Diagnostic Facility

A mini-diagnostic routine is available in the EXORset
diskette controller firmware. This routine vermits the user
to execute any diskette controller function a single time or
continuously. The parameters required by the mini-diagnostic
routines are similar to those used by the other diskette
controller functions (Appendix D). The reader’ should be

familiar with those parameters before attempting to use’ the
mini-diagnostics.

The following parameters and entry points are required
by the mini-diagnostic routine:

Name Address Definition

CURADR $0006 This parameter is automatically set up by
the mini-diagnostic routine from LDADDR
(see below) before each execution of the
specified function.

LDADDR $0020 These two bytes contain the data that
would normally be placed into CURADR. The
diagnostic routine will update CURADR
from LDADDR before each function is
executed.

EXADDR $0022 These two bytes must contain the address
of the entry point of the function
(READSC, WRTEST, etc.) that is to be

executed by the diagnostic routine.

ONECON $0024 This byte should contain a zero if the
function is to be executed continuously.
A non-zero value in this location will
cause the function to only be executed
once.

$0060-$0073 This area contains a two-byte counter for
each of the possible states returned by a
function in FDSTAT. Locations $60-61
contain a counter for the status of "0";

locations $62-63 contain a counter’ for
the status of "1": and so on.

CLRTOP SEB90 This location is the entry point to the
mini~diagnostic routine that initially
zeroes the counters in locations $60-73
before executing the function.

TOP SEB98 This location is the entry point to the
mini-diagnostic routine that will leave
the counters at locations $60-73
unchanged before executing the function.

XDOS 4.0 User”s Guide Page E-0Ol

APPENDIX E Mini-Diagnostic Facility

Single Execution

In order to execute a diskette function a single time,
the parameters CURDRV, STRSCT, NUMSCT, LSCTLN, and LDADDR

should be configured as required for the specific function.
The address of the specific function should then be _ placed
into EXADDR. The location ONECON should be initialized with a
non-zero value. The stack register should be pointing to a
valid area in memory (the EXORbug stack is acceptable). Then,
the debug monitor command

EB98:G

will give control to the mini-diagnostic routine causing’ the
FDC to be initialized, CURDRV to be restored, and the

function in EXADDR to be executed a single time. Upon
completion of the function, the letter "E" followed by a
digit "0" through "9" will be printed and control returned to
the debug monitor. The displayed message will indicate the
completion status of the function as returned in FDSTAT.

Continuous Execution

In order to execute a diskette function continuously,
the parameters CURDRV, STRSCT, NUMSCT LSCTLN, and LDADDR

should be configured as required for the specific function.
The address of the specific function should then he placed
into EXADDR. The location ONECON should be initialized to the
value of zero. Then the debug monitor command

EB98;G (to start at TOP)

or

EB90:;G (to start at CLRTOP and zero counters)

will give control to the mini-diagnostic routine. This will
cause the FDC to be initialized, CURDRV to be restored, and
the function in EXADDR to be executed continuously until one
of the two-byte counters is incremented to zero. When one of
the two-byte counters reaches zero, an "E" followed by an
error indication will be printed at the console and_ control
returned to the debug monitor.

I€ the user initializes a counter to the value S$FFFF, for
example, the mini-diagnostic will run continuously until the
first error of the type monitored by the counter occurs.

Automatic configuration

The EXORset floppy disk firmware provides the facility to
configure interactively the mini-diagnostic parameters,
avoiding the user to deal with the addresses of the

parameters. It will ask first for a drive number: the user
must type in a single digit indicating the drive number to be
tested. Then, the diagnostic will prompt with "S/C"; Typing
"S" means that single execution is required, typing "C" tells

XDOS 4.0 User“s Guide Page E-02

APPENDIX E Mini-Diagnostic Facility

the firmware to enter the continuous execution mode. Lastly,
"DES" is displayed: answering "Y" enables the destructive
test, an "N" will cause the diagnostic to preserve the disk
information during test. Configuration is now complete. The
common part of the mini-diagnostic program is entered at
CLRTOP (S$EB90) : counters are cleared and the test begin.

Mini-diagnostic parameters are configured as follow

Name Address Configuration

CURDRV $0000 Configured by the first answer: The drive
number typed in.

STRSCT $0001 Set to zero. The test will apply on _ the
whole disk. .

NUMSCT $0003 Set to $280. All sectors will be tested.

LDADDR $0020 Set to SEBFD. This location of the disk
driver contains the data S$E5 which is
used by the RWTEST routine.

EXADDR $0022 Set to RDCRC address (SE86F) for
non-destructive test, to RWTEST (S$E872)
for destructive test.

ONECON $0024 Cleared if answer to second prompt is
"Cc". Set to SFF if answer is "S".

Automatic configuration mode is entered by the EXORbug
command

EAD2:G

Error processing of the mini-diagnostic program in automatic
configuration mode is performed as in the manual mode.

Page E-03

APPENDIX

F. Diskette Description, Handling, and Format

The flexible disk, or diskette, is permanently enclosed

by a durable, plastic covering. This outside jacket allows
the diskette to be handled and at the same time gives a
certain degree of protection for the oxide surface within.
The covering also provides rigidity to the diskette, allowing
it to be easily inserted into and removed from the diskette
drives.

To extend the usable life of a diskette and to maximize

trouble-free operation, the diskette should be handled with

reasonable care. The following points of diskette care should
be followed.

1. The diskette should be returned to its protective
envelope when not in a drive unit.

2. The diskette in its envelope should be stored
vertically. It should not be stacked or placed
under heavy pressure as this can cause warping of
the oxide surface.

3. Too many diskettes should not be forced into one
box.

4. The diskette should not be exposed to any
magnetizing force in excess of 50 oersted. The 50
oersted level can be reached about three inches
away from a typical source such as electric
motors, transformers, etc.

5. Diskettes should not be subjected to extremes of
heat. They should not be kept in direct sunlight.
Warping can result.

6. The label on the diskette should only be written
On with a felt-tipped pen. Pencils, ballpoint
pens, Or extreme pressure from felt-tipped pens

can emboss the oxide surface within.

7. ‘The physical oxide surface should never be
touched. Skin oils transferred to the surface in
this manner can attract and retain dust and other

contaminants.

8. The surface of the diskette should never be wiped
or cleaned. Any physical contact with the surface
should be avoided.

9. The diskette should never be forced into the
drive. Neither should the diskette be folded or
bent.

10. The door on the diskette drive should not be

XDOS 4.0 User’s Guide Page F-Ol1

APPENDIX F Diskette Description, Handling, and Format

closed before the diskette has been inserted all
the way. Damage to the drive hub hole can result.

Likewise, the door on the drive should be fully
opened before the diskette is removed.

The diskette may or may not have a write-protect hole
along the right edge (seeing the diskette from above with
drive head hole at the bottom). This hole is located 1.25

inches from the top edge of the diskette. When the hole is
not covered, the diskette is write protected. The hole must
be covered in order to write on the diskette. An opaque
adhesive-backed label or tape can be used to cover the hole.

Page F-02

APPENDIX

G. Directory Hashing Function

In order to speed up a directory search for a specific
file name, a hashing function is used to map a file’”s name
into one of the directory’s sectors. As a result, the number

of sectors that have to be read before a match is found or

not found is minimized.

All ten bytes of the file name and suffix are used by
the hashing function. The function computes a number which,
when added to the physical sector number of the start of the
directory, is the sector number of the first sector used in a
linear search of the directory.

An entry in the directory will have in its first two
bytes a value of zero, indicating that this entry has never
been used; a value of SFF, indicating that the entry is
deleted; or an ASCII character, indicating the presence of a
file name.

Initially, all directory sectors are filled with zeroes.
New names are added sequentially to the sector identified by
the hashing function. New entries can be made into those
entries which have a zero or an $FF in their first byte.
Thus, a search for a name can stop whenever an entry is found
which has the first byte equal to zero.

A directory search begins in the sector identified by
the hashing function. If no entries within this sector
contain zero in their first byte, and if no match is found,
the next sector in the directory is searched. The sectors
will continue to be searched in this round-robin fashion
until a match or an entry with first byte of zero is found,
or until all sectors have been examined. The only time all
sectors of the directory are searched is if every entry
contains a valid file name or a deleted file name. Thus,
directory searches are faster if the directory has been
reorganized with the BACKUP command (section 3.3).

The following routine is similar to the one used in XDOS
to perform the directory hashing function. It is documented
here to allow users who wish to write disk-oriented programs
to access the directory without using XDOS.

XDOS 4.0 User’s Guide Page G-Ol

APPENDIX G Directory Hashing Function

* XDOS DIRECTORY HASHING FUNCTION
*

*HASH GETS HASH CODE IN RANGE 0-19 FOR FILE NAME
*

*ENTRY: X = POINTER TO 10 BYTE FILE NAME AND SUFFIX
x

*EXIT: A = HASH CODE VALUE -- RANGE 0-19, DECIMAL.
* B AND X HAVE BEEN ALTERED
*

HASH LDA #10 COUNT TEN CHARACTERS
CLRB CLR HASH VALUE AND CARRY

HASH1 PSHS B,CC SAVE HASH VALUE AND CARRY
LDB 0,X+ GET CHARACTER, BUMP INDEX
SUBB #$25 UNIQUE 6 CHARACTER CODE
BPL HASH2
CLRB

HASH2 PULS cc RESTORE CARRY
ADCB 0,S+ UPDATE HASH CODE VALUE
ROLB
DECA TALLY CHARACTER COUNTER
BNE HASH1 LOOP TEN TIMES
RORB ALL CHARACTERS INCLUDED
PSHS B IN THE HASH CODE VALUE.
RORB ADJUST THE HASH VALUE
RORB IN RANGE 0-19
RORB
RORB
ADDB 0,S+
TFR B,A
ANDA #%00011111
CMPA #19
BLS HASH3
SUBA #20
CMPA #9
BHI HASH3
ASRB
ROLA

HASH3 RTS RESULT IN A-REG, EXIT

Page G-02

*
~

e
+
e

e
e
e

F
H

SH

APPENDIX

H. XDOS Equate File Listing

This appendix contains a modified listing of the xXDOS
equate file. Only the pertinent parts the assembler outputs
are shown. The leftmost column contains the value equated to

the system symbol. The XDOS equate file can be assembled on a
user”’s system if the EXORset M6809 Assembler is available.
Note that the equate file is not line-numbered and cannot be
assembled with a line-numbered program.

OPT NOLIST
PAGE —

6809 XDOS VERSION 4.1X -- SYSTEM EQUATE FILE -- 08/19/80

SPC 3

SKIP 2 MACRO

THE GENERATED BYTE IS A "COMPARE X IMMEDIATE".
THE EXECUTION OF THE BYTE WILL CHANGE THE CONDITION CODES ONLY.

NO REGISTERS ARE AFFECTED. THUS, A ONE BYTE INSTRUCTION

IS FORMED THAT SKIPS FORWARD TWO BYTES.

SKIP2 MACR

e
e

e
e

e
e

FCB $8C
ENDM

SKIPl1 MACRO

THE SAME CONCEPT AS THE "SKIP2" MACRO IS USED, EXCEPT THAT

A "BRANCH NEVER" OP-CODE IS GENERATED. NO REGISTER IS AFFECTED
BY THIS OPERATION, CONDITION CODES ARE NOT ALTERED.

SKIP1 MACR

*®

&

*

FCB $21
ENDM

SCALL MACRO (SYSTEM FUNCTION CALL)

SCALL MACR

*

*

*

IFEQ NARG-1
SWI
FCB \O!.%01111111
ENDC

IFNE NARG-1
FAIL * UNDEFINED SWI CALL ARGUMENT *
ENDC

ENDM

UCALLE MACRO (USER FUNCTION CALL)

UCALL MACR

IFEQ NARG-1

XDOS 4.0 User’s Guide Page H-O1

APPENDIX H XDOS Equate File Listing

SWI
FCB \0!+%10000000
ENDC

*

IFNE NARG-1
SCALL
ENDC
ENDM
PAGE

*

3

* SYSTEM FUNCTION DEFINITIONS
k

*

SPC 3
.RESRV EQU 0 RESERVE A DEVICE
.RELES EQU .RESRV+1 RELEASE A DEVICE
.OPEN EQU .RELES+1 OPEN A FILE
.CLOSE EQU .OPEN+1 CLOSE A FILE
.GETRC EQU .CLOSE+1 READ A RECORD
.PUTRC EQU .GETRC+1 WRITE A RECORD
.REWND EQU .PUTRC+1 POSITION TO BEGINNING OF FILE
.GETLS EQU .REWND+1 READ LOGICAL SECTOR
.PUTLS EQU .GETLS+1 WRITE LOGICAL SECTOR
.KEYIN EQU .PUTLS+1 CONSOLE INPUT
.DSPLY EQU .KEYIN+1 CONSOLE OUTPUT (TERM W/ CR)
.DSPLX EQU .DSPLY+1 CONSOLE OUTPUT (TERM W/ EOT)
.DSPLZ EQU .DSPLX+1 CONSOLE OUTPUT (TERM W/ EOT, NO CR/LF)
.CKBRK EQU .DSPLZ+1 CHECK CONSOLE FOR BREAK KEY
.DREAD EQU .CKBRK+1 EROM DISK READ
.DWRIT EQU .DREAD+1 EROM DISK WRITE
.MOVE EQU .DWRIT+1 MOVE A STRING
.CMPAR EQU .MOVE+1 COMPARE STRINGS
.STCHB EQU .CMPAR+1 STORE BLANKS
.STCHR EQU .STCHB+1 STORE CHARACTERS
.ALPHA EQU .STCHR+1 CHECK ALPHABETIC CHARACTER
.NUMD EQU .ALPHA+1 CHECK DECIMAL DIGIT
.ADDAM EQU .NUMD+1 INCREMENT MEMORY (DOUBLE BYTE) BY A
.SUBAM EQU .ADDAM+1 DECREMENT MEMORY (DOUBLE BYTE) BY A
.MMA = EQU .SUBAM+1 MULTIPLY (SHIFT LEFT) MEMORY BY A
.DMA EQU .MMA+1 DIVIDE (SHIFT RIGHT) MEMORY BY A
.MDENT EQU .DMA+1l ENTER XDOS WITHOUT RELOADING
LOAD EQU .MDENT+1 LOAD A FILE FROM DISK
.DIRSM EQU .LOAD+1 DIRECTORY SEARCH AND MODIFY
.PFNAM EQU .DIRSM+1 PROCESS FILE NAME
.ALUSM EQU .PFNAM+1 ALLOCATE USER MEMORY
.CHANG EQU .ALUSM+1 CHANGE NAME/ATTRIBUTES
.MDERR EQU .CHANG+1 XDOS ERROR MESSAGE HANDLER
.ALLOC EQU .MDERR+1 ALLOCATE DISK SPACE
.DEALC EQU .ALLOC+1 RETURN DISK SPACE
.EWORD EQU .DEALC+1 SET ERROR STATUS WORD FOR CHAIN
.TXBA EQU .EWORD+1 TRANSFER X TO B,A
.TBAX EQU .TXBA+1 TRANSFER B,A TO X
.XBAX EQU .TBAX+1 EXCHANGE B,A AND X
.ADBX EQU .XBAX+1 ADD B TO X
.ADAX EQU .ADBX+1 ADD A TO X
.ADBAX EQU .ADAX+1 ADD B,A TO X
.ADXBA EQU .ADBAX+1 ADD X TO B,A
.SUBX EQU .ADXBA+1 SUBTRACT B FROM X

.SUAX EQU .SUBX+1 SUBTRACT A FROM X

XDOS 4.0 User’s Guide Page H-02

APPENDIX H

SI

DLE

DC1

DC2

DC3

DC4

NAK
SYN
ETB

CAN
EM
SUB

ESC

FS

GS

RS

US
SPACE

RUBOUT
*

* SPECIAL

EQU

EQU

EQU

EQU
EQU

EQU

EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

- SUAX+1
- SUBAX+1
- SUXBA+1

-CPBAX+1

-ASRX+1

-ASLX+1

- PSHX+1

- PULX+1

-PRINT+1

- PRINX+1

-GETFD+1

» PUTFD+1

- PUTEF+1

- BREAD+1

-EWRIT+1

-MREAD+1
»MWRIT+1

» MERED+1

-MEWRT+1

-BOOT+1

CONTROL

W
O
D
A
N
I
H
A
D
A
D
M
N
S
B
W
N
H
E
O

XDOS 4.0 User’s Guide

CHARACTER

XDOS Equate File Listing

SUBTRACT B,A FROM X

SUBTRACT X FROM B,A
COMPARE B,A TO X

SHIFT X RIGHT (ARITHMETIC)

SHIFT X LEFT (ARITHMETIC/LOGICAL)
PUSH X ON S STACK

PULL X FROM S STACK

PRINT-TERMINATE WITH CR

PRINT-TERMINATE WITH EOT

READ FDR (RESIDENT XDOS ONLY)

WRITE FDR (RESIDENT XDOS ONLY)

WRITE EOF (RESIDENT XDOS ONLY)

DISK READ W/ ERR RETN

DISK WRITE W/ ERR RETN

MULTIPLE SECTOR READ

MULTIPLE SECTOR WRITE

MULTIPLE SECTOR READ W/ ERR RETURN

MULTIPLE SECTOR WRITE W/ ERR RETURN
RELOAD XDOS

ISSUE NEXT COMMAND AND EXIT

CHARACATERS

NULL
START OF HEADING
START OF TEXT
END OF TEXT
END OF TRANSMISSION
ENQUIRY (WRU - WHO ARE YOU)
ACKNOWLEDGE
BELL
BACKSPACE
HORIZONTAL TAB
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN
SHIFT OUT
SHIFT IN
DATA LINK ESCAPE
DEVICE CONTROL 1
DEVICE CONTROL 2
DEVICE CONTROL 4
DEVICE CONTROL 4
NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE
END OF TRANSMISSION BLOCK
CANCEL
END OF MEDIUM
SUBSTITUTE
ESCAPE
FILE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR
SPACE (WORD SEPARATOR)
DELETE (RUB OUT)

EQUATES

Page

APPENDIX H XDOS Equate File Listing

*

SUFDLM EQU - SUFFIX DELIMETER
OPTDLM EQU *y OPTIONS DELIMETER
DRVDLM EQU *: LOGICAL DRIVER DELIMETER
DEVDLM EQU “+ GENERIC DEVICE NAME DELIMETER
FAMDLM EQU ok FAMILY NAME/SUFFIX DELIMETER
ESFATL EQU L1<7 FATAL ERROR BIT

PAGE
*

*xDoOsS SECTOR EQUATES
*

SC$DID EQU 0 DISK ID PHYSICAL SECTOR NUMBER
SCSCAT EQU 1 CLUSTER ALLOCATION TABLE PHYSICAL SECT.
SCSLOK EQU 2 LOCKOUT CLUSTER TABLE PHYSICAL SECT.
SCSDIR EQU 3 DIRECTORY START PHYSICAL SECTOR NUMBER
SCSDRE EQU $16 DIRECTORY END PHYSICAL SECTOR NUMBER
SCSBB EQU $17 BOOT BLOCK PHYSICAL SECTOR NUMBER
SCSDOS EQU $18 OPERATING SYSTEM PHYSICAL SECTOR NUMBER
SCSSIZ EQU 128 SECTOR SIZE IN BYTES
SCSCLS EQU 4 NUMBER OF SECTORS / CLUSTER
DFCLS$ EQU 32 DEFAULT NO. OF CLUSTERS
*k

*DISK I D SECTOR OFFSETS
*

DIDSID EQU 0 OFFSET TO DISK ID (8 BYTES)
DIDSVN EQU 8 OFFSET TO VERSION NUMBER (2 BYTES)
DIDSRN EQU 10 OFFSET TO REVISION NUMBER (2 BYTES)
DIDSDT EQU 12 OFFSET TO DATE (6 BYTES)
DIDSNM EQU 18 OFFSET TO USER NAME (20 BYTES)
DIDSRB EQU 38 OFFSET TO RIB ADDRESSES (20 BYTES)
DIDSCP EQU 112 OFFSET TO DISK CONFIGURATION PARAMETERS (12 BYTES)
*

* DIRECTORY ENTRY OFFSETS
*

DIRSNM EQU 0 OFFSET TO NAME (8 BYTES)
DIRSSX EQU 8 OFFSET TO SUFFIX (2 BYTES)
DIRS$RB EQU 10 OFFSET TO RIB ADDRESS (2 BYTES)
DIRSAT EQU 12 OFFSET OF ATTRIBUTES (2 BYTES)
DIRSNU EQU 14 OFFSET TO NOT USED AREA (2 BYTES)
*

*R.LI.B. BINARY FILE OFFSETS
*

RIBSLB EQU 117 NUMBER OF BYTES IN LAST SECTOR
RIBSSL EQU 118 NUMBER OF SECTORS TO LOAD
RIBSLA EQU 120 MEMORY LOAD ADDRESS
RIBSSA EQU 122 START EXECUTION ADDRESS

PAGE
*

* UNIFIED I/ 0 CONTROL BLOCK
*

* OFFSETS
*

*

IOCSTA EQU 0 ERROR STATUS
IOCDTT EQU 1 DATA TRANSFER TYPE
IOCDBP EQU 2 DATA BUFFER POINTER
IOCDBS EQU 4 DATA BUFFER START ADDRESS
IOCDBE EQU 6 DATA BUFFER END ADDRESS
IOCGDW EQU 8 GENERIC DEVICE TYPE/CDB ADDRESS
TOCLUN EQU 10 LOGICAL UNIT NUMBER

XDOS 4.0 User’s Guide Page H-04

APPENDIX H

IOCNAM
IOCMLS

ITOCSDW

IOCSLS
IOCLSN

IOCSUF

IOCEOF
IOCRIB

IOCFDF

IOCDEN

IOCSBP

IOCSBS

IOCSBE

IOCSBI
IOCBLN
*

* UNITIFI E
*

ISNOER
ISNODV
ISRESV

ISNORV
ISNRDY

ISIVDV

ISDUPE

ISNONM

ISCLOS

ISEOF

ISFTYP

ISDTYP

ISEOM

ISBUFO

ISCKSM

ISWRIT

ISDELT

ISRANG

ISFSPC

ISDSPC

ISSSPC

ISIDEN

ISRIB

ISDEAL

ISRECL

ISSECB

ISIFNM

ISRWND
*

+
&

+

*&

MDOSS
CBUFLS
CBUFFS
CBUFPS
VERSSS
REVSSS
KYISSV

EQU

EQU

EQU
EQU
EQU

EQU

EQU
EQU
EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU

EQU
EQU

EQU

EQU
EQU

EQU

EQU

EQU

EQU

EQU

EQU
EQU
EQU
EQU

EQU

EQU

PAGE

X DOS

AN D

EQU

EQU
EQU

EQU

EQU
EQU

EQU

11
IOCNAM

IOCNAM+2

IOCNAM+4
IOCNAM+6

19

IOCSUF

35
IOCSBI+2-

D I/o

0
ISNOER+1
ISNODV+1
ISRESV+1
ISNORV+1
ISNRDY+1
ISIVDV+1
ISDUPE+1
ISNONM+1
ISCLOS+1
ISEOF+1
ISFTYP+1
ISDTYP+1
ISEOM+1

ISBUFO+L
ISCKSM+1
ISWRIT+1
ISDELT+1
ISRANG+1
ISFSPC+1

ISDSPC+1
ISSSPC+1
ISIDEN+1
ISRIB+1
ISDEAL+1
ISRECL+1
ISSECB+1
ISIFNM+1

INTERNAL

L O

$100
80

XDOS Equate File Listing

FILE NAME

MAXIMUM REFERENCED LSN

CURRENT SEGMENT DESCRIPTOR WORD

1ST LOGICAL SECTOR OF CURRENT SEGMENT
CURRENT LOGICAL SECTOR NUMBER

FILE NAME SUFFIX

LOGICAL END OF FILE

PHYSICAL DISK ADDRESS OF R.I.B.
FILE DESCRIPTOR FLAGS

DIRECTORY ENTRY NUMBER

SECTOR BUFFER POINTER/INITIAL SIZE

SECTOR BUFFER START ADDRESS

SECTOR BUFFER END ADDRESS
SECTOR BUFFER INTERNAL PTR

IOCSTA IOCB LENGTH

ERROR STATUSES

NO ERRORS, NORMAL RETURN
NO SUCH DEVICE

DEVICE RESERVED ALREADY

DEVICE NOT RESERVED

DEVICE NOT READY
INVALID DEVICE

DUPLICATE FILE .NAME

FILE NAME NOT FOUND

INVALID OPEN/CLOSED FLAG

END OF FILE
INVALID FILE TYPE

INVALID DATA TRANSFER TYPE

END OF MEDIA
BUFFER OVERFLOW

CHECKSUM ERROR

FILE IS WRITE PROTECTED
FILE IS DELETE PRO?TECTED

LOGICAL SECTOR NUMBER OUT OF RANGE

NO DISK FILE SPACE AVAILABLE
NO DIRECTORY SPACE AVAILABLE

NO SEGMENT DESCRIPTOR SPACE AVAILABLE

INVALID DIR. ENTRY NO.
INVALID RIB

CAN*’T DEALLOCATE ALL SPACE

BINARY RECORD LENGTH TOO LARGE
SECTOR BUFFER SIZE ERROR

INVALID FILE NAME

DEVICE MAY NOT BE REWOUND

VARIABLE

CATION EQUATES

START OF XDOS ASECT

COMMAND BUFFER LENGTH
MDOS$—-CBUFL$-2 COMMAND BUFFER LOCATION
CBUFF$+CBUFL$ COMMAND BUFFER SCAN POINTER
MDOSS

VERSSS+2
REVSSS+2

XDOS 4.0 User’s Guide

VERSION #
REVISION #

SAVE AREA FOR KEYINS VECTOR

Page

APPENDIX H

ENDOSS EQU KYI$SV+2 END OF XDOS
ENDUSS EQU ENDOS$+2 END OF USER PROGRAM AREA
ENDSYS$ EQU ENDUSS$+2 END OF SYSTEM (MDOS) RAM
RIBBAS EQU ENDSY$+4 RIB BUFFER ADDRESS
ENDRV$ EQU RIBBA$+2 END OF XDOS ROM VARIABLES
GDBA$ EQU ENDRV$+2 GENERIC DEVICE TABLE ADDREBSS
SYERRS EQU GDBA$+2 SYSTEM ERROR STATUS WORD
SWISSV EQU SYERR$+2 SWI VECTOR SAVE AREA
SWISUV EQU SWISSV+2 SWI USER VECTOR
CHFLGS EQU SWISUV+2 CHAIN FUNCTION FLAG WORD
SYIOCB EQU CHFLG$+2 SYSTEM CONSOLE IOCB
SYPOCB EQU SYIOCB+IOCBLN SYSTEM PRINTER IOCB
SYEOCB EQU SYPOCB+IOCBLN ERR MSG FILE
SW3SVC EQU SYEOCB+IOCBLN SOFTWARE INTERRUPT 3 VECTOR
SW2$VC EQU SW3$VC+2 SOFTWARE INTERRUPT 2 VECTOR
FIRSVC EQU SW2$VC+2 FAST INTERRUPT REQUEST VECTOR
TRQS$VC EQU FIRSVC+2 INTERRUPT REQUEST VECTOR
SWISVC EQU IRQSVC+2 SOFTWARE INTERRUPT VECTOR
NMISVC EQU SWIS$VC+2 NON MASKABLE INTERRUPT VECTOR
RESSVC EQU NMISVC+2 RESTART VECTOR
VECTS EQU RES$VC+1 TOP OF INTERRUPT VECTOR TABLE
SCTRK$ EQU VECT$+1 NUMBER OF SECTORS/TRACK (S.S.) (CURRENT MAP DRIVES)
SCMAX$ EQU SCTRK$+1 NUMBER OF USABLE SECTORS (S.S.) (CURRENT MAP DRIVES)
SCTKDS EQU SCMAX$+2 NUMBER OF SECTORS/CYLINDER (D.S.) (CURRENT MAP DRIVES)
SCMXD$ EQU SCTKD$+1 NUMBER OF USABLE SECTORS (D.S.) (CURRENT MAP DRIVES)
SATRKS$ EQU SCMXD$+2 NUMBER OF SECTORS/TRACK (S.S.) (ALTERNATE MASP DRIVES)
SAMAX$ EQU SATRK$+1 NUMBER OF USABLE SECTORS (S.S.) (ALTERNATE MAP DRIVES)
SATKDS EQU SAMAX$+2 NUMBER OF SECTORS/CYLINDER (D.S.) (ALTERNATE MAP DRIVES)
SAMXD$ EQU SATKD$+1 NUMBER OF USABLE SECTORS (D.S.) (ALTERNATE MAP DRIVES)
ADKPRS EQU SAMXD$+2 ALTERNATE DISK PARAMETERS STORAGE

PAGE
*

‘LOGICAL UNIT NUMBER--BIT DEF,
*

LUSRES EQU 01000000 IOCB RESERVED FLAG
*

*TOCDTT mo BIT DEFINITIONS
*

DTSOPP EQU 00000000 OPEN UPDATE/INPUT
DTSOPI EQU 00000001 OPEN INPUT MODE
DTSOPO EQU 00000010 OPEN OUTPUT MODE
DTSOPU EQU 00000011 OPEN UPDATE MODE
DTSNFF EQU 00000100 NON-FILE FORMAT I/O FLAG
DTSTRU EQU 00001000 TRUNCATE FLAG
DTSCLS EQU 00010000 FILE OPEN/CLOSE FLAG
DT$SIO EQU 00100000 SECTOR I/O FLAG

DTSOUT EQU 01000000 OUTPUT TRANSFER TYPE
DTSINP EQU 10000000 INPUT TRANSFER TYPE
*

*TOCFODF ve BIT DEFINITIONS
*

FDSFMU EQU 300000000 USER DEFINED FORMAT (SECTOR I/O ONLY)
FDSFMD EQU 00000001 DEFAULT OBJECT REC*D FORMAT
FDSFML EQU 300000010 BINARY LOAD FORMAT
FDSFMB EQU 00000011 BINARY RECORD FORMAT
FDSFMA EQU 00000101 ASCII RECORD FORMAT
FDSFMC EQU 00000111 ASCI-CONVERTED-BINARY REC“D FORMAT
FDSCMP EQU 00001000 SPACE COMPRESSION FLAG
FDSCON EQU 00010000 CONTIGUOUS ALLOCATION FLAG
FDSSYS EQU 00100000 SYSTEM FILE ATTRIBUTE

XDOS 4.0 User’s Guide

XDOS Equate File Listing

Page

APPENDIX H XDOS Equate File Listing

FDSDEL EQU 01000000 DELETE PROTECTION ATTRIBUTE
FDSWRT EQU 10000000 WRITE PROTECTION ATTRIBUTE
*

* UNIFIED I/O CONTROL DESCRIPTOR
*

* BLOCK OFFSETS
*

CDBIOC EQU 0 ADDRESS OF IOCB
CDBSDA EQU 2 SOFTWARE DRIVER ADDRESS
CDBHAD EQU 4 HARDWARE ADDRESS
CDBDDF EQU 6 DEVICE DESCRIPTOR FLAGS
CDBVDT EQU 7 VALID DATA TYPE
CDBDDA EQU 8 DEVICE DEPENDENT AREA
CDBWST EQU 10 WORKING STORAGE
CDBLEN EQU CDBWST+2 CDB LENGTH
*

*CDBDODF -- BIT DEFINITIONS
*

DD$FMC EQU 00000001 ASCII-CONVERTED-BINARY IS DEFAULT
DDSLOG EQU 00000010 LOGICAL SECTOR I/O FLAG
DDSCNS EQU 00000100 CONSOLE FLAG
DD$RWD EQU 00001000 REWIND FLAG
DDSOCF EQU 00010000 OPEN/CLOSE FLAG
DDSINP EQU 00100000 INPUT DEVICE FLAG
DDSOUT EQU 01000000 OUTPUT DEVICE FLAG
DD$RES EQU 10000000 RESERVABLE DEVICE FLAG
*

*CDBVDT -- BIT DEFINITIONS
*

VDSBIN EQU 00000100 BINARY OBJECT FLAG
VDSGDB EQU 00001000 TEMP GDB POINTER FLAG
VD$SDA EQU 00010000 TEMP SDA POINTER FLAG
VDSNFF EQU 10000000 NON-FILE FORMAT FLAG
*

* DEVICE DRIVER ENTRY OFFSETS
k

DVSON EQU 0 DEVICE ON OFFSET
DVSOFF EQU 3 DEVICE OFF OFFSET
DVSINT EQU 6 DEVICE INITIALIZATION OFFSET
DVSTRM EQU 9 DEVICE TERMINATION OFFSET
DV$IO EQU 12 DEVICE CHARACTER INPUT/OUTPUT OFFSET
DV$RWD EQU 15 DEVICE REWIND OFFSET

PAGE
*

* DISK EROM EQUATES
*

CURDRV EQU 0 CURRENT DRIVE NUMBER
STRSCT EQU 1 STARTING PHYSICAL SECTOR NUMBER
NUMSCT EQU 3 NUMBER OF SECTORS TO OPERATE UPON
LSCTLN EQU 5 # OF BYTES TO READ FROM LAST SECTOR
CURADR EQU 6 MEMORY ADDRESS FOR DISK TRANSFER
FDSTAT EQU 8 DISK TRANSFER STATUS
SCTCNT EQU $B SECTOR COUNT USED IN DETERMINING ERRORS
SIDES EQU SD - ->SINGLE; + -> DOUBLE SIDED
FREQ EQU S1A TIMING CONSTANT VRS FREQUENCY
*

* EROM ENTRY POINTS
*

OSLOAD EQU $E800 BOOTSTRAP THE OPERATING SYSTEM
FDINIT EQU $E8 22 INITIALIZE THE FLOPPY DISK CONTROLLER

XDOS 4.0 User’s Guide Page H-07

APPENDIX H XDOS Equate File Listing

CHKERR EQU SE853 CHECK AND PRINT ERROR FROM FDSTAT
PRNTER EQU SE85A PRINT ERROR FROM FDSTAT
READSC EQU SE869 READ SECTOR (S)
READPS EQU SE86D READ PARTIAL SECTOR
RDCRC EQU SE86F READ AND CHECK FOR CRC
RWTEST EQU $E872 WRITE/READ TEST
RESTOR EQU SE875 MOVE HEAD TO TRACK 0
SEEK EQU SE878 POSITION HEAD TO TRACK OF "STRSCT"
WRTEST EQU SE87B WRITE TEST
WRDDAM EQU SE87E WRITE DELETED DATA MARK
WRVERF EQU SE881 WRITE AND VERIFY CRC
WRITSC EQU SE884 WRITE SECTOR (S)
CLOCK EQU SE887 COMPUTE TIMING CONSTANTS
k

* BEROM ERROR EQUATES
*

ERSCRC EQU 1 DATA CRC ERROR
ERSWRT EQU “9 WRITE PROTECTED DISK
ERS$RDY EQU *3 DISK NOT READY
ERSMRK EQU 4 DELETED DATA MARK ENCOUNTERED
ERSTIM EQU 5 TIMEOUT
ERSDAD EQU 6 INVALID DISK ADDRESS
ERSSEK EQU 7 SEEK ERROR
ERSDMA EQU 8 DATA ADDRESS MARK ERROR
ERSACR EQU 9 ADDRESS MARK CRC ERROR
*

*MISCELLANEOUS EROM EQUATES
*

RETRY$ EQU 5 RETRY COUNT FOR DISK READ/WRITE ERRORS
*

* LINE PRINTER EROM EQUATES
*

LPINIT EQU SEBCO INIT PRINTER PIA
LIST EQU SEBCC PRINT CONTENTS OF “*A*
LDATA EQU SEBE4 PRINT STRING, CR/LF
LDATAL EQU SEBF 2 PRINT STRING, NO CR/LF

PAGE
*

* EXORBUG EQUATES FOR xDOS
* (INCLUDES ALL REFERENCES BUT ROLLOUT)
*

INCHNP EQU SFO1S INPUT CHARACTER (NO PARITY)
OUTCH EQU SF018 OUTPUT ONE CHARACTER
OCHARS EQU SF018 OUTPUT CHAR ROUTINE WITHOUT NULL PADDING
PCRLF EQU SFO21 PRINT LF/CR
PDATA EQU SF024 PRINT STRING
MAID$ EQU SFO2D EXORBUG ENTRY POINT
XLDA -EQU SF030 CROSS MAP LOAD A-REGISTER
XSTA _EQU $F033 CROSS MAP STORE A-REGISTER
XTOGL EQU $F036 CROSS MAP TOGGLE ROUTINE
ZAPBRK EQU SF039 CLEAR ALL BREAKPOINTS ROUTINE
CKBRK EQU SFO45 CHECK BREAK ROUTINE
AECHO EQU SE714 INPUT CHARACTER ECHO FLAG (0=>ECHO)
ATOP$ EQU SE72E INTERRUPT VECTOR TABLE TOP ADDRESS
XSTAKS$ EQU $E703 EXORBUG STACK
XREGSP EQU SE738 EXORBUG P-REG.
XREGSS EQU SE73A EXORBUG S-REG.
XREGSU EQU $E73C EXORBUG U-REG.

XREGSY EQU SE73E EXORBUG Y-REG.

XREGSX EQU $E740 EXORBUG X-REG.

XDOS 4.0 User’s Guide Page H-08

APPENDIX H XDOS Equate File Listing

XREGSD EQU $E742 EXORBUG DP-REG.
XREGSB EQU $E743 EXORBUG B-REG.
XREGSA EQU SE744 EXORBUG A-REG.
XREGSC EQU SE745 EXORBUG C-REG.
KEYBDS EQU SEF82 KEYBOARD PIA
LINESS EQU SE74C SEARCH/LOAD/VERIFY BUFFER
XPEEDS EQU SE736 TERMINAL SPEED FLAG
CASSET EQU $E72C PUNCH ON FLAG
*

OPT LIST, LLEN=120

Page H-09

APPENDIX

I. xXDOS 4.00 Differences

The following appendix contains a description of the
differences between XDOS 4.00 and MDOS 3.00.

1. A program accessing logical unit 1 without first using
the system calls will have to be changed so that the _ read
head is restored before the unit is accessed. XDOS restores
both logical units 0 and 1 each time the system is
initialized. However, if there is no diskette in drive 1 when

booting XDOS, this drive is not restored. Seek errors may
result when failing to care of this. System calls always
restore the accessed drive when more than three recoverable
controller errors occur.

2. BINEX, BLOKEDIT, ECHO, EMCOPY, EXBIN, PATCH and REPAIR

commands have been evicted to preserve mini-diskette space.

3. The Alternate Memory Map of the EXORset has replaced the
Dual Memory Map of the EXORciser II. Care should be taken
when transferring MDOS programs that perform cross map
operations.

4. Since the EXORbug monitor features hardware breakpoints,
the ABORT or RESTART functions have no longer to be activated
between a LOAD command and the "XDOS" or "E800;G" EXORbug
commands.

5. In the system functions that use the file name provided
in a DFT (.OPEN, .LOAD, .CHANG, .DIRSM), a check is made to
ensure that the file name is legal. If not, an error status
is returned (see 20.4).

6. The console reader (CR) and console punch (CP) standard
generic device names are no longer supported since the
EXORset system console does not include such peripheral
devices.

7. ‘QThe CHAIN command has been downgraded. Compilation
operators are not supported.

8. An additional system call is available (.COMND) which is
not implemented in MDOS III.

Page I-01

APPENDIX

J. IOCB Input Parameter Summary

The following appendix contains a summary of the twelve
different modes in which an IOCB can be used. The tables
show the entries of an IOCB labelled on the left. Across the
top of each table are the names of the valid device
independent I/O functions. Immediately underneath each 1/0
function will be the letter "N" or "Y". The "N" indicates
that the function cannot be used in the mode described by the
title line under each table. A "Y" indicates that the
function can be used.

An "X" appears in those places where a given IOCB entry
is required as an input parameter to the function in whose
column the "X" appears. At the bottom of each table, the
values that must be placed into the IOCB entries are
summarized. Periods in the table serve as place holders’ to
show the columns.

XDOS 4.0 User’s Guide Page J-01

APPENDIX J IOCB Input Parameter Summary

R oO G Pp C R G Pp R

E Pp E U L E E U E

S B T T O L T T Ww

R N R R S E L L N

V Cc Cc E S S S D

VALID CALL Y Y Y N Y Y N N Y

IOCB ENTRY

IOCSTA é * * « A ® . i .

IOCDTT e x * é * F . ‘ *

TOCDBP é ‘ 5 ‘ ‘ 5 . . .

ITOCDBS ‘ ‘ x * 7 * « . ‘

TOCDBE * * x . a ‘ . . *

TOCGDW x ‘ ‘ ‘ ‘ x * . .

TOCLUN x a . . ‘ ‘ “ 7. s

ITOCNAM/MLS . x * . «i ‘ ‘ . .

/SDW ‘ x * . ‘ * . . .

/SLS . X
/LSN . xX. . . ; 5 i ‘

LOCSUF/EOF ° 4 ° ° ° ° ° ° e

TOCRIB = ‘ ‘ « ‘s . . * ‘

IOCFDF ‘ . . < e . : . .

ITOCDEN ° ° ° ° ° ° ° ° °

IOCSBP/SIZ ‘ 7 F F ° ° ° ° °

TOCSBS ° x ° ° ° ‘ . . .

TOCSBE ° x ° . * . . ‘ .

IOCSBI ° ° ° ° ° ° ° . .

Diskette Device -- Record Processing, Input (Existing File)

IOCDTT = DTSCLS + DTSOPI

IOCGDW = DK

IOCLUN = *0-*1 ($30-$31)
IOCNAM = File name of existing file
IOCSUF = Suffix

IOCSBS = Sector buffer start

IOCSBE = Sector buffer end

IOCDBS = Data buffer start

IOCDBE = Data buffer end

XDOS 4.0 User’s Guide Page J-02

APPENDIX J IOCB Input Parameter Summary

R O G P Cc R G Pp R

E P E U L E E U E

S E T T O L at T W

R N R R S E L L N

Vv Cc Cc E S S S D

VALID CALL Y Y N Y Y Y N N N

IOCB ENTRY

IOCSTA . . . : : ; : s ‘
TOCDTT ‘ x é a * . Fs ¥ .

IOCDBP ‘ ‘ x « 7- ‘ ‘i a .

TOCDBS i ‘ F x ‘ ‘ - é

TOCDBE . . A 4 * ‘ ‘ ‘

TOCGDW x . . ‘ , é . @ a

TOCLUN x . . - # ‘ Ps r ®

TOCNAM/MLS ° »4 ° 2 . * . * P

/SDW ° xX 7 . *

/SLS p x ° ° e e . ° ®

/LSN a »,4 Fy a < ° ° °

IOCSUF/EOF . XX. . ‘ ‘ ; . .
IOCRIB . . - é é A ‘ é ra

IOCFDF « xX . 7 . ‘ a é °

TOCDEN 7 . . . ° a . « a

IOCSBP/SIZ e xX . . « . ‘ yi .

TOCSBS e x . . ‘ ¥ ‘ ‘ ‘

IOCSBE ° xX . * ‘ ‘ a @ .

IOCSBI ° ° ° « ‘ . . .

Diskette Device -- Record Procesing, Output (New file)

IOCDTT = DTSCLS + DTSOPO

IOCGDW = DK

IOCLUN = *0-*1 ($30-$31)
IOCNAM = File name of new file

IOCSUF = Suffix

IOCFDF = FDSFMA or FDSFMB plus other optional attributes
IOCSIZ = 0 (Default size) or specific size

IOCSBS = Sector buffer start

IOCSBE = Sector buffer end

IOCDBS = Data buffer start

IOCDBE = Data buffer end

XDOS 4.0 User’s Guide Page J-03

APPENDIX J IOCB Input Parameter Summary

R O G P Cc R G Pp R

E Pp E U L BE E U EB

S E T T oO L T T Ww

R N R R S E L L N

V G Cc BE S S S D

VALID CALL Y Y Y ¥ Y Y N N Y

IOCB ENTRY

IOCSTA ° e ° 7 7 ° ‘ °

IOCDTT ° xX ° 7 ° « : ° .

IOCDBP 7 2 ‘ . 3 c c ‘ F

IOCDBS A ‘ xX x $ i A < %

TOCDBE ‘ é x 4 é a ‘ ‘ é

TOCGDW x < % é * ‘ : ° Fy

TOCLUN x ‘i . ° a ‘ . ° °

IOCNAM/MLS . x ° Fy : A F e e

/SDW . xX . :
/SLS ‘ xX 3 A ; ‘ ‘ F ‘

/ USN ‘ x . a F ‘ ’ ‘ .

ITOCSUF/EOF ‘ xX ‘ é é r = é °

IOCRIB « “ * i © « a . a

IOCFDF © xX . < « . « . .

IOCDEN ° e ° ° e . . « .

IOCSBP/SIZ ° x ° ° e ° . . .

TOCSBS ° xX " . « . < 2 «

IOCSBE , x ‘ e * é ‘ a ‘
IOCSBI ° ° ° e °

Diskette Device -- Record Processing, Update (New File)

IOCDTT = DTSCLS + DTSOPU

IOCGDW = DK

IOCLUN = “0-*1 ($30-$31)
IOCNAM = File name of new file

IOCSUF = Suffix

IOCFDF = FDSFMA or FDSFMB plus other optional attributes
IOCSIZ = 0 (Default size) or specific size

IOCSBS = Sector buffer start
IOCSBE = Sector buffer end

IOCDBS = Data buffer start

IOCDBE = Data buffer end

XDOS 4.0 User’s Guide Page J-04

APPENDIX J IOCB Input Parameter Summary

R O G Pp Cc R G P R

E Pp E U L E E U E

S E T T O L T T Ww

R N R R S E L L N

V Cc Cc E S S S D

VALID CALL Y Y Y Y Y Y N N Y

IOCB ENTRY

IOCSTA ‘ ‘ ‘ ‘ ‘ é . e .

IOCDTT ‘ 4 ‘ ‘ x é ‘ ‘ ‘

IOCDBP ‘ ‘ ‘ . a ws a ‘ %

IOCDBS ‘ > x x ‘ ‘ ‘ é ‘

IOCDBE ° « x x * . ‘ ‘ ‘

IOCGDW x e 7 * é * « A "i

IOCLUN xX . . « ‘ ® ‘ a ‘

ITOCNAM/MLS ° x * * x . ‘ . .

/SDW . x ,
/SLS ° x « * * ‘ i ‘ ‘

/USN ° X ° ° ° ° “ ‘ *

IOCSUF/EOF . x ‘ . . * i ‘

IOCRIB ° * . * * ‘ « * ®

IOCFDF ° ° * e « . ‘ « ‘

IOCDEN ° ° e « * . ‘ . *

IOCSBP/SIZ 5 7 ° ° ° . . « *
IOCSBS - X ° ° ° ° ° ‘ P
IOCSBE - xX ‘ ° ° ° ° ° P
TOCSBI ‘ ‘ é e Fy é ° ° .

Diskette Device -- Record Processing, Update (Existing file)

IOCDTT = DTSCLS + DTSOPP

IOCGDW = DK

IOCLUN = “0-*1 ($30-$31)
IOCNAM = File name

IOCSUF = Suffix

IOCSBS = Sector buffer start
IOCSBE = Sector buffer end

IOCDBS = Data buffer start

IOCDBE = Data buffer end

XDOS 4.0 User”s Guide Page J-05

APPENDIX J IOCB Input Parameter Summary

R O G P Cc R G Pp R
E Pp E U L E E U B

S E T T O L T T W

R N R R S E L L N

V Cc Cc E Ss Ss Ss D

VALID CALL Y Y N N Y Y Y N XY

IOCB ENTRY

IOCSTA . . . ‘ ‘ ‘ . ° .

IOCDTT . xX ‘ ‘ ‘

TOCDBP . . . * <

TOCDBS < . * .
TOCDBE ‘ ‘ F ° . ° ° . .

TOCGDW Xx ° rt ‘ ° ° ole

TOCLUN »4 - é 7 é . ‘ . .
LOCNAM/MLS - xX

/SDW - xX 5 ‘ 7 .

/SLS . »4 . ° . . ‘ . .
/USN . X 7 . . “ »,4 « .

LOCSUF/EOF . Xx ° . .

IOCRIB ‘ .

TOCFDF : ‘ :

TOCDEN : . . .

IOCSBP/SIZ ° ° . . ‘ ° ° ° °

TOCSBS ° xX ° . ° ° ° Pp .

TOCSBE ‘ X a F ° ° ° * .
TOCSBI r ‘ ‘ i ‘ ‘ F * .

Diskette Device -- Logical Sector Processing, Input
(Existing file)

IOCDTT = DTSCLS + DTSOPI + DTSSIO

IOCGDW = DK ;

IOCLUN = *0-*1 ($30-$31)
IOCNAM = File name of existing file
IOCSUF = Suffix
IOCLSN = Starting logical sector number to be read
IOCSBS = Sector buffer start
IOCSBE = Sector buffer end

XDOS 4.0 User’s Guide Page J-06

APPENDIX J IOCB Input Parameter Summary

R O G Pp Cc R G P R

E Pp E U L E E U E

S E T T O L T T Ww

R N R R S: E L L N

V Cc Cc E S S S D

VALID CALL Y Y N N Y Y N Y N

IOCB ENTRY

ITOCSTA ‘ ° rs - < : c F é

TOCDTT ‘ Xx = ‘ ‘ % ° Fi .

IOCDBP w ‘ - - 5 zi ° * ;

TOCDBS ‘ z é P c 5 Fs ;: -

TOCDBE ‘ ‘ a ® ‘i c F 7 .

ITOCGDW x . ‘ 5 wi z F a °

TOCLUN x ‘ é . ‘i ai é 7 zi

TOCNAM/MLS . x :
/SDW . Xx
/SLS * X . P . é r i a

/ USN ° xX . . ‘ * . 4 ‘

ITOCSUF /EOF P x . * * « ‘ a .

IOCRIB e e ° ¢ ° . . * e

IOCFDF é: x ° ° e ° ° . .

TOCDEN é zi F ° ° e . : °

TOCSBP/SI2Z ‘ X ° ‘ ° e . . 7

IOCSBS é 4 ri : ° ° ° x *

ITOCSBE ‘ x é ° ° ° ° . .

IOCSBI s ‘ c F . ° ° »,4 °

Diskette Device -- Logical Sector Processing, Output
(New file)

IOCDTT = DTSCLS + DTSOPO + DTSSIO

IOCGDW = DK

IOCLUN = *0-*1 ($30-$31)
IOCNAM = File name of new file
IOCSUF = Suffix

IOCFDF = Optional attributes
IOCLSN = Starting logical sector number to be written
IOCSIZ = 0 (Default size) or specific size

IOCSBS = Sector buffer start

IOCSBI = Sector buffer end

XDOS 4.0 User’s Guide Page J-07

APPENDIX J IOCB Input Parameter Summary

R O G Pp Cc R G Pp R

E P E U L E E U E

S E T T O L T T W

R N R R S E L L N

V Cc Cc E S S S D

VALID CALL Y Y N N Y Y Y Y Y

IOCB ENTRY

IOCSTA ° ° ° ° ° ° ° ° °

IOCDTT ° 4 e ° ° ° ° . .

IOCDBP ° ° ° ° ° ° ° ° °

TOCDBS ° ° : ° ° ° 7 e e

ITOCDBE é F r é PF 3 ‘ 7 é

IOCGDW x i é é ‘ $ > ‘ °

ITOCLUN x ie a ‘ é é . ‘ °

IOCNAM/MLS é xX ei ‘ é x A ‘ °

/SDW ‘ »4 ® é ‘ si ‘ ‘

/SLS ‘ xX . ‘ ‘ P P é

/ USN ‘ 4 ‘ % 5 @ x x ‘é

TOCSUF /EOF ‘ x ‘ ‘ . F - 5 ‘

IOCRIB x . a ‘ ° * c . ‘«

IOCFDF . x . . * s . . e

TOCDEN ° ° ° ° ° ° ° ° e

IOCSBP/SIZ ° X 7 ° e ° ° ° °

ITOCSBS 7 x é ° ° ° x x °

ITOCSBE 3 x é ° ° ° x ° °

ITOCSBI 3 - a r é ‘ ‘i x Fy

Diskette Device -- Logical Sector Processing, Update
(New file)

IOCDTT = DTSCLS + DTSOPU + DTSSIO

IOCGDW = DK

IOCLUN = *0-*1 ($30-$31)
IOCNAM = File name of new file

IOCSUF = Suffix

IOCFDF = Optional attributes
IOCLSN = Starting logical sector number
IOCSIZ = 0 (Default size) or specific size

IOCSBS = Sector buffer start

IOCSBE = Sector buffer end

IOCSBI = Sector buffer end

XDOS 4.0 User’s Guide Page J-08

APPENDIX J IOCB Input Parameter Summary

R O G P Cc R G P R

E P E U L E E U E

Ss EB T T O L T T Ww

R N R R S E L L N

V Cc Cc E S S S D

VALID CALL Y Y N N Y Y Y Y Y
IOCB ENTRY

IOCSTA Py z 5 F . °
IOCDTT . X « . x é Fy . °
TOCDBP é . . ‘
IOCDBS . < . . ‘ F a a
IOCDBE > ° . ° “ . . ‘
TOCGDW X ° ° . 7 ° 7
IOCLUN X < ° ° . ° . . .
TOCNAM/MLS »,4 é 5 ».4 ° . . °

/SDW ‘ xX ° % f ° : P .
/SLS . xX 3 s . é ° ° :

/ USN . »,4 ‘ . . . ».4 ».4 °
IOCSUF/EOF . x . . . , . . .
IOCRIB . . . # ‘ . r . .
ITOCFDF ° e . « * zi P . i

IOCDEN ° ° . * . a . . F
IOCSBP/SIZ ° 3 ° a. F
IOCSBS ‘ X ° . . F ».4 xX a
IOCSBE ° xX ° . * ® xX ‘ =
IOCSBI P ° ° ° . . . X ‘i

Diskette Device -- Logical Sector Processing, Update
(Existing File)

IOCDTT = DTSCLS + DTSOPP + DTSSIO

IOCGDW = DK

IOCLUN = “0-*1 ($30-$31)
IOCNAM = File name of existing file
IOCSUF = Suffix
IOCLSN = Starting logical sector number
IOCSBS = Sector buffer start
IOCSBE = Sector buffer end
IOCSBI = Sector buffer end

XDOS 4.0 User”s Guide Page J-09

APPENDIX J IOCB Input Parameter Summary

R O G P Cc R G Pp R

E Pp EB U L E E U E

S E T T O L T T WwW

R N R R S E L L N

V Cc Cc E S S S D

VALID CALL Y Y Y N Y Y N N N

IOCB ENTRY

IOCSTA . . « « . * * * *

TOCDTT . x * * . . P - *

ITOCDBP - * “ « « * . « °

TOCDBS . “ 4 7 °

TOCDBE ° ° x ° ° ° ° A ‘

ITOCGDW x ° ° e ° e ° e °

TOCLUN x ° ° ° ° ° e - ‘

TOCNAM/MLS ° e - je F ° A Fy a

/SDW ° . ° ° ° ° ° ° °
/SLS ° ° ° ° ° ° ° ° A

/ USN ° e e ° ° ° ° . e

TOCSUF/EOF ° ° 4 e e ° ° ° e

TOCRIB ‘ r r é i ° . ‘i a

IOCFDF x * 7 <i ‘ é ‘i . ‘

TOCDEN ‘ s ‘ ° “ . .

IOCSBP/SI2Z . « . . . ‘ * . .

ITOCSBS e . . . ‘ ° « . .

TOCSBE « ° . “ . ° . . .

TOCSBI ° 7 ° ° ° ° ° ° °

Non-diskette Device -- Non-file Format, Input

IOCDTT = DTSCLS + DTSNFF + DTSOPI

IOCGDW = CN

ITOCLUN = “0 ($30)

IOCFDF = FDSFMA

IOCSUF = Display prompt if device is CN
IOCDBS = Data buffer start

IOCDBE = Data buffer end

XDOS 4.0 User’s Guide Page J-10

APPENDIX J IOCB Input Parameter Summary

R O G Pp Cc R G P R

E Pp E U L E E U E

S E T T O L T T Ww

R N R R S E L L N

V Cc Cc E Ss S Ss D

VALID CALL Y Y N Y Y Y N N N

IOCB ENTRY

IOCSTA a - “ @ « © * . °

IOCDTT ‘ X . ‘ « . « . .

TOCDBP z . . ‘ * * . . .

ITOCDBS ° * . ».4 4 « . . .

IOCDBE ° ° ° x X ° ° ° °

TOCGDW X ° e 7 ° ° ° ° °

TOCLUN x ‘ ‘ 7 ° P ; 7 ‘
TOCNAM/MLS ‘ ‘ si 4 ° é ° ° °

/SDW ‘ ‘ . - F . F . ‘
/SLS ‘ ‘ ‘i ‘ ‘ ‘ * - 3
/ USN a « < . ‘ ‘ . .

IOCSUF/EOF ‘ ‘ ‘i ‘ ii ° . .

TOCRIB ‘ ‘ a 7 a « é <i ‘

IOCFDF . xX ‘ * ‘ P a * ‘

TOCDEN a “ « . . ~ ° . @

IOCSBP/SIZ . < . « * . ‘ * .

IOCSBS ‘ . ° ‘ * - x *

IOCSBE ‘ < * « . . . « “
IOCSBI ° . . ° . . . ® .

Non-diskette Device -- Non-file Format, Output

IOCDTT = DTSCLS + DTSNFF + DTSOPO

IOCGDW = LP or CN

IOCLUN = “0 (S830)

IOCFDF = FDSFMA

IOCDBS = Data buffer start

IOCDBE = Data buffer end

XDOS 4.0 User’s Guide Page J-11

APPENDIX J IOCB Input Parameter Summary

R O G P Cc R G P R
E P E U L E E U E

Ss E T T O L T T Ww
R N R R S E L L N

V Cc Cc E Ss S S D

VALID CALL N Y Y N Y Y N N N

IOCB ENTRY

IOCSTA ° ‘ . . ° . ° . .

IOCDTT “ X - :

ITOCDBP ‘ ‘. - 7 c ‘ , . .

IOCDBS i X Xx r F 7 . “ °

TOCDBE ‘ X x ‘

TOCGDW ‘ X . . c
IOCLUN * Xx . < P

TOCNAM/MLS . Xx . . : . . . :

/SDW . Xx.
/SLS ° xX ° ° ° 7 ‘ é .
/USN ‘ X ‘ - P . . °

ILOCSUF/EOF . xX . - é
TOCRIB “ ° . . ° . . . °

TOCFDF ° . . . °

IOCDEN ° . . ° °

IOCSBP/SIZ °

IOCSBS . : 7 °

TOCSBE ° . .

TOCSBI . . ° °

Non-diskette Device -- File Format, Input

IOCDTT DTSCLS + DTSOPI
IOCGDW CDB address IOCLUN = $70-$79 IOCDBS = Data buffer
Start (used for FDR processing)
IOCDBE = Data buffer end
IOCNAM = File name of existing file
IOCSUF = Suffix

XDOS 4.0 User’s Guide Page J-12

APPENDIX J IOCB Input Parameter Summary

R O G Pp Cc R G P R

E P E U L E E U B

S E T T O L T T Ww

R N R R S E L L N

V Cc Cc E S S S D

VALID CALL N Y N Y M4 Y N N N
IOCB ENTRY

IOCSTA Fy 7 - ° ° ° . . ‘
IOCDTT ® xX ° ° ° ° . . .
IOCDBP ° ° e ° . * . « .
IOCDBS F x ° x x ° “ ‘ ‘
IOCDBE . 4 a x x ° . ° .
IOCGDW é x Fi . ° ° : P .
TOCLUN ‘ 4 A . ° ° . s .
IOCNAM/MLS ‘ xX s ‘i é ° ° ® .

/SDW « Xx ‘ ° ° ° ° ® «
/SLS ‘ »,4 z Fy ‘ F ° e 2
/ USN . »4 . * @ ‘ : a e

IOCSUF/EOF . x ‘ * « ° ‘ °
IOCRIB . . . ‘ é F ° < 7
IOCFDF z xX ° ‘ . . . 5 ‘

TOCDEN : ° ° . « . ‘ .
IOCSBP/SIZ P w 5 ° ° . * ‘ .
IOCSBS a 7 F ° ° * « . .
IOCSBE é é % ‘ e ° . . .
IOCSBI « . ‘ ‘ Ft ‘ ° ° a

Non-diskette Device -- File Format, Output

IOCDTT = DTSCLS + DTSOPO

IOCGDW = CDB address IOCLUN = $70-$79 IOCDBS = Data buffer
Start (used for FDR processing)
IOCDBE = Data buffer end

IOCNAM = File name

IOCSUF = Suffix
IOCFDF = FDSFMA, FDSFMB, FDSFMC, or FDSFMD (only)

Page J-13

 10
0

Transformer

BV 14.048111

metal 1!14W+#1%

carbon 11l2W +5%

carbon 114W+#5%

5 24 Ve
RG ~o
R42 Or?

TR —
0 f Ic 6? 4

D7 ce| C]30 cha C29 iN +12VI1.2A
5 <S] LENS | oP]

. . —O OV
— eS RX 3 +12V14A
si3 o{R26 m% Or 2

: 2 24V~

C24 st S
ale ec fe DC Connector

c
12 pins

— Th2 D9
B + q

10 epee FE 311 fom
@ “fs S| | che} cl cps MQ Ht $4 |% 2 + | eave ob ce t R32 107 l iE OOO®O

2 8 Jt | aE a OOO
x] S18} ¢ 5 & ol U] Q (no TEL fa ee a7

I 4 if
Or 1

~ ee eR 16 -O912 «+5VIi40A . t {R20 }
L ak d SW) > iN 0 6 +S

C18 « aa &
Np 9 | C73 e} | E
— Ds g L 1 + eS .4 0 Pt ol il a Thi chs chr

a 1|~o D4 co ci ZN & TO
lS? $ iN T eR 12 Jc 4

= ia | 5734 . %m] 12 = Ct ka Dl ¢ SS D2 el |e a 2 bet 2 2
uN c ar 0 8 -S

a | é | Roi
0147 ov= or che cha = ; oo 5 ; LI. 6 "

-12VIOSA

 UNLESS OTHERWISE SPECIFIED:

THIS DOCUMENT CONTAINS INFORMATION

DIMENSIONS: MM (!NCHES) PROPRIETARY TO MOTOROLA, INC. AND “A MOTOROLA microsystems
SCALE: SHALL NCT BE USED FOR ENGINEERING, .

DESIGN, PROCUREMENT OR EUROP E
REMOVE ALL [SURFACE MANUFACTURE IN WHOLE ORINPART [~ 917. p,
BURRS AND | QUALITY WITHOUT CONSENT OF MOTOROLA, INC EXORset 33/100
SHARP EDGES| IN MICROMETER , DATE: se mance. DRAWN BY: Thumer /6 a Power Supply

: CHECKED BY: 44. SSaafy 02
2 PLACE DEC.=+ HOLES + MSA ae DRAWING NO. SHEET:
3PLACE DEC.=+ ANGLES: | ENGINEER: 14. SPeuhr [11,881 63CG 4040M ISSUE ‘B’
BM: MANAGER: _defpack M08. FL OF: v

