
40
0-
57
1-
 

2 

TITLE: 

DOCUMENT NO: 

CR80 AMOS KERNEL 

PRODUCT SPECIFICATION 

CSS/302/PSP/0008 

\ 

Erik Kliim Hansen 

  

            

PREPARED BY: ‘Jgxgen Hég Ug 

APPROVED BY: Jorgen Hes ey 

AUTHORIZED BY: J@rgen H¢g er 

DISTRIBUTION: 

ISSUE: 1 2 3 

1 
DATE: }790827 | 810303] 820601   
  

       



- + 

      

-- 

     



CSS/302/PSP/0008 

  

  

    
  

  

  

    

  
  

  

    

    

    

    

    

  

  

      

  

  

  

    

    
    

  

  

  

  

  

    

    

  

  

  

  

  
    

  
  

  

  

  

  

  
                                                  
                        

  

  

  

  

  

  

  

  

  

  

sign/date page 
- CR80 AMOS KERNEL EKH/820601 H 

PRODUCT SPECIFICATION repli project 

EKH/810303 

PAGE RECORD AND [ISSUE LOG. 

ISSUE ISSUE ISSUE 
PAGE 1/2/3/4/5/6/7]8 BAGE 1/2/3/4)/5/6/71]8 Pace 1/2/39 /4/5 16/7/84 

01 34 67 
02 35 68 

03 | 36 69 
04 37 70 

05 3a | 71 
06 39 72 

07 _ | 40 73 
08 41 74 

eh] 42 75 
10 43 ; 16 

1 4a 17 

12 45 78 
13 46 79 

14 47 80 
15 48 81 

16 | 49 a2 
17 50 83 

18 51 a4 

19 52 as 

20 53 86 
21 54 87 

22 55 | 88 | 

23 56 39 

26 57 90 

2s 58 91 

26 59 92 

27 60 93 

28 61 94 
29 62 95 

30 | 63 96 
31 64 97 
32 65 98 

33 66 99 

100 

ISSUE DATE iia nia alee 

1 790827 JHO JH® JH@ 

2 810303 JHA IHG JHD 
3 820601 EKH JH@D JHD 

be             
  

400- 919



ae ete 

  

8 we 

    

1 
rot ane 

aD



  

  

    
  

  

    

  
    

    

    

    

            

    

      
          

    

    

    

    

    

      
    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

      
    

                                                                          

  

  

  

  

  

  

  

  

  

CSS/302/PSP/0008 

sign/date psege 

CR80 AMOS KERNEL EKH/820601 ii 

PRODUCT SPECIFICATION ren Project 

PAGE RECORD AND ISSUE LOG. 

PAGE ISSUE a ISSUE a ISSUE 
11213 /4/5|/6/7 1/38 1/2/3/4/s]6 8 1/2/3/4/sSlel7/e 

101 134 | 167 | 
To2 435 168 
103 26 ry) 
104 137 170 

405 138 171 
106 139 472 
107 140 173 

408 141 174 

109 442 475 
410 143 176 

1 Tos 197 
112 145 478 

4143 146 179 

T14 147 480 

115 448 181 

416 149 182 

117 450 |a3 

418 451 184 

T19 152 185 

120 453 786 
421 154 187 

122 155 Ly) 

123 456 89 

124 187 ‘80 

125 158 191 
T26 489 192 

1127 160 193 

128 461 494 

429 162 195 

730 163 196 

131 484 497 

132 465 198 

133 166 T99 

200 

PREPARED APPROVED AUTHORIZED 
ISSUE DATE By BY a 

1 790827 JHG JH@ JH@ 

2 810303 JHG JHA JHA 
3 820601 EKH JHG JH@ 

A                 

ififie ata



© o~ ote



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/date Page 

JHD/810303 
  

    
replace project 

  

  

LIST OF CONTENTS 
  

SECTION 

l SCOPE 

1.1 Organization of Document 

2 APPLICABLE DOCUMENTS 

3 KERNEL REQUIREMENTS 

3.1 Invokation of the Kernel 

3.2 Parameter Checking 

3.3 Processes 

3.3.1 

3.3.2 

Smo. 

3.3.4 

$53.5 

3.3.6 

3.4 CPUs 

3.4.1 

3.4.2 

3.4.3 

Process Control Blocks 

Process States 

Process Hierarchy 

Creation and Removal of Processes 

Page 

Starting and Stopping of Processes 23 

Other Process Management Functions 23 

CPU Control Blocks 

CPU Procedures 

Scheduling 

3.5 Critical Regions 

3.5.1 

3.5.2 

3.6 Events 

3.6.1 

3.6.2 

Region Control Blocks 

Critical Region Procedures 

Receiving Events 

Sending Events 

3.7 Message Type Events 

3.7.1 Path Messages/Answers 

3.8 Signal Type Events





CSS/302/PSP/0008 
  

| sign/dato side 

  

  

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION NHO/810303 ii 

Page 
3.9 Delays 48 

3.10 I/O Interrupts 50 

3.10.1 Processing of I/O Interrupts _ 52 

in the Kernel . 2 

3.11 Handling of Errors 54 

3.11.1 Kernel Error Codes 55 

3.12 Initialization : 56 
3.13 Root Process 63 

3.13.1 Root Initialization Processing 63 

3.13.2 Event Processing 67 

3.14 Real Time Clock Process 68 

3.15 Idle Process 70 

3.16 Memory Management 71 

4 DESCRIPTIONS OF FUNCTIONS 75 

4.1 Local Interrupt 76 

4.2 Wait Event 77> 

4.3 Inspéct Events a 
4.4 Suspend 80 = 

4.5 Ready 80 

4.6 . Lookup CPU 80 

4.7 Set CPU Parameter 81 

4.8 Get CPU Parameter 83 - 

4.9 Create Process 84 

4.10 Start Process 90 

4.11 Stop Process 91 

4,12 Remove Process 92 

4.13 Adopt Process 93 

4.14 Get Child 94-- 

4.15 Get Attributes 95 

4.16 Identify Process, Lookup Process 4— 

4.17 Send Signal 97 

4.18 Send Message 98 ~ 

4.19 Send Answer 100





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dete page 

  

  
    

  

EKH/820601 | iii 
replace | project 

JH@/810303 

Page 
Await Answer 100.1 

Send System Message 1Ol 

Send System Answer 102 

Await System Answer 103 

Open Path 104 

Close Path 105 

Send Path Message 106 

Send Path Answer 107 

Await Path Answer 108 

Identity Sender 109 

Save Event 110 

Recover Events lll 

Read RTC 112 

4.32.1 Read System Time 112 

Set Cycle 113 

Reserve Interrupt 114 

Release Interrupt 115 

Clear Interrupt 116 

Set Interrupt 117 

Inclusion of New Monitor Procedures 118 

Error, Terminate 119 

Miscellaneous Functions 120 

4.40.1 Write RTC 120 

4.40.2 Clean Message 121 

Create Region 122 

4.41.1 Region Completion Codes | 122 
4.41.2. Region Parameter Definitions 122a 
Enter Region 123 

Leave Region 124 

Wait Region 125 

Get Item 126 

Put Item 127 

Get n Items 128 

Put n Items 129 

Copy n Items 130 

Buffer Allocation Procedures 131





CSS/302/PSP/0008 
  sign/date 

“EKH/820601 

  

page 

  

    
  

  

iv 

CR80 AMOS KERNEL PRODUCT SPECIFICATION THO /810303 Project 

Page 
4.50.1 Get Buffer 131 

4.50.2 Release Buffer 131 

4.50.3 Get Address 132 

4.50.4 Clean Memory 132 

4.51 Double Precision Arithmetic 133 

4.51.1 Multiply Long 133 

4.51.2 Divide Long 134 

4.52 XAMOS Bound procedures 134a 

4.52.1 Release Bound 134a 

4.52.2 Set Bound 134a





CSS/302/PSP/0008 
  

sian/dato side 

  

  

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION PERE 52000 an ~ 
|_JHG/810303 | 

Page 

5 LIMITATIONS "135 

6 SYSTEM ASSEMBLY PARAMETERS 136 

7 SYSTEM GENERATION 138 

8 PERFORMANCE 139 

9 GUIDELINES FOR FUTURE IMPROVEMENTS 141 

APPENDIXES 

A. File s2SyYss 142 

B. File X2GEN1 149 

C. File X2GEN2 165 

D. Program Example 168 

E. Emulation of XAMOS instructions on AMOS CPU 171





  

    

  
  

  

  

css /302/PSP/0008 
sian/dete page 

EKH/820601 vi 
CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

JH®/810303 

LIST OF FIGURES 

Figure Page 

3.3.1.a Process Control Block 12 

3.3.1.6 PCB Index Table 14 

3.3.1.c BASE Relative Locations Used 16 

by Kernel and by CPU firmware 

3.4.1.a CPU Control Block 25 

3.4.3.a CPU Ready Lists 29 

3.4.3.b Scheduling Algorithm 31 

3.5.1.a Region Control Block 38 

3.12.a System Initialization Flowchart 61 

3..12.b Initialization of CPUs 62 

4.9.a Create Process Parameter Block 85 

CR80 AMOS Program Header 158 

. CR80 AMOS Data Header 159 

B. CR80 AMOS Object Code Layout at 161 

Assembly Time and at Run Time. 

E.1 XAMOS instruction replacement 173





CSS/302/PSP/0008 
  

sign/date page 

JHO/810303 1 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

    
  

  

ds SCOPE 

The purpose of this document is to describe the CR80 

AMOS MONITOR KERNEL, 

The AMOS computer program configuration items describ- 

ed in this document are 

- CSS/302, CSS/303 Kernel 

- CSS/360 Root including RTC 

and memory manager 

~ CSS/306 Idle process 

- CSS/308 Init program 

- CSS/361 Buffer allocation proce- 

dures 

- CSS/316 Double precision mul/div. 

The KERNEL is the lowest level of CR80 AMOS system 

software layers. The KERNEL implements processes, 

CPU Management, inter process communication and the 

lowest level of I/O device handling: Interrupt 

handling. 

1.1 Organization of Document 
  

The document contains in section 3 a description of 

the concepts used in the Kernel, the functions per- 

formed by the Kernel and the general structure of the 

Kernel. In section 4 a concise interface description 

is given of all Kernel functions. Section 5 lists the 

limitations pertinent to the Kernel. Section 6 and 7 

contains practical information concerning compilation 

and system generation. 

In section 8 key performance figures are given for the 

Kernel.



CSS/302/PSP/0008 

  sign/dete page 

JH®/810303 2 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

    
  

  

Finally, appendixes A, B and C exhibit listings of 

source files which contain definitions pertinent to 

the Kernel. These files should be used as part of the 

source text for CR80 assembler programs which make use 

of the Kernel functions.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato 

 EKH/820601 
: erstatter 

| JHO/810303° 
  

  
2.4 

=F 
Ge 

APPLICABLE DOCUMENTS 
  

CR80 MINI COMPUTER HANDBOOK 

CSD/HDBK/ 0082 

P. Brinch Hansen 

Operating Systems Principles 

Prentice Hall, N.d. 

European Purdue Workshop - TC8 

Real Time Operating System Guidelines. 

CR80 AMOS, I/O SYSTEM 

PRODUCT SPECIFICATION 

CSS/006/PSP/0006 

CR80 AMOS, SYSGEN 

USER'S MANUAL _ 

CSS/121/USM/0023 

CPU-SCM, CR8002 M Product Specification. 

CSD/005/PSP/0049 

CPU-SCM, LR8002 M /011P-/00 

XAMOS/CR801 Application Product Specification 

CSD/005/PSP/0091 

1 side 3 

  

i Projekt 

 





CSS/302/PSP/0008 
  

| sign/dato side 

\TH@/810303 * 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION 

+ erstatter projekt 

  

  

3. KERNEL REQUIREMENTS 

The purpose of the AMOS Kernel is to implement 

multiprogramming on the CR80 multiprocessor. 

The AMOS Kernel fulfils the following requirements: 

implementation of software processes 

communication between processes 

synchronization of processes 

CPU management 

I/O interrupt handling 

dedication of processes to specific CPUs. 

support of CR80 computers with up to 512 kbyte 

of main memory and 8 CPUs. 

The second last requirement arises from the CR80 

architecture (see ref. 2.1) which allows CPUs to 

have private 'subbusses' connecting the CPU to a 

part of the main memory. CPUs having such a subbus 

should primarily execute programs and operate on 

data accessible via its subbus. 

Although a given process is dedicated to execute on 

a single processor, the existence of more than a 

single CPU is shielded from the programmer using 

the Kernel. There is no difference between the 

communication taking place between two processes 

executing on the same CPU and that taking place 

between two processes executing on different CPUs.



CSS/302/PSP/0008 
  | sign/dato 4 side 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION HEGZ~ 61.0303 == 2 

  

  

The primitives for communication between processes 

are based on the concept of messages and answers 

described in ref. 2.2. 

Three different types of messages/answers have been 

implemented: 

messages - answers, 

system messages - system answers, 

path messages - path answers. 

The mechanics for these three types are similar. 

Each type, however, has its own eventqueue, with 

the advantage of efficient separation of messages/ 

answers used for different purposes. 

The intended use of system messages/answers is 

communication with peripheral device drivers (via 

the AMOS I/O system). 

The Kernel consists of a Kernel program, a Kernel 

context*) and an I/O context. The Kernel context 

and the I/O context share a number of variables. 

The most important of these are: 

interrupt tables 

CPU control blocks 

2 

@ process control blocks 

8 

e Critical region.-contrel blocks- 

  

*) The word context is used to mean a set of registers 

(CPU resident or saved). This is the CR80 HW 

process concept.



CSS/302/PSP/0008 
  

sign/dato ~» | side 

| EKH/820601   
  CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| @rstatter Projekt 

| JHO/790827 
  

  

The Kernel program is designed to be modular. 

It is structured as a nucleus part which contains 

basic procedures for handling process control blocks 

and CPU control blocks, and a number of submodules 

each containing procedures for a separate class of 

eventtypes. 

The AMOS Kernel supports un-mapped CR80 CPU's 

with basic instruction set as defined in ref. 

2.6, and CPU's with extended instruction set to 

execute programs in more than 64 K word of memory 

(XAMOS). 

The CPU type is invisible to the programmer.





CSS/302/PSP/0008 
  

sian/dato ~ | side 7 

CR80 AMOS KERNEL PRODUCT SPECIFICATION | EKH/820601 
erstatter ! projekt 

  

  

JHD/790827 

3.1 Invokation of the KERNEL 
  

The Kernel is invoked 

(a) when a MON instruction with proper argument 

is executed, 

(b) when an I/O interrupt is received by a CPU, 

(c) when a CPU interrupt is received 

(d) when a local interrupt is generated 

(timer action, trap, timeout during addressing, 

parity error and bound violation), 

The action taken when causes (a) or (d) occur are 

similar. A branch to a proper monitor procedure 

is taken. This may or may not generate a programmed 

context switch (saving of current registers, and 

loading of a new set of registers) to the Kernel 

context. (This always happens in case (d).) 
The context switch is performed as follows: 

1. The execution-Ievel is incremented, and program 

memory section 0 is selected by firmware (XAMOS only). 

2. The current registers are saved at the normal 

context save area (relative data locations - 2 

through 13) and thereby automatically disabling 

interrupt handling in the current CPU. 

3. <A function code is loaded into register 3. 

(Register 3 never holds a user defined call 

parameter.) 

4. The PCB index (rel. loc.-3) is loaded into 

register 5.



CsS/302/PSP/0008 
  

| 

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| 

sianid 4 sid 
| "EKH/820601 8 

erstatter t provakt 

JHD/790827 
  

  

53. The memory section (page) bits in the Process 

Status Word are set to @. 

6. A hardware semaphore (the Kernel Semaphore) is 

reserved, or a busy waiting is performed until 

it can be reserved. 

7. The current registers @ through 6 are transferred 

to a Kernel parameter area. 

g. The Kernel context is loaded. 

9. It is checked that the current level is not greater 

than 16. If it is, the process is terminated. 

10. The proper action is taken according to the 

function code loaded in step 2. 

Steps 3 through 7 are called ‘enter Kernel’. 

The alternate possibility is that no context switch 

occurs. In the former case the Kernel subroutine 

invoked is called a Function, in the latter it is called 

a Procedure. 

When events (b) and (c) occur, the CPU firmware will 

perform a context switch to the I/O context. The 

further processing is described in section 3.10. 

Events of type (c) are reserved for exclusive use by 

the Kernel. CPU interrupts are used to transfer I/O 

interrupts from one CPU to another CPU.



CSS/302/PSP/0008 
  

side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION THO 810303 

sign/dato 

  

} projekt 

i 
  

  

Parameter Checking 
  

The parameters used when calling the Kernel are 

primarily of two kinds: 

@ indices to be used in Kernel tables 

@ addresses relative to the calling process. 

The first kind of parameters are checked to be 

within their appropriate boundaries, typically 

ranging from @ to a maximum value. 

The secdnd kind of parameters are checked to lie 

within the memory area allocated to the process 

(more specifically the addresses are checked to 

be lower than the SIZE of the process). 

In connection with creation of processes, however, 

absolute addresses are sent to the Kernel for use 

in connection with initialization of a context 

area. 

As there is no simple way of validating these, 

the access to calling Create process should be 

restricted (xéfer'to séctions.;3.3.42and 4792). 
eee on



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sianidato \_side 

EKH/820601 10 
erstatter | projekt 

  

  

1 3HG/790827 

Processes 

A process is defined as an incarnation of.the data 

transformations obtained by execution of a program. 

A program is defined as a collection of machine 

instructions, which can be executed within a single 

context (i.e. without change of BASE and PROG registers 

(see ref. 2.1)). This definition of a program makes 

a monitor procedure (a subroutine to which transfer 

is performed by execution of the MON instruction) 

potential part of many different programs (this 

also emphasises the rule, that the result of execution 

of a monitor procedure must be independent of the 

exact value of PROG). 

Process Control Blocks 
  

For management of processes, the Kernel has a pool 

of process control blocks (PCB). This pool is 

created at system initialization time. All processes 

but two (the KERNEL PROCESS and the I/O PROCESS) 

are associated with a PCB. 

The pool of PCBs resides in memory section @ 

(addresses lower than 64K) or in section 1 

(addresses from 64 K to 128 K). 

The exact layout of a process control block is 

shown in fig. 3.3.l.a. 

Addressing of PCBs is performed indirectly through 

a PCB index table (fig. 3.3.1.b). 

The PCBs are kept on a linked list (PCB item SCHAIN) .



EKH/820601 | 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        

LOCATION NAME CONTAINS 

0 | SCHAIN Link to next PCB 

1 | SNAME Process name 

2 Process name 

3 Process name 

4 | SACCESS Capabilities (3.3.4) 

5 | SLOGPCB PCB index value 

6 | SPARENT Link to PCB of parent process 

7 | SCHILD link to PCB of child process 

8 | SNEXT link to PCB of sister process 

9 | SFWLNK link to next PCB in ready list 

10 | SRVLNK link to previous PCB in ready list 

ll | SSTATE process state (3.3.4-6) 

12 | SAWAIT Awaited event types (3.6) 

13 | SERROR error code (3.3.6) 

14 error location (3.3.6) 

15 | SCPU ref. to CPU control block 

16 | SRDYO ref. to head of ready list (3.4) 

17 | SPRIO process priority (3.4) 

18 | SPROGR absolute ref. to program (PROG) 

19 | SMICRO Per. to Pee e a Meogeam toad module (3.     

Figure 3.3.l.a-l Process Control Block 

The use of PCB parameters is 

explained in the sections 

indicated in parantheses. 

4.3)





EKH/820601 12 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

LOCATION NAME CONTAINS 

20. SBASE ref. to context save area 

—_ 21 SABASE absolute ref. to context save area (BASE) 

22 — SSECT process memory section (PSW encoded) 

23. (; SSIZE size of area belonging to process 

24 SEXECT accumulated 

25 execution time 

26 in units of TIMER interrupt increments 

27 SCREAT process creation time 

28 (same format as used - 

29 by procedure READRIC (3.12) 

30 RLINK PCB link for critical region chains 

31 SSIGNAL signal boolean (3.8) 

32 SWORK temporary save location 

33 SMSGLIM De oie, aeeees a allocatable 

34 SMSGUSD nmb. of msg. buffers allocated (3.7) 

35 SMSGQH message event queue head 

36 message event queue head (3.7) 

37 SANSQH answer event queue head 

38 answer event queue head (3.7) 

39 SSYMOH system Message event queue head 

40 system message event queue head (3.7)     
  

Figure 3.3.l.a-2: Process Control Block 

The use of PCB parameters is explained 

in the sections indicated in 

the parantheses. 

 





EKH/820601 13 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        

LOCATION NAME CONTAINS 

41 SSYAQH system answer event queue head 

42 “system answer event queue head (3.7) 

43 SPMQH path message event queue head 

44 path message event queue head (3.7) 

45 SPAQH path answer event queue head 

46 path answer event queue head (3.7) 

o7 [sauswn | 2e8; te BARESE OF speticalty 
48 SINTRPT currently awaited interrupt (3.10) 

49 SDELAY current delay (3.9) 

50 SCYCLE cycle value (3.9) 

51 SPHASE current phase (3.9) 

52 SPARSIG parent signal counter (3.8) 

53-60 SSAVE @ - 7 save locations 

61 SMSGSLH list of saved messages (3.7) 

62 list of saved messages 

63 SANSSLH list of saved answers (3.7) 

64 list of saved answers 

65 SSYMSLH list of saved system messages (3.7) 

66 list of saved system messages 

67 SSYASLH list of saved system answers (3.7) 

68 list of saved system answers 

69 SPTMSLH list of saved path messages (3.7) 

70 list of saved path messages 

71 SPTASLH list of saved path answers (3.7) 

72 list of saved path answers 

73 SMEMORY Memory allocation parameter 
  

Figure 3.3.1l.a-3: Process Control Block 

The use of PCB parameters is 

explained in the sections 

indicated in parantheses. 

 





MAXPCB: 

PCBINX: 

Index 

  

  

number of entries 

in PCB index table 
  

  ~     

PCB Index Table 
  

  

  

  

  

  

  

  

      

(E # OD 

C 
  

      

  

~e 

PCB # 1 

      

Fig. 3.3.1.b PCB Index Table 

EKH/820601 14





CSS/302/PSP/0008 
  

| sign/dato | side 1 

JHO/810303_. 

G1
 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION 
| erstatrer Projekt 
| | 
| | 

  

  

Reference to a process is performed by use of a 

process-name. A process-name contains a 6 letter 

symbolic part and an index value called name-ident. 

  process 

  -name 

  6 letter symbolic name 

      name-ident. 
  

When a process is addressed using a process name, 

the name-ident .is in a first attempt used as an 

index in the PCB index table. 

If the name stored in the PCB obtained in this way 

matches the symbolic part of the process-name, the 

process is found, else the list of PCBs is scanned 

until a match is found or until all PCBs have been 

inspected. If the PCB is found by scanning, the 

name-ident is updated to contain the proper index. 

The same manner of addressing is also used for CPUs 

(see section 3.4) and critical regions. 

The PCB contains references to the contiguous memory 

area in which the local data of the process 

associated with the PCB reside. 

The lowest addresses of this data area are used by the 

CPU HW and by the Kernel, as shown in fig. 3.3.l.c. 

The PCBs are used by the KERNEL process, the IO process 

and by the RTC process.



EKH/820601 16 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

      

LOCATION NAME CONTAINS 

BASE -6 | XUSERID@ User-id 

-5 | XUSERID1 User-id 

-4 | XCBASE a copy of the BASE register 

-3 | XPCB the PCB index value 

-2 | XLEVEL monitor call nesting level 

-l | XBOUND reset value of BOUND register 

+Q + +7 | XR@ - XR7 save location for register > 7 

+8 | XBASE save location for BASE register 

+9 | XMOD save location for MODIFY register 

+19 | XPROG save location for PROG register 

+11 | XPRPC save location for Program Counter 

+12 | XTIMER save location for TIMER register 

+13 | XPSW save location for PSW(PP SW in XAMOS) 

+14 | XOLDPRC BASE of preempted context 

+15 | XLOCACT relative address of local interrupt routine 

+16 | XLOCRET saved return link at local interrupt 

+17 | XCAUSE local interrupt cause code 

+18 | XDEVICE device address of interrupting device 

+19 | XTIMRS TIMER register reset value 

+20 | XMONRET Kernel save location 

+21 | XTLINK Kernel save location     
  

Fig. 3.3.l.c BASE relative locations used 

by Kernel and by CPU firmware 

 



  

CSS/302/PSP/0008 
  | sign/dato side 

| ' 17 CR80 AMOS KERNEL PRODUCT SPECIFICATION He 790827   
  
} erstatter projekt 
| j 

  

3.3.2 Process States 
  

A process may be in one of five state as-shown below:    
    

      

REMOVED 

STOPPED 

EXECUTING PREEMPTED 

  

SUSPENDED 

The state of a process is recorded in its PCB in the 

two parameters SSTATE and SAWAIT. 

SSTATE contains a combination of state flags and 

state transition flags:





CSS/302/PSP/0008 
  

| sign/data side 1 8 

  

  

  

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION NHOL790827 — 
| | 

SSTATE: 
15 3210 
  

              

  
  

_ Process stopped 

Process to be removed 

Process removed 

| d Process to be stopped 

  
  

SAWAIT contains a bit mask for awaited events: 

SAWAIT: 

  

                            

Signal 

—————=—=e Message   
  ————eemees Answer   
  System message 

System answer 

Path message 

Path answer 

I/O interrupt 

Delay 

Parent signal 

  
    
    
        
    
  

The states REMOVED and STOPPED are explicitly indicated 

in SSTATE. 

If the process is not in either of these two states, 

it will be in the SUSPENDED state if SAWAIT is nonzero. 

If SAWAIT is zero, the process will be EXECUTING or 

PREEMPTED. Which of these two states it is in, can 

only be determined by its position in its ready list 

(see 3.4).



CSS/302/PSP/0008 
  

| sign/dato 

  

  

side 1 9 

CR80 AMOS KERNEL PRODUCT SPECIFICATION 4HO/790827 | 
| erstatter Projekt 

| 
4 

  

  

The transitions 1-9 between the states are caused by 
the following events: 

1: The process is subject to creation. _ 

2: The process is subject to removal. . 

3: The process is subject to a call of 

START-PROCESS executed by its parent process, 

4; The process is loaded by the scheduling 

algorithm. 

5: The process is preempted by the scheduling algorithm 

or by a call of WAIT EVENT with a zero event 

mask (3.6). 

6: The process is subject to a call of STOP-PROCESS 

by its parent process. If the parent executes 

on a different CPU, the transition to STOPPED 

may be delayed until the process calls a Kernel 

FUNCTION or until the scheduling algorithm preempts 

it. 

7: The process is subject to a call of STOP-PROCESS 

by its parent process. 

8: The process calls WAIT EVENT with a non zero 

event mask, and none of the specified event types 

have an occurred event. An alternate possibility 

is that the process calls SUSPEND. 

9: An awaited event occurs, or the process is subject 

to a call of READY. 

(SUSPEND and READY are only called from the 

CRITICAL REGION procedures (ref. 2.5)).



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato side 

\THG/790827 [ 20 
  

erstatter | projekt 

  

  

Process Hierarchy 
  

Process are organized in a hierarchical ‘manner as 

shown below: 

PARENT PROCESS 

  

  

CHILD PROCESS 

A process may create subordinate processes. These are 

called child processes in relation to the former process, 

which in turn is called their parent process. 

The child processes are kept on a circular list (ref. 

fig. 3.3.1.a-1, parameter SNEXT). 

The parent process has a reference to this list in 

SCHILD. The children all have a reference to their 

common parent in SPARENT.



CSS/302/PSP/0008 
  

| sign/dato side n~ 

Z| 
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/7908 

| erstatter Projakt 

  

  

Creation and Removal of Processes 
  

The creation of a process is performed by a call of 

create process (see 4.9). . 

The process created becomes a child of the calling 

process. 

The calling process must have the capability to 

create processes. The process capabilities are 

defined in its PCB parameter SACCESS. 

SACCESS: 

15 0 
  

            
  

Allowed to create pro- 

cess. 

Allowed to create a 

process which again is 

allowed to create a 

process. 

Classification. 

  Ls 

  
  

The capabilities of a process are defined at the time 

the process is created. A process cannot create a 

child with a chassification higher than its own. 

Neither can a process create a child with the capability 

to create a child of its own if the former process does 

not have the capability "allowed to create a process 

which again is allowed to create a process". 

Creation of a process involves allocation and initializa- 

tion of a PCB. 

The initialization is performed according to .: parameters 

specified in a parameter block (ref. 4.9).



CSS/302/PSP/0008 
  

| sign/dato side ~ 

| 22 CR80 AMOS KERNEL PRODUCT SPECIFICATION HO/790827__|   
erstatter | Projekt 

| 

  

  

Child processes can. only be. removed by their parent 

process. When a parent process removes a child by calling . 

Remove process (refer to 4.12) the child process is 

forced to execute a "clean up program" which performs 

the following tasks: 

@® The child removes all its own children one by 

one. ; 

@e The child calls CLNIO (refer to 2.4) for can- 

celling all I/O activities it might have invoked. 

@ The child calls CLNMEM for release of all memory 

it might have allocated. 

@ The child calls the kernel function CLNMESSAGE for 

cleaning up message communications it might be 

involved in: 

@® Messages received but not vet 

answered are redirected to ROOT for 

answering them. 

@® Messages sent for which an answer 

has not yet been received are modified 

to look as if they were orginated by 

ROOT. 

@e The child calls the Kernel function CLNINTRT 

which releases all interrupts reserved by the child.



CSS/302/PSP/0008 
  

| sign/dato wide ~ 

\THG/790827 _| és 
| erstatter | projekt 

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

  

  

3.3.5 Starting and Stopping of Processes 
  

A parent process has the capability to start and stop 

its child processes by calling start process or stop 

process. , 

These functions may be used to build a long term 

scheduling facility in which the parent is the scheduler. 

Stop process will not in general cause an immediate stop 

of the child process. The child process which may 

execute on another CPU will however be stopped the 

first time it enters the kernel. This will eventually 

happen when its time slice elapses (refer to 3.5). 

3.3.6 Other Process Management Functions 
  

For management of processes five other functions are 

implemented. 

Get child enables a parent process to inspect its child 

processes one by one. 

Get attributes delivers an extract of the PCB parameters for 
  

a given process. 

Lookup process returns the PCB index (name-ident). of 
  

a process if its symbolic name is known. 

Identify process returns the symbolic name of a process 
  

if its PCB index is known. 

  

Adopt process allows a parent process to hand over a child 

to the grandparent of the child.



CSS/302/PSP/0008 
  

| sign/dato re ~ 4 

IHO/790827 é 
erstatter | projekt 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION 

  

  

3.4 CPU's 

CPU's are handled by the Kernel as separately 

identifiable objects. 

Each CPU has its own ready list(s) of processes and is 

scheduled separately. When a process is created, it is 

determined which CPU is shall execute on. 

Dynamic creation of CPU's is not supported. It is a system 

generation task to define the number of CPU's in a system 

(section 7). 

CPU's are identified by CPU-names which are constructed 

like process names (see section 3.3). 

3.4.1 CPU Control Blocks 
  

For each CPU in a system there exists a CPU Control Block 

(CB). The CPUCB consists of one part which occurs once 

and another part which occurs as many times as there are 

software priorities (refer to 3.5). 

The CPUCB is shown in fig. 3.4.l.a. and b. 

The kernel holds a CPUCB index table which contains 

pointers to the existing CPUCB's. The CPUCB index table 

is indexed by a CPUCB index and constructed similarly 

to the PCB index table (fig. 3.3.1.b). 

Most of the CPUCB parameters are used by the scheduling 

algorithm.



  

  

  

  

  

  

  

  

  

  

  

  

  

  

EKH/820601 é 5 

LOCATION NAME CONTAINS 

Q | SCHAIN link to next CPU CB 

1 | SNAME symbolic 

2 name of 

3 the CPU 

4] not used 

5 | CCPUID physical CPU number 

6 | CLOGCPU CPUCB index for this CB 

7 | CCPUMS address of CPU message location(ref. 2.1) 

8} CCPUIP BASE of CPU service process 

9] CIMASK CPU interrupt mask (PSW) 
ref. to currently loaded micro 

10} CMICRO program module (initially zero) 

11] CIDLEP ref.to PCB of CPU idle process 

12] CRUNPR ref. to PCB of currently executing 
process, 
  

  

  

  

  

  

        
  

Fig. 3.4.la CPU Control Block 

This part occurs once. 

 



EKH/820601 z6 

  

  

  

  

  

  

  

LOCATION NAME CONTAINS 

X + @ | CCURPR ref. to first PCB in ready list 

xX + 1 | CSCHCN schedule count (3.6) 

X + 2 | CSCHRS schedule reset count 

xX + 3 | CSLISZ slice size (TIME register increments) 

X + 4 | CACTIM accumulated exec. time 

X_ + 5 | CHWPRI HW priority (9,1,2, or 3) 
  

  

  

  

  

  

  

  

  

  

  

  

  

        
  

Fig.: 3.4.1.b CPU Control Block 

This part occurs CPRIOS times. 

(assembly time parameter) 

 





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato | side al 7 

  

'JHO/790827 c 
{| erscatter | projekt j | 

| 
  

  

CPU Procedures 
  

Some of the CPUCB parameters may be inspected and 

modified by using the functions Get CPU parameter and 

Set CPU parameter respectively. 

The parameters which are accessible by these functions 

are CCPUID, CIMASK, CSCHRS, CSLISZ, CACTIM, and CHWPRI. 

CPU's are identified by CPU names which are constructed 

like process names (refer to 3.3.1). 

However, Get and Set CPU parameter use the CPUCB index 

to identify the CPU. It is also the CPUCB index which 

is used in connection with create process. 

The function look-up CPU may be used to deliver the 

CPUCB index for a CPU. —_



CSs/302/PSP/0008 
  

| sign/dato side ~ 8 

| MA 
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810303   

erstaller projekt 

  

  

Scheduling 
  

The scheduling algorith implements a prioritized 

multiplexing of a CPU among the preempted processes 

waiting to execute on it. 

The scheduling algorith works independently for each 

CPU. The scheduling algorith is invoked | 

@ When a process calls wait event, await answer, 

await system answer, or await path answer to re- 

ceive a not yet occurred event type. 

@ When a process encounters a timer action (a 

decrement of the TIMER register resulting in 

a negative value) or when it calls wait event 

with a zero event mask. 

In the former case the process is suspended until an 

awaited event occurs, in the latter it is preempted and 

its timer register is incremented by the time slice 

size defined for the software priority level (CPUCB 

item CSLISZ). It will enter the executing state again 

controlled by the scheduling algorithm. 

For a given CPU, the executing process and the preempted 

processes are kept in circularly organized ready lists. 

There is a ready list for each software priority (assembly 

parameter CPRIOS) (refer to fig. 3.4.3.a).



CSS/302/PSP/0008 
  

  

  

  

  

  

  

  

        

      
  

  

  

  

  

  

              

    

  

  

  

  
  

      

    
  

| sign:dato ‘oe Z 9 

8 3} 
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHGLB1.030 projekt 

| | 

CPUCB: 

SCHAIN 

a 

CRUNPR = - a ° 

CCURPR os > s 

PCB PCB PCB 

priority 0 7 

CCURPR - This is the EXECUTING 

ity -process PCB. 

priority l 

CCURPR 

priority 2 PCR             

In this example there are 2 preempted processes and 

1 executing process at priority level @ and 1 pre- 

empted process at priority level 2. 

Fig. 3.4.3.a CPU Ready Lists.



CSs/302/PSP/0008 
  

| siqn‘data | side 3 ) 

CR80 AMOS KERNEL PRODUCT SPECIFICATION - EKH/820601 ———= | erstatter | praekt 

JH@G/810303 
  

  
  

The algorithm for selecting a process for execution 

is shown in the flowchart fig. 3.4.3.b. 

It may be noted that there has to be at least one 

process which is ready to execute. To ensure this 

there is initially created an Idle process for each 

CPU (refer to 3.15). 

When a process has been selected for execution, it is 

checked whether the process requires a micro program 

module to be loaded into the CPU loadable control 

store. If this is the case (PCB item SMICRO is greater 

than 3)and if the module is not already loaded (SMICRO. 

different from CPUCB item CMICRO), a procedure is 

called which loads it.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 
| 
' 

sign/dato 

'JHO/ 810303 
! erstatter 

me 3 
  

| Projekt 

  

  

  

SELECT 

PRIORITY 

LEVEL @ 

    
  

  

  

  

    

  

  
  

  

    
  

    

  

  

    
  

fee vas _ 
=@ 4 

CSCHRS 
—> CSCHCN 

DECREMENT 
CSCHCN 

CCURPR —_ 
= @ Y 

SELECT 
NEXT 

NO PRIORITY 
LEVEL 

CCURPR 
—> CRUNPR 
(PROCESS 
FOUND)       

Fig. 3.4.3.) SCHEDULING ALGORITHM 

  

  
  

  

SELECT 

PRIORITY 

LEVEL @ 
  

  

    

(SELECTION OF THE NEXT PROCESS TO EXECUTE)





CSS/302/PSP/0008 
  

sign/date page 

JHO/810303 32 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION = Project 
    

  

  

Critical Regions 
  

Critical regions are used for sharing variables 

between different processes, and for synchronization: 

The critical region primitives are designed to solve 

two problems with shared variables: 

@® that of addressing, and 

@ that of contention. 

A critical region consists of a control block (CRCB) 

which is allocated from a system pool of CRCB's and 

an associated contiguous memory area which holds. the 

common variables. This memory area is called the 

Variable Space (VS). The allocation of VS is not 

part of the critical region primitives. 

Addressing of variables in the VS is relative to the 

origin of the VS. A user process should not know 

the absolute address of the VS. Addressing of 

critical regions is symbolic. A critical region is 

addressed by name. The name of a critical region is 

constructed in the same manner as process names 

(ref. to section 3.3.1). 

In connection with a specific region a process will 

be in one of the following states:



CSS/302/PSP /0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/date 

JH®/810303 

page 

33 
  

  
replace project 

  
  

  
WAITING 
TO ENTER 
REGION 

   

    

     
   

  
REGION 
ENTERED 

WAITING 
TO RE- 
ENTER 
REGION 

    

  

    

  

          
  



CSS/302/PSP/0008 
  

sign/date page 

JH /810303 34 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

      

  

Note that these states only apply to the relation 

between a single region and a process. The process 

May interact with several other regions at the same 

time. 

The meaning of the states are: 

Region left: 
  

In this state the process has no access to the VS 

of the region. A process will initially be in 

this state. 

Region entered: 
  

In this state the process has access to all the 

variables of the VS. Only a single process can 

be in this state (in relation to a specific region) 

at any one time. 

Waiting to enter region 
  

The process is suspended until no other process 

is in the 'region entered' state. 

Waiting to re-enter region 
  

The process is suspended until a process leaves the 

region. 

The purpose of this state is to be able to wait until 

the variables of the VS fullfills a wanted condition.



CSS/302/PSP/0008 
  

sign/date page 

JHD/810303 35 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION pentace leas 

    
  

  

The transitions between the states occur at the 

following events: 

The current process calls ENTER-REGION and the 

region already contains a process in the 

‘region entered' state. 

The current process calls ENTER-REGION and no 

process is in the 'region - entered" state. 

Another process (which was in the 'region entered' 

state) calls LEAVE-REGION or WAIT-REGION, and 

the current process is at the head of the queue 

of processes waiting to enter the region and no 

processes were in the state 'waiting to re-enter 

region'. 

The process calls LEAVE-REGION. 

The current process calls WAIT-REGION. 

Another process calls LEAVE-REGION or WAIT-REGION, 

after having modified the contents of the region 

variable space and the current process is at the 

head of the queue of processes waiting to re- 

enter the region.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dete 

JH@/810303 
page 

36 
  

  
replace 

  
Project 

  

  

The normal use of critical regions ‘is 

to enter a region 

modify and/or inspect the variables in VS 

if the variables inspected must fullfill a 

certain condition (which they do not) before 

processing can continue, 

call WAIT-REGION. 

the process may 

This causes the process 

to be delayed until at least one other process 

has been in the ‘region entered' state, and 

has modified the contents of the region vari- 

able space. 

@® and finally to leave the region. 

A region need not control a VS. If it does not, the 

critical region serves as a simple synchronization 

element.



CSS/302/PSP/0008 
  

sign/date page 

JHO/810303 37 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION Eopiace Project 

    
  

  

Region Control Block 
  

For each critical region a region control block (RCB) 

must exist. RCB's are allocated from a pool of free 

RCBs which is set up at system initialization time. 

The kernel has a RCB index table which contains 

pointers to the RCBs. 

The structure of a RCB is shown in figure 3.5.l.a. 

The word CRSTA in the RCB needs a further explanation; 

CRSTA contains the following fields: 

FEDCBA9Y876543210 
  

          

memory section for VS 

  HW semaphore for region 
  

  entered flag 
    dirty flag 
  

The HW semaphore is used to synchronize about the use 

of the region control block itself. The entered flag 

defines whether a process is in the entered state or 

not. The dirty flag is set when a write operation is 

performed on the variable space and cleared when the 

wait queue is transferred to the entered queue.



38 
EKH/820601 

  

  

  

  

  

  

  

  

  

  

  

  

  

    

LOCATION NAME CONTAINS 

0 SCHAIN link to next RCB 

1 SNAME 

2 symbolic namé& of region 

3 

4 SLOGRCB RCB index 

RAL absolute word address of 
3 . DE variable space 

6 CRSTA status word. Refer to the text 

7 CRSIZE size of variable space in words 

8 CREOP pointer to PCB of first process 
waiting to enter region 
pointer to PCB of last process 

. CREQL waiting to enter region 
Lo CRWOF pointer to PCB of first process 

waiting to reenter region 
: pointer to PCB of last process 

it CRWOQL waiting to reenter region 
12 CRCPCB PCB index of entered process     (-l1 if none entered) 
  

Fig. 3.5.l.a Region Control Block. 

 



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dete 

JHO/810303 
page 

39 
  

  
replace project 

  
  

  

3.5.2 Critical Region Procedures. 
  

Procedures are provided for creating critical regions, 

for entering, leaving, waiting to re-enter regions, to 

get items from the variable space and to put items in- 

to the variable space, 

For a detailed description of the procedures, refer 

to section 4.



CSS/302/PSP/0008 
  

| sign/dato side 

ster 
CR80 AMOS KERNEL PRODUCT SPECIFICATION THOL810303 40 

  

; erstatter Projekt 

  

  

Events 

An event is defined as an incident which transfers 

synchronization and/or data information from a process 

or a peripheral device to another process. The following 

event types are defined and supported by the Kernel: 

(a) . Messages 

(b) . Answers 

(c) . System messages 

(d) . System answers 

(e) . Path messages 

(f) . Path answers 

(g) . Signals 

(h) . Parent signals 

(i) . I/O interrupts 

(3) Delays 

Event types (a) through (f) are described in section 

3.7, (g) and (h) in section 3.8, (j) in section 3.9 

and (i) in section (3.10). 

Receiving Events 
  

The primary Kernel function to call for receiving an 

event is wait event (section 4.2). Wait event allows 

a process to wait for and receive the first occurring 

event of a number of event types. 

If no events of the types specified in calling wait 

event have yet occurred, the process is suspended until 

one occurs. 

If an event has been sent but not yet received, the 

process will receive it and continue processing.



CSS/302/PSP/0008 
  

sign/date page 

JHO/810303 41 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

    
  

  

Receiving an event may imply receiving data (as in the 

case of messages and answers). Other event types are 

not associated with data. 

If wait event is called to receive e.g. a system 

answers, the first occurred system answer will be re- 

ceived. Sometimes it is preferable to wait for a spe- 

cific system answer. This is possible by calling await 

system answer. Similar functions exist for answers and 

path answers. 

It is sometimes advantageous for receive and process 

events in an order different from the first sent - 

first delivered order implemented by the kernel. 

For this purpose three functions are available: 

inspect events 

save event 

restore events. 

Inspect events is similar to wait event with the only 

difference that events are not removed from the kernel 

when received by the receiver, i.e. they may be re- 

ceived again. 

Save event is used to temporarily save an event which 

may be an answer or a message which has been received 

by a call of inspect events or a message which has been 

received by wait event. 

The event is removed from the corresponding event queue 

and inserted in a save queue for the event type in 

question. 

Restore events, which is called with an event type as 

parameter, transfers the saved events of the defined



CSS) 302/PSP/0008 
  

sign/date page 

JHO/810303 42 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION reigee Project     
  

  

type to the corresponding event queue. The events may 

then be received again by wait or inspect events. 

3.6.2 Sending Events 
  

There are a number of functions for sending events - 

one for each event type (except I/O interrupts where 

hardware/firmware is used to do this). 

When an event is sent, it is checked if the receiver 

process is waiting for this event (possibly among 

other events and/or event types). If this is the case, 

the state of the receiver process is changed from 

SUSPENDED to PREEMPTED - unless the receiver process 

is in the STOPPED state - and the receiver process is 

linked to its ready list at the second position in the 

list. If the list was empty, it is placed at the head 

of the list. 

If the receiver process is not awaiting the event, the 

event is queued. The method of queuing is different 

for each event type and is described in the appropriate 

of sections 3.7 through 3.10.





CSS/302/PSP/0008 
  

| CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/B10303 
i sign'dato | side 

43 
  

| erstatter | projekt 

  

  

3.7 Message Type Events 
  

This section describes messages, answers, system messages, 

system answers, path messages, and path answers. 

A message is 5 words of user defined information. The 

transmission of a message is always performed in two 

steps: 

e the message data is copied from the sender process 

to a system supplied message buffer, 

e the message data is copied from the message buffer 

to the receiver process. 

The first step is accomplished when the sender calls 

the appropriate send function (refer to sections 

4.18, 4.19, 4.21, 4.22, 4.26, and 4.27). The second 

step is performed when the receiver process is ready 

to receive the message (or answer). This happens after 

a call of the appropriate wait function (refer to 

sections 4.2, 4.20, 4.23, and 4.28). 

The message buffer is used to identify the event (when 

sending an answer it is necessary to specify the message 

to which it is a reply). The message buffer is allocated 

from a pool of message buffers, which is defined at system 

generation time (refer to section 7) and initialized at 

system initialization time (refer to section 3.12). 

The allocation of a message buffer is performed when 

® amessage is sent 

@ a system message is sent, or 

@® a path is opened (refer to 4.24)



CSS/302/PSP/0008 
  

| sign/dato side 

44 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION O/B 20.303. 

erstatter | projekt 
! 

den 
  

  

The message buffer is deallocated when 

e the answer is received 

@ the system answer is received 

@ the path is closed 

The number of message buffers which a process has in 

use (allocated) at any one time cannot exceed the value 

of the process creation parameter VMSGS (refer to 4.9). 

The format of a message buffer is 

  

LINK TO NEXT MESSAGE 
  

i MESSAGE BUFFER INDEX (EVENT) 

PCB INDEX OF PROCESS 
2 SENDING MESSAGE 

PCB INDEX OF PROCESS 
3 RECEIVING MESSAGE 

  

  

  

4 MESSAGE STATE 
  

  

  

  

        

5 LN 

fa 

5B 
eG 

7 “a™~ 
& & 
a © 
f] «f 

8 au 
ee 

9 5 2 
 



CSS/302/PSP/0008 
  

| sign/dato 

'JHG/829303-_! 45 
! erstatrer | projekt 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION 

  

  

The message state parameter has the following layout: 

3210 
  

VECEELEEITE           
  L_#§ ¢ if sent and not 

yet received 

type: 

1: message 

2: answer 

3: system message 

4; system answer 

5: path message 

6 path answer



Css/302/PSP/0008 
  | sign/dato | sige 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/310303._. 46   
| erstatter projekt 

  

  

3.7.1 Path Messages/Answers 
  

Path messages and answers are different from ordinary 

and system messages/answers in the following respects: 

e The message buffer is allocated by a special 

call (open path) which also identifies the 

receiver process. 

e The message buffer stays allocated until a 

special function (close path) is called. 

e@ When a path message is sent the message 

buffer must be identified (EVENT), but the 

receiver is not explicitly identified. 

A path can only be closed by the process which opened 

it.



P 

Css/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION gener — 
| | 

sign‘dato | side 
aad 

'JH@/8 10303 47 
  

  

  

36 Signal Type Events 
  

The signal type events supported by AMOS are signals 

and parent signals. 

Parent signals are reserved for use by the Kernel. 

There is no separate function for sending of parent 

signals. Parent signals are automatically sent when 

a process calls Error (or Terminate) (refer to 4.3) or 

when it encounters a local interrupt which is not a 

timer action (refer to 4.1). Sending a parent signal 

consists of incrementing the parent signal counter 

(PCB item SPARSIG) of the parent process. If the 

parent process awaits a parent signal, the parent signal 

is received by it. Receiving a parent signal implies 

decrementing the parent signal counter. 

Signals can be sent to any process. The function for 

sending signals is described in 4.17. Sending a 

signal means setting the signal boolean (PCB item 

SSIGNAL) to true (=1). Receiving a signal involves 

setting the signal boolean to false (=0). 

As no resources are involved in sending signals, signals 

may be used unrestrictedly. 

(The standard AMOS Teletype writer driver uses signals 

for calling the attention of processes identified by 

the teletype operator).





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato | gide 

'JHO/8 103.03 48 - 
  

| erstatter ) projert 
' i 

  

  

Delays 

Delays are primarily used for two purposes: 

® to generate a long term scheduling, 

@® to timeout waiting for events which do not occur. 

Delays are defined in units of 0.100 secs. Delays are 

implemented by the Real Time Clock (RTC) driver (refer 

to 3.14) which receives an I/O interrupt from a hardware 

clock every 10 milliseconds. 

The RTC maintains a phase for every process in the 

system (PCB item SPHASE). The phase is originally set 

to zero. 

Every 100th millisecond the RTC scans through the chain 

of PCB's and every non zero phase found is decremented. 

Every phase which is zero is reset to the cycle value 

(PCB item SCYCLE). The cycle is also initially zero, 

but may be changed by a call of Set cycle (refer to 

4.33). 

When a process calls wait event, it may specify a delay. 

When await answer, await system answer, or await path 

answer is called, a delay must be specified. The 

process wil regain control (enter the EXECUTING/PREEMPTED 

state) at the latest when a timespan equal to the total 

of the specified delay and the phase value at the time of 

call has elapsed. 

A cyclic behaviour of a process can be implemented by 

setting the cycle to the required period and include 

in the program the following sequence of code:



CSS/302/PSP/0008 
  

| signidato | side 

'JHG/310303 49 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION | erstatter | projekt 
{ 

  

  

MAINLOOP : 

MOVC BMDELAY R2; 

Movc @ RO; 

MON WAITEVENT : 
° 

e v 

. 
° v 

e 
. ’ 

JMP MAINLOOP ;



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign dato | yde 

JHG/816303 _! 50 
! erstatter projekt 

  

  

I/O Interrupt 
  

The Kernel provides the following functions for 

handling of I/O interrupts: 

Reserve interrupt 

Release interrupt 

Clear interrupt 

Set interrupt 

In order to avoid confusion the term interruption 

is used for the event that an I/O device transmits 

its I/O address and device priority code to the CR80 

Main Bus Controller and thereby causes an interruption 

of a CPU. 

The term interrupt is taken to mean all interruptions 

generated by a specific device. 

Interrupts are resources which must be reserved by 

the process before an interruption can be awaited and 

received. 

Reserve interrupt establishes a connection between an 

I/O device and a process. This connection lasts until 

the process is removed or it calls release interrupt 

with the corresponding interrupt as argument. 

Any interruption generated by a peripheral device 

are received by the Kernel. The Kernel maintains 

an interrupt occurrence table with 64 entries, one 

for each possible interrupting device. 

When an interruption is received by the Kernel, it 

is checked if it was awaited by a process. If this is 

the case, the interruption is delivered to the process, 

Otherwise, the interrupt occurrence table entry is 

incremented.



CSS/302/PSP/0008 
  

| sign:data par 

'THG/B10303. 51   CR80 AMOS KERNEL PRODUCT SPECIFICATION oe a 

  

  

When a process calls wait event specifying 

interrupts as an eventtype, it is checked if the proper 

occurrence table entry has a non zero value. 

If so it is decremented, and the process continues 

immediately. 

A process may reserve more than one interrupt. 

It may however only await interruptions from a 

single device. If a process has reserved more than 

one interrupt, it must define the currently awaited 

by a call of set interrupt. This is not necessary 

if only one is reserved. 

Clear interrupt sets the occurrence table entry 

to zero. 

Release interrupt breaks the connection between a 

process and an I/O device. The process will not be 

able to await and receive interruptions from the device 

after a call of release interrupt with the corresponding 

interrupt as argument.



CSS/302/PSP/0008 
  

sign'dato | side 

JHO/810303 52   CR80 AMOS KERNEL PRODUCT SPECIFICATION 
| erstatter | projekt 

  

  

3.10.1 Processing of I/O interrupt in the Kernel 
  

In a CR80 multiprocessor, one and only one CPU may 

execute with the I/O interrupts enabled. That means 

that it is always the same CPU which is interrupted. 

When the interruption occurs, the CPU performs a 

context switch to the I/O context. 

The I/O process thus loaded immediately enters the Kernel 

by reserving the Kernel Hardware semaphore. It checks 

to see if any process awaits the current interruption. 

If not, the proper occurrence table entry is incremented, 

the I/O process leaves the Kernel by releasing the 

Kernel hardware semaphore and performs a programmed 

context switch back to the preempted context. 

If the interruption was awaited, there are two cases to 

consider: 

l. The waiting process must execute on the same CPU 

as does the I/O process. 

In this case the I/O process switches to the Kernel 

context which puts the interrupted process in the 

PREEMPTED state and sets the awaiting process in 

the EXECUTING state, leaves the Kernel and performs 

a context switch to that of the waiting process. 

2. The waiting process must execute on another CPU.



CSS/302/PSP/0008 
  

| sign;dato | side 

| | 
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810.30 3 a   

| erstatter ) projekt 

  

  

In this case the I/O process prepares itself to 

execute in a second incarnation on the other CPU. 

While still being in the Kernel, it sends a CPU 

interrupt to the other CPU and then releases the 

Kernel semaphore; this causes the other CPU to 

load the second incarnation of the I/O process. 

This twin reserves the Kernel semaphore, and 

subsequently sets a hand-shake signal to cause 

the original I/O process to perform a context 

switch back to the interrupted process. 

The situation in the second CPU is now similar to 

1. above.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato 

) erstatter 

'JHO/810 303 
| ade 

54 
  

| Drajekt 

| 
  

  

Handling of Errors 
  

The Kernel performs a validation of all parameters used 

when calling a Kernel function or procedure. 

A invalid parameter may either.cause a return to an 

error exit or it may cause an invokation 

(refer to 4.3). 

of Error 

An example of the former case is create process 

(refer to 4.9),,/and all critical region procedures. 

In the latter case an error code is used with the 

upper byte equal to 1 and an error number in the lower 

byte. The error numbers used are listed 

3.11.1. 

The return link generated at call of the 

procedure is used as error location. 

The inability to perform a function will 

an automatic re-call of the function (as 

of send message) or a return to an error 

in section 

function or 

either cause 

in the case 

exit.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign‘dato | gde 

' RKH/820601 bE 
| wsmmesescuey 6 opeupekl 

  

  

JHD/810303 

3.11.1 Kernel Error Codes 
  

The error codes used by the Kernel have the 

following format. 

  

| | | 

10 000001         \ 
  = 

Lo Error number 

  
  Indicates Kernel 

error     
Set by error 
function 

The error numbers applicable are: 

H
N
 

oO
 

fF
 

W
 

DN
 

FF
 

~
 

Trap or illegal instruction executed 

Parity error encountered 

Time out (illegal addressing) 

Bound violation (XAMOS only) 

Reference is made to a not existing process 

Parameter reference exceeds the local 

process memory area 

Invalid event parameter ; 

Calling process is not sender or receiver 

of this message buffer. 

Invalid message buffer state for this 

function 

Invalid Intrpt parameter 

Invalid Intrpt parameter 

Invalid Item type 

Attempt to use too many message buffers 

Monitor level too large (XAMOS only) 

Process not allowed to call create process.



CSS/302/PSP/0008 
  

sign/dete page 

JHO/810303 56   
CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

      

  

Initialization 
  

After boot loading of a system a separate initiali- 

zation program, INIT (CSS/308), prepares the system 

initialization to be performed by the kernel. 

INIT checks if the kernel is going to have its local 

data structures resident in memory section 0 or l. 

If section O is used, INIT performs the following 

The space required for kernel pools (message 

buffer pool, pcb pool, rcb pool) is calculated 

from the kernel init list prepared by SYSGEN 

(CSS/121). 

The load module above the kernel is displaced 

to make room for the pools. 

The top of the load module is determined. 

INIT moves itself above the top of the load. 

module. 

The kernel module is moved to location 15. 

The kernel process (base 19) is loaded.



SS/302/PSP /0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/date 

H@/810303 

page 

§7 
  

replace 

    
project 

  

  

Section 0 
  

YU 
  

INIT 
  

Kernel 

  

CPUCB pool 
  

Remaining   
Load 

Module 

—fpedule 

      WML 
  

Before initialization 

If section 1 is used, INIT performs the following 

tasks: 

Section 0 

LLLLLLLILIL 
  

  

Kernel 

  

PUCB pool 
  

Other pools 
  

Remaining 
Load   
  

INIT 

LLL 
After 

        

@ The kernel data is moved to section 1 lo- 

cation 0. 

e The space required for pools is determined 

and the pools laid out. 

@ The ROOT data part is moved to section l 

following the pools. 

@ INIT moves itself to the top of load module. 

e The kernel program is moved to location 320 

(=256+64) 

table and interrupt table. 

leaving space for the monitor jump



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/date 

JHD/810303 
page 

58 
  

replace 

  
Project 

    

  

Section 0 

The load module is compressed. 

The kernel process (base 4) 

Section 0 
    

WLZLLLA VJSIEAA 
  

  

  

  

  

  

  

  

    

Kernel 
Program 

INIT 

Kernel ROOT 
Data Program 

Kernel Remaining 
Program Load 

CPUCB Module 
Pool 

ROOT 
Data INIT 

ROOT w 
Program 

+ 

Remaining 
Load r 
Module 

    LLL LL         
  

Before Initialization 

is loaded. 

Section 1: 
  

Kernel 

Data 
  

CPUCB 

Pool 
  

Other 

Pools 

  

ROOT 
Data 
  

  A
 

    

After



CSS/302/PSP/0008 
  

sign/date |page 

{ FKH/820601 39 
CR80 AMOS KERNEL PRODUCT SPECIFICATION reprace {Provect   JHO/810303 
  

  

During system initialization, the Kernel uses an 

initialization list. This list has the following 

format: 

Init list + @: 

Init list + lL 

Init list + 2 

Init list + 3 

Init list + 4 : 

Kernel context relative pointer 

to message buffer pool. 

Kernel context relative pointer 

to PCB pool 

Kernel context relative pointer 

to CPUCB pool 

Kernel context relative pointer 

to RCB pool 

Kernel context relative pointer 

to first location of ROOT 

process data part 

The processing performed by the Kernel is shown in 

the flowchart fig. 3.12.a. Ther initialization is 

performed in the 

The last step in 

the ROOT process. 

Kernel context. 

the initialization is to switch to



CSS/302/PSP/0008 
  

| sign/date | paae 

CR80 AMOS KERNEL PRODUCT SPECIFICATION ERH/820601 pow 

JHO/810303 
  

  

INITIALIZE 

    
IDENTIEY 

CPU TYPE 

(AMOS /XAMOS) 

  

INITIALIZE INTERRUPT TABLES 
    

INSERT . 
BASE QF 
AG CONTEXT 

IN HW INTE- 

RRUPT ‘TABLE 
  INITIALIZE MONITOR JUMP 

TABLE     
MAKE ALL 

ENTRIES 

REFER TO 

PROCED.4.39     

  aS , 

CALL MONI- 

NIT TO IN- 

SERT EIMPLE- 
MENTED EN- 
TRIES 

        

INITIALIZE CPU INTERRUPTS     
SET ALL CPU 

MESSAGE. LOCA- 

TION TO @ 

  

INITIALIZE PCB POOL: 

    
BUILD PCB 
INDEX TABLE 
INIT: . 3 
PCB's 
  INITIALIZE .RCB POOL: 

BUILD RCB 
INDEX TABLE 
INIT. . 
RCB       

. Fig. 3.12.a-1 SYSTEM INITIALIZATION FLOWCHART, PART 1/2.





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/date page 

JHO/810303 61 
  

replace project 

      

  

INITIALIZE MESSAGE BUFFERS: 

INITIALIZE CPU CB POOL: 

START OTHER CPU's: 

CREATE ROOI PROCESS: 

  

      

    

  

    

@—> ABSOLUTE 
LOCATION 7     
  

    

    

    

        

  

rc rer er ere er ere 

—- 4 AN ARBITRARY CPU EXECUTES 
| THE SYSTEM INITIALIZATION 
|" PROCEDURE. THE OTHER CPU's 
| WILL EXECUTE A BUSY WAITING 
| FOR ABSOLUTE LOCATION 7 TO 
| BECOME 9. WHEN THIS HAPPENS 
| THEY WILL CALL CPU INIT 
, (FIG. 3.12.8) 

Fig. 3.12.a-2 SYSTEM INITIALIZATION FLOWCHART, PART 2/2.



   



CSS/302/PSP/0008 
  

sign/date page 
> 

D
 

LS
) 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION IHD /8 1.03.03 
project 

      

  

CPUINIT 

SEARCH THRU 

CPUCB's TO 

FIND PROPER 

CB. 

oo 

SEARCH ALL 
READY LISTS . ' 

TO FIND A 
PREEMPTED 
PROCESS 

  

    

      

  

      

NO   
YES 

  

SWITCH TO 

CONTEXT OF 

PROCESS       

  

E G 

Fig. 3.12.b INITIALIZATION OF CPU's.





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato 0 side 

JHO/810303__, 63. 
erstatter Proyext 

i 

  

  

  
  

3.13 

3.13.1 

Root Process 
  

The Root process is part of CPCl CSS/360. 

The Root process fulfils three purposes: 

@e it takes over initialization after the Kernel 

initialization 

@® it receives events which are sent to not existing 

processes 

e it receives parent signals from its own child 

processes. 

Root Initialization Processing 
  

When loaded by the Kernel, the Root process starts 

initializing of assembled/compiled modules. The Root 

requires that the modules are laid out contiguously 

in main memory and that they follow immediately after 

the Root program part. 

Root expects modules to be programs, data modules, or 

tables. When anything different from this is encountered 

Root terminates initialization. 

The format of modules is defined in appendix A. 

When a program of type Monitor is encountered, Root 

performs a subroutine branch to the program entry 

(refer to Appendix B, file X2GENl1, item XSTART). 

The return link is generated in register: 4.



CSS/302/PSP/0008 
  

| signidato | side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION EKH/820601 —64__. 
! erstucer | projekt 

JH@/810303 
  

  

A monitor program module should therefore contain 

the following construct: 

myinit: 

( MON MONITIT 

Loc 

(refer to 4.38){ <myargumentl>, <mylabell> 

<myargumentn>, <mylabeln> 

Lg 
JMP @. X4; Return. to Root 

  
XSTART = myinit ; define program entry. 

When a data part is encountered, a process is created. 

The process is prepared to execute the last preceeding 

program. Data parts need not be assembled/compiled to 

full size. If a process requires more data space than 

it is compiled with, Root will move all succeeding 

modules accordingly. 

Table modules encountered by Root are skipped; no 

processing is performed. 

Root prints on the operators console, a log of the pro- 

grams and processes as they are encountered. An éxample 

of such a log is shown in figure 3.13.l.a. 

Programs arma processes are placed in memory as required 

in the XPGMEM and XPRMEM parameters. Monitor programs 

are allways placed in memory section 0. Other programs 

are preferably placed in memory section 0. Processes 

are preferably placed outside memory section 0.



Kod 

CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

|sion/aete Tpage 
EKH/820601 

| project 

| JHO/810303 
  

  

Program > 

Process 

CPU type» 
  

Fig. 

mS sao 

ROWIT 

XAMOS 
RT 
MEMMGR 

FeO 

FMS 

  

   321 haat mt at 

FODOOO 

GORI 

Pest dL 

TTYOQAQ 

3.13.l.a 

S VERSION: 

  

VERSION: 
BASE: #OC04/ 1 

BASE: #15B4/1 

BASE? #O044/ 1 

VERSION: 

BASE: #14A4/1 

VERSION: 

VERSION: 
BASE! #aC0 10/3 

a1 4 

YERISION: sey 
VERSICINE 

BASES HSELC/& 

VERSION: 
VERSION: 
VERSION: 
VERSION: 

VERSION: 
BASE? #4010/3 

L0o01 

403 

5 BASES #O01C/ 23 

  

PROG! #OF 14/0 

PROG: #1464/0 

PRG e HEL ie 7 

PROGS #3005 /0 

PROG #2448/0 
PRIUG: #3501 /0 

 PROGS#IA7 ESO 
’ PROG HSAEL/O 
PROG: #SBDZ/0 

) PROG! #30FA/O 
| PROG? #44007 /0 
PROG? #5AQ%2/0 

Example of log generated by Root. 

65





CSS/302/PSP/0008 
  

sign/date page 

JHO/810303 66 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

    
  

  

During initialization the following error message may 

be output from Root on the operator's console: 

INIT ERROR #HHHH #KKKK 

HHHH and KKKK are hexadecimal error numbers. 

HHHH is an error code with the following possible values 

and corresponding errors: 

QO failed to create memory manager process 

1 failed to allocate memory for ROOT itself. 

2 failed to allocate memory for the next pro- 

gram. 

3. failed to allocate memory for the next 

process. 

4 a module is encountered with illegal type 

(neither program nor process). 

5 failed to create next process. 

6 failed to start next process. 

7 failed to start memory manager.



CSS/302/PSP/0008 
  

sign/dato side 
a 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/E1.030.3.. ae 
erstatler Projekt 

    
  

  

3.13.2 Event Processing 
  

Following initialization Root enters a loop when all 

event types but interrupts, signals, and delays are 

awaited. The handling of events received depends on 

the eventtype as follows: 

Messages 

System Messages 

Path Messages 

Answers 

System Asnwers 

Path Answers 

Parent Signals 

an answer is returned with the 

first word set to 

1<BNUNKNOWN. 

a system answer is returned 

with .the first word set to 

1<BNUNKNOWN 

a path answer is returned with 

the first word set to 

1<BNUNKNOWN 

no action 

no action 

the path is closed. 

the child processes are 

inspected. When a child with 

a nonzero SERROR is found, a 

log line is generated and 

printed on the operator's 

console. The form of the 

message is 

PROCESS <name> TERMINATED WITH CAUSE,LOC: #HHHH, 7 HHHH



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign’dato | side 

\JHO/810303 68 
  

! erstatter | projekt 
| 

  

  

3.14 Real Time Clock Process 

The RTC is part of CPCI CSS/360. 

The Real Time Clock (RTC) process receives the 

  

interrupts generated every 10th msec. by the 

hardware clock. 

Everytime 10 interrupts have been received the RTC 

updates a local timer consisting of the following 

7 words: 

RTCYR: current year 

RTCMTH: current month 

RTCDAY: current day 

RTCHOUR: current hour 

RTCMIN: current minute 

RTCSEC: current second 

RTCMSEC: current millisecond 

From these 7 words a 3 word timer is built: 

  

  

  

      

min sec 

day hour 

year-1900 month 
  

This timer is accessible through procedure Read RTC 

(refer to 4.32) 

The timer can be reset by sending a message to RTC 

The message contents will be copied to RTCYR through 

RTCMIN, and RTCSEC and RTCMSEC are cleared to zero.



Css/302/PSP/0008 
  | Sign-dato | side 

| 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHOB1.0 303 69   

i erstatter | projakr 

  

  

Every 100th millisecond the RTC scans through the 

chain of PCB's: 

When a zero SPHASE (refer to fig 3.3.1l.a) is 

encountered, SCYCLE is copied to SPHASE. 

When a nonzero SPHASE is met, it is 

decremented. 

If the elapse of a delay is awaited, the 

PCB item SDELAY is inspected: 

e if it is zero, the process will be 

set executing and receive the delay, 

e if it is nonzero, SDELAY is decremented.



CSS/302/PSP/0008 
  

| sign;dato side 

'JH@/810303_ |! 70 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION ontme = 

| | 
  

  
  

3.15 Idle Process 

The Idle process is CPCI CSS/306. 

The scheduling algorithm described in section 3.5 

  

Yequires that at least one process is ready to 

execute. This is ensured by having an Idle process 

for each CPU. 

The Idle process executes the following program: 

START: 

MOVC @ R2 

MON WALTEVENT 

MOVC 100 RO 

SOB R@ LOC ;wait 100 usec. 

JMP START 

When scheduled, the Idle process waits 100 usec and then 

calls the Kernel again.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

janes loaae 

EKH/820601 71 
ez I project 

JH@/810303 
  

  

3.16 Memory Management 
  

The Memory manager is part of CPCI CSS/360. 

The memory manager process allocates and deallocates 

memory on request from user processes. 

The memory management functions are invoked by sending 

system messages to the memory manager process 'MEMMGR'. 

Memory is allocated in segments of 128 words. 

A segment allocated to a process belongs to that process. 

The following functions are performed on request of the 

memory manager: 

@® allocate memory 

@ release memory 

e verify that an area of memory belongs to 

a process and provide the physical address 

of that memory area 

e transfer memory ownership to another process 

e® release all memory belonging to a process



CSS/302/PSP/0008 
  

sign/date lpaae 

EKH/820601 72 
repiace | project 

CR80 AMOS KERNEL PRODUCT SPECIFICATION 
JH®@/810303 

  

  

The format of system messages sent to the memory 

manager is shown below: 

  

  

  

  

  

  

  

  

  

  

  

  

RUNCTION All Verify & 
MSG ocate Release comment Transfer Release all 

+0 1 0 2 4 3 

+1 TYPE MEM MEM MEM - 

2 SIZE - - nen 

43 CPU - - - - 

+4 RANGE = - ~ - 

ANSWER 

. +0 RESULT RESULT RESULT RESULT RESULT 

. +1 MEM - MEM _ - 

. +2 ADDR - ADDR - - 

+3 PGCPU - PCCPU _ - 

* +4 SIZE - SIZE = =                



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sian/date peae 
) BKH/820601 73 
replace | project 

JHG/810303 
  

  

TYPE: 

MEM: 

SIZE: 

CPU: 

RANGE: 

RESULT: 

PGCPU: 

defines the use of the memory 

0: for program 

1: for data 

is an internal identification of the 

Memory area 

is the size of a memory area in words 

is the logical CPU number 

0-7: identifies a particular CPU 

8: any CPU suffices 

CPU may be specified if a memory area 

is required to which the corresponding 

CPU has subbus access. 

@ lower byte contains the number of the 

lowest allowed 4 K memory block. 

@ upper byte contains the number of the highest 

allowed 4 K memory block. 

When used for program allocation, RANGE = 0 

is interpreted as RANGE = # 0F00 (section 0) 

When used for data allocation, RANGE = 0 

is interpreted as RANGE = #*3F00 (any section) 

When executing on an AMOS CPU, program 

memory will allways be allocated from section 0. 

the result of the request: 

=$: request process successfully 

4>@: error 

upper byte contains logical CPU 

number (0-7) 

e lower byte contains the memory 

section number (0-3) of the me- 

mory area.



CSS/302/PSP/0008 
  

| sign/dete Toane 

EKH/820601 74 
repiace | project 

JHG/810303 
CR80 AMOS KERNEL PRODUCT SPECIFICATION 
  

  

The memory manager contains a table of 2048 entries 

which describes the status of the memory. 

Each entry has the following format 

  

FEDCBAQXS876543210 
‘ i] 

        \ 
  

; index of owner 

if set, this.is the last     
segment of an area 

Logical CPU number of 

connected CPU 

  

  
  if set,“ segment is allo- 

cated 

The table is preset to:all memory (256K) is connected 

to CPU @. 

During initialization ROOT determines if any part of 

the possible memory space is PROM or does not exist, 

and if so updates the memory table.





CSS/302/PSP/0008 
  

| sign/dato | side 
7s 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810.303 15 
erstatter + projekt 

  

  

4. FUNCTION DESCRIPTION 
  

This section contains a detailed description of 

every Kernel procedure and function accessible from 

outside the Kernel by means of monitor call instruc- 

tions.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/date | aide 

EKH/820601 76 

[eretatter | projekt 

JH®/810303 
  

Local Interrupts 
  

When a process is created, its context item XLOCACT 

(refer to fig. 3.3.1.c) is initialized to refer to 

the entry point of a Kernel procedure for handling 

local interrupts. 

When a process encounters a local interrupt, it will 

therefore automatically invoke this procedure. 

The procedure determines the local interrupt cause. 

If it is a timer action, the scheduling algorithm is 

activated. If it is illegal instruction executed on an 

AMOS CPU, which would legal on an XAMOS CPU, the 

instruction is replaced with the corresponding AMOS 

instruction and re-executed together with preceeding 

modify instructions, as defined in appendix E. 

Otherwise (i.e. illegal instruction, parity error, 

or time-out) the Kernel function Error (synonymous 

with terminate) is called. This causes the process to 

enter the STOPPED state, its PCB item SERROR (fig. 

3.3.1.a) is set to 

error code > cause code + #4 8129 

error location : XLOCRET + XPROG (fig. 3.3.1.c) 

and a parent signal is sent to the parent process.



CSS/302/PSP/0008 
  

  

| sign/dato .* 

CR80 AMOS KERNEL PRODUCT SPECIFICATION HHO/B1.0303 22 
| erstatter | projekt 

  

  

4.2 Wait Event 
  

MONITOR FUNCTION AWAIT EVENT [Es (CEVENTMASK,AOR,DELAY) 

QO: (CEVENTTYPEsEVENT) 
INVOKATION: 

MON WAITEVENT ; OR ALTERNATIVELY: 
MON AWAITEVENT 

EVENTMASK IS A BIT MASK WHICH SPECIFIES THOSE EVENTTYPES TO BE AKAITED 
IF TIMEGUT CELAPSE OF DELAY} IS INCLUDED THE EFFECTIVE DELAY IS DEL 

AY * PHASE. (REFER TO SET CYCLE FUNCTION) 

IF NONE QF THE EVENTTYPES SPECIFIED HAVE YET OCCURRED, THE PROCESS IS 
SUSPENDED UNTIL AN OCCURRENCE. 

ELSE IT RETURNS WITH THE MOST URGENT EVENT AS DESCRIBED BELOW. 
WHEN ONE OF THE EVENTS OCCURS THE PROCESS IS SCHEDULED FOR EXECUTION. 

IT RETURNS WITH THE RESULTING EVENTTYPECA NUMBER) AND IF THE EVENTTYPE 

TS A MESSAGE GR ANSWER TYPE ALSO AN IDENTIFICATION OF THE MESSAGE/ANSW 
ER IN EVENT. 

THE CONTENTS GF MESSAGES OR ANSWERS ARE CELIVERED IN THE FIVE WORDS 
- STARTING AT RELATIVE LOCATION AOR. 

RO DELAY - EVENTTYPE 
Rl ACR KEPT 

R2 EVENTMASK EVENT 
R7 . LINK DEST 

The ADR parameter is checked not to point outside 

the area belonging to the process. 

Calling wait event with a zero event mask is 

equivalent to encountering a timer action, and will not 

suspend the process, only preempt it. 

Symbolic names for event masks and event types are 

defined in Appendix A. Masks have names BMxxxx and 

types have names BNxXxxx. 

Programming Example 
  

In the following example 3 event types are awaited: 

messages answers and signals: 

USE BASE 

MYBUF: O REPEAT .4 ; 5 words



css/302/PSP/0008 
  

sign/dato a side 

  
  

  

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION —— Troe is 

USE PROG 

MOVC MYBUF Rl; set up adr 

MOVC BMSIG OR BMMSG 

OR BMANS R2; set up event mask 

MON WAITEVENT ; wait (mask,adr,-,type, 
event) 

IEQ R@ BNSIG ; if type = signal then 

JMP HANDLESIGNAL ; go to handle signal 

IEQ R® BNMSG ; if type = message then 

JMP HANDLEMSG ; go to handle message 

The order in 

interr 

signal 

answer 

messag 

path a 

delay 

system 

parent signal 

else continue; comment: 

type is answer. 

which event occurrences are checked is: 

upt 

e 

answer 

system message 

nswer 

path message 

, and finally 

If wait event is called with a delay = - phase, and 

with an event mask including delay, the process will 

always resume processing immediately after the call.



CSS/302/PSP/0008 
  

  

sign/date page 

THO/810303 79 

CR80 AMOS KERNEL PRODUCT SPECIFICATION pensec® Project 

    
  

  

4.3 Inspect Events 
  

MONITOR FUNCTION INSPECT EVENTS [2 CEVENTMASKs ADDR DELAY) 

Os CEVENTTYPEsEVENT) 

INVOKATION: 
MON INSPECTEVENTS 

INSPECT EVENTS IS INTENDED TO 8E USED FOR PROBING FOR OCCURRED EVENT 34 

WITHOUT RECEIVING THE EVENTS. eae 

EVENTMASK IS A BITMASK WHICH SPECIFIES THOSE TYPES OF EVENTS TO SE 

INSPECTED. EVENT TYPES ARE INSPECTED IN THE ORDER OF THEIR PRIORITY. 

THE INSPECTION TERMINATES WHEN AN OCCURRED EVENT IS ENCOUNTERED 

' INSPECT EVENTS DOES NOT CHANGE THE STATE OF THE EVENTS INSPECTED. IN 

ORDER TO RECEIVE AN EVENT, THE FUNCTION AWAIT EVENT MUST BE CALLED. 

’ MOWEVER, THE CONTENTS OF MESSAGE AND ANSWER TYPE EVENTS ARE OELIVERED. 

RO DELAY EVENTTYPE 

Rr1 ADOR KEPT 

R2 EVENTMASK EVENT 

R?7 LINK DEST 

Rah Ne apa 

Inspect events works similarly to wait event. If none 

of the eventtypes specified have occurred the process 

is delayed until an occurrance.



CSS/302/PSP/0008 
  

  

sign/dato sida 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JH0/8.10303— —=— 8 
    

  

  

Suspend 

MONITOR FUNCTION SUSPEND 
INVOKATIONS 

’ MON SUSPEND 
-THE CALLING PROCESS IS SUSPENDED “AND THE CPU IS SCHEDULED. 
R? LINK DEST 

This function is only to be used as a tool in other 

monitor functions. 

Ready 

MONITOR FUNCTION READY . f2€PCB INDEX} 
INVOKATION:= 

MON READY 

THE PROCESS IDENTIFIED BY THE PCB INDEX IS LINKED TO ITS READY LIST. 
RO PCB INDEX KEPT . : 

R? LINK DEST 

This function is reserved for use as a tool in other 

monitor functions. 

Lookup CPU 
  

MONITOR FUNCTION LOOKUP CPU I2CREF(NAME)), O2¢CPUCB INDEX) 

R2 (NOT FOUND,FOUND) 
INVOKATION: 

MON LOGKUPCPU 
THE CPU IDENTIFIED BY NAME IS LOOKED UP AND ITS CPUCB INDEX IS RETURNE 

OD IN CPUID. : 

RO REFCNAME) CPuCB ENDEX 

R7 LINK DEST 

RETURNS = 
LINK+0z NOT FOUND 

LINK#+1s FOUND 

The reference to NAME is checked not to violate the 

process memory space.



CSS/302/PSP/0008 
  

sign/dato sida 

CR80 AMOS KERNEL PRODUCT SPECIFICATION NHOBLO303 81 
erstatter Projekt 

  

      

  

4,7 Set CPU parameter 
  

MONITOR FUNCTION SET CPU PARAMETER I:z(CPUCS INDEXsPARsPRIOs VALUE) 
R= (ERROR »OK) 

INVOKATION= 

MON SETCPUPARAMETER 

CHECKS VALIDITY OF THE CPUCB INDEX AND OF THE PARAMETER IDENTIFICATION. 
SETS THE VALUE OF THE PARAMETER. 

NOTE THAT SOME PARAMETERS ARE A FUNCTION GF THE THE SOFTWARE PRIORITY. 
RO CPUCB INBEX KEPT 
Rl PAR KEPT 

R2 PRIO KEPT 
R4 VALUE KEPT 

R? LINK DEST 
RETURNS: 

-LINK#Q0= ERROR ee 
LINK#1l:s OK 

The parameters which can be modified are (see 3.4). 

CCPUID (hardware CPU number) 

CIMASK (default interrupt mask) 

For each of the CPRIOS software priority levels the 

following parameters can be set 

CSCHRS (schedule reset count) 

CSLISZ (size of time slice) 

CACTIM (accumulated time) 

CHWPRI (hardware (PSW) priority bits) 

The priority is specified in PRIO. 

The parameter to be set must be specified in PAR 

(register 1). The following symbolic values of PAR 

are defined (appendix A).



CSS/302/PSP/0008 
  

sign/dato \ side 

  CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810 303 82 
erstatter Projekt 

      

  

ZCPUNMB (for CCPUID) 

ZINTMSK (for CIMASK) 

ZSCHRCNT (for CSCHRS) 

ZSLICESZ (for CSLISZ) 

ZACCEXECT (for CACTIM) 

ZHWPRIO (for CHWPRI)



  

  

    
  

  

  

CSS/302/PSP/0008 
sign/date page 

JHD/810303 83 

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace poi 

4.8 Get CPU parameter 

MONITOR FUNCTION GET CPU PARAMETER I: CCPUCB INDEX sPARs PRIO) 
Rs CERROR, OK) 

INVOKATION: 

MON GETCPUPARAMETER 

O: (VALUE 

CHECKS VALIDITY OF THE CPUCB INDEX AND OF THE PARAMETER IDENTIFICATION 

RETURNS THE VALUE OF THE PARAMETER. 
NOTE THAT SOME PARAMETERS ARE A FUNCTION OF THE THE SOFTWARE PRIORITY. RO _ CPUCB INDEX VALUE 
R1 PAR j KEPT 
R2 PRIO KEPT 
RT LINK DEST 
RETURNS: 
LINK +0: ERROR 
LINK#41: OK 

See also 4.7, set CPU parameter.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION Br 

sign/dato 

| 81030   84 
  

erstatter 

  

  

Create Process 
  

MONITOR FUNCTION CREATE PROCESS Iz CREFCPARAMETER BLOCK)) 

O> (COMPLETICN CODE) 
R= CERRGRsDONE) 

INVOKATION: 

MON CREATEPROCESS 

THIS FUNCTION ALLOCATES AND INITIALISES A PCB IN ACCORDANCE WITH THE 
PARAMETERS IN THE PARAMETER 8LOCK. 
THE STATE GF THE PROCESS IS SET TO STOPPED. 

THE PROCESS DESCRIPTOR (REGISTERS AND BASIC PARAMETERS} ARE ALSO PRESE 
Te THE LOCICAL PCB CREATED IS RETURNED IN THE PARAMETER BLOCK IN PARAM 
ETCR VIDCNT. 

THE PROGRAM MUST BE LOADED AND MEMORY FOR THE PROCESS MUST BE ALLOCAT 
ED BEFORE CREATE PROCESS IS CALLED. 
RO - , COMPLETION CODE 
R1 REF(PARAMETER BLOCK )KEPT 
R7 LINK DEST 
COMPLETION CQDES: 
Gs NO ERRORS 
1: NO VACANT PCB*S 

2s REFCPARAMETER BLOCK) VIOLATES SIZE OF CALLING PROCESS 
3: CLASSIFICATICN OF PROCESS TO BE CREATED TO HIGH 

43 CAPABILITIES OF PROCESS TO BE CREATED NOT A SUBSET OF PARENT®S. 
5% INVALIO NAME 
6: INVALID CPu 
73 INVALIO PRIORITY 

és MESSAGE OVERRUN THREAT 
RETURNS: 

LINK#40= ERROR 
LINK+L: OONE 

The parameter block is checked to lie within the 

memory space of the calling process. 

The layout of the parameter block is defined symbolically 

in Appendix A and in figure 4.9.a. 

The size of a parameter block is VPARLGT words (18 words) 

Create process makes the following use of the parameters: 

VNAME@, VNAME1, VNAME2 (name): 

It is checked that the name does not commence with 

'p' (lower byte of VNAME@G). If not all three 

parameters are zero, it is checked that the name is 

  

not already used by an existing process.



EKH/820601 85 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

LOCATION NAME CONTAINS 

0 VNAME® > 

1 VNAME1 } symbolic process name 

2 VNAME2 J 

3 VIDENT index to PCB allocated 

4 VP ROG absolute ref to program 

5 VINIT PROG relative start address 

6 VMICRO “toad module Guosier prooran pee. tana 
7 VCAPAB process capability 

8 VCPU index of CPU control block 

9 VPRIO required SW priority 

10 VLEVEL preset value for system level 

11 VBASE absolute BASE for process 

12 VSIZE size of area belonging to process 

13 VBOUND preset value for BOUND register 

14 VMEMORY memory allocation parameter 

15 VMSGS max. numb. of message buffers used 

16 VUSERID userid 

17 - - 
  

            

Fig. 4. 9 -a CREATE PROCESS PARAMETER BLOCK.





CSS/302/PSP/0008 
  

| sian/data L side 

EKH/820601 86 
erstatter { projekt 

JHG/810303 

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

  

  

If all three parameters are zero, a name is generated 

and returned in VNAME@ - VNAME2. The name will be of 

the form P@@xxx, where xxx is a 3 digit number. 

The name becomes the name of the process to be created 

(PCB parameter SNAME). 

VIDENT 

In this parameter the PCB index of the created 

process is returned. 

VPROG 

This becomes the PROG (program base register) of the 

created process. 

VINIT 

This is used to prepare the program counter for the 

process to be created. 

VMICRO 

If VMICRO is 0, 1, 2 or 3, it defines the memory 

section of the program. 
yy 

If greater than 3, it is used to build a reference to a 

micro program load module. (PCB item SMICRO). 

The scheduling algorithm will ensure that this module 

is always loaded before the process is executed. 

VCAPAB 

This becomes the PCB parameter SACCESS. 

It is checked that VCAPAB is compatible with the 

SACCESS of the calling process (refer to 3.3.4).



CSS/302/PSP/0008 
  | sign,dato side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION | 9/8 10303. Bf   

erstatter projekt 

!   
  

  

VCPU 

Defines the CPU which shall be used to execute the 

  

process being created. 

VPRIO 

Defines the software priority level applicable 

(refer to 3.4 and 3.5). 

VLEVEL . 

This value is copied to context item XLEVEL 

(fig. 3.3.1.c). 

  

VBASE 

This is used as the absolute BASE for the process to 

be created. 

NOTE that the page and priority bits must be correctly 

set (this is one reason for restricting access to create 

  

          

process). 

BASE: 

15 3 210 
T T 

| Priority bits 

Page bits 

VSIZE 

This defines the size of the area above BASE belonging 

to the process. Copied to PCB item SSIZE. 

VBOUND 

Defines the value of the BOUND register for the process. 

Copied to context item XBOUND (fig. 3.3.1.c). . 

Note thatVBOUND can at most be VSIZE-1. (see below).



CSS/302/PSP/0008 
  

sign/dato | side 

, 88. CR80 AMOS KERNEL PRODUCT SPECIFICATION EKH/820601 —=—- @iowmuor . | Projekt 

JH@/810303 
  

  

If VLEVEL = 1 (system level), XBOUND is set 

to -1 in order to allow the process to write 

everywhere (XAMOS only).. 

  

  

p~addressable by 
process in User 
State 

VBOUND ——>     

‘ belonging to 
process         

VsIZE— | 3 

VMEMORY 

This parameter is copied to PCB item SMEMORY. It is 

not interpreted by the Kernel. 

VMSGS 

This defines to the Kernel the maximum number of message 

buffers which the process should be able to allocate. 

VMGSGS+1 is copied to PCB item SMSGLIM. 

The Kernel will only allow creation of a process if 

the total amount of SMSGLIM for all existing processes 

does not exceed the total amount of available message 

buffers.



CSS/302/PSP/0008 
  

sign/dato side 

JHG/ 810303 r 89. 
CR80 AMOS KERNEL PRODUCT SPECIFICATION a 

  

erstatter projekt 

    
  

  

VUSERID 

VUSERID is copied to context locations XUSERID@ and 

XUSERID1. : 

Create process initializes the following context 

words (fig. 3.3.l.c). . 

XUSERID@ 

XUSERID1 

XCBASE 

XPCB 

XLEVEL 

XBOUND 

XBASE 

XMOD 

XPROG 

XPRPC 

XTIMER 

XPSW 

XLOCAT 

When the process is created it is in the STOPPED state, 

and has to be started by a call of start process. 

The Kernel has prepared the process to initially 

execute a call of IOINIT (see ref. 2.4). 

The general purpose registers R@-R7 will be undefined 

when the process is about to execute the first user 

defined instruction (at location VPROG+VINIT).-



CSS/302/PSP/0008 
  

  

sign/dato _| side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION HHE/S 10303 a 

    
  

  

4.10 Start Process 
  

MONITOR FUNCTION START PROCESS I= (CHILD), R2 CERRORsOONE) 
INVOKATION: 1 

MON STARTPROCESS 

CHECKS THAT THE PCB INDEX CHILD IDENTIFIES A CHILD PROCESS OF THE 
CALLING PROCESS AND THAT THE STATE OF THE CHILD IS STQPPEO OR TO BE 
STOPPED. IF THE CHECK FAILS» RETURN IS MADE TO ERRORS 
ELSE THE STATE OF THE CHILD IS CHANGED TO PREEMPTED AND RETURN IS 
MADE TO CONE. 

RO CHILD , KEPT 
R? LINK ‘DEST 
RETURNS? 
LINK+0: ERROR 2 
LINK#L: DONE 

‘Checks that the PCB index child identifies a child 
process of the calling process and that the state 

of the child is stopped (or to be stopped). If 

. the check fails, return is made to error. 

Else the state of the child is changed to preempted 

the process attributes SERROR (refer to 3.3.1) are 

cleared and return is made to done.



CSS/302/PSP/0008 
  

  

| sign; dato side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION Coe 24 

  
  

  

4.11 Stop Process 
  

MONITOR FUNCTION STOP PROCESS Iz (CHILD),» R= CERRORs DONE) 
INVOKATIONS 

. - “MON STOPPRGCESS 
CHECKS THAT THE PCB INDEX CHILD IDENTIFIES A CHILD PROCESS OF THE 
CALLING PROCESS. THE CHILD IS STOPPED (THE TO BE STOPPED FLAG IS SET IN 

SSTATE) AND RETURN IS MADE TC DONE. 
RO CHILD KEPT 
R7 LINK DEST 

RETURNS: 
LINK+*O=: ERROR 

LINK#1: OONE 

Note that if the calling process and the process to 

be stopped execute on different CPU's, there may be 

‘a variable time between the return from call of 

Stop Process and the time when the process is STOPPED. 

If certainty about the process being STOPPED is 

required, this information may be obtained by a 

call of Get Attributes (see 4.15).



CSS/302/PSP/0008 
  

10303 CR80 AMOS KERNEL PRODUCT SPECIFICATION co <= Tsou 

sign/dato side 

  

92 
  

erstatter 

  

  

4.12 Remove Process 
  

MONITOR FUNCTION REMOVE PROCESS [2(CHILD) OFCMEMORY) R2CERRORSDONE) 

INVOKATION: 

MON REMOVEPROCESS 
CHECKS THAT THE PCB INDEX CHILD IDENTIFIES A CHILD PROCESS OF THE 
CALLING PROCESS. 
IF NOT» RETURN IS MADE TO ERROR. 
ELSE A REMOVE OPERATION IS PERFORMED ON THE CHILD: 

IF THE CHILD IS EXECUTINGs THE REMOVE FLAG IS SET IN IETS PCB 

PARAMETER SSTATE AND THE CALLING PROCESS IS SUSPENDED. 
IF THE CHILO IS WAITING. (I E SUSPENDEO) IT IS PREPARED TO EXECUT 
A SELFREMOVE PROGRAM AND SCHEDULED. 

THE CALLING PROCESS IS SUSPENDED UNTIL THE CHILO HAS COMPLETED ITS 
SELFREMOVE. WHEN THIS HAPPENS THE PARENT IS SCHEDULED AND RETURNS WITH 
THE MEMORY ALLOCATICN PARAMETER FROM THE CHILD IN MEMORY. 

WHEN THE CHILD HAS BEEN REMQVEDs A CALL OF GET CHILD WILL DELIVER THE 
NEXT CHILD 
RO CHILO MEMORY 
R? LINK DEST 
RETURNS = 

LINK+0: ERROR 
LINK#L: DONE



CSS/302/PSP/0008 
  

  

| sign'dato side 

" 2 

CR80 AMOS KERNEL PRODUCT SPECIFICATION nial 7 22 
erstatter Proje 

I   
  

  

Adopt Process 
  

MONITOR FUNCTION ADOPT PROCESS I:2C(CHILD) &2(ERRORsDONE) 

INVOKATIONS 

MON ADOPTPROCESS 

CHECKS THAT THE PCB INOEX CHILD IDENTIFIES A CHILD PROCESS OF THE 

CALLING PROCESS AND THAT THE CALLING PROCESS HAS A PARENT. 

IF SO THE CHILD I$ MOVED FROM THE CALLING PROCESS TO THE PARENT OF 

THE CALLING PROCESS AND RETURN IS MACE TO DONE » ELSE TO ERRCR. 

RO CHILD KEPT 

RT LINK DEST 

RETURNS = 
LINK#0= ERROR 

LINK#1= DONE 

The calling process transfers its parenthood for 

one of its child processes to the grandparent of 

the child.



CSS/302/PSP/0008 
  

  

  

sign/dato side 

g/810303 | 9.4 
CR80 AMOS KERNEL PRODUCT SPECIFICATION Pees = T oroiea 

    

  

Get Child 

MONITOR FUNCTION GET CHILD O:(CCHILO)» R=2(NONE,DONE) 
INVOKATION: 

MON GETCHILD 
OELIVERS THE PCB INDEX QF THE FERST CHILD IF ANY», ADVANCES THE CHILD 
REF TO THE NEXT CHILD AND RETURNS TO DONE, ELSE TO NONE (NO CHILDREN) 
SUCCESSIVE CALLS QF GET CHILD WILL STEP THROUGH THE CIRCULAR LIST OF 
CHILD PROCESSES» DELIVERING THEIR PCB INDICES ONE BY GNE. 
RO CHILD (PCB INDEX) 
R7 LINK DEST 
RETURNS = 

LINK*#0O; NONE 
LINK*15 DONE 

Successive calls of getchild will step through 

the circular list of child processes, delivering 

their PCB indices one by one.



CSS/302/PSP/0008 
  

  

| sign/dato L side 

\JHO/810303 95 CR80 AMOS KERNEL PRODUCT SPECIFICATION HHO/810303 ovojek 

    

  

4.15 Get Attributes 
  

MONITOR FUNCTION GET ATTRIBUTES Is(PCBH8 INDEX,RESULT) RZ CERROR,»OK? 
INVOKATIONS 

MON GETATTRIBUTES 

IT IS CHECKED THAT THE PCB INDEX DENOTES A PROCESS CONTROL SLOCK. 
IF NOTs RETURN IS MACE TO ERROR. ELSE TO OK. 

THE FOLLOWING PARAMETERS FROM THE PCS ARE DELIVERED AT THE DESTINATION 
IDENTIFIED BY THE REFERENCE RESULT: 

SACCESS 
SSTATE 
SERRGR (2 WORDS) 
SEXECT (3 WORDS) 

SCREAT (3 WORDS) 

RO PCB INDEX KCPT 
R1 RESULT KEPT 
R7 LINK DEST 

_RETURNS: . 

LINK+O5s ERROR 
LINK+1: aK 

It is checked that the pointer RESULT does not 

violate the memory space of the calling process.



CSS/302/PSP/0008 
  

  

sign/dato gide 

IJHG/810303 96 
CR80 AMOS KERNEL PRODUCT SPECIFICATION rate orojekt 

    
  

  

4.16 Identify Process, Lookup Process 
  

MONITOR FUNCTION IDENTIFY PROCESS I:(PCB INDEX) 0: (NAME) 
INVOKATION?: 

MON TOENTIFYPROCESS 
THE NAME OF THE PROCESS IDENTIFIED BY THE PCB INDEX IS RETURNED, IF 
THE PROCESS EXISTS, ELSE A DUMMY NAME: "27722777 IS RETURNED. 
RO PCS INOEX NAMED 
R1 - NAME1 
R2 = NAME2 
R7 LINK . DEST 

MONITOR FUNCTION LOOKUP PROCESS [E={REFC(NAME)) O2°0PCBR INDEX) 

R2 (NOT FOUNDs FOUND)... 
INVOKATIGN= 

MON LOQKUP PROCESS 

RO REF(NAME) PCB INDEX 
R? LINK DEST 
RETURNS: 

LINK#O5— NOT- FOUND : = 
LINK#1< FOUND 

It is cehcked that ref. (NAME) does not violate the 

memory space of the process.



CSS/302/PSP/0008 
  

  

sign/dato side 

THG/ 810303 fF 97 
CR80 AMOS KERNEL PRODUCT SPECIFICATION oe “Toren 

    
  

4.17 Send Signal 
  

MONITOR FUNCTION SENO SIGNAL IS(RECEIVER) 

INVOKATION: 

sebieieeceS MON SENDSIGNAL 

SETS THE SIGNAL BOOLEAN IN THE RECEIVER PROCESS. IF THE RECEIVER WAS 
AWAITING THE SIGNAL IT IS LINKED TO ITS CPU READY QUEUE. 
RO REFUNAME QF RECEIVER? KEPT 
R7 LINK DEST 

If the receiver process does not exist, the 

signal is sent to ROOT (ref. to 3.13). 

It is checked that ref. (NAME of RECEIVER) does not 

violate the memory space of the calling process. 

 



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato side 

JHG/810303 98 
  

erstatter Projekt 

    
  

  

Send Message 
  

MONITOR FUNCTION SENO MESSAGE I: (RECEIVERs MESSAGE), OG: (EVENT) 
INVOKATIONS 

MON SENDMESSAGE 
THE FIVE WORDS REFERENCED BY MESSAGE ARE COPIED TO A MESSAGE BUFFER. 
THE CONTENTS OF THE MESSAGE BUFFER ARE DELIVERED TO THE RECEIVERs WHEN 
THE RECEIVER CALLS WAIT EVENT WITH A PROPER EVENT MASK. 
AN ICENTIFICATION OF THE MESSAGE SUFFER IS RETURNED IN EVENT 
AND MAY BE USEO AS A PARAMETER IN A SUBSEQUENT AWAIT CALL. 
RO REFCNAME OF RECEIVER) KEPT 
R1 REF CMESSAGE} KEPT 
R2 - EVENT 
R7 LINK DEST 

Errors: 

e If no message buffers are available, the calling 

process is forced to repeat the call of Send 

Message. (This situation will not occur due to 

the restrictive policy for creating new processes 

(refer to 4.9 and to 6)). 

@ If the receiver process does not exist, the message 

will be sent to ROOT (refer to 3.13) which in turn 

will return a dummy answer. 

@ If the process by calling send message attempts 

to use more message buffers than it is allowed to 

(refer to 4.9) the calling process will call 

ERROR with a Kerned produced error code: #1@D 

(see also 6).



CSS/302/PSP/0008 
  

sign/dato . side 

99 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION THO £10303 

erstatter Projekt 

      

  

e If one of the references (to RECEIVER or MESSAGE) 

violates the address space of the process, the 

process will call ERROR with a Kernel produced 

error code: # 1¢@c or # 166. respectively.



CSS/302/PSP/0008 
  

  

signjdato side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810303 reer 108 

      

  

4.19 Send Answer 
  

MONITOR FUNCTION SEND ANSWER Is( ANSWER yEVENT) 
INVOKATION: 

MON SENDANSWER 
THE FIVE WCRCS REFERENCED BY ANSWER ARE SENT TO THE ORIGINAL SENDER 
OF THE EVENT. 

R1 REF (ANSWER) KEPT 
R2 EVENT “ EVENT 
R7 LINK LINK 

It is checked that ref (Answer) does not violate the 

memory space of the calling process.



CSS/302/PSP/0008 
  

sign/dato : side 

810303 100,1- CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/ OA?   
erstatter Projekt 

      

  

4.20 Await Answer 
  

MONITOR FUNCTION ARAIT ANSWER I? (CEVENTsADRsDELAY) 

O2 CEVENTTYPEsEVENT),» 
INVOKATION: 

MON AWTANSWER : 
THE PROCESS IS SUSPENOED UNTIL THE ANSWER OCCURS OR THE DELAY ELAPSES. 
RO DELAY EVENTTYPE 
Rl AOR KEPT 
R2 EVENT EVENT 
R7 LINK Zr 

This function is used to wait for a specific 

answer. 

It is checked that the pointer ADR does not violate 

the memory space of the calling process. 

It is checked that EVENT is the index of a 

message buffer sent by the calling process and that 

no answer has yet been delivered.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato 

JHG/ 810303 
side 

LO 
  

erstatter 

    
Projekt 

  

  

4.21 Send System Message 
  

MONITOR FUNCTION SENG SYSTEM MESSAGE T2 (RECEIVER »MESSAGE), O2 (EVENT INVOKATION: 

MON SENDSYSTEMMESSAGE 
_RO REF(NAME OF RECEIVER) KEPT 
Rl REF (MESSAGE} KEPT 
R2 - EVENT 
R7 LINK OEST 3 

This function is similar to send message 

(refer to 4.18).



CSS/302/PSP/0008 
  

  

sign/dato side 

JHG/810303 102 CR80 AMOS KERNEL PRODUCT SPECIFICATION ene —= 

      

  

4.22 Send System Answer 
  

MONITOR FUNCTION SEND SYSTEM ANSWER I: (ANSWER SEVENT) 
INVOKATION: 

MON SENOSYSTEMANSWER 
SIMILAR TO SEND ANSWER. 
R1 REFCANSWER} KEPT 
R2 EVENT EVENT 
R? LINK ‘ LINK 

Refer to Send answer 4.19.



CSS/302/PSP/0008 
  

sign/dato side 

3HG/810303 * 103: 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION seaiain aan 

    
  

  

Await System Answer 
  

MONITOR FUNCTION AWAIT SYSTEM ANSWER 

Is CEVENT,AOR,DELAY)s OF CEVENTTYPESEVENT) 
INVOKATION: 

MON AWTS YSTEMANSWER 

THE PROCESS IS SUSPENDED UNTIL THE ANSWER OCCURS OR THE DELAY ELAPSES. 
RO DELAY EVENTTYPE 
Rl ADR KEPT 
R2 EVENT EVENT 
R7 LINK DETS 

This function is similar to Await answer (ref. to 

4.20).



CSS/302/PSP/0008 
  

  

sign/dato side 

JHG/810303__|" 104 
CR80 AMOS KERNEL PRODUCT SPECIFICATION ORES eon 

    
  

  

4.24 Open Path 

MONITOR FUNCTION OPEN PATH ISC(RECEIVER)» O2CEVENT) 
INVOKATION= 

MON CPENPATH 
LOCATES (LOOKS UP) THE RECEIVER WHICH IS DENOTED BY NAME AND ALLOCATES 
ANC INITIALISES A MESSAGE BUFFER WHICH CAN BE USED IN SUBSEQUENT 

CALLS GF SENO PATH MESSAGE/ SEND PATH ANSWER. THE BUFFER IS IDENTIFIED 
BY EVENT. 
RO REF (NAME) KEPT \ 
R2 - EVENT 

R7 LINK KEPT 

It is checked that ref (Name) does not violate 

the memory space of the calling process. 

If the receiver cannot be found, the path will be 

opened to ROOT (refer to 3.13).



CSS/302/PSP/0008 
  

  

sign/dato side 

3HG/810303 | 105 
CR80 AMOS KERNEL PRODUCT SPECIFICATION eames ST oon 

    
  

  

4.25 Close Path 
  

MONITOR FUNCTION CLOSE PATH I2(EVENT) 

INVOKATION: 

MON CLOSEPATH ; 
RELEASES A MESSAGE BUFFER WHICH WAS ALLOCATED 8Y A PREVIOUS CALL OF 
OPEN PATH. 
A PATH CAN ONLY BE CLOSED BY THE PROCESS WHICH OPENED THE PATH AND ONL 
Y IF THE MESSAGE SUFFER RESIDES WETH THIS PROCESS, I.E. IF IT HAS NEVE 
R BEEN SENT BY A SEND PATH MESSAGE CALL OR IF IT HAS BEEN RECEIVED AFT 
ER A SEND PATH ANSWER CALL. 

R2 EVENT DEST 
R7 LINK LINK



CSS/302/PSP/0008 
  

  

sign/data B side 

106 CR80 AMOS KERNEL PRODUCT SPECIFICATION eee 0303 ei 

    
  

  

4.26 Send Path Message 
  

MONITOR FUNCTION SENO PATH MESSAGE [3 {MESSAGE,EVENT) 
INVOKATION: 

MON SENDPATHMESSAGE 

THE FIVE WCROS IDENTIFIEO BY REFL{MESSAGE) ARE SENT TO THE PROCESS FOR 

WHICH THE PATH WAS OPENED. THE WORDS ARE SENT USING THE MESSAGE BUFFER 
WHICH WAS ALLOCATED WHEN OPEN PATH WAS CALLED. 
Rl REF(MESSAGE) KEPT 
R2 EVENT EVENT 
R7 LINK LINK. 

The call of this function must have been preceeded 

by a call of open path. .



CSS/302/PSP/0008 
  

  

sign/dato ede 

10303 107. CR80 AMOS KERNEL PRODUCT SPECIFICATION a "See 

    
  

  

4.27 Send Path Answer 
  

MONITOR FUNCTION SEND PATH ANSWER I=(ANSWER, EVENT) 
INVOKATIONS 

7 MON SENDPATHANSWER 
SIMILAR TO SEND ANSWER. 

Refer to Send answer 4.19.



CSS/302/PSP/0008 
  

  

      

  

  

sign/dato side 

JHG/ 81 CR80 AMOS KERNEL PRODUCT SPECIFICATION scatasios 0303 108 

4°.28 Await Path Answer 

MONITOR FUNCTION AWAIT PATH ANSWER 
Lz CEVENTsADR,DELAY)s G2 CEVENTTYPE,EVENT) 

INVOKATION: 

MON AWTPATHANSWER 

THE PROCESS IS SUSPENDED UNTIL THE ANSWER OCCURS OR THE DELAY ELAPSES. 
RO DELAY 
RL ATR 
R2 EVENT 
R7 LINK 

Similar to Await answer ( 

EVENTTYPE 
KEPT 
EVENT 
ae 

refer to 4.20).



CSS/302/PSP/0008 
  

  

sign/dato = side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION naman "i 

    
  

  

  

4.29 Identify sender 

MONITOR FUNCTION IDENTIFY SENDER I:€EVENT)? O24 PCB INDEX) 
R= (ERRORsQK) 

INVOKATION: 

MON IDENTIFYSENDER 

CHECKS THAT THE EVENT IS RECEIVED BY THE CALLING PROCESS. 

IF NOT RETURN IS MADE TO ERROR. 
CELIVERS THE PCB INDEX OF THE SENDING PROCESS AND RETURNS TO GKe 
RO PCB INDEX 

R2 EVENT KEPT 
R7 LINK DEST 
RETURNS: 

LINK+Q05 ERROR 
LINKS1L5= OK 

This function is used to deliver the PCB index of a 

sender process from which the calling process has 

received a message, system message, or path message.



Css/302/PSP/0008 
  

  

sign/dato z| side 

810303 110 
CR80 AMOS KERNEL PRODUCT SPECIFICATION ao =a heen 

      

  

4.30 Save Event 
  

MONITOR FUNCTION SAVE EVENT Is CEVENT) 
INVOKATION: 

| MON SAVEEVENT 
IF THE EVENT ITS & RECEIVED MESSAGE CORROINARYs SYSTEMs OR PATH) (E.G. 
DELIVERED 3¥ A CALL OF WAIT EVENT) OR THE FIRST MESSAGE OR ANSWER IN 
AN EVENT QUEUE CE.G. DELIVERED BY A CALL OF INSPECT EVENTS) THE EVENT 

TS MOVED TO THE TAIL OF THE CORRESPONDING LIST OF SAVED EVENTS. 

R2 EVENT KEPT 
R7 LINK DEST 

Suppose a message is received and the receiving 

process is not prepared to process it e.g. because 

another message (not yet received) must be handled 

first. The process can defer processing of the 

message by calling Save event, and at a later time 

resume processing of it by calling Recover events.



CSS/302/PSP/0008 
  

  

sign/dato 7 side - 

CR80 AMOS KERNEL PRODUCT SPECIFICATION HOLS 10303 ahi oe 

    
  

  

4.31 Recover Events 
  

MONITOR FUNCTION RECOVER EVENTS I[:CEVENTTYPE) 
INVOKATIONS 

MON. RECQVEREVENTS 
TF THE EVENTTYPE IS A MESSAGE OR ANSWER TYPE (ORDINARY, SYSTEM, OR PAT 
THE CORRESPONDING LIST OF SAVED EVENTS IS TRANSFERRED TO THE FRONT OF 
THE CORRESPONDING EVENT QUEUE. 
R2 EVENTTYPE KEPT 
R7 LINK DEST 

This function is to be used if reception of 

messages has been deferred by a call of Save 

event. After a call of recovery events the messages 
i 

will be delivered by calling wait event.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato side 

112 
  

erstatter 

  
TH A10303_ 

  
projekt 

  

  

4.32 

4.3.2.1 

Read RTC 

MONITOR PROCECURE READ RTC O2CYEAR-1900; MGNTHs DAYsHOURsMINy SEC) 
INVOKATION: 

MON READRTC 
RO 

Rl 

R2 
R7 LINK 

Read System Time 
  

LSB: SEC MSB: 
LSB8=s HOUR MSBs 
LSB2 MONTH MSB? 

DEST 

MONITOR PROCEDURE READ SYSTEM TIME O:( SYSTIME) 
INVOKATION: 

MON READSYSTIME 

RETURNS THE SYSTEM ELAPSE TIME IN MILLI SECONDS 

RO 
R1 
R2 
R7 LINK 

MIN 
DAY . 
YEAR~1900 

SYSTIME CLEAST SIGNIFICANT PART) 
SYSTIME 
SYSTIME (MOST SIGNIFICANT TIME) 
DEST



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato side 

JHG/"810303 _ 113 
  

erstatter projekt 

      

  

Set Cycle 

MONITOR FUNCTION SET CYCLE I=(CYCLE) 
INVOKATION: 

MON SETCYCLE 

THE CYCLE WILL BE USED BY THE RTC PROCESS TO INITIALISE A PHASE. 

THE PHASE IS DECREMENTED FOR EVERY i0TH OCCURRENCE OF THE 10 MS REAL 

TIME CLOCK INTERRUPT. WHEN THE PHASE REACHES Oy IT IS RESET TO CYCLE. 
WHEN A WAIT OPERATION INCLUDES THE TIMEOUT EVENT CELAPSE OF A DELAY) 
THE EFFECTIVE DELAY IS THE TOTAL OF THE DELAY PARAMETER AND PHASE. 
RO CYCLE KEPT 

R7 LINK KEPT 

When a process is created, its cycle is set to zero. 

(PCB parameter SCYCLE). If the cycle is set toa 

non zero value by a call of Set cycle, this value will 

be used to reset and preset its phase (PCB parameter 

SPHASE). 

The phase can be used to implement a synchronization 

to real time which is independent of the time elapsed 

between the wake up of a process and its next call 

of wait event (because its phase is constantly 

maintained by the RTC).



CSS/302/PSP/0008 
  

  

sign/dato =| side 

810303 114 
CR80 AMOS KERNEL PRODUCT SPECIFICATION oe So Ponce 

    
  

  

Reserve Interrupt 
  

MONITOR FUNCTION RESERVE INTERRUPT I2(DEVPR), OF CINTRPT) 

INVOKATION: 

MON RESERVEINTERRUPT 

CHECKS DEVPR CPRIORITY; DEVICE ADR}. IF OEVPR IS VALID AND THE CORRES<- 

PONCING INTERRUPT IS NOT RESERVED BY ANOTHER PROCESSs THE CALLING PROC 

ESS IS INSERTED AS RESERVER AND A LOGICAL REFERENCE IS RETURNED CINTR 

PT). THE SAME PARAMETER IS INSERTED IN THE PCB AS THE CURRENTLY AWAITE 

D INTERRUPT. 

IF THE INTERRUPT IS ALREADY RESERVED BY A PROCESS, A VALUE GF -12 IS 

RETURNED IN INTRPT. 
RL DEVPR INTRPT 

R7 LINK LINK 

DEVPR contains the device address and. priority 

as follows: 

76543210 

| T   

          
  —y Y— 

| priority 

device address (I/0)  



CSS/302/PSP/0008 
  

  

sign/dato n| side 

JHG/ 810303 115 
CR80 AMOS KERNEL PRODUCT SPECIFICATION smc sea 

    
  

  

4.35 Release Interrupt 
  

MONITOR FUNCTION RELEASE INTERRUPT [2 CINTRPT) 
INVOKATION: 

MON RELEASEINTERRUPT 
IF INTRPT IS VALID AND CORRESPONDS TO AN INTERRUPT RESERVED BY THE 
CALLING PROCESS, THE INTERRUPT IS RELEASED. OTHERWISE NO ACTION [5S 
TAKEN. 
R1 INTRPT KEPT 
R? LINK LINK



CSS/302/PSP/0008 
  

  

sign/dato ts side 

81030 116 CR80 AMOS KERNEL PRODUCT SPECIFICATION — 2 renee 

    
  

  

4.36 Clear Interrupt 
  

MONITOR FUNCTION CLEAR INTERRUPT I[2CINTRPT) 
INVOKATION: 

MON CLEARINTERRUPT 
CHECKS THE VALIOITY OF INTRPT AND THAT THE INTERRUPT IS RESERVED BY 
THE CALLING PROCESS. THE INTERRUPT COUNTER IS CLEARED TO ZERG. 
Rl INTRPT INTRPT 

R7 LINK “0 LINK



CSS/302/PSP/0008 
  

  

sign/dato - | side 

‘ 10303 117 CR80 AMOS KERNEL PRODUCT SPECIFICATION aes a ar 

    
  

  

Set Interrupt 
  

MONITOR FUNCTION SET INTERRUPT IS ¢INTRPT? 
INVOKATION: 

MON SETINTERRUPT 

THIS FUNCTION VALIDATES THE INTRPT. IF [IT CORRESPONDS TO AN INTERRUPT 
RESERVED BY THE CALLING PROCESS, THE INTRPT PARAMETER IS INSERTED IN 
THE PCB AS THE CURRENTLY AWAITED INTERRUPT. 
RL INTRPT KEPT 
R? LINK LINK





CSS/302/PSP/0008 
  

  

sign/dato =| side 

JHG/ 810303 118- CR80 AMOS KERNEL PRODUCT SPECIFICATION wae. waite 

      

  

4.38 Inclusion of New Monitor Procedures 
  

MONITOR FUNCTICN INITIALISE MONITOR FUNCTION 
INVOKATION: 

MON MONINIT 
PREPARES THE MONITOR JUMP TABLE TO CONTAIN ABSOLUTE POINTERS TO SPECI 
FIED PROCEDURE ENTRIES. 
THE INITIALISE FUNCTIGN CALL MUST BE SUCCEEDED BY A PARAMETER LIST: 

LOCy CFUNCTIONSENTRY) «econ FUNCT INs ENTRY) 90 
FUNCTION: MUST BE A VALUE IN THE RANGE (645255) SIGNIFYING 

THE MONIQTR CALL ARGUMENT. 
ENTRY: MUST BE A PROG REL REF TO THE CORRESPONDING PROCEDU 

RE/FUNCTION. 
R7 LINK DEST 

} 

It-is checked that the entries to be initialized are 

not already used. If this check fails, the calling 

process is stopped by entering an infinite loop. 

Programming Example 
  

The procedure with label NEW is to be entered 

corresponding to an invokation by MON NEWPROC: 

NEW: 

MON MONINIT 

LOC, NEWPROC, NEW, @



CSS/302/PSP/0008 
  

  

sign/date page 

JHOG/810303 119 

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace nen 

      

  

4.39 Error/Terminate 
  

FONITOR FUNCTION ERROR I: He Is (ERRORCODE sERRORLOCATICN) 

MON ERROR 
MON TERMINATE 

“ts ats THE ERROR CODE IS SET. 
E ING PROCESS [IS SUSPENOED WITH = S eakens Sree ee ARE STOREC IN SeRRaR. 

IGNAL IS SENT TO THE PARENT OF TH 
a eR Rbhcane E CALLING PROCESS. 

ERROR LOCATION 
7 LINK 

3 QR ALTERNATIVELY: 

STOPPED ANO THE ERROR 

The following convention is adapted for error codes: 

o the upper byte defines a subsystem which 

generated the error code: 

@: utility generated code 

l: Kernel generated code 

: I/O system generated code 

3,4,5: File Management System generated code 

: Device driver generated code 

7: Pascal Runtime generated code 

o the lower byte contains a subsystem defined 

error code. 

The error code 9 is used to express a normal 

termination.



CSS/302/PSP/0008 
  

  

    
  

  

  

signidato side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION MEO A.030 3. = 120 
Proje 

4.40 Miscallaneous Functions 

4.40.1 Write RTC 

MONITOR PROCEOURE WRITE RTC Is €YEAR-1900,MONTHs DAY »HOUR MIN SEC) 
INVOKATION: 

MON WRITERTC 
RO L582 SEC MSB: MIN 
R1 LSB: HOUR MSB: DAY 

R2 LSB: MONTH MSB2 YEAR-1900 
R7 LINK : DEST 

This procedure is used by the RTC driver to 

update the real time clock.



CSS/302/PSP/0008 
  

  

sign/dato » side 12 1 

THO/810303 a CR80 AMOS KERNEL PRODUCT SPECIFICATION srstatae Ss (ar 

    
  

  

4.40.2 Clean Messages 
  

MONITOR FUNCTION CLEAN MESSAGES. 
INVOKAT ION: 

MON CLNMES SAGE 
CLEANS UP AFTER A PROCESS WHICH HAS USED THE MESSAGE SYSTEMS. 
R7 LINK DEST 

This function is called by the Kernel during removal 

of a process.



CSS/302/PSP/0008 
  

  

sign/date page 

JH@/810303 122 

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project 

    
  

  

4.41 Create Region 
  

PROCEDURE CREATE_REGION Iz CREF(C3)) O2(CC) RE CERRORZOK) 

INVOKEO 3Y: 

MON REGION,» RCREATE 

INITIALIZES A CRITICAL REGION CONTROL SLOCK (CRC8). 
IT’IS CHECKED THAT A REGION DOES NOT ALREADY EXIST WITH A NAME AS 
SPECIFIED IN THE CREATION BLOCK (C5). 
TF-POSSTBLE A CRCB IS ALLOCATED AND INITIALIZED AS SPECIFIED IN THE CB 

REGISTER CALL EXIT 
RO REF(C3) KEPT 
R7 LINK COMPLETION_CODE 

RETURNS: 
LINK+1: ERROR (SPECIFIED IN THE COMPLETION_CODE) 
LINK*2: oK 

POSSIBLE ERRORS: 
» ILLEGAL NAME CZCRILLNAME) 

NO CRCB’S CZCROVFL) 
‘REF (CB) VIOCATES-PROCESS SIZE —- ates i 

= & CZCRPSZ) 

4.41.1 Region completion codes 
  

The following completion codes are defined for cri- 

tical regions: 

@ no errors 

unknown function (ZCRUNF) 

parameter ref. violates address ho
 

space of process (ZCRPSZ) 

unknown region (ZCRUNR) 

region not entered (ZCRILLSTA) 

invalid process (ZCRPCB) 

invalid region name (ZCRILLNAM) 

address violation in VS (ZCRVSZ) 

too many regions (ZCROVFL) o
n
y
 

nD
 

UW
 

FP
 

W
w



  

CR80, AMOS CRITICAL REGIONS 

PRODUCT SPECIFICATION 

sign/dato side 

JHD/ 790823 122a 
  

erstatter projekt 

      

  

4.41.2 Region Parameter Definitions 
  

The parameters used when calling the region procedures 

are defined formally in this section using pascal 

notation. 

Type Region-Name = record 

name: array [o..2] of integer; 

name-ident: integer 

end; 

Type Variable-Space = record 

addr, page, size: integer 

end; 

Type Region-Creation-Block = record 

name: region-name; 

VS: variable-space 

end;



CSS/302/PSP/0008 
  

  

sign/date page 

JHG/810303 123 
CR80 AMOS KERNEL PRODUCT SPECIFICATION repigce Project 

    
  

  

4.42 Enter Region 
  

PROCEDURE ENTER_REGION I: CREFCNAME)) O3(CC) R= CERRORZOK) 
INVOKED BYs 

MON REGION, RENTER 

Iv IS CHECKED THAT THE REGION SPECIFIED SY NAME EXISTS. 
IF NO PROCESS IS IN THE ENTERED STATE FOR THE REGIONs THE CALLING PROC 
IS SET IN THE ENTERED STATEs ANDO RETURN IS MADE TO OK. 
OTHERWISE, THE PROCESS IS SUSPENDED AND LINKED TO THE TAIL OF THE “ENT 
QUEUE” FOR THE REGION. HERE IT IS OELAYED UNTIL ALL PROCESSES ALREADY 
WAITING TO ENTER HAVE HAD THEIR TURN. 

REGISTER CALL EXi?Y 
RO REF CNAME) KEPT 
R7 LINK COMPLETION_CODE 

RETURNS: 
LINK+1: ERROR CAS SPECIFIED IN THE COMPLETION CODE) 
LINKt2s oK 

POSSIBLE ERRORS: 
TLLEGAL NAME CZCRILLNAM) 

—REFPCNAME) VIOLATES PROCESS SIZE CZCRPSZ) 
—~ REGION UNKNOWN ‘ CZCRUNR)



CSS/302/PSP/0008 
  

sign/date page 

JHO/810303 124 
  

replace 

CR80 AMOS KERNEL PRODUCT SPECIFICATION   
project 

    

  

4.43 Leave Region 
  

PROCEDURE LEAVE_REGION Is CREFCNAME)) O:(CC) Rs CERRORS OK) 
INVOKED BY: 

MON REGION» RLEAVE 

Iv IS CHECKED THAT THE REGION EXISTS» ANDO THAT THE PROCESS IS IN THE 
ENTERED STATE FOR THIS REGION. 
THE STATE OF THE PROCESS VIS A WIS THE REGION IS CHANGED TO “REGION 
LEFT’. 

IF THE “WAIT QUEUE* IS NOT EMPTY AND THE DIRTY FLAG IS SET THEN 
THE “WAIT QUEUE* IS MOVED TO THE HEAD OF THE “ENTER QUEUE’. 
THE DIRTY FLAG IS CLEARED. 
If THEN THE “ENTER QUEUE” IS NOT EMPTYs THE FIRST PROCESS IN THE 
QUEUE [S DEQUEVEO, PUT IN THE ENTERED STATEs AND SCHEDULED FOR 
EXECUTION. 
THE CALLING PROCESS CONTINUES. 

REGISTER CALL EXIT 
RO REF CNAME) KEPT 
R7 LINK COMPLETION_CODE 

RETURNS: 

LINK +1; ERROR (SPECIFIED IN THE COMPLETION_CODE) 
LINK #23 OK 

POSSIBLE ERRORS: 
ILLEGAL NAME 
REFCNAME) VIOLATES THE PROCESS SIZE 
UNKNOWN REGION 
REGION NOT ENTERED 

CZCRILLNAM) 
CZCRPSZ) 
CZCRUNR) 
CZCRILLSTA)



CSS/302/PSP/0008 

  

  

sign/date page 

JHD/810303 125 

replace project 
CR80 AMOS KERNEL PRODUCT SPECIFICATION 

    
  

  

4.44 Wait Region 
  

PROCEOURE WAIT_REGION Is (REFCNAME)) O:(CC) RzCERRORSOK) 
INVOXED BY: 

MON REGION, RWATT 

IY IS CHECKED THAT THE REGION EXISTS» ANO THAT THE CALLING PROCESS 
TS IN THE ENTERED STATE. 
THE PROCESS STATE VIS A VIS THIS REGION IS CHANGED TO “WAITING TO RE_ 
ENTER®. 
IF THE “WAIT QUEUE” IS NOT EMPTY AND THE DIRTY FLAG IS SET THEN THE 
“WAIT QUEUE” IS MOVED TO THE HEAD OF THE “ENTER QUEUE”. 
THE OITRTY FLAG IS CLEARED. 
TF THE “ENTER QUEUE’ IS THEN NOT EMPTY» THE FIRST PROCESS IN THE QUEUE 
TS DEQUEUED,s PUT IN THE ENTERED STATE, ANDO SCHEDULED FOR EXECUTION. 
THE CALLING PROCESS IS LINKED TO THE TAIL OF THE WAIT QUEUE AND 
SUSPENDED. 

REGISTER CALL EXIT 
RO REF CNAME) KEPT 
R7 LINK COMPLETION_CODE 

RETURNS: 
LINK+1: ERROR (SPECIFIED IN THE COMPLETION CODE) 
LINK+2: OK 

POSSIBLE ERRORS: 

AS FOR LEAVE_REGION



CSS/302/PSP/0008 
  sign/date page 

JHO/810303 | 126 
  

project 
CR80 AMOS KERNEL PRODUCT SPECIFICATION replace 

  

  

  

  

4.45 Get Item 

PROCEOURE GET_ITEM I: CREFCNAME) -ITEM INDEX) OSCITEMsZCC) Rz CERROR, OK) 

INVOKED BY 
MON REGION RGET 

IT IS CHECKED THAT THE REGION EXISTS AND THAT THE PROCESS IS IN THE 

ENTERED STATE. . 

THE WORD IN THE VARIASLE SPACE CONTROLLED BY THE REGIONs THE ADDRESS 

OF WHICH IS 
PAGE: REGION.CRSTA 
WOADOR: REGION.CRADDR + ITEM INDEX 

IS RETURNED IN ITEMs PROVIDED THAT 
ITEM INDEX <2 REGION.CRSIZE 

REGISTER CALL EXIT 
RO REF CNAME) KEPT 

R141 ITEM INDEX KEPT 
R2 - ITEM , 

R? LINK COMPLETION_COO 

RETURNS: 
LINK+1: ERROR (SPECIFIED IN THE COMPLETION_CODE) 

LINK*+2s OK 

POSSIBLE ERRORS: 
UNKNOWN REGION CZCRUNR) 

NOT ENTERED STATE (ZCRILLSTA)D 

REFCNAME) VIOLATES PROCESS SIZE (ZCRPS2Z) 

ITEM INDEX VIOLATES VS SIZE CZCRVSZ).



CSS/302/PSP/0008 
  

  

siqn/date page 

JTHD/810303 127 

CR80 AMOS KERNEL PRODUCT SPECIFICATION repiace project 

    
  

  

4.46 Put Item 

PROCEDURE PUT_ITEM Is C(REFCNAME)» ITEM INDEXs ITEM) O2(CC) Rs CERRORsZ OK) 
INVOKED BY: 

MON REGIONs ReUT 

THIS FUNCTION IS SIMILAR TO GET_ITEM, EXCEPT THAT THE ITEM IS STORED I 
THE VARIABLE SPACE. 
THE REGION OIRTY FLAG IS SET. 

REGISTERS CALL - EXIT 
RO REF CNAME) KEPT 
R1 ITEM INDEX KEPT 

R2 ITEM KEPT 
R7 LINK COMPLETION _CODE 

RETURNS: REFER TO GET_ITEM 
POSSIBLE ERRORS: REFER TO GET_ITEM



CSS/302/PSP/0008 
  

  

sign/date page 

JHD/810303 128 
replace project 

CR80 AMOS KERNEL PRODUCT SPECIFICATION     
  

  

4.47 Get n Items 
  

PROCEOURE GET_N_LITEMS I: (REFCNAME) ITEM INDEXs DESTINATIONS) 
QO: (CC) Rs CERRORZOK) 

INVOKED BY: 
MON REGION, RGETN 

IT IS CHECKED THAT THE REGION EXISTSs AND THAT THE CALLING PROCESS IS 
THE ENTERED STATE. 
THE RANGE OF ADDRESSES DEFINED BY ITEM INDEX AND N ARE CHECKED TO LIE 
WITHIN THE VARIABLE SPACE OF THE REGION. 
IT IS ALSO CHECKED THAT THE RANGE OF AODRESSES DEFINED SY DESTINATION 
AND N LIE WITHIN THE CALLING PROCESS. 
THE N ITEMS IN THE VARIABLE SPACE DEFINED BY THE ADDRESS RANGE; 

PAGE: REGION.CRSTA 
WOADOR: REGION.CRADOR + ITEM INDEXscccces 

ecoces REGION.CRADOR + ITEM INDEX +#N -1 
ARE DELIVERED IN THE N LOCATIONS 

DESTINATIONs saccaer DESTINATION + N =1 

REGISTER CALL EXIT 
RO REF CNAME) KEPT 
R1 ITEM INDEX KEPT 
R2 DESTINATION CREL) KEPT 
RS N CWORDS) KEPT 
R7 . LINK COMPLETION_CODE 

RETURNS: 

LINK+1; ERROR CSPECIFIED IN COMPLETION CODE) 
LINK#2: OK 

POSSTBLE ERRORS: 

UNKNOWN REGION CZCRUNR) 
REGION IS NOT ENTERED CZCRILLSTA) 
REFCNAME) VIOLATES PROCESS SIZE CZCRPSZ) 
DESTINATIONSN VIOLATES PROCESS SIZE CZCRPSZ) 
ITEM INDEXsN VIOLATES VS SIZE CZCRVSZ)



CSS/302/PSP/0008 
  

  

sign/date page 

JTHO/810303 129 
replace project 

CR80 AMOS KERNEL PRODUCT SPECIFICATION     
  

  

4.48 Put n Items 
  

PROCEOURE PUT_N_ITEMS Iz(REFCNAME)s ITEM INDEX» SOURCE,/N) 
O:¢(CC) Rs CERROR-OK) 

INVOKED BY 

MON REGION, RPUTN 

SIMILAR TO GET_N_ITEMS EXCEPT FOR THE OIRECTION OF MOVING DATA. 
THE DIRTY FLAG IS SET. 

REGISTER CALL EXIT 
RO REF CNAME) KEPT 
R1 ITEM INDEX KEPT 
R2 SOURCE CREL) KEPT 
R3 N (WORDS) KEPT 
R7 LINK COMPLETION_CODE 

RETURNS: REFER TO GET_N_ITEMS 
POSSIBLE ERRORS: REFER TO GET_N_ITEMS



CSS/302/PSP/0008 
  

  

sign/date page 

THD/810303 130 

CR80 AMOS KERNEL PRODUCT SPECIFICATION HE project 
    

  

  

Copy n Items 
  

PROCEDURE COPY_N_ITEMS Is C(REFCNAME) ITEM INDEXs DESTINATIONSN) 
Oz (CC) Re CERRORZOK) 

INVOKED 8Y:° 
MON REGION» RCOPYN 

IT IS CHECKED THAT THE REGION EXISTS 
THE RANGE OF AODRESSES OEFINED BY ITEM INDEX ANO N ARE CHECKED TO LIE 
WITHIN THE VARIABLE SPACE OF THE REGION. 
IT IS ALSO CHECKED THAT THE RANGE OF ADORESSES DEFINED BY DESTINATION 
AND N LIE WITHIN THE CALLING PROCESS. _* 
THE N ITEMS IN THE VARIABLE SPACE OEFINED BY THE ADDRESS RANGE: 

PAGE: REGION.CRSTA 

eooes REGION.CRADOR + ITEM INDEX +N —4 
ARE DELIVERED IN TME N LOCATIONS 

DESTINATIONs caccces OESTINATION * N W141 

REGISTER CaLt EXIT 
RO REFCNAME) KEPT 
R1 ITEM INDEX KEPT 
R2 DESTINATION CREL) KEPT 
R3 N (WOROS) KEPT 
R? LINK COMPLETION_CODE 

RETURNS: 
LINK#1: ERROR CSPECIFIED IN COMPLETION CODE) 

LINK¢2: OK 

POSSIBLE ERRORS: 
UNKNOWN REGION CZCRUNR) 
REFCNAME) VIOLATES PROCESS SIZE CZCRPSZ) 
DESTINATIONSN VIOLATES PROCESS SIZE CZCRPSZ) 
ITEM INOEX/N VIOLATES VS SIZE CZCRVSZ)



CSS/302/PSP/0008 
  

  

sign/date page 

~ THD/810303 131 

CR80 AMOS KERNEL PRODUCT SPECIFICATION ‘cs te hal 
    

  

  

4.50 Buffer Allocation Procedures 
  

The following buffer allocation procedures are pro- 

vided via CSS/361: 

4.50.1 Get Buffer 
  

MINITCOR PROCEDURE GET_BUFFER I:s¢(SIZE), Os C(MEMIRY-ADDRES Sy PAGE, SIZE) 

R:CNOT_POSSI3LE-OK) 

INVOKED 3Y% MON GET3UF 
ALLOCATES A MEMORY AREA OF AT LEAST SIZE WORDS. THE ACTUAL SIZE, ADORE 

SS AND PAGE ARE RETURNED. 

PAGE MAY BE USED OIRECTLY AS A PSW VALUE WHEN SUBSEQUENTLY ACCESSING 

THE SUFFER. 
RO - MEMORY (ALLOCATION PARAMETER) 
R1 + > ADORESS CABS WORD) 
R2 -_ - PAGE : 
R3 SIZE SIZE (UPDATED) 
a7 _ LINK DEST 
RETURNS F000 a ae a 
LINK+0: - NOT_POSSISLE © ? ae 
LINK+13 OK 

4.50.2 Release Buffer 
  

MONITOR PROCEDURE RELEASE_SUFFER Is (MEMORY), Re CFAULT /OR) 

INVOKED BY: MON RELBUF 

VERIFIES THAT THE MEMORY DEFINED BY THE MEMORY ALLOCATION PARAMETER 

MEMORY BELONGS TO THE CALLING PROCESS. 

RELEASES THE MEMORY INTO THE VACANT AREA POOL. 

RO MEMIRY - DEST 

R41 - - DEST 

R? LINK DEST 

RETURNS: 
LINK*Q: FAULT 
LINK*+1; aK



CSS/302/PSP/0008 
  

  

sign/date page 

JHD/810303 132 

CR80 AMOS KERNEL PRODUCT SPECIFICATION pepisce Ce 
    

  

  

4.50.3 

4.50.4 

Get Address 
  

MONITOR PROCEDURE GET_ADDRESS-Is (MEMORYY» i CADRES Sara eee 
R: (FAULT, OK) 

INVOKED 8Y: MON ADRSUF 
VERTFIES THAT THE MEMORY SJEFINED 3Y THE MEMORY ALLOCATION PARAMETER 
MEMORY BELONGS TO THE CALLING PROCESS. 
CONVERTS MEMORY TO AN ADDRESS,» A PAGE AND A SIZE. 
PAGE MAY 3E USED DIRECTLY AS A PSW VALUE WHEN SUBSEQUENTLY ACCESSING 
THE SUFFER. 

RO MEMORY KEPT 
R14 - ADDRESS 
Re - PAGE 
R3 - SIZE 
R? LINK DEST 
RETURNS: ‘ 
LINK#O: FAULT 
LINK?+13s OK 

Clean Memory 
  

MONITGR PROCEDURE CLEAN_MEMORY 
INVOKED SY: MON CLNMEM 

ALL MEMORY BE LONGING TO THE CALLING PROCESS IS RELEASED. 

RO DEST 

R14 ‘ - DEST 

R7 LINK OEST



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/date page 

JHD/810303 133 
replace project 
  

    
  

  

4.51.1 

Double Precision Arithmetic 
  

The following 32 bit multiply and divide functions 

are provided via CSS/316. 

Multiply Long 
  

Invoked by MON MULTIPLY LONG 

MONITOR PROCEDURE MULTIPLYLONS (OP1,/0P2, REF. RESULT/OVERFLOW) 
THE PROCEQURE MULTIPLIES THE TWO DDUSLE WIRD IPERANOS OP1 AND 
OP2. THE RESULT Is” DELIVERED AT Faur LOCATIONS STARTING av 
REF. RESULT. omit: 
IF THE RESULT MAS: MORE THAN 32 SIGNIFICANT 3ITS 
€-22831¢sRESULT<=24431-°1) THE OVERFLOW FLAG IN 7 
PSW WILL BE SET TO TRUE ELSE TQ dela THAT [IS THE SIZE CAN BE 
TESTED SY JVN. 
OPERANOS OP1 ANO OP2 ARE CONSIDERED 32 BIT OPERANDS 
IN 2°S CORNPLEMENT REPRESENTATION. EACH OPERAND IS 
CONTAINED IN TWO WORDS: A LEAST SIGNIFICANT PART (LOP) AND 
A ue | PART (MOP) ~ 

GISTER - CALL -_. EXIT 
5 : ~ LOPI O.2ESULT 

CRD fee ee MOP? 4 RESULT 
R2 LOop2 2eRESULT 

R3 : MOP2 3.RESULT 
RS DESTROYED 
R5 REF.RESULT REFLRESULT 
R? LINK DESTROYED 

THE RATIONALE FOR THE IMPLEMENTATION IS AS FOLLIWS: 

LET A=CACN)-ACN@1),"---208(69)) 3E A BINARY VECTOR 

THIS VECTOR CAN REPRESENT EITHER AN UNSIGNED 

JONt1) CAD = ACN) 22 @eNPACN@1) 2% (NO1)%202%A (0) 

OR A SIGNED INTEGER IN 2°S COMPLEMENT: 

;. - SON4#1) CAD= TACND #28 ONS NCNO1) 829% (NO TIF 00 FACO) ~ 

NOW LET. . a 
eo FONSI) CA) 2 ACN) #2 (NOT) : 

THEN rt: sa aaa 7 ic 

UCN¢1) =S (N+1) +E (N44) 
THE | eee IS THEN VALTIO FOR 

0=(0(631) ,----,010)) 7 , 

42(0031),-°7-,0616))- MOST SIGNIFICANT PART OF 0 

L=(0¢€15),2-",000)) » LEAST SIGNIFICANT PART OF O 

AND D°,M’%,L’%s 

§¢32) (0) #80352) (0%) = 

COZ 416) 05016) CMH 9015) 249016) CLI RCC 2H m1 6) CSOT OMI +DT C15) 

$€16)(L°))



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 
  

sign/date page 

JH®/ 810703 134 
replace project 

    
  

  

4.51.2 Divide Long 
  

Invoked by:. MON DIVIDELONG 

THIS PROCENURE DIVIDES A 2 WORC 2°S COMPLEMENT OPERAND -OP1 = BY A 
2 WORD 2°S COMPLEMENT CEERAND - O92 = AND DELIVERS THE CUCTIENT 
AS & 2 WORE 2°S COMPLEMENT NUMBER AT RESULT. 
THE CVERFLCW FLAG IN PSW WILL S8& SET TRUE IF OIVISICN 2Y C IS ATTEMPTED 
OTHZRWISE THE FL&S IS SET TO FALSE. THE FLAG MAY SE TESTED &Y THE JVN 
INSTRUCTION. 

REGISTERS CALL 2XIT 
RO Loot G. RESULT 
R1 MOP4 1.RESULT 
R2 LOF2 CEST 
R MOP2 DEST 
Rb - SEST 
RS REE,RESULT REF RESULT 

Bie oe © BEST en ne ee 
R7 LINK _ «OST e



  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato side 

EKH/820601 134a 
  

erstatter projekt 

      

  
4.52.1 

XAMOS Bound procedures. 

An XAMOS process which must write outside its own data 

memory (as f.ex. a driver) can get authorization to do 

so, either 

@ permanently, if it is created with LEVEL = 1 (system 

level) 

or 

@ temporarily, by calling the monitor procedure 

RELBOUND before and SETBOUND after each write 

to foreign memory. It is the responsibility of the 

process to save the original value of BOUND between 

the calls of RELBOUND and SETBOUND 

Release Bound Protection. 

MONITOR PROCEDURE RELEASE BOUND PROTECTION 

INVOKATION: 
MON RELBOUND 

BOUND PROTECTION IS DISABLED, BY SETTING THE FIELD 

XBOUND IN THE PROCESS CONTEXT AND THE BOUND REGISTER 

IN THE CPU TO -1 (XAMOS ONLY). 

REGISTER CALL EXIT 

R4 - OLD BOUND 

R7 LINK DEST 

 



  | Siansdntn \ side 

EKH/820601 134b 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION sheet ahaa 

  

  

  
  

4.52.2 Set Bound Protection. 

MONITOR PROCEDURE SET BOUND PROTECTION I: (BOUND VALUE) 

INVOKATION: 

MON SETBOUND 

BOUND PROTECTION IS ENABLED, BY SETTING THE FIELD XBOUND 

IN THE PROCESS CONTEXT AND THE BOUND REGISTER IN THE 

CPU (XAMOS ONLY). 

REGISTER CALL EXIT 

R4 BOUND OLD BOUND 

R7 LINK DEST



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL 

sign/date page 

JHD/810303 135 
  

PRODUCT SPECIFICATION a” paciecs 
      

  

5. LIMITATIONS 
  

The 

The 

following limitations apply to the AMOS Kernel: 

Only a single CPU can execute with I/O interrupts 

enabled. This restriction arises from the CR80 

interrupt handling hardware and firmware. The 

reason for the restriction is to prevent re- 

incarnations of processes and to be able to have 

control over the CPU executing a given process. 

The CPUs supported by the Kernel must all have 

access to the same main memory. Further must 

they have access to the first 4 Kword of main 

memory via the Mainbus (in order to be able to 

use hardware semaphores). 

following CR80 configurations are supported 

Up to 256 Kword of main memory 

Up to 8 CPUs (system generation parameter) 

CPUs with loadable control store.





CSS/302/PSP/0008 
  

sign/date page 

JHDS/810303 136 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION = —_— 
    

  

  

SYSTEM ASSEMBLY PARAMETERS 
  

In this section some assembly parameters are described 

which allow a tuning of the Kernel: 

MULTIPAGE (Boolean) 

Default value is true. If set to false, the Kernel 

will only support CR80 configurations with up to 

64 Kwords of main memory and a minor gain in speed 

is obtained. 

MSGCHK (Boolean) 

Default value is true. If set to false, the Kernel 

will not check the number of message buffers 

allocated per process, and a small gain in speed 

is obtained. 

MSGCHK1 (Boolean) 

Default is false.’ If true a check is performed at 

process creation that the message buffer pool is 

never over allocated. 

NSEARCH (integer) 

Default value is 10. Defines the maximum number of 

PCBs inspected a time by the Kernel during a search 

for a process. (Every time NSEARCH PCBs have been 

inspected a pause is made to allow other processes 

to enter the Kernel). 

CPRIOS (integer) 

Default value is 3. Defines the number of software 

priorities (= number of ready lists per CPU).



CSS/302/PSP/0008 
  

sian/date ~— Tpaae 

EKH/820601 137 
repiace | project CR80 AMOS KERNEL PRODUCT SPECIFICATION "3HO/8 10303" 

  

  

REGIONS (Boolean) 

Defines whether critical regions are to be supported. 

SECTI1 (Boolean) 

Default is true. If true the Kernel data are laid 

out in memory section 1 other wise in memory section 

d. 

XAMOS (Boolean) 

Default is true. If false, only AMOS CPUs are supported.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

signidato | side 

'JHG/810303 138 - 
  

| erstatter | Projekt 

  

  

SYSTEM GENERATION 
  

System generation consists of two phases: 

e Assembling/compilation of modules 

e@ Linking of modules to generate a boot module 

The second phase is best performed by use of the 

CR80 AMOS UTILITY SYSGEN (ref. 2.6). The user manual 

for this program should be consulted for further 

details. 

\
e



CSS/302/PSP/0008 
  

sign/date page 

'THD/810303 139 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION paeisc® project     
  

  

PERFORMANCE 
  

° 

This section is a summary of CR80 ececution times 

measured for selected AMOS kernel components. 

Three different methods of measuring have been used: 

(a) instruction count: 

The number of instructions were multiplied with 

the average instruction time 

2,2 us for CR8001 

1,5 us for CR80101 

(b) simulation 

The simulation was performed by a Pascal program. 

The relevant prefix procedure was called a large 

number of times (e.g. 10000). The overhead caused 

by entering and leaving Pascal procedures was 

measured by calling a dummy procedure with identi- 

cal parameter list but empty procedure body. 

As a prefix procedure causes less overhead an aver- 

age of 15 instructions was subtracted from the over- 

head measures. 

(c) Using the time for a related operation. 

N.B. Memory is always assumed to be accessed via the 

main bus and not via the sub bus.



CSS/302/PSP/0008 
  

  

    
  

  

  

  

  

  

  

  

  

  

        

  

  

  

  

  

  

  

  

  

sign/date page 

JHS/3810303 140 

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace Project 

CR8001 CR80101 

Function execution execution 

time (us) time (us) 
-WAIT EVENT: 

signal 195 b 163 b 

delay 205 b 175 b 

DIALOGUE: 

send message + 

wait message + 1280 b 890 b 

send answer + 

wait answer 

Send signal 210 b 153 b 

Wait answer: 

timeout 217 b 178 b 

Save event + 415 b 283 b 

recover events 

Path messages: 

Use the exrc. times for ordinary messages 

CRITICAL 

REGIONS: 

enter region 220 c 150 5 

leave region 220 Cc 150 le) 

get item 270 c 183 b 

put item 270 c 183 b 

get N items 280+22. N c 190+15°N b 

put N items 280+22°N Cc 190+15°N b 

copy N item 2804+22°N c 190+15°N b 

Read RTC 55 a 38 a          





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato | side 

'JHG 10303 141 
  

| erstatter | projekt 

  

  

GUIDELINES FOR FUTURE IMPROVEMENTS 
  

One obvious improvement would be to implement part 

of the Kernel code as microprogram. 

The most often executed parts of the Kernel are the 

procedures called in connection with 

Entering the Kernel 

Exitting from the Kernel 

Scheduling 

Suspending a Process 

Readying a process 

These subprograms are proper candidates for micro- 

programming.





CSS/302/PSP/0008 
  

| signdato f side 

'JHG/810303 142   CR80 AMOS KERNEL PRODUCT SPECIFICATION ene a 

  

  

APPENDIX A 

S2SYSS 

CR80 AMOS NAMES





CSS/302/PSP/0008 
  

| sign/dato r side 

ITHO/ 810303 143 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION ro, | projexe 

I } 

  

  

The file S2SYSS is a text file written to be used 

as part of CR80 assembly program source files. 

S2SYSS defines the values of the symbolic monitor 

call arguments to be used for calling AMOS monitor 

procedures. It also defines values of symbolic 

Kernel call parameters.





CSS/302/PSP/0008 

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato 

EKH/820601 

side 

144 
  

erstatter 

    JHG/ 810303 
projekt 

  

  

PROJECT: AMOS 

: MODULE NAME: S2SYSS 
; MODULE ID NMB:  CSS/811 
: MODULE VERSION: 
: MODULE TYPE: MERGE FILE 
: MODULE FILES: S2SYSS.S 
! MERGE FILES: NONE 
; 
; SPECIFICATIONS: CSS/302/PSP/0008 
:  AUTHOR/DATE: JHO 

; DELIVERABLE: YES 
; SOURCE LANGUAGE: CR80 ASSEMBLER 
: COMPILE COMPUTER: CR80 
: TARGET COMPUTER: CR80 
: OPER. SYSTEM: AMOS 

; 
: CHANGE RECORD: 

; VERSION  AUTHOR/DATE DESCRIPTION OF CHANGE 
; See et eee 

> 0501 JHO/801015 READSYSTIME AND PASCALINIT2 
; INCLUDED 
; 
: 0601 JHO/801121 FILENAME INCLUDED 
; 
: 0701 AEK/800105 MONITORNAME DEVICE #86 CHANGED TO 
; MONITORNAME TTYLOG #86 TO SUPPORT CSS/339 

: 9801 HPT/820501 MONITORNAMES RELBOUND AND SETBOUND INCLUDED 
; 
; 

MESSAGE <:AMOS SYSTEM NAMES V820501:> 
SYS2= 
; EVENTTYPES 
AX=0 
BMSIG: 
BNSIG: 
BMMSG: 
BNMSG: 
BMANS: 
BNANS: 
BMS YM: 
BNSYM: 
BMSYA: 
BNSYA: 
BMPTM: 
BNPTM: 
BMPTA: 
BNPTA: 
BMINTRPT: 
BNINTRPT: 
BMDELAY:= 
BNDELAY:= 
BMPARSIG: 
BNPARSIG:= 
CONTLENGTH:= 

3; COMMAND BITS 

o
a
 

a
a
a
 

a
t
 

ee ee ee a ee ee eee eee 

TRUE 

1<AX 
O@AX, AX=AX+1 ; SIGNAL TYPE 

1<AX 
PAX, AX=AX+1 ; MESSAGE TYPE 
1<AX 

9 AX, AX=AX+1 ; ANSWER TYPE 
1<AX 

2 AX, AX=AX+1 ; SYSTEM MESSAGE TYPE 
1<AX 

4) AX, AX=sAX+1 ; SYSTEM ANSWER TYPE 
1<AX 

£AX, AX=AX+1 ; PATH MESSAGE TYPE 
1<AX 

6 AX, AX=AX+1 : PATH ANSWER TYPE 
1<AX 

AX, AX=AX+1 ; INTERRUPT TYPE 
1<AX 

® AX, AX=AX+1 ; DELAY TYPE 
1<AX 

4 AX, AX=AX+1 ; 
5 

3 TRANSPUT OPERATIONS 
AX=0 
BNTPUT:= AX, AX=AX+1 

PARENT SIGNAL 
; ELNGTH OF MESSAGE BUFFER





CSS/302/PSP/0008 
  

  

sign/dato side 

EKH/820601 145 

erstatter projekt 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHD/810303     
  

  

BNOPUT:= AX, AX=AX+1 
BNBYTE:= AX, AX=AX+1 
BNSPEC:= AX, AX=AX+1 
BNCONV:= AX, AX=AX+1 
BNSTEP:= AX, AX=AX+1 
BNNOEC:= AX, AX=AX+1 
BNNOCP:= AX, AX=AX+1 
; CONTROL OPERATIONS 
AX=2 - 
BNRELEASE: = 2 AX, AX=AX+1 
BNRESERVE:= ‘AX, AX=AX+1 
BNPOSITION:= AX, AXsAX+1 
BNERASE:= “ AX, AX=AX+1 
BNCLEAR:= 5 AX, AX=AX+1 
BNTERMINATE:= AX, AX=AX+1 
BNDISCONNECT: = ¢ AX, AX=AX+1 
; RESULT BITS 
AXs 0 

BNNOTREADY:= AX, AXsAX+1 
BNTIMER:= < AX, AX=AX+1 
BNREJECT:= ~ AX, AX=AX+1 
BNILLEGAL: = AX, AX=sAX+1 
BNUNCOMPLETE: = % AX, AX=AX+1 
BNERROR:= © AX, AX=AX+1 
BNEOF := & AX, AX=AX+1 
BNPARITY:= ~ AX, AX=AX+1 
BNREADERROR: = F AX, AX=AX+1 

BNWRITEERROR: = * AX, AXsAX+1 
BNF ULL: = io AX, AX=AX+1 
BNUNKNOWN: = ‘+: AX, AX=AX+1 
BNBUSY: = it AX, AX=AX+1 
BNNOTPOSS: = 12 AX, AX=AX+1 

; PAGE





CSS/302/PSP/0008 

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato side 

EKH/820601 146 
  

erstatter projekt 

JHG/810303     
  

  

>; SYSTEM CALLS 
AX=0 
CREATEPROCESS:= AX, AX=AX+1 

; PARAMETER BLOCK FOR CREATEPROCESS: 
AY=0 

XPRNAMELENGTH: = 4 
VNAMEO:=s AY,AY=AY+1 

VNAME1:= AY,AY=AY+1 
VNAME2:= AY, AY=AY+1 
VIDENT:= AY,AY=AY+1 

VPROG:= AY, AY=AY+1 
VINIT:= AY, AY=AY+1 
VMICRO:= AY, AY=AY+1 

VCAPAB:= AY, AY=AY+1 
VCPU:= AY, AY=AY+1 
VPRIO:= AY, AY=AY+1 
VLEVEL:= AY, AY=AY+1 
VBASE:= AY, AY=AY+1 
VSIZE:= AY, AY=AY+1 
VBOUND:= AY, AY=AY+1 
VMEMORY: = AY, AY=AY+1 
VMSGS:= AY, AY=AY+1 
XUSERIDLENGTH:= 2 
VUSERID:= AY, 
VPARLGT:= AY 

REMOVEPROCESS:= AX, AX=AX+1 
ADOPTPROCESS:= AX, AX=AX+1 
STARTPROCESS: = AX, AX=AX+1 
STOPPROCESS:= AX, AX=AX+1 

GETCHILD:= AX, AX=AX+1 
VANISH: = AX, AX=AX+1 
CLNMESSAGE: = AX, AX=AX+1 
CLNINTRPT:= AX, AX=AX+1 
ERROR: = AX, AX=AX+1 
TERMINATE: = ERROR 

; ERROR CODE GROUPS 
USERER:= 0<8 
MONERR:= 1<8 
IOERR:= 2<8 
FMSERR:= 3<8 
FMUERR: = 4<8 
FMDERR:= 5<8 
DRVERR:= 6<8 
PASERR:= 7<8 
OVLERR:= 8<8 

LOOKUPCPU:= AX, AX=AX+1 
CLOSEPATH: = AX, AX=AX+1 
OPENPATH:= AX, AX=AX+1 
SETCYCLE:= AX, AX=AX+1 
CLEARINTERRUPT:= AX, AX=AX+1 
RELEASEINTERRUPT: = AX, AX=AX+1 
SETINTERRUPT:= AX, AX=AX+1 
RESERVEINTERRUPT: = AX, AX=AX+1 
IDENTIFYSENDER:= AX, AX=AX+1 
GETATTRIBUTES:= AX, AX=AX+1 

1 

v8 

AY =AY+XUSERIDLE 

LENGTH OF PROCESS NAME 
NAME. IF VNAMEO=0 THEN A STANDAR 
D NAME IS GENERATED AND RETURNED 
IT IS CHECKED THAT THE NAME DOES 
NOT ALREADY EXIST NOR BEGINS WIT 
TH "pit 7 

USED TO RETURN THE LOGICAL PCB 

ABS PROGRAM BASE 
PROGRAM RELATIVE START ADDRESS 
PROGRAM REL ADR TO MICRO PROGR 
LOAD MODULE 
PROGRAM PAGE 
CAPABILITIES 
LOGICAL CPU 
PRIORITY OF PROCESS TO BE CREATED 
INITIAL SYSTEM LEVEL OF PROCESS 
ABS BASE OF PROCESS TO BE CREATE 
SIZE OF PROCESS 
PRESET VALUE OF BOUND REGISTER. 
MEMORY ALLOCATION PARAMETER. 
MAY NMB OF MSG BUFFERS ALLOWED 
LENGTH OF USER ID 
NGTH; USER ID 
LENGTH OF PARAMETER BLOCK. 

USER DEFINED ERRORS 
MONITOR KERNEL ERRORS (INCL HW) 
IO SYSTEM ERRORS 

FILE MANAGEMENT SYSTEM ERROR 
FILE MANAGEMENT SYSTEM ERROR 
FILE MANAGEMENT SYSTEM ERROR 

DEVICE DRIVER ERRORS 
PASCAL RUNTIME ERRORS 
OVERLAY ERROR





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

WRI 8.20601 side 

147 
  

erstatter 

JHG/810303     
projekt 

  

  

LOOKUPPROCESS: = AX, AX=AX+1 
SETCPUPARAMETER:= AX, AX=AX+1 
GETCPUPARAMETER:= AX, AX=AX+1 

BX=0 ; CPU PARAMETERS 
ZCPUNMB:= BX, BX=BX+1 ‘ CPU NUMBER 
ZINTMSK:= BX, BX=BX+1 ‘ INTERRUPT MASK (PSW) 
ZSCHRCNT:= BX, BX=BX+1 $ SCHEDULE RESET COUNT .PRIO 
ZSLICESZ:= BX, BX=BX+1 ; SLICE SIZE .PRIO 
ZACCEXECT:= BX, BX=BX+1 . ACC EXECUTION TIME .PRIO 
ZHWPRIO:= BX, BX=BX+1 ; HW PRIORITY BITS (PSW) .PRIO 
ZCPUMAXPAR:= BX ; 

RECOVEREVENTS:= AX, AX=AX+1 
SAVEEVENT:= AX, AX=AX+1 
SUSPEND: = AX, AX=AX+1 
READY:= AX, AX=AX+1 

AX=AX+6 A SPARE POSITIONS 
IF AX GT 63 THEN USE 16 FI 

AX=64 

CPUINIT:= AX, AX=AX+1 
MONINIT:= AX, AX=AX+1 
INITPASCAL:= AX, AX=AX+1 
OLTO:= AX, AX=AX+1 
AWAITEVENT: = AX, AX=AX+1 
WAITEVENT: = AWAITEVENT 
SENDSIGNAL: = AX, AX=AX+1 
AWTANSWER: = AX, AX=AX+1 
SENDMESSAGE:= AX, AX=AX+1 
SENDANSWER:= AX, AX=AX+1 
AWTSYANSWER:= AX, AX=AX+1 
SENDS YMESSAGE:= AX, AX=AX+1 
SENDSYANSWER:= AX, AX=AX+1 
AWTPATHANSWER:= AX, AX=AX+1 
SENDPATHANSWER:= AX, AX=AX+1 
SENDPATHMESSAGE:= AX, AX=AX+1 
IDENTIFYPROCESS:= AX, AX=AX+1 
READRTC:= AX, AX=AX+1 
SENDTIMEOUT: = AX, AX=AX+1 
WRITERTC:= AX, AX=AX+1 
PROCESSPCBS:= AX, AX=AX+1 
READSYSTIME:= AX, AX=AX+1 
PASCALINIT2:= AX, AX=AX+1 
TTYLOG:= AX, AX=AX+1 
CLNDEVICE:= AX, AX=AX+1 
I0:= AX, AX=AX+1 
CLNIO:= AX, AX=AX+1 
IOINIT:= AX, AX=AX+1 
GETBUF:= ° AX, AX=AX+1 
ADRBUF:= AX, AX=AX+1 
RELBUF:= AX, AX=AX+1 " 
CLNMEM: = AX, AX=AX+1 
STREAM: = AX, AX=AX+1 
INSPECTEVENTS:= AX, AX=AX+1 
REGION: = AX, AX=AX+1 

BX=0 9 REGION PROCEDURES = 
RENTER: = BX, BX=BX+1 
RLEAVE:= BX, BX=BX+1 
RWAIT:= BX, BX=BX+1 
RGET:= BX, BX=BX+1 
RGETN:= BX, BX=BX+1 
RPUT:= BX, BX=BX+1 

RPUTN:= BX, BX=BX+1 
RCREATE:= BX, BX=BX+1 

; PARAMETER BLOCK FOR CREATE REGION 

AY=0 
VCRNAME:= AY, AY=AY+3; NAME OF REGION





CSS/302/PSP/0008 
  

  

      

  

sign/dato side 

EKH/820601 148 
erstatter Projekt 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JH@Z/810303 

VCRSTA?= AY, AY=AY+1; PSW ENCODED PAGE OF VS 
VCRADDR:= AY, AY=AY+1; ABSOLUTE WORD ADDRESS OF VS 

VCRSIZE:= AY, AY=AY+1; SIZE IN WDS OF VS 
VCRCBL:= AY ; SIZE OF PARAMETER BLOCK 

RSEARCH: = BX, BX=BX+1 

RCOPYN:= BX, BX=BX+1 

; ERROR CODES 

ZCRUNF : 
ZCRPSZ: 

ZCRUNR:= 
ZCRILLSTA: 
ZCRPCB:= 
ZCRILLNAM: 
ZCRVSZ:= 
ZCROVFL:= 

OVERLAY:= 
LOG:= 
MULTIPLYLONG:= 
DIVIDELONG: = 
FINDFILE:= 
INFILEID:= 
LOGP:= 
COR: = 

SETBOUND: 
RELBOUND: 
FILENAME: 

FOR REGION PROCEDURES 

AX=AX+1 

AX=AX+1 
AX=AX+1 
AX=AX+1 
AX=AX+1 
AXzAX+1 
AX=AX+1 

AX=AX+1 
AX=AX+1 
AX=AX+1 
AX=AX+1 

UNKNOWN FUNCTION 
PARAMETER REF VIOLATES ADDRESS 
SPACE OF PROCESS. 
UNKNOWN REGION 
REGION IS NOT ENTERED 
INVALID PROCESS (PCB INDEX) 
INVALID REGION NAME 
ADDRESS VIOLATION IN VS 
TOO MANY REGIONS 

; PREVIOUS ENTRY FOR FILENAME 

; CHANGED FROM 106 FOR COBOL USE





CSS/302/PSP/0008 
  

| sign/data "| side 

'JHG/810303_| 149 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| erstatter projekt 
| ‘ 

  

  

APPENDIX B 

X2GEN1 

CR80 AMOS PROGRAM 

AND DATA 

HEADER GENERATOR 

PART 1





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sign/dato { side 

‘THO / 810303 150 
  

erstatter | Projekt 
| 

  

  

The text file X2GEN1 is written to be used as part of 

CR80 assembly program source files. 

X2GEN1 together with X2GEN2 (appendix C) generates 

program and/or data headers in the format used by 

ROOT and the CR80 AMOS I/O system, 

X2GEN1 should be included in the start of CR80 assembly 

source files before any data or instruction words have 

been assembled. Improper use will generate a message: 

X2GEN1 MUST BE CALLED INITIALLY IN SOURCE. 

To control the header generation, a number of parameters 

must be defined. Some of these parameters are defaulted. 

The default values may be overridden by user assignments. 

The parameters which the user may and/or must define 

are listed below together with their possible default 

values.



CSS/302/PSP/0008 
  

| sign;dato H side 

151   CR80 AMOS KERNEL PRODUCT SPECIFICATION JHOZ 810303 
erstatter Drojakt 

  

  

Parameters which must be defined 
  

XPROGRAM 

Type : Boolean 

Effect: If true a program header is generated. 

Note : Must be defined prior to call of X2GEN1. 

XDATA 

Type : Boolean 

Effect: If true a data header is generated. 

Note : Must be defined prior to call of X2GEN1. 

XPGNAMEO 

XPGNAME 1 

XPGNAME2 

Type : String (2 characters each) 

Effect: Defines the name (6 characters) of 

the program. 

| May be assigned at any position 

in source, 

Note : Need not be defined if XPROGRAM is false. 

Convention: 

XPGNAMEO,1,2 is assigned the configuration 

identification of the assembled module. 

(Example CSS302 for the AMOS Kernel).



CSS/302/PSP/0008 
  

| sign/dato side 

JHO/ 810303 152 
  CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| erstatter projekt 

  

  

XVERSION 

Type : Integer 

Effect: Defines the program release version by 

convention. May be assigned at any position 

in source, 

Note : Need not be defined if XPROGRAM is false, 

XSTART 

Type : Program relative reference. 

Effect: Defines the entry point in the assembled 

program. 

Must be assigned prior to call of 

X2GEN2.



CSS/302/PSP/0008 
  

| signdato | side 
H > 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/ 810303 =e   

j erstattar | Projekt 
' ' 

  

  

Optionally used parameters 
  

XPGTYPE 

Type 

Effect: 

Note 

Default: 

XMICRO 

Type 

Effect: 

Note 

Default: 

Integer 

Defines the type of the program. The following 

bitmasks for XPGTYPE are defined: 

BMREENTRANT defines the program part to be 
  

reentrant. 

BMRESIDENT defines the program part to be 
  

not swappable. 

BMPERMANENT defines the program part to be 

not removeable. 

  

BMMONITOR defines the program part as a 

monitor procedure. These are initialized 

specially by ROOT. 

BMUTILITY defines the program to be a CR80 

AMOS utility program. This has a special 

implication if the program is also a pascal 

program. 

BMPASCAL defines the source language to be 

Pascal. 

May be defined before call of X2GEN2. 

0, sét by X2GEN2. 

Program relative reference. 

Defines the first location in the program 

part of a binary micro program load module. 

May be defined prior to call of X2GEN2. 

0, (no micro module) 

, set by X2GEN2



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sian/dato laine 

EKH/820601 
eratatter 

, JHG/810303 

154 
| mneniakt 

    

  
  

XPGMEM 

Type: Integer 

Effect: Defines the memory area in which the program 

must be placed. 

Note: May be defined prior to call of X2GEN2.. 

The format of this parameter is defined in 

3.16 

Default: FF FFOO set by X2GEN2. 

XPRLEVEL 

Type: Integer 

Effect: Defines the initial value of system call nesting. 

Should be 0 for application programs. 

If 1, XLEVEL is initiated to -1 which allows the 

process to write everywhere. 

Note: May be defined prior to call of X2GEN2. 

Default: 0, set by X2GEN2. 

XCAPABILITIES 

Type: Integer 

Effect: Defines the necessary process capabilities. 

Note: May be defined prior to call of X2GEN2. 

Default: 0, set by X2GEN2. 

XCPUNAMEO 

XCPUNAME1 

XCPUNAME2 

Type: String (2 characters each) 

Effect: Used by ROOT to define the CPU which must execute 

the program. 

Note: May be defined prior to call of X2GEN2. 

Default: 0, set by X2GEN2.



CSS/302/PSP/0008 
  

sign/dato side 

JHO/810303 154a 
  

erctatter projekt 

CR80 AMOS KERNEL PRODUCT SPECIFICATION       

  

  

  

  

XPROCESSNAMEO 

XPROCESSNAME1 

XPROCESSNAME2 

Type: String (2 characters each) 

Effect: Used by ROOT to define the process name. 

Note: May be defined prior to call of X2GEN2. (A name 

commencing with P (e.g. PROGXY) is illegal) 

Default: 0, 0, 0, set by X2GENZ.



CSS/302/PSP/0008 
  

| sign;dato | side 

  

  

  

| 

CR80 AMOS KERNEL PRODUCT SPECIFICATION peeeneeee nT projekt — 

XPRIORITY 

Type : Integer, 

Effect: Used by ROOT to define the software priority. 

Note : May be defined prior to call of X2GEN2. 

Default: 1, set by X2GEN2. 

XTRA 
  

Type : Integer. 

Effect: Defines the size of the not assembled data 

area between BOUND and IOAREA (refer to fig. 

B.1) 

Note : May be defined after call of X2GEN1. 

Default: 0, set by X2GEN1. 

XTND 
  

Type : Integer. 

Effect: Defines the size of the not assembled data 

area below BOUND (refer to fig. B.3) 

Note : May be defined after call of X2GEN1. 

Default: 0, set by X2GEN1. 

XMSGS 

Type : Integer. 

Effect: Defines the maximum number of message buffers 

allocatable by the process, 

Note : May be defined after call of X2GEN1. 

Default: 4, set by X2GEN1.



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign:dato | side 

\JHO/810303 ” 156 
  

erstatter | projekt 

  

  

XFDS 
  

Type : 

Effect: 

Note 7 

Default: 

XIBS 

Type : 

Effect: 

Note 

Default: 

XSTS 

Type 

Effect: 

Note 7 

Default: 

XXFS 

Type 

Effect: 

Note 

Default: 

Integer 

Defines the number of file descriptions to 

be laid out. 

May be defined after call of X2GEN1. 

0, set by X2GEN1. 

Integer 

Defines the number of I/O control blocks 

to be laid out. 

May be defined after call of X2GEN1. 

0, set by X2GEN1. 

Integer 

Defines the number of stream control blocks 

to be laid out. 

May be defined after call of X2GEN1. 

0, set by X2GEN1. 

Integer 

Defines the number of transfer list elements 

to be laid out. 

May be defined after call of X2GEN1. 

0, set by X2GEN1.



CSS/302/PSP/0008 
  

sign/dato side 

EKH/820601| 197 
    

  

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION erstarrer Broless 

, JH@/810303 

XPRMEM 

Type: Integer 

Effect: Defines the memory area, in which the process must 

be placed. 

Note: May be defined prior to call of X2GEN2. 

The format of this parameter is defined in 3.16. 

Default: FP FFOO set by X2GEN2. 

XUSERIDO 

XUSERID1 

Type: Integer 

Effect: Defines the user id for the process. 

Note: May be defined prior to call of X2GEN2. 

Default: 0,0, set by X2GEN2. 

The format of the headers generated by X2GEN1 is 

shown in figures B.1 and B.2. 

The format of the object module for CR80 AMOS 

programs/ data is shown in fig. B.3. 

a 
am



CSS/302/PSP/0008 
  

| sign/dato _| side 

| EKH/820601 _158 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 
Brawler 1 nraiekt 

JH®/810303 
  

  

  

  

  

  

  

  

  

  

  

0 1 

1 size of program part 

2 XPGNAMEO 

3 XPGNAME1 

4 XPGNAME2 

5 XVERSION 

6 XPGTYPE 

7 XSTART 

8 XMICRO 
  

0 (reserved) 

10 XPGMEM 

- 
i 

Reserved for 

future use 

7 a 

30 

  

  

  

    31       

Fig. B.1 CR80 AMOS Program Header.





CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| sian‘dato | side 

EKH/820601 

| erstatter ! projekt 

  

  

JHO/810303 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

        

0 2 

1 size of assembled data part 

2 XPROCESSNAMEO 

3 XPROCESSNAME1 

4 XPROCESSNAME2 

5 XCPUNAMEO 

6 XCPUNAME1 

7 XCPUNAME2 

8 XPRIORITY 

9 XCAPABILITIES 

10 memory claim 

11 size of executing process 

12 XFDS 

13 XIBS 

14 XSTS 

15 XXFS 

16 XMSGS 

17 Q (reserved) 

18 XPRMEM 

19 ref to I/O part 

20 XUSERIDO 

21 XUSERID1 

Fig. B.2-1 CR80 AMOS Data Header, 

part 1/2 

159





  

  

  

  

  

  

  

  

  

  

  

  

  

        

css/302/PSP/0008 
| sign‘dato | side 

} 

CR80 AMOS KERNEL PRODUCT SPECIFICATION pee 03 Oe +180 
| { 

22 0 (reserved) 

23 0 (reserved) 

24 XPRLEVEL 

25 BOUND 

26 (<-BASE) 

Register area 

38 100 (TIMER) 

39 4F6800 (PSW) 

40 0 

7 Reserved Zz 

60 0 

Fig. B.2-2 CR80 AMOS Data Header, 

part 2/2





CSS/302/PSP/0008   

| side 
7 

| sign/dato 

161   
erstatter 

'JHO/810303 
| CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| projekt 

‘
o
U
T
L
 

u
n
y
 

3e 
p
u
e
 

o
u
t
y
 

A
T
q
u
e
s
s
y
 

 
 

  

 
 

  
  

 
   

 
 

  
 
 

 
 

  
  

 
 

    
 
 

 
 

  
  

 
 

  

a
 

 
*
 

e
7
e
4
s
 

w
a
s
n
 

ut 
q
r
e
d
 

O
/
T
 

j
T
Q
T
S
S
e
o
o
e
u
t
 

st 
3
a
e
d
 

s
t
u
L
 

x 

W
a
x
 

AVeMA 
G
N
X
 

a
 

ae 
™
—
 

s
s
e
o
o
i
d
 

~
 

w
T
e
T
O
|
 

H
u
t
y
n
o
e
x
s
 

| 
3a2ed 

O
/
T
 

™
 

A
x
o
w
e
u
 

Jo 
ezTts 

O} 
F
o
u
 

a
n
n
o
g
 

WiLWd 
q
a
 
T
A
W
u
s
s
v
 

wasn 
zaed 

ejep 
p
e
T
q
u
e
s
s
e
 

JO 
e
z
T
s
 

™
—
 

x
 

aswd 
aadqvaH 

—
 

v 
~ 

~
 

~
 

~
 

_
 

—
 

~
v
_
 

a
e
:
 

Sees 
S
e
 

y ow
 

H
d
0
0
 

da 
T
d
W
a
s
s
y
v
 

w
a
s
n
 

q
a
e
d
 

w
e
a
b
o
i
d
 

JO 
e
z
t
s
 

d
a
e
d
v
a
H
 

o
u
d
 

e
-
-
-
-
-
+
 

@ 
_ 

q
o
e
l
q
o
 

S
U
T
,
 

u
n
y
 

p
e
o
t
 

qe 
y
n
o
-
A
e
T
 

s
p
o
p
 

3
0
e
l
q
O
 

S
O
W
Y
 

08HyO 

 
 VWLVd 

qa 
Tana 

SSv 
aqasn 

 
 

a
d
a
a
q
v
a
H
 

 
 

a
d
0
0
 

qa 
Tawa 

SSW 
aqasn 

 
 

  
qa 

aqvaH   
 
 

q
o
e
l
q
o
 

sUTL 
A
l
q
u
o
e
s
s
y
 

€°d 
°bta 

La 
We 

W
L
W
 

 



  

— 

sepee 

— 

     



CSS/302/PSP/0008 

  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato 

EKH/820601 
side 

162 
  

erstatter 

THD/810303     
projekt 

  

  

UTS TUTTE T Se ee TES TR ee 
, 
-% 
’ 

wi CR 80 AMOS 
i DATA.’ AND PR 
,# GENERATOR P 

;# CONFIG ID: CSS/831 
;# AUTHOR: JHO 
;# DATE: 820501 

he VERSION: 2 

te POTTSVILLE LILILECECLiser sec cee rere SEE TEETER EEE | 

CHANGE RECORD: 

e
r
 

VERSION | AUTHOR/DATE 

; 
: 0101 JHO/790827 

: 0201 HPT/820501 
; 

MESSAGE <:X2GEN1 V820501:> 
USE PROG 
- WORDS NE 0 THEN MESSAGE <:X2GEN1 

T 
AREASWITCH= 
XTRA= 

XTND= 

XFDS= 

XIBS= 
XXFS= 
XSTS= 
XIOSIZE= 

XMSGS= 4 
; GENERAL HEADER DECLARATION 

AX=0 

q
g
o
o
0
°
o
 

fo
) 

o
-
 

XHTYPE:= AX, AX=AX+1 
Bx=0 
XTABLE:= BX, BX=BX+1 
XCODE:= BX, BX=BX+1 
XPROCESS:= BX, BX=BX+1 
XHSIZE:= AX, AX=AX+1 
XHNAME: = AX, AX=AX+3 
XHGHL:= AX 
; PROGRAM HEADER DECLARATION 

AX= XHGHL 
XPVERS:5 AX, AX=AX+1 
XPTYPE:= AX, AX=AX+1 
Bx=0 
BNREENTRANT: = BX, BX=BX+1 
BNRESIDENT:= BX, BX=BX+1 
BNPERMANENT: = BX, BX=BX+1 
BNMONITOR: = BX, BX=BX+1 
BNUTILITY:= BX, BX=BX+1 
BNPASCAL:= BX, BX=BX+1 
BMREENTRANT: = 1<BNREENTRANT 
BMRESIDENT:= 1<BNRESIDENT 
BMPERMANENT: = 1<BNPERMANENT 
BMMONITOR:= 1<BNMONITOR 
BMUTILITY:= 1<BNUTILITY 
BMPASCAL:= 1<BNPASCAL 
XPSTART:= AX, AX=AX+1 
XPMICRO:= AX, AX=AX+1 
XPCHKS:= AX, AX=sAX+1 
XPMEM:= AX, AX=AX+1 

HEADER >
 

=
 

* 

* 

* 

% 

% 

% 

# 

2 

a 

DESCRIPTION OF CHANGE 

INITIAL RELEASE 

XAMOS DEFINITIONS INCLUDED 

MUST BE CALLED INITIALLY IN SOURCE:> 

SIZE OF NOT 
ABOVE BOUND 
SIZE OF NOT 
BOUND 
DEFAULT 
DEFAULT 
DEFAULT 
DEFAULT 
DEFAULT 
DEFAULT 

ASSEMBLED LOCAL DATA 

ASSEMBLED DATA BELOW 

NMB OF FILE DESRIPTIONS 
NMB OF IO CONTROL BLOCKS 
NMB OF XFER LIST ELEMENT 
NMB OF IO STREAMS 
SIZE OF IO AREA 
NMB OF MESSAGE BUFFERS ee

 
ee

 
ee
 

we
 

ee
 

ee
 

ee
 
e
e
e
 

ee
 

H HEADER TYPE 

; TABLE HEADER 
; PROGRAM HEADER 
; PROCESS HEADER 
; SIZE OF ITEM (IN WORDS) 
; NAME OF ITEM 
; LENGTH OF GENERAL HEADER 

; GENERAL HEADER HEADER 
3 PROGRAM VERSION ‘ 
; TYPE 

REENTRANT VS NON REENTRANT 
RESIDENT VS SWAPPABLE 
PERMANENT VS REMOVEABLE 
MONITOR CODE VS NON MONITOR CODE 
UTILITY PROGRAM VS NOT UTILITY 
PASCAL PROGRAM VS NOT PASCAL P e

e
 
S
e
 

RELATIVESTART ADDRESS 
REL REF TO MICRO LOAD MODULE 
CHECKSUM 
MEMORY PARAMETER e

e
e
 

ee
 

we
e



e
e
 

e
n
 

a
y



CSS/302/PSP/0008 
  

CR80 AMOS KERNEL PRODUCT SPECIFICATION 

sign/dato 

EKH/820601 
side 

163 
  

erstatter 

JHO/810303     
Projekt 

  

  

IF AX GT 32 THEN USE 16 FI 

XPGHDL:= 
IF XPROGRAM THEN 

XCODE 
XPGWDS 
XPGNAMEO 
XPGNAME 1 
XPGNAME2 

XVERSION 
XPGTYPE 
XSTART 

XMICRO 

0 
XPGMEM 

AX=32 
AX 

0, REPEAT XPGHDL-LOC 
FI 
USE BASE 
; PROCESS HEADER DECLARATION 

AX= 
XPROCHL:= 

XHGHL 

v2 

SPARE POSITIONS 
LENGTH OF PROGRAM HEADER 

PROGRAM TYPE HEADER 
SIZE OF PROGRAM 
PROGRAM NAME 

PROGRAM VERSION 
TYPE OF PROGRAM 
RELATIVE START ADDRESS 
RELATIVE ADDRESS TO MICRO 
PROGRAM LOAD MODULE 
CHECKSUM 
PROGRAM MEMORY RANGE 

GENERAL HEADER HEADER 
LENGTH OF PROCESS HEADER 

AX= -19-XUSERIDLENGTH 
XBEYLGT: = =AX 
XPCPUNAME: = AX, AX=AX+3 
XPRIO:= AX, AX=AX+1 
XPCAP:= AX, AX=AX+1 

BX=0 
BNCLASS: = 12 
BNMAXCL: = 15 
BNCREPR:= BX, BX=BX+1 
BNCCRPR:= BX, BX=BX+1 

BNCREPG: = BX, BX=BX+1 
BNCCRPG:= BX, BX=BX+1 

BNALDEV:= BX, BX=BX+1 
BNALMEM: = BX, BX=BX+1 
IF BX GT 12 THEN USE 16 FI 

XPRCLAIM: = AX, AX=AX+1 
XPRSIZE:= AX, AX=AX+1 
XPFDSX:= AX, AX=AX+1 
XPIBSX:= AX, AX=AX+1 
XPSTSX:= AX, AX=AX+1 
XPXFSX:= AX, AX=AX+1 
XPMSGX: = AX, AX=AX+1 
XCURDIR:= AX, AX=AX+1 
XFUNCS:= AX, AX=AX+1 
XIODATA:= AX, AX=AX+1 
XUSERID:= AX, AX=AX+XUSER 
XCBASE: = AX, AX=AX+1 
XPCB:= AX, AX=AX+1 
XLEVEL: = AX, AX=AX+1 
XSYSTEM:= 1 
XUSER:= 0 
XBOUND: = AX, AX=AX+1 
XRO:= AX, AX=AX+1 
IF XRO NE 0 THEN MESSAGE <:HEADER ER 
XR1:2 AX, AX=AX+1 
XR2:2 AX, AX=AX+1 
XR3:= AX, AX=AX+1 
XR4: = AX, AX=AX+1 
XR5: AX, AX=AX+1 
XR6:= AX, AX=AX+1 
XR7:= AX, AXsAX+1 
XBASE: = AX, AXsAX+1 

OR: 

Moe
 

ee
 

We
 

we
 

ee
 

we
 

Se
 

we
 
B
e
 

we
 

we
 

we
 

we
 

ee
 

ee
 
P
e
e
 

OE
 

we
 

OO
 

we
 

we
 

ee
 

He
 

we
 

we
 

ee
 

we
 

we
 

ee
 

we
 

SO
 

we
 

we
 

we
 

OO
 

we
 

HE
 

we
 

WE
 

we
 

we
 SIZE OF AREA BEYOND REGISTERS 

CPU NAME 
PRIORITY 
CAPABILITY REQUIREMENT 
ACCESS: 

LOW ORDER BIT OF CLASS FIELD 
MAXIMUM CLASSIFICATION CODE 
CREATE PROCESS 
CREATE PROCESS WHICH CREATES 
A PROCESS 
CREATE AND LOAD PROGRAM 
CREATE PROCESS WHICH CREATES 
AND LOADS PROGRAMS 
ALLOCATE DEVICE 
ALLOCATE MEMORY 

UNDERLINE IF ERROR 
MEMORY CLAIM FOR PROCESS (WORDS) 
SIZE OF EXECUTING PROCESS 
NUMBER OF FILE DESCRIPTIONS 
NUMBER OF IO CONTROL BLOCKS 
NUMBER OF STREAMS 
NUMBER OF TRANSFER LIST ELEMENTS 
NUMBER OF MSG BUFFERS 
CURRENT DIRECTORY 
INITIALIZATION FUNCTIONS CALLED 

DLENGTH 
BASE COPY 
LOGICAL PCB REF 
SYSTEM LEVEL 
SYSTEM LEVEL 
USER LEVEL 
REGISTER 
REGISTER 
> FI 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER



ve



CSS/302/PSP/0008 
  

  

sign/dato side 

EKH/820601 164 

erstatter Projekt 
CR80 AMOS KERNEL PRODUCT SPECIFICATION THB/810303 

    
  

  

XMOD:= AX, AX=AX+1 ; 
XPROG:= AX, AX=AX+1 ; 
XPRPC:= AX, AX=AX41 ; 
XTIMER: = AX, AX=AX+1 ; 
XPSW:= AX, AX=AX+1 ; 
XOLDPRC:= AX, AX=AX+1 ; 
XLOCACT: = AX, AX=AX+1 ; 
XLOCRET: = AX, AX=sAX+1 ; 
XCAUSE:= AX, AX=AX+1 ; 
XDEVICE:= AX, AX=AX+1 ; 
XTIMRS:= AX, AX=AX+1 ; 
XMONRET: = AX, AX=sAX+1 ; 
XTLINK:= AX, AX=AX+1 ; 
XLINKO:= AX, AX=AX+1 
XLINK 1: AX, AX=AX+1 
XLINK2:= AX, AX=AX+1 
XLINK3:= AX, AX=AX+1 ; 
XLINK4: = AX, AX=AX+1 ; 
XLINK5:= AX, AX=AX+1 : 
XLINK6:= AX, AXsAX+1 ; 
XLINK7 := AX, AX=AX+1 : 
XWORKLGT= 5 ; 
XWORK: = AX, AX=AX+XWORKLGT; 
XPROCLGT: = AX ; 

’ 

XFIRST= -(XBEYLGT+XPROCHL) 
IF XDATA THEN 

REGISTER 
REGISTER 
REGISTER 
REGISTER 
REGISTER 
PREVIOUS PROCESS 
LOCAL ACTION 
LOCAL ACTION RETURN LINK 
LOCAL INTERRUPT CAUSE CODE 
DEVICE ADDRESS 
TIMER RESET VALUE 
MONITOR RETURN LINK 
TIMER LINK 

SIZE OF WORK AREA 
WORK AREA 

LENGTH OF PROCESS DESCIPTOR ABOV 
REGISTERS 

LOoCc= XFIRST 
XPROCESS PROCESS TYPE HEADER 
XPRWDS ; LENGTH OF PROCESS FILE 
XPROCESSNAMEO H NAME OF PROCESS 
XPROCESSNAME 1 
XPROCESSNAME2 
XCPUNAMEO $ NAME OF REQUIRED CPU 
XCPUNAME1 
XC PUNAME2 
XPRIORITY ; REQUIRED PRIORITY FOR PROCESS 
XCAPABILITIES ; REQUIRED CLASSIFICATION LEVEL 

A AND CAPABILITIES OF PROCESS 
XTOTSZ H MEMORY CLAIM 
XPRLNG H SIZE OF EXECUTING PROCESS 
XPFDS Fl NUMBER OF FILE DESCRIPTOINS 
XPIBS H NUMBER OF IO CONTROL BLOCKS 
XPSTS il NUMBER OF IO STAREAMS 
XPXFS ; NUMBER OF TRANSFER LIST ELEMENTS 
XPMSGS ; NUMBER OF MESSAGE BUFFERS 
0 ; CURRENT DIRECTORY 
XPRMEM ;V2 PROCESS MEMORY RANGE 
XIOREF ; REF TO [0 DATA 
XUSERIDO, XUSERID1 i USER ID 
IF XUSERIDLENGTH NE 2 THEN MESSAGE <:USERIDLENGTH ERROR:> FI 
0 ; BASE COPY 
0 ; XPCB 
XPRLEVEL ; REQUIRED EXECUTION LEVEL OF PROC 
XBNDSZ ; BOUND 
0, REPEAT 7 ; REGISTERS 0-7 
XABASE, XABASE, XAPROG, XAPRPC, 
0, REPEAT (XPROCLGT-LOC) 

FI 

100, #6800



 



CSS/302/PSP/0008 
  

| sign/dato | side 

'JHG/810303 165   
CR80 AMOS KERNEL PRODUCT SPECIFICATION 

| erstatter ' projekt 
| 

  

  

APPENDIX C 

X2GEN2 

CR80 AMOS PROGRAM 

AND DATA 

HEADER GENERATOR 

PART 2



oes 
e
e
 

e
e
e
 
e
e



CSS/302/PSP/0008 
  

| sign/dato | side 

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810303_"__166 ____ 
erstatter | projekt 

  

  

The text file X2GEN2 is written to be used as 

part of the CR80 assembly language program source 

files. 

X2GEN2 together with X2GEN1 (appendix B) generates 

program and data headers in the format used by 

ROOT and the CR80 AMOS I/O system.





CSS/302/PSP/0008 
  

  

sign/dato side 

EKH/820601 167 
CR80 AMOS KERNEL PRODUCT SPECIFICATION 3HB/810303 |     
  

  

TESS EL SCESECS OOS EE SLES SEES ES ESTES STE SESE ESE SEE SET ES EES SSS EET E LETTE Ee 8 SY 

; ‘ 
;* CR 80 AMOS * 
;* DATA AND PROGRAM HEADER * 
;* GENERATOR PART 2 * 
;* CONFIG ID: CSS/833 * 
;* - AUTHOR: JHO * 
;* DATE: 820501 * 
;* VERSION: 2 * 
-# * 

MWITITTTITITITITITTTTITITIFICTITITITI TI IELILITI LITT List itt 

CHANGE RECORD: 

VERSION AUTHOR/ DATE DESCRIPTION OF CHANGE 

0101 JHO/7 90827 INITIAL RELEASE 

0201 HPT/820501 XAMOS DEFINITIONS INCLUDED 

MESSAGE <:X2GEN2 V820501:> 
USE PROG 
XASSEMBLED= LOc 

- XPGTYPE= 0 ; DEFAULT PROGRAMTYPE 
XPGWDS:= Loc ; PROGRAM AREA LENGTH 
XMICRO= 0 ‘ DEFAULT MICRO LOAD MODULE 
XPGMEM= #FFOO ;V2 DEFAULT PROGRAM MEMORY RANGE 
XPRMEM= #FFOO ;¥2 DEFAULT DATA MEMORY RANGE 
USE BASE 
XC PUNAMEO= 0 ; DEFAULT CPU NAME 
XC PUNAME1= 0 ; DEFAULT CPU NAME 
XCPUNAME2= 0 ; DEFAULT CPU NAME 
XPRIORITY= 1 ; DEFAULT PRIORITY 
XPRLEVEL= XUSER ; DEFAULT EXECUTION LEVEL 
XCAPABILITIES= ie) ; DEFAULT CAPABILITIES 
XPROCESSNAMEO= 0 ; DEFAULT PROCESS NAME 
XPROCESSNAME1 = 0 
XPROCESSNAME2= 0 
XUSERIDO= 0 ; DEFAULT USERID 
XUSERID1= 0) H DEFAULT USERID 
XABASE= 0 
XAPROG= 0 
XAPRPC= O+XSTART 
XADJUST: = 0 ; SIZE OF ADJUST AREA 
XBNDSZ:= LOC-1+XTND 
XIOREF:= XBNDSZ+1+XTRA 
XPRLNG:= XIOREF+XIOSIZE S 
IF XDATA THEN 
XTOTSZ:= XPRLNG+XADJUST-XF IRST 
ELSE 
XTOTSZ:= 0 
FI 
XPRWDS: = LOC-XFIRST 
XPSTS:= XSTS 
XPIBS:= XIBS 
XPFDS:= XFDS 
XPXFS:= XXFS 
XPMSGS:= XMSGS 
IF XDATA THEN 
XASSEMBLED= XASSEMBLED+LOC-XFIRST 
ELSE 
XASSEMBLED= XASSEMBLED+L0C 
FI 
IF XASSEMBLED NE WORDS THEN 

MESSAGE <:LOCATION COUNTER CORRUPTED:> FI



or 

eee ere 

ee ee 

    
 
 

e
r
 

o
S
 

f
e
a
r
 

; 
a
r
e
 

a 

- 
r 

an 

. 
” 

. 

te 

' tes 

ow 

~



CSS/302/PSP/0008 
  

| sign/dato side 

168 
  

JHG/ 8 03 
CR80 AMOS KERNEL PRODUCT SPECIFICATION | 103 | erstatter projekt 

| 
  

  
APPENDIX D 

PROGRAM EXAMPLE



r)



CSS/302/PSP/0008 
  

  

sign/dato | side 

JHD/ 810303 169 
CR80 AMOS KERNEL PRODUCT SPECIFICATION erstatter . Projekt 

    
  

  

THERE IS A PROGRAM PART 
THERE IS A DATA PART 
SUPPRESS LISTING OF SYSTEM FILES 
INCLUDE S2SYSS 
INCLUDE X2GEN1 
ENABLE LISTING AGAIN 
WE REQUIRE THE PROGRAM TO 
BE CALLED *SAMPLE® 

IT IS VERSION 7 OF THIS PROGRAM 
AND WE THINK IT REENTRANT 
WE REQUIRE THE PROCCESS TO BE 

faze 

WE ONLY NEED 1 MESSAGE BUFFER 

A PROCESS NAME 

SETCYCLE(E SEC} 

EACH SECOND DO BEGIN 
REF (MESSAGE) 
REFCRECEIVER PROCESS) 
SENDMES SAGE (MESSAGE »RECEIVER) 

AWAIT ANSWER 

DEFINE ENTRY POINT 
SUPPRESS LIST OF X2GEN2 
INCLUDE X2GEN2 

LIST 

BEGIN MODULE O USE BASE 

> CREO ANOS SAMPLE PROGRAM 

XPROGRAM= TRUE 3 
XDATA®= TRUE ; 
NOLIST ? 
$S2SYSS ry 
$X2GENL F 
LIST 3 
XPGNAMEO= <2SAs> rj 
XPGNAME1= <2MP25> r 
XPGNAME2= <2LEs> 3 
XVERSTION@ 7 ; 

" XPGTYPE= BMREENTRANT 3 
XPROCESSNAMEO= <2Q1re> 3 

i CALLED 
XMSGS= 1 i 
3 THE FOLLOWING LOCAL DATA ARE DEFINED 
BUF : ly 23 35 49 5 ; 
RCVR: <2 COUNTR=>,50 3 

USE PROG 

INIT: 

MOVC 210 RO ; 
MON SETCYCLE ; 

Los 

MOVC BMDELAY R2 ; 
MON WAITEVENT 3 
MOVC BUF Rl ; 
MOVC RCVR RO 3; 
MON SENOMESS AGE 3 
MOVC BMANS R2 j 
MON WAITEVENT 3 
JMP LO 3 ENO 

XSTART= INIT ; 
NOLIST 3 
SX2GEN2 ; 
LIST 
ENO 

Source Program List



ne eee 

to eee 

-_ 

ae 

o
e
 

SU 
Cee 

tes 
 w 
O
R
N
S
.
 
e
e
n
 

o 
= 

ns 
. 

© 
- 

. 
S
e
 

ae 
Py 

7 
Pe 

” 

’ 
a 

7 

ne 
d 

_) 
. 

s 
% 

3 
- 

. 
- 

-
 

. 

‘ 

. 

“ 

= 
a 

ve 
* 

« 
<
 

2 

. 
Ps 

. 
e 

- 

. 
‘
e
s
 

. 

. 
t< 

e 
. 

. 
Pe 

an 
. 

o
t
 

. 
aa 

“4 

© 
ye 

a 
4S 

oy 
: 

“ 
~~ 

a 

' 

Leary 

a 
_
 

_ ie 

ee”



  

CSS/302/PSP/0008 
  

  

sign/dato sige 

*81030 . 7 
CR80 AMOS KERNEL PRODUCT SPECIFICATION THe, ? projekt af 

      

AUQOCOQL 0 0000 LIST 
AUCO0002 0 0000 BEGIN NODULE O USE BASE 
AUO0G003 0 0000 
AucOd004 O COO0 ; CREO AMOS SAMPLE PROGRAM 
AUOQ00005 0 0000 
AUQ0Q0006 0 OGOO XPROGRAM= TRUE > THERE IS A PROGRAM PART 
AUOG0007 0 0000 XDATA= TRUE ; THERE IS A DATA PART 

0 0000 NOLIST 3 SUPPRESS LISTING OF SYSTEM FILES 
AUO0Q008 0 0000 MESSAGE: AMOS SYSTEM NAMES V¥790827 
AUOCO191L 0 O0OO MESSAGES X2GEN1 V790827 
AUQ00343 0 0023 LIST 3 ENABLE LISTING AGAIN 
AUQ00344 0 0023 XPGNAMEQ= <3 SAr> H WE REQUIRE THE PROGRAM TO 
AU000345 0 0023 XPGNAMEL= <2 MPZ> r) BE CALLED "SAMPLE 
AUG00346 0 0023 XPGNAMEZ= <3LE3> 3 
AU000347 0 0023 XVERSION= 7 3 IT IS VERSION 7 OF THIS PROGRAM 
AU000348 0 0023 XPSTYPE= BMREENTRANT 3 AND WE THINK IT REENTRANT 
AU000349 0 CO23 XPROCESSNAMEO= €2Q12> ; WE REQUIRE THE PROCCESS TO BE 
AUG00350 0 0623 i CALLED *Q1* 
AUOG0351 0 0023 XMSGS= 1 i WE ONLY NEED 1 MESSAGE BUFFER 
AUCO0352 0 0023 ; THE FOLLOWING LOCAL DATA ARE DEFINED 
AU000353 0 0023 BUF: ly 23 39 43 5 3 
AUQO0354 0 0028 RCVR: <2 COUNTR2> 50 ; A PROCESS NAME 
AUCOG355 0 CO2C 
AUC00356 0 O02C USE PROG 
AUCO0357 1 0020 
AU000358 1 0020 INIT: 
AUOQO0359 1 0020 MOoYc 10 RO 3 
AUCQQ360 1 0021 MON SETCYCLE , SETCYCLE(1L SEC) 
AUGOOQ361 1 0022 LO: 
AUCO0362 1 0022 MOVC BMDELAY R20 3 
AU000363 1 0024 MON WAITEVENT 3 EACH SECOND DOO BEGIN 
AUQ00354 1 0025 MOVC BUF RL 5 REF (MESSAGE) 
AUQO0365 L 0026 MOVC RCYR RO jij REF CRECEIVER PROCESS} 

1 0027 MON SENDMESSAGE r) SENDMESSAGE(MESSAGE,RECEIVER) 
AU000366 1 0028 MOVC BMANS R23 
AUC00367 1 0029 MON aAITEVENT i AWAIT ANSWER 
AuQ00368 1 002A IMP LO ; END 
AUQ00369 1 0028 
AUO000370 L 002B XSTART= INET 5 DEFINE ENTRY POINT 
AUOOO371 1 0628 NOLIST 3 SUPPRESS LIST OF X2GEN2 
AUQOQ372 1 0028 MESSAGES X2GENZ2 ¥790827 
AUQO0416 O 002C LIST 
AUC00417 0 OCZC END 
700000 T0071 
Pp 

COOOL GOOL OCZB 4153 504D 454C€ 0007 0001 0020 
OOOsL A000 OCCO oCad acOO aoCcd ONOG Goce 0000 
GOLOL 0000 GCOG GOo00 cGOO cOcG 0000 9000 0000 
0018L 0000 o0Ca occo acoo 9000 O000 0000 0000 
OO2Z0L 0A48 OLAG 0156 004A 4446 2349 2848 47A6 
00Z28L 044A 44A6 6958 GOC2 0046 3151 0000 0000 
0030L 0000 OCCO addG CooL daCO 0046 002C OC00 © 
0038L 0000 OCGO GCOO COOL 0000 00GD O02C 0000 
QO4CL 9000 GO00 0000 cono 002B 9000 9000 9000 Assembly Verification List 
0048L 0000 coco O009 0000 GacG O000 0000 0000 
0050L 0020 0064 6800 GOCO o00c 9C00 0000 00090 
OC5B8L 0000 OCCO 0000 0000 o000 0000 O000 0000 
0060L 00090 OC0O CoO0 OCdO Coco O0GO A000 ocD00 
N068L 0001 OGO2 0003 GCOC4 0005 4F43 4655 5254 

0000 
56 

MEMORY MAP= 

AREA 1 0QCO 
AREA 0 OO028 

1 DIMENSION WARNINGS 
1 MODIFIES INSERTED 

113 WORDS GQUTPUT 
113 WORDS ASSEMBLED 

ASSEMBLY OK? 

Se
 

ee
 

Se
 

we
 

We
 

we
 

we
 

et
 

ws
 

ee
 

We
 

we
 

ee
 

eh
 

We
 

Me
e 

We
s 

HO
 

ws
 

Te
 

we
 

He
 

we
 

we
 

we
 

Te
 

WO
 

ee
 

Oe
 
W
O



¥ 

toe 

~
 

. 6 

“sow 

' 

4 

: 

. 

- 

ate 

Lewes 2 im ¢ 

                      

, 

eo !9 P, 

he | 

t 4, 

Tee vig 

Sh wae 

5 Balk 
“e LY ee) 
°. . 

on 

a as 

“4 
neo 
° wet * 
. ere 

* say 

"oy B 

. 

“6 Ta 

: tn ee 

ce . 
eo ate 

en ie. te 
x 

      

: oF, goged 

a8 , Wye 
. : © 85 

A oe et 
« oa > 

° < # en 
‘ a . a ee 

_ = . ave bee 

eS Ci ie) Laas 
‘ we es 
. te 

“ : . . “ ‘hee a oe v ees & 
oF . my; Stelay eo - 4 
Le see we Wie ot ‘4 Seen 

_ - * . -* *, - 

‘ : oe . * 
at my ww. ave az eet 

oJ < a 
+ lid se oat ° gis vf 

74 4 oom wee ON aS ee ad 
cau a oe . a . = . 

Pras’ a” ‘ : 3 toes . 

a) . f ar ©, pike é Jest 
a. ‘ -. yo *, . 
~ ) Ni PS a cs 

. : Te 
. - . ‘s & - aes 2 

. . ° . - eee . 

* xe ° 3% ae A . ¢ . ass . : ae? “4 go 
<¢ 7 «4 , .* i oe “: 40 
. : . zw 8 2 cae BG 

wee 

Pad 

“BA a ns 

oe % 5 on 
Pe ‘ ; 

. Ce Pl 

as ye 
>on 

re 
~~ f. 

o-ig 

. i 

iis 

  

e
s
 

m
t
i
t
e
r
 

s



CSS/302/PSP/0008 
  

sign/dato 

EKH/820601 171 
  

eretatier 

  PRODUCT SPECIFICATION   
projekt 

  

  

CR80 AMOS KERNEL 

APPENDIX E 

Emulation of 

XAMOS instructions on 

AMOS CPU. 

M
a



wae eth amet oe 

Pt 

. 
’ 

3 
. 

. 
. . 

. 
“ne 

an 

w
y
 

aie 

. _% 

+ ‘5 

mo 

a
e
 
e
S
 

a
 

wae) 
e
e
e
 

meee 
c
e
e
.
 
~
~



  

CSS/302/PSP/0008 
  

..CR80 -AMOS “KERNEL PRODUCT SPECIFICATION ,. 

sign/dato, 
bees: (40s theories mas nn sige 

mS ~*~ os — EKH/820601 172 

: . oretatter projekt 

Tr ’ XAMOS 

  

    
  

When a a new - XAMOS instruction is executed on an AMOS CPU, it is 

recognized as an illegal instruction. This.applies to AMOS CPUs 

without loadable micro program storage and without function 

submodule, and a local interrupt type 1 is generated. 

The kernel is invoked and tries to replace the instruction 

with a corresponding AMOS instruction, or to emulate the effect of 

the _XAMOS instruction. In case the instruction could be replaced, 

it is. _then reexecuted together with preceeding modify instructions. 

aa 

The table below defines the replacing instructions. 

v 
x 

The execution speed of a program with XAMOS instructions is thus 

only ‘effected once for each XAMOS instruction in the program. 

Emulation/replacement of XAMOS instructions can be done in 

user programs and in system components only it cannot be done 

in the kernel itself when 

- the monitor process executes with local interrupt bit set 

oF 
7 the I/O process executes with local interrupt bit set or 

On 
= the kernel "Sy ecuHes in the context of a calling process 

after having saved the process by SVPASSP). 

me



8 Cent memes a meena te ant te * mem css /302/P SP/0 0 0 8 7 aaah 

  

ral 

  

      

  

  

Bign/dato side. 

EKH/820601 173 
? - erstatter "| projekt . 

CR80 AMOS KERNEL PRODUCT SPECIFICATION _... | SRO 

XAMOS ins. Corresponding Note 

AMOS ins. 

MMP «7 ee (3 pe MVPS cas an nr a The formats of the - 

1 Day Bis a5 instructions are -incom- | 

: c : . <Ppatible:s’ ove 25 4.4 

‘ - MMP M-BOiX3 R3B=" © 

ae MVP:>M B6.X2 R2 

~ oR ‘TE the MMP cannot be 

replaced, it is con- 

sidered illegal. 

JPZI JMPI S4 Preceeding modify 

ce “instructions are not 

= re-executed 

RPZ ae IMP =_ 

RTM JMP 

RTMI JMPTI 

LBR MOV RO RO A NOP which clears 

modifications 

S47 4Y LattE « 7B 

LDL MOV RO RO 

SVL MOVC 0 Level 0 assumed 

SLS LDS 

SSS SVS This instruction is 

clear bits 10..8 emulated when desti- 

nation is a register. 

It is considered illegal 

when destination is     memory



  

vm: sol al ag Gh02/ Remy 0008. 
  

  

  

    
  

sign/Gato «” side 

EKH/ 820601 174 
CRE AMOS KERNEL PRODUCT SPECIPICATION eT ec fii een | _.. | XAMos 

, nation eae a ~ ho St Senet mgt 

XAMOS ins. Corresponding Note 

  

SLP. 

SiN 

SSP 

  

LDP 

LBN 

SVP 

Fig. E.1   
a
r


