400-571-2

TITLE:

DOCUMENT NO:

CR80 AMOS KERNEL
PRODUCT SPECIFICATION
Css/302/pPsp/0008

Erik Kliim Hansen

PREPARED BY: -Jgrgen Hpg %Xw

APPROVED BY: Jgrgen Hog %‘Zr_ _
AUTHORIZED BY: Jgrgen Heg W
DISTRIBUTION:

ISSUEZ 1 2 3

DATE: |[790827 | 810303| 820601

- =
- =

%
-
"

PN T

e

P

' v

.

L L

CSS/302/PSP/0008
sign/date page
- CR80 AMOS KERNEL EKH/820601 i
PRODUCT SPECIFICATION repi Project
EKH/810303
PAGE RECORD AND ISSUE LOG.
1SSUE ISSUE ISSUE
PAGE 1123 |45 718 RAGE 1121345 8 PAGE 3|4 |56 |7
01 3 67
02 35 68
03 | 36 69
04 37 70
0s 38 7
(o] 39 72
07 40 73
08 461 74
09 42 75
10 43 76
" 44 77
12 45 78
13 46 79
14 47 80
15 48 81
16 | 49 82
17 50 83
18 51 84
19 52 as
20 53 a6
21 54 87
22 55] 38 I
23 56 39
r4 57 30
25 58 91
26 59 92
27 60 33
28 61 9%
29 . 62 95
30 | 63 96
i 64 97
32 65 98
33 66 99
100
1SSUE e PRE;:RED Ap:;?vso AUTﬁ;?IZED
1 790827 JHP JHP JHP
2 810303 JH® JHA JHQP
3 820601 EKH JHP JHP

400- 319

o ——

- —
T

[l

e —

'
i

b

B o mia —uie -

——— 4o

i

T T
-

1
- roitAr e

IM

CSSs/302/PSP/0008
sign/date page
CR80 AMOS KERNEL EKH/820601 ii
PRODUCT SPECIFICATION ree! Project
A PAGE RECORD AND ISSUE LOG.
PAGE - 1SSUE . 1SSUE - ISSUE
12345 7|8 112|3la]s5]|s 8 112345678
101 134 | 167 [
102 135 168
103 136 lg9
104 Ta7 170
105 138 171
106 T39 172
107 140 173
108 141 174
109 142 178
110 143 176
1 144 177
112 1645 178
113 146 179
114 147 180
T1s 148 181
116 143 182
117 150 ‘83
118 151 184
119 152 T8s
T20 153 186
121 154 187
122 Tss Tss
123 156 189
{124 157 8O
125 158 191
T26 159 192
127 160 193
128 161 194
129 162 195
130 163 136
T31 164 197
132 165 198
133 66 Tog
200
PREPARED APPROVED AUTHORIZED
ISSUE DATE oy ay iy

T 790827 JHP JHQ JHQ

2 810303 JHO JHP JH®

3 820601 EKH JHG JHQ

A

LAN= OO

'.--ua-.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/date page

JHP/810303

replace project

LIST OF CONTENTS

SECTION

1 SCOPE

1.1 Organization of Document

2 APPLICABLE DOCUMENTS

3 KERNEL REQUIREMENTS
3.1 Invokation of the Kernel

3.2 Parameter Checking

3.3 Processes

3.3.1
3.3.2
Em3.p
3.3.4
8a3:5
3.3.6
3.4 CPUs
3.4.1
3.4.2
3.4.3

Process Control Blocks

Process States

Process Hierarchy

Creation and Removal of Processes

Page

10
10
17
20
21

Starting and Stopping of Processes 23

Other Process Management Functions

CPU Control Blocks
CPU Procedures
Scheduling

3.5 Critical Regions

3.5.1
3.5.2

3.6 Events

3.6.1
3ab.2

Region Control Blocks

Critical Region Procedures

Receiving Events

Sending Events

3.7 Message Type Events

3.7.1

Path Messages/Answers

3.8 Signal Type Events

24
24
27
28
32
37
39
40
40
42
43
46
47

CSS/302/PSP/0008

I sign/dato

side

CR80 AMOS KERNEL PRODUCT SPECIFICATION MH0/810303 14
Page
3.9 Delays 48
3.10 I/0 Interrupts 50
3.10.1 Processing of I/O Interrupts 52
in the Kernel ‘
3.11 Handling of Errors 54
3.11.1 Kernel Error Codes 55
3.12 Initialization | 56
3.13 Root Process 63
3.13.1 Root Initialization Processing 63
3.13.2 Event Processing 67
3.14 Real Time Clock Process 68
3.15 Idle Process 76:
3.16 Memory Management 71
4 DESCRIPTIONS OF FUNCTIONS 75
4.1 Local Interrupt 76
4.2 Wait Event 77"
4.3 -Inspect Events g3
4.4 Suspend 80 —
4.5 Ready 80
4.6 . Lookup CPU 80
4.7 Set CPU Parameter 81
4.8 Get CPU Parameter 83 -
4.9 Create Process 84"
4,10 Start Process 90
4.11 Stop Process 91
4,12 Remove Process 92
4.13 Adopt Process a3
4.14 Get Child 94
4.15 Get Attributes 95
4.16 Identify Process, Lookup Process 96—
4.17 Send Signal Q7
4.18 Send Message 98 -
4,19 Send Answer 100

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/date

4.20
4,21
4.22
4.23
4.24
4,25
4.26
4.27
4.28
4.29
4.30
4.31
4.32

4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40

4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50

EKH/820601 iii
replace project
JH®/810303

Page

Await Answer 100.1
Send System Message 101
Send System Answer 102
Await System Answer 103
Open Path 104
Close Path 105
Send Path Message 106
Send Path Answer 107
Await Path Answer 108
Identity Sender 109
Save Event 110
Recover Events 111
Read RTC 112
4,32.1 Read System Time 112
Set Cycle 113
Reserve Interrupt 114
Release Interrupt 115
Clear Interrupt 1lle
Set Interrupt 117
Inclusion of New Monitor Procedures 118
Error, Terminate 119
Miscellaneous Functions 120
4.40.1 Write RTC 120
4.40.2 Clean Message 121
Create Region 122
4.41.1 Region Completion Codes 122
4.41.2 Region Parameter Definitions 122a
Enter Regiodn 123
Leave Region 124
Wait Region 125
Get Item 126
Put Item 127
Get n Items 128
Put n Items 129
Copy n Items 130
Buffer Allocation Procedures 131

CSS/302/PSP/0008

sign/date

"EKH/820601

page

iv
CR80 AMOS KERNEL PRODUCT SPECIFICATION JDLI@ /810303 project

Page

4.50.1 Get Buffer 131
4.50.2 Release Buffer 131
4,50.3 Get Address 132
4.50.4 Clean Memory 132

4.51 Double Precision Arithmetic 133
4,51.1 Multiply Long 133
4.51.2 Divide Long 134
4.52 XAMOS Bound procedures 134a
4.52.1 Release Bound 134a
4.52.2 Set Bound 134a

CSS/302/PSP/0008

sign/dato

side

CR80 AMOS KERNEL PRODUCT SPECIFICATION Fiii{820601 v 7
. JHP/810303 |
Page
5 LIMITATIONS ‘135
6 SYSTEM ASSEMBLY PARAMETERS 136
7 SYSTEM GENERATION 138
8 PERFORMANCE 139
9 GUIDELINES FOR FUTURE IMPROVEMENTS 141
APPENDIXES
A. File S2SYSS 142
B. File X2GEN1l 149
C. File X2GEN2 165
D. Program Example 168

E. Emulation of XAMOS instructions on AMOS CPU

171

£sSg /302 /PSP /0008

sian/date

EKH/820601

page

vi

CR80 AMOS KERNEL PRODUCT SPECIFICATION repiace

JH@/810303

project

LIST OF FIGURES

Figure

3.3.1.a
3.3.1.b
3.3.1.c

3.4.1.a
3.4.3.a
3.4.3.b
3.5.1.a
3.12.a
3.12.b
4.9.a

Process Control Block

PCB Index Table

BASE Relative Locations Used

by Kernel and by CPU firmware
CPU Control Block

CPU Ready Lists

Scheduling Algorithm

Region Control Block

System Initialization Flowchart
Initialization of CPUs

Create Process Parameter Block

CR80 AMOS Program Header
CR80 AMOS Data Header
CR80 AMOS Object Code Layout at

Assembly Time and at Run Time.

XAMOS instruction replacement

Page

12
14
16

25
29
31
38
61
62
85

158

159
161

173

CSSs/302/PSP/0008

sign/date page

JH@/810303 1

CR80 AMOS KERNEL PRODUCT SPECIFICATION Teplace project

1 SCOPE

The purpose of this document is to describe the CR80
AMOS MONITOR KERNEL.

The AMOS computer program configuration items describ-

ed in this document are

- CS8Ss/302, CSS/303 Kernel

- CS8S/360 . Root including RTC
and memory manader

~ CSS/306 Idle process

- CSSs/308 Init program

- CSs/361 Buffer allocation proce-
dures

- CSSs/316 Double precision mul/div.

The KERNEL is the lowest level of CR80 AMOS system
software layers. The KERNEL implements processes,
CPU management, inter process communication and the
lowest level of I/O device handling: Interrupt
handling.

1.1 Organization of Document

The document contains in section 3 a description of
the concepts used in the Kernel, the functions per-
formed by the Kernel and the general structure of the
Kernel. In section 4 a concise interface description
is given of all Kernel functions. Section 5 lists the
limitations pertinent to the Kernel. Section 6 and 7
contains practical information concerning compilation

and system generation.

In section 8 key performance figures are given for the

Kernel.

Css/302/PSP /0008

sign/dete page

JHP/810303 2

CR80 AMOS KERNEL PRODUCT SPECIFICATION feplace

project

Finally, appendixes A, B and C exhibit listings of
source files which contain definitions pertinent to
the Kernel. These files should be used as part of the

source text for CR80 assembler programs which make use
of the Kernel functions.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

l sign/dato
EKH/820601

¢ erstattar

2.4

B

APPLICABLE DOCUMENTS

CR80 MINI COMPUTER HANDBOOK
CSD/HDBK/ 0082

P. Brinch Hansen
Operating Systems Principles
Prentice Hall, N.J.

European Purdue Workshop - TCS8
Real Time Operating System Guidelines.

CR80 AMOS, I/O SYSTEM
PRODUCT SPECIFICATION
CSs/006/PSP/0006

CR80 AMOS, SYSGEN
USER'S MANUAL P
CSS/1271/USM/0023

CPU-SCM, CR8002 M Product Specification.
CSD/005/PSP/0049

CPU-SCM, LR8002 M /011P=/00
XAMOS/CR801 Application Product Specification
CSD/005/PSP/0091

_! side 3

. JH®/810303"

i projekt

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| signidato side

THE/810303_]

. erstatter projekt

KERNEL REQUIREMENTS

The purpose of the AMOS Kernel is to implement
multiprogramming on the CR80 multiprocessdr.

The AMOS Kernel fulfils the following requirements:

implementation of software processes
communication between processes
synchronization of processes

CPU management

I/0 interrupt handling

dedication of processes to specific CPUs.

@ © @ @ © o o

support of CR80 computers with up to 512 kbyte
of main memory and 8 CPUs.

The second last requirement arises from the CR80
architecture (see ref. 2.1) which allows CPUs to
have private 'subbusses' connecting the CPU to a
part of the main memory. CPUs having such a subbus
should primarily execute programs and operate on

data accessible via its subbus.

Although a given process is dedicated to execute on
a single processor, the existence of more than a
single CPU is shielded from the programmer using
the Kernel. There is no difference between the
communication taking place between two processes
executing on the same CPU and that taking place

between two processes executing on different CPUs.

CSS/302/PSP/Q008

sign/dato side

CR80 AMOS KERNEL PRODUCT SPECIFICATION ;eme,'g-l—o‘j’w P 2

The primitives for communication between processes
are based on the concept of messages and answers
described in ref. 2.2.

Three different types of messages/answers have been
implemented:

messages — answers,
system messages - system answers,

path messages - path answers.

The mechanics for these three types are similar.
Each type, however, has its own eventqueue, with
the advantage of efficient separation of messages/

answers used for different purposes.

The intended use of system messages/answers is
communication with peripheral device drivers (via
the AMOS I/O system).

The Kernel consists of a Kernel program, a Kernel
context®) and an I/O context. The Kernel context
and the I/O context share a number of variables.

The most important of these are:

interrupt tables

CPU control blocks

)

e process control blocks

£l

@ Critical region.contrel blocks-

#) The word context is used to mean a set of registers

(CPU resident or saved). This is the CR80 HW
process concept.

CSS/302/PSP/0008

sign/dato -« | side

'EKH/820601

CR80 AMOS KERNEL PRODUCT SPECIFICATION f

! erstauer projekr

. JHP/790827

The Kernel program is designed to be modular.

It is structured as a nucleus part which contains
basic procedures for handling process control blocks
and CPU control blocks, and a number of submodules
each containing procedures for a separate class of

eventtypes.

The AMOS Kernel supports un-mapped CR80 CPU's
with basic instruction set as defined in ref.
2.6, and CPU's with extended instruction set to
execute programs in more than 64 K word of memory
(XAMOS) .

The CPU type is invisible to the programmer.

CSS/302/PSP/0008

sian/dato ~ | side 7

CR80 AMOS KERNEL PRODUCT SPECIFICATION t EKH/820601
]

| erstatter I projekt

JHP/790827

3.1 Invokation of the KERNEL

The Kernel is invoked

(a) when a MON instruction with proper argument

is executed,
(b) when an I/O interrupt is received by a CPU,
(c¢) when a CPU interrupt is received

(d) when a local interrupt is generated

(timer action, trap, timeout during addressing,

parity error and bound violation),

The action taken when causes (a) or (d) occur are
similar. A branch to a proper monitor procedure

is taken. This may or may not generate a programmed
context switch (saving of current registers, and
loading of a new set of registers) to the Kernel

context. (This always happens in case (d).)
The context switch is performed as follows:

1. The execution-Ievel is incremented, and program
memory section 0 is selected by firmware (XAMOS only).
2. The current registers are saved at the normal
context save area (relative data locations - 2
through 13) and thereby automatically disabling
interrupt handling in the current CPU.

3. A function code is loaded into register 3.
(Register 3 never holds a user defined call

parameter.)

4 . The PCB index (rel. loc.-3) is loaded into

register 5.

CSsS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

erstatter t protakt

sian/dato L side
L EKH/820601 " 8
|
| JHB/790827

5. The memory section (page) bits in the Process
Status Word are set to @.

6. A hardware semaphore (the Kernel Semaphore) is
reserved, or a busy waiting is performed until

it can be reserved.

7. The current registers ¢ through 6 are transferred

to a Kernel parameter area.

8. The Kernel context is loaded.
9. It is checked that the current level is not greater
than 16. If it is, the process is terminated.

10. The proper action is taken according to the
function code loaded in step 2.

Steps 3 through 7 are called 'enter Kernel'.

The alternate possibility is that no context switch
occurs. In the former case the Kernel subroutine
invoked is called a Function, in the latter it is called

a Procedure.

When events (b) and (c) occur, the CPU firmware will
perform a context switch to the I/O context. The

further processing is described in section 3.10.

Events of type (c) are reserved for exclusive use by
the Kernel. CPU interrupts are used to transfer I/0
interrupts from one CPU to another CPU.

CSS/302/PSP/0008

sign/dato side

projekt

80 510303]
CR AMOS KERNEL PRODUCT SPECIFICATION e

3.2 Parameter Checking

The parameters used when calling the Kerne} are

primarily of two kinds:

@ indices to be used in Kernel tables

@ addresses relative to the calling process.

The first kind of parameters are checked to be
within their appropriate boundaries, typically

ranging from ¢ to a maximum value.

The secdnd kind of parameters are checked to lie
within the memory area allocated to the process
(more specifically the addresses are checked to
be lower than the SIZE of the process).

In connection with creation of processes, however,
absolute addresses are sent to the Kernel for use
in connection with initialization of a context

area.

As there is no simple way of validating these,

the access to caliing:Cregté;pgécéés‘shg@ld be
restricted (réfer'tc sections: 3.3.4zand 479.).

e = r—

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

ersiatter | projekt

JH@/790827

Processes

A process is defined as an incarnation of. the data
transformations obtained by execution of a program.

A program is defined as a collection of machine
instructions, which can be executed within a single
context (i.e. without change of BASE and PROG registers
(see ref. 2.1)). This definition of a program makes

a monitor procedure (a subroutine to which transfer

is performed by execution of the MON instruction)
potential part of many different programs (this

also emphasises the rule, that the result of execution
of a monitor procedure must be independent of the
exact value of PROG).

Process Control Blocks

For management of processes, the Kernel has a pool

of process control blocks (PCB). This pool is
created at system initialization time. All processes
but two (the KERNEL PROCESS and the I/O PROCESS)

are associated with a PCB.

The pool of PCBs resides in memory section @

(addresses lower than 64K) or in section 1
(addresses from 64 X to 128 K).

The exact layout of a process control block is

shown in fig. 3.3.1l.a.

Addressing of PCBs is performed indirectly through
a PCB index table (fig. 3.3.1.Db).

The PCBs are kept on a linked list (PCB item SCHAIN) .

| sian/dato |_side
EKH/820601 ”0

EKH/820601 1]

LOCATION NAME CONTAINS

0 | SCHAIN Link to next PCB

1 | SNAME Process name

2 Process name

3 Process name

4 | SACCESS Capabilities (3.3.4)

5 | SLOGPCB PCB index value

6 | SPARENT Link to PCB of parent process

7 | SCHILD link to PCB of child process

8 | SNEXT link to PCB of sister process

9 | SFWLNK link to next PCB in ready list
10 | SRVLNK link to previous PCB in ready list
1l | SSTATE process state (3.3.4-6)
12 | SAWAIT Awaited evént types (3.6)
13 | SERROR error code (3.3.6)
14 error location (3.3.6)
15 | SCPU ref. to CPU control block
16 | SRDYQ ref. to head of ready list (3.4)
17 | SPRIO process priority (3.4)
18 | SPROGR absolute ref. to program (PROG)
19 | SMICRO ggg?rig g?gio(gﬁgggémofoad module (3.

Figure 3.3.l.a-1

Process Control Block

The use of PCB parameters is

explained in the sections

indicated in parantheses.

4.3)

EKH/820601 12

LOCATION NAME CONTAINS
20 SBASE ref. to context save area
21 SARASE absolute ref. to context save area (BASE)
22 SSECT process menmory section (PSW encoded)
23 SSIZE size of area belonging to process
24 SEXECT accumilated
25 execution time
26 in units of TIMER interrupt increments
27 SCREAT process creation time
28 (same format as used -
29 by procedure READRIC (3.12)
30 RLINK PCB link for critical region chains
31 SSIGNAL signal boolean (3.8)
32 SWORK tamporary save location
33 SMSGLIM E;xéhggmgéogzsgs?3?g§rers allocatable
34 SMSGUSD nmb. of msg. buffers allocated (3.7)
35 SMSGQH message event queue head
36 message event queue head (3.7)
37 SANSQH answer event queue head
38 answer event queue head (3.7)
39 SSYMCOH system message event queue head
40 system message event queue head (3.7)

Figure 3.3.l.a-2: Process Control Block
The use of PCB parameters is explained
in the sections indicated in

the parantheses.

EKH/820601 13

LOCATION NAME CONTAINS
41 SSYAQH system answer event queue head
42 'system answer event queue head (3.7)
43 SPMQH path message event gqueue head
44 path message event queue head (3.7)
45 SPAQH path answer event gqueue head
46 path answer event queue head (3.7)
7 |swem | mf to Parrer of spefically
48 SINTRPT currently awaited interrupt (3.10)
49 SDELAY current delay (3.9)
50 SCYCLE cycle value (3.9)
51 SPHASE current phase (3.9)
52 SPARSIG parent signal counter (3.8)
53-60 SSAVE @ - 7 save locations
61 SMSGSLH list of saved messages (3.7)
62 list of saved messages
63 SANSSLH list of saved answers (3.7)
64 list of saved answers
65 SSYMSLH list of saved system messages (3.7)
66 list of saved system messages
67 SSYASLH list of saved system answers (3.7)
68 list of saved system answers
69 SPTMSLH list of saved path messages (3.7)
70 list of saved path messages
71 SPTASLH list of saved path answers (3.7)
72 list of saved path answers
73 SMEMORY memory allocation parameter

Figure 3.3.1l.a-3:

Process Control Block

The use of PCB parameters is

explained in the sections

indicated in parantheses.

MAXPCB:

PCBINX:

PCB
Index

number of entries
in PCB index table

~

PCB Index Table

/I/

e

(PCB # B

C

e

PCB # 1

Fig. 3.3.1.b PCB Index Table

EKH/820601

14

CSS/302/PSP/0008

| sign/dato | aide]

U1

| - |
CR80 AMOS KERNEL PRODUCT SPECIFICATION JIHO/810303—

| erstatter projekt
| |
| |

Reference to a process is performed by use of a
process—-name. A process-name contains a 6 letter

symbolic part and an index value called name-ident.

process

=name

6 letter symbolic name

name-ident.

When a process is addressed using a process name,
the name-ident . is in a first attempt used as an
index in the PCB index table.

If the name stored in the PCB obtained in this way
matches the symbolic part of the process-name, the
process is found, else the list of PCBs is scanned
until a match is found or until all PCBs have been
inspected. TIf the PCB is found by scanning, the

name-ident is updated to contain the proper index.

The same manner of addressing is also used for CPUs

(see section 3.4) and critical regions.

The PCB contains references to the contiguous memory
area in which the local data of the process

associated with the PCB reside.

The lowest addresses of this data area are used by the
CPU HW and by the Kernel, as shown in fig. 3.3.l.c.

The PCBs are used by the KERNEL process, the IO process
and by the RTC process.

EKH/820601 16

LOCATION NAME CONTAINS
BASE -6 | XUSERIDJ® User-id
-5 | XUSERID1 User-id
-4 | XCBASE a copy of the BASE register
-3 | XPCB the PCB index value
=2 | XLEVEL monitor call nesting level
-1 | XBOUND reset value of BOUND register
+0 -+ +7 | XR@P - XR7 save location for register @ - 7
+8 | XBASE save location for BASE register
+9 | XMOD save location for MODIFY register
+17 | XPROG save location for PROG register
+11 | XPRPC save location for Program Counter
+12 | XTIMER save location for TIMER register
+13 | XPSW save location for PSW (PP SW in XAMOS)
+14 | XOLDPRC BASE of preampted context
+15 | XLOCACT relative address of local interrupt routine
+16 | XLOCRET saved return link at local interrupt
+17 | XCAUSE local interrupt cause code
+18 | XDEVICE device address of interrupting device
+19 | XTIMRS TIMER register reset value
+20 | XMONRET Kernel save location
+21 | XTLINK Kernel save location

Fig. 3.3.l.c

BASE relative locations used

by Kernel and by CPU firmware

CSS/302/PSP/0008

i sign;/dato

side I 7
CR80 AMOS KERNEL PRODUCT SPECIFICATION WHG/790827 |

i erstatter ! projekt
| i

]

.

3.3.2 Process States

A process may be in one of five state as.shown below:

REMOVED

STOPPED

EXECUTING PREEMPTED

SUSPENDED

The state of a process is recorded in its PCB in the
two parameters SSTATE and SAWAIT.

SSTATE contains a combination of state flags and
state transition flags:

CSS/302/PSP/0008

sign/data

i side 1 8
CR80 AMOS KERNEL PRODUCT SPECIFICATION R TR !lpmieu
1 !
SSTATE:
15 3210

. Process
Process
Process

| 2 Process
| e

SAWAIT contains a bit mask for awaited events:

SAWAIT:
15 9 0

I— Signal

Answer

Delay

Message

to be stopped
stopped
to be removed
removed

System message
System answer
Path message
Path answer
| I/0 interrupt

Parent signal

The states REMOVED and STOPPED are explicitly indicated

in SSTATE.

If the process is not in either of these two states,
it will be in the SUSPENDED state if SAWAIT is nonzero.
If SAWAIT is zero, the process will be EXECUTING or

PREEMPTED. Which of these two states it is in,

can

only be determined by its position in its ready list

(see 3.4).

CSS/302/PSP/0008

| sign/dato I side 1 9
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHG/790827 |

| erstatter | projekt

The transitions 1-9 between the states are caused by

the following events:

l: The process is subject to creation.

2: The process is subject to removal. ‘

3: The process is subject to a call of
START-PROCESS executed by its parent process,

4: The process is loaded by the scheduling
algorithm.

5: The process is preempted by the scheduling algorithm
or by a call of WAIT EVENT with a zero event
mask (3.6).

6: The process is subject to a call of STOP-PROCESS
by its parent process. If the parent executes
on a different CPU, the transition to STOPPED
may be delayed until the process calls a Kernel
FUNCTION or until the scheduling algorithm preempts
it.

7: The process is subject to a call of STOP-PROCESS
by its parent process.

8: The process calls WAIT EVENT with a non zero
event mask, and none of the specified event types
have an occurred event. An alternate possibility
is that the process calls SUSPEND.

9: An awaited event occurs, or the process is subject
to a call of READY.

(SUSPEND and READY are only called from the
CRITICAL REGION procedures (ref. 2.5)).

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side
JHG/790827 T 20‘_

i arstatter ! projekt

Process Hierarchy

Process are organized in a hierarchical manner as

shown below:

PARENT PROCESS

CHILD PROCESS

A process may create subordinate processes. These are
called child processes in relation to the former process,

which in turn is called their parent process.

The child processes are kept on a circular list (ref.
fig. 3.3.1.a-1, parameter SNEXT).

The parent process has a reference to this list in
SCHILD. The children all have a reference to their
common parent in SPARENT.

CSsS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION MHQZIEQ&27

j sign/dato wde

no

| erstatter ! projekt
1 |

Creation and Removal of Processes

The creation of a process is performed by a call of
create process (see 4.9). ' ‘

The process created becomes a child of the calling
process.

The calling process must have the capability to
create processes. The process capabilities are
defined in its PCB paraﬁeter SACCESS.

SACCESS:

15 0

Allowed to create pro-
cess.

Allowed to create a
process which again is
allowed to create a
process.
Classification.

The capabilities of ‘a process are defined at the time

the process is created. A process cannot create a

child with a classification higher than its own.

Neither can a process create a child with the capability
to create a child of its own if the former process does
not have the capability "allowed to create a process
which again is allowed to create a process".

Creation of a process involves allocation and initializa-
tion of a PCB.

The initialization is performed according to : parameters

specified in a parameter block (ref. 4.9).

CSS/302/PSP/0008

I sign/dato iide -
' c2
CR80 AMOS KERNEL PRODUCT SPECIFICATION JH0/790827

T
| erstatter | projekt
|
]
|

Child processes can. only be removed by their parent
process. When a parent process removes a child by calling .
Remove process (refer to 4.12) the child process is

forced to execute a "clean up program" which performs

the following tasks:

@ The child removes all its own children one by
one.)

@ The child calls CLNIO (refer to 2.4) for can-
celling all I/0 activitieé it might have invoked.

e The child calls CLNMEM for release of all memory
it might have allocated.

@ The child calls the kernel function CLNMESSAGE for
cleaning up message communications it might be

involved in:

® Messages received but not yet
answered are redirected to ROOT for

answering them.

@ Messages sent for which an answer
has not yet been received are modified
to look as if they were orginated by
ROOT.

® The child calls the Kernel function CLNINTRT

which releases all interrupts reserved by the child.

CSS/302/PSP/0008

| signidato wide ~
IH®/790827 | z3

| erstatter | projekt
| !

CR80 AMOS KERNEL PRODUCT SPECIFICATION

3.3.5 Starting and Stopping of Processes

A parent process has the capability to start and stop
its child processes by calling start process or stop
process. '

These functions may be used to build a long term

scheduling facility in which the parent is the scheduler.

Stop process will not in general cause an immediate stop
of the child process. The child process which may
execute on another CPU will however be stopped the

first time it enters the kernel. This will eventually

happen when its time slice elapses (refer to 3.5).

3.3.6 Other Process Management Functions

For management of processes five other functions are
implemented.

Get child enables a parent process to inspect its child

processes one by one.

Get attributes delivers an extract of the PCB parameters for

a given process.

Lookup process returns the PCB index (name-ident). of

a process if its symbolic name is known.

Identify process returns the symbolic name of a process
if its PCB index is known.

Adopt process allows a parent process to hand over a child

to the grandparent of the child.

CSS/302/PSP/0008

.I sign,/dato rside z 4
|
CR80 AMOS KERNEL PRODUCT SPECIFICATION ﬁfﬁélﬁﬂﬁ27

T
| projekt

3.4 CPU's

CPU's are handled by the Kernel as separately
identifiable objects.

Each CPU has its own ready list(s) of processes and is
scheduled separately. When a process is created, it is
determined which CPU is shall execute on.

Dynamic creation of CPU's is not supported. It is a system
generation task to define the number of CPU's in a system

(section 7).

CPU's are identified by CPU-names which are constructed

like process names (see section 3.3).

3.4.1 CPU Control Blocks

For each CPU in a system there exists a CPU Control Block
(CB) . The CPUCB consists of one part which occurs once
and another part which occurs as many times as there are

software priorities (refer to 3.5).

The CPUCB is shown in fig. 3.4.l1.a. and b.

The kernel holds a CPUCB index table which contains
pointers to the existing CPUCB's. The CPUCB index table
is indexed by a CPUCB index and constructed similarly

to the PCB index table (fig. 3.3.1.b).

Most of the CPUCB parameters are used by the scheduling
algorithm.

EKH/820601 2 5
LOCATION NAME CONTAINS

Q| SCHAIN link to next CPU CB

1| SNAME symbolic

2 name of

3 the CPU

4| not used

5| CCPUID physical CPU number

6 | CLOGCPU CPUCB index for this CB

7 | CCPUMS address of CPU message location(ref. 2.1)
8 | CCPUIP BASE -of CPU service process

9| CIMASK CPU interrupt mask (PSW)

ref. to currently loaded micro

10| CMICRO program module (initially zero)
11| cIipLEP ref.to PCB of CPU idle process
12| cruwner ref. to PCB of currently executing

Drocess .

Fig. 3.4.1la

CPU Control Block

This part occurs once.

EKH/820601 26

LOCATION NAME CONTAINS
X + @ | CCURPR ref. to first PCB in ready list
X + 1 | CSCHCN schedule count (3.6)
X + 2 | CSCHRS schedule reset count
X + 3 | CSLISZ slice size (TIME register increments)
X + 4 | CACTIM accumulated exec. time
X + 5 | CHWPRI HW priority (@,1,2, or 3)

Fig.: 3.4.1.b CPU Control Block
This part occurs CPRIOS times.
(assembly time parameter)

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| sign/dato ’ side ~ 7

JHO/790827 [

| erstatter | projekt
i |
|

CPU Procedures

Some of the CPUCB parameters may be inspected and
modified by using the functions Get CPU parameter and
Set CPU parameter respectively.

The parameters which are accessible by these functions
are CCPUID, CIMASK, CSCHRS, CSLISZ, CACTIM, and CHWPRI.

CPU's are identified by CPU names which are constructed
like process names (refer to 3.3.1).

However, Get and Set CPU parameter use the CPUCB index
to identify the CPU. It is also the CPUCB index which

is used in connection with create process.

The function look-up CPU may be used to deliver the
CPUCB index for a CPU. o

£SS/302/PSP/0008

| sign/dato side ~ 8

| ¢
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810303

} erstatter | projekt

Scheduling

The scheduling algorith implements a prioritized
multiplexing of a CPU among the preempted processes
waiting to execute on it.

The scheduling algorith works independently for each
CPU. The scheduling algorith is invoked _

e When a process calls wait event, await answer,
await system answer, or await path answer to re-

ceive a not yet occurred event type.

e When a process encounters a timer action (a
decrement of the TIMER register resulting in
a negative value) or when it calls wait event

with a zero event mask.

In the former case the process is suspended until an
awaited event occurs, in the latter it is preempted and
its timer register is incremented by the time slice
size defined for the software priority level (CPUCB
item CSLISZ). It will enter the executing state again
controlled by the scheduling algorithm.

For a given CPU, the executing process and the preempted
processes are kept in circularly organized ready lists.
There is a ready list for each software priority (assembly
parameter CPRIOS) (refer to fig. 3.4.3.3).

CSS/302/PSP/0008

| sign-dato ~ 9
| 8 V4
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/81.0303
|
CPUCB:
SCHAIN
]
CRUNPR " . : - ;
2 \ < 4 o]
CCURPR .
PCB PCB PCB
priority 0 ;
CCURPR ~— This is the EXECUTING
Yo -process PCB.
priorityl
CCURPR . N
priority 2 -

In this example there are 2 preempted processes and

1 executing process at priority level @ and 1 pre-

empted process at priority level 2.

Fig. 3:4.3.a CPU Ready Lists.

CSsS/302/PSP/0008

|l signidata | side 3 O

CR80 AMOS KERNEL PRODUCT SPECIFICATION - EKH/820601

| erstatter | projekt

JH@/810303

The algorithm for selecting a process for execution

is shown in the flowchart fig. 3.4.3.b.

It may be noted that there has to be at least one
process which is ready to execute. To ensure this
there is initially created an Idle process for each
CPU (refer to 3.15).

When a process has been selected for execution, it is
checked whether the process requires a micro program
module to be leoaded into the CPU loadable control
store. If this is the case (PCB item SMICRO is greater
than 3)and if the module is not already loaded (SMICRO.
different from CPUCB item CMICRO), a procedure is
called which loads it.

CSsS/302/PSP/0008

] sign/dato ’.

\THO/ 810303

side

31

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| erstatter
|

| Projekt

SELECT
PRIORITY
LEVEL @

<

csc;;;:\\\\.YEs

® o !

NO

CSCHRS
—> CSCHCN
DECREMENT
CSCHCN
CCURPR =
=@ Y
SELECT
) NEXT
NO PRIORITY
LEVEL
CCURPR
— CRUNPR
(PROCESS
FOUND)
YES
SELECT
PRIORITY
LEVEL @

Fig. 3.4.3D SCHEDULING ALGORITHM
(SELECTION OF THE NEXT PROCESS TO EXECUTE)

CSS/302/PSP/0008

sign/date page

JH®/810303 32

CR80 AMOS KERNEL PRODUCT SPECIFICATION ESBISES profect

Critical Regions

Critical regions are used for sharing variables

between different processes, and for synchronization:

The critical region primitives are designed to solve

two problems with shared variables:

® that of addressing, and

® that cof contention.

A critical region consists of a control block (CRCB)
which is allocated from a system pool of CRCB's and
an associated contiguous memory area which holds. the
common variables. This memory area is called the
Variable Space (VS). The allocation of VS is not

part of the critical region primitives.

Addressing of variables in the VS is relative to the
origin of the VS. A user process should not know
the absolute address of the VS. Addressing of
critical regions is symbolic. A critical region is
addressed by name. The name of a critical region is
constructed in the same manner as process names
(ref. to section 3.3.1).

In connection with a specific region a process will

be in one of the following states:

CSS/302/PSP /0008

sign/date page

JHP /810303 33

replace project

CR80 AMOS KERNEL PRODUCT SPECIFICATION

WAITING
TO RE-
ENTER
REGION

WAITING
TO ENTER
REGION

REGION
ENTERED

CSS/302/PSP /0008

sign/dete page

JHP /810303 34

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project

Note that these states only apply to the relation
between a single region and a process. The process
may interact with several other regions at the same

time.
The meaning of the states are:

Region left:

In this state the process has no access to the VS
of the region. A process will initially be in
this state.

Region entered:

In this state the process has access to all the
variables of the VS. Only a single process can
be in this state (in relation to a specific region)

at any one time.

Waiting to enter region

The process is suspended until no other process

is in the 'region entered' state.

Waiting to re-—-enter region

The process is suspended until a process leaves the

region.

The purpose of this state is to be able to wait until
the variables of the VS fullfills a wanted condition.

CSS/302/PSP/0008

sign/dste page

JH®,/810303 35

CR80 AMOS KERNEL PRODUCT SPECIFICATION fepiace L

The transitions between the states occur at the

following events:

The current process calls ENTER-REGION and the
region already contains a process in the

'region entered' state.

The current process calls ENTER-REGION and no

process is in the 'region - entered' state.

Another process (which was in the 'region entered'
state) calls LEAVE-REGION or WAIT-REGION, and

the current process is at the head of the queue
of processes waiting to enter the region and no
processes were in the state 'waiting to re-enter

region'.
The process calls LEAVE-REGION.
The current process calls WAIT-REGION.

Another process calls LEAVE-REGION or WAIT-REGION,
after having modified the contents of the region
variable space and the current process is at the
head of the queue of processes waiting to re-
enter the region.

CSS/302/PSP/0008

sign/dete page

JHP/810303 36

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project

The normal use of critical regions ‘is

to enter a region

modify and/or inspect the variables in VS

if the variables inspected must fullfill a
certain condition (which they do not) before
processing can continue, the process may

call WAIT-REGION. This causes the process

to be delayed until at least one other process
has been in the 'region entered' state, and
has modified the contents of the region vari-
able space.

e and finally to leave the region.

A region need not control a VS. If it does not, the
critical region serves as a simple synchronization

element.

CSS/302/PSP/0008

sign/date page

JHP /810303 37

CR80 AMOS KERNEL PRODUCT SPECIFICATION ESRiace project

Region Control Block

For each critical region a region control block (RCB)
must exist. RCB's are allocated from a pool of free
RCBs which is set up at system initialization time.
The kernel has a RCB index table which contains
pointers to the RCBs.

The structure of a RCB is shown in figure 3.5.l.a.
The word CRSTA in the RCB needs a further explanation;

CRSTA contains the following fields:

FEDCBAS9876543210

memory section for VS

HW semaphore for region

entered flag

dirty flag

The HW semaphore is used to synchronize about the use
of the region control block itself. The entered flag
defines whether a process is in the entered state or
not. The dirty flag is set when a write operation is
performed on the variable space and cleared when the

wait queue is transferred to the entered queue.

38
EKH/820601

LOCATION NAME CONTAINS
0 SCHAIN link to next RCB
1 SNAME
2 $ symbolic nam& of region
3
4 SLOGRCB RCB index
RAT absolute word address of
5 € e variable space
6 CRSTA status word. Refer to the text
7 CRSIZE size of variable space in words
8 CREQP pointer to PCB of first process
waiting to enter regicn
pointer to PCB of last process
. CREQL waiting to enter region
10 CRWOF pointer to PCB of first process
waiting to reenter region
. pointer to PCB of last process
11 CRUWQL waiting to reenter region
12 CRCPCB PCB index of entered process

(=1 if none entered)

Fig.

3.5.1.a

Region Control Block.

CsSs/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dste

JH@ /810303

page

39

replace

project

3.5.2 Critical Region Procedures.

Procedures are provided for creating critical regions,

for entering, leaving, waiting to re—-enter regions, to

get items from the variable space and to put items in-

to the variable space.

For a detailed description of the procedures, refer

to section 4.

CSS/302/PSP/0008

| sign/dato side

‘ A {
CR80 AMOS KERNEL PRODUCT SPECIFICATION gHQLﬁiOﬁOT 40

i erstatter j projekt

Events

An event is defined as an incident which transfers

synchronization and/or data information from a process

or a peripheral device to another process. The following

event types are defined and supported by the Kernel:

(a) . Messages

(b) . Answers

(c) . System messages
(d) . System answers
(e) . Path messages
(£) . Path answers

(g) . Signals

(h) . Parent signals
(i) . I/O interrupts
(j) . Delays

Event types (a) through (f) are described in section
3.7, (g) and (h) in section 3.8, (j) in section 3.9

and (i) in section (3.10).

Receiving Events

The primary Kernel function to call for receiving an
event is wait event (section 4.2). Wait event allows
a process to wait for and receive the first occurring
event of a number of event types.

If no events of the types specified in calling wait
event have yet occurred, the process is suspended until
one occurs.

If an event has been sent but not yet received, the

process will receive it and continue processing.

CSs/302/PsSP/0008

sign/dete page

JH@P/810303 41

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project

Receiving an event may imply receiving data (as in the
case of messages and answers). Other event types are

not associated with data.

If wait event is called to receive e.g. a system
answers, the first occurred system answer will be re-
ceived. Sometimes it is preferable to wait for a spe-
cific system answer. This is possible by calling await
system answer. Similar functions exist for answers and

path answers.

It is sometimes advantageous for receive and process
events in an order different from the first sent -

first delivered order implemented by the kernel.
For this purpose three functions are available:

inspect events
save event

restore events.

Inspect events is similar to wait event with the only
difference that events are not removed from the kernel
when received by the receiver, i.e. they may be re-

ceived again.

Save event is used to temporarily save an event which
may be an answer or a message which has been received
by a call of inspect events or a message which has been

received by wait event.

The event is removed from the corresponding event gqueue
and inserted in a save queue for the event type in

question.

Restore events, which is called with an event type as

parameter, transfers the saved events of the defined

CSs)302/PsSP/0008

sign/date page

JH@/810303 42

CR80 AMOS KERNEL PRODUCT SPECIFICATION reviase project

type to the corresponding event queue. The events may

then be received again by wait or inspect events.

3.6.2 Sending Events

There are a number of functions for sending events -
one for each event type (except I/O interrupts where

hardware/firmware is used to do this).

When an event is sent, it is checked if the receiver
process is waiting for this event (possibly among
other events and/or event types). If this is the case,
the state of the receiver process is changed from
SUSPENDED to PREEMPTED - unless the receiver process
is in the STOPPED state - and the receiver process is
linked to its ready list at the second position in the
list. If the list was empty, it is placed at the head
of the list.

If the receiver process is not awaiting the event, the
event is queued. The method of queuing is different
for each event type and is described in the appropriate

of sections 3.7 through 3.10.

CSS/302/PSP/0008

|
CR80 AMOS KERNEL PRODUCT SPECIFICATION JH0/810303

| sign-dato ‘ side

43

| erstatter | projekt

3.7

Message Type Events

This section describes messages, answers, system messages,

system answers, path messages, and path answers.

A message is 5 words of user defined information. The
transmission of a message is always performed in two
steps:

® the message data is copied from the sender process

to a system supplied message buffer,

e the message data is copied from the message buffer

to the receiver process.

The first step is accomplished when the sender calls
the appropriate send function (refer to sections

4,18, 4.19, 4.21, 4.22, 4.26, and 4.27). The second
step is performed when the receiver process is ready
to receive the message (or answer). This happens after
a call of the appropriate wait function (refer to
sections 4.2, 4.20, 4.23, and 4.28).

The message buffer is used to identify the event (when
sending an answer it is necessary to specify the message
to which it is a reply). The message buffer is allocated
from a pool of message buffers, which is defined at system
generation time (refer to section 7) and initialized at
system initialization time (refer to section 3.12).

The allocation of a message buffer is performed when

® a message is sent
® a system message is sent, or
@ a path is opened (refer to 4.24)

CSS/302/PSP/0Q008

] sign/dato side

CR80 AMOS KERNEL PRODUCT SPECIFICATION {JH2/810303. 44
|

| ersiatter ! projekt
|

The message buffer is deallocated when

e the answer is received
e the system answer is received

e the path is closed
The number of message buffers which a process has in
use (allocated) at any one time cannot exceed the value

of the process creation parameter VMSGS (refer to 4.9).

The format of a message buffer is

LINK TO NEXT MESSAGE

il MESSAGE BUFFER INDEX (EVENT)

PCB INDEX OF PROCESS
2 SENDING MESSAGE

PCB INDEX OF PROCESS
3 RECEIVING MESSAGE

4 MESSAGE STATE

5 A
&
6 52
<
7) S\
£ 1
Z O
M o
8 e 0
Z 0
O
s

(Lol
s

CSS/302/PSP/0008

I sign;dato

'JHO/&-0303

1 erstatter : projekt

side

CR80 AMOS KERNEL PRODUCT SPECIFICATION

The message state parameter has the following layout:

3210

PART RS AL A

) N

L @ if sent and not
yet received

type:
1l: message

2: answer

system message

system answer

3
4
5: path message
6

path answer

CSS/302/PSP/0008

| sign/dato ’ sige

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHG/810303.. 46

| erstatter ' projekt
i

3.7.1 Path Messages/Answers

Path messages and answers are different from ordinary

and system messages/answers in the following respects:

e The message buffer is allocated by a special
call (open path) which also identifies the

receiver process.

e The message buffer stays allocated until a

special function (close path) is called.

e When a path message is sent the message
buffer must be identified (EVENT), but the

receiver is not explicitly identified.

A path can only be closed by the process which opened
it.

»

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION i =
i |

[sign‘dato [side
-

47

JHP/810303

348

Signal Type Events

The signal type events supported by AMOS are signals

and parent signals.

Parent signals are reserved for use by the Kernel.

There is no separate function for sending of parent
signals. Parent signals are automatically sent when

a process calls Error (or Terminate) (refer to 4.3) or
when it encounters a local interrupt which is not a
timer action (refer to 4.1). Sending a parent signal
consists of incrementing the parent sigpal counter

(PCB item SPARSIG) of the parent process. If the

parent process awaits a parent signal, the parent signal
is received by it. Receiving a parent signal implies

decrementing the parent signal counter.

Signals can be sent to any process. The function for
sending signals is described in 4.17. Sending a
signal means setting the signal boolean (PCB item
SSIGNAL) fo true (=1). Receiving a signal involves

setting the signal boolean to false (=0).

As no resources are involved in sending signals, signals

may be used unrestrictedly.

(The standard AMOS Teletype writer driver uses signals
for calling the attention of processes identified by
the teletype operator).

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| sign/dato I Side

JHO/810303 48 -

: ersiattar i projekt
|]

Delazs

Delays are primarily used for two purposes:

e to generate a long term scheduling,

@ to timeout waiting for events which do not occur.

Delays are defined in units of 0.100 secs. Delays are
implemented by the Real Time Clock (RTC) driver (refer
to 3.14) which receives an I/0 interrupt from a hardware

clock every 10 milliseconds.

The RTC maintains a phase for every process in the
system (PCB item SPHASE). The phase is originally set

to zero.

Every 100th millisecond the RTC scans through the chain
of PCB's and every non zero phase found is decremented.
Every phase which is zero is reset to the cycle value
(PCB item SCYCLE). The cycle is also initially zero,

but may be changed by a call of Set cycle (refer to
4.33).

When a process calls wait event, it may specify a delay.
When await answer, await system answer, or await path
answer is called, a delay must be specified. The
process wil regain control (enter the EXECUTING/PREEMPTED
state) at the latest when a timespan equal to the total
of the specified delay and the phase value at the time of
call has elapsed.

A cyclic behaviour of a process can be implemented by
setting the cycle to the required period and include

in the program the following sequence of code:

CSS/302/PSP/0008

| sign;dato I $ide

JHG/310303

49

CR80 AMOS KERNEL PRODUCT SPECIFICATION

I erstatter ! prajekt

MAINLOOP:
MOVC BMDELAY R2;
MOVC @ R@;

MON WAITEVENT

-e

-e

-

-

JMP MAINLOOP i

CSS/302/PSP/0008

|' sign/dato I %de

JHG/810303 ! 50

CR80 AMOS KERNEL PRODUCT SPECIFICATION

! crstatter " projekt

3.10 I/0 Interrupt

The Kernel provides the following functions for

handling of I/0 interrupts:

Reserve interrupt
Release interrupt

Clear interrupt

Set interrupt

In order to avoid confusion the term interruption

is used for the event that an I/0 device transmits
its I/0 address and device priority code to the CR30
Main Bus Controller and thereby causes an interruption
of a CPU.

The term interrupt is taken to mean all interruptions

generated by a specific device.

Interrupts are resources which must be reserved by
the process before an interruption can be awaited and
received.

Reserve interrupt establishes a connection between an
I/0 device and a process. This connection lasts until
the process is removed or it calls release interrupt

with the corresponding interrupt as argument.

Any interruption generated by a peripheral device
are received by the Kernel. The Kernel maintains
an interrupt occurrence table with 64 entries, one

for each possible interrupting device.

When an interruption is received by the Kernel, it

is checked if it was awaited by a process. If this is

the case, the interruption is delivered to the process,

Otherwise, the interrupt occurrence table entry is
incremented.

CSS/302/PSP/0008

| sign;dato ’_side

JH®/810303. 51

CR80 AMOS KERNEL PRODUCT SPECIFICATION o —

When a process calls wait event specifying

interrupts as an eventtype, it is checked if the proper
occurrence table entry has a non zero value.

If so it is decremented, and the process continues

immediately.

A process may reserve more than one interrupt.

It may however only await interruptions from a
single device. If a process has reserved more than
one interrupt, it must define the currently awaited
by a call of set interrupt. This is not necessary

if only one is reserved.

Clear interrupt sets the occurrence table entry

to zero.

Release interrupt breaks the connection between a
process and an I/0 device. The process will not be

able to await and receive interruptions from the device
after a call of release interrupt with the corresponding

interrupt as argument.

CSS/302/PSP/0008

sign:dato | side

JHO /810303 52

CR80 AMOS KERNEL PRODUCT SPECIFICATION

I erstatter I. projekt

3.10.1 Processing of I/0 interrupt in the Kernel

In a CR80 multiprocessor, one and only one CPU may
execute with the I/O interrupts enabled. That means
that it is always the same CPU which is interrupted.

When the interruption occurs, the CPU performs a
context switch to the I/0 context.

The I/0 process thus loaded immediately enters the Kernel
by reserving the Kernel Hardware semaphore. It checks

to see if any process awaits the current interruption.

If not, the proper occurrence table entry is incremented,
the I/O process leaves the Kernel by releasing the

Kernel hardware semaphore and performs a programmed

context switch back to the preempted context.

If the interruption was awaited, there are two cases to

consider:

1. The waiting process must execute on the same CPU

as does the I/O process.

In this case the I/O process switches to the Kernel
context which puts the interrupted process in the
PREEMPTED state and sets the awaiting process in
the EXECUTING state, leaves the Kernel and performs
a context switch to that of the waiting process.

2. The waiting process must execute on another CPU.

CSS/302/PSP/0008

| sign;dato | side

|]
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810303 53

| erstatter ! projekt

In this case the I/0 process prepares itself to
execute in a second incarnation on the other CPU.
While still being in the Kernel, it sends a CPU
interrupt to the other CPU and then releases the
Kernel semaphore; this causes the other CPU to
load the second incarnation of the I/O process.
This twin reserves the Kernel semaphore, and
subsequently sets a hand-shake signal to cause
the original I/0 process to perfprm a context

switch back to the interrupted process.

The situation in the second CPU is now similar to

1. above.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

I sign/dato I g‘de

JHO/810303 54

| erstatter | projekt
|
1 |

Handling of Errors

The Kernel performs a validation of all parameters used

when calling a Kernel function or procedure.

A invalid parameter may either.cause a return to an
error exit or it may cause an invokation of Error
(refer to 4.3).

An example of the former case is create process

(refer to 4.9),,and all critical region procedures.

In the latterréase an error code is used with the
upper byte equal to 1 and an error number in the lower
byte. The error numbers used are listed in section
3.11.1.

The return link generated at call of the function or

procedure is used as error location.

The inability to perform a function will either cause
an automatic re-=call of the function (as in the case

of send message) or a return to an error exit.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| stgn-dato | side

' EKH/820601 55

¢ weupekt

JHP/810303

3.11.1 Kernel Error Codes

The error codes used by the Kernel have the

following format.

| | |
10 0 0 0 001

\

Error number

Indicates Kernel
error

Set by error
function

The error numbers applicable are:

(o2 W & " “ N VS B o I

~

10:
11:
12;
13:

14:.

15:

30:

Trap or illegal instruction executed
Parity error encountered

Time out (illegal addressing)

Bound violation (XAMOS only)

Reference is made to a not existing process
Parameter reference exceeds the local
process memory area

Invalid event parameter i

Calling process is not sender or receiver
of this message buffer.

Invalid message buffer state for this
function

Invalid Intrpt parameter

Invalid Intrpt parameter

Invalid Item type

Attempt to use too many message buffers

Monitor level too large (XAMOS only)

Process not allowed to call create process.

CSSs/302/PSP/0008

sign/date page

JHP/810303 56

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project

Initialization

After boot loading of a system a separate initiali-
zation program, INIT (CSS/308), prepares the system

initialization to be performed by the kernel.

INIT checks if the kernel is going to have its local

data structures resident in memory section O or 1.

If section O is used, INIT performs the following

The space required for kernel pools (message
buffer pool, pcb pool, rcb pool) is calculated
from the kernel init list prepared by SYSGEN
(Css/121).

The locad module above the kernel is displaced

to make room for the pools.
The top of the load module is determined.

INIT moves itself above the top of the load.
module.

The kernel module is moved to location 15.

The kernel process (base 19) is loaded.

SS/302 /PSP /0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dete

H@/810303

page

57

replace

project

Section O

Wi

INIT

Kernel

CPUCB pool

Remaining

Load
Module

——)Module

.

Before initialization

If section 1 is used, INIT performs the following

tasks:

Section O
IFTNFNFINi

Kernel

PUCB pool

Other pools

Remaining
Load

INIT

/1

After

@ The kernel data is moved to section 1 lo-

cation 0.

e The space required for pools is determined
and the pools laid out.

@ The ROOT data part is moved to section 1

following the pools.

e INIT moves itself to the top of load module.

e The kernel program is moved to location 320

(=256+64)

table and interrupt table.

leaving space for the monitor jump

CSsS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/date

TH®/810303

page

58

replace

project

Section 0

The load module is compressed.

The kernel process (base 4)

Section 0

%,

AAA IS,

Kernel
Program
INIT
Kernel ROOT
Data Erogram
Kernel Remaining
Program Load
CPUCB Module
Pool
ROOT
Data INIT
ROOQT
Program
+
Remaining
Load
Module

A

A

Before Initialization

is loaded.

Section 1

Kernel
Data

CPUCB
Pool

Other
Pools

ROOT
Data

A\

After

CSss/302/PSP/0008

sign/date]pago

{ EKH/820601 59

CR80 AMOS KERNEL PRODUCT SPECIFICATION repiace project
, JHP/810303

During system initialization, the Kernel uses an
initialization list. This list has the following

format:

Init list + @ : Kernel context relative pointer

to message buffer pool.

Init list + 1

Kernel context relative pointer
to PCB pool

Init list + 2 Kernel context relative pointer
to CPUCB pool

Init list + 3 : Kernel context relative pointer
to RCB pool

Init list + 4

Kernel context relative pointer
to first location of ROOT

process data part

The processing performed by the Kernel is shown in
the flowchart fig. 3.12.a. Ther initialization is

performed in the Kernel context.

The last step in the initialization is to switch to

the ROOT process.

CsSs/302/pPSP/0008

| sign/date | page
CR80 AMOS KERNEL PRODUCT SPECIFICATION prfH/820601 IWWL
JHP/810303

INITIALIZE

IDENTIEY
CPU TYPE
(AMOS/XAMOS)

INITIALIZE INTERRUPT TABLES

INSERT

BASE OF

1/0 CONTEXT
'IN HW INTE-
RRUPT -TABLH

INITIALIZE MONITOR JUMP
TABLE

MAKE ALL
ENTRIES
REFER TO
PROCED. 4. 39

- '}

CALL MONI- _
NIT TO IN-

SERT IMPLE-
MENTED EN-

TRIES

INITIALIZE CPU INTERRUPTS

SET ALL CPU
MESSAGE LOCAH
TION TO @

INITIALIZE PCB POOL:

BUILD PCB
INDEX TABLE
INIT [+ . 7
PCB's

INITIALIZE .RCB POOL:

BUILD RCB
INDEX TABLE
INIT. .

RCB

. Fig. 3.12.a-1 SYSTEM INITIALIZATION FLOWCHART, PART 1/2.

Css/302/PsSP/0008

CR80 AMOS KERNEL PRODUCT

sign/date page

JH@/810303 61

SPEC IF ICATION repiace project

INITIALIZE MESSAGE BUFFERS:

INTTTALTZE CPU CB POOL:

START OTHER CPU's:

CREATE ROOT PROCESS:

BUIID EVENT
INDEX-TABLE
INIT MESSAGE

BUIID CPU CB
INDEX TABIE °
INIT CPUCB's

r——_—-—___ﬂ

@->» ABSOLUTE
LOCATION 7

-—- AN ARBITRARY CPU EXECUTES
THE SYSTEM INITIALIZATION
PROCEDURE. THE CTHER CPU's

WILL EXECUTE A BUSY WATITING

THE ROOT PRO-
CESS IS
CREATED WITH
PCB INDEX=0

BECOME @. WHEN THIS HAPPENS

!
Ib
l
| FOR ABSOLUTE LOCATION 7 TO
!
| THEY WILL CALL CPU INIT

|

(FIG. 3.12.B)

SWITCH TO
ROOT CONTEXT

Fig. 3.12.a-2 SYSTEM INITIALIZATION FLOWCHART, PART 2/2.

CSS/302/PSP/0008

sign/date page
=

CR80 AMOS KERNEL PRODUCT SPECIFICATION %QMBIOZ’LOQ 62

project

CPUINIT

0

SEARCH THRU

CPUCB's TO
FIND PROPER
TB.

NO

O

SEARCH ALL
READY LISTS ’ /
TO FIND A :
PREEMPTED
PROCESS

NO

YES

SWITCH TO
CONTEXT OF
PROCESS

E

J

Fig. 3.12.b INITIALIZATION OF CPU's.

CSsS/302/PSP/0008

| sign;dato 4 side

JHG/810303 | 63

i erstatter | projekt
|

CR80 AMOS KERNEL PRODUCT SPECIFICATION

3.13 Root Process

The Root process is part of CPCl CSS/360.
The Root process fulfils three purposes:

@ 1t takes over initialization after the Kernel

initialization

@ it receives events which are sent to not existing

processes

@ it receives parent signals from its own child

processes.

3.13.1 Root Initialization Processing

When loaded by the Kernel, the Root process starts
initializing of assembled/compiled modules. The Root
requires that the modules are laid out contiguously
in main memory and that they follow immediately after

the Root program part.

Root expects modules to be programs, data modules, or

tables. When anything different from this is encountered

Root terminates initialization.

The format of modules is defined in appendix A.

When a program of type Monitor is encountered, Root
performs a subroutine branch to the program entry
(refer to Appendix B, file X2GENl, item XSTART).

The return link is generated in register-4.

CSS/302/PSP/0008

| signidato | side

S Y S—
CR80 AMOS KERNEL PRODUCT SPECIFICATION EKH/820601

| wrswuer | projekt

- JH@/810303

A monitor program module should therefore contain
the following construct:

myinit:

[MON MONITIT

LOoC

(refer to 4.38)(<myargumentl>, <mylabell>

<myargumentn>, <mylabeln>
L@
JMP @. X4; Return. to Root

.
L]
.

XSTART = myinit ; define program entry.

When a data part is encountered, a process is created.
The process is prepared to execute the last preceeding
program. Data parts need not be assembled/compiled to
full size. If a process requires more data space than
it is compiled with, Root will move all succeeding

modules accordingly.

Table modules encountered by Root are skipped; no

processing is performed.

Root prints on the operatédrs console, a log of the pro-
grams and processes as they are encountered. .An éxample
of such a log is shown in figure 3.13.l.a.

Programs aﬁd processes are placed in memory as required
in the XPGMEM and XPRMEM parameteré. Monitor programs
are allways placed in memory section 0. Other programs
are preferably placed in memory section 0. Processes

are preferably placed outside memory section 0.

ot

CSS/302/PSpP/0008

CR80 AMOS KERNEL PRODUCT SPECIF%CATION

I sign/dete | page
EKH/820601

| project

] JHP/810303

Program >
Process

CPU type—5

Fig.

D=s2an
ROQT
XAMOS
RTZ
MEMMGR
FOOO0E
FME

321

et P

FOROOO0
SoRU

oeszll
TTYOQOQO

3.13.1.a

z VERZIDN:

VERSIOM: 1001
BASE: #0C04 /1

FROG

BAZE: #15B4/1
BAZE: #0044/ 1
VERZTON: 1
BAZE: #14&A4/1
VERS TN 40z

FROG

FRICG

S BASE:HOOLC/2

VERZION: 4
BASEs #ZC1C/2

VERSIOM: T14
VERZSTION: =08

FROG

FROG
FRCIG

EASE #3E1C/3
1oz
102

VEREZION:
VERS TN
VERSIMOM:
VERZTONS

FROG
FROG
FROG
L PROG
L FRIOG
FROG

VERSTON:
BAZE: #4012/

FHOFLA/D

FH14664/70

sl 4EP/0

sHIODE /0

FHIALEASD
SHEDCL/0

FHEZATE/D
fHIAEL/O
THIBDZ/O
CHEICFASOD
FHAAOT /O
FHIATZ/0

Example of log generated by Root.

65

CSS/302/PSP/0008

sign/date page

JHP/810303 66

CR80 AMOS KERNEL PRODUCT SPECIFICATION replace project

During initialization the following error message may

be output from Root on the operator's console:

INIT ERROR #HHHH #KKKK

HHHH and KKKK are hexadecimal error numbers.

HHHH is an error code with the following possible values

and corresponding errors:

0 failed to create memory manager process

1 failed to allocate memory for ROOT itself.

2 failed to allocate memory for the next pro-

gram.

3 failed to allocate memory for the next

process.

4 a module is encountered with illegal type

(neither program nor process).

5 failed to create next process.

6 failed to start next process.

7 failed to start memory manager.

CSS/302/PSP/0008

sign/dato side
k)

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHQZ&LQ3Q%~ o

erstatter projekt

3.13.2 Event Processing

Following initialization Root enters a loop when all

event types but interrupts, signals, and delays are

awaited. The handling of events received depends on

the eventtype as follows:

Messages

System Messages

Path Messages

Answers

System Asnwers

Path Answers

Parent Signals

an answer is returned with the
first word set to
1<BNUNKNOWN .

a system answer is returned
with the first word set to
1<BNUNKNOWN

a path answer is returned with
the first word set to
1<BNUNKNOWN

no action

no action

the path is closed.

the child processes are
inspected. When a child with
a nonzero SERROR is found, a
log line is generated and
printed on the operator's
console. The form of the

message 1is

PROCESS <name> TERMINATED WITH CAUSE,LOC: #HHHH, 7 HHHH

CSS/302/PSP/0008

[sign/dato

CR80 AMOS KERNEL PRODUCT SPECIFICATION

! erstatter
|

\THG/810303

|“side

68

| projext

3.14 Real Time Clock Process
The RTC is part of CPCI CSS/360.

The Real Time Clock (RTC) process receives the

interrupts generated every 10th msec. by the

hardware clock.

Everytime 10 interrupts have been received the RTC

updates a local timer consisting of the following

7 words:

RTCYR: current year
RTCMTH: current month
RTCDAY: current day
RTCHOUR:current hour
RTCMIN: current minute
RTCSEC: current second
RTCMSEC:current millisecond

From these 7 words a 3 word timer is built:

min sec
day hour
vear-1900 month

This timer is accessible through procedure Read RTC

(refer to 4.32)

The timer can be reset by sending a message to RTC

The message contents will be copied to RTCYR through
RTCMIN, and RTCSEC and RTCMSEC are cleared to zero.

CSS/302/PSP/0008

| sign-dato ‘} side

I
CR80 AMOS KERNEL PRODUCT SPECIFICATION AH2810303

69

i erstatter | projakt

Every 100th millisecond the RTC scans through the
chain of PCB's:

When a zero SPHASE (refer to fig 3.3.1l.a) is
encountered, SCYCLE is copied to SPHASE.
When a nonzero SPHASE is met, it is

decremented.

If the elapse of a delay is awaited, the

PCB item SDELAY is inspected:

e if it is zero, the process will be
set executing and receive the delay,

@ if it is nonzero, SDELAY is decremented.

CSS/302/PSP/0008

! sign/dato side

CR80 AMOS KERNEL PRODUCT SPECIFICATION ;{Eﬁflo-”“ j'mim 10
3.15 Idle Process
The Idle process is CPCI CSS/306.
The scheduling algorithm described in section 3.5
requires that at least one process is ready to
eXecute. This is ensured by having an Idle process
for each CPU.
The Idle process executes the following program:
START:
MOVC @ R2
MON WAITEVENT
MOVC 100 RO
SOB R@P LOC ;wait 100 usec.
JMP START
When scheduled, the Idle process waits 100 usec and then

calls the Kernel again.

Ccss/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

—[sicnfdlt- loace

EKH/820601 71
Trepl-co | proiect

JH@P/810303

3.16

Memory Management

The Memory manager is part of CPCI CSS/360.

The memory manager process allocates and deallocates

memory on request from user processes.

The memory management functions are invoked by sending

system messages to the memory manager process 'MEMMGR'.

Memory is allocated in segments of 128 words.

A segment allocated to a process belongs to that process.

The following functions are performed on request of the

memory manager:
e allocate memory
® release memory
e verify that an area of memory belongs to
a process and provide the physical address
of that memory area

e transfer memory ownership to another process

@ release all memory belonging to a process

CSs/302/PSP/0008

sign/date Ipace
EKH/820601 72

repiace | project

CR80 AMOS KERNEL PRODUCT SPECIFICATION
JHP/810303

The format of system messages sent to the memory

manager is shown below:

\:;§§Efff?N Allocate Release Zgiigzt& Transfer Release all
+0 1 0 2 4 3
+1 TYPE MEM MEM MEM =

_ +2 SIZE - = ggBNE;Vl\;D gT}/(VNER -

43 CPU - - - -

- +4 RANGE = - = =

_ANSWER

. +0 RESULT RESULT RESULT RESULT RESULT

- +1 MEM = MEM - -

- +2 ADDR - ADDR - =
+3 PGCPU = PGCPU - =

© +4 SIZE = SIZE = e

Css/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

] sian/date losae

VEKH /820601 73
rrenllco | project

' JHP/810303

TYPE:

MEM:

SIZE:

CPU:

RANGE:

RESULT:

PGCPU:

defines the use of the memory
0: for program
l: for data

is an internal identification of the

memory area
is the size of a memory area in words

is the logical CPU number
0-7: identifies a particular CPU
8: any CPU suffices
CPU may be specified if a memory area
is required to which the corresponding

CPU has subbus access.

® lower byte contains the number of the
lowest allowed 4 K memory block.

@ upper byte contains the number of the highest
allowed 4 K memory block.

When used for program allocation, RANGE = 0

is interpreted as RANGE = #% 0F00 (section 0)
When used for data allocation, RANGE = 0

is interpreted as RANGE = 7% 3F00 (any section)
When executing on an AMOS CPU, program

memory will allways be allocated from section 0.

the result of the request:
=@ : request process successfully

OP: error

upper byte contains logical CPU
number (0-7)

@ lower byte contains the memory
section number (0-3) of the me-

mory area.

CssS/302/PSP/0008

|sign/dn- loace
EKH/820601 74

repiace | project

JH@/810303

CR80 AMOS KERNEL PRODUCT SPECIFICATION

The memory manager contains a table of 2048 entries

which describes the status of the memory.

Each entry has the following format

FEDCBAQ987 6533210
!

L—PCB index of owner

if set, this.is. the last

\,

segment of an area
Logical CPU number of
connected CPU

if set,”segment is allo-

cated

The table is preset to:all memory (256K) is connected
to CPU Q.

During initialization ROOT determines if any part of
the possible memory space is PROM or does not exist,

and if so updates the memory table.

CSS/302/PSP/0008

| sign/dato I side
-

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/810303 75

II erstatter | projekt

4, FUNCTION DESCRIPTION

This section contains a detailed description of
every Kernel procedure and function accessible from

outside the Kernel by means of monitor call instruc-
tions.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

‘nunmako | side

EKH/820601 76

[orsuner | projekt

L JH@P/810303

Local Interrupts

When a process is created, its context item XLOCACT
(refer to fig. 3.3.1.c) is initialized to refer to
the entry point of a Kernel procedure for handling
local interrupts.

When a process encounters a local interrupt, it will
therefore automatically invoke this procedure.

The procedure determines the local interrupt cause.
If it is a timer action, the scheduling algorithm is
activated. If it is illegal instruction executed on an
AMOS CPU, which would legal on an XAMOS CPU, the
instruction is replaced with the corresponding AMCS
instruction and re-executed together with preceeding
modify instructions, as defined in appendix E.
Otherwise (i.e. illegal instruction, parity error,

or time-out) the Kernel function Error (synonymous
with terminate) is called. This causes the process to
enter the STOPPED state, its PCB item SERROR (fig.
3.3.1.a) is set to

error code : cause code + &= 814F
error location : XLOCRET + XPROG (fig. 3.3.1.c)

and a parent signal is sent to the parent process.

CSS/302/PSP/0008

| sign/dato Fsida
CR80 AMOS KERNEL PRODUCT SPECIFICATION AHO/810303 17

| erstatter | projekt

4.2 Wait Event

MONITOR FUNCTION AWAIT EVENT [I: (EVENTMASK,ADR,DELAY)
0: (EVENTTYPELEVENT)

INVOKATION:

MON WAITEVENT ; OR ALTERNATIVELY:

MON AAATTEVENT
EVENTMASK IS A BIT MASK WHICH SPECIFIES THOSE EVENTTYPES TQ BE AKAITED

IF TIMEQUT (ELAPSE OF DELAY} IS INCLUDED THE EFFECTIVE DELAY IS DEL
AY + PHASE. (REFER TO0 SET CYCLE FUNCTION)
IF NONE OF THE EVENTTYPES SPECIFIED HAVE YET OCCURREDs THE PROCESS IS
SUSPENDED UNTIL AN OCCURRENCE.
ELSE IT RETURNS WITH THE MOST URGENT EVENT AS DESCRIBED BELOW.
WHEN ONE OF THE EVENTS OCCURS THE PROCESS IS SCHEDULED FOR EXECUTION.
IT RETURNS WITH THE RESULTING EVENTTYPE(A NUMBER) AND IF THE EVENTTYPE
IS5 A MESSAGE GR ANSWER TYPE ALSO AN IDENTIFICATION OF THE MESSAGE/ANSH
ER IN EVENT. '
THE CONTENTS OF MESSAGES OR ANSWERS ARE OELIVERED IN THE FIVE WOROS
- STARTING AT RELATIVE LCCATION AOR.

RO DELAY - EVENTTYPE
R1 ACR KEPT

R2 EVENTMASK EVENT

R7 . L INK DEST

The ADR parameter is checked not to point outside

the area belonging to the process.

Calling wait event with a zero event mask is
equivalent to encountering a timer action, and will not

suspend the process, only preempt it.
Symbolic names for event masks and event types are
defined in Appendix A. Masks have names BMxxxX and

types have names BNXXXX.

Programming Example

In the following example 3 event types are awaited:

messages answers and signals:

USE BASE
MYBUF: 0 REPEAT .4 7 5 words

CSsS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato

JHP/810303

= I side

78

i erstattar [projekt

USE PROG
MOVC MYBUF R1;
MOVC BMSIG OR BMMSG

OR BMANS R2;
MON WAITEVENT ;

IEQ

JMP

IEC

JMP

R@ BNSIG ;
HANDLESIGNAL ;
RP BNMSG
HANDLEMSG 7

-

The order in

interrupt
signal T
answer
message
system answer
system message
path answer
path message

parent signal

delay

set up adr

set up event mask
wait (mask,adr,-,type,
event)

if type = signal then
go to handle signal
if type = message then
go to handle message
else continue; comment:

type is answer.

which event occurrences are checked is:

, and finally

If wait event is called with a delay = - phase, and

with an event mask including delay, the process will

always resume processing immediately after the call.

CSS/302/PSP/0008

sign/date page
JH@P/810303 79
CR80 AMOS KERNEL PRODUCT SPECIFICATION fepce project

4.3 Inspect Events

MONITOR FUNCTION INSPECT EVENTS I: (EVENTMASK,ADDR,DELAY)
O0: C(EVENTTYPE,EVENT)
INVOKATION:
MON INSPECTEVENTS

INSPECT EVENTS IS INTENDED TO BE USED FOR PROBING FOR OCCURRED EVENﬁ5514'
WITHOUT RECEIVING THE EVENTS. L
EVENTMASK IS A BITMASK WHICH SPECIFIES THOSE TYPES OF EVENTS TO B8€
INSPECTED. EVENT TYPES ARE INSPECTED IN THE ORDER OF THEIR PRIORITY.

THE INSPECTION TERMINATES WHEN AN OCCURRED EVENT IS ENCOUNTERED

INSPECT EVENTS DOES NOT CHANGE THE STATE OF THE EVENTS INSPECTED. IN
ORDER TO RECEIVE AN EVENT, THE FUNCTION AWAIT EVENT MUST BE CALLED.
NOWEVER, THE CONTENTS OF MESSAGE AND ANSWER TYPE EVENTS ARE DELIVERED.

RO ' DELAY EVENTTYPE
R1 ADOR KEPT

R2 EVENTMNASK EVENT

R7 LINK DEST

e L SR

Inspect events works similarly to wait event. If none
of the eventtypes specified have occurred the process

is delayed until an occurrance.

CSS/302/PSP/0008

sign/dato | side
CR80 AMOS KERNEL PRODUCT SPECIFICATION EHA81030 =80

Suspend

MONITOR FUNCTION SUSPEND
INVOKATION:
" MON SUSPEND
- THE CALLING PROCESS IS SUSPENDED AND THE CPU IS SCHEDULED.
R? L INK DEST

This function is only to be used as a tool in other

monitor functions.

Ready

MONITOR FUNCTION READY . [2{PCB INDEX}
INVOKATION:

MON READY
THE PROCESS IDENTIFIED BY THE PCB INDEX IS LINKED TO ITS READY LIST.
RO PCB INDEX KEPT - :
R7 LINK DEST

This function is reserved for use as a tool in other

monitor functions.

Lookup CPU

MONITOR FUNCTION LQOKUP CPU I:(REF(NAME)), 0:=(CPUCB INDEX)
R: (NOT FOUND,FQUND)
INVOKATION:
MON LOGKUPCPU
THE CPU IDENTIFIED BY NAME IS LOOKED UP AND ITS CPUCB INDEX IS RETURNE

0 IN CPUID. .

RO REF{NAME) CPUCB INDEX
R7 LINK DEST
RETURNS:

LINK+Qz NOT FOUND

LINK+#132 FOQUND

The reference to NAME is checked not to violate the

process memory space.

CSS/302/PSP/0008

signidata % side

CR80 AMOS KERNEL PRODUCT SPECIFICATION HHO/B10303 8l

erstatter projekt

4.7 Set CPU parameter

MONITOR FUNCTION SET CPU PARAMETER I:(CPUC3 INDEXsPARsPRIOsYALUE)
R:{ERROR0K)
INVOKATION:
MON SETCPUPARAMETER
CHECKS VALIDITY OF THE CPUCB INDEX AND OF THE PARAMETER IDENTIFICATION.
SETS THE VALUE OF THE PARAMETER.
NOTE THAT SOME PARAMETERS ARE A FUNCTION GF THE THE SOFTWARE PRIORITY.

RO CPUCB INDEX KEPT

R1 PAR KEPT

R2 PRIO KEPT

R4 VALUE KEPT

R7 LINK DEST

RETURNS:

-LINK+Q: ERROR N -
LINK+1: oK :

The parameters which can be modified are (see 3.4).

CCPUID - (hardware CPU number)
CIMASK (default interrupt mask)

For each of the CPRIOS software priority levels the

following parameters can be set

CSCHRS (schedule reset count)

CSLISZ (size of time slice)

CACTIM (accumulated time)

CHWPRI (hardware (PSW) priority bits)

The priority is specified in PRIO.
The parameter to be set must be specified in PAR
(register 1). The following symbolic values of PAR

are defined (appendix A).

CSS/302/PSP/0008

sign/dato | side

CR80 AMOS KERNEL PRODUCT SPECIFICATION JHQL&lQ&03~ =

erstatter projekt

ZCPUNMB (for CCPUID)
ZINTMSK (for CIMASK)
.+ ZSCHRCNT (for CSCHRS)
ZSLICESZ (for CSLISZ)
ZACCEXECT (for CACTIM)
ZHWPRIO (for CHWPRI)

CSS/302/PSP/0008

sign/date page
JH®/810303 83
CR80 AMOS KERNEL PRODUCT SPECIFICATION reptace Rrolsst
4.8 Get CPU parameter
MONITOR FUNCTION GET CPU PARAMETER I: (CPUCB INDEX,PAR,PRIO)

Rz (ERROR,0OK)
INVOKATION:
MON GETCPUPARAMETER

O: (VALUE

CHECKS VALIDITY OF THE CPUCB INDEX AND OF THE PARAMETER IDENTIFICATION

RETURNS THE VALUE OF THE PARAMETER.

NOTE THAT SOME PARAMETERS ARE A FUNCTION OF THE THE SOFTWARE PRIORITY.

RO . CPUCB INDEX VALUE
R1 PAR) KEPT

R2 PRIO KEPT

R? LINK DEST

RETURNS:

LINK+0: ERROR

LINK*+1: oK

See also 4.7, set CPU parameter.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side

810303 ~ 84

erstatter projekt

Create Process

MONITOR FUNCTION CREATE PROCESS Iz (REF(PARAMETER BLOCK))
0: (COMPLETIGN CQDE)

Rz (ERRGRsDONE)
INVOKATION=

MON CREATEPROCESS
THIS FUNCTION ALLOCATES AND INITIALISES A PCB IN ACCORDANCE WITH THE
PARAMETERS IN THE PARAMETER B8LOCK.
THE STATE CF THE PROCESS IS SET TO STOPPED.
THE PROCESS DESCRIPTOR (REGISTERS AND BASIC PARAMETERS) ARE ALSO PRESE
Te THE LOGICAL PCB CREATED IS RETURNED IN THE PARAMETER BLOCK IN PARAM
CTCR VIDECNT.
THE PROGRAM MUST BE LOADED AND MEMORY FOR THE PROCESS MUST BE ALLOCAT
ED BEFDRE CREATE PROCESS IS CALLED.

RO - , COMPLETION CODE

R1 REF(PARAMETER BLOCK)KEPT

R7 L INK DEST

COMPLETION CODES:

0: NO ERRORS

1: NO VACANT PC3'S

2: REFIPARAMETER BLOCK) VIOLATES SIZE OF CALLING PROCESS

3: CLASSIFICATICN OF PRCCESS TO BE CREATED TO HIGH

43 CAPABILITIES OF PROCESS TO BE CREATED NOT A SUBSET OF PARENT'S.
5: INVALID NAXE

62 INVALID CPU o
72 INVALIO PRIQRITY

83 MESSAGE OVERRUN THREAT

RETURNS:

LINK+0: ERROR

LINK+1:2 DONE

The parameter block i1s checked to lie within the

memory space of the calling process.

The layout of the parameter block is defined symbolically
in Appendix A and in figure 4.9.a.

The size of a parameter block is VPARLGT words (138 words)

Create process makes the following use of the parameters:

VNAME®, VNAMEl, VNAMEZ2 (name):
It is checked that the name does not commence with
'P' (lower byte of VNAME@). If not all three

parameters are zero, it is checked that the name is

not already used by an existing process.

EKH/820601 85

LOCATION NAME CONTAINS

0 VNAME® -

1 VNAME1 >Symbolic process name

2 VNAME 2 -

3 VIDENT index to PCB allocated

4 VPROG absolute ref to program

5 VINIT PROG relative start address

6 VMICRO - PROG relative ref to-micro program

load module (AMOS)or program pade {w

7 VCAPAB process capability

8 VCPU index of CPU control block

9 VPRIO required SW priority
10 VLEVEL preset value for system level
11 VBASE absolute BASE for process
12 VSIZE size of area belonging to process
13 VBOUND preset value for BOUND register

14 VMEMORY memory allocation parameter
15 VMSGS max. numb. of message buffers used
16 VUSERID userid

17 - -

Fig. 4.

9

.2 CREATE PROCESS PARAMETER BLOCK.

CSS/302/PSP/0Q008

sian/date L side

EKH/820601 86

erstatter k 1 projekt

JH®P/810303

CR80 AMOS KERNEL PRODUCT SPECIFICATION

If all three parameters are zero, a name is generated
and returned in VNAME@ - VNAME2. The name will be of

the form P@@xxx, where xxx is a 3 digit number.

The name becomes the name of the process to be created
(PCB parameter SNAME).

VIDENT _ ,
In this parameter the PCB index of the created

process 1s returned.

VPROG
This becomes the PROG (program base register) of the

created process.

VINIT
This is used to prepare the program counter for the

process to be created.

VMICRO
If VMICRO is 0, 1, 2 or 3, it defines the memory

section of the program.

N

If greater than 3, it is used to build a reference to a
micro program load module. (PCB item SMICRO).
The scheduling algorithm will ensure that this module

is always loaded before the process is executed.

VCAPAB

This becomes the PCB parameter SACCESS.

It is checked that VCAPAB is compatible with the
SACCESS of the calling process (refer to 3.3.4).

CSS/302/PSP/0008

| sign/dato sigde

CR80 AMOS KERNEL PRODUCT SPECIFICATION | QlﬁlQ;Qi» 87

erstatter projekt
|

VCPU
Defines the CPU which shall be used to execute the

process being created.

VPRIO
Defines the software priority level applicable,
(refer to 3.4 and 3.5).

VLEVEL
This value is copied to context item XLEVEL
(fig. 3.3.1l.c).

VBASE

This is used as the absolute BASE for the process to
be created.

NOTE that the page and priority bits must be correctly

set (this is one reason for restricting access to create

process) .
BASE:
15 _ 3210
T T
Priority bits
Page bits
VSIZE

This defines the size of the area above BASE belonging
to the process. Copied to PCB item SSIZE.

VBOUND

Defines the value of the BOUND register for the process.
Copied to context item XBOUND (fig. 3.3.1.c). ‘
Note thatVBOUND can at most be VSIZE-1l. (see below).

CSS/302/PSP/0008

sign/dato | side

' 88 .
CR80 AMOS KERNEL PRODUCT SPECIFICATION EKH/820601 ——

Gra1auol N | projekt

JHP/810303

If VLEVEL = 1 (system level), XBOUND is set
to -1 in order to allow the process to write
everywhere (XAMOS only)..

~addressable by
process in User
State

VBOUND —&=

belonging to
process

VSIZEnHHH‘ei)

VMEMORY
This parameter is copied to PCB item SMEMORY. It is
not interpreted by the Kernel.

VMSGS

This defines to the Kernel the maximum number of message
buffers which the process should be able to allocate.
VMGSGS+1 is copied to PCB item SMSGLIM.

The Kernel will only allow creation of a process if

the total amount of SMSGLIM for all existing processes
does not exceed the total amount of available messagé
buffers.

CSS/302/PSP/0008

sign/dato side 5
810303 [89.
CR80 AMOS KERNEL PRODUCT SPECIFICATION %ﬁfﬁ% - —
VUSERID
VUSERID is copied to context locations XUSERID@ and
XUSERIDL. ’

Create process initializes the following context
words (fig. 3.3.l.c). '

XUSERID@
XUSERID1
XCBASE
XPCB
XLEVEL
XBOUND
XBASE
XMOD
XPROG
XPRPC
XTIMER
XPSW
XLOCAT

When the process is created it is in the STOPPED state,
and has to be started by a call of start process.

The Kernel has prepared the process to initially
execute a call of IOINIT (see ref. 2.4).

The general purpose registers RP-R7 will be undefined
when the process is about to execute the first user
defined instruction (at location VPROG+VINIT) .-

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato

| side

90

JH®/810303

erstatter

projekt

4.10 - Start Process

MONITOR FUNCTION START PROCESS I

2 (CHILD), R: (ERROR,O0ONE)

INVOKATION: =
MON STARTPRCCESS

CHECKS THAT THE PCB8 INDEX CHILD IDENTIFIES A CHILD PRCCESS OF THE
CALLING PRCOCESS AND THAT THE STATE OF THE CHILD IS STQPPED OR TO BE
STOPPED. IF THE CHECK FAILS, RETURN IS MADE 7O ERRQOR.

ELSE THE STATE OF THE CHILD IS CHANGED TO PREEMPTED AND RETURN IS

MADE TO DONE.

RO CHILD ' KEPT
R7 LINK 'DEST
RETURNS:

LINK+0: ERROR =
LINKeL: OONE

Checks that the PCB index child identifies a child

process of the calling process and that the state
of the child is stopped (or to be stopped). If

the check fails, return is made to error.

Else the state of the child is changed to preenpted
the process attributes SERROR (refer to 3.3.1) are

cleared and return is made to done.

CSsS/302/PSP/0008

| sign/data side
CR80 AMOS KERNEL PRODUCT SPECIFICATION "Jﬂﬁ%lwm pmim?al

4.11 Stop Process

MONITOR FUNCTION STOP PROCESS Iz (CHILDJ)» Rz (ERROR,DONE)
INVOKATION:

- - -MON STCPPRCCESS
CHECKS THAT THE PCB INDEX CHILD IDENTIFIES A CHILD PROCESS OF THE

CALLING PROCESS. THE CHILD IS STOPPED (THE TO BE STOPPED FLAG IS SET IN
SSTATE) AND RETURN IS MADE TC DONE.

RO CHILD KEPT
R7 L INK DEST
RETURNS:

LINK#O: ERROR

LINKel: OONE

Note that if the calling process and the process to
be stopped execute on different CPU's, there may be
‘a variable time between the return from call of

Stop Process and the time when the process is STOPPED.

If certainty about the process being STOPPED is
required, this information may be obtained by a
call of Get Attributes (see 4.15).

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side

THB/810303

92

| projekt

erstatter

4.12

Remove Process

MONITOR FUNCTION REMOVE PROCESS I:=(CHILD) O:UMEMORY) R2:(ERROR,DONE)
INVOKATION:
MON REMOVEPROCESS
CHECKS THAT THE PCB INDEX CHILD IDENTIFIES A CHILD PROCESS OF THE
CALLING PROCESS.
IF NOTs RETURN IS MADE TO ERROR.
ELSE A REMOVE OPERATION 15 PERFORHED ON THE CHILD:
IF THE CHILD IS EXECUTING, THE REMOVE FLAG IS SET IN ITS PCB
PARAMETER SSTATE AND THE CALLING PROCESS IS SUSPENDED.
IF THE CHILD IS WAITING. (I E SUSPENDEOD) IT IS PREPARED TO EXECUT
A SELFREMOVE PROGRAM AND SCHEDULED.
THE CALLING PROCESS IS SUSPENDED UNTIL THE CHILO HAS COMPLETED ITS
SELFREMOVE. WHEN THIS HAPPENS THE PARENT IS SCHEDULED AND RETURNS WITH
THE MEMORY ALLOCATICN PARAMETER FROM THE CHILD IN MEMORY.
WHEN THE CHILD HAS BEEN REMOVED, A CALL OF GET CHILD WILL DELIVER THE

NEXT CHILD

RO CHILD MEMORY
R7 L INK DEST
RETURNS:

LINK+0: ERROR

LINKel:z DONE

CSS/302/PSP/0008

I sign-dato side
\TH®B10: i ;
CR80 AMOS KERNEL PRODUCT SPECIFICATION Tm‘ : 2303 N 22
erstatter projekt
]

Adopt Process

MONITOR FUNCTION ADOPT PROCESS I:(CHILD) R:(ERRORsDONE)
INVOKATIONS

MON ADOPTPROCESS
CHECKS THAT THE PCB INDEX CHILD IDENTIFIES A CHILD PROCESS OF THE
CALLING PROCESS AND THAT THE CALLING PROCESS HAS A PARENT.
IF SO THE CHILOD IS MOVED FROM THE CALLING PROCESS TO THE PARENT OF
THE CALLING PROCESS AND RETURN IS MACE TO DONE » ELSE TO ERRCR.

RO CHILD KEPT
R? L INK DEST
RETURNS:

LINK+0: ERROR

LINKe1: DONE

The calling process transfers its parenthood for
one o0f its child processes to the grandparent of
the child.

CSS/302/PSP/0008

sign/dato side
Ql§10303 94
CR80 AMOS KERNEL PRODUCT SPECIFICATION “Jﬁm, m——

Get Child

MONITOR FUNCTION GET CHILD O:(CHILD)}, R2(NONE,DONE)
INVOKATION:

MON GETCHILD
DELIVERS THE PCB INDEX OF THE FIRST CHILD IF ANY, ADVANCES THE CHILD
REF TQ THE NEXT CHILD AND RETURNMNS TO DONE, ELSE TO NONE (NO CHILDREN)
SUCCESSIVE CALLS QOF GET CHILD WILL STEP THROUGH THE CIRCULAR LIST OF
CHILD PROCESSES» DELIVERING THEIR PCB INDICES ONE BY GNE.

RO CHILD (PCB INDEX)
R7 LINK DEST

RETURNS:

LINK+Oz NONE

LINKe+1l:2 DONE

Sucéessive calls of getchild will step through
the circular list of child processes, delivering

their PCB indices one by one.

CSS/302/PSP/0008

sign/dato L side
| 95
10303
CR80 AMOS KERNEL PRODUCT SPECIFICATION JH0/81030 p—

4,15 Get Attributes

MONITOR FUNCTION GET ATTRIBUTES Is(PCB INDEX,RESULT) R3(ERROR,0K}
INVOKATIONS

MON GETATTRIBUTES
IT IS CHECKED THAT THE PCB INDEX DENOTES A PROCESS CONTROL BLOCK.
IF NOTs RETURN IS MACE TO ERROR. ELSE TO OK.
THE FOLLOWING PARAMETERS FROM THE PC3 ARE DELIVERED AT THE DESTINATION
IDENTIFIED BY THE REFERENCE RESULT:

SACCESS

SSTATE

SERRGR (2 WQRDS)

SEXECT (3 #€QRDS)

SCREAT (3 WORDS)

RO PCB INDEX KCPY

R1 RESULT KEPT

R7 L INK 0EST
_RETURNS: .

LINK+O: ERRQOR

LINK+1z axK

It is checked that the pointer RESULT does not

‘violate the memory space of the calling process.

CSS/302/PSP/0008

sign/dato iide
810303 96
CR80 AMOS KERNEL PRODUCT SPECIFICATION ’IHF%;/— - —

Identify Process, Lookup Process

MONITOR FUNCTION IDENTIFY PROCESS I:(PCB INDEX) O0:(NAME)
INVOKATION:

MON IDENTIFYPROCESS
THE NAME OF THE PROCESS IDENTIFIED BY THE PCB INDEX IS RETURNED, IF
THE PROCESS EXISTS, ELSE A DUMMY NAME: ™727777% IS RETURNED.

RO PC8 INDEX NAMED
R1 - NAME1
R2 = NAME2
R?7 LINK ’ DEST

MONITOR FUNCTION LOOKUP PROCESS I={REF(NAME)) (Q:(PCB INDEX)
R: (NOT FOUNDs FOQUND)..

INVOKATION:

MON LOOQKUP PROCESS
RO REF(NAME) PCB INDEX
R7 LINK DEST
RETURNS:
LINK#0:" NOT- FOUND SIS
LINK+1: FOUND

It is cehcked that ref. (NAME) does not violate the

memory space of the process.

CSS/302/PSP/0008

sign/data Lside
8X0303 97
CR80 AMOS KERNEL PRODUCT SPECIFICATION ’Iﬂ% &y

4.17 Send Signal

MONITOR FUNCTION SEND SIGNAL I:(RECEIVER)

INVOKATION:
e MON SENDSIGNAL
SETS THE SIGNAL BOOLEAN IN THE RECEIVER PROCESS. IF THE RECEIVER WAS

AWAITING THE SIGNAL IT IS LINKED TO ITS CPU READY QUEUE.
RO REFINAME OF RECEIVER) KEPT
R7 L INK DEST

If‘the receiver process does not exist, the
signal is sent to ROOT (ref. to 3.13).

It is checked that ref. (NAME of RECEIVER) does not
violate the memory space of the calling process.

CSS/302/PSP/0Q008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato =side

JHG/810303 98

erstatter "projekt

Send Message

MONITOR FUNCTION SEND MESSAGE I:(RECEIVERsMESSAGE), 0: (EVENT)
INVOKATIONS

MON SENDMESSAGE
THE FIVE WORDS REFERENCED BY MESSAGE ARE COPIED TO A MESSAGE BUFFER.
THE CONTENTS OF THE MESSAGE BUFFER ARE DELIVERED TO THE RECEIVER, WHEN
THE RECEIVER CALLS WAIT EVENT WITH A PROPER EVENT MASK.
AN ICENTIFICATION OF THE MESSAGE BUFFER IS RETURNED IN EVENT
AND MAY BE USED AS A PARAMETER IN A SUBSEQUENT AWAIT CALL.

RO REFINAME OF RECEIVER) KEPT
R1 REF(MESSAGE) KEPT

R2 - EVENT
R7 L INK DEST
Errors:

@ If no message buffers are available, the calling
process is forced to repeat the call of Send
Message. (This situation will not occur due to
the restrictive policy for creating new processes

(refer to 4.9 and to 6)).

e If the receiver process does not exist, the message
will be sent to ROOT (refer to 3.13) which in turn

will return a dummy answer.

e If the process by calling send message attempts
to use more message buffers than it is allowed to
(refer to 4.9) the calling process will call
ERROR with a Kerned produced error code: # 13D

(see also 6).

CSS/302/PSP/0008

sign/dato L side

99

CR80 AMOS KERNEL PRODUCT SPECIFICATION JH0 810303

erstatter projekt

e If one of the references (to RECEIVER or MESSAGE)
violates the address space of the process, the
process will call ERROR with a Kernel produced
error code: ‘# 1@3C or # 1(256-respectively.

CSS/302/PSP/0008

sign/dato side
CR80 AMOS KERNEL PRODUCT SPECIFICATION ,1&%5781._0_303 =] ,,,Oiek,loo

4.19 Send Answer

MONITOR FUNCTION SEND ANSWER IS{ANSWER,EVENT)}
INVOKATION:
MON SENDANSHER
THE FIVE WCRCS REFERENCED BY ANSWER ARE SENT TO THE ORIGINAL SENDER
OF THE EVENT.

R1 REF{ANSKER) KEPT
R2 EVENT g EVENT
R7 LINK LINK

It is checked that ref (Answer) does not violate Ehe

memory space of the calling process.

CSS/302/PSP/0008

sign/dato side

810303 100.1-
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/ OZU302 |

erstatter projekt

4,20 Await Answer

MONITOR FUNCTION ARAIT ANSWER I: (EVENT,ADRsDELAY)

0: (EYENTTYPELEVENT),
INVOKATION:

MON AWUTANSWER :
THE PROCESS IS SUSPENDED UNTIL THE ANSWER OCCURS OR THE DELAY ELAPSES.

RO DELAY EVENTTYPE
R1 ACR , KEPT

R2 EVENT EVENT

R7 LINK e

This function is used to wait for a specific

answerxr.

It is checked that the pointer ADR does not violate

the memory space of the calling process.

It is checked that EVENT is the index of a
message buffer .sent by the calling process and that

no answer has yet been delivered.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato _'side
JH@/ 810303 101
erstatter projekt

4.21 Send System Message

MONITOR FUNCTION SENG SYSTEM MESSAGE I2(RECEIVERIMESSAGE), 0:(EVENTI}

INVOKATION:

MON SENDSYSTEMMESSAGE
RO REF(NAME OF RECEIVER) KEPT
R1 REFIMESSAGE} KEPT
R2 -~ EVENT
R7 LINK DEST »

This function is similar to send message

(refer to 4.18).

CSS/302/PSP/0008

sign/dato side
810303 102
CR80 AMOS KERNEL PRODUCT SPECIFICATION - : =

4,22 Send System Answer

MONITOR FUNCTION SEND SYSTEM ANSKER Iz (ANSWER,EVENT)
INVOKATION:

MON SENOSYSTEMANSWER
SIMILAR TO SEND ANSWER.

R1 REFU{ANSHER?} KEPT
R2 EVENT EVENT

R7 LINK ’ LINK

Réfer to Send answer 4.19.

CSS/302/PSP/0008

signh/dato side

1HG /810303 " 103

CR80 AMOS KERNEL PRODUCT SPECIFICATION P e

Await System Answer

MONITOR FUNCTION AWAIT SYSTEM ANSWER
Iz (EVENT,ACR,DELAY), 02 (EVENTTYPE,EVENT)
INVOKATION:
MON ARTSYSTEMANSHKHER
THE PROCESS I3 SUSPENDED UNTIL THE ANSWER OCCURS OR THE DELAY ELAPSES.

RO DELAY EVENTTYPE
R1 ADR KEPT
R2 EVENT EVENT

R7 L INK DETS

This function is similar to Await answer (ref. to

4.20).

CSS/302/PSP/0008

signfdato side
THG,B810303 |7 104
CR80 AMOS KERNEL PRODUCT SPECIFICATION e o

4,24

Open Path

MONITOR FUNCTION OPEN PATH I:(RECEIVER)y O2(EVENT)
INVOKATIONS:

MON CPENPATH
LOCATES (LOOKS UP) THE RECEIVER WHICH IS DENOTED BY NAME AND ALLOCATES
ANC INITIALISES A MESSAGE BUFFER WHICH CAN BE USED IN SUBSEQUENT
CALLS OF SENO PATH MESSAGE/ SEND PATH ANSWER. THE BUFFER IS IDENTIFIED
BY EVENT.

RO REF [NAME)} KEPT \
R2 - EVENT
R7 LINK KEPT

It is checked that ref (Name) does not violate

the memory space of the calling process.

If the receiver cannot be found, the path will be
opened to ROOT (refer to 3.13).

CSS/302/PSP/0008

sign/dato _'side
He,/810303 105
CR80 AMOS KERNEL PRODUCT SPECIFICATION proti 2 e

4.25

Close Path

MONITOR FUNCTION CLOSE PATH I2(EVENT)

INVOKATION:

MON CLOSEPATH .
RELEASES A MESSAGE BUFFER WHICH WAS ALLOCATED B8Y A PREVIQUS CALL OF
OPEN PATH.
A PATH CAN ONLY BE CLOSED BY THE PROCESS WHICH OPENED THE PATH AND ONL
Y IF THE MESSAGE BUFFER RESIDES WITH THIS PROCESSs I.E. IF IT HAS NEVE
R BEEN SENT BY A SEND PATH MESSAGE CALL OR IF IT HAS BEEN RECEIVED AFT
ER A SEND PATH ANSWER CALL.
R2 EVENT DEST
R7 LINK LINK

CSS/302/PSP/0008

sign/dato side
[
CR80 AMOS KERNEL PRODUCT SPECIFICATION %10103 4 L08

4.26

Send Path Message

MONITOR FUNCTION SEND PATH MESSAGE I:{MESSAGE,EVENT)
INVOKATION:

MON SENDPATHMESSAGE
THE FIVE WORDS IDENTIFIED B8Y REF(MESSAGE) ARE SENT TO THE PRCCESS FOR
WHICH THE PATH WAS OPENED. THE WORDS ARE SENT USING THE MESSAGE BUFFER
WHICH WAS ALLOCATED WHEN OPEN PATH WAS CALLED.

Rl REF{MESSAGE) KEPT
R2 EVENT EVENT
R? LINK L INK

The call of this function must have been preceeded

by a call of open path.)

CSS/302/PSP/0008

sign/dato g Side
10303 107
CR80 AMOS KERNEL PRODUCT SPECIFICATION 800 gy

4,27 Send Path Answer

MONITOR FUNCTION SEND PATH ANSWER IZ(ANSWER,EVENT)
INVOKATIONS:

. MON SENDPATHANSWER

SIMILAR TO SEND ANSWER.

Refer to Send answer 4.19.

CSS/302/PSP/0008

sign/dato side
CR80 AMOS KERNEL PRODUCT SPECIFICATION ,IHQ,Z_WWSlQB_m miektlos

4,28

Await Path Answer

MONITOR FUNCTION AWAILIT PATH ANSWER
I: (EVENT,ADR,DELAY)s 02 (EVENTTYPE,EVENT)
INVOKATION:
MON AWTPATHANSKWER
THE PROCESS IS SUSPENDED UNTIL THE ANSWER OCCURS OR THE DELAY ELAPSES.

RO DELAY - EVENTTYPE
R1 ACR KEPT

R2 EVENT EVENT

R7 LINK = Wi

Similar to Await answer (refer to 4.20).

CSS/302/PSP/0008

sign/dato = side
CR80 AMOS KERNEL PRODUCT SPECIFICATION %EgﬁﬁlDBOB pmu}og

Identify sender

MONITOR FUNCTION IDENTIFY SENDER I:(EVENT) 0:3(PCB INDEX)
R:(ERROR,0K)
INVOKATION?
MON IBENTIFYSENDER
CHECKS THAT THE EYENT IS RECEIVED BY THE CALLING PROCESS.

IF NOT RETURN IS MADE TO ERROR.
DELIVERS THE PCB INDEX OF THE SENDING PROCESS AND RETURNS TO COK.

RO PCB INDEX
R2 EVENT KEPT

R7 LINK DEST
RETURNS:

LINK+Q: ERRQOR

LINKs+1:2 oK

This function is used to deliver the PCB index of a
sender process from which the calling process has

received a message, system message, or path message.

CSS/302/PSP/0008

sign/dato »| Side
810303 110
CR80 AMOS KERNEL PRODUCT SPECIFICATION ’I%Ef-‘ e

4.30 Save Event

MONITOR FUNCTION SAVE EVENT I:(EVENT)
INVOKATION:

I MON SAVEEVENT
IF THE EVENY IS A RECEIVED MESSAGE (ORRDINARY, SYSTEM, OR PATH) (E.G.
DELIVERED 3Y A CALL OF WAIT EVENT) OR THE FIRST MESSAGE OR ANSWER IN
AN EVENT QUEUE (E.G. DELIVERED BY A CALL OF INSPECT EVENTS) THE EVENT
IS MOVED TO THE TAIL OF THE CORRESPONDING LIST OF SAVED EVENTS,

R2 EVENT KEPT
R?7 LINK DEST

Suppose a message is received and the receiving
process is not prepared to process it e.g. because
another message (not yet received) must be handled
first. The process can defer processing of the
message by calling Save event, and at a later time

resume processing of it by calling Recover events.

CSS/302/PSP/0Q008

sign/dato N side -
CR80 AMOS KERNEL PRODUCT SPECIFICATION Mﬁ,smm 10303 e 1

4.31 Recover Events

MONITOR FUNCTION RECOVER EVENTS I:(EVENTTYPE)
INVOKATION:

MON. RECOVEREVENTS

IF THE EVENTTYPE IS A MESSAGE OR ANSWER TYPE (ORDINARY, SYSTEM, OR PAT

THE CORRESPONDING LIST OF SAVED EVENTS IS TRANSFERRED TO THE FRONT OF
THE CORRESPONDING EVENT QUEUE.

R2 EVENTTYPE KEPT
R7 LINK DEST

This function is to be used if reception of
messages has been deferred by a call of Save

event. After a call of recovery events the messages
will be delivered by calling wait event.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato

side

112

erstatter

JHGA10303_

perojekt

4,32

4.3.2.1

Read RTC

MONITOR PRCCEDURE READ RTC O:(YEAR-1900,MONTHsDAY,HOUR,MINySEC)

INVOKATION:
MON READRTC
RO -
R1 . =
R2 -
R7 LINK

Read System Time

LSB: SEC M58:
LS3: HOUR MSB:
LSB: MONTH MSB:2

DEST

MONITOR PROCEDURE READ SYSTEM TIME 0:(SYSTIME)

INVOKATION:
MON READSYSTIME

RETURNS THE SYSTEM ELAPSE TIME IN MILLI SECONDS

RO -
R1 -
R2 _J
R?7 LINK

MIN
DAY .
YEAR-1900

SYSTIME (LEAST SIGNIFICANT PART)

SYSTIME

SYSTIME (MOST SIGNIFICANT TIME)

DEST

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side

JHG/ 810303 113

erstatter projekt

Set Cycle

MONITOR FUNCTION SET CYCLE I:(CYCLE)
INVOKATIONS:

MON SETCYCLE
THE CYCLE WILL BE USED BY THE RTC PROCESS TO INITIALISE A PHASE.
THE PHASE IS DECREMENTED FOR EVERY 10TH OCCURRENCE OF THE 10 MS REAL
TIME CLOCK INTERRUPT. WHEN THE PHASE REACHES 0, IT IS RESET TO CYCLE.
WHEN A WAIT OPERATION INCLUDES THE TIMEQUT EVENT (ELAPSE OF A DELAY)
THE EFFECTIVE DELAY IS THE TOTAL OF THE DELAY PARAMETER AND PHASE.
RO CYCLE KEPT
R?7 LINK KEPT

When a process is created, its cycle is set to zero.
(PCB parameter SCYCLE). If the cycle is set to a

non zero value by a call of Set cycle, this value will
be used to reset and preset its phase (PCB parameter
SPHASE) .

The phase‘can be used to implement a synchronization
to real time which is independent of the time elapsed
between the wake up of a process and its next call

of wait event (because its phase is constantly
maintained by the RTC).

CSS/302/PSP/0008

sign/dato = | side
310303 114
CR80 AMOS KERNEL PRODUCT SPECIFICATION ’{%&;{r— T orer

Reserve Interrupt

MONITOR FUNCTION RESERYE INTERRUPT Iz (DEVPR), O:CINTRPT]
INVOKATION:

MON RESERVEINTERRUPT
CHECKS DEVPR [PRIORITYs DEVICE ADR}. IF DEVPR [S VALID AND THE CORRES-
PONDING INTERRUPT IS NOT RESERVED BY ANOTHER PROCESSs THE CALLING PROC
ESS IS INSERTED AS RESERVER AND A LOGICAL REFERENCE IS RETURNED (INTR

PT). THE SAME PARAMETER IS INSERTED IN THE PCB AS THE CURRENTLY AWAITE
D INTERRUPT.

IF THE INTERRUPT IS ALREADY RESERVED BY A PROCESS, A VALUE OF -1 IS
RETURNED IN INTRPT.

R1 DEVPR INTRPT
R7 L INK LINK

DEVPR contains the device address and priority
as follows:

76 543210
| T

Y Yy
L priority

device address (I/0)

CSS/302/PSP/Q008

sign/dato ~| side
THG/ 810303 115
CR80 AMOS KERNEL PRODUCT SPECIFICATION i gt

4.35

Release Interrupt

MONITOR FUNCTION RELEASE INTERRUPT [:(INTRPT)
INVOKATION:
MON RELEASEINTERRUPT
IF INTRPT IS VALID AND CORRESPONDS TO AN INTERRUPT RESERVED BY THE
CALLING PROCESS, THE INTERRUPT IS RELEASED. OTHERWISE NO ACTION IS
TAKEN.
R1 INTRPT KEPT
R7 LINK LINK

CSS/302/PSP/0008

sign/dato ks Side
810303 116
CR80 AMOS KERNEL PRODUCT SPECIFICATION MR/ 10308 s

4.36

Clear Interrupt

MONITOR FUNCTION CLEAR INTERRUPT I=(INTRPT)
INVOKATION:
MON CLEARINTERRUPT
CHECKS THE VALIOITY OF INTRPT AND THAT THE INTERRUPT IS RESERVED BY
THE CALLING PROCESS. THE INTERRUPT COUNTER IS CLEARED TO ZERG.
R1 INTRPT INTRPT

R7 LINK - LINK

CSS/302/PSP/0008

sign/dato - | side
' 10303 117
CR80 AMOS KERNEL PRODUCT SPECIFICATION {%53? T

Set Interrupt

MONITOR FUNCTION SET INTERRUPT IZ(INTRPT)
INVOKATION:
MON SETINTERRUPT
THIS FUNCTION VALIDATES THE INTRPT. IF IT CORRESPONDS TO AN INTERRUPT
RESERVED BY THE CALLING PROCESSs THE INTRPT PARAMETER IS INSERTED IN
THE PCB AS THE CURRENTLY AWAITED INTERRUPT.
R1 INTRPT KEPT
R?7 LINK LINK

CSS/302/PSP/0008

sign/dato | side
JHG/ 810303 118-
CR80 AMOS KERNEL PRODUCT SPECIFICATION e —

4.38

Inclusion of New Monitor Procedures

MONITOR FUNCTICN INITIALISE MONITOR FUNCTION
INVOKATION:
MON MONINIT
PREPARES THE MONITOR JUMP TABLE TO CONTAIN ABSOLUTE POINTERS TO SPECI
FIED PROCECURE ENTRIES.
THE INITIALISE FUNCTICN CALL MUST BE SUCCEEDED BY A PARAMETER LIST:
LOCy (FUNCTIONSENTRY):eooa {LFUNCTIN,ENTRY),O
FUNCTION: MUST BE A VALUE IN THE RANGE (644255} SIGNIFYING
THE MONIOTR CALL ARGUMENT.
ENTRY: MUST BE A PROG REL REF TO THE CORRESPONDING PROCEDU
RE/FUNCTION.
R7 LINK DEST

/

It-is checked that the entries to be initialized are
not already used. If this check fails, the calling

process is stopped by entering an infinite loop.

Programming Example

The procedure with label NEW is to be entered
corresponding to an invokation by MON NEWPROC:

NEW:

MON MONINIT
LOC, NEWPROC, NEW, @

CSs/302/PSP/0008

sign/date page
JH@/810303 119
CR80 AMOS KERNEL PRODUCT SPECIFICATION replace projeat
4.39 Error/Terminate
FONITOR FUNCTION ERROR I:(ERRORCODEZERRCRLOCATICON)

INVOKATION:
MON ERROR
MON TERMINATE
2;1 15 OF THE ERROR CODE IS SET.
€ CALLING PROCESS IS SUSPENDED WI
TH =
EQEER2:$ LOCATION ARE STOREC IN SERROR?STATE
SIGNAL IS SENT TO THE PARENT OF
ol B Rt oo THE CALLING PROCESS.
:; ERROR LOCATION
LINK

H OR ALTERNATIVELY:

STOPPED AND THE ERROR

The following convention is adapted for error codes:
o the upper byte defines a subsystem which
generated the error code:
@: utility generated code
1l: Kernel generated code
: I/0 system generated code
3,4,5: File Management System generated code
: Device driver generated code

7: Pascal Runtime generated code

o the lower byte contains a subsystem defined

error code.

The error code @ is used to express a normal

termination.

CSS/302/PSP/0008

sign/dato side
CR80 AMOS KERNEL PRODUCT SPECIFICATION ‘{Eﬁf‘m‘?“o%— p—— 120
proje
4.40 Miscallaneous Functions
4.40.1 Write RTC
‘' MONITOR PROCEQURE WRITE RTC I3(YEAR-1900,MONTHsDAY HOURsMIN,SEC)
INVOKATION:
MON WRITERTC
RO LS8z SEC MSB: MIN
R1 LSB: HOUR MSB: DAY
R2 LSB: MONTH MSB: YEAR-1900
R? LINK DEST

This procedure is used by

the RTC driver to

update the real time clock.

CSS/302/PSP/0008

sign/dato = side - l
THG/810303 ==
CR80 AMOS KERNEL PRODUCT SPECIFICATION ponvt S P

4.40.2 Clean Messages

MONITOR FUNCTION CLEAN MESSAGES.

INVOXATION:
MON CLNMESSAGE

CLEANS UP AFTER A PROCESS WHICH HAS USED THE MESSAGE SYSTEMS.

R7 LINK

DEST

This function is called by the Kernel during removal

of a process.

CSs/302/PSP/0008

sign/date page
JHP/810303 122
CR80 AMOS KERNEL PRODUCT SPECIFICATION replace b

4.41 Create Region

PROCEDURE CREATE_REGION I:(REF(C3)) 0:(CC) R:(ERROR,OK)

INVOKED 8Y:
MON REGION, RCREATE

INITIALIZES A CRITICAL REGION CONTROL 3LOCK (CRCB).

IT IS CHECKED THAT A REGION DOES NOT ALREADY EXIST WITH A NAME AS
SPECIFIED IN THE CREATION BLOCK (C3).

IF-POSSTBLE A CRCB IS ALLOCATED AND INITIALIZED AS SPECIFIED IN THE CB

REGISTER CALL EXIT
RO REF(C3) KEPT
R7 LINK - COMPLETION_CODE
RETURNS:
LINK+1: ERROR (SPECIFIED IN THE COMPLETION_CODE)
LINK#2: oK
POSSIBLE ERRORS: :
; ILLEGAL NAME (ZCRILLNAME)
NO CRCB“S CZCROVFL)
"REF(CB) VIOLATES PROCESS SIZE — e .3
- (ZCRPSI) ;
4,41.1 Region completion codes

The following completion codes are defined for cri-

tical regions:

@ no errors
unknown function (ZCRUNF)

parameter ref., violates address

N

space of process (ZCRPSZ)
unknown region (ZCRUNR)

region not entered (ZCRILLSTA)
invalid process (ZCRPCB)
invalid region name (ZCRILLNAM)
address violation in VS (ZCRVSZ)
too many regions (ZCROVFL)

O ~J o U1 W

CR80, AMOS CRITICAL REGIONS
PRODUCT SPECIFICATION

sign/dato side

JHP/790823 122a

erstatier projekt

4.41.2 Region Parameter Definitions

The parameters used when calling the region procedures

are defined formally in this section using pascal

notation.
Type Region-Name = record
name: array Cb..ZJ of integer;
name-ident: integer
end;
Type Variable-Space = record
addr, page, size: integer
end;
Type Region-Creation-Block = record
name: region-name;
VS: variable-space

end;

CSSs/302/PSP/0008

sign/date page
JHP/810303 123
CR80 AMOS KERNEL PRODUCT SPECIFICATION repiace project

4,42 Enter Region

PROCEDURE ENTER_REGION I:(REF(NAME)) 0:(CC) R:(CERROR,OK)
INVOKED BY:
MON REGION, RENTER

IT IS CHECKED THAT THE RSEGION SPECIFIED BY NAME EXISTS.

IF NO PROCESS IS IN THE ENTERED STATE FOR THE REGION, THE CALLING PROC
IS SET IN THE ENTERED STATE, AND RETURN IS MADE TO OK.

OTHERWISE, THE PROCESS IS SUSPENDED AND LINKED TO THE TAIL OF THE “ENT
QUEUE® FOR THE REGION. HERE IT IS OELAYED UNTIL ALL PROCESSES ALREADY
WAITING TO ENTER HAVE HAD THEIR TURN.

REGISTER CALL EXITY

RO REF(NAME) KEPT

R7 LINK COMPLETION_CODE
RETURNS:

LINK+1: ERROR (AS SPECIFIED IN THE COMPLETION CODE)
LINK#2: ox

POSSIBLE ERRORS:
ILLEGAL NAME (ZCRILLNAM)
~REF(NAME) VIOLATES PROCESS SI1€ (ZCRPSI)

— REGION UNKNOWN ' CZCRUNR)

CSs/302/PSP/0008

sign/date

page

JHP/810303 124

replace

CR80 AMOS KERNEL PRODUCT SPECIFICATION

project

4.43 Leave Region

PROCEDURE LEAVE_REGION I:(REF(NAME)) 0:(CC) R: (ERROR,OK)

INVOKED B8Y:
MON REGION, RLEAVE

IT IS CHECKED THAT THE REGION EXISTS, AND THAT THE PROCESS IS IN THE

ENTERED STATE FOR THIS REGION.

THE STATE OF THE PROCESS VIS A VIS THE REGION IS CHANGED TO “REGION

LEFT” .

IF THE “WAIT QUEUE® IS NOT EMPTY AND THE DIRTY FLAG IS SET THEN
THE °WAIT QUEUE® IS MOVED TO THE HEAD OF THE “ENTER QUEUE“’.

THE DIRTY FLAG IS CLEARED.

IF THEN THE °‘ENTER QUEUE® IS NOT EMPTY, THE FIRST PROCESS IN THE
QUEUE IS DEQUEUED, PUT IN THE ENTERED STATE, AND SCHEDULED FOR

EXECUTION.

THE CALLING PROCESS CONTINUES.

REGISTER CALL EXIT

RO REF(NAME) KEPT

R7 LINK COMPLETION_CODE
RETURNS:

LINK#1: ERROR (SPECIFIED IN THE COMPLETION_CODE)
LINK+2:2 0K

POSSIBLE ERRORS:
ILLEGAL NAME
REF(NAME) VIOLATES THE PROCESS SIZE
UNKNOWN REGION
REGION NOT ENTERED

C(ZCRILLNAN)
(ZCRPS2)
(ZICRUNR)
(ZCRILLSTA)

CSs/302/PSP/0008

sign/date page
TH®/810303 125
replace project

CR80 AMOS KERNEL PRODUCT SPECIFICATION

4.44 Wait Region

PROCEQURE WAIT_REGION I:(REFCNAME)) 0:(CC) R:(CERROR.OK)
INVOXED BY:
MON REGION., RUAIT

IT IS CHECKED THAT THE REGION EXISTS, AND THAT THE CALLING PROCESS

IS IN THE ENTERED STATE.

THE PROCESS STATE VYIS A VIS THIS REGION IS CHMANGED TO “WAITING TO RE_
ENTER®,

IF THE °WAIT QUEVE® IS NOT EMPTY AND THE DIRTY FLAG IS SET THEN THE
“WAIT QUEUE® IS MOVED TO THE .HEAD OF THE “ENTER QUEUE“.

THE OIRTY FLAG IS CLEARED.

IF THE °“ENTER QUEUE® IS THEN NOT EMPTY, THE FIRST PROCESS IN THE QUEVE
IS DEQUEUED, PUT IN THE ENTERED STATE, AND SCHEDULED FOR EXECUTION.
THE CALLING PROCESS IS LINKED TO THE TAIL OF THE WAIT QUEUE AND

SUSPENDED.

REGISTER CALL EXIT

RO REF(NAME) KEPT

R?7 LINK COMPLETION_CODE
RETURNS:

LINK#9: ERROR (SPECIFIED IN THE COMPLETION CODE)
LINK#+2: oK

POSSIBLE ERRORS:
AS FOR LEAVE_REGION

Css5/302/PSP/0008

sign/dats page
TH®,/810303 126
CR80 AMOS KERNEL PRODUCT SPECIFICATION raplace project

4.45 Get Item

PROCEDURE GET_ITEM I:(REF(NAME),ITEM INDEX) O:(ITEM,CC) R:(ERROR,OK)
INVOKED BY
MON REGION, RGEY

IT IS CHECKED THAT THE REGION EXISTS AND THAT THE PROCESS IS IN THE
ENTERED STATE. ’

THE WORD IN THE VARIABLE SPACE CONTROLLED BY THE REGION, THE ADDRESS

OF WHICH IS
PAGE: REGION.CRSTA
WODADOR: REGION.CRADDR + ITEM INDEX

IS RETURNED IN ITEM, PROVIDED THAT
ITEM INDEX <= REGION.CRSIZE

REGISTER CALL EXIT
RO REF(NAME) KEPT
R1 ITEM INDEX KEPT
R2 - ITEM '
R? LINK COMPLETION_COD
RETURNS:
LINK#1: ERROR (SPECIFIED IN THE COMPLETION_CODE)
LINK+2: 0K
POSSIBLE ERRORS:

UNKNOWN REGION (ZCRUNR)

NOT ENTERED STATE CZCRILLSTA)

REF(NAME) VIOLATES PROCESS SIZE (ICRPSL)
ITEM INDEX VIOLATES VS SIZE (ZCRYS2)

CSs/302/PSP/0008

sign/date page
TH®/810303 /127
CR80 AMOS KERNEL PRODUCT SPECIFICATION replace protect

4.46 Put Item

PROCEDURE PUT_ITEM Is(REF(NAME), ITEM INDEX, ITEM) 0:(CC) R:(ERROR,OK)
INVOKED BY:
MON REGION., RPUT

THIS FUNCTION IS SIMILAR TO GET_ITEM, EXCEPT THAT THE ITEM IS STORED I
THE VARIABLE SPACE.
THE REGION DIRTY FLAG IS SET.

REGISTERS CALL . EXIT

RO REF(NAME) KEPT

R1 ITEM INOEX KEPT

R2 ITEM KEPY

R7 ' LINK COMPLETION_CODE
RETURNS: REFER TO GET_ITEM

POSSIBLE ERRORS: REFER TO GET_ITEM

CSS/302/PSP/0008

sign/date page
JHP/810303 128
replace project

CR80 AMOS KERNEL PRODUCT SPECIFICATION

4.47 Get n Items

PROCEDURE GET_N_ITEMS I:(REF(NAME),ITEM INDEX, DESTINATION,N)
0: (CC) R: (ERROR,OK)

INVOKED BY:
MON REGION, RGETN

IT IS CHECKED THAT THE REGION EXISTS., AND THAT THE CALLING PROCESS IS
THE ENTERED STATE.
THE RANGE OF ADDRESSES DEFINED BY TITEM INDEX AND N ARE CHECKED TO LIE
WITHIN THE VARIABLE SPACE OF THE REGION.
IT IS ALSO CHECKED THAT THE RANGE OF ADDRESSES DEFINED 8Y DESTINATION
AND N LIE WITHIN THE CALLING PROCESS.
THE N ITEMS IN THE YARIABLE SPACE DEFINED BY THE ADDRESS RANGE:

PAGE: REGION.CRSTA

WOADDR: REGION.CRADDR ¢ ITEM INDEXsecaees

esces REGIONLCRADDR + ITEM INDEX +N -1

ARE DELIVERED IN THE N LOCATIONS

DESTINATION/aecesar DESTINATION + N -1

REGISTER CALL EXIT
RO REF(NAME) KEPT
R1 ITEM INDEX KEPT
R2 DESTINATION (REL) KEPT
R3 N (WORDS) KEPT
R7 . LINK COMPLETION_CODE
RETURNS:
LINK#1: ERROR (SPECIFIED IN COMPLETION CODE)
LINK+2: 0K
POSSIBLE ERRORS:
UNKNOWN REGION (ZCRUNR)
REGION IS NOT ENTERED (ZICRILLSTA)

REF(NAME) VIOLATES PROCESS SIlE (ZICRPSZ)
DESTINATION,N VIOLATES PROCESS SIZE (ICRPSZ)
ITEM INDEX,N VIOLATES VS SIZE (ZCRVYS2)

CSS/302/PSP/0008

sign/date page
JTH@/810303 129
replace project

CR80 AMOS KERNEL PRODUCT SPECIFICATION

4.48 Put n Items

0:(CC) R:(ERROR,OK)

INVOKED 8Y
MON REGION., RPUTN

SIMILAR TO GET_N_ITEMS EXCEPT FOR THE OIRECTION OF MOVING DATA.
THE DIRTY FLAG IS SET.

REGISTER CALL EXIT
RO REF(NAME) KEPT
R1 ITEM INDEX KEPT
R2 SOURCE (REL) KEPT
R3 N (WORDS) KEPT
R7 LINK COMPLETION_CODE
RETURNS: REFER TO GET_N_ITEMS

POSSIBLE ERRORS: REFER TQ GET_N_ITEMS

CSsS/302/PSP/0008

sign/date page
TH®/810303 130
CR80 AMOS KERNEL PRODUCT SPECIFICATION Ll projact

Copy n Items

PROCEDURE COPY_N_ITEMS I:(REF(NAME),ITEM INDEX, DESTINATION,N)
0z (CC) R: (ERROR,OK)

INVOKED 8Y:-
MON REGION, RCOPYN

IT IS CHECKED THAT THE REGION EXISTS
THE RANGE OF ADDRESSES OEFINED BY ITEM INDEX AND N ARE CMECKED TO LIE
WITHIN THE VARIABLE SPACE QF THE REGION.
IT IS ALSO CHECKED THAT THE RANGE OF ADORESSES DEFINED BY DESTINATION
AND N LIE WITHIN THME CALLING PROCESS. -
THE N ITEMS IN THE VARIABLE SPACE OEFINED BY THE ADDRESS RANGE:

PAGE: REGION.CRSTA
ARE DELIVERED IN TME N LOCATIONS

DESTINATION/cacaecesr DESTINATION + N -1

REGISTER CaLL EXIT

RO REFI(NAME) KEPT

R1 ITEM INDEX KEPT

R2 DESTINATION (REL) KEPT

R3 N (WORODS) KEPT

R? LINK COMPLETION_CODE
RETURNS:

LINK#q: ERROR (SPECIFIED IN COMPLETION CODE)
LINK+2: 0K

POSSIBLE ERRORS:
UNKNOWN REGION CZCRUNR)
REF(NAME) VIOLATES PROCESS SIZE (ICRPSZ)
DESTINATION,N VIOLATES PROCESS SIZE (ZCRPSZ)
ITEM INDEX,N VIOLATES VS SIZE (ZCRYVSZ)

Css/302/PSP/0008

sign/date page
- TH@®/810303 131
CR80 AMOS XERNEL PRODUCT SPECIFICATION EEIEFE proigst

4.50 Buffer Allocation Procedures

The following buffer allocation procedures are pro-
vided via CSS/361l:

4.50.1 Get Buffer

MINITOGR PROCEDURS GET_BUFFER I:(SIZE), Q:(MEMIRY,ADDRESS,PAGE,SIIE)
R:{NJT_POSSIBLE,0K)

INVCKED 3VY: MON GET3UF

ALLOCATES A MEMQORY AREA OF AT LEAST SIZE WORDS. THE ACTUAL SIZE, ADORE

SS AND PAGE ARE RETURNED.

PAGE MAY BE USED OIRECTLY AS A PSW VALUE WHEN SUBSEQUENTLY ACCESSING
THE 3UFFER.

RO - MEMORY (ALLJCATION PARAMETER)
R1 S - ADORESS (ABS WORD)
R2 o - PAGE : 3
R3 SIIE) SIZE (UPDATED)
a7) LINK DEST o
RETURNS S ™~ o T e e
LINK+0: - NOT_POSSISLE - it oAk
LINK+T: ax

4.50.2 Release Buffer

MONITOR PROCSNURE RELEASE_BUFFER I:(MEMORY), R:z(FAULT.O0K)

INVOKED 8Y: MON RELBUF

VERIFIES THAT THE MEMORY JEFINED BY THE MEMORY ALLOCATION PARAMETER
MEMORY BELONGS TO THE CALLING PROCESS.

RELEASES THE MEMORY INTOD THE VACANT AREA POOL.

RO MEMIRY - DEST
R1 - - DEST
R? LINK DEST
RETURNS:

LINK+Q: FAULT

LINK+1: aK

CssS/302/PsSp/0008

sign/date page
JTHP/810303 132
CR80 AMOS KERNEL PRODUCT SPECIFICATION fepiace EASiech

4.50.3

4.50.4

Get Address

MONITOR PROCEDURE GET_ADDRESS-I:(MEMORY), O'CADDRESS:PAGE'SIZE)
R: (FAULT,OK)
INVOKED 8Y: MON ADRBUF
VERIFIES THAT THE MEMORY DEFINSD 3Y THE MEMORY ALLOCATION PARAHETER
MEMORY BELONGS TO THE CALLING PROCESS.
CONVERTS MEMORY TO AN ADDRESS, A PAGE AND A SIZE,
PAGE MAY 3E USED DIRECTLY AS A PSW VALUE WHEN SUSS‘QUENTLY ACCESSING
THE BUFFER,

RO MEMQRY KEPT

R1 - ADDRESS
R2 - PAGE

R3 - SIZE

R?7 LINK 9esT
RETURNS: ‘

LINK*O: EAULT

LINK+1: aK

Clean Memory

MONITGCR PROCEDURE CLEAN_MEMORY

INVOKED BY: MON CLNMZM

ALL MEMORY 8% L"NGING TOD THE CALLING PROCESS IS RELZASED.
RO DEST

R1 ' - DEST

R7 LINK DEST

CSs/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dste page
TH@®/810303 133
repilace project

4.51.1

Double Precision Arithmetic

The following 32 bit multiply and divide functions
are provided via CSS/316.

‘Multiply Long

Invoked by MON MULTIPLY LONG

MONITOR PROCEDURE MULTIPLYLONS (QP1,0P2, REF,RESULT,QVERFLOW)
THE PROCEDURE MULTIPLISS THE TWD DJUSLE WJIRD OPERANDS OP1 AND
0P2. THE RESULT IS DELIVE?ED AT FOUR LOCATICONS STARTING AT
REF. RESULT. -
IF THE RESULT MAS: MORE THAN 32 SIGNIFICANT 3ITS
(=22%31C=RESULT<=2++31=1) THE OVERFLOW FLAG IN B
PSW WILL BE SET TO TRUE ELSE TQ FALSE. THAT IS THE SIZE CAN B‘
TESTED 85Y JVN. -

OPERANDS OP1 AND OP2 ARE CONSIDERED 32 BIT OPERANDS

IN 2°S CORNPLEMENT REPRESENTATION. EACH QPERAND IS

CONTAINED IN TW0O WORDS: A LEAST SIGNISICANT PART (LOP) AND

A NOST SIGNIFICANT PART (MQOP) -

GISTER - CALL T EXIT
Ro . - LOP1 - DWRESULT
R1 e MoP1 © .7 1e.RESULT
R2 LoP2) 2.RESULT
R3 ! MOP2 3.RESULT
R4 DESTRAYZD
RS REF.RESULT REF.RESULT
R? LINK DESTROYED

THE RATIONALE FOR THE IMPLEMENTATION IS AS SOLLOWS:
LET A=(A(N)A(N=1),===,A(0)) 3E A 3INARY VECTOR
THIS VECTOR CAN REPRESENT EITHER AN UNSIGNED
UIN#1I (A) = A(N) #2##N+A(N=1) #2%x (N=1)+...+A(0)
OR A SIGNED INTEGER IN 2°S COMPLEMENT:
b - S‘N+1)(A) 'A(N)*Z*'N*A(N‘1)*2'*(N 1)*.--*A(0) —
NOH LET. . -
o iw ﬁ__F§N¢1)(A)= A(N)*Z**(N*1))
THEN A TR e TRl
U(N¢1’ SIN+1)+F(N+T)
THE FOLLQHING IS THEN VALID FUR
0=(D(31) y====,D10)) a7 ’
M=z{D(31),===,0(16)), HOST SIGNIFICANT PART QF O
L=(D€15) ,===,0(0)) , LEAST SIGNIFICANT PART QF O
AND D’/ M°,L":
SC32)(0)*5(32)(D)=

((2a218)#(SCT18ICMITILI5)I+S 18I LLIIA((2#%16)*(SCT16) (M)I+D°(15))+

SC16YC(L*))

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/date page
THB/ 810703 134
replace project

4.51.2

" —

Divide Long

Invoked by: MON DIVIDELONG

THIS PROCEDURE DIVIDES .A 2 WORC 2°S COMPLEMENT OPERAND =0OP1 = BY A

2 WCRO 2°S COMPLZMENT CPERAND = 0P2 = AND D2ELIVERS THE CQUOTIENT

AS 2 2 W3RC 2°S CCMPLEMENT NUMBER AT RESULT.

THE CVIRFLCW FLAS IN PSW WILL BE SST TRUE IF DIVISICN 2Y C IS ATTEMPTED
CTHZIRWISS THZ FLAG IS SET TC FALSZ., THE FLAG MAY SZ TESTED 28Y THE JVN
INSTRUCTION.

REGISTERS catlL IXIT
RQ Loo1 G.RISULT
R1 MOP1 1.RESULT
R2 LoP2 CEST
R MOP2 DEST
R4 - SEST
RS REELRESULT REF.RESULT
Gy o Rl BEST s e

E]
~
[l |

INK _ .0EST ¢

ar

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side

EKH/820601 134a

erstatter projekt

4.52.1

XAMOS Bound procedures.

An XAMOS process which must write outside its own data

memory (as f.ex. a driver) can get authorization to do

50, either

permanently, if it is created with LEVEL = 1 (system
level)

.Or

temporarily, by calling the monitor procedure
RELBOUND before and SETBOUND after each write

to foreign memory. It is the responsibility of the
process to save the original value of BOUND between
the calls of RELBOUND and SETBOUND

Release Bound Protection.

MONITOR PROCEDURE RELEASE BOUND PROTECTION
INVOKATION:

MON RELBOUND

BOUND PROTECTION IS DISABLED, BY SETTING THE FIELD
XBOUND IN THE PROCESS CONTEXT AND THE BOUND REGISTER
IN THE CPU TO -1 (XAMOS ONLY).

REGISTER CALL EXIT
R4 - OLD BOUND
R7 LINK DEST

]siunlﬂatn I side

EKH/820601 134Db

CR80 AMOS KERNEL PRODUCT SPECIFICATION bkt PrEIsKE

4,52.2 Set Bound Protection.

MONITOR PROCEDURE SET BOUND PROTECTION I:(BOUND VALUE)
INVOKATION:
MON SETBOUND

BOUND PROTECTION IS ENABLED, BY SETTING THE FIELD XBOUND
IN THE PROCESS CONTEXT AND THE BOUND REGISTER IN THE
CPU (XAMOS ONLY).

REGISTER CALL EXIT

R4 BOUND OLD BOUND
R7 LINK DEST

CSS/302/PSP/0008

CR80 AMOS KERNEL

sign/date page

THP/810303 135

PRODUCT SPECIFICATION LG pliest

5. LIMITATIONS

The

The

following limitations apply to the AMOS Kernel:

Only a single CPU can execute with I/O interrupts
enabled. This restriction arises from the CR80
interrupt handling hardware and firmware. The
reason for the restriction is to prevent re-
incarnations of processes and to be able to have

control over the CPU executing a given process.

The CPUs supported by the Kernel must all have
access to the same main memory. Further must

they have access to the first 4 Kword of main
memory via the Mainbus (in order to be able to

use hardware semaphores).
following CR80 configurations are supported
Up to 256 Kword of main memory

Up to 8 CPUs (system generation parameter)
CPUs with loadable control store.

CSS/302/PSP/0008

sign/date page

JH®/810303 136

CR80 AMOS KERNEL PRODUCT SPECIFICATION . Brogres

SYSTEM ASSEMBLY PARAMETERS

In this section some assembly parameters are described

which allow a tuning of the Kernel:

MULTIPAGE (Boolean)
Default value is true. If set to false, the Kernel
will only support CR80 configurations with up to
64 Kwords of main memory and a minor gain in speed

is obtained.

MSGCHK (Boolean)
Default value is true. If set to false, the Kernel
will not check the number of message buffers
allocated per process, and a small gain in speed

is obtained.

MSGCHK1 (Boolean)
Default is false.' If true a check is performed at
process creation that the message buffer pool is

never over_allocated.

NSEARCH (integer)
Default value is 10. Defines the maximum number of
PCBs inspected a time by the Kernel during a search
for a process. (Every time NSEARCH PCBs have been
inspected a pause is made to allow other processes

to enter the Kernel).

CPRIOS (integer)
Default value is 3. Defines the number of software

priorities (= number of ready lists per CPU).

CSS/302/PSP/0008

sian/date |bace

EKH/820601 137
repiace | project
CR80 AMOS KERNEL PRODUCT SPECIFICATION "5Hp/810303

REGIONS (Boolean)

Defines whether critical regions are to be supported.

SECT1 (Boolean)
Default is true. If true the Kernel data are laid
out in memory section 1 other wise in memory section

?.

XAMOS (Boolean)
Default is true. If false, only AMOS CPUs are supported.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

signidato | side

'JHG/810303 !

138 -

l erstatter | projekt

SYSTEM GENERATION

System generation consists of two phases:

e Assembling/compilation of modules

@ Linking of modules to generate a boot module

The second phase is best performed by use of the
CR80 AMOS UTILITY SYSGEN (ref. 2.6). The user manual
for this program should be consulted for further

details.

-

CSs/302/PSP/0008

sign/dete page

JHP/810303 139

CR80 AMOS KERNEL PRODUCT SPECIFICATION ESBISES profect

PERFORMANCE

.

This section is a summary of CR80 ececution times

measured for selected AMOS kernel components.

Three different methods of measuring have been used:

(a) instruction count:
The number of instructions were multiplied with

the average instruction time

2,2 us for CR8001
1,5 us for CR80101

(b) simulation
The simulation was performed by a Pascal program.
The relevant prefix procedure was called a large
number of times (e.g. 10000). The overhead caused
by entering and leaving Pascal procedures was
measured by calling a dummy procedure with identi-
cal parameter list but empty procedure body.
As a prefix procedure causes less overhead an aver-
age of 15 instructions was subtracted from the over-

head measures.

(c) Using the time for a related operation.

N.B. Memory is always assumed to be accessed via the

main bus and not via the sub bus.

CSs/302/PSP/0008

sign/date page
JHP/310303 140
CR80 AMOS KERNEL PRODUCT SPECIFICATION retace project

CR8001 CR80101
Function execution execution

time (us) time (us)
-WAIT EVENT:
signal 195 b 163 b
delay 205 b 175 b
DIALOGUE:
send message + _
wait message + 1280 b 890 b
send answer +
wait answer
Send signal 210 b 153 b
Wait answer:
timeout 217 b 178 b
Save event + 415 b 283 b
recover events
Path messages:
Use the exrc. times for ordinary messages
CRITICAL
REGIONS:
enter region 220 c 150 B
leave region 220 c 150 b
get item 270 c 183 b
put item 270 C 183 b
get N items 280+22. N c 190+15°N b
put N items 280+22°N c 190+15°'N b
copy N item 280+22°'N c 190+15°N b
Read RTC 55 a 38 a

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| sign;dato [;ide

JHG/810303 141

| erstatter | projekt

GUIDELINES FOR FUTURE IMPROVEMENTS

One obvious improvement would be to implement part

of the Kernel code as microprogram.

The most often executed parts of the Kernel are the

procedures called in connection with

Entering the Kernel
Exitting from the Kernel
Scheduling

Suspending a Process

Readying a process

These subprograms are proper candidates for micro-

programming.

CSS/302/PSP/0008

] sign/dato r side

'JHG /810303 142

CR80 AMOS KERNEL PRODUCT SPECIFICATION i —

APPENDIX A

S2SYSsS

CR80 AMOS NAMES

CSS/302/PSP/0008

i sign/dato 1. side

\THG/ 810303 143

CR80 AMOS KERNEL PRODUCT SPECIFICATION P —
! !

The file S28YSS is a text file written to be used

as part of CR80 assembly program scurce files.

S25YSS defines the values of the symbolic monitor
call arguments to be used for calling AMOS monitor
procedures. It also defines values of symbolic

Kernel call parameters.

CSs/302/PSP/0008

CR80 AMOS KERNEL

PRODUCT SPECIFICATION

sign/dato

EKH/820601

side

144

erstatter

JH®/810303

projekt

3 i

PROJECT:

MODULE NAME:
MODULE ID NMB:
MODULE VERSION:
MODULE TYPE:

H

H

;

;

;

H

;

. MODULE FILES: S2SYSS. S

. MERGE FILES: NONE

;

; SPECIFICATIONS: CSS/302/PSP/0008

. AUTHOR/DATE: JHO

. DELIVERABLE: YES

. SOURCE LANGUAGE: CR80 ASSEMBLER

. COMPILE COMPUTER: CR80

. TARGET COMPUTER: CR80

. OPER. SYSTEM: AMOS

: ---
: CHANGE RECORD:

i VERSION AUTHOR/DATE DESCRIPTION OF CHANGE

; ---------------------------------------

i 0501 JHO/801015 READSYSTIME AND PASCALINIT2

; INCLUDED

: 0601 JHO/801121 FILENAME INCLUDED

;

0701 AEK/800105 MONITORNAME DEVICE #86 CHANGED TO

; MONITORNAME TTYLOG #86 TO SUPPORT CSS/339
' 0801 HPT/820501 MONITORNAMES RELBOUND AND SETBOUND INCLUDED
;

AMOS

S28YSS
cs35/811

8
MERGE FILE

MESSAGE <:AMOS SYSTEM NAMES V820501:>

SYS2=

; EVENTTYPES
AX=0
BMSIG:
BNSIG:
BMMSG:
BNMSG:
BMANS:
BNANS:
BMSYM:
BNSYM:
BMSYA:
BNSYA:
BMPTM:
BNPTM:
BMPTA:
BNPTA:
BMINTRPT:
BNINTRPT:
BMDELAY:=
BNDELAY:=
BMPARSIG:
BNPARSIG:=
CONTLENGTH: =

s COMMAND BITS

LU L T I [V T T T T I [N ' [I VI T

— T -

TRUE
1<4X%

6 AX, AX=AX+1 i SIGNAL TYPE
1<AX

JAX, AX=AX+1 i MESSAGE TYPE
1<AX

$ AX, AXzAX+1 ; ANSWER TYPE
1<AX

2 AX, AX=AX+1 : SYSTEM MESSAGE TYPE
1<AX

4 AX, AX=AX+1 ; SYSTEM ANSWER TYPE
1<AX

£ AX, AX=AX+1 : PATH MESSAGE TYPE
1<AX

6 AX, AX=AX+1 : PATH ANSWER TYPE
1<AX

DAX, AX=AX+1 : INTERRUPT TYPE
1<AX

AX, AX=AX+1 : DELAY TYPE
1<AX

9 éx, AX=AX+1 ;

; TRANSPUT OPERATIONS

AX=0
BNTPUT:=

AX, AX=AX+1

PARENT SIGNAL
; ELNGTH OF MESSAGE BUFFER

CSS/302/PSP/0008

sign/dato side

EKH/820601 145

orstatter projekt
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHP/810303

BNOPUT:= AX, AX=AX+1
BNBYTE: = AX, AX=AX+1
BNSPEC:= AX, AX=AX+1
BNCONV:= AX, AX=AX+1
BNSTEP:= AX, AX=AX+1
BNNOEC: = AX, AX=AX+?
BNNOCP:= AX, AX=AX+1
; CONTROL OPERATIONS

AX=2 :

BNRELEASE: = ¢ AX, AX=AX+1
BNRESERVE:= s AX, AX=AX+1
BNPOSITION:= ' AX, AX=AX+1
BNERASE:= T AX, AX=AX+1
BNCLEAR:= 5 AX, AX=AX+1
BNTERMINATE:= AX, AX=AX+1
BNDISCONNECT:= J AX, AX=AX+1
; RESULT BITS

AX= 0

BNNOTREADY: = AX, AX=AX+1
BNTIMER:= 2 AX, AX=AX+1
BNREJECT: = o AX, AX=AX+1
BNILLEGAL:= AX, AX=AX+1
BNUNCOMPLETE: = < AX, AX=AX+1
BNERROR:= T AX, AX=AX+1
BNEOF : = Lo AX, AX=AX+1
BNPARITY:= 7 AX, AX=AX+1
BNREADERROR: = 2 AX, AX=AX+1
BNWRITEERROR:= 2 AKX, AX=AX+1
BNFULL:= 1o AX, AX=AX+1
BNUNKNOWN: = /1 AX, AX=AX+1
BNBUSY:= 1t AX, AX=AX+1
BNNQTPOSS:= 1t AX, AX=AX+1

1 PAGE

CSs/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side

EKH/820601 146

arstatier projekt

JHP/810303

: SYSTEM CALLS

AX=0
CREATEPROCESS: = AX, AX=AX+1
; PARAMETER BLOCK FOR CREATEPROCESS:
AY=0
XPRNAMELENGTH: = uy
VNAMEO:= AY,AY=AY+1
VNAME1:= AY,AY=AY+1
VNAME2:= AY,AY=AY+1
VIDENT:= AY,AY=AY+1
VPROG: = AY, AY=AY+1
VINIT:= AY, AY=AY+1
VMICRO:= AY, AY=AY+1
VCAPAB:= AY, AY=AY+1
VCPU:= AY, AY=AY+1
VPRIO:= AY, AY=AY+1
VLEVEL:= AY, AY=AY+1
VBASE:= AY, AY=AY+1
VSIZE:= AY,AY=AY+1
VBOUND: = AY,AY=AY+1
VMEMORY: = AY,AY=AY+1
VMSGS: = AY, AY=AY+1
XUSERIDLENGTH:= 2
VUSERID:= AY,
VPARLGT:= AY
REMOVEPROCESS:= AX, AX=2AX+1
ADOPTPROCESS:= AX, AX=AX+1
STARTPROCESS: = AX, AX=AX+1
STOPPROCESS: = AX, AX=AX+1
GETCHILD:= AX, AX=AX+1
VANISH:= AX, AX=AX+1
CLNMESSAGE:= AX, AX=AX+1
CLNINTRPT:= AX, AX=AX+1
ERROR:= AX, AX=AX+1
TERMINATE:= ERROR
H ERROR CODE GROUPS
USERER:= 0<8
MONERR:= 1<8
IOERR:= 248
FMSERR:= 3<8
FMUERR: = 4<8
FMDERR:= 5<8
DRVERR: = 6<8
PASERR:= 7<8
OVLERR:=z 8<8
LOOKUPCPU:= AX, AX=AX+1
CLOSEPATH:= AX, AX=AX+1
OPENPATH: = AX, AX=AX+1
SETCYCLE: = AX, AX=AX+1
CLEARINTERRUPT:= AX, AX=AX+1
RELEASEINTERRUPT: = AX, AX=AX+1
SETINTERRUPT:= AX, AX=AX+1
RESERVEINTERRUPT: = AX, AX=AX+1
IDENTIFYSENDER:= AX, AX=AX+1
GETATTRIBUTES:= AX, AX=AX+1

1

e e s W e e wa

V8

AY=AY+XUSERIDLE

LENGTH OF PROCESS NAME

NAME. IF VNAMEO=0 THEN A STANDAR
D NAME IS GENERATED AND RETURNED
IT IS CHECKED THAT THE NAME DOES
NOT ALREADY EXIST NOR BEGINS WIT
TH "PII N

USED TO RETURN THE LOGICAL PCB

ABS PROGRAM BASE

PROGRAM RELATIVE START ADDRESS
PROGRAM REL ADR TO MICRO PROGR
LOAD MODULE

PROGRAM PAGE

CAPABILITIES

LOGICAL CPU

PRIORITY OF PROCESS TO BE CREATED
INITIAL SYSTEM LEVEL OF PROCESS
ABS BASE OF PROCESS TO BE CREATE
SIZE OF PROCESS

PRESET VALUE OF BOUND REGISTER.
MEMORY ALLOCATION PARAMETER.

MAY NMB OF MSG BUFFERS ALLOWED
LENGTH OF USER ID

NGTH; USER ID

LENGTH OF PARAMETER BLOCK.

USER DEFINED ERRORS
MONITOR KERNEL ERRORS (INCL HW)
I0 SYSTEM ERRORS
FLLE MANAGEMENT SYSTEM ERROR
FILE MANAGEMENT SYSTEM ERROR
FILE MANAGEMENT SYSTEM ERROR
DEVICE DRIVER ERRORS
PASCAL RUNTIME ERRORS
OVERLAY ERROR

CSs/302/pPSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

HRE 820601

side

147

erstatter

JH®/810303

projekt

LOOKUPPROCESS: = AX, AX=AX+1

SETCPUPARAMETER:= AX, AX=AX+1

GETCPUPARAMETER:= AX, AX=AX+1

BX=0 i CPU PARAMETERS
ZCPUNMB:= BX, BX=BX+1 : CPU NUMBER
ZINTMSK:= BX, BX=BX+1 g INTERRUPT MASK (PSW)
ZSCHRCNT:= BX, BX=BX+1 i SCHEDULE RESET COUNT .PRIO
ZSLICESZ:= BX, BX=BX+1 H SLICE SIZE .PRIO
ZACCEXECT:= BX, BX=BX+1 - ACC EXECUTION TIME .PRIO
ZHWPRIO: = BX, BX=BX+1 : HW PRIORITY BITS (PSW) .PRIO
ZCPUMAXPAR:= BX [

RECOVEREVENTS:= AX, AX=AX+1

SAVEEVENT:= AX, AX=AX+1

SUSPEND: = AX, AX=AX+1

READY:= AX, AX=AX+1
AX=AX+6) SPARE POSITIONS
IF AX GT 63 THEN USE 16 FI

AX=64

CPUINIT:= AX, AX=AX+1

MONINIT:= AX, AX=AX+1

INITPASCAL:= AX, AX=AX+1

OLTO:= AX, AX=AX+1

AWAITEVENT: = AX, AX=AX+1

WAITEVENT:= AWAITEVENT

SENDSIGNAL: = AX, AX=AX+1

AWTANSWER:= AX, AX=AX+1

SENDMESSAGE : = AX, AX=AX+1

SENDANSWER:= AX, AX=AX+1

AWTSYANSWER: = AX, AX=AX+1

SENDSYMESSAGE: = AX, AX=AX+1

SENDSYANSWER:= AX, AX=AX+1

AWTPATHANSWER: = AX, AX=AX+1

SENDPATHANSWER: = AX, AX=AX+1

SENDPATHMESSAGE: = AX, AX=AX+1

IDENTIFYPROCESS:= AX, AX=AX+1

READRTC:= AX, AX=AX+1

SENDTIMEOUT: = AX, AX=AX+1

WRITERTC:= AX, AX=AX+1

PROCESSPCBS: = AX, AX=AX+1

READSYSTIME:= AX, AX=AX+1

PASCALINIT2:%: AX, AX=AX+1

TTYLOG:= AX, AX=AX+1

CLNDEVICE:= AX, AX=AX+1

I0:= AX, AX=AX+1

CLNIO:= AX, AX=AX+1

IOINIT:= AX, AX=AX+1

GETBUF: = . AX, AX=AX+1

ADRBUF:= AX, AX=AX+1

RELBUF:= AX, AX=AX+1 {

CLNMEM: = AX, AX=AX+1

STREAM: = AX, AX=AX+1

INSPECTEVENTS:= AX, AX=AX+1

REGION:= AX, AX=AX+1

BX=0 5 REGION PROCEDURES i
RENTER:= BX, BX=BX+1
RLEAVE:= BX, BX=BX+1
RWAIT:= BX, BX=BX+1
RGET:= BX, BX=BX+1
RGETN:= BX, BX=BX+1
RPUT:= BX, BX=BX+1
RPUTN:= BX, BX=BX+1
RCREATE:= BX, BX=BX+1

; PARAMETER BLOCK FOR CREATE REGION
AY=0

VCRNAME:= AY, AY=AY+3; NAME OF REGION

CS8s/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato side
EXKH/820601 148
erstatter projekt
JH®/810303

VCRSTA:=
VCRADDR:=
VCRSIZE:=
VCRCBL: =

RSEARCH:=
RCOPYN:=

5 ERROR CODES

ZCRUNF:
ZCRPSZ:

ZCRUNR:
ZCRILLSTA:
ZCRPCB:=
ZCRILLNAM:
ZCRVSZ:=
ZCROVFL:=

OVERLAY:=
LOG:=
MULTIPLYLONG:=
DIVIDELONG: =
FINDFILE:=
INFILEID:=
LOGP:=

COR:=

SETBOUND:
RELBOUND:
FILENAME:

BX,
BX,

FOR REGION PROCEDURES

Q-3 N = [N

AY, AY=AY+1;
AY, AY=AY+1;
AY, AY=AY+1;
AY H

BX=BX+1
BX=BX+1

AX=AX+1
AX=AX+1
AX=AX+1
AX=AX+1
AX=AX+1
AX=AX+1
AX=AX+1
AX=AX+1
AX=AX+1 H

AX=AX+1 ;V8

AX=AX+1

; V8

PSW ENCODED PAGE OF VS
ABSOLUTE WORD ADDRESS OF VS
SIZE IN WDS OF VS

SIZE OF PARAMETER BLOCK

UNKNOWN FUNCTION

PARAMETER REF VIOLATES ADDRESS
SPACE OF PROCESS.

UNKNOWN REGION

REGION IS NOT ENTERED

INVALID PROCESS (PCB INDEX)
INVALID REGION NAME

ADDRESS VIOLATION IN VS

TOO MANY REGIONS

PREVIOUS ENTRY FOR FILENAME

CHANGED FROM 106 FOR COBOL USE

CSS/302/PSP/0008

i sign/dato ,,| side

'TH@/ 810303 ! 1
CR80 AMOS KERNEL PRODUCT SPECIFICATION | L 0 =

| erstatter [projekt
]]

APPENDIX B

X2GEN1

CR80 AMOS PROGRAM
AND DATA
HEADER GENERATOR
PART 1

CSsS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

i sign/date \. side

Eﬁgiﬁlo303 150

i erstatter | projekt
|

The text file X2GEN1 is written to be used as part of

CR80 assembly program source files.

X2GEN1 together with X2GEN2 (appendix C) generates
program and/or data headers in the format used by
ROOT and the CR80 AMOS I/O system,

X2GEN1 should be included in the start of CR80 assembly

source files before any data or instruction words have

been assembled. Improper use will generate a message:
X2GEN1 MUST BE CALLED INITIALLY IN SOURCE.

To control the header generation, a number of parameters
must be defined. Some of these parameters are defaulted.

The default values may be overridden by user assignments.

The parameters which the user may and/or must define
are listed below together with their possible default

values.

CSS/302/PSP/Q0Q08

| sign;dato 4 side

151

|
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHEO/ 810303

I erstatter projakt

Parameters which must be defined

XPROGRAM

Type : Boolean

Effect: If true a program header is generated.
Note : Must be defined prior to call of X2GEN1.
XDATA

Type : Boolean
Effect: If true a data header is generated.
Note : Must be defined prior to call of X2GEN1.

XPGNAMEO
XPGNAME 1
XPGNAME?2

Type : String (2 characters each)
Effect: Defines the name (6 characters) of
the program.
| May be assigned at any position
in source.
Note : Need not be defined if XPROGRAM is false.
Convention:
XPGNAMEO,1,2 is assigned the configuration
identification of the assembled module.
(Example CSS302 for the AMOS Kernel).

CSS/302/PSP/0008

| sign;/dato

side
JHA/810303 i 152

CR80 AMOS KERNEL PRODUCT SPECIFICATION

; erstatter | projekt

XVERSION

Type : Integer
Effect: Defines the program release version by
convention. May be assigned at any position

in source,

Note : ©Need not be defined if XPROGRAM is false.
XSTART
Type : Program relative reference.

Effect: Defines the entry point in the assembled
program.
Must be assigned prior to call of
X2GEN2.

CSS/302/PSP/0008

i sign'dato [side

! L.
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHO/. 810303 s

i erstatter | Projekr
| |

Optionally used parameters

XPGTYPE

Type
Effect:

Note
Default:

XMICRO

Type
Effect:

Note
Default:

Integer

Defines the type of the program. The following
bitmasks for XPGTYPE are defined:

BMREENTRANT defines the program part to be

reentrant.
BMRESIDENT defines the program part to be

not swappable.
BMPERMANENT defines the program part to be

not removeable.

BMMONITOR defines the program part as a
monitor procedure. These are initialized
specially by ROOT.

BMUTILITY defines the program to be a CR80

AMOS utility program. This has a special
implication if the program is also a pascal
program.

BMPASCAL defines the source language to be

Pascal.

May be defined before call of X2GEN2.
0, set by X2GEN2,

Program relative reference.
Defines the first location in the program
part of a binary micro program load module.
May be defined prior to call of X2GEN2.
0, (no micro module)

, set by X2GEN2

CSs/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

Isiun/dato T aida

EKH/820601

eratattar

 JHP/810303

154

| neniakt

XPGMEM

Type: Integer

Effect: Defines the memory area in which the program
must be placed.

Note: May be defined prior to call of X2GEN2.
The format of this parameter is defined in
3.16

Default: 77 FF00 set by X2GEN2.

XPRLEVEL

Type: Integer

Effect: Defines the initial value of system call nesting.
Should be 0 for application programs.
If 1, XLEVEL is initiated to -1 which allows the
process to write everywhere.

Note: May be defined prior to call of X2GEN2.

Default: 0, set by X2GEN2.

XCAPABILITIES

Type: Integer

Effect: Defines the necessary process capabilities.

Note: May be defined prior to call of X2GEN2.

Default: 0, set by X2GEN2.

XCPUNAMEOQ

XCPUNAME1

XCPUNAME?2

Type: String (2 characters each)

Effect: Used by ROOT to define the CPU which must execute
the program.

Note: May be defined prior to call of X2GEN2.

Default: 0, set by X2GEN2.

CSS/302/PSP/0008

sign/dato side

JHP/810303 154a

erstatter projekt

CR80 AMOS KERNEL PRODUCT SPECIFICATION

XPROCESSNAMEOQ

XPROCESSNAME1

XPROCESSNAME2

Type: String (2 characters each)

Effect= Used by ROOT to define the process name.

Note: May be defined prior to call of X2GEN2. (A name

commencing with P (e.g. PROGXY) is illegal)
Default: 0, 0, 0, set by X2GENZ.

CSS/302/PSP/Q008

sign;dato side
-

|
CR80 AMOS KERNEL PRODUCT SPECIFICATION ﬁﬁﬁﬁm"’o"’ B 132
XPRIORITY
Type : Integer,
Effect: Used by ROOT to define the software priority.
Note : May be defined prior to call of X2GEN2.

Default: 1, set by X2GEN2,

XTRA

Type : Integer.

Effect: Defines the size of the not assembled data
area between BOUND and IOAREA (refer to fig.
B.1)

Note : May be defined after call of X2GENT1.

Default: 0, set by X2GENT.

XTND

Type : Integer,

Effect: Defines the size of the not assembled data
area below BOUND (refer to fig. B.3)

Note : May be defined after call of X2GENT1.

Default: 0, set by X2GENIT.

XMSGS

Type : Integer.

Effect: Defines the maximum number of message buffers
allocatable by the process.

Note : May be defined after call of X2GENT.

Default: 4, set by X2GEN1.

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

' sign:dato | side

\THO/810303 ~ 156

? arstatter I projekt

XFDS

Type :
Effect:

Note H
Default:

XIBS

Type :
Effect:

Note
Default:

XSTS

Type
Effect:

Note H
Default:

XXFS

Type
Effect:

Note
Default:

Integer

Defines the number of file descriptions to
be laid out.

May be defined after call of X2GEN1.

0, set by X2GENI1.

Integer

Defines the number of I/O control blocks
to be laid out.

May be defined after call of X2GEN1.

0, set by X2GENI1.

Integer

Defines the number of stream control blocks
to be laid out.

May be defined after call of X2GEN1.

0, set by X2GEN1.

Integer

Defines the number of transfer list elements
to be laid out.

May be defined after call of X2GENI1.

0, set by X2GEN1.

CSS/302/PSP/0008

sign/dato side

EKH/820601| 137

CR80 AMOS KERNEL PRODUCT SPECIFICATION srsratier arolakt
, JH@/810303

XPRMEM

Type: Integer

Effect: Defines the memory area, in which the process must
be placed.

Note: May be defined prior to call of X2GEN2.
The format of this parameter is defined in 3.16.

Default: ##* FF00 set by X2GEN2.

XUSERIDO

XUSERID1

Type: Integer

Effect: Defines the user id for the process.

Note: May be defined prior to call of X2GEN2.

Default: 0,0, set by X2GEN2,.

The format of the headers generated by X2GEN1 is

shown in

figures B.1 and B.2.

The format of the object module for CR80 AMOS

programs/

data is shown in fig. B.3.

I“(‘

4

CSS/302/PSP/0008

sign;dato _l side

| EKH/820601 _158

CR80 AMOS KERNEL PRODUCT SPECIFICATION

BrawaLiar 1 nraiskt

JH®/810303

0 1

1 size of program part
2 XPGNAMEO

3 XPGNAME1

4 XPGNAME2

5 XVERSION

6 XPGTYPE

7 XSTART

8 XMICRO

0 (reserved)
10 XPGMEM
)

]
Reserved for

_ future use
‘:::t;, Jﬁ::f;7

30

31

Fig. B.1 CR80 AMOS Program Header.

CSsS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

| sian:dato | side

EKH/820601

| erstatter | projekt

. JHP/810303

0 2

1 size of assembled data part
2 XPROCESSNAMEO

3 XPROCESSNAME1

4 XPROCESSNAME2

5 XCPUNAMEOQ

6 XCPUNAMEN"

7 XCPUNAME2

8 XPRIORITY

9 XCAPABILITIES

10 memory claim

11 size of executing process
12 XFDS

13 . XIBS

14 XSTS

15 XXFS

16 XMSGS

17 0 (reserved)

18 XPRMEN

19 ref to I/0 part

20 XUSERIDO
21 XUSERID1

Fig. B.2-1 CR80 AMOS Data Header,

part 1/2

159

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

i sign:dato

side
\JH@/ 810303 4 160

I erstatter | projekt

22 0 (reserved)
23 0 (reserved)
24 XPRLEVEL

25 BOUND

26

Register area

£

(«=BASE)

38 100 (TIMER)
39 6800 (PSW)
40 0
42;7 Reserved
60 0
Fig. B.2-2 CR80 AMOS Data Header,

part 2/2

161

side
projekt

el

sign/dato

JHA/810303

| erstatter

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

‘owTI uny 3e pue SWTI ATqUesSY 3e 3no-Ae opoD 3o0alqo SOWY 0880 €°d °DbTd
—& LS
°23el}s ¥idsN
ut
3Ted 0/1 cTqISsao0®rUT
ST
3axed sTYlL
Y E
Td.LX
—%
PN
aNLX
~
ssaooxd ~
wuTe1o| buryinooaxs |3aed Q/I ~
X Touraut JO 9ZTS 01 399 aNnog YILYd ¥ \
AdTdWISSY
¥asn 3xed ejep
peTquosse YLYd
v -~ 30 °2T1s AL TIWASSY
asvd > JHAVIH = qdqsn LAY
— ~4 AR
~
~~
~
/I./AI J4AYHIH
llllll & %
d4d00 d4d0o
qdITdWAISSY AdIdWISSY LNV
¥asn axed wexboxd gasn v WRMDOY
JO 9zTS .
dHAYHH dddYdHH
9034d ¢ - — - - = T
309fqo 309(qo awty,
2uIT] uny peol ATquisssy

L
[}
i
>

- N v
-
-8 =i
o [o=
(2 &

P

frm i m, et e | m sl e | Steutsa b e

CSS/302/PsSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato

EKH/820601

side

162

erstatter

JHP/810303

projekt

CHBERENBENR AR RER N R ER BB RN B RRF IR R NRARR R RN RN R RE BB DR SRR RNRA RN

CHANGE RECORD:

-

MESSAGE <:X2GEN1 V820501:>

USE PROG

%F WORDS NE 0 THEN MESSAGE <:X2GEN1
I
AREASWITCH=
XTRA=

XTND=

XFDS=
XIBS=
XXFS=
XSTS=
XIOSIZE=
XMSGS=)

; GENERAL HEADER DECLARATION
AX=0

QOO0 O o o=

XHTYPE:= AX, AX=AX+1
BX=0
XTABLE:= BX, BX=BX+1
XCODE:= BX, BX=BX+1
XPROCESS:= BX, BX=BX+1
XHSIZE:= AX, AX=AX+1
XHNAME: = AX, AX=AX+3
XHGHL:= AX
; PROGRAM HEADER DECLARATION

AX= XHGHL
XPVERS:= AX, AX=AX+1
XPTYPE:= AX, AX=AX+1
BX=0
BNREENTRANT: = BX, BX=BX+1
BNRESIDENT:= BX, BX=BX+1
BNPERMANENT: = BX, BX=BX+1
BNMONITOR: = BX, BX=BX+1
BNUTILITY:= BX, BX=BX+1
BNPASCAL:= BX, BX=BX+1
BMREENTRANT: = 1<BNREENTRANT
BMRESIDENT:= 1<{BNRESIDENT
BMPERMANENT: = 1<BNPERMANENT
BMMONITOR:= 1<{BNMONITOR
BMUTILITY:= 1<{BNUTILITY
BMPASCAL:= 1<BNPASCAL
XPSTART: = AX, AX=AX+1
XPMICRO:= AX, AX=AX+1
XPCHKS:= AX, AXsAX+1
XPMEM:= AX, AX=AX+1

VERSION AUTHOR/DATE

; -------------------------
: 0101 JHO/790827

: 0201 HPT/820507

;

: '
A CR 80 AMOS L
s & DATAY AND PROGRAM HEADER *
L GENERATOR PART 1 »
% CONFIG ID: C€SS/831 *
‘¥ AUTHOR: JHO *
s ¥ DATE: 820501 *
s VERSION: 2 *
el »
;"‘***‘**‘***********i*’***l***l**l'************'**l**'*'********'***’.
H

]

H

]

DESCRIPTION OF CHANGE

INITIAL RELEASE

XAMOS DEFINITIONS INCLUDED

MUST BE CALLED INITIALLY IN SOQURCE:>

SIZE OF NOT
ABOVE BOUND
SIZE OF NOT
BOUND

DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT
DEFAULT

ASSEMBLED LOCAL DATA
ASSEMBLED DATA BELOW

NMB
NMB

OF FILE DESRIPTIONS

OF IO CONTROL BLOCKS
NMB OF XFER LIST ELEMENT
NMB OF IO STREAMS

SIZE OF IO AREA

NMB OF MESSAGE BUFFERS

H HEADER TYPE

H TABLE HEADER

H PROGRAM HEADER

- PROCESS HEADER

H SIZE OF ITEM (IN WORDS)
H NAME OF ITEM

H LENGTH OF GENERAL HEADER

; GENERAL HEADER HEADER
H PROGRAM VERSION “
H TYPE

REENTRANT VS NON REENTRANT
RESIDENT VS SWAPPABLE

PERMANENT VS REMOVEABLE

MONITOR CODE VS NON MONITOR CODE
UTILITY PROGRAM VS NOT UTILITY
PASCAL PROGRAM VS NOT PASCAL P

. e s e m =

RELATIVESTART ADDRESS

REL REF TO MICRO LOAD MODULE
CHECKSUM

MEMORY PARAMETER

CSS/302/PSP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato

EKH/820601

side

163

erstatter

JHP/810303

projekt

IF AX GT 32 THEN USE 16 FI

XPGHDL:=

IF XPROGRAM THEN
XCODE
XPGWDS
XPGNAMEQ
XPGNAME1
XPGNAME?2
XVERSION
XPGTYPE
XSTART
XMICRO

0
XPGMEM

AX=32
AX

0, REPEAT XPGHDL-LOC

FI
USE BASE

; PROCESS HEADER DECLARATION

AX=
XPROCHL:=

XHGHL

R P

V2

SPARE POSITIONS
LENGTH OF PROGRAM HEADER

PROGRAM TYPE HEADER
SIZE OF PROGRAM
PROGRAM NAME

PROGRAM VERSION

TYPE OF PROGRAM

RELATIVE START ADDRESS
RELATIVE ADDRESS TO MICRO
PROGRAM LOAD MODULE
CHECKSUM

PROGRAM MEMORY RANGE

GENERAL HEADER HEADER
LENGTH OF PROCESS HEADER

]
AX=

-19-XUSERIDLENGTH
XBEYLGT:= -AX
XPCPUNAME: = AX, AX=AX+3
XPRIO:= AX, AX=AX+1
XPCAP:= AX, AX=AX+1
BX=0
BNCLASS:= 12
BNMAXCL: = 15
BNCREPR:= BX,BX=BX+1
BNCCRPR: = BX, BX=BX+1
BNCREPG: = BX, BX=BX+1
BNCCRPG:= BX,BX=BX+1
BNALDEV:= BX,BX=BX+1
BNALMEM: = BX, BX=BX+1
IF BX GT 12 THEN USE 16 FI
XPRCLAIM:= AX, AX=AX+1
XPRSIZE:= AX, AX=AX+1
XPFDSX: = AX, AX=AX+1
XPIBSX:= AX, AX=AX+1
XPSTSX:= AX, AX=zAX+1
XPXFSX:= AX, AX=AX+1
XPMSGX: = AX, AX=AX+1
XCURDIR:= AX, AX=AX+1
XFUNCS:= AX, AX=AX+1
XIODATA:= AX, AX=AX+1
XUSERID:= AX, AX=zAX+XUSER
XCBASE: = AX, AX=AX+1
XPCB:= AX, AX=AX+1
XLEVEL:= AX, AX=AX+1
XSYSTEM:= 1
XUSER:= 0
XBOUND: = AX, AX=AX+1
XRO:= AX, AX=AX+1
IF XRO NE 0 THEN MESSAGE <:HEADER ER
XR1:= AX, AX=AX+1
XR2:= AX, AX=AX+1
XR3:= AX, AX=AX+1
XRH:= AX, AX=AX+1
XR5:= AX, AX=AX+1
XR6:= AX, AX=AX+1
XRT:= AX, AX=AX+1
XBASE: = AX, AX=AX+1

OR:

e ek W e e e W ws TX) e e w e we W e | ws W e e s e M WS s s s W e Mk e W e R e WE s W e WS ws e

SIZE OF AREA BEYOND REGISTERS
CPU NAME
PRIORITY
CAPABILITY REQUIREMENT
ACCESS:
LOW ORDER BIT OF CLASS FIELD
MAXIMUM CLASSIFICATION CODE
CREATE PROCESS
CREATE PROCESS WHICH CREATES
A PROCESS
CREATE AND LOAD PROGRAM
CREATE PROCESS WHICH CREATES
AND LOADS PROGRAMS
ALLOCATE DEVICE
ALLOCATE MEMORY
UNDERLINE IF ERROR
MEMORY CLAIM FOR PROCESS (WORDS)
SIZE OF EXECUTING PROCESS
NUMBER OF FILE DESCRIPTIONS
NUMBER OF IO CONTROL BLOCKS
NUMBER OF STREAMS
NUMBER OF TRANSFER LIST ELEMENTS
NUMBER OF MSG BUFFERS
CURRENT DIRECTORY
INITIALIZATION FUNCTIONS CALLED

DLENGTH

BASE COPY
LOGICAL PCB REF
SYSTEM LEVEL
SYSTEM LEVEL
USER LEVEL
REGISTER
REGISTER

> FI
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

it e W R e b AR et w3 e a0l ali et e kel iae e A o e

] : |
. e =
W - 2 3
B, = 4 - En
VP ow Y= LT O v
‘ L
¢
"t
Tea®

CSs/302/pPspP/0008

sign/dato side

EXH/820601 164

erstatter projakt
CR80 AMOS KERNEL PRODUCT SPECIFICATION THG /810303

XMOD: = AX, AX=AX+1 :
XPROG: = AX, AX=AX+1 H
XPRPC:= AX, AX=AX+1 :
XTIMER:= AX, AX=AX+1 s
XPSW:= AX, AX=AX+1 i
XOLDPRC:= AX, AX=AX+1 3
XLOCACT: = AX, AX=AX+1 :
XLOCRET:= AX, AX=AX+1 :
XCAUSE:= AX, AX=AX+1 H
XDEVICE:= AX, AX=AX+1 H
XTIMRS:= AX, AX=AX+1 ,
XMONRET: = AX, AX=AX+1 ;
XTLINK:= AX, AX=AX+1 :
XLINKO:= AX, AX=AX+1
XLINK1:= AX, AX=AX+1
XLINK2:= AX, AX=AX+1
XLINK3:= AX, AX=AX+1 3
XLINKY:= AX, AX=AX+1 s
XLINKS:= AX, AX=AX+1 ;
XLINK6:= AX, AX=AX+1 s
XLINKT:= AX, AX=AX+1 H
XWORKLGT= 5 3
XWORK:= AX, AX=AX+XWORKLGT;
XPROCLGT: = AX

XFIRST= - (XBEYLGT+XPROCHL)
IF XDATA THEN

LOC=

REGISTER

REGISTER

REGISTER

REGISTER

REGISTER

PREVIOUS PROCESS

LOCAL ACTION

LOCAL ACTION RETURN LINK
LOCAL INTERRUPT CAUSE CODE
DEVICE ADDRESS

TIMER RESET VALUE
MONITOR RETURN LINK
TIMER LINK

SIZE OF WORK AREA

WORK AREA
LENGTH OF PROCESS DESCIPTOR ABOV
REGISTERS

XFIRST
XPROCESS % PROCESS TYPE HEADER
XPRWDS 2 LENGTH OF PROCESS FILE
XPROCESSNAMEOQ NAME OF PROCESS
XPROCESSNAME1
XPROCESSNAME2
XCPUNAMEO : NAME OF REQUIRED CPU
XCPUNAMEN
XCPUNAME2
XPRIORITY H REQUIRED PRIORITY FOR PROCESS
XCAPABILITIES ; REQUIRED CLASSIFICATION LEVEL
: AND CAPABILITIES OF PROCESS
XTOTSZ H MEMORY CLAIM
XPRLNG H SIZE OF EXECUTING PROCESS
XPFDS o NUMBER OF FILE DESCRIPTOINS
XPIBS H NUMBER OF IO CONTROL BLOCKS
XPSTS i NUMBER OF IO STAREAMS
XPXFS ; NUMBER QOF TRANSFER LIST ELEMENTS
XPMSGS ; NUMBER OF MESSAGE BUFFERS
0 ; CURRENT DIRECTORY
XPRMEM ;V2 PROCESS MEMORY RANGE
XIOREF H REF TO IO DATA
XUSERIDO, XUSERID1 H USER ID
IF XUSERIDLENGTH NE 2 THEN MESSAGE <:USERIDLENGTH ERROR:> FI
0 H BASE COPY
0 H XPCB ,
XPRLEVEL H REQUIRED EXECUTION LEVEL OF PROC
XBNDSZ H BOUND
0, REPEAT 7 ; REGISTERS 0-7
P

XABASE, XABASE, XAPROG, XAPR
0, REPEAT (XPROCLGT-LOC)

¢,

100, #6800

S = —are s B mm i e m kG RE AEE —— = I e e . =] S S | —— b — % AN A sy S e A e e s ¢ A bl & e b e —e

CSS/302/PSP/0008

\ sign/dato _l side

165

- 810303
CR80 AMOS KERNEL PRODUCT SPECIFICATION JHa/81030

l erstatter ! projekt

APPENDIX C

X2GEN2

CR80 AMOS PROGRAM
AND DATA
HEADER GENERATOR
PART 2

o - e

CSS/302/PSP/0008

©®/810303 " 166

erstartter | projekt

CR80 AMOS KERNEL PRODUCT SPECIFICATION

‘ sign/dato I side

The text file X2GEN2 is written to be used as
part of the CR80 assembly language program source

files.

X2GEN2 together with X2GEN1 (appendix B) generates
program and data headers in the format used by
ROOT and the CR80 AMOS I/O system.

CSs/302/PSP/0008

sign/dato side
EKH/820601 167
CR80 AMOS KERNEL PRODUCT SPECIFICATION THp/810303 "™

cHRRREEREERES R

HRARRRRANNRS

CHANGE RECO
VERSION

0101
0201

B LT

-

HRRREBEERRFBRFRRURFA T AR RARERRRRSERRARIRFFRRRRRRRERRRANRLRD

*
CR 80 AMOS *
DATA AND PROGRAM HEADER *
GENERATOR PART 2 ®
CONFIG ID: CSS/833 ®
AUTHOR: JHO *
DATE: 820501 ®
VERSION: 2 :
I Y X 2 YRR RE XXX IE SRR SX2SX2RS SRR RS L L 3

RD:

AUTHOR/DATE DESCRIPTION OF CHANGE

- - o o . .

JHO/T790827 INITIAL RELEASE
HPT/820501 XAMOS DEFINITIONS INCLUDED

MESSAGE <:X2GE
USE PROG
XASSEMBLED=

- XPGTYPE=
XPGWDS:=
XMICRO=
XPGMEM=
XPRMEM=
USE BASE
XCPUNAMEO=
XCPUNAME1=
XCPUNAME2=
XPRIORITY=
XPRLEVEL=
XCAPABILITIES=
XPROCESSNAMEO=
XPROCESSNAME1 =
XPROCESSNAME2:=
XUSERIDO=
XUSERID1=
XABASE=
XAPROG=
XAPRPC=
XADJUST: =
XBNDSZ:
XIOREF:
XPRLNG:
IF XDAT

,XTOTSZ:
ELSE
XTOTSZ:
FI
XPRWDS:
XPSTS:
XPIBS:
XPFDS:
XPXFS:
XPMSGS: =
IF XDATA THEN
XASSEMBLED=
ELSE
XASSEMBLED=
FI
IF XASSEMBLED

MESSAG

THEN

1} " nEiui

.
L

N2 V820501:>

LOC
0 H DEFAULT PROGRAMTYPE
LoC ; PROGRAM AREA LENGTH
0 [DEFAULT MICRO LOAD MODULE
#fFF00 ;V2 DEFAULT PROGRAM MEMORY RANGE
#FFO0 ;V2 DEFAULT DATA MEMORY RANGE
0 H DEFAULT CPU NAME
0 i DEFAULT CPU NAME
0 H DEFAULT CPU NAME
1 ; DEFAULT PRIORITY
XUSER 3 DEFAULT EXECUTION LEVEL
0 i DEFAULT CAPABILITIES
0 H DEFAULT PROCESS NAME
0
0
0 H DEFAULT USERID
0 H DEFAULT USERID
0
0
0+XSTART
0 H SIZE OF ADJUST AREA
LOC-1+XTND
XBNDSZ+1+XTRA
XIOREF+XIOSIZE ~
XPRLNG+XADJUST-XFIRST
0
LOC-XFIRST
XSTS
XIBS
XFDS
XXFS
XMSGS

XASSEMBLED+LOC-XFIRST
XASSEMBLED+LOC

NE WORDS THEN
E <:LOCATION COUNTER CORRUPTED:> FI

o

s e ——

.

- el - + e ma sins : LE
. St - b . wiL N .
b waid Vg e Y g O WA .
v " v " - . + oy
N Y. a PR L . 1y ity G
B A it A et L A
. - . v rm A rae oy CORI TS . -
1 0 e, e s a
R TR .
o
: ‘
(]
.

e

- —

CSS/302/PSP/0008

] sign/dato side

168

CR80 AMOS KERNEL PRODUCT SPECIFICATION JH0/810303

| erstatter i projekt
| |

APPENDIX D

PROGRAM EXAMPLE

)

CSS/302/pPsP/0008

CR80 AMOS KERNEL PRODUCT SPECIFICATION

sign/dato L side

JH@/'810§23 169

arstatter projekt

THERE IS A PROGRAM PART

THERE IS A DATA PART

SUPPRESS LISTING OF SYSTEM FILES
INCLUDE 525YSS

INCLUDE X2GEN1

ENABLE LISTING AGAIN
WE REQUIRE THE PROGRAM TO
BE CALLED 'SAMPLE®

IT IS VERSION 7 OF THIS PROGRAM
AND WE THINK IT REENTRANT

WE REQUIRE THE PROCCESS T0 BE
CALLED 'aqi°*

WE ONLY NEED 1 MESSAGE BUFFER

A PROCESS NAME

SETCYCLE(LI SEC)

EACH SECOND DO BEGIN
REF{MESSAGE)
REF(RECEIVER PROCESS)
SENDMESSAGE(MESSAGE,RECEIVER)

AWAIT ANSHER
DEFINE ENTRY POINT

SUPPRESS LIST OF X2GEN2
INCLUDE X2GEN2

LIST
BEGIN MODULE 0O USE BASE
’ CRBC AMOS SAMPLE PROGRAM
XPROGRAM= TRUE H
XDATA= TRUE H
NOLIST H
$5S25YSS H
$X2GEN1 H
LIST H
XPGNAMEQ= <:SAz> H
XPGNAMEL= <2MP2D ’
XPGNANE2= iLED 3
XVERSION= 7 H
" XPGTYPE= BMREENTRANT H
XPROCESSNAMEO= <:Ql:> H
’
XMSGS= 1 H
H THE FOLLOWING LOCAL DATA ARE DEFINED
BUF: ly 23 35 44 5 H
RCVR: <2COUNTR:=2D>,0 :
USE PRQG
INIT:
MOVC 10 RO ;
MON SETCYCLE H
LG
MOVC BMDELAY R2
MON WAITEVENT 3
MOVC BUF Rl ;
M3QVC RCVR RO ;
MON SENDMESSAGE H
MOVC BMANS RZ ;
MON WAITEVENT ;
JMP LO H END
XSTART= INIT ;
NOLIST H
$X2GEN2 H
LIST
END

Source Program List

=1

T -

Fremien e e e

fe ammwe e

b

e e we

)

—

b

CSS/302/PSP/0008
sign/dato

JH@, 810303

erstatter i projekt

side

7
CR80 AMOS KERNEL PRODUCT SPECIFICATION 170

AUQ0COCl 0 0000 LIST
AUC00002 0 0000 BEGIN MODULE O USE BASE
AU00G003 0 0000
AuC00004 0 0000 ; CRB0 AMOS SAMPLE PROGRAM
AU0QQ0005 0 0000
AUQ00006 0 0CO0 XPROGRAM= TRUE H THERE IS A PROGRAM PART
AUCQ00Q007 0 0000 XDATA= TRUE H THERE IS A DATA PART
0 0000 NOLIST B SUPPRESS LISTING OF SYSTEM FILES
AUOQO0C08 O 0000 MESSAGE: AMOS SYSTEM NAMES V790827
AUQC0181 O 0000 MESSAGE: X2GEN1 V790827
AUCO0O0343 0 0023 LIST H ENABLE LISTING AGAIN
AUQOQ344 0 0023 XPGNAMEQ= <3543 H WE REQUIRE THE PROGRAM TO
AU00(0345 0 0023 XPGNAMEL= <iMP3> H BE CALLED 'SAMPLE'
AUG00346 0 0023 XPGNAMEZ= <3LE3D ;
AUQO0347 0 0023 XVERSION= 7 ; IT IS VERSION 7 OF THIS PROGRAM
AUQ00348 0 0023 XPGTYPE= BMREENTRANT H AND WE THINK IT REENTRANT
AU000349 0 CC23 XPROCESSNAMEO= <:Ql:> ; WE REQUIRE THE PROCCESS TO BE
AUC00350 0 0cC23 H CALLED 'Q1°*
AUGOO0351 0 0023 XMSGS= 1 i NE ONLY NEED 1 MESSAGE BUFFER
AUCQ00352 0 0023 ; THE FOLLOWING LOCAL DATA ARE DEFINED
Au0Q00353 0 0CZ3 BUF: 1y 25 34 49 5 H
AUQO0O0354 0 0028 RCVR: <:COUNTR:2>,0 H A PROCESS NAME
AUuC0G355 0 co2C
AUC001356 0 002C USE PROG
AUC00357 1 0020
AUQ00358 1 0020 INIT:
AUQO03%59 1 0020 Move 1o RO 3
AUCQQ1360 1 0021 MON SETCYCLE ; SETCYCLE(1l SEC)
Aug00361 1 0022 LO:
AUC00362 1 0C22 MOVC BMDELAY RZ 3
AU000363 1 0024 MON WAITEVENT ; EACH SECOND DO BEGIN
AUQO0Q0354 1 0025 MOVC BUF RL REF (MESSAGE)
AUC00365 1 0026 MOVC RCVR RO REF(RECEIVER PROCESS!
1 0027 MON SENDMESSAGE ; SENCMESSAGE(MESSAGESRECEIVER)
AU0O00366 1 0C28 MOVC BMANS R2 3
AUC00Q367 1 0029 MON AAITEVENT H AHAIT ANSHER
Au000368 1 002A Jup Lo ; END
AUQO00369 1 0028
AUGQO0370 1 002B XSTART= INIT H DEFINE ENTRY PQINT
AUQ00371 1 0028 NOLIST ; SUPPRESS LIST OF X2GEN2
AUQQ00372 1 0028 MESSAGE: X2GENZ ¥790827
AUQ00416 0 Q02C LIST
AUCO0417 0 0CZC END
20000Q 70071
P

0000L 0001 0CzB 4153 5040 454C 0007 0001 0020
00G8L 0000 0CGO 0CQ0Q 0C00 00CJ 000C GOCO 0000
¢Ol0L 0000 OCGG C000 0C00 00CC 0000 0000 0000
0018L 0000 00CQ 0CCO 0CDO0 QO0CO0 000G 0000 0000
0020L 0A48 OCA6 OL56 004A 446 2349 2848 47A6
0028L 044A 44A6 G958 C0C2 0046 3151 Q000 0000
0030L 0000 OCCO 000G O0GCL 00CO 0046 002C QCOO °
0038L 0000 0CGO GCOO COQL 0G00 00GC 002C 0000 _
004CL 9000 CCQO0 00Q0 CGO00 0C2B 0000 0QC0 0000 Assembly Verification List
0048L 0000 GOCO 00CO 0000 00CO 400G 0QQ0 0000
0050L 0020 0C64 6800 6000 000C 0COG 0000 0000
0C58L 0000 OCCO 0000 0000 0000 000G 0000 0000
§060L 0000 QCOQC COO00 0CO0 COCO 0O0CO Q000 0C00
NO68L 0001 0C02 0003 CO0C4 0005 4F43 4E55 5254
0000
56

MEMORY MAP:
AREA 1 00CGO
AREA 0 0028

1 DIMENSION WARNINGS
1 MODIFIES INSERTED
113 WORDS GQUTPUT
113 WORDS ASScMBLED
ASSEMBLY 0aK?

W e Wé We W W W M W wE We W WL WA Wo Ma We W e We We We we W We We We Ay oy We

- i ae mide . T R R
"
i
- [. - T Tam s m o [- e v
v e -
. . -)
' : o W R i
o g
. . s
5 1 - -
b - - ;o '
o ') - O
. - - e
: * S L - PO ST
3 . P‘F I
. "o - ' S
. o \r_ 'y . b] [_\I
‘- : RS R ’ 1
' 4 i e = L . . i #a il
. R PR G
* 3 . . .- , v .
5 - [
' ' . y v et .
2 b P e { e
. 3 . - .
' ; . L
" : ’ = -
- v - . e
4% r T | L « | [
= P L. . - O
L . -
. - % : LT A
. ik
. . . . '
e R i - u PR
. . "]
E I VR e
b - = e i
s g -
LA '
. . B TR I
. . R
at . -l - -
- . TR S
B) i Ll
. im R
E I S i
- i
- . .
doETE E
N M a LR |
- . : H
. ,
. .
- 5 e OO
- : ¥a W e jane
; 1. =, 3 [l
% .] 5 b4
v oy W
-] e et :
T] £ x (I 3L a
. N e D
. . " -
. » = w3
hA . .
B L - T o A
‘ . . 4
e .
e w e
w b “ a
- el et ®)
e LE* 2% S
: : - i - PO
. o P 3) o
T . g, e . - 4
v wEies A et T YO -
S ' - . oLt
- - P W II
- U - R - a*tu
ol . i ‘, l
: . e i O X B R
' PP e e N en e
.] v - = — -
. . J vouled .
. .) .o by s e v
’ - - Ch 1 It L T Ve E ¢
* 3 ¥ ¥ . Mo i [}
- . JUF Ry R . i
. % -]
. - . B - B - 3
T i o n . i A . 4
- ' ¥ - e » 3 . -]
©wnn 2 2 2 et
Ty . .. P e “ s E
- . - . . PR LG |
A ‘
Wb H
1%L / L
1
' A S LT T
~ . 2 " }
. [i

e Crn -
o Eait) I
wlp e

CSs/302/PSP/0008

sign/dato

EKH/820601

side

171

eretatter

projekt

CRB80 AMOS KERNEL PRODUCT SPECIFICATION

APPENDIX E

Emulation of
XAMOS instructions on
AMOS CPU.

YR
hine i &y

o

e

CSsS/302/PSp/0008

e - s

..~CR80 -AMOS - KERNEL - PRODUCT SPECIFICATION .,

sign/dato

e e S 8 J- S sige

5 = sl EKH/820601 | 172
: ' orstatter projekt

as & XAMOS

—ar re———e PRSI —
-0 . L RA D

IWhen a hew XAMOS lnstruction is executed on an AMOS CPU, it is
recognized as an illegal instruction. THis applies to AMOS CPUs
without loadable-micro program storage and without function
submodule, and a local interrupt type 1 is generated.

The kernel is invoked and tries to replace the instruction

with a corresponding AMOS instruction, or to emulate the effect of
the XAMOS 1nstructlon. In case the instruction could be replaced,
it 1s then reexecuted together with preceeding modify instructions.

NOZ™

The table"beloﬁ defines the replacing instructions.

-
p

The executlon speed of a program w1th XAMOS instructions is thus
only effected once for each XAMOS instruction in the program.
Emulation/replacement of XAMOS instructions can be done in

user programs and in system components only it cannot be done

in the kernel itself when

- the monitor process executes with local interrupt bit set

P

- theI;/Q process executes with local interrupt bit set or

e
= the kernel executes in the context of a calling process

after having saved the process by SVP.(SSP).

ne

=-CS8/302/PSP/0008 "

anai < e wm e o (——

sign/dato side
. EKH/820601 173
) - erstatter *| projekt .
CR80 AMOS KERNEL PRODUCT SPECIFICATION _ .. | xAmoE
XAMOS ins. Corresponding Note
AMOS ins.
MMP .- 2 P MVP " caranorr The formats of the
1 bony B 5 ihstructions arei-incom-~
> 4 = N L .<patibless wh BT A
¥ - MMP M B0iX3 R3=- =
i MVP M B6.X2 R2
T "If the MMP canno;$be
replaced, it is con-
sidered illegal.
JPZI JMPI S4 Preceeding modify
22 ‘instructiénéiafe.not
s re-executéd
RPZ JMP T ‘
RTM JMP
RTMI JMPI
LBR MOV RO RO A NOP which clears
modifications
o | el g S
LOL MOV RO RO '
SVL MOvVC 0 Level 0 assumed
SLS LDS
SSS Svs This instruction is
clear bits 10..8 emulated when desti-
nation is a register.
It is considered illegal
when destination is i
memory

XAﬁQS ins.

Corregponding

25 LS CSS/;:’;OZ/PSP/OO 08.-.
. v sign/dato side
EKH/820601 | 174
.- CR8€ AMOS KERNEL PRODUCT SPECTFICATTON e g
w ‘.;'_.'l'- 34 }__.. A X = j - - o o e PR '4 XAMOS
Note

SLP"
SLN

SSP

Ain‘»ies" i{} S F
Lop

LBN

Fig. E.1

a’

