
4
0
0
-
5
7
1
-
2

TITLE:

DOCUMENT NO:

PREPARED BY:

APPROVED BY:

AUTHORIZED BY:

DISTRIBUTION:

CR80 AMOS

PASCAL COMPILER :
REFERENCE MANUAL

CSS/450/RFM/0004

(prune A Drax,
J@RGEN HOG Tyg

JORGEN HOG ii

ISSUE: 1

DATE: | go0619

CSS/006/RFM/0001

sign/date page

REFERENCE MANUAL rep Provect

PAGE RECORD AND ISSUE LOG.

_ ISSUE PAGE ISSUE ce ISSUE
1l2]ala]slel7la 1lz2[3la]sle 8 9314/5 /6|7/8

01 34 67
02 35 68
03 36 69
04 37 70
05 38 1
06 39 72
07 40 73
08 41 Ts
09 42 75
10 43 76
7 44 717
12 45 78
13 46 79
14 47 80
15 48 81
16 49 82
17 50 83
18 51 84 |
19 52 a5 |
20 53 86
21 54 87
22 55 88
23 56 89
24 57 90
25 58 91
26 59 92
27 60 93
28 61 94
29 62 95
30 63 96
31 64 97
32 65 98
33 66 99

100

PREPARED APPROVED AUTHORIZED ISSUE DATE ay ay By

1 800619 CLA ft “f /

400- 919

CSS/006/RFM/0001
 sign date page

CR80 PASCAL H/800619_ ii __

REFERENCE MANUAL re ees

PAGE RECORD AND ISSUE LOG.

sage ISSUE SAGE ISSUE pace ISSUE
1{/2]/3]4]s]6]7]a 2/3|4]5]6 8 3/4|5i6!7/a

01 34 67
02 35 68
03 36 69
04 37 70
0s 38 iT
06 39 72
07 . 40 73
08 iF 7h

09 42 75
10 43 76
rr bl 17
12 45 78 |
13 46 79 |
14 47 80 z=
15 48 81
16 49 82 1 |
17 50 83 i |
18 51 f 86 i |
19 52 85 a
20 53 86 |
21 54 87
22 55 88 |
23 56 89
26 57 90
25 58 91
26 59 92

a — 93 rf
28 61 94 |
29 62 95
30 63 96

34 64 97 |

32 65 98
33 66 99 H

100 |

PREPARED APPROVED AUTHORIZED ISSUE DATE ay 8Y ay

J 800619 ELLA 7 ‘ EE

400- 919

CSS/006/RFM/0001

 sign/dato side

CR80 PASCAL PHO/800619 iii
erstatter ° projekt = .

REFERENCE MANUAL

TABLE OF CONTENTS

Section PAGE

1. INTRODUCTION 1

2. APPLICABLE DOCUMENTS 2

3. THE CR80 PASCAL LANGUAGE

3.0 Introduction to CR80 PASCAL

3.1 Notation, Terminology, and

vocabulary 9

3.2 Identifiers, Numbers, and

Character Strings 12

Constant Definitions 15

3.4 Type Definitions 16

3.4.1 Simple Types 16

3.4.1.1 Standard Simple Types 16

3.4.1.2 Enumerated Types 18

3.4.1.3 Subrange Types 18

3.4.2 Structured Types 19

3.4.2.1 Array Types 19

3.4.2.2 Record Types 20

3.4.2.3 Set Types 22

3.4.3 Pointer Types 22

3.5 Declaration and Denotation of Variables 24

3.5.1 Entire Variables 25

3.5.2 Component Variables 25

3.5.2.1 Indexed Variables 25

3.5.2.2 Field Designators 26

CSS/006/RFM/0001

 sign/dato side

CR80 PASCAL PH@Z/800619 iv

REFERENCE MANUAL erstatter Projekt

3.5.3 Referenced Variables 27

3.6 Procedure and Function Declarations 28

3.6.1 Procedure Declarations 28

3.6.2 Function Declarations 31

3.6.3 Parameters 33

3.6.4 Standard Procedures 35

3.6.5 Standard Functions 35

3.7 Expressions 37

3.7.1 Operators -38

3.7.1.1 Arithmetic Operators 39

3.7.1.2 Boolean Operators 40

3.7.1.3 Set Operators 41

3.7.1.4 Relational Operators 41

3.7.2 Function Designators 43

3.8 Statements 44

3.8.1 Simple Statements 44

3.8.1.1 Assignment Statements 44

3.8.1.2 Procedure Statements 45

3.8.2 Structured Statements 46

3.8.2.1 Compound. Statements 46

3.8.2.2 Conditional Statements 47

3.8.2.2.1 If Statements 47

3.8.2.2.2 Case Statements 48

3.8.2.3 Repetitive Statements 49

3.8.2.3.1 Repeat Statements 50

3.8.2.3.2 While Statements 51

; 3.8.2.3.3 For Statements 51

3.8.2.4 With Statements 54..

3.9 Program and Prefix 56

3.10 Scope Rules 59

3.11 Type Compatibility 62

3.12 Syntax Graphs 63

CSS/006/RFM/0001

sign/dato side

CREO" EBSeAL PHO/800619 vo
REFERENCE MANUAL erstatter projekt

4. DIFFERENCES BETWEEN CR80 PASCAL AND JW PASCAL 72

5. DATA REPRESENTATION IN CR80 PASCAL 77

6. THE RUNTIME SYSTEM: AN INNER LOOK 80

6.1 The Runtime Stack 80

6.2 Register Allocation in the Runtime System 82

6.3 The Virtual Code 83

6.4 Addressing and Layout of Variables 84

6.4.1 Global Variables 84

6.4.2 Local Variables ~ 86

6.4.3 Parameter Passing 88

Work Areas 92

6.6 Inserting Assembly Code 93

7. THE AMOS STANDARD PREFIX 96

8. COMPILE TIME DIRECTIVES 143

9. THE CR80 PASCAL COMPILER 150

9.1 Activating the Compiler 150

9.2 Preparing the Program Source 152

9.3 Example 154

10. RUNTIME ERROR CODES 155

APPENDIX A. LISTING OF PREFIX 158

CSS/006/RFM/0001

i side

| sign dato 7

'PHD/800619 7

CR80 PASCAL | arstattar ! projekt

REFERENCE MANUAL |

Introduction

The main purposes of this document are:

e to define the CR80 PASCAL language

@ to describe the system procedures and functions

available to the programmer in a CR80 PASCAL

program

@e and to explain how the CR80 PASCAL compiler is

operated

The document is not intended to be a tutorial on

PASCAL.

CSS/006/RFM/0001

j sign date = je

PHO/800619
erstatter cro,ekt

CR80 PASCAL

REFERENCE MANUAL

2. Applicable documents

l. Jensen, Kathleen & Niklaus Wirth:

PASCAL User Manual and Report.

Second Edition.

Springer-Verlag. 1978.

2. CR80 AMOS, KERNEL

PRODUCT SPECIFICATION

CSS/302/PSP/0008

3. CR80 AMOS, I/O SYSTEM

PRODUCT SPECIFICATION

CSS/006/PSP/0006

4. CR FILE SYSTEM PSP

CSS/910/EWP/0001

5. CR80 AMOS, FILE NAME UTILITIES

PRODUCT SPECIFICATION

CSS/317/PSP/0014

6. CR80 AMOS, COMMAND INTERPRETER

USER” S MANUAL

CSS/381/USM/0037

7. CR80 Minicomputer Handbook

CSD/HDBK/0001

8. CR80 AMOS, ASSEMBLER

USER” S MANUAL

cSS/401/USM/0042

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

' sign dato side

_PHO/ 800619 |
i erstalter ' projekt

36 THE CR80 PASCAL LANGUAGE

CSS/006/RFM/0001

: 51gn dato ' side 4

CR80 PASCAL _PH@/ 800619 |

REFERENCE MANUAL

| erstatter Droyekt

Introduction to CR80 PASCAL

The following text is intended for readers with some

experience in high level languages. For readers not

acquainted with other programming languages it will

be hot stuff. This introductory section tries to present

an overview of CR80 PASCAL so that the reader can view

the forest before examining individual trees.

A CR80 PASCAL program consists of two essential parts,

a description of the actions to be performed, and a

description of the data which are manipulated by these

actions. Actions are described by statements, and data

are described by declarations and definitions.

The data are represented by values of variables. Every

variable occurring in a statement must be introduced

by a variable declaration which associates an identifier

and a data type with that variable. The data type

essentially defines the set of values which may be

assumed by that variable. A data type may in CR80 PASCAL

be either directly described in the variable declaration,

or it may be referenced by a type identifier, in which

case this identifier must be described by an explicit

type definition, or be one of the standard type identifiers

BOOLEAN, INTEGER, CHAR or LONG_INTEGER.

Enumerated types are defined by indication of an ordered

set of values, i.e. by introduction of identifiers

standing for each value of the type.

CSS/006/RFM/0001

sign dato “?

CR80 PASCAL _PH@/ 800619; 2
| erstatter } projekt

REFERENCE MANUAL |

A type may also be defined as a subrange of one of

the types INTEGER, CHAR or BOOLEAN.

Structured types are defined by describing the types

of their components and by indicating a structuring

method. The various structuring methods differ in the

selection mechanism serving to select the components

of a variable of the structured type. In CR80 PASCAL

there are three basic structuring methods available:

array structure, record structure, and set structure.

.

In an array structure all components are of the same

type. A component is selected by an array selector, or

index, whose type is indicated in the array type definition.

Given a value of the index type, an array selector

yields a value of the component type. Every array variable

can therefore be regarded as a mapping of the index type

onto the component type.

In a record structure the components (called fields)

are not necessarily of the same type. Each component has

attached to it an identifier (declared in the record type

definition) which is used when the component is selected.

A record type may be specified as consisting of several

variants. This implies that different variables, although

said to be of the same type, may assume structures which

differ in a certain manner. The difference may consist

of a different number and different types of components.

The variant which is assumed by the current value of a

record variable is indicated by a component field which

CSS/006/RFM/0001
 / ga dato side 6

CR80 PASCAL PHO/ 800619:
REFERENCE MANUAL 1 erstatter projekt

is common to all variants and is called the tag field.

A set structure defines the set of values which is

the powerset of its base type, i.e. the set of all

subsets of values of the base type.

Variables declared in Si cit declarations are called

static. The declaration associates an identifier with

the variable which is used to refer to the variable. In

contrast, variables may be generated by an executable

statement. Such a dynamic generation yields a pointer,
which subsequently serves to refer to the variable. This
pointer may be assigned to other variables, namely variab-
les of type pointer. Every pointer variable may assume
values pointing to variables of the same type T only,

and it is said to be bound to this type T. It may,

however, also assume the value NIL, which points to no

variable.

The most fundamental statement is the assignment

statement. It specifies that a newly computed value be

assigned to a variable, ora component of a variable.

The value is obtained by evaluating an expression.

Expressions consist of variables, constants, sets, opera-
tors, and functions operating on the denoted quantities
and producing new values. CR80 PASCAL defines a fixed

set of operators, each of which can be regarded as

describing a mapping from the Operand types into the

result type. The set of operators is subdivided into

groups of arithmetic operators (addition, subtraction,

sign inversion, multiplication, division, and computing
the remainder), boolean operators (negation, union, and

CSS/006/RFM/0001

sign dato { side 7

CR80 PASCAL ' PHO/800619
| erstatter rojekt

REFERENCE MANUAL | ersten jo

set difference), and relational operators (equality,

inequality, ordering, set membership, and set inclusion).

The procedure statement causes the execution of the

designated procedure (see below). Assignment and

procedure statements are the components or building

blocks of structured statements, which specify sequential,

selective, or repeated execution of their components.

Sequential execution of statements is specified by the

compound statement, conditional or selective execution

by the if statement and the case statement, and repeated

execution by the repeat statement, the while statement,

and the for statement. The if statement serves to make

the execution of a statement dependent on the value of

a boolean expression, and the case statement allows for

the selection among many statements according to the

value of a selector. The for statement is used when the

number of iterations is known beforehand, and the repeat

and while statements are used otherwise.

A statement can be given a name, and be referenced through

that name. The statement is then called a procedure, and

its declaration a procedure declaration. Such a declaration

may additionally contain a set of variable declarations

and type definitions. The variables and types thus intro-

duced can be referenced only within the procedure itself,

and are therefore called local to the procedure. Their

identifiers have significance only within the program text

which constitutes the procedure declaration and which

is called the scope of these identifiers. Entities which

are declared in the main program, i.e. not local to some

procedure, are called global. A procedure has a fixed number

CSS/006/RFM/0001

CR80 PASCAL | PHG/ 800619 ,
REFERENCE MANUAL

sign dato : side 8

} erstatter projent
| i

of parameters (if any), each of which is denoted within

the procedure by an identifier called the formal para-

meter. Upon an activation of the procedure statement,

an actual quantity has to be indicated for each formal

parameter. This quantity is called the actual parameter.

A function is declared analogously to a procedure.

The only difference lies in the fact that a function

yields a result the type of which must be specified in

the function declaration. Functions may therefore be

used as constituents of expressions.

CSS/006/RMF/0001

CR80 PASCAL PH@/800619

REFERENCE MANUAL

sign/dato side g

erstatter projekt

3.1 Notation, terminology, and vocabulary

Syntactic constructs are denoted by English words

enclosed between angular brackets < and >. Zero or

more repetitions of a construct is indicated by enclosing

the construct within metabrackets { and } . The brackets

[and 1 are part of the CR80 PASCAL language, but are

also used as metasymbols. When used as metasymbols, they

will be underlined ([,].). [X] means 0 or 1 instance
of X. A bar (|) is used to indicate alternatives.

A "shorthand" will be used to avoid repetition that is

more distracting than illuminating: ¢onstructs of the

form:

<X identifier> ::= <identifier>

will not be shown. All particular identifiers are

instances of identifier. Also, in the verbal description

we will write q for the non-terminal symbol <q>.

The basic vocabulary of CR80 PASCAL consists of letters,

digits, and special symbols.

<letter> ::= A/B|c|D|E|F/G|H|I[J|

K|L/M|N|O|P|Q{|R/S[T|

ulv|wix{y|[z]_

<digit> o/1/2(3|41|5]6|7|8/9|

Note: Underscore is a letter.

CSS/006/RFM/0001

' sign dato ' sige | 0

CR80 PASCAL ' PHO/ 800619:

REFERENCE MANUAL | orstatter yeas

<special symbol> ::= +|-|*|/|=|<|

>t Cl C111.) |
17/8] (|
<=|>=|:5|

 ?

) | <>

 »e| <word symbol>

<word symbol> ::= AND|ARRAY|BEGIN|CASE|

CONST | DIV|DO| DOWNTO |

ELSE | END | FOR| FORWARD |

FUNCTION | IF | IN| MoD |

NOT| OF |OR| PROCEDURE |

PROGRAM | RECORD | REPEAT |

SET| THEN | TO| TYPE| UNIV |

UNTIL | VAR|WHILE| WITH |

Special symbols have fixed meanings (except within

character strings and comments). Thus, word symbols

cannot be used as identifiers.

The construct

"<any sequence of characters not containing a

double quote>"

is a comment if it does not occur within a character

string. The substitution of a space for a comment

will not alter the meaning of a CR80 PASCAL program.

Lexical tokens used to construct CR80 PASCAL programs

can be classified into special symbols, identifiers,

unsigned numbers and character strings. Comments, spaces,

CSS/006/RFM/0001

_ sign dato side 1 1

CR80 PASCAL _PHD/800619 te
| erstatter * projekt REFERENCE MANUAL p osiane j Pro!

and the NL- and FF-character are token separators.
Zero or more token separators may occur between

any two consecutive tokens, or before the first token

of a program text. There shall be at least one separator

between any pair of consecutive tokens made up of

identifiers, word symbols or unsigned numbers. No

separator may occur within tokens.

CSS/006/RFM/O0001

sign dato side 1 ?

CR80 PASCAL PHG/ 800619
| erstatter projekt

REFERENCE MANUAL

Identifiers, Numbers and Character Strings

Identifiers denote constants, types, variables, formal

parameters, procedures, functions, programs, and fields

and tag fields in records.

13
<identifier> ::= <letter> { <letter or digit> 13?

<letter or digit> ::= <letter> | <digit>

All characters of an identifier are significant.

Examples of identifiers:

X _A_FUNNY_ONE_ A38

Numbers are the constants of the standard data types

INTEGER and LONG INTEGER.

<digit sequence> ::= <digit> {<digit>}

<hexa digit> ::= A|B|C|D|E|F| <digit>

<hexa digit sequence> ::= <hexa digit> {<hexa digit>}

<unsigned integer> ::= <digit sequence> |

4#<hexa digit sequence>

<unsigned long integer> ::= <digit sequence>L |

#F<hexa digit sequence>L

<signed integer> ::= [<sign>] <unsigned integer>

<signed long_integer> ::= [<sign>] <unsigned long_integer>

<sign> ::= + | -

Examples of signed integer numbers:

1 +100 FFF -#'4711

CSS/006/RFM/0001

" sign dato side 1

CR80 PASCAL _PHG/800619 CN

| erstatter Projekt REFERENCE MANUAL

Examples of signed long “integer numbers:

1L +100L A ABEL -# 4711FFFFL

Numbers without a preceding #-character are in base 10.
Numbers with a preceding #-character are in base 16.

Character strings are sequences of string elements

enclosed by apostrophes. Character strings consisting

of a single string element are the constants of the

standard type CHAR. Character strings consisting of n

(1 <n <=80) enclosed string elements are constants of

the type

ARRAY [1..n] OF CHAR

If the character string is to contain an apostrophe,

this apostrophe must be written twice. Empty strings

are not allowed.

<character string> ::= '<string element>

{<string element>})° '

<string element> ::= <apostrophe image> |

<string character> |

(:<digit sequence>:)

<apostrophe image> ::= ''

<string character> ::= any ASCII character except

EM and NL.

A string element of the form (:<digit sequence>:) can be

used if a character is difficult to punch or unprintable

CSS/006/RFM/0001
sign dato side | 4

CR80 PASCAL _PHO/ 800619:
, erstatter

REFERENCE MANUAL

projekt

(or if it equals EM or NL). The digit sequence must

equal the ordinal value of an ASCII character, i.e.

be in the closed interval from 0 to 127.

Examples of character strings:

: = "(:10:):)(:25:)' =e
 ‘at t

The last character string has the length 4 and contains

an NL-character followed by a colon, a right parenthesis,

and an EM-character.

CSS/006/RFM/0001

sign dato side 1 5

CR80 PASCAL | PHD/ 800619 |
REFERENCE MANUAL | orstanter eye

3.3 Constant definitions

A constant definition introduces an identifier to

denote a constant.

<constant definition> ::= <identifier>. = <constant>
<constant> ::= <unsigned integer> |

sunsigned long integer> |

<constant identifier> |

<character string>

Note: If an identifier is to denote a negative number,

this number must be written in the hexadecimal notation --
(e.g. -l must be written #FFFF and -2L must be written

WFFFFFFFEL, because the representation is 2's complement).

CSS/006/RFM/0001

! sign dato side | 6

CR80 PASCAL pHg/ 800619
| erstatter ! projekt

REFERENCE MANUAL

3.4 Type definitions

A type determines the set of values which variables

of that type may have and the operations which may be

performed upon values of that type. A type definition

associates an identifier with a type.

<type definition> ::= <identifier> = <type>

<type> ::= <simple type> |

<structured type> |

<pointer type>

3.4.1 Simple types

<simple type> ::= <ordinal type>|

<long integer type>

<ordinal type> ::= <enumerated type> |

<subrange type> |

INTEGER |

BOOLEAN |

CHAR |

<ordinal type identifier>

<long integer type> ::= LONG_INTEGER |

<long_ integer type identifier>

3.4.1.1 Standard simple types

The values belonging to the standard types may be

manipulated by means of predefined primitive operations.

The following types are standard:

INTEGER : The values are the subset -32768 to

32767 of the whole numbers, denoted

as specified in 3.2 by the signed

integer values.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

* sign dato side

| PHG/ 800619 | 17

erstatter ! projekt

LONG_INTEGER

BOOLEAN

CHAR

The values are the subset

—-2147483648L to 2147483647L

of the signed long integer values

as specified in 3.2

The values are the truth values

denoted by the predefined constant

identifiers FALSE and TRUE, where

FALSE is the predecessor of TRUE.

The ordinal numbers of FALSE and

TRUE are 0 and 1 respectively.

The values are the character strings

of length 1 as specified in 3.2. The

ordering relationship between two

character values is the same as

between their ordinal numbers.

Note: Operators applicable to standard types are

specified in 3.7.1.

CSS/006/RFM/0001

sign dato side 1 8

CR80 PASCAL PH@/ 900619

| erstatter | projext REFERENCE MANUAL

3.4.1.2

3.4.1.3

Enumerated types

An enumerated type defines an ordered set of values

by enumeration of the identifiers which denote these

values. The ordering of the values is determined by

the sequence in which their identifiers are listed, i.e.

if x precedes y then x<y. The identifiers in the identifier

list are mapped onto consecutive nonnegative integer

values starting from zero.

<enumerated type> ::= (<identifier list>)

<identifier list> ::= <identifier> {,<identifier>}

Examples of enumerated types:

(RED, YELLOW, GREEN, BLUE, TARTAN)

(MARRIED, DIVORCED, WIDOWED, SINGLE)

Subrange types

A type may be defined as a subrange of an ordinal type

(the host type) by indication of the smallest and the

largest value in the subrange. The first constant specifies

the lower bound which shall be less than or equal to the

upper bound.

<subrange type> ::= <constant>..<constant>

Examples of subrange types:

1..100

‘A'..°Z!

RED. . GREEN

CSS/006/RFM/0001

sign dato | side | g

CR80 PASCAL | PHO/800619 |

REFERENCE MANUAL

erstatter ' projekt

3.4.2 Structured types

A structured type is characterized by the type(s) of

its components and by its structuring method. If a

component type is itself structured, the resulting

structured type exhibits several levels of structuring.

<structured type> ::= <array type> |

<record type> |

<set type> |

, <structured type identifier>

3.4.2.1 Array types

An array type is a structured type consisting of a

fixed number of components that are all of one type,

called the component type. The elements of the array

are designated by one or more indices, which are values

of the corresponding index types. The array type definition

specifies both the component type and the index types.

<array type> ::=

ARRAY <lb> <index type>{,<index type>} <rb>

OF <component type>

<index type> ::= <ordinal type>

<component type> ::= <type>

<lb> ::=[| (.

<rb> r=] -)

Examples of array types:

ARRAY [1..100, 'A'..'Z'] OF INTEGER

ARRAY [BOCLEAN] OF COLOUR

CSS/006/RFM/0001

sign dato | side ? 0

CR80 PASCAL | PHO/ 800619

REFERENCE MANUAL ersranes roren

3.4.2.2 Record types

A record type is a structured type consisting of a
fixed number of components, possibly of different types.
The record type definition specifies for each component,
called a field, its type and an identifier that denotes
it. The scope of these field identifiers is the record
definition itself, and they are also accessible within
a field designator (see 3.5.2.2) referring to a record
variable of this type.

The syntax of a record type permits the specification

of a variant part. This enables different values, although
of identical type, to exhibit structures which differ

in the number and/or types of their components. A certain

field in the variant part is designated as the tag field.
The value of the tag field at any time indicates which

variant is assumed by the record variable at that time.
Each variant is introduced by one or more case labels,
which must be distinct and of a type compatible (see 3.11)
with the tag type. A change of variant occurs only when
a value is assigned to the tag field. Assignment to the

tag field causes the rest of the fields in the variant

part to be filled with zerobits. A runtime error will

result if a reference is made to a field of a variant

other than the current variant.

<record type> ::= RECORD <field list> END

<field list> ::= <fixed part> [; <variant part>J |

<variant part>

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

| sign ‘dato | side

_PH@/ 800619) 2 |

| erstatter | Projekt

{ |

<fixed part>

<record section>

<variant part> ::= CASE <tag field>

<tag field>

<tag type> ::

<variant>

<case constant list>

<case constant> ::

<record section>;si <record section> }

<identifier list> <type>

<tag type> OF

<variant>{ i<variant> }

<identifier>

<ordinal type identifier>

<case constant list>

(<field list>)

<case constant>

{, <case constant> |}

<constant>

The ordinal value of the case constants must be contained

in the closed interval from 0 to 15. The type in a record
section must not be the defining occurence of an enu-

merated type.

Note: It is a syntax error to place a semicolon in front

of the final END in a record type definition.

Examples of record types:

RECORD

YEAR:

MONTH:

DAY:

END

INTEGER;

1..12;3

1..31

RECORD

NAME, FIRSTNAME: ARRAY [1..207] OF CHAR;

CASE S: SEX OF

MALE: (ENLISTED, BEARDED: BOOLEAN) ;

FEMALE: (PREGNANT: BOOLEAN)

END

CSS/006/RFM/0001

CR80 PASCAL | PHD/ 800619

REFERENCE MANUAL

| sign dato side 2 2

4

| erstatter ! projekt

!
1

3.4.2.3

This record type contains a defining occurrence

of an enumerated type and is therefore not allowed:

RECORD

COLOUR: (RED, GREEN, BLUE)

END

Set types

A set type defines the range of values which is the

powerset’ of its base type. Thus each value of a set

type is a set whose members are unique values of the

base type. The largest and smallest values of integer

type permitted as members of a value of a set type are

127 and 0. The base type appearing in a set type must

not possess a value outside these limits.

<set type> ::= SET OF <base type>

<base type> ::= <ordinal type>

Operators applicable to values of set types are specified

in 3.7.1.

Pointer types

A pointer type consists of a set of values each

identifying one variable of a given type. This set of

values is dynamic, in that the variables and the values

pointing to them may be created and destroyed during

the execution of the program. No operators are specified

regarding pointers except the tests for equality and

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign:dato side a 7 pHg/ 800619 | 23

erstatter Projekt

inequality.

Pointer values are created by the standard procedure

NEW. NEW(P) allocates a new variable V in the so-called

heap. The programmer is able to reallocate already

allocated variables in the heap. This is done through

use of the two prefix procedures (see 3.9) MARK and

RELEASE:

PROCEDURE MARK (VAR TOP: INTEGER) ;

Returns in TOP information to be used by RELEASE

in recollecting storage allocated by subsequent

calls of the standard procedure NEW.

PROCEDURE RELEASE (TOP: INTEGER);

Releases storage allocated by the standard procedure

NEW since the call of MARK which returned the value

of TOP.

The heap is thus (despite the name) manipulated as a

stack.

The pointer value NIL belongs to every pointer type;

it points to no elemént at all.

<pointer type> ::= 3 <type identifier> |

<pointer type identifier>

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

‘ sign dato side ra)

_PHO/ 800619. 24
erstatter Orojent

Declaration and denotation of variables

Variable declarations consist of a list of identifiers

denoting the new variables, followed by their type.

<variable declaration> ::=

<identifier list> : <type>

A variable declared in the program block (see 3.9) or in

a routine block (see 3.6.1) exists from the time the

block is activated, until its statement part is completed.

This implies that each activation of a block introduces

a distinct set of local variables.

Example:

arRAY[0..63] OF LONG INTEGER
COLOUR

M: ARRAY[1..10, 1..10] OF INTEGER
HUE], HUE2: SET OF COLOUR

Q
+

A denotation of a variable designates either an entire

variable, a component of a variable, or a variable

referenced by a pointer.

<variable> ::= <entire variable> |

<component variable> |

<referenced variable>

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL eesrenes , Pre

sign dato stae
4 “ C

PHD /800619__ £2

Ske Dhsw2rs ill

Entire variables

An entire variable is denoted by its identifier:

<entire variable> ::= <variable identifier>

Component variables

A component of a variable is denoted by the variable

followed by a selector specifying the component. The

form of the selector depends on the structuring type

of the variable.

<component variable> ::= <indexed variable> |

<field designator>

Indexed variables

A component of an n-dimensional array variable is

denoted by the variable followed by n index expressions.

<indexed variable> ::= <array variable>

<lb> <expression>{ ,<expression>}<rb>

<array variable> ::= <variable>

An array variable shall be a variable of an array type.

Each index expression must be compatible (see 3.11) with

the corresponding index type specified in the definition

of the array type. A runtime error will occur if an index

expression is out of range.

CSS/006/RFM/0001

sign dato 2 6

CR80 PASCAL PH®/ 800619 .
REFERENCE MANUAL j ane —_

Example:

Suppose we have

TYPE NAME: ARRAY [1..7] OF CHAR;
VAR

A: NAME;

B: ARRAY [BOOLEAN| OF NAME;

M: ARRAY [1..10, 1..10] OF INTEGER;

Then the following are indexed variables:

aA [7]

B [FALSE] [3]

M [5, 5]

The second indexed variable cannot be written B [FALSE , 3 J:

3.5.2.2 Field designators

A component of a record variable is denoted by the

record variable followed by the field identifier of the

component.

<field designator> ::=

<record variable>.<field identifier>

<record variable> ::= <variable>

Example:

If the variable REC is declared

REC: RECORD

MONTH, YEAR: INTEGER

END

CSS/006/RFM/0001

; sign dato side 2 =

CR80 PASCAL | PHD/ 800619) /
REFERENCE MANUAL perstatter Proyeat

then

REC. YEAR

is a field designator.

3.5.3 Referenced variables

<referenced variable> ::= <pointer variable> 3

<pointer variable> ::= <variable>

If P is a pointer variable which is bound to a type

T, then P denotes that variable and its pointer value,

whereas Pd denotes the variable of type T referenced

by P. A runtime error will occur if a pointer variable

has the value NIL when it is de~referenced.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign dato | side

DH@/ 800619 | 28
erstatter | projekt

Procedure and function declarations

Procedure declarations

A procedure declaration associates an identifier

with a part of a program so that it can be activated

by a procedure statement. If a procedure is referenced

textually before its procedure block is defined (i.e.

referenced within another preceding procedure or function

declaration), it must be introduced first by means of

its heading followed by the symbol FORWARD. The procedure

can then be completed later by repeating its heading

without the formal parameter list but followed by the

procedure block.

<procedure declaration> ::=

<procedure heading><procedure block> |

<procedure heading> FORWARD

The procedure heading specifies the identifier naming

the procedure and the formal parameters (if any).

<procedure heading> ::=

PROCEDURE <identifier> | <formal parameter list>l ;

<procedure block> ::= <routine block> _

<routine block> ::= [<definition part> |

(<variable declaration part> |

” éstatement part>

<definition part> ::=

<constant definitions> |

<type definitions> |

<definition part> <constant definitions>

<definition part> <type definitions>

CSS/006/RFM/0001

sigh dato Seite Qn

CR80 PASCAL PHO/ 800619 _ 29
REFERENCE MANUAL erstatter argent

éconstant definitions> ::=

CONST <constant definition>;{ <constant definition; }

<type definitions> ::=

TYPE <type definition » ;{ <type definition>; }

<variable declaration part> i:

VAR <variable declaration>;{<variable declaration>; }

<statement part> ::= <compound statement>

(<formal parameter list> is defined in 3.6.3)
The algorithmic actions that will be executed upon

activation of the procedure by a procedure statement

are specified by the statement part of the procedure

block.

 All identifiers introduced in the formal parameter

list and the procedure block are local to the procedure

declaration which is called the scope of these identifiers.

They are not known outside their scope. In the case

of local variables, their values are unpredictable at

the beginning of the statement part.

The use of the procedure identifier in a procedure

statement within its declaration implies recursive

execution of the procedure.

CSS/006/RFM/0001
 sign/dato side 3 0

IPH@/800619
CR8 0 PASCAL eratatter projekt —

REFERENCE MANUAL

Example:

PROCEDURE MINMAX (A:LIST;VAR MIN,MAX: INTEGER) ;

VAR TEMP, I: INTEGER;

BEGIN

MIN := A [1];

MAX := MIN;

FOR I := 2 TO LIST MAX DO
BEGIN

TEMP := A [1] ;

IF TEMP > MAX THEN
MAX := TEMP

ELSE
IF TEMP < MIN THEN

MIN := TEMP

END

END

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign dato ae

_PHO/ 800619. 31
| erstatter projent
!

Function declarations

A function declaration serves to define a part of

the program that computes a value of a simple type

or a pointer type. A function is activated by

evaluation of a function designator (see 3.7.2), that

is a constituent of an expression.

If a function is referenced textually before its

function block is defined, it must be introduced

first ‘by means of its heading followed by the symbol

FORWARD, and then completed later by repeating its

heading without the formal parameter list, and without

the result type, followed by the function block.

<function declaration> ::=

<function heading><function block> |

<function heading> FORWARD

The function heading specifies the identifier naming

the function, the formal parameters (if any), and the

type of the function.

<function heading> ::= FUNCTION <identifier>

[<formal parameter list>] : <result type>;

<result type> ::= <simple type identifier> |

<pointer type identifier>

<function block> ::= <routine block>

CSS/006/RFM/0001

sign dato sue 3 ?

erstatter Orojert

REFERENCE MANUAL

The algorithmic actions that will be executed upon

activation of the function by a function designator

are specified by the statement part of the function

block.

The function block should contain at least one

assignment statement that assigns a value to the

function identifier. The result of the function is the

last value assigned. If no assignment occurs the value

of the function is unpredictable.

Occurrence of the function identifier in a function

designator within its declaration implies recursive

execution of the function.

Examples:

FUNCTION GCD(M,N: INTEGER) : INTEGER; FORWARD

FUNCTION LONG_MOD(A,B:LONG INTEGER): LONG INTEGER;

BEGIN

LONG_MOD := A-(A/B) *B

END

FUNCTION GCD" (M,N: INTEGER) : INTEGER";

BEGIN

IF N = 0 THEN

GCD := M

ELSE

GCD := GCD(N, M MOD N)

END

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PH@/800619 sy)

REFERENCE MANUAL

eretatter projekt

3.6.3 Parameters

In the following the term routine will be used for

a procedure or function.

There are two kinds of parameters:

Value parameters and variable parameters. A parameter

section without a preceding specifier is a list of va-

lue parameters; a parameter section with the specifier

VAR preceding is a list of variable parameters.

<formal parameter list> ::=

(<formal parameter section>

{ ; <formal parameter section })

<formal parameter section> ::=

[vAR] <identifier list> :

[UNIV] <type identifier>

A value parameter represents an expression that is eva-

luated when the routine is called. Its value cannot be

changed by the routine. In the case of a variable para-

meter, the actual parameter must be a variable, and the

corresponding formal parameter represents this actual

variable during the entire execution of the routine.

Variable parameters are called by reference, and the

address is evaluated when the routine is called.

In general formal and actual parameters must be com-

patible. However, there are 2 exceptions:

1) The word UNIV in front of the type identifier

in a formal parameter section suppresses

compatibility checking. An actual parameter

of

CSS/006/RFM/0001

CR80

REFERENCE MANUAL

PASCAL PHO/800619 re]

sign/dato side Z 4

erstatter projekt

type Tl is compatible with a formal UNIV-parameter

of type T2 if both types are not of pointer type

(or do not contain a component of pointer type) and

if variables of both types take up the same number of

machine words. In addition, if the formal parameter is

of record or array type, the actual parameter must

be a variable. The type checking is only suppressed

in routine calls. Inside the given routine the formal

parameter is considered to be of type T2, and outside

the routine call the actual parameter is considered

to be of type Tl. The strict type checking in CR80
PASCAL is generally a great advantage to the programmer.

Therefore the UNIV-loophole should be used with care.

However, situations may occur, especially when CR80

PASCAL is being used as a systems programming language,

in which the UNIV-facility is applicable - or even

indispensable.

2)An actual parameter corresponding to a formal value

parameter of type ARRAY [1..N] OF CHAR may be a character.
string (i.e. of type ARRAY [1..Mj OF CHAR) of any length.
This relaxation makes it possible e.g. to write one

Single procedure to print character strings of any

length.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

asign/dato side

PHG/800619 52>
erstatter projekt

_|

3.6. 4 Standard Procedures

The only standard procedure in CR80 PASCAL is the

procedure NEW. NEW(P) allocates a variable V with

unpredictable contents in the heap. A pointer to V

will be assigned to the pointer variable P. A runtime

error will occur if allocation is impossible.

3.6. 5 Standard Functions

ABS (X)

CHR (X)

LONG (X)

ORD (X)

PRED (X)

X must be an expression of integer or

long_integer type. The result (of the

same type as X) is the absolute value of xX.

Overflow may occur.

X must be an expression of integer type.

The result is the value of char type whose

ordinal number is equal to the expression

X.

X must an expression of integer type. The

result is the long_integer with the same

value as X.

X must be an expression of char type. The

integer type result is equal to the ordinal

value of the character.

X must be an expression of ordinal type. The

function will yield a value of the same type

as X whose ordinal number is one less than

that of the expression X. No check for

"underflow".

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato

erstatter

side

oosig | Ss
yprojekt

SHORT (X)

SUCC (X)

X must be an expression of long integer

type. The result is the integer with the

same value as X. Overflow may occur.

X must be an expression of ordinal type.

The function will yield a value of the same

type as X whose ordinal number is one

greater than that of the expression X.

No check for "overflow".

CSS/006/RFM/0001

sign dato . pide

CR80 PASCAL _PH®/ 800619 37
REFERENCE MANUAL | erstatter giProiekt

3.7 Expressions

Expressions consist of operators and operands, i.e.

variables, constants and function designators. The

rules of composition specify operator precedences

according to four classes of operators. The operator.

NOT has the highest precedence, followed by the multi-

lying operators, then the adding operators and signs,

and finally, with the lowest precedence, the relational

operators. Sequences of two or more operators of the same

precedence separated by operands are executed from left to

right. The rules of precedence are reflected by the fol-

lowing syntax:

<factor> ::= <variable> |

<constant> |

NIL |

<function designator> |

<set> |

(<expression>)

NOT <factor>

<set> ir: <lb> <expression list> <rb>

<expression list>:;= [<expression> { , sexpression> } 1

<term> 2:= <factor>

<termm <multiplying operator> <factor>

<simple expression> ::= <term> |

<simple expression> <adding operator> <term

<sign> <term>

<expressiom ::= <simple expression>

<simple expression> <relational operator> <simple expression>

CSS/006/RFM/O0001

CR80 PASCAL

REFERENCE MANUAL

sign ‘dato ' side 3 fal

_PHO/ 800619

} erstatter Brojekt

 3.7.1

Expressions which are members of a set must be compatible

with the base type of the set. L J
empty set.

Examples are as follows:

Factors: Xx

15

(X + Y + Z)

ORD ('0O')

(RED, GREEN |

NOT P

X* Y

I/ (1-I)

(X <= Y) AND (Y < Z)

Simple expressions:

i] =

ul
 Expressions: X

Operators

<multiplying operator> ::=

<adding operator>

<relational operator

or denote the (..)

*| / |pzv |
MOD | AND

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

! sign dato

| PHO/ 800619

| erstatter projekt

3.7.1.1 Aritmetic operators

The types of operands and results for dyadic and monadic

operations are shown in the following two tables:

Dyadic operations

operator | operation type of operands type of result

INTEGER INTEGER .

* eaten LONG_INTEGER LONG_INTEGER

a subtraction INTEGER INTEGER

LONG_INTEGER LONG_INTEGER

* multiplica- INTEGER INTEGER

tion LONG_INTEGER LONG_INTEGER

/ division LONG_INTEGER LONG_INTEGER

DIV division INTEGER INTEGER

MOD remainder _INTEGER INTEGER

Both / and DIV are division with truncation

(-3)

and 4L / (-2L) =

2 1, DIV 2=-1,

-2L).

(-3) DIV (-2)

(e.g. 3 DIV

1, 3L / 2L = 1L,

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

‘ sign dato

_PH®/ 800619

side

40
| erstatter “projekt

Monadic operations

operator operation type of operand type of result
4

INTEGER INTEGER

* aeSeTey LONG_INTEGER LONG_INTEGER

sign. INTEGER INTEGER

averScee LONG_INTEGER LONG_INTEGER

Note: The symbol - is also used as a set operator.

3.7.1.2 Boolean operators

.

The types of operands and results for boolean operations

are shown in the following table:

pperator operation type of operands(s) |type of results

OR logical or BOOLEAN BOOLEAN

AND logical and BOOLEAN BOOLEAN

NOT logical BOOLEAN BOOLEAN
negation

Note: The symbols AND and OR are also used as set

operators.

CSS/006/RFM/0001

' sign dato | side

CR80 PASCAL _PH@/ 800619 | 4 |
REFERENCE MANUAL | erstatter Projekt

3.7.1.3 Set operators

The types of operands and results for set operations

are shown in the following table:

operator operation type 9@f operands. type of result

OR set union

7 set difference Any set type T T

AND set intersec-

tion

3.7.1.4

Relational operators

The types of operands and results for relational ope-

rations are shown in the following table:

operator type of operands type of result

|
= <> any type BOOLEAN

< > any simple or string type BOOLEAN

<= >= any set, simple or string type BOOLEAN

IN left operand: any ordinal type T BOOLEAN

right operand: set of T

CSS/006/RFM/0001

* sign dato sjde

CR80 PASCAL PHO/ 800619 |. 42

| erstatter ' projekt
REFERENCE MANUAL

The operands of =, <>, <, >, <= and >= shall be of

compatible type.

The operators =, <>, <, > stand for "equal to", "not

equal to", "less than" and "greater than" respectively.

Except when applied to sets, the operators <= and >=

stand for "less than or equal to" and "greater than or

equal to" respectively.

If U and V are operands of set type, U <= V denotes

the inclusion of U in V, and U >= V denotes the inclu-

sion of Vin UU.

Since the BOOLEAN type is an ordinal type with FALSE <

TRUE, then if P and Q are operands of BOOLEAN type, P = Q

denotes their equivalence and P <= Q means P implies Q.

When the relational operators =, <>, <, >, <=, >= are

used to compare strings, they denote lexicographic or-

dering according to the ordering of the character set.

The operator IN yields the value TRUE if the value of

the operand of ordinal type is a member of the set,

otherwise it yields the value FALSE. In. particular,

if the ordinal value is outside the closed interval

from 0 to 127 a runtime error will occur.

CSS/006/RFM/0001

| sign ‘dato ! side

CR80 PASCAL _PHG/ 800619 | 43
REFERENCE MANUAL | erstatter projekt

3.7.2 Function designator

A function designator specifies the activation of a

function denoted by the function identifier. If neces-

sary the function designator shall contain a list of

actual parameters that are bound to their corresponding

formal parameters defined in the function declaration.

The correspondence is established by the positions of the

parameters in the lists of actual and formal parameters

respectively, and the number of actual parameters must be

equal to the number of formal parameters. An actual para-

meter must be compatible with its corresponding formal pa-

rameter. The selection of an actual variable parameter

and the evaluation of an actual value parameter are done

once before the function is activated.

<function designator> ::=
r

<function identifier> [<actual parameter list>]

<actual parameter list> ::=

(<actual parameter> { <actual parameter> })
7

<actual parameter> 35 <expression> |

<variable>

Examples:

LONG_MOD(A, 10L)

GCD (147, K)

ORD (F a)

CSS/006/RFM/0001

! sign dato _ | side 4

CR80 PASCAL | pHg/800619 4
REFERENCE MANUAL | erstatter pee

3.8 Statements

Statements denote algorithmic actions, and are said to

be executable.

<statement> ::= <simple statement> |

<structured statement>

3.8.1 Simple statements

A simple statement is a statement of which no part

constitutes another statement. The empty statement

consists of no symbols and denotes no action.

<simple statement> ::= <assignment statement> |

<procedure statement> |

<empty statement>

<empty statement>

3.8.1.1 Assignment statements

The assignment statement serves to replace the current

value of a variable or function identifier by a new

value specified as an expression.

<assignment statement> 235

<variable> := <expressiom |

<function identifier> := <expression>

The expression must be compatible with the variable or the func-

tion identifier.

Examples:

= I) AND (C IN [-RED, BLUE |)

CSS/006/RFM/0001
 sign/dato side

CR80 PASCAL /a006 45

REFERENCE MANUAL erstatter projekt

3.8.1.2 Procedure Statements

A procedure statement serves to execute the procedure

denoted by the procedure identifier. If necessary the

procedure statement shall contain a list of actual pa-

rameters that are bound to their corresponding formal

parameter defined in the procedure declaration. The

correspondence is established by the positions of the

parameters in the list of actual and formal parameters

respectively, and the number of actual parameters must

be equal to the number of formal parameters.

An actual parameter must be compatible with its cor-

responding formal parameter. The selection of an actual

variable parameter and the evaluation of an actual value

parameter are: done once before the procedure is activated.

<procedure statement> ::=5

<procedure identifier> [<actual parameter list>"]

Examples:

MINMAX (LIST, MIN, max)

NEW (P)

CSS/006/RFM/0001

 sign/dato side

CR80 PASCAL PHD/800619 46 _

REFERENCE MANUAL
eretatter projekt

3.8.2 Structured Statements

Structured statements are constructs composed of other

statements which have to be executed either in sequence

(compound statement), conditionally (conditional state-

ments), repeatedly (repetitive statements), or within a

special scope (with statements).

<structured statement> ::=

<compound statement> |

<conditional statement> |

<repetitive statement> |

<with statement>

3.8.2.1 Compound statements

The compound statement specifies that its component

statements are to be executed in the same sequence as

they are written. The symbols BEGIN and END act as

statement brackets, and the semicolon is used as a

statement separator.

CSS/006/RFM/0001

* sign dato side

CR80 PASCAL ! | PHG/800619 - 47

REFERENCE MANUAL p rslaton j Pron

<compound statement> ::=

BEGIN <statement>{ ; <statement>} END

Example:

BEGIN 2 := X; X := Y END

3.8.2.2 Conditional statements

A conditional statement selects for execution a single one

of its component statements.

<conditional statement>

‘<if statement> |

<case statement>

3.8.2.2.1 If statements

<if statement> ::= IF <boolean expression>

THEN <statement> [<else-part>]

<else-part> 235 ELSE <statement>

<boolean expression> :: <expression>

If the boolean expression yields the value TRUE, the

statement following the THEN is executed. If the boolean

expression yields FALSE, the action will depend on the

existence of an else-part. If the else-part is present

the statement following the ELSE is executed, otherwise

an empty statement is executed.

The so-called "dangling else" ambiguity is resolved by

pairing an else-part with the nearest preceding unpaired

THEN. Thus the construct

CSS/006/RFM/0001

‘ sign dato ; sae

CR80 PASCAL | PHO/ 800619 48

REFERENCE MANUAL jorstaner ‘io

“IF-<expression 1> THEN

IF <expression 2> THEN <statement 1>

ELSE <statement 2>

is equivalent to

IF <expression 1> THEN

BEGIN

IF <expression 2> THEN <statement {>

ELSE <statement 2>

END

Example:

IF I < J THEN I := J ELSE I 2= J - 1

3.6.2.2.2 Case statements

The case statement consists of a case index and a list

of statements, each being preceded by one or more case

constants. All case constants shall be distinct and shall

be of the same ordinal type as the case index.

The case statement specifies execution of the statement

whose case constant is equal to the value of the case

index upon entry to the case statement.

€<case statement> ::= CASE <case index> OF

<case list element> { ; <case list element>}: END

<case list element> 2:5

<case constant list> : <statement>

<case index> ::= <expression>

CSS/006/RFM/O0001

[sign dato qi aide

CR80 PASCAL : PHG/800619 - 49

REFERENCE MANUAL | erstaer ior

4 Note: It is a syntax error to place a semicolon imme-

diately before the last END of a case statement.

The ordinal value of a case constant must belong to the

closed interval from 0 to 127.

If the case index does not match a case constant, one of

two things will happen:

1) There is a case constant with a larger ordinal value than

the case index value, and there is also a case constant

with a smaller ordinal value than the case index value:

The empty statement will be executed.

2) The conditions in 1) are not fulfilled: A runtime

error will result.

Example:

CASE OPERATOR OF PLUS: xX := X + Y;

MINUS: X := X - Y;

TIMES: X := X *¥* Y

END

3.8.2.3 Repetitive statements

Repetitive statements specify that certain statements

are to be executed repeatedly. If the number of repe-

titions is known before the repetions are started, the

for statement is the appropriate construct to express

this situation; otherwise the while or repeat state-

ment should be used.

CSS/006/RFM/0001

! sign data , aide .

CR80 PASCAL : PHG/ 800679 . 5 U
REFERENCE MANUAL erstatter Projekt

<repetitive statement> ::= <repeat statement>

<while statement> |

<for statement>

3.8.2.3.1 Repeat statements

<repeat statement> ::=

REPEAT < statement sequence> UNTIL <boolean expression>

<statement sequence> ::5

<statement> {; <statement>}

The sequence of statements between the tokens REPEAT

and UNTIL is repeatedly executed until the boolean ex-

pression yields the value TRUE on completion of the

statement sequence. The statement sequence is executed

at least once, because the boolean expression is evaluated

after execution of the statement sequence.

Example:

REPEAT

K := I MOD J;

I := J;

J <3= K

UNTIL J = 0O

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

! sign dato

; PHG/ 800619

| erstatter
'

' projekt

3.8.2.3.2 While statements

<while statements

WHILE <boolean expression> DO <statement>

The statement is repeatedly executed until the ex-

pression becomes FALSE.

beginning, the statement

Example:

If its value is FALSE at the

is not executed at all.

WHILE A [I] <> X DO
BEGIN

A. [x 2= Y;

I >= I+ 1

END

3.8.2.3.3 For statements

The for statement indicates that a statement is to be

repeatedly executed while a progression of values is

assigned to a variable which is called the control

variable of the for statement.

<for statement>

FOR <control variable>

TO <final

FOR <control variable>

DOWNTO <final

<control variable>

<initial value>

<final value>

<initial value>

value> DO <statement> |

<initial value>

value> DO <statement>

<entire variable>

<expression>

<expression>

CSS/006/RFM/0001

! sign dato ; side
: ") CR80 PASCAL | PHO/ 800619: 52

REFERENCE MANUAL
| erstatter | projent

The control variable shall be of an ordinal type, and

the initial value and final value shall be of a type com-

patible with this type. The final value is only cal-

culated once.

The programmer is not allowed to change the value of

the control variable within the statement of the for

statement.

The for statement

FOR V := £1 TO E2 DO BODY

1

where Et and E2 are general expressions, is equivalent

to

IF TEMP1 < TEMP2 THEN

BODY; .

WHILE V <> TEMP2 DO

BEGIN

Voo:= succ(V);

END

and the for statement

FOR V <:= E1 DOWNTO E2 DO BODY

is equivalent to

CSS/006/RFM/0001

q sign dato | side

CR80 PASCAL PHG/ 800619: 53

REFERENCE MANUAL | erstatter | projekt

BEGIN

TEMP1 := &E1;

TEMP2 := E2;

IF TEMP1 >= TEMP2 THEN

BEGIN

V oo3:= TEMP1;

BODY;

WHILE V <> TEMP2 DO

BEGIN

Vo:

BODY

END

END

PRED (V) ;

END

where TEMP1 and TEMP2 are auxiliary variables that

do not occur elsewhere in the program.

Examples of for statements are:

FOR I := 2 TO 63 DO

IF A [I] > MAX THEN MAX := A [ry

FOR I := 1 TON DO

FOR J := 1 TON DO

BEGIN

X := 0;

FOR K := 1 TO N DO

X := X + M1 [z- K]* M2 [K, J] ;

M[I, J] := xX

|

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

! sign dato | side

| PHG/ 800619 : 54

| erstatter Projekt
!

I

3.8.2.4 With statements

<with statement> ::=

WITH <record variable list> DO <statement>

<record variable list> ::

<record variable> { , <record variable> }

Within the component statement of the with statement,

the components (fields) of the record variable(s) spe-

cified by the record variable list can be denoted by

their field identifier only, i.e. without preceding

them with the denotation of the entire record variable.

The scope containing the field identifiers of the spe-

cified record variable(s) is effectively opened, so

that the field identifiers may occur as variable iden-

tifiers.

The statement

WITH V1, V2,.., VN DOS

is equivalent to

WITH V1 DO

WITH V2 DO, ..., VN DOS

CSS/006/RFM/0001

! sign dato | side

CR80 PASCAL | PHO/ 800619 | 55
REFERENCE MANUAL | erstarer | pci

|

Examples:

The statement

IF DATE.MONTH = 12 THEN

BEGIN

DATE.MONTH := 17

DATE. YEAR := DATE.YEAR + 1

END

ELSE

DATE.MONTH := DATE.MONTH + 1

is equivalent to the with statement

WITH DATE DO

IF MONTH = 12 THEN

BEGIN

MONTH := 1;

YEAR := YEAR + 1

END

ELSE

CSS/006/RFM/0001

' sign cats i ade

CR80 PASCAL ! PHO/ g00619 56
REFERENCE MANUAL f erstatter } proveat

3.9 Programs and prefix

A CR80 PASCAL program consists of a prefix followed by

a program block.

_<program > ::= <prefix> <program block>

A CR80 PASCAL program interacts with its runtime envi-

ronment by means of procedures and functions implemented

within that environment. These interface procedures and

functions together with their parameter types are declared

in the prefix. The prefix enables the compiler to make

complete type checking of calls to the runtime environ-

ment.

The compiler has virtually no inherent knowledge about the

runtime milieu for which it generates code. Instead the

programmer supplies the neccessary information by giving

a prefix tailored to that milieu. Needless to say that

the programmer should be on the alert that he is supplying

the right prefix.

<prefix> ::= [<definition part>]

[<prefix routines> }

<program heading>

<prefix routines> ::= <procedure heading> |

<function heading> |

<prefix routines> <procedure heading> |

<prefix routines> <function heading>

CSS/006/RFM/0001

‘ sign Gata i side

CR80 PASCAL : PHO/ 800619 5/7

REFERENCE MANUAL | erstatter | projent

<program heading> s:=

PROGRAM <identifier> <formal parameter list>;

<program block> ::=

[<definition part>]

[<variable declaration part>}

[<routine declarations> |

<compound statement> e

<routine declarations> ::=

<procedure declaration> |

<function declaration> |

< routine declarations> <procedure declaration> |

<routine declarations> <function declaration>

The variables declared in the program block exist through-

out the execution of the program. They are called global

variables. Their values are unpredictable at the begin-

ning of the compound statement.

The formal parameter list in the program heading can be

used by a loader process to pass information to the pro-

gram. The program may pass’ information back to the loa-

der process, if the parameter list contains a variable

parameter.

Examples of CR80 PASCAL programs:

PROGRAM P;

BEGIN END.

CSS/006/RFM/0001
 sign/dato side

CR80 PASCAL - PHD/800619 58

erstatter projekt

REFERENCE MANUAL _

CONST
TABMAX = 157

TYPE

INDEX = 1..TABMAX,
BUFPTR = @BUFFER;

BUFFER = ARRAY CINOEX] OF INTEGER;
FUNCTION IAND(M7, M2: INTEGER) =: INTEGER;
PROGRAM PIPCVAR PTR: BUFPTR)s
TYPE

REC = RECORD
Av Bs CHARs
Cz BUFFER

END,
CONST.

PAP = 471132
VAR

Is INTEGER;
POP, PUP: RECs

PROCEDURE INIT;
BEGIN

WITH POP DO

BEGIN:
A 2s “Aes

B 3s= °C%;
C s= PTRA-?

I := C£l7I]3
END;

PUP :s= POP;

END;

BEGIN

INIT;

IF PTRAC1] = PAP THEN
Io:= ITANDCPOP.CEC2], #400FF);

PTRACTABMAX] := Iz °
ENO.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

| sign. dato | side

| PH®/ 800619) 59

| erstatter | projekt

3.10 Scope rules

A scope is a region of program text in which an

identifier is used with a definite meaning. More

precisely a scope is (a part of) the program, (a part

of) the prefix, (a part of) the program block, (a part

of) a procedure or function, or a record variable or

a with-statement.

The general rule is that an identifier must be introduced

before, it is used. However, in order to make list

processing feasible, it is allowed in pointer type

definitions to refer to a type that has not yet been

defined.

When a scope is defined within another scope we have

an outer scope and an inner scope that are nested. An

identifier can only be introduced with one meaning

in a scope. It can, however, be introduced with another

meaning in an inner scope. In that case the inner

meaning applies in the inner scope, and the outer meaning

applies in the outer scope.

Components of a record variable can be referenced through

field designators or with-statements. The record variable

within which components are selected must be known in

the scope in which the selection is indicated.

The hierarchy of scopes can be illustrated like this:

CSS/006/REFM/0001

sign/dato side CR80 PASCAL PHG/800619 | 60

REFERENCE MANUAL eretatter projekt

Universal level

Prefix level

Program block level

Routine level

Nested with statements

within routines

Nested with statements in the

compound statement of the pro-

gram block.

“At the universal level the following standard identifiers
exist: FALSE, TRUE, INTEGER, LONG_INTEGER, BOOLEAN,
CHAR, NIL, NEW, ABS, CHR, ORD, LONG, SHORT, PRED, and
SUCC.

The predefined meaning of these standard identifiers may
be overruled by declarations and/or definitions in inner
scopes.

The following program tries to illustrate how the

interpretation of an identifier may change within a
program:

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PHO/800619 |’ 6]
REFERENCE MANUAL retaner —

“ILLUSTRATION OF SCOPE RULES"

CONST CHAR = 133
“TT IS NOW IMPOSSIBLE TO OECLARE VARIABLES OF STANDARD TYPE CHAR"
TYPE PTR = BREC;
"THE TYPE REC HAS NOT BEEN DEFINED YET"

REC = RECORD
NIL : INTEGERS
As BOOLEAN:
CHAR: LONG_INTEGER

END?

PROCEDURE PROC(CI, J: INTEGER)?

“ASSUME THIS IS THE ONLY PREFIX ROUTINE”

PROGRAM MAINCPARM: INTEGER);

TYPE SUB1 = 1..CHARZ "CORRESPONDS TO 1..13”

CONST CHAR = °C°?
TYPE S$US2 = “A*. CHARS “°A"..°C°™

P = @REC? "POINTER TO REC IN PREFIX"
REC = RECORD

Az LONG INTEGER;
CHAR: PTR

ENOs
Q = @REC> "POINTER TO REC IMMEDIATELY ABOVE"

VAR P_LPTR: Pe -

Q_PTR: Q3
SUB1 VAR: SUB1z
SUB2_VAR: SUB2;
&: INTEGER?

PROCEOURE PROCTCP: INTEGER)>
VAR

Az RECs
BEGIN.

AeA 23 4771L5
NEWCA.CHAR);

WITH A.CHARA DO
CHAR 32 4712L3

WITH A DO
CHAR :2 NILs

PROC(1s 033 “CALL OF PREFIX ROUTINE”
ENO:

PROCEDURE PROCC(I, J: INTEGER)>
BEGIN

"IN THIS PROCEDURE THE IDENTIFIER A HAS 3 MEANINGS”
Ass 12

WITH Q_PTRA@ OO

BEGIN
A 3s? 1L2
WITH P_PTRA DO

A 32 TRUES

END;
ENO;

PROCEOURE PROC2;

BEGIN
PROC(1s O)5 “CALL OF THE ABOVE DEFINED PROCEDURE”

END;

aEGIN -

SUBIT_VAR := 1
SUB2_VAR ss *%
NEWCP_PTR);

NEWCO_PTR):

Q_PTRA.CHARD.CHAR 3:= LONGCORD(CHAR))>
"IN THE STATEMENT ABOVE CHAR HAS 3 MEANINGS”

P_PTRA NIL := 173
PLPTR 3:2 NILG

ENO.
Pay

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato side
t

PHO/800619 Im

erstatter projekt

3.11 Type Compatibility

Two types are compatible if

or

or

or

or

1)

2)

3)

4)

5)

they are defined by the same type

definition

both are subranges of a single type

they are string types of the same length

they are set types whose members are of

the same ordinal type

they are set types, one (or both) of

which is the null set type.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato

PHO/800619
aide

*

erstatter

projekt

I. 12 Syntax graphs

identifier

letter

digit

unsigned integer

hexa digit

unsigned long_integer

unsigned integer —o=-

ee

constant

| constant identifier

/—————™__ unsigned integer

| a ansioned long_integer

string element

CSS/006/RFM/0001

 sign/dato side

CR80 PASCAL PH@Z/800619 64

erstatter projekt

REFERENCE MANUAL

simple type

 type identifier

(identifier rs ; }____ gg

om
—————-*} constant Ox constant

type

simple type

(1)-» type identifier >

O-
@ simple type type lei

(scorn -——> field list HC mm)

CSS/006/RFM/0001

sign/data aide _

CR80 PASCAL PH@/800619 65

REFERENCE MANUAL eratatter projekt

field list

identifier ~~ 4 type ‘-

L_of case >> identifier HC) type identifier a

t————@»j constant (field list)

variable

—pe variable identifier Ss

field identifier i expression Ome

—C}-—

field identifier

 +(a)-

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PH@/800619 66

REFERENCE MANUAL erstatter projekt

factor

— | constant i >

—™ variable —>

fe function identifier Or expression ~)»

We
<>

(|) | expression >()) >

. . (() iz expression ~(}}—_+

[OX

term

YY

 factor

2993 9

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PHO/800619 6/7

REFERENCE MANUAL
erstatter projekt

simple expression

= term
>

Oa

—(-)H oh

expression

os ae simple expression —_>

parameter list

 identi-

fier type identifier

~

CSS/006/RFM/0001

aign/dato side

CR80 PASCAL PHO/800619 68

REFERENCE MANUAL erstatter projakt

statement

—™ variable PT expression

function identifier

. procedure identifier al |) | expression) a |

=

(exc) statement > END -— >

(|) >

—e- expression (Crmen > ——, ELSE mt statement [—*

ep

CASE expression OF constant

’

: 2
WHILE expression DO statement

(eepzar) statement UNTIL expression [*T

variable identifier := expression]

expression statement {/-—________ —

}-—__—_—_—— >
WITH variable ~ statement

CSS/006/RFM/0001

CR&80 PASCAL

REFERENCE MANUAL

sign/dato side

PH@/800619 69

erstatter projekt

routine block

CONST identifier (,) constant

identifier Oe type i

identifier

 BEGIN

 statement

——————————————eE—

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/data

PH®D/800619
side 7 0

erstatter projekt

program block

HO
-(,)

 O

CONST identifier constant

TYPE identifier ame type

identifier type

routine block

identifier

parameter list

. .ee nD
identifier >> parameter tO type |

identifier

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PH@/800619 71

REFERENCE MANUAL erstatter projekt

prefix

— CONST identifier +=) constant ,

identitier Lo(=)-ef tive

 Cis

<—

—H PROCEDURE) > identifier
tp

parameter list

—e(suncrron)=
 identifier

parameter list b:

 type identifier p>

 ren
identifiex ; parameter list

program

prefix

program block

Oo

CSS/006/RFM/O0001

' sign dato side 7 2

CR80 PASCAL ‘ PH@/800619 |

REFERENCE MANUAL | rstaner _

4. Differences between CR80 PASCAL and JW PASCAL

The term JW PASCAL will be used for the language

defined in Jensen, Kathleen & Niklaus Wirth: PASCAL

User Manual and Report. Second edition. Springer-Verlag.

1978.

Letters and special symbols:

The underscore character_ is a letter in CR80 PASCAL.

The character 3 is used in CR80 PASCAL instead of the

character Tin JW PASCAL.

In CR80 PASCAL the brackets [and] can also be written

(. and .) respectively.

Word symbols:

The word symbols of JW PASCAL FILE, GOTO, LABEL, PACKED

and NIL are not word symbols in CR80 PASCAL.

The word symbols of CR80 PASCAL FORWARD and UNIV are

not word symbols of JW PASCAL.

Prefix:

The notion of a prefix is not known in JW PASCAL.

Comments:

CR80 PASCAL: Uses the character " to begin and to end

a comment.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

' sign dato ' side 7 3

PHO/g00619
| erstatter Projekt
| |

JW PASCAL: Uses { t6 begin a comment and } ‘to’ énd a

comment.

Labels and label definition part:

There are no labels and no label definition part in

CR80 PASCAL.

Constant and type definitions:

Constant and type definitions can be intermixed and

appear any number of times in CR80 PASCAL, whereas

JW PASCAL requires the constant definitions (if any)

to appear before the type definitions (if any).

Constants in constant definitions must be unsigned

in CR80 PASCAL.

It is not allowed in CR80 PASCAL to define an enumerated

type within a record type definition.

CR80 PASCAL requires a variant record to contain a

tag field, and the ordinal value of the case labels in

the variant part must be contained in the closed interval

from 0 to 15.

A record type definition in CR80 PASCAL cannot have a

semicolon immediately before the final END of the

definition.

CSS/006/RFM/0001

! sign dato side

i pH@/800619 |
| erstatter | Proyert
} '

™]

ra

CR80 PASCAL

REFERENCE MANUAL

Standard types:

The type REAL of JW PASCAL is replaced by LONG INTEGER

in CR80 PASCAL. The type FILE is not an inherent type

in CR80 PASCAL.

Procedures and functions:

Procedures and functions cannot be nested in CR80

PASCAL (i.e. it is not possible to declare a routine

within another routine).

Assignment to formal value parameters is not allowed

in CR80 PASCAL.

The UNIV-facility does not exist in JW PASCAL.

Procedures and functions cannot be used as formal

parameters in CR80 PASCAL.

Standard procedures and functions:

The only standard procedure in CR80 PASCAL is NEW.

The standard functions are LONG, SHORT, ORD, CHR,

SUCC and PRED.

Statements:

GOTO-statements are not part of the CR80 PASCAL language.

CSS/006/RFM/0001

' sign dato side 7 5

CR80 PASCAL PH@/ 800619

} erstatter projekt

REFERENCE MANUAL |

A case statement in CR80 PASCAL cannot have a

semicolon immediately before the final END of

the statement.

Sets and set operators:

The ..-notation used in JW PASCAL is not allowed

in CR80 PASCAL (e.g. the set ['a', 'B', tor] cannot

be written ['A'..'C']),

Set union is indicated by OR in CR80 PASCAL and +

in JW PASCAL.

Set intersection is indicated by AND in CR80 PASCAL

in contrast to * in JW PASCAL.

Comparison operators:

Records: Comparison for equality and inequality between

records are allowed in CR80 PASCAL, but not in

JW PASCAL.

Arrays: It is possible to compare arrays of other

types than CHAR for equality and inequality in

CR80 PASCAL.

Integer constants:

The hexadecimal notation possible in CR80 PASCAL is

not allowed in JW PASCAL.

CSS/006/RFM/0001

CR80 PASCAL

' sign dato | siae

- PH@/800619 . 76

REFERENCE MANUAL | Srerener nee

Character strings:

JW PASCAL does not relax the type checking for value

parameters of the type ARRAY [1..N] OF CHAR.

String elements of the form (:<number>:) are not

allowed in JW PASCAL.

Program heading:

The parameter list of a CR80 PASCAL program heading

can be empty, whereas JW PASCAL requires at least one

formal parameter to be specified.

Scope Rules;

In JW PASCAL, the scope of an identifier is directly

related to the block structure. A definition/decla-

ration of an identifier prohibits that identifier from

indicating another object throughout the entire pro-

cedure.

CR80 PASCAL uses a subtle different rule, called ‘one

pass scope', in which a definition of an identifier

prohibits only subsequent uses of the identifier with-

in the block form indicating an object outside the

block.

.

CSS/006/RFM/0001
 sign/date page 7 7

CR80 PASCAL PH@/800619 /

REFERENCE MANUAL rep! Project

5. Data Representation in CR80 PASCAL

This chapter provides information which is useful

when calculating the size of the needed runtime stack.

It is also a prerequisite for using the UNIV-facility

(see 3.6.3) and for inserting assembly code into a

CR80 PASCAL program by the %CODE compile time directive

(see chapter 8).

In the following a word is a CR80 machine word of 16 bits,

and a byte is the 8 rightmost or leftmost bits of a

word. All addresses shown are word addresses.

INTEGER Integer variables are represented

in 2's complement. They are

contained in 1 word. The range is

-32768 to 32767.

BOOLEAN : A boolean variable is contained in

1 word. The value of the word is

either 0 corresponding to FALSE, or

1 corresponding to TRUE.

CHAR : Contained in 1 word. The rightmost

byte holds the ASCII value of the

character, and the leftmost byte is

0.

CSS/006/RFM/0001
 sign/date page

CR80 PASCAL PH@/800619 78

REFERENCE MANUAL ren! a

POINTER : Contained in 1 word. The special

value NIL is represented as 0.

Otherwise it contains a process base

relative address of the first word

(i.e. the word with the lowest machine

word address) of the object pointed

at.

ENUMERATED TYPE : A variable of enumerated type is

represented in 1 word. Ina

declaration T = (C0, C1, C2,...., Cn)

will CO correspond: to 0, C1 to 1, ...

and Cn to n..

LONG_INTEGER Long_integer variables are contained

in 2 words. The representation is

2's complement, and the range is

-2147483648L to 2147483647L.

15 0

addr. Least significant

addr. +1 Most significant

SET : A set variable is always layed out

as 8 words:

addr. 15)
addr.+1 | 31 16

addr.+7 1127 112

Member no. n-is included in the set

if and only if bit no. nis 1.

CSS/006/RFM/0001

sign/date | page

CR80 PASCAL PH®/800619 | 79

REFERENCE MANUAL repi project

ARRAY : Arrays are layed out in lexicographical

order. Example:

A: ARRAY ['A'.. 'B'; 1.. 2]

OF INTEGER;

addr . A['a', 1]

addr .+1 A['A', 2]

addr .+2 a['B', 1]

addr. +3 | A['B', 2]

RECORD : Space is always allocated for the

largest possible variant. The first

field in the record gets the lowest

address, and the last field gets the

highest address.

Example:

Rs RECORD

I, J: INTEGER;

CASE B: BOOLEAN OF

FALSE: (C: CHAR);

TRUE: (L: LONG. INTEGER)

END

addr. I

addr.+1 J

addr.+2 B

!

!
| a

addr.+3 | be
L

J

CR80 PASCAL

CSS/006/RFM/0001

| sign dato | side Hi

[PHO/800619 8U
erstatter projekt

REFERENCE MANUAL

6.1

The runtime system: An inner look

The scope of this section is to provide the necessary

information to enable a programmer with previous

experience in CR80 assembly language programming to

insert native CR80 machine code into a CR80 PASCAL program

by utilizing the %CODE compile time directive. Assembly

code can be inserted to make a monitor function not suppor-

ted by the prefix accessible, or to minimize the CPU-time

used at certain bottle-necks in a program.

Although insertion of assembly code should not be the

province of the ordinary programmer, he might skim this

section to gain further insight into the CR80 PASCAL

system.

The runtime stack

When a CR80 PASCAL program is executing, it uses a stack

and a heap. The stack contains variables, temporary

results, and parameters and return information for

procedures and functions. The heap contains variables

allocated by the standard procedure NEW.

The following figure illustrates the layout of the data

part of an executing CR80 PASCAL program. A procedure

has just been called by another procedure, which was called

in the program block:

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign. dato

‘PHO /800619
“| side

8 4
I

erstatter

| projekt

PROCESS:

BASE -——>

STACK

PROCESS HEADER

SYSTEM DATA

SAVE AREA FOR

RUNTIME SYSTEM

HEAP

FREE SPACE

LOCAL VARIABLES

DYNAMIC LINK

PARAMETERS

TEMPORARIES

LOCAL VARIABLES

DYNAMIC LINK

PARAMETERS

TEMPORARIES

GLOBAL VARIABLES

PROGRAM LINK

PARAM RECORD

LARGE CONSTANTS
 AREA USED BY

THE I/O-SYSTEM

<— HEAPTOP

—s

€— B

|
HIGH

ADDRESSES

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date | Rage

PHD/800619 6 2

repli Project

Register Allocation in the Runtime System

The PASCAL runtime system maintains 4 registers:

G: The global base register. R3

is used.

B: The local base register. R6

is used.

Q: The program counter in

the virtual code. R4

is used.

S: The stack top pointer. R5

is used.

A programmer inserting assembly code into a CR80 PASCAL

program can use registers RO, Rl, R2, R4, and R7 as

work registers. He can use R4 because this register

is only used to contain the return link when a jump has

been performed to the runtime system.

Registers R3, R5, and R6 shall after the execution of

the inserted code have the same contents as before the

code was executed.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page 8 7

PH@/ 800619
 repli Project

The Virtual Code

The program part of a CR80 PASCAL program has this

format:

0

31 PROGRAM HEADER

32

JUMPTABLE
255
256 MON PASCALINIT
257

VIRTUAL CODE

The execution of a CR80 PASCAL program starts with a

monitor call which initializes the jumptable with the

addresses of those subroutines in the runtime system

which emulates the virtual instructions. The virtual

code consists of JMPI S4 P8 instructions, possibly

followed by parameters. Thus although the code is said

to be virtual, it is basically CR80 machine code,

and this fact makes insertion of "normal" CR80 machine

code feasible.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page

PH@/ 800619 84

vepi project

Addressing and Layout of Variables

All addresses of-variables or parameters are normal

CR80 process base relative word addresses. The address

of a variable or parameter that takes up more than

l word is the address of the first word, i.e. the word

with the lowest address. See also chapter 5 of this

document.

Global Variables

Global variables are allocated in the order in which

their declarations are met. They are addressed relative

to the global base G (R3) with negative displacements

such that the absolute value of the displacement is

least for the first declared variable.

Example:

PROGRAM P;
VAR

A: ARRAY [1..3] OF INTEGER;

L: LONG INTEGER;
C, D: CHAR;

BEGIN

END.

CSS/006/RFM/0001
 sign/date Ppse 8

CR80 PASCAL PH®/800619 Sa
)

REFERENCE MANUAL
repl project

When the program is executing, we will have this

situation:

-7 D
-6 Cc
-5 L.LEAST
-4 L.MOST
-3 All
=r A[2
-1 A\3)
+0 «+ G(R3)
+1 PROGRAM

: LINK
If the inserted code among other things had to move

the variable C to RO, the code might include:

MOV R3 R7

ADDC ~6 R7

MOV 0. X7 RO

CSS/006/RFM/0001
 sign/date Page

CR80 PASCAL PHO/800619 86
REFERENCE MANUAL

rep! Project

Local Variables

Local variables are dynamically allocated at procedure

or function entry and deallocated at exit. They are

laid out in the order in which their declarations are

met, and are addressed relative to the local base B (R6)

with negative displacements, such that the absolute value

of the displacement is least for the first declared

variable.

Example:

PROCEDURE PIP;

VAR

I, J: INTEGER;

REC: RECORD

Fl: CHAR;

CASE LARGE: BOOLEAN. OF
TRUE: (L: LONG INTEGER) ;
FALSE: (I: INTEGER)

END;

A, D: ARRAY [1..2, BOOLEAN] OF 1..3;

BEGIN
"PROCESSING"

END;

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/data page 7

PHO/800619 8

repl project

Within the procedure block we will have this picture:

-14 | D [1, FALSE]
-13 | D [1, TRUE]
~12 | D (2, FALSE]
“11 | D [2, TRUE]
~10 | A [1, FALSE]
-9 | A [1l, TRUE]
-8 | A [2, FALSE]
-7 | A [2, TRUE]
-6 | Fl
-5 | LARGE
~4 | }I
=-3 L

-2 |g
-1 {I
+0 + B (R6)
+1 | DYNAMIC LINK

If the inserted code should include a move of the 2

first elements of A to the 2 first elements of D we

might have

MOV R6 R7; B

ADDC -14 R7; -14 => REF D;

MOVL 4.X7 RO1; A[l, *]
MOVL ROL 0.X7; => D [1, *];

CSS/006/RFM/0001
 sign/date page 8

re)
CR80 PASCAL PH@/800619 S)

re Project

REFERENCE MANUAL "

6.4.3 Parameter Passing

Suppose the procedure PAP (parm, ParMy,-ss, parm)

has just been called. When the procedure is entered,

the stack will contain at the point just before the

first statement in the procedure block:

HEAP

+S (R5)
LOCAL

_, | VARIABLES

+0 +B (R6).

+1 DYNAMIC

+2

+3 LINK

+4

Py

Ph-1

Py

The symbol Pi either represents the value of the actual

parameter parm, or the process base relative address of

parm, . Each Pp, can take up 1, 2 or 8 words.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PHD/800619 89

te Project

REFERENCE MANUAL "

When a function is called, e.g. by A := PEP

(parm, , ParMy, +++, parm), the stack will contain

at the point just before the first statement in the

function block:

HEAP

<—S (R5)
LOCAL

-1 VARIABLES

+0 <B (R6)

+1 DYNAMIC

+2

+3 LINK

+4

Py

Py-1

Pl
ROOM FOR

THE RESULT

OF THE

FUNCTION

Again each Pp, can be inl, 2 or 8 words. The value of

a function is either of simple type or pointer type.

Thus the space for the result is either 1 or 2 words

(2 for LONG INTEGER type).

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page ’

PHG/800619 90

Tepl project

A parameter can be declared as a variable or value

parameter. A variable parameter is prefixed by the

word VAR and represents a variable to which the

routine may assign a value. An actual variable

parameter will have its process base relative address

pushed on the stack before the routine is entered.

Hence, Py being an address.

A value parameter is not prefixed by the word VAR, and

it is not supposed to have its value changed in the

routine. Actual value parameters of simple type,

LONG_INTEGER type, pointer type and set type will have

their value pushed on the stack before the routine is

entered. Hence, Py being a. value.

Actual value parameters of array type and record type

will always have their process base relative address

pushed on the stack.

Example:

PROCEDURE P (

I: INTEGER;

VAR J: INTEGER;

LONG1: LONG INTEGER;

VAR LONG2: LONG _INTEGER;

TXT1: IDENTIFIER;

VAR TXT2: IDENTIFIER) ;

where TYPE IDENTIFIER = ARRAY [1..10] OF CHAR;

CSS/006/RFM/0001
 Tanvaare rr 51

CR80 PASCAL PH@/800619

rep! royect

REFERENCE MANUAL ° _

The call P(I1l, 12, Ll, L2, Tl, T2) will result in the

following stack just before the first statement in the

procedure block:

HEAP

LOCAL ® S (R5)

“1 VARIABLES

+0 + B (RG)

+1 DYNAMIC
+2

+3 LINK
+4

+5 | address of T2
+6 | address of TL
+7 | address of L2.
+8 | least sign. part of Ll
+9 | most sign. part of LI”

+10 | address of I2
+11 | value of IL

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page

PH®/800619 9 2

rep project

Work Areas

When assembly code is inserted, a need for work areas

(save areas) may arise. The programmer can either

declare variables in the CR80 PASCAL program to be

used as register save areas (see 6.6), or he can use

the space between the stacktop and the heaptop. To

get the size of the free area between the stack and

the heap, it is necessary to use the merge file

@ **GENS.D*PASASM defining the address of the memory

location where the current value of the heaptop is

stored. The label is HEAPTOP, and the following

sequence can be used to get the size of the free area

into RL:

MOV HEAPTOP RO ;

MOV R5 Rl ;

SUB RO Rl ;

It should be noted that HEAPTOP contains the address of

the first word after the heap, while R5 contains the

address of the top stack element.

The merge file @+##GENS.D*PASASM also defines a

consecutive register save area of 8 words, which can

be freely used by the programmer. The layout of the

save area is:

REGSO: 0;

REGSI: 0 we

REGS7: 0;

CSS/006/RFM/0001

 CR80 PASCAL

REFERENCE MANUAL

sign/cdate page

PH@/800619 9 5
 tepi project

Inserting Assembly Code

As an example it will be shown how a monitor function

can be made accessible in a CR80 PASCAL program.

We will implement:

PROCEDURE READ_INTEGER (

Ss: STREAM ;

VAR INT: INTEGER;

VAR CC: COMPLETION CODE) ;

"THIS PROCEDURE IS USED FOR READING INTEGERS.

IT CALLS THE MONITOR FUNCTION STREAM, INELEMENT

(REF. 3) AND SKIPS ANYTHING ENCOUNTERED WHICH

IS NOT AN INTEGER. HOWEVER, IF A NUMBER OUTSIDE

THE INTERVAL -32768..32767 IS READ, THE PROCEDURE

WILL RETURN WITH CC INDICATING 'ELEMENT OVERFLOW!"

CSS/006/RFM/0001

sign ‘date Page

CR80 PASCAL PH@/800619 ot

ve project

REFERENCE MANUAL "

Assuming that the binary assembly code is contained

in the file @##READ INT, the input to the CR80 PASCAL

compiler will have this outline:

"PREFIX"

"CONST AND TYPE DECLARATIONS"

"VARIABLE DECLARATIONS"

"PROCEDURE DECLARATIONS"

PROCEDURE READ INTEGER (

S: STREAM;
VAR INT: INTEGER;
VAR CC: COMPLETION_CODE) ;

VAR SAVE_R6: INTEGER;
BEGIN
CODE =9**READ INT __
END; 2
"MORE PROCEDURE DECLARATIONS"
BEGIN

"PROCESSING"
END.

At the point where the code is inserted, the picture is:

-1 SAVE_R6 +R5
+0 + R6
+1 DYNAMIC
+2
+3 LINK
+4

+5 REF. CC
+6 REF. INT
+7 VAL. S

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page -

PHO/800619 99
rep! project

LIST

The input source file to be merged and then assembled

out into @*##READ INT will contain:

BEGIN MODULE
MDATAg =
PROGRAM
NOLIST

FALSE

EVe*GEHS. DANO 1§
LIZT
WEE BARE

SAVERS s =

REFCIS=

REFINT:=
SMALUE:=

UWE PROG

REP:

IDENTI:

SPECIAS

HUMBER s
IEFRORs

Mow
MO’
No"
Mo’

Moy
MoM
MOM
a
MF
MP
ME

Mow
TF

Mo"
Mow
MO"
Mow
Mow

FALSES

Ts

SAVERG+S
REFCC+15
REFINT+15

EVALUE LS

a

WEE

h
o
m

oo

REFINT. 2S
=TREAMs

iy
tt

Ft

Re
SAVERS. #5
REFCC, wo

red

Ry

TO DEFINE =TREAM AND

SAVERS.

INELEMENMT
IEFFOR
HUMBER
IDENTI
SPECIA

REP

i

L
e

er

ee
?

ee

ee
)

ee
e

er

“TMPLEMENTATION OF THE PROCEDURE FEAD_ INTEGER”

IHELEMENMTs

ETREAMS

c => EYTE_COUMTS
REF.INT => ADDRS
THELEMENT ©
ERROR: 60TO
HUMBER s BOTO
IDENTIFIER? SOTO
=PECIAL: 50TO

IDENTI:
SFECIA: -

RESTORE ts
5S0TO REPS

HUMEER s
IERROF:
RESTORE ¢&>
RESTORE «63
RELTORE ck»
REF JCCS
COMPLCODE => CCS

“=
n

TERRORS
NUMBERS
ITENTIs
EPECIAD §

CSS/006/RFM/0001

CR80 PASCAL
sign/date ;| Page

PH@/800619 | 96

REFERENCE MANUAL repl project

The AMOS standard prefix

This chapter describes the AMOS standard prefix. The pre-

fix, which is listed in. appendix A, contains a

number of type and constant definitions and a list of 133

assembly coded procedures and functions. These prefix

routines are included in the PASCAL runtime system and

are directly available to the programmer.

Most of the data types are introduced to mirror data

structures. in the AMOS kernel, the I/O system or the file

system. These data types should be regarded as a sort of

intrinsic data types. E.g. it should be ignored that a

variable of type FILE actually is nothing but an integer

variable.

A few of the data types in the prefix may need a little

explanation:

1) TYPE ELEMENT =

ARRAY [1..1] OF INTEGER;

This type is e.g. used in the prefix routine OUTREC:

PROCEDURE OUTREC (

S: STREAM;

FIRST ELEMENT: UNIV ELEMENT;

VAR RECORD_LENGTH. IN BYTES: INTEGER;

VAR CC: COMPLETION CODE) ;

The ideal would have been a procedure with the fol-

lowing outline:

PROCEDURE OUTREC (

S: STREAM;

REC: ANY TYPE;

VAR CC: COMPLETION CODE) ;

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dace | Page

PHO/800619 | 97

repi proyect

2)

This could have been achieved by making OUTREC

a standard procedure. Now it is a prefix procedure,

and the compiler does all its type checking. The

way OUTREC is declared makes it possible to output

most variables and subparts of structured variables.

A variable declared as

‘A: ARRAY [4711..5001] OF CHAR

can be output like this:

BYTELENGTH: = (5001-4711+1) *2;

OQUTREC(STRM, A [4711], BYTELENGTH, CC);

We simply use the fact that the address of any

variable is the address of its first "element".

The type ELEMENT is introduced because OUTREC needs

the address of the first word to be transferred.

If the second formal parameter of OUTREC had been

declared FIRST_ELEMENT: UNIV INTEGER, then OUTREC

would have received the value of the first word.

PACKED NAME = ARRAY oT) OF INTEGER;

PACKED NAME2 = ARRAY [0..1] OF INTEGER;

PACKED NAME3 = ARRAY - .2] OF INTEGER;

FILE_NAME = PACKED_NAME;

In CR80 PASCAL arrays of CHAR are not packed as in

the kernel or file system. This makes it a little

inconvenient e.g. to build a file name. Example:

CSS/006/RFM/0001

sign/oate page

CR80 PASCAL PH@/800619 98

REFERENCE MANUAL repi project

Lookup the file named PASCALCOMPILER in the directory

contained in the file variable DIR:

BUF = 'PASCALCOMPILER(:0:) (:0:)';

PACK (BUF[1], NAME[0], 16);

LOOKUP (DIR, NAME, F, CC);

where

BUF: ARRAY [1..16] OF CHAR;

NAME: FILE NAME;

and PACK and LOOKUP are prefix routines.

The 4 "packed" types above only contains packed

characters when the programmer does the packing, or

when he assigns/reads something which is already

packed. Because an INTEGER variable and a variable

of type CHAR both take up 1 word, PACKED NAME

could also have been an ARRAY [0..7] OF CHAR.

However, then the compiler would not have detected

an erroneous call such as LOOKUP (DIR, 'OBJECT',

F, CC), because of the relaxed type checking in

procedure and function calls (see 3.6.3).

3) BUFFER _LOCATION = (LOCAL, EXTERNAL);

BLEPTR = @BLE;

BLE =

RECORD

LINK: BLEPTR;

CASE XL: BUFFER LOCATION OF °

LOCAL:

(BUFADDR, BUFSIZE_IN BYTES: INTEGER) ;

EXTERNAL : . ,

(MEMORY: MEMORY_PARM)

END;

CSS/006/RFM/0001

an dato

CR80 PASCAL - > _PHO/ soos19 OD _
erstatier Projekt

REFERENCE MANUAL

These types are used when direct I/O (as opposed

to stream I/O) is performed. Their use should be

deducible from the following program example:

CSS/006/RFM/0001

sign/dato

CR80 PASCAL PH@Z/800619
side

100

eretatter

REFERENCE MANUAL
projekt

PROCEDURE OIRECT_IOCF: FILE),
“THIS PROCEDURE READS 1016 WORDS FROM F.”
"THE FIRST 16 ARE DELIVERED IN HEADER,”
"AND THE LAST 1000 ARE REAQ INTO AN EXTERNAL BUFFER."

VAR
HEADER: ARRAY{1..16] OF INTEGER;
BLE_POINTER: 8LEPTR;
MEM: MEMORY_PARMz
CC: COMPLETION _CODE;
TOP, ALLOC: INTEGER;
WA: WORD_ADDRESS;
FA: FILE_AODRESS:.
OK: BOOLEAN;

SEGIN
GET_BUFFER(1000- MEMs WAs ALLOCs OK) “PREFIX ROUTINE”
IF NOT OK THEN ERRORs “ERROR DECLARED ELSEWHERE”
MARKCTOP), "PREFIX ROUTINE”
NEWCBLE POINTER),

WITH BLE_POINTERA DO
BEGIN

XL := LOCAL,
BUFAOOR := REL_ADORCHEADERC1])- "PREFIX ROUTINE”
BUFSIZE_IN_BYTES s= 16%2;7
NEWCLINK);
WITH LINKS DO

BEGIN
XL s= EXTERNALs
MEMORY 2= MEMs”
LINK = NILs "LAST IN CHAIN"

ENOz
END?

WITH FA 00
BEGIN

FIRST_BYTE := OL;
BYTE_COUNT := (16L + 1000L)*2Lz

END,

READ_LBYTESCF, FAs BLE_POINTERs CC)
IF CCC <> ITO_OK) OR

CFA.BYTE_COUNT <> FA. TRANSFERREOD_SYTES)
"D0 THE INTENDED PROCESSING”
RELEASE_BUFFER(MEMs OK);
IF NOT OK THEN ERROR,
RELEASECTOP),

END "OIRECT_IO"-

THEN ERROR;

CSS/006/RFM/0001
 }
|

: sign dalo side | 0 |

CR80 PASCAL _PHO/800619
REFERENCE MANUAL erstatter Prayer’

4) PARAMTYPE =

RECORD

"CURRENT FILE SYSTEM NAME"

FSN: FILE SYSTEM NAME;

"CURRENT VOLUME NAME"

VOL: VOLUME NAME;

"CURRENT PARAMETER FILE"

PFILE: FILE;

"CURRENT DIRECTORY FILE"

DFILE: FILE;

“CURRENT INPUT FILE"

IFILE: FILE;

"CURRENT OUTPUT FILE"

OFILE: FILE;

"PARENT OF PROCESS"

PARENT: PROCESS NAME;

PTR: ~ POINTER

END; _

PASCAL utility programs (i.e. programs not com-

piled with the *NONUTILITY toggle on) will have

their PARAM-record initialized by the runtime

system when they are loaded. For nonutility

programs the contents of this record are undefined.

More information can be found in ref. 6 under the

START command. The use of the PTR-field is explai-

ned under the description of the prefix routine

RUN.

CSS/006/RFM/0001

CR80 PASCAL
sign/date i page

PH@/800619 | 102

REFERENCE MANUAL rep! project

The rest of this chapter gives a brief description of

each prefix procedure and function. The routines are de-

scribed in order of appearance in the prefix.

Two things should be noted:

1) The outcome of an I/O-procedure is only as indica-

ted when the returned completion code equals IO_OK.

2) Actual variable parameters will most likely have

their old contents destroyed, even though the rou-

tine call was not successful. For example, if

INBYTE is called with a non-connected stream, the

CC parameter will indicate this fact, but the second

parameter will nevertheless receive some unpredict-

able garbage "byte".

CSS/006/RFM/0001

CR80 PASCAL
sign/dare | Page br

PHO/800619 | 109

REFERENCE MANUAL repi Project

FUNCTION IAND (

MASK1, MASK2 : UNIV INTEGER): INTEGER;

The two masks are and'ed logically.

FUNCTION IOR (

MASK1, MASK2 : UNIV INTEGER): INTEGER;

The two masks are or'ed logically.

FUNCTION XOR (

MASK1,. MASK2 : UNIV INTEGER): INTEGER;

The two masks are exclusive or'ed logically.

FUNCTION INV (

MASK: UNIV INTEGER): INTEGER;

The result is the mask inverted (i.e. 1 bits are

changed to 0 bits and 0 bits are changed to 1 bits).

FUNCTION LEFTSHIFT (

BITS: UNIV INTEGER; SHIFTS: INTEGER): INTEGER;

The result is BITS shifted logically to the left as

indicated by SHIFTS. If SHIFTS >= 16 the result is

0. If SHIFTS <= 0 no shifts are performed.

FUNCTION RIGHTSHIFT (

BITS: UNIV INTEGER; SHIFTS: INTEGER): INTEGER;

The result is BITS shifted logically to the right as

indicated by SHIFTS. If SHIFTS >= 16 the result is 0.

If SHIFTS <= 0 no shifts are performed.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date

PH@/800619
| Page

104

repl

Project

FUNCTION ADD (

A, B: INTEGER): INTEGER;

The two integers A and B are added. There is no test

for overflow. If A and B were added by using the normal

plus operator +, overflow would have caused a runtime

error.

FUNCTION SUBSTRACT (

A, B: INTEGER): INTEGER;

The integer B is subtracted from A. There is no

test for overflow. If B was subtracted from A by using

the normal minus operator -, overflow would have caused

a runtime error.

FUNCTION GETBITS (

BITS: UNIV INTEGER; LEFTMOST: BITPOSITION;

FIELDLENGTH: BITFIELDLENGTH) :

Let M = MINIMUM (LEFTMOST + 1,

numbers selected are LEFTMOST,

INTEGER;

FIELDLENGTH) .

LEFTMOST - 1,

GETBITS

extracts a bit field from BITS of length M. The bit

aeog

LEFTMOST + 1 —- M. The result is the extracted bit field

right justified possibly (if M < 16) extended to the

left with O-bits. If FIELDLENGTH = 0 the result is 0.

If LEFTMOST or FIELDLENGTH are not within range

= 16) (0 < = LEFTMOST < = 15 ; FIELDLENGTH <

a runtime error (range error) will occur.

PROCEDURE PUTBITS (FROM: UNIV INTEGER; VAR TO_: UNIV INTEGER;

LEFTTO: BITPOSITION; FIELDLENGTH: BITFIELDLENGTH) ;

CSS/006/RFM/0001

sign/date | Dage

CR80 PASCAL PHO/800619 | 05
 REFERENCE MANUAL repl Tor

Let M = MINIMUM(LEFTTO + 1, FIELDLENGTH). PUTBITS

extracts a bit field of M bits from the parameter FROM

consisting of the least significant M bits and inserts

this bit field frombit number LEFFTO to bit number

LEFTTO - M + 1 in the second parameter TO_. The other
bits of TO_ are left unchanged. If FIELDLENGTH = 0,

TO_ is not changed. If LEFTTO or FIELDLENGTH are not

within range (0 < = LEFFTO < = 15; 0 < = FIELDLENGTH

< = 16) a runtime error (range error) will occur.

FUNCTION TESTBIT (

BITS: UNIV INTEGER; BITNUMBER: BITPOSITION) : BOOLEAN;

If bit number BITNUMBER is set (i.e. equal to 1) in
BITS, the result is TRUE. Otherwise it is FALSE.

A runtime error (range error) will occur, if BITNUMBER

is not within range (0 < = BITNUMBER < = 15).

PROCEDURE SETBIT(.

VAR BITS: UNIV INTEGER; BITNUMBER: BITPOSITION) ;

The procedure sets to 1 the bit in BITS with number

BITNUMBER. All other bits in the parameter BITS are

left unchanged. A runtime error will be produced if

BITNUMBER is not within range (0 < = BITNUMBER < = 15).

PROCEDURE CLEARBIT (

VAR BITS: UNIV INTEGER; BITNUMBER: BITPOSITON);

The procedure clears to 0 the bit in BITS with number

BITNUMBER. All other bits in the parameter BITS are

left unchanged. A runtime error will be produced if

BITNUMBER is not within range (0 < = BITNUMBER < = 15).

CSS/006/RFM/0001

sign/date | Page

CR80 PASCAL pHg/s00619 | 106

REFERENCE MANUAL repl project

PROCEDURE SENSE_I0(

DEVICE: INTEGER; VAR STATUS: UNIV INTEGER) ;

The 6 least significant bits of DEVICE are the address

of an I/O-device, while the remaining 10 bits may be

used as a command with a device dependent meaning. The

contents of the device control register of the selected

device are delivered in the parameter STATUS.

PROCEDURE READ I0(

DEVICE: INTEGER; VAR DATA: UNIV INTEGER);

The 6 least significant bits of DEVICE are the address

of an I/O-device, while the remaining 10 bits may be

used as a command with a device dependent meaning. The

procedure reads a data word from the selected device

and delivers it in the parameter DATA.

PROCEDURE CONTROL_I0(

DEVICE: INTEGER; STATUS: UNIV INTEGER) ;-

The 6 least significant bits of DEVICE are the address

of an I/O-device, while the remaining 10 bits may be

used as a command with a device dependent meaning. The

control word contained in the parameter STATUS is

transferred to the selected device.

PROCEDURE WRITE_I0(

DEVICE: INTEGER; DATA: UNIV INTEGER) ;

The 6 least significant bits of DEVICE are the address

of an I/O-device, while the remaining 10 bits may be

used as a command with a device dependent meaning. The

procedure transfers the word contained in the second

parameter DATA to the selected device.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date ; Page

PH@/800619 | 07

repi project

PROCEDURE RESERVE_INTERRUPT (

DEVPR: INTEGER; VAR INTRPT: INTEGER) ;

The monitor function RESERVEINTERRUPT is called.

The parameter DEVPR shall contain the concatenation of

a 6 bit I/O-device address (in bits 2 to 7) anda

priority (in bits 0 to 1). If DEVPR is valid and not

reserved by another process, an identification of

the interrupt will be returned in the parameter INTRPT.

This identification must be used for all other inter-

rupt functions. If the reservation was not successful,

INTRPT will contain -1.

PROCEDURE RELEASE INTERRUPT (

INTRPT: INTEGER) ;

The monitor function RELEASEINTERRUPT is called.

The interrupt is released, if INTRPT is an identifica-

tion of an interrupt reserved by the calling process.

Otherwise nothing happens.

PROCEDURE CLEAR_INTERRUPT (

INTRPT: INTEGER);

The monitor function CLEARINTERRUPT is called.

The interrupt counter is cleared to zero, if INTRPT

contains an identification of an interrupt reserved

by the calling process.

PROCEDURE WAIT_INTERRUPT (

DELAY, INTRPT: INTEGER; VAR TIMED_OUT: BOOLEAN) ;

First the monitor function SETINTERRUPT is called,

followed by a call of the monitor function WAITEVENT

waiting for interrupts and time outs. The procedure

returns when the interrupt identified by INTRPT (and

previously reserved by the process) is or already has

been received, or when DELAY*100 ms have elapsed,

whatever happens first. At return the parameter

TIMED OUT indicates whether the process was timed out

or the interrupt was received.

CSS/006/RFM/0001
 a'gn/date page 1 0 8 CR80 PASCAL

PHO/800619
 REFERENCE MANUAL repl Project

PROCEDURE SET_INTERRUPT (

INTRPT: INTEGER) ;

The monitor function SETINTERRUPT is called.
If INTRPT is an identification of an interrupt reserved
by the Calling process, this interrupt will be the one
waited for when the prefix procedure WAIT EVENT is
called with an event mask specifying that interrrupts
are awaited.

PROCEDURE SET_CYCLE (

CYCLE: INTEGER) ;

The monitor function SETCYCLE is called.

PROCEDURE SEND_MESSAGE (

VAR RECEIVER: PROCESS_NAME;
MSG: UNIV MESSAGE BUFFER; VAR EVENT: INTEGER) ;

The monitor function SENDMESSAGE is called. The
contents of the parameter MSG are copied to a message
buffer, the contents of which are delivered to the
process identified by RECEIVER, when this process calls
the prefix procedure WAIT EVENT or WAIT MESSAGE.
An identification of the -message is delivered in the
last parameter EVENT. Note: RECEIVER. NAME must contain
the name of the Process in packed form (first character
in byte 0, second character in byte 1, e++). The first
Parameter RECEIVER is a variable parameter, because
RECEIVER. NAME IDENT might be updated to allow faster
lookup next time this process is referenced.

PROCEDURE SEND_SYSTEM_ MESSAGE (
VAR RECEIVER: PROCESS_NAME;
MSG: UNIV MESSAGE BUFFER; VAR EVENT: INTEGER) ;

The monitor function SENDSYSTEMMESSAGE is called.
Analoguos to SEND_MESSAGE above.

css/006/RF
M/0001

 —_

sign/date
j page

C

PH@/800619
\ 0%

project

c
eae PASCAL

FEREN Cc

PROCEDURE SEND_ANSWER (

ANS: UNIV MESSAGE_BUFFER; EVENT: INTEGER) i

The monitor function SENDANSWER
is called. The contents

o£ ANS are copied to ® message buffer, the co

of which are gent to the originator
of the event

ntents

contained in EVENT.

PROCEDURE SEND_SYSTEM_AN SWER (

ANS: UNIV MESSAGE_BUFFER:
EVENT: INTEGER) i

The monitor function
SENDSY STEMANSWER

is called. The

ge buffer, the

nator of the
contents of ANS are copied to a messa

contents
of which are sent to the origi

event contained
in EVENT.

PROCEDURE SEND SIGNAL (

VAR RECEIVER: PROCESS_NAME)
i

alled. The signal

RECEIVER
is set,

The monitor function
SENDSIGNAL

is c

poolean in the process jaentified
by

and if the receiving process was awaiting the signal,

it is Linked to its CPU ready queue.

PROCEDURE INDENTIFY_SENDER
(

EVENT: INTEGER; VAR pROC: INTEGER: VAR OK: BOOLEAN) ;

The monitor
function

IDENTIFY SENDER is called. The PCB

index of the process originating the EVENT is delivers

in PROC. If the EVENT was received by the calling

process, oK is set to TRUE, otherwise to FALSE. (The

process name of the originator
 can be found by callin

the prefix procedure GET _PROC_NAME) -

CR80 PASCAL CSS/006/RPM/0904

SiI9N/date

page
PH®/800619 | HT 0 repi

ai

PROC_NAME, NAME, Otherwise a dummy name equal to
"2222220 is returned,

Process with name PROC_NAME, NAME €xists, its PCB index

is returned in PROC_NAME, NAME IDENT ang FOUND is se
to TRUE. Otherwise FOUND is set to FALSE,

PROCEDURE WAIT _MESsacR (DELAY: INTEGER; VAR MSG; UNIV MESSAGE BUFFER; —~

VAR EVENT: INTEGER; VAR EVTTYPE; EVENT_TypR) ,

The last Parameter EVTTYPE tells which €vent actually

happeneg first,

PROCEDURE WAIT SysTEm MESSAGE (— DELAY: INTEGER; VAR MSG: UNIV MESSAGE BUFFER,
VAR EVENT: INTEGER; VAR EVTTYPE: EVENT_TypR) ,

CSS/006/RFM/0001

sign/date page

114 CR80 PASCAL PH@/800619 |

REFERENCE MANUAL feet es

PROCEDURE WAIT_ANSWER (

DELAY: INTEGER; EVENT; INTEGER;

VAR ANS: UNIV MESSAGE BUFFER; VAR EVTTYPE: EVENT _TYPE) ;

The monitor function AWTANSWER is called. The procedure

returns when the specific answer corresponding to

EVENT is received, or when DELAY*100 ms have elapsed,

whatever happens first. If an answer is received, it

will be delivered in ANS and EVTTYPE will be equal to

ANSWER. Otherwise EVTTYPE will be equal to TIME OUT.

PROCEDURE WAIT SYSTEM ANSWER (

DEALY: INTEGER; EVENT: INTEGER;

VAR ANS: UNIV MESSAGE BUFFER; VAR EVTTYPE: EVENT_TYPE) ;

The monitor function AWTSYSTEMANSWER is called. The

procedure is analogous to WAIT_ANSWER above.

PROCEDURE WAIT _EVENT (

DELAY: INTEGER; EVTMSK: EVENT MASK;

VAR MSG: UNIV MESSAGE BUFFER;

VAR EVENT: INTEGER; VAR EVTTYPE: EVENT TYPE) ;

The monitor function WAITEVENT is called. EVTMSK is a

bit mask specifying those eventtypes to be awaited.

If none of the eventtypes specified have yet occured,

the process is suspended until an occurence. It returns

with the most urgent event. The resulting eventtype is

delivered in EVTTYPE, and if the eventtype is of message

or answer type an identification of the message/answer

is delivered in EVENT, and the contents of the message/

answer are delivered in MSG. The value of DELAY is

only used if time outs are awaited.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date

PH®/800619

| page

112

repl

Project

PROCEDURE SAVE_EVENT (

EVENT: INTEGER) ;

The monitor function SAVEEVENT is called. The message

or answer (ordinary, system, or path) corresponding to

EVENT is queued such that it later on can be retrieved

by calling the prefix procedure RESTORE EVENTS followed

by a call of WAIT _EVENT, WAIT MESSAGE, or

WAIT SYSTEM MESSAGE. __

PROCEDURE RESTORE_EVENTS (

EVTTYPE: EVENT TYPE) ;

The monitor function RECOVEREVENTS is called. If the

eventtype specified is of message or answer type

(ordinary, system, or path) the corresponding list of

saved events is transferred to the front of the corres-

ponding event queue.

PROCEDURE TERMINATE (

CC: COMPLETION CODE) ;

The monitor function TERMINATE is called. The value of

CC should be between 0 and 255, because the upper byte

is reserved. The process is suspended with SSTATE =

STOPPED, and the value of CC (with bit 15 set by the

kernel) and the program source line number of the

procedure call are stored in SERROR in the PCB. If the

program was compiled with the %*NONUMBER toggle on, the

line number stored is that of the line containing the

first BEGIN of the program or routine block, in which

TERMINATE is called. A parent signal is sent to the

parent of the calling process. If CC <> 0 a line number

trace is written on current output. The trace makes

it possible to follow on a procedure/function basis

the execution which lead to this severe situation

requiring a forced abend.

CSS/006/RFM/0001
 sign/date page

CR80 PASCAL PHO/800619 113

REFERENCE MANUAL
repi praject

PROCEDURE READ TIME (

VAR TIME: DATE_TIME_ GROUP) ;

The monitor function READRTC is called. The clock

and date are returned. TIME.YEAR will be the actual

year (e.g. 1980).

PROCEDURE START_PROCESS (

PROC: INTEGER; VAR ILLEGAL: BOOLEAN) ;

The monitor function STARTPROCESS is called. If PROC

is the PCB index of a child process of the calling

process and its state is stopped (or to be stopped),

ILLEGAL is set to FALSE, and the state of the child

is set to preemted. Otherwise ILLEGAL is set to TRUE.

PROCEDURE STOP_PROCESS (

PROC: INTEGER; VAR ILLEGAL: BOOLEAN) ;

The monitor function STOPPROCESS is called. If PROC

is the PCB index of a child process of the calling

process, ILLEGAL is set to FALSE and the child is

stopped. Otherwise ILLEGAL is set to TRUE.

PROCEDURE PROCESS STATUS (

PROC: INTEGER; VAR ILLEGAL: BOOLEAN;

VAR PROC_ATTR: PROCESS ATTRIBUTES) ;

The monitor function GETATTRIBUTES is called.

If PROC is a PCB index, ILLEGAL is set to FALSE

and the attributes are delivered in PROC_ATTR.

Otherwise ILLEGAL is set to TRUE.

CSS/006/RFM/0001

sign/date page |] 4
CR80 PASCAL PH@/800619

REFERENCE MANUAL ren prise

PROCEDURE REMOVE PROCESS (

PROC: INTEGER; VAR ILLEGAL: BOOLEAN);

The monitor function REMOVEPROCESS is called. If

PROC is the PCB index of a child of the calling

process, ILLEGAL is set to FALSE and the process

is removed. Otherwise ILLEGAL is set to TRUE.

(As can be seen,the memory parameter of the removed
process is not returned as in the assembly language

version).

PROCEDURE GET_NEXT_ PROCESS (
VAR PROC: INTEGER; VAR NONE: BOOLEAN) ;

The monitor function GETCHILD is called. Successive

calls of GET_NEXT_PROCESS will step through the cir-
cular list of child processes, delivering their PCB

index in PROC. If the list is empty, NONE is set to

TRUE, otherwise to FALSE.

PROCEDURE ADOPT PROCESS (

PROC: INTEGER; VAR ILLEGAL: BOOLEAN);

The monitor function ADOPTPROCESS is called.

If PROC is the PCB index of a child of the calling

process, and if the calling process has a parent,
the parenthood of the child is transferred to the

grandparent of the child and ILLEGAL is set to FALSE.

Otherwise ILLEGAL is set to TRUE.

PROCEDURE CREATE PROCESS (

VAR CB: CREATION BLOCK; VAR RESULT: INTEGER) ;

The monitor function CREATEPROCESS is called. The

completion code (see ref. 2) is delivered in RESULT.

css/006/RFM/0001
 sign/date page | 1 5

CR80 PASCAL
PH®/800619

REFERENCE MANUAL
repl project

PROCEDURE GET_CPU_PARAMETER (

CPU: INTEGER; PAR: CPUPARAMETER;

PRIORITY: INTEGER; VAR VAL: INTEGER; VAR OK: BOOLEAN) ;

The monitor function GETCPUPARAMETER is called

(see ref 2).

PROCEDURE SET_CPU_PARAMETER (

CPU: INTEGER; PAR: CPUPARAMETER;

PRIORITY: INTEGER; VAL: INTEGER; VAR OK: BOOLEAN) ;

The monitor function SETCPUPARAMETER is called

(see ref 2).

PROCEDURE LOOKUP_CPU(

VAR CPU NAME: PROCESS_NAME; VAR FOUND: BOOLEAN) ;

The monitor function LOOKUPCPU is called. The CPU

identified by CPU_NAME.NAME is looked up. If found

the CPUCB index is returned in CPU_NAME.NAME_IDENT,

and FOUND is set to TRUE. Otherwise FOUND is set. to

FALSE.

PROCEDURE GET_ BUFFER (

WORD_CLAIM: INTEGER; VAR MEMORY: MEMORY _PARM;

VAR ADDR: WORD _ADDRESS;

VAR WORDS ALLOCATED: INTEGER; VAR OK: BOOLEAN) ;

The monitor function GETBUF is called. The memory

Manager is asked to allocate a contiguous memory area

at least containing WORD_CLAIM words. If the alloca-

tion is successful, OK is set to TRUE and 1) an identi-

fication of the area is returned in MEMORY, 2) the start

address of the area is returned in ADDR such that

ADDR.MEMORY_SECTION may be used directly as a PSW

value, i.e. the page number is contained in bits 2

and 3, and 3) the number of words actually allocated

“ig returned in WORDS ALLOCATED. Otherwise OK is set

to FALSE.

CSS/006/RFM/0001

CR80 PASCAL
sign/date Page

PH@/800619 116
 REFERENCE MANUAL real Project

PROCEDURE GET_BUFFER_ADDR(
MEMORY : MEMORY _PARM; VAR ADDR: WORD_ADDRESS;
VAR SIZE_IN WORDS: INTEGER; VAR OK: BOOLEAN) ;

The monitor funciton ADRBUF is called. If MEMORY
identifies a memory area belonging to the calling
process, the start address of this area is delivered
in ADDR (such that ADDR.MEMORY_SECTION. maybe used
as a PSW), the size of the area is delivered in
SIZE _IN_WORDS, and OK is set to TRUE. Otherwise OK
is set to FALSE.

PROCEDURE RELEASE BUFFER (

MEMORY: MEMORY _PARM; VAR OK: BOOLEAN) ;

The monitor function RELBUF is called. If the memory
area identified by MEMORY belongs to the calling pro-
cess, the area is returned to the vacant area pool,
and OK is set to TRUE. Otherwise OK is set to FALSE.

PROCEDURE CREATE (

FSN: FILE SYSTEM NAME; ATTRIBUTES: FILE ATTRIBUTES;
VAR F: FILE; VAR CC: COMPLETION CODE) ;

The monitor function IO, CREATE is called. A new file
is created on the file system FSN with the attributes
specified. The file is returned through F as an "open"
file.

PROCEDURE DISMANTLE (

F: FILE; VAR cc: COMPLETION CODE) ;

The monitor function I0, DISMANTLE is called. The
file F is dismantled.

CSS/006/RFM/0001

sign/cate . page

CR80 PASCAL PHO/800619 117

REFERENCE MANUAL
repi project

PROCEDURE PROTECT (

F: FILE; ACCESS: ACCESS DESCRIPTION;

VAR CC: COMPLETION _CODE) ;

The monitor function IO, PROTECT is called (see ref 3).

PROCEDURE RESET (

F: FILE; VAR CC: COMPLETION CODE) ;

The monitor function IO, RESET is called. All storage

allocated to the file is deallocated.

PROCEDURE OFFER (

F: FILE; USER: USERID; VAR CC: COMPLETION CODE) ;

The monitor function IO, OFFER is called. The file F

is made available for ACCEPTing (see below) to the USER.

PROCEDURE ACCEPT (

FSN: FILE_SYSTEM_NAME;

VAR F: FILE; VAR CC: COMPLETION CODE) ;

The monitor function IO, ACCEPT is called. A file,

which was previously OFFERed by another user, from the

specified file system is delivered in F as an "“open"

file.

PROCEDURE GET_FILE INFORMATION (

F: FILE; INF_TYPE: FILE _INFORMATION_TYPE;

VAR INF: UNIV LONG_INTEGER; VAR CC: COMPLETION_CODE) ;

The monitor function I0, GETFILEINFORMATION is called.

The information about the file F specified by INF_TYPE

is returned in INF. If the requested information only

occupies one word, it is returned in the least signi-

ficant word of INF, and the most significant word

is set to 0.

CSS/006/RFM/0001

CR80 PASCAL

sign/date Page

PH@/800619 11 8

REFERENCE MANUAL repl project

PROCEDURE ASSIGN (

FSN: FILE _SYSTEM_NAME;

DESCRIPTION: DEVICE DESCRIPTION;

VAR CC: COMPLETION CODE) ;

The monitor function I0, ASSIGN is called. The device

identified by DESCRIPTION is included in the set of

devices which can be used by the file system, and the

device can now be referrred to by DESCRIPTION. DEVICE.

PROCEDURE DEASSIGN (

FSN: FILE _SYSTEM_NAME;

DEVICE: DEVICE NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, DEASSIGN is called.

The DEVICE is deassigned from the specified file

system.

PROCEDURE MOUNT (

FSN: .FILE_SYSTEM_NAME; DEVICE: DEVICE_NAME;
VOLUME: VOLUME NAME; VAR CC: COMPLETION_CODE) ;

The monitor function I0, MOUNT is called. The volume

VOLUME is connected to the device DEVICE on the speci-

fied file system.

PROCEDURE DISMOUNT (

FSN: FILE_SYSTEM_NAME;

VOLUME: VOLUME NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, DISMOUNT is called. The

volume VOLUME is dismounted from the file system.

CSS/006/RFM/0001

sIQn ‘date page

CR80 PASCAL PH@/800619 119

REFERENCE MANUAL rep! project

PROCEDURE FORMAT (

FSN: FILE SYSTEM NAME; DEVICE: DEVICE NAME;

VAR SECTORADDR: SECTOR_ADDRESS;

BLE POINTER:BLEPTR; VAR CC: COMPLETION CODE) ;

The monitor function IO, FORMAT is called. The

volume on the specified DEVICE is formatted. The

BLE POINTER is a dummy parameter. The sectors to be

formatted are selected by SECTORADDR. At return the

number of sector actually formatted is delivered in

SECTORADDR. TRANSFERRED SECTORS.

PROCEDURE GET _ROOT(

FSN: FILE SYSTEM NAME; VOLUME: VOLUME NAME;

VAR ROOT DIRECTORY: FILE; VAR CC: COMPLETION CODE) ;

The monitor function I0, GETROOT is called. The root

directory of the indicated volume is returned in

ROOT DIRECTORY as an "open" file (e.g. ready to

ENTER a file into). :

PROCEDURE USER_ON(

FSN: FILE SYSTEM NAME;

USER: USERID; VAR CC: COMPLETION CODE) ;

The monitor function IO, USERON is called. The USER

can now use the file system FSN.

PROCEDURE USER_OFF (

FSN: FILE_SYSTEM_NAME;

USER: USERID; VAR CC: COMPLETION CODE) ;

The monitor function IO, USEROFF is called. The USER

is logged off the file system FSN.

CSS/006/RFM/0001

CR80 PASCAL

sign/date page

PH®/800619 léu

REFERENCE MANUAL ia [oo

PROCEDURE ENTER (

DIRECTORY: FILE; SUBJECT: FILE;
NAME: FILE NAME; VAR CC: GOMPLETION CODE) ;

The monitor function IO, ENTER is called. The

SUBJECT file is entered (or catalogged) in the

DIRECTORY file under the specified NAME.

PROCEDURE LOOKUP (

DIRECTORY: FILE; NAME: FILE NAME;

VAR F: FILE; VAR CC: COMPLETION_CODE) ;

The monitor function I0, LOOKUP is called. If the

returned CC = IO_OK, a file with name NAME was found

in DIRECTORY. The file is returned as an "open" file

through F.

PROCEDURE DESCENT (

VAR F: FILE; NAME: FILE NAME;

VAR CC: COMPLETION CODE) ;

The monitor function IO, DESCENT is called. If the

returned CC = IO OK, a file with name NAME was found

in the directory F. The directory F was then "closed",

and the file with name NAME is returned as an "open"

file through F.

PROCEDURE FIND FILE (

FROM_ADAM: BOOLEAN; FSN: FILE_SYSTEM_NAME;

VOLUME: VOLUME NAME; NAMELIST: NAMELISTTYPE;

NAME NO: INTEGER; DIRECTORY: FILE;

VAR F: FILE; VAR CC: COMPLETION CODE) ;

(In retrospect: The layout of this procedure is a

blunder). The monitor function FINDFILE is called

(see ref 5).

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL puo/sooe19 | sel
REFERENCE MANUAL erstatter projekt

PROCEDURE RENAME (

DIRECTORY: FILE; OLDNAME: FILE NAME;

NEWNAME: FILE NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, RENAME is called. If the

returned CC = IO OK, the file with name OLDNAME was

found in the DIRECTORY and was renamed to the name

NEWNAME.

PROCEDURE REMOVE (

DIRECTORY: FILE; NAME: FILE NAME;

VAR CC: COMPLETION CODE) ;

The monitor function IO, REMOVE is called. The file

with name NAME is no longer catalogged in DIRECTORY.

PROCEDURE READ SECTORS (

FSN: FILE SYSTEM NAME; DEVICE: DEVICE NAME;

VAR SECTORADDR: SECTOR_ADDRESS; BLE POINTER: BLEPTR;

VAR CC: COMPLETION_CODE) ;

The monitor function IO, READSECTORS is called. The

sectors specified by SECTORADDR on DEVICE are trans-

ferred to the memory area(s)’ specified by BLE POINTER.

The number of sectors actually transferred is delivered

in SECTORADDR. TRANSFERRED SECTORS.

PROCEDURE WRITE _SECTORS (

FSN: FILE SYSTEM NAME; DEVICE: DEVICE NAME;

VAR SECTORADDR: SECTOR_ADDRESS; BLE POINTER: BLEPTR;

VAR CC: COMPLETION CODE) ;

The monitor function IO, WRITESECTORS is called. The

memory area(s) specified by BLE POINTER is (are) writ-

ten on the sectors specified by SECTORADDR on DEVICE.

The number of sectors actually transferred is delivered

in SECTORADDR. TRANSFERRED_SECTORS.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PH®Z/800619 12 Ro

REFERENCE MANUAL reol project

PROCEDURE WRITE AND PROTECT (

FSN: FILE SYSTEM NAME; DEVICE: DEVICE NAME;

VAR SECTORADDR: SECTOR_ADDRESS; BLE POINTER: BLEPTR;

VAR CC: COMPLETION CODE) ;

The monitor function I0, WRITEANDPROTECT is called.

PROCEDURE WRITE AND MARK (

FSN: FILE_SYSTEM_NAME; DEVICE: DEVICE NAME;

VAR SECTORADDR: SECTOR_ADDRESS; BLE_POINTER: BLEPTR;

VAR CC: COMPLETION_CODE) ;

The monitor function IO, WRITEANDMARK is called.

PROCEDURE READ BYTES (

F: FILE; VAR FILE ADDR: FILE ADDRESS;

BLE POINTER: BLEPTR; VAR CC: COMPLETION _CODE) ;

The monitor function IO, READBYTES is called. Data is

read into the buffer (s) specified by BLE POINTER

from the specified file address. The number n of bytes

actually read is returned in FILE _ADDR.TRANSFERRED BYTES.

(n = MINIMUM (FILE ADDR. BYTE COUNT, ,

sum of buffer lengths, no. of bytes in the file from

FILE ADDR. FIRST BYTE and to the end of the file)).

PROCEDURE MODIFY_ BYTES (

F: FILE; VAR FILE ADDR: FILE ADDRESS;

BLE POINTER: BLEPTR; VAR CC: COMPLETION CODE) :

The monitor function IO, MODIFYBYTES is called. Data

is written from the buffers specified by BLE_POINTER

onto the file from the specified file address. The

number n of bytes actually written is returned in

FILE ADDR. TRANSFERRED BYTES. (n = MINIMUM (sum of

buffer lengths, FILE ADDR. BYTE _COUNT)).

CSS/006/RFM/0001

sign/date | page

CR80 PASCAL PHD/800619 12 C
n

REFERENCE MANUAL
repl project

PROCEDURE APPEND_BYTES (

F: FILE; VAR FILE_ADDR: FILE_ADDRESS;

BLE POINTER: BLEPTR; VAR CC: COMPLETION CODE) ;

The monitor function IO, APPENDBYTES is called.

Analogous to MODIFY BYTES above, but data is appended

(i.e. the value of FILE_ADDR. FIRST_BYTE is irrele-

vant).

PROCEDURE INIT_READ_ BYTES (

F: FILE; VAR FILE_ADDR: FILE ADDRESS;

BLE POINTER: BLEPTR; VAR OPREF: OPERATION REFERENCE;

VAR CC: COMPLETION CODE) ;

The monitor function IQ, INITREADBYTES is called.

Analogous to READ BYTES, but the transfer is only

initiated. The operation may be awaited/tested for

completion by calls of WAIT _OPERATION or TEST_OPERATION.

An identification of the initiated transfer is deli-

vered in OPREF. Note: Because FILE ADDR and the buf-

fers are updated after return from the procedure, they

should not be used, or implicitly or explicitly

deallocated, until the operation is finished.

PROCEDURE INIT MODIFY_BYTES (

F: FILE; VAR FILE ADDR: FILE_ADDRESS;

BLE POINTER: BLEPTR; VAR OPREF: OPERATION REFERENCE;

VAR CC: COMPLETION CODE) ;

The monitor function IO, INITMODIFYBYTES is called.

Analogous to MODIFY_BYTES, but the transfer is only

initiated. See also INIT READ BYTES above.

CSS/006/RFM/0001

CR80 PASCAL
sign ‘date | page

PH@/800619 124

REFERENCE MANUAL rep os

PROCEDURE INIT APPEND BYTES (

F: FILE; VAR FILE_ADDR: FILE ADDRESS;

BLE_ POINTER: BLEPTR; VAR OPREF: OPERATION_REFERENCE;

VAR CC: COMPLETION CODE) ;

The monitor function IO, INITAPPENDBYTES is called.

Analogous to APPEND BYTES, but the transfer is only

initiated. See also INIT_READ BYTES.

PROCEDURE WAIT OPERATION (

OPREF: OPERATION_REFERENCE;

VAR CC: COMPLETION CODE) ;

The monitor function IO, WAITOPERATION is called.

If the returned CC = IO_OK, the operation identified

by OPREF is successfully completed. The

TRANSFERRED BYTES field of the FILE ADDRESS variable

used when initiating the operation now contains the

number of bytes actually transferred.

PROCEDURE TEST OPERATION (

OPREF: OPERATION REFERENCE; VAR FINISHED: BOOLEAN;

VAR CC: COMPLETION CODE) ;

The monitor function I0, TESTOPERATION is called. If

the returned CC = IO OK, then FINISHED indicates

whether the operation identified by OPREF is finished

or not. The difference between WAIT OPERATION and

TEST_OPERATION is that TEST OPERATION returns im-

mediately, but WAIT_OPERATION returns when the opera-

tion is finished.

PROCEDURE CANCEL OPERATION (

OPREF: OPERATION REFERENCE; VAR CC: COMPLETION _CODE) ;

The monitor function I0, CANCEL is called. The opera-

tion identified by OPREF is cancelled (if it was not

already finished).

CSS/006/RFM/0001

sign /date | page

CR80 PASCAL PHG/800619 | 125

REFERENCE MANUAL a =

PROCEDURE CONNECT (

F: FILE; M: MODE; VAR S: STREAM;

VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, CONNECT is called. The

stream S is connected to the file F for either input

or output as specified by M.

PROCEDURE DISCONNECT (

S: STREAM; VAR F: FILE; VAR CC: COMPLETION CODE) ;

The monitor function STREAM, DISCONNECT is called.

The stream S is disconnected, and the file to which

the stream was connected is returned in F.

PROCEDURE GET POSITION (

S: STREAM; VAR POSITION: STREAM POSITION;

VAR CC: COMPLETION CODE) ;

The monitor function STREAM, GETPOSITION is called.

The current position on the stream S is returned in

POSITION (for later user by SET POSITION).

PROCEDURE SET POSITION (

S: STREAM; POSITION: STREAM POSITION;

VAR CC: COMPLETION CODE) ;

The monitor function STREAM, SETPOSITION is called.

The current position on the stream S is now as speci-

fied by POSITION.

PROCEDURE INBYTE (

S: STREAM; VAR B: UNIV BYTE; VAR CC: COMPLETION CODE) ;

The monitor function STREAM, INBYTE is called. The

next byte on the stream S is delivered in B (the high

order byte of B contains 0).

CSS/006/RFM/0001

CR80 PASCAL

sign/date Rage

PH@/800619 126

REFERENCE MANUAL = 2 oe

PROCEDURE INWORD (

S: STREAM; VAR WORD: UNIV INTEGER;

VAR CC: COMPLETION _CODE) ;

The next two bytes on the stream S are delivered in

WORD with the first byte in the rightmost byte of

WORD.

PROCEDURE BACKSPACE (

S: STREAM; VAR CC: COMPLETION CODE) ;

The monitor function STREAM, BACKSPACE is called.

The effect is, no matter how many times it is called,

that INBYTE will deliver the same byte as the last

call of INBYTE.

PROCEDURE INREC (

S: STREAM; VAR FIRST_ELEMENT: UNIV ELEMENT;

VAR RECORD_LENGTH_IN_ BYTES: INTEGER;

VAR CC: COMPLETION CODE) ;

The monitor function STREAM, INREC is called. The

next RECORD _LENGTH_IN_BYTES bytes from the stream S

are delivered in the memory locations that start at

FIRST ELEMENT. At return RECORD _LENGTH_IN_BYTES con-

tains the number of bytes actually transferred. This

number may be less than requested, if the end of the

stream is reached. CC will be IO_OK if any bytes are

delivered.

Example: The two fields T and L in the record

REC: RECORD

I: INTEGER;

T: ARRAY [7..18] OF CHAR;

L: LONG_INTEGER;

B: BOOLEAN

END

shall be initialized by a call of INREC:

LENGTH: = (18-7+1) *2 + 4;

INREC (STRM, REC. T[7], LENGTH, CC);

CSS/006/RFM/0001
 sign‘date page

CR80 PASCAL PHO/800619 12/

REFERENCE MANUAL cools

PROCEDURE OUTBYTE (

S: STREAM; B: UNIV BYTE; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTBYTE is called.

The rightmost byte of B is written to the next posi-

tion on the stream.

PROCEDURE OUTWORD (

| S: STREAM; WORD: UNIV INTEGER;

| VAR CC: COMPLETION_CODE) ;

| The contents of the WORD are written on the stream S.

The least significant byte is written first.

PROCEDURE OUTREC (

S: STREAM; FIRST ELEMENT: UNIV ELEMENT;

VAR RECORD_LENGTH_IN BYTES: INTEGER;

VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTREC is called.

Analogous to INREC above.

PROCEDURE FLUSH (

S: STREAM; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, FLUSH is called. The

currently buffered data is output to (the file connected

to) the stream S. FLUSH is used e.g. in an inter-

active program when the user is prompted.

PROCEDURE INTYPE (

S: STREAM; VAR CH: CHAR; VAR CH_TYPE: CHAR_TYPE;

VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, INTYPE is called.

The next character (byte) is read from the stream and

delivered in CH. CH_TYPE contains the type of the

character:

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date

PH®/800619

page

repi project

CHARACTER CHAR _ TYPE

SPACE TSPACE

‘o'..'9!' TDIGIT

‘A'..'Z', '.', '-', NULL TLETTER

OTHER CHARACTERS TOTHER

PROCEDURE INELEMENT (

S: STREAM; VAR ELEM: ELEM REC;

VAR CC: COMPLETION CODE) ;

The monitor function STREAM, INELEMENT is called.

The next "element" (i.e. integer, long_integer,

identifier or special character) from the stream S&S

is delivered in the variant record ELEM. The

declaration of an ELEM_REC is

RECORD

DELIM: CHAR;

BYTE_COUNT: INTEGER;

CASE ELEM TYPE: ELEMENT TYPE OF

TINTEGER: (INT: INTEGER) ;

TLONG_INTEGER: (LINT: LONG INTEGER) ;

TIDENTIFIER: (NAME: PACKED NAME) ;

TSPECIAL: (SPEC_CHAR: CHAR)

END;

The syntax of the various constructs is

[+|-] <digit> {<digit>} |

#<hexadigit> {<hexadigit>}

-32768..32767"

<letter> {<letter>| <digit>}

NULL CHAR| A | B|... | Y | Z

(<digit> and <hexadigit> are as expected).

<integer> ::

<long_integer>::=<integer> "outside

<identifier> ::

<letter> ::

CSS/005/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page

PH@/800619 12)

rep! Grojeact

At return the stream is always positioned such that

the next byte will be that immediately after the

"element" delivered. The contents of the record

fields depend on. the value of ‘the tag field ELEM_TYPE:

TINTEGER:

DELIM:

BYTE COUNT:

INT:

TLONG_INTEGER:

DELIM:

BYTE COUNT:

LINT:

TIDENTIFIER:

DELIM:

BYTE_COUNT:

NAME:

Contains the character immediately

after the number. This character will

be the:one delivered if INBYTE is cal-

led next.

2.

The integer value.

As for TINTEGER.

4.

The long_integer value.

Contains the character immediately

after the identifier. This character

will be the one delivered if INBYTE

is called next.

The number of characters in the identi-

fier. If the identifier is longer than

16 characters, it will be truncated

such that only the first 15 an the last

character are delivered. In this case

BYTE COUNT will be 16.

The identifier (packed). If BYTE_COUNT

is less than 16, the last 16 -

BYTE_COUNT characters will be null-

characters.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PH@/800619 130

REFERENCE MANUAL repi Project

TSPECIAL:

DELIM: The special character itself (not the

following).

BYTE COUNT: 1.

SPEC_CHAR: If the "element" in the stream was not

an integer, long: integer or identifier,

the first character read is delivered

in SPEC_CHAR. It should be noted that

1) a semicolon will never be returned.

If a semicolon is encountered in the

stream, skipping to the next NL-

character takes place, and this cha-

racter is returned.

2) if a space character is returned,

the next "element" cannot be a space

because INELEMENT skips spaces and

only delivers the last in a sequen-

ce.

PROCEDURE ININTEGER (

S: STREAM; VAR INT: INTEGER; VAR CC: COMPLETION _CODE) ;

If the returned CC = IC_OK, the stream contained an

integer (in the notation specified under INELEMENT),

the value of which is delivered in INT. No other cha-

racters but spaces are allowed in front of the number.

PROCEDURE INLONG_INTEGER (

S: STREAM; VAR LINT: LONG INTEGER;

VAR CC: COMPLETION CODE) ;

If the returned CC = IO OK, the stream contained a

long_integer (in the notation specified under INELEMENT),

the value of which is delivered in LINT. No other cha-

racters but spaces are allowed in front of the number.

CSS/006/REFM/0001

sign /date page

CR80 PASCAL PHO/800619 51

rep! Project
REFERENCE MANUAL

PROCEDURE INNAME (

S: STREAM; VAR N: PACKED NAME;

VAR CC: COMPLETION _CODE) ;

If the returned CC = IO_OK, the stream contained an

identifier (in the notation specified under INELEMENT) ;

which is delivered in N in packed form. No other cha-

racters but spaces are allowed in front of the identi-

fier. If the identifier read is shorter than 16 cha-

racters, the rest of the characters in N will be null-

characters. If the identifier was longer than 16 cha-

racters, the first 15 and the last are delivered.

PROCEDURE INFILEID (

S: STREAM; VAR FROM_ADAM: BOOLEAN;

VAR FSN: FILE_SYSTEM_NAME; VAR VOLUME: VOLUME_NAME;

VAR NAMELIST: NAMELISTTYPE; VAR NAME NO: INTEGER;

VAR CC: COMPLETION_CODE) ;

(In retrospect: The layout of this procedure is a

blunder). The monitor function INFILEID is called

(see ref 5).

PROCEDURE OUTTEXT (

S: STREAM; UNPACKED TEXT: TEXT;

VAR CC: COMPLETION_CODE) ;

The UNPACKED TEXT is packed and then output to the

stream (or stated alternatively: the rightmost byte

of each CHAR is output). The last character written

is the one immediately before the first null-character.

Because of the relaxed type checking concerning cha-

racter arrays as actual parameter, the second para-

meter only needs to be a one-dimensional array of

CHAR or a character string.

CSS/006/RFM/0001

sign/date] page 1

CR80 PASCAL PH@/800619

REFERENCE MANUAL
repl project

PROCEDURE OUTSTRING (

S: STREAM; UNPACKED_TEXT: TEXT;

NO_OF_CHARS: INTEGER; VAR CC: COMPLETION _CODE) ;

Analogous to OUTTEXT above. However, exactly

NO_OF_CHARS characters (null-characters and all) are

output.

PROCEDURE OUTHEXA (

S: STREAM; INT: UNIV INTEGER; PAD CHAR: CHAR;

VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTHEXA is called. The

value in INT is output to the specified stream as 4

hexadecimal characters preceded by the character in

PAD CHAR. However, if this character equals NL, only

the 4 hexadecimal characters are output.

PROCEDURE OUTINTEGER (

S: STREAM; INT: UNIV INTEGER;

FORMAT: UNIV INTEGER; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTINTEGER is called.

The value of INT is output as a decimal number to the

specified stream. The format of the number is

governed by FORMAT:

BIT 15: Set: the number is treated as an unsig-

ned number (0..65535).

Reset: the number is treated as a normal

signed integer (-32768..32767).

BIT 14-8: Field with. If the number cannot

be accomodated in the field, the

field is expanded.

CSS/006/RFM/0001

sign/date | page

CR80 PASCAL PHG/800619 | 155

REFERENCE MANUAL repi Broreer

BIT 7-0: Padding character. If the field

is longer than needed to contain

the number, the number is right

justified padded to the left with

this character.

The sign is only printed for negative numbers.

PROCEDURE OUTLONG_INTEGER (

S: STREAM; LINT: UNIV LONG INTEGER;

FORMAT: UNIV INTEGER; VAR CC: COMPLETION CODE) ;

The monitor function STREAM, OUTLONGINTEGER is called.

Analogous to OUTINTEGER above.

PROCEDURE OUTNL (

S: STREAM; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTNL is called.

A NL-character is output to the specified stream.

PROCEDURE MARK (

VAR TOP: INTEGER) ;

Returns in TOP information to be used by the prefix

procedure RELEASE in recollecting storage in the heap

allocated by subsequent calls of the standard proce-

dure NEW.

PROCEDURE RELEASE (

TOP: INTEGER) ;:

Releases storage allocated in the heap by the standard

procedure NEW since the call of the prefix procedure

MARK which returned the value of TOP.

CSS/006/RFM/0001

 sign/date | page

CR80 PASCAL PH@/800619 154

REFERENCE MANUAL
repl project

FUNCTION FREE_SPACE: INTEGER;

The stack (which contains global and local variables)

and the heap (which contains variables allocated by

the standard procedure NEW) grow towards each other.

The function FREE_SPACE delivers the number of un-

used words between the stack and the heap.

FUNCTION CONTENTS (

BASE REL ADDR: LONG_INTEGER): INTEGER;

Delivers the contents of the memory location with the

indicated process base relative address. The address

is taken modulo 64K.

PROCEDURE EXIT;

This is a very useful procedure because of the lack

of GOTO-statements in CR80 PASCAL. When the procedure

is called in the program block, the program terminates

as if the last END. had been reached. When EXIT is

called in a procedure or function, the execution of

the routine is terminated as if the last END in the

routine had been reached.

PROCEDURE CURRENT_LEVEL (

VAR LEVEL: INTEGER) ;

Returns in LEVEL information to be used by the prefix

procedure LONG_EXIT.

CSS/006/RFM/0001

sign/date | page

CR80 PASCAL PHO/800619 155

REFERENCE MANUAL
repl projact

PROCEDURE LONG_EXIT(

LEVEL: INTEGER) ;

This procedure is perhaps best introduced by an

example. Suppose we have the following sequence

CURRENT_LEVEL (LEVEL) ;
A: =A +B;
REPEAT

READ COMMAND (OK) ;
IF NOT OK THEN ERROR;

UNTIL OK;

EXECUTE COMMAND;

FOR I : = 1 TO 4711 DO

and suppose READ COMMAND calls other routines which in

turn may call other routines, and so on. Then a call

LONG_EXIT (LEVEL) in READ_COMMAND or any of the rou-

tines reached from READ COMMAND will force the exe-

cution to continue with the IF-statement immediately

after the call of READ COMMAND (assuming, of course,

that LEVEL has not been changed). A call LONG EXIT

(LEVEL) in EXECUTE_COMMAND or any routine reached

from EXECUTE_COMMAND will force execution to continue

with the FOR-statement. Generally speaking LONG EXIT

(LEVEL) performs a sequence of EXIT calls until the

routine or program block in which LEVEL was initia-

lized by a call of CURRENT_LEVEL is reached. A run-

time error (rangeerror) occurs if LEVEL does not con-

tain the value of an active "level".

CSS/006/RFM/0001

 sign/date | page | 46

CR80 PASCAL PHO/800619

repl Project

REFERENCE MANUAL

FUNCTION CURRENT LINE: INTEGER;

Returns the program source line number in which it

is called. However, if the program was compiled with

the $NONUMBER toggle on, the line number delivered is

that of the line containing the first BEGIN of the

(program-or routine) block in which the function is

called.

FUNCTION REL_ADDR(

FIRST_ELEMENT: UNIV ELEMENT): INTEGER;

Returns the process base relative address of the para-

meter. The function is primarily intended for use when

setting up BLE's specifying local buffers.

PROCEDURE GET ABS ADDR(
FIRST ELEMENT: UNIV ELEMENT;
VAR WORD ADDR: WORD_ADDRESS) ;

The absolute address of the first parameter is deli-

vered. WORD_ADDR.MEMORY_SECTION contains in bits

3-2 the page number, and the 3 leftmost bits are all

ones (i.e. the word can be used directly as a PSW).

WORD_ADDR.WORD_DISPLACEMENT contains the word address

within the page.

PROCEDURE COPY (

SOURCE, DEST: BYTE_ADDRESS; NO _OF_ BYTES: INTEGER) ;

This procedure can be used for inter page copying.

The number of bytes specified by the last parameter

are copied from the source to the destination. Only

non-negative BYTE _DISPLACEMENTs should be used in the

two BYTE _ADDRESSes.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date | Page 1 77

PHD/800619 |

repi project

PROCEDURE PACK (

FIRST ELEMENT OF _UNPACKED: UNIV ELEMENT;

VAR FIRST ELEMENT OF PACKED: UNIV ELEMENT;

NO_OF BYTES: INTEGER) ;

The rightmost bytes (0, 2, 4, ...) of UNPACKED are

packed into PACKED like this:

FOR I := 0. TO NO_OF_BYTES - 1 DO
PACKED.. BYTE [I] := UNPACKED. BYTE [2 * I];

Example:

A, B: ARRAY [1..5] OF CHAR;

Old contents:

A: | "al -"Bl "el "pl Fri

B: [| ‘Fi ‘Gl TH] 'rir'a]

Pack (A [3] , B [4] , 3);

New contents (A unchanged):

B: | 'F] ‘Gl fH[p'c]K's|

PROCEDURE UNPACK (

FIRST ELEMENT OF PACKED: UNIV ELEMENT;

VAR FIRST ELEMENT OF UNPACKED: UNIV ELEMENT;

NO_OF_ BYTES: INTEGER) ;

The bytes in PACKED are unpacked into UNPACKED like

this:

FOR I : = NO_OF-BYTES- £ DOWNTO 0 DO

BEGIN

UNPACKED. BYTE [2 * I] := PACKED. BYTE [I];

UNPACKED. BYTE [2 * I + 1] := 0;

END;

CSS/006/RFM/0001

 | sign/date gege

CR80 PASCAL 'pHD/800619 138

 REFERENCE MANUAL a ng

PROCEDURE PACK_SWAPPED (

FIRST ELEMENT OF _UNPACKED: UNIV ELEMENT;

VAR FIRST_ELEMENT OF PACKED: UNIV ELEMENT;

NO_OF_ BYTES: INTEGER) ;

The bytes of UNPACKED are packed into PACKED like

this:

FOR I := 0 TO NO_OF_BYTES ~ { DO

BEGIN

IF I MOD 2 = 0 THEN J := I +1 ELSE TJ := I- 17

PACKED. BYTE [J] := UNPACKED. BYTE [2 * I];

END;

PROCEDURE UNPACK_SWAPPED (

FIRST_ELEMENT_OF_PACKED: UNIV ELEMENT;

VAR FIRST ELEMENT OF_UNPACKED: UNIV ELEMENT;

NO_OF_BYTES: INTEGER) ;

The bytes of PACKED are unpacked into UNPACKED like

this:

FOR I := 0 TO NO_OF_BYTES - 1 DO

BEGIN |

IF I MOD 2 = 0 THEN J := I +1 ELSE J := I - 1;

UNPACKED. BYTE [2 * I] := PACKED. BYTE [J];

UNPACKED. BYTE [2 * I + 1] := 0;

END;

PROCEDURE RUN (

F: FILE; VAR PARAM: PARAMTYPE; VAR LINE: INTEGER;

VAR RESULT: PROGRESULT) ;

This procedure makes it possible from a CR80 PASCAL

program to execute another CR80 PASCAL program -

almost as if the called program was a procedure.

The operations of RUN are:

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date | page 1 7 9

PH@/800619 |

repli Project

1) Create a temporary file and save the calling

program. Only the program code is saved; its

variables are still in memory.

2) Load the new program from the file F into the

locations which previously held the calling pro-

gram. The new program's program code require-

ment must not be larger then the requirement of

the initially loaded program. (Small programs

that call RUN can adjust their size by the

sOVERLAY-directive).

3) Give the loaded program access to the PARAM-

record, and start its execution.

4) When the loaded program terminates, the caller

is reloaded and continues execution.

A program and the program it RUNs exchange informa-

tion through the PARAM-type record and the heap.

In the standard prefix the PTR field in a PARAMTYPE

record points to an integer. However, because a

pointer is always contained in one word, the PTR

field could just as well e.g. be edited to be a poin-

ter to a record containing a number of pointers (and

other fields, too). Any conceiveable data structure

can thus be made common to a program and the program

it RUNs, the only restriction being that the data

structure must be contained in the heap.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date | page ae

PHO/800619 | 140

repl project

The local and global variables of a RUNned program

are deallocated when the program returns to the cal-

ler. But the variables allocated in the heap conti-

nue to exist, because the program might have linked

these new variables to the common data structure.

If the program that calls RUN has no interest in

variables allocated in the heap by the RUNned pro-

gram, it should surround RUN by calls of MARK and

RELEASE.

It is allowed for a RUNned program to call RUN.

At return the last parameter RESULT should be tested.

A-value different from-ZERMINATED indicates an error.

The parameter LINE contains the number of the last

program source line executed in the called program.

FUNCTION CREATE’ LONG (

LEAST, MOST: UNIV INTEGER): LONG INTEGER;

A long_integer value is created by concatenating

the two parameter values.

PROCEDURE SPLIT_LONG (

L: LONG_INTEGER; VAR LEAST, MOST: UNIV INTEGER) ;

The least significant word of L is delivered in

LEAST, and the most significant word of L is deli-

vered in MOST.

CSS/006/RFM/0001

sign/cate | page

CR80 PASCAL PH@/800619 143

REFERENCE MANUAL
repli project

PROCEDURE ASSIGNBITS (

VALUE: UNIV BITVALUE; VAR P: UNIV PAGE;

FIRSTBIT, NO _OF BITS: INTEGER) ;

This rather special procedure was tailored to the

file system. The bits in P are numbered

0, 1, 2, «2.6, 16*256-1 from right to left.

ASSIGNBITS puts VALUE in bitnumber FIRSTBIT to bit-

number FIRSTBIT+NO_ OF BITS-1 of P. All other bits

in P are left unchanged.

PROCEDURE SKIPBITS (

VALUE: UNIV BITVALUE; P: UNIV PAGE;

VAR FIRSTBIT: INTEGER; NO_OF_ BITS: INTEGER;

VAR BITSSKIPPED: INTEGER) ;

This rather special procedure was tailored to the file

system. The bits in P are numbered 0, 1, 2, ...,

16*256-1 from right to left. SKIPBITS searches for

a bit in P with value VALUE. The search starts at

bitnumber FIRSTBIT and upto NO_OF_BITS are investiga-

ted. At return FIRSTBIT is the bitnumber of the first

matching bit, and BITSSKIPPED is the number of bits

skipped until the match. When there is no match,

BITSSKIPPED will equal NO_OF_BITS at return.

PROCEDURE SET_TRACE (

S: STREAM; MASK: INTEGER) ;

In extreme debugging situations this procedure may

be helpful, because it can provide a trace of the

program execution. It can also be used to find the

optimal value in the %STACK directive. A call of

SET_TRACE with a MASK different from 0 will slow

execution down with a factor 3.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign ‘date page

PHO /800619 142

rep! Project

MASK:

BIT 1:

BIT 2:

BIT 3:

BIT 6:

When set a line is output every time a

user-declared routine is called. The infor-

mation printed contains the line no. of the

entered routine, the line no. of the call,

and the value or process base relative add-

ress of each parameter.

When set a line is output every time a pre-

fix routine is called. The information

printed indicates which routine is called

(they are numbered 0, 1, ... in order of

appearance in the prefix) and from where it

was called.

When set a line of information is output

every time a user-declared routine is exi-

ted.

When set the minimum number of free words

between the stack and the heap during the

rest of the execution will be printed on

current output when the program terminates.

See also PRINT_TRACE below.

PROCEDURE PRINT_TRACE (

ON: BOOLEAN) ;

The first time SET TRACE is called with one or more

of bits i, 2 or 3 set, output will be written on the

trace stream until PRINT TRACE is called with ON

equal to FALSE. Trace output is resumed when

PRINT TRACE is called with ON equal to TRUE.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign‘date page

PHZ/800619 143

repli Project

Compile Time Directives

All directives to the compiler begin with a %-character,

which can be placed in any character position on the

line. The characters from the end of the directive and

until the first NL-character are skipped, i.e. this

field can be used for a comment without enclosing the

comment between "~-characters. Syntactically directives

are equivalent to a single NL-character. They must

appear before the final END. in the program source.

Excepting @LIST, %NOLIST, and %CODE, directives have a

global influence and can be placed in any line with the

same effect. If a 'global' directive is encountered

more than once, the last occurrence applies.

Some of the directives include a <number> or a <name>:

<number> ::= <digit> {<digit>}

ff <hexa> {<hexa>}

<name> ::= <letter> {<letter>|<digit>}

<digit> ::= 0/1/2/3|4|5|6|7|8|9
<hexa> z:= <digit>|A|B|C|D|E|F

<letter> ::= A|BIC|...y|zZ|_

Negative numbers in a directive can only be written in

the hexa-decimal notation.

If a name in a directive is longer than 6 characters

only the first 5 and the last character are read.

The following directives are implemented:

CSS/006/REFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page F

PH@/800619 44

repl project

$LIST and %NOLIST

By default the source text is listed on the print file.

If the *NOLIST directive is used, the source text will

not be printed until a %LIST directive is encountered.

The change in listing state is effective in the line

immediately after the directive.

%NUMBER and %NONUMBER

The compiler generates for every line in the program

block and every line in the routine blocks a special

NEWLINE-instruction, when the program is compiled with

the *NUMBER toggle. This makes it possible for the

PASCAL runtime system to specify exactly which program

line was executing, when a runtime error occurred.

This feature is vital in program testing. However, the

program will take up more memory space (usually about

one third) and run slower. By default NEWLINE-instructions

are generated. %NONUMBER will tell the compiler not

to generate these.

$CHECK and *NOCHECK

By default the compiler generates special runtime checks:

Oo Range checks of actual procedure or function value

parameters of enumerated type, subrange type, BOOLEAN

type, and CHAR type. The checks are done at the point

of call.

CSS/006/RFM/0001

sign/date gage

CR80 PASCAL PH®/800619 145
REFERENCE MANUAL

repi Project

Oo pointer checks to ensure that NIL-valued pointers

are not used as references.

Oo Variant checks to ensure that only currently defined

variant fields in a record are referenced.

The code generated will also initialize global variables

at program entry and local variables at routine entry

to contain only O-bits.

Runtime checks will not be generated, and initialization

will not take place, if *NOCHECK is used.

SSUMMARY and %NOSUMMARY

Some statistics (compiler release, size of program part,

directive values used) on the object program will by

default be written on the print file after the source

listing. The tNOSUMMARY will tell the compiler not to

generate the summary.

$STACK = <number>

The number specifies how many words of memory the program

needs for its variables in the stack (and the heap) at

runtime. The default memory claim is 2048 words. The

total process size of a CR80 PASCAL program cannot exceed

64K. If the stack claim is so large that this limit will

be violated, the claim will be adjusted by the compiler

such that the process size will be exactly 64K. The

directive t*WORKAREA = <number> has precisely the same

effect as $STACK= <number>.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page | 4 7

PHG/800619 +O

reol projec:

8.7

8.8

SOVERLAY = <number>

The directive enlarges the program part of a CR80 PASCAL

object program with a so-called overlay area of <number>

words. It is only relevant to create an overlay area

for a program that uses the prefix routine RUN. When

a program calls RUN, the size of the program part of the

loaded program must not be greater than the size of the

calling program, and it is therefore necessary to create

an overlay area, when a program RUNs a program with a

larger program part. The default overlay area size is 0.

SREENTRANT and %NONREENTRANT

The object program is marked reentrant (the default) or

nonreentrant. A program that calls the prefix procedure

RUN should be marked nonreentrant.

SUTILITY and %NONUTILITY

By default an object program is marked as being a utility

program. A utility program will be loaded by the CMI

(ref. 6) and will have its PARAM record initialized by

the PASCAL runtime system. Programs to be loaded

otherwise, for example as part of a boot module, should

use the *NONUTILITY toggle.

$CODE = <file-id>

The file-id shall be written in the format specified in

ref. 6. The total contents of the file - hopefully

machine or virtual PASCAL code - are inserted at this

point in the object code, and the virtual location counter

is incremented by the number of words in the file.

More information about the use of $CODE can be found

in chapter 6 of this document.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign /date page

PH®/800619 4/

rep! project

8.12

SUNIVCHECK and %NOUNIVCHECK

The word UNIV in front of the type identifier in a

formal parameter section suppresses compatibility

checking. However, the formal and the actual parameter

must take up the same number of machine words, and none

of them may contain or be a pointer. These two

restrictions are removed if the *NOUNIVCHECK option is

used. The default is %UNIVCHECK.

SCODESTATISTICS and %NOCODESTATISTICS

If sCODESTATISTICS is used, an area of 226 words is

layed out in the process part of the program. This

area is intended for counting the number of times each

virtual instruction is executed. At present, however,

the PASCAL runtime system does not make any use of this

area. The default is %*NOCODESTATISTICS.

SLINESTATISTICS and %NOLINESTATISTICS

If tLINESTATISTICS is used, an area is layed out in the

process part of the program. This area is intended for

counting the number of times each line of the program

is executed in order to provide a runtime profile of the

program. At present, however, the PASCAL runtime system

does not make any use of this area. The default is

SNOLINESTATISTICS.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page

PHG/800619 148

Tepi project

8.15

8.18

8.19

%PROGRAMNAME = <name>

The name is inserted in the program name field of the

program header. Default: 6 NULL-characters.

3PROCESSNAME = <name>

The name is inserted in the process name field of the

process header. Default: 6 NULL-characters.

S$CPUNAME = <name>

The name is inserted in the CPU name field of the process

header. Default: 6 NULL-characters.

VERSION = <number>

The number is inserted in the version field of the

program header. Default: 0.

SPRIORITY = <number>

The number is inserted in the priority field of the

process header. Default: 1.

SCAPABILITIES = <number>

The number is inserted in the capability requirement

field of the process header. Default: 0.

FDS = <number>

The number of file descriptions used by the program.

Default: 4. The number of FDS should equal the

maximum number of simultaneously 'open' files during

the program execution.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date Gage 7

PHD /800619 149

— repli Project

8.21

8.22

8.24

$STREAMS = <number>

The specified number should equal the maximum number of

streams simultaneously connected during the program

execution. Default: 2.

S$IOCBS = <number>

The number of I/O control blocks required by the program.

There should be 2 IOCBS for each input stream and 1 for

each output stream plus one for each outstanding direct

I/O request. Default: 4.

STLES = <number>

The number of transfer list elements used by the program.

Usually (3*IOCBS,’ Default: 12.

S$MESSAGES = <number>

The number of message buffers required by the program.

At least 1+ IOCBS. Default: 5.

ZUSERIDO = <number>

%USERIDL <number>

The 2 numbers are inserted in the user id field of the

process header with that after *USERIDO in the word

with the lowest address. Both values default to 0.

$EXECLEVEL = <number>

The number is inserted in the execution level field of

the process header. Programs doing I/O need an

execution level of 2. Default: 0.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign‘date page

PH@/800619 150

repli eroject

3) -

The CR80 PASCAL Compiler

The compiler consists of 9 separate programs:

1) PASCAL

Reads the parameters and calls

2) SPASCA.OBJECT

This is the pass driver that invokes the

7 passes of the compiler one by one.

9) The passes of the compiler are named

SPASS1.OBJECT,

SPASS2.OBJECT,

SPASS7.OBJECT.

Activating the Compiler

The syntax of a call of the CR80 PASCAL compiler is

as follows:

PASCAL {<file parameter>}{/<control letter>}

where

<file parameter> ::= <source file> |

<object file> |

<print file>

ssource file> 3 {3} : <file id>

<object file> s:= oO : <file id>

Pp

L

<print file> 235 : <file id>

 <control letter> ::=

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page 1

PH®/800619 wn

rep! project

For the syntax of a file id, please see ref. 6.

If a file id is not a complete description of a

file, the file is searched relative to the current

directory.

source file :

object file se

print file

The old contents,

If this parameter is not specified,

the compiler will use the current

input file as source file. The

user will be prompted, when he has

to enter the program text.

The compiler generates the object

program into this file. If the

parameter is not present, the

compiler will use (and create when

non-existent) the file PASCAL.OBJECT

in the current directory.

Otherwise the file must exist

beforehand.

If this parameter is not specified,

the compiler will use the current

output file as the print file.

Otherwise the indicated file must

exist beforehand.

if any, of the object file and the

print file are deleted.

CSS/006/RFM/0001
 sign/date page -~

CR80 PASCAL PH@/800619 D2

REFERENCE MANUAL repl project

The meaning of the control letters are:

L: Ignore $LIST and %NOLIST

directives and list the whole source.

N: Ignore %LIST and %NOLIST

directives and do not list the source.

T: Generate test output for compiler

maintenance purposes.

9.2 Preparing the Program Source

The compiler is able to take input from any number of

source files. When it encounters a $-sign (ASCII 36) -.

as the first character on a line, it either expects

a < character (less than character) or a file id.

Anything else will terminate the compilation:

o A < character is read:

The rest of the line is skipped, and the compiler

begins reading from the current input file.

If this file is the terminal, the user will be

prompted. When the end of the file is met,

the compiler returns to the line in the old

source file just after the line that contained

$< as the first 2 characters.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign ‘date

PHO/800619

page

155

repl

Project

o A file id is read:

The rest of the line is skipped, and the

compiler begins to read from the indicated

file. When the end of this file is reached,

the compiler resumes reading in the old source

file just after the line that contained the

$file id.

This file merge may continue to a level of 3.

CSS/006/RFM/0001

CR80 PASCAL
sign ‘date

PH@/800619 J

rep!

REFERENCE MANUAL

Project

9.3 Example:

COP’ I: EXAMPLE
FOOOL4+ LOADED

FM: Poooid

BOIFECTIVES

a

SMOLIZT

Fooe SEHD. LOPREFIX

SLIT

Re

“CONTAINED IN Chir"

“THE STANDARD FREFIY

FM: PHO
P0014 TERMINATEDSs a}

 RESULT= e000 AT LIME ne

AMPLE O:OBJECT PrP ?PASCAL TSA
EQ Fooot4 LOAD

FM: Pogtig
PASS 1 15 EXECUTING,
FLEARZE ENTER THE FROGREAM TEXT
“THIS IS ONLY A TE2T"
PLEASE FROCEED

EBEGIHEND

ec [2
“FILE IH COIR"

EXECUTING.
EXECUTING.
EXECUTING,
EXECUTING,
EXECUTING,
EXECUTING.
N SUCCESSFUL

“
i
T

ON

Ge

a

Th

COMPILATIO

FMs FHO

POO014 TERMINATED: RPESULT= #8000 AT LINE 110¢

rCOPY I:P
FO0014 LOADED

FM: Poooid

o> ,

#o* CRE0 PASCAL COMPILER <VERSION: S0-o01-225
¢** COMPILATION STARTED so-06-02 AT 1a:44
eee SOURCE FILE: POMACOU-FILE*CRPOOOL+#MDOUTILITY
+o OBJECT FILE: FIMAOOU-FILE*CRPOOOLeMDOUTILITY
+>

O01 SHOSUMMARY
OO02 “THIS IS ONLY A TEST"
Oe

NS34

ba35

SHOLIET
FEGIN
END,

Flas FHO
FOONL4 TERMINATED: | RESULT= #2000 AT LINE

(LAST 2 CHARACTERS:

133 CPL MSEC WEL

NL and EM)

CPU MEECE USten

- D*PRECAL. DeEXAMPLE
. D*PASCAL. D*OE JECT

135 CRU MSECE Uep

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page 1

PH@/ 800619 ni

an

repi project

10. Runtime Error Codes

When a CR80 PASCAL program terminates, the CMI (ref. 6)

will indicate a completion code, and which program line

was executed last. However, if the program was compiled

with the tNONUMBER toggle, the line number indicated

will be the number of the line containing the first

BEGIN of the (program or routine) block executed last.

If the completion code is different from # 8000, the

runtime system will print a dynamic line number trace

on the current output. This requires that the runtime

system can connect the current output file to a free

stream. The programmer should therefore always specify

one stream more than he actually uses himself in the

STREAMS directive to be sure getting this trace.

CSS/006/RFM/0001

sign/date gage 1 56

CR80 PASCAL
PH®/800619

REFERENCE MANUAL
rep project

List of completion codes generated by the runtime system:

8000: OK

8701: Arithmetic overflow.

#4 8702: Pointer error. A NIiL-valued pointer was

used when referencing a variable.

8703: Range error. For example when indexing an

arrayeol

8704: Variant error. A field of a variant other

than the current variant was referenced in

a record.

8705: Heap limit. A call of the standard procedure

NEW was unsuccessful due to lack of memory.

Recompile with a larger value in the %STACK

directive.

8706: Stack limit. Not enough memory to the runtime

stack. Recompile with a larger value in the

SSTACK directive.

8720: Mismatch. The program might not run successfully

under the current runtime system. Recompile.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PH®/800619 15/
REFERENCE MANUAL _ Provect

8721: Trace error. Something went wrong after a

call of the prefix routine SET_ TRACE.

The 'line number' printed by the CMI will

be the completion code received from the I/0

system indicating the nature of the error.

8722: Not a PASCAL program. A non=-PASCAL program

has called the monitor function PASCALINIT.

8723: Initialization error. During program initiali-

zation the runtime system received a completion

code <> IO_OK. This completion code is

returned as the line number.

7t 8724: I/O error in prefix routine RUN. The completion

from the I/O system is returned as the line

number.

When a CR80 PASCAL program terminates with a completion

code not contained in the above list, the completion code

has been generated by the prefix procedure TERMINATE.

=

=

CSS/006/RFM/0001

sign/dato sida

CR80 PASCAL PHO/800619 158

REFERENCE MANUAL
erstatter projekt

APPENDIX A. LISTING OF CR80 PASCAL STANDARD PREFIX.

42 "CRSO PASCAL STANDARD PREFIX. PHO-800522"

2: “HARHHARAHHRARRAAHKAAH RRR RHR RRA
3: “aewaer een A n° | Ss Ree ie tee

4: “HRHARARAKBARRAR ARR RARRAH RHA RRR

6: CONST NL 2 °(€2102) 2 FR = °C21229%7) CR = °C81322°2 EM = %C22529%%
7: CONST NULL = *(€:0:)” *s spa’ %3

9: CONST LINELENGTH = 1323
10: TYPE LINE = ARRAY C1.seLINELENGTH] OF CHAR?
11: TYPE TEXT. LINE,

12:
13: TYPE PROGRESULT 2 (TERMINATED, OVERFLOW, POINTERERROR,

143 RANGEERRORs VARIANTERROR, HEAPLIMIT,

153 STACKLIMITs COODELIMITs TIMELIMITs CALLERROR);

16:
17: TYPE BITPOSITION = 0..157
18: TYPE BITFIELOLENGTH = 0..162
19: TYPE BITVALUE = (LOWs HIGH);

203:
21: TYPE MESSAGE_BUFFER = ARRAY (1..5] OF INTEGER?

22s
23: TYPE WORD_ADDRESS = RECORD

263 MEMORY_SECTION: INTEGERs:

253 WORD_DISPLACEMENT: INTEGER

26: END;

273
28: TYPE BYTE_ADORESS = RECORD

29: BYTE_OISPLACEMENT: INTEGER?
30: WORD_ADOR: WORO_LADDRESS

31: END;

32s
33: TYPE FILE = INTEGER;
34: TYPE COMPLETION_CODE = INTEGER,
35: TYPE ELEMENT = ARRAY [1..1] OF INTEGER?
36: TYPE PACKED_NAME = ARRAY [0.07] OF INTEGERs
37: TYPE PACKED_NAME3 = ARRAY CO..2] OF INTEGER?
38: TYPE PACKED_NAME2 = ARRAY CO..1] OF INTEGER;

392
40: TYPE PROCESS_NAME = RECORD

613 NAMES PACKED_NAMES,

42: NAME_IDENT: INTEGER
43: ENO:

64:
45: TYPE FILE_SYSTEM_NAME = RECORD
46: PNAME: PROCESS _NAME?
473 GNAME: PACKED _NAME2

48: ENOs

49: TYPE VOLUME_NAME = PACKEO_NAME; :
50: CONST DIRECTORY = 10% CONTIGUOUS = 127 RANDOM = 143

51: TYPE FILE_ORGANIZATION = DIRECTORY. .RANDOM,
523 TYPE FILE_ATTRIBUTES = RECORD

53: VOLUMEs VOLUME_NAME,

543 ORGANIZATION: FILE_ORGANIZATION,

55: ALLOC_SIZE: LONG INTEGER;

563 AREA_SIZE:s INTEGER

573 END:
58: TYPE USERID = ARRAY £CO.-1] OF INTEGER:
59: TYPE ACCESS_DESCRIPTION = RECORD
60: USER: USERIOs

61: ~ RIGHTS: ARRAY ([0..1] OF INTEGER

62: . ENO,

63: TYPE FILE_INFORMATION TYPE = (FLORGANIZATION, FLSIZE, F_LALLOCSIZE,

64: FLBODYADORs» F_AREASIZE, F_THRESHOLDs

65: E_LINKSs F_LINBFO- F_LBFONBR);

66: TYPE DEVICE_NAME = PACKED _NAME2;
47: TYPE OEFVICE_DESCRIPTION = RECORD

63: NQEVICE_KINO: INTEGER,

59: OEVICE_AOOR: INTEGER,

70: UNIT: INTEGER,
71s SUSUNIT: INTEGER?

72s DEVICE: DEVICE _NAME

733 ENOs

CSS/006/REFM/0001

sign/dato side =

CR80 PASCAL PH@/800619 t59
tatter royekt

REFERENCE MANUAL oe eel

743 TYPE FILENAME = PACKED_NAME;

75: TYPE FILE_AOORESS * RECORD .

76% FIRST_BYTE: LONG_INTEGER;

773 BYTE_COUNT: LONG_INTEGER?

78: TRANSFERRED _ BYTES: LONG_INTEGER

793 ENO;

H R_ADORESS = RECORD

Ae TYPE SECTORAA FIRST SECTOR: LONG_INTEGERs

82: SECTOR COUNT: LONG _INTEGERs

a3: TRANSFERRED_SECTORS: LONG_INTEGER

84: ENO? .

85: TYPE MODE = CINPUT_MOOSs OUTPUT_MODE)?
86: TYPE STREAM = INTEGER;
87: TYPE STREAM_POSITION = LONG_INTEGER?

88: TYPE BYTE = 0..255;
89: TYPE OPERATION_REFERENCE = INTEGER;

90:2 TYPE MEMORY_PARM = INTEGERS

913
922 TYPE BUFFER_LOCATION = CLOCALs EXTERNAL)S

33: TYPE SLEPTR = OBLE-
943s TYPE BLE = RECORD

oS: LINK: BLEPTR:

96: CASE XL: SUFFER _LOCATION OF -

973 LOCAL: (SUFADOR, SUFSIZE_LIN_SYTES: INTEGER)?
983 EXTERNAL: (MEMORY: MEMORY_PARM)

992 ENDS
100:
101: TYPE EVENT_TYPE = (SIGNAL»s MESSAGEs ANSWER, SYSTEM_MESSAGE,

102: SYSTEM_ANSWERs PATH MESSAGE, PATH_ANSWERs

103: INTERRUPT, TIME_OUTs PARENT _ SIGNAL);

104:

105: TYPE EVENT_MASK = INTEGER;

106:

107: TYPE DATE_TIME_GROUP = RECORD
108: YEAR, MONTH, DAYs INTEGER;

109: HOUR» MINs SECs INTEGER
110: ENO;
1113

112: TYPE PROC_TIME = ARRAY (CO..2] OF INTEGER;
113:

116: TYPE PROCESS_ATTRISBUTES = RECORD

1153 ACCESS_RIGHTS, STATE: INTEGER;
1163 ERROR_CODEs ERROR_LOC: INTEGER?
117: CONSUMEO_TINEs CREATION_VIME: PROC_TIME
118: ENO?
1193 .
120: TYPE CREATION_BLOCK = RECORD

1213 VNAME: PROCESS_NAMEs
122: VPROG,» VINITs VMICROs VCAPAB: INTEGERS
1235 VCPUs, VPRIOs VLEVEL, VBASE: INTEGER?
1263 VSIZE, VBOUNDs VMEMORY, VMSGS: INTEGER?
125: VUSER: USERID
126: ENOs
1273

128: TYPE CPUPARAMETER = CVCPUNMB, VINTERRUPTMASKs VSCHEOULERESETCOUNT>

1293 VSLICESIZE, VELAPSEDTIME, VHWPRIORITY) 2
130:

1313 TYPE CHAR_TYPE = (TSPACEs TDIGITs TLETTERs TOTHER)?
132:

133: CONST PAGELENGTH = 256;

134: TYPE PAGE = ARRAY £C1..PAGELENGTH) OF INTEGER?
13S:

136: TYPE ELEMENT_TYPE = (TERROR, TINTEGER, TIDENTIFIER,
137: TSPECIAL, TLONG_INTEGER);
138:

139: TYPE ELEM_REC = RECORD
140: DELIM: CHAR?
1413 BYTE_COUNT: INTEGER;

162: CASE ELEM_TYPE:s ELEMENT_TYPE OF

143: TINTEGER: CINTs INTEGER)?

144: TLONGLINTEGER: CLINT: LONG_INTEGER)?
1453 ~ : : TIDENTIFIER: CNAME: PACKED_NAME),
1463 TSPECTIAL: CSPEC_CHAR: CHAR)

1673 END;
1483 ra

css/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato side

PHO/800619 16
a

U

arstatter projekt

149: TYPE POINTER = @INTEGERs
150: TYPE PARAMTYPE = RECORD

151: FSN:

152: VOL:
153 PFILEs
1543 DFILE:
1553s IFILE:
156: OFILE:.

157: PARENT:

158s PTR:
1592 END?

160s
161: CONST

1623 TO_OK =

163: NO_LFOS_AVAILABLE =

1643 NO_IOCSS_ AVAILABLE =

1653 NO_STREAMS_AVAILABLE =

166: ~-SNO_XFELEMS AVAILABLE =
167s ILLEGAL_BLE =

168: DIFFERENT_FILE.SYSTEMS =

1693 ILLEGAL_COMMAND =

170: NOT_ENOUGH_SPACE =

171: ILLEGAL_MEMORY_PARM =

172: NOT_CONNECTED =

173: NOT_INPUT_MODE =

1743 SYNTAX _ERROR =
1753
176: NONEXISTING_OEVICE =
177: ILLEGAL_CRSO_ADOR =

178: ILLEGAL _UNIT z
1793 WRONG_VOLUME_NAME =

180: VOLUME_MOUNTED =

1813 ILLEGAL_FILE =
182: ILLEGAL_ALLOC_SIZE =
183: ILLEGAL_RESET =
184: FILES_OPEN =
185: NONEXISTING_USER =
186: NO_CONNECTION =
187: ILLEGAL_CALLER =
78s: OISK_COMMAND =

189: DISK_ORIVER_ FAILURE 2
190: ACL_FULL 3

1912 NO_ACCESS_ RIGHTS z
192: ILLEGAL_OIRECTORY =

493: NONEXISTING_NAME 2

1963

195: CONST NAMELISTMAXINDEX. = 107

196: TYPE NAMELISTTYPE =

197:

FILE_SYSTEM_NAMES “CURRENT FILE SYSTEM NAME”

VOLUME NAME, "CURRENT VOLUME NAME"

PILEs "CURRENT PARAMETER FILE”

FILE: “CURRENT OIRECTORY FILE”

FILE: "CURRENT INPUT FILE”

FILEs “CURGENT OUTPUT FILE”

PROCESS NAMEs "PARENT OF PROCESS"

POINTER

0; EOF = #2017

R202; ILLEGAL_FD = 42033

#204; ILLEGAL_IOCB = #2052

#206. ILLEGAL STREAM = #2077

#2083 ILLEGAL, ADORESS = #2097

#20A; FILE_NOT_OPEN = #2087

#20C3 UNKNOWN FILESYSTEM = A200;

#20E; IO_SYSTEM_ERROR = #20F3

#2102 ILLEGAL_ MODE = 42112

#2123 NO_BUFFER_ SPACE = 8213,

R2143 NOT_CUTPUT MODE = #2157

#216; SLEMENT_OVERFLOW = #2177

#2182

4400, TLLEGAL DEVICE_KIND = #4013

R402) OEVICE NAME _IN_USE = #403;

R4Q4s ILLEGAL, SUBUNIT = #405;

#4067 NONEXISTING_VOLUME = #6077

#4082 DIFFERENT_VOLUMES = #4097

#40483 ILLEGAL ORGANIZATION = 44082

#40C; ILLEGAL_AREA_SIZE = #4002

AGOE; ALLOC_TO_CONTIGUOUS_FILE = A40F;

A4102 NO_FILE_TO_ACCEPT = #4113

#4123 USER_ALREADY_ ACTIVE = #4137

R444; ILLEGAL_LUSER = #4152

R4163 OTHER_USERS = #4177

44182 OUTLOF_RANGE = A4197

AAAs FILE _FULL— = 44187

BO1C; PROTECTION FAILURE = #6107

A4OTE; BFDLERROR = 441F3

#4203 NAME_EXISTS = 46213

H4223 NOT _ALLOCATABLE = #4233

ARRAY C1.eNAMELISTMAXINOEX] OF PACKED_NAME?

CSS/006/RFM/0001

g1gn/dato side 7

CR80 PASCAL PHG/800619 163

REFERENCE MANUAL erstatter projekt

198: FUNCTION
199: FUNCTION
200: FUNCTION
201: FUNCTION

203: FUNCTION
204: FUNCTION

206: FUNCTION
207: FUNCTION

209: FUNCTION

2711: PROCEDURE

213: FUNCTION
214: PROCEDURE
215: PROCEDURE
2163
217: PROCEOURE
218: PROCEQURE
2719: PROCEOURE
220: PROCEOURE

2222 PROCEDURE
223: PROCEDURE
224: PROCEDURE
2253 PROCEOURE
2263 PROCEDURE
227: PROCEDURE

229: PROCEOURE

232: PROCEQURE

235: PROCEOURE
236: PROCEDURE
2373 PROCEDURE
238: PROCEDURE

240: PROCEDURE
2413 PROCEDURE

2432 PROCEDURE

245: PROCEDURE

2469 3 PROCEOURE

2522 PROCEDURE

255: PROCEDURE

259: PROCEDURE
260: PROCEDURE

262: PROCEDURE

264: PROCEDURE

IANOCMASK1, MASK2s UNIV INTEGER): INTEGER;
TORCMASK1z MASK2: UNIV INTEGER): INTEGER;
XORCMASK1Ts MASK2: UNIV INTEGER): INTEGER;
INVCMASK: UNIV INTEGER): INTEGER,

LEFTSHIFTCBITS: UNIV INTEGERs SHIFTS: INTEGER): INTEGER?
RIGHTSHIFT(BITS: UNIV INTEGER? SHIFTS: INTEGER): INTEGER;

AOOCAs Bz INTEGER): INTEGER;
SUBTRACTCA, Bs INTEGER): INTEGER:

GETBITS(BITS: UNIV INTEGER? LEFTMOST: BITPOSITION?
FIELOLENGTH: BITFIELOLENGTH): INTEGER;

PUTBITSCFROM: UNIV INTEGERS VAR TOL: UNIV INTEGER?
LEFTTO: BITPOSITION? FIELDLENGTH: BITFIELOLENGTH)S

TESTSITCBITS: UNIV INTEGERS SITNUMBER: BITPOSITION): BOOLEAN,
SETBITCVAR BITS: UNIV INTEGER? BITNUMBER: BITPOSITION)-
CLEARBITCVAR SITS: UNIV INTEGERS BITNUMBER: BITPOSITION)=

SENSE_IOCOEVICE: INTEGER? VAR STATUS: UNIV INTEGER);
READ_IOCOEVICE: INTEGERS VAR DATA: UNIV INTEGER)?
CONTROL_IOCOEVICE: INTEGERs STATUS: UNIV INTEGER) +
WRITE_IOCDEVICE: INTEGERS DATA: UNIV INTEGER);

RESERVE_INTERRUPT(OEVPR: INTEGER VAR INTRPT: INTEGER),
RELEASE_INTERRUPTCINTRPT: INTEGER);

CLEAR_INTERRUPTCINTRPTs INTEGER)?
WALT_INTERRUPTC(DELAYs INT&PT: INTEGER; VAR TIMED_OUT: 30O0LEAN);

SETLINTERRUPTCINTRPT: INTEGER)?

SET_LCYCLECCYCLE: INTEGER);

SEND_MESSAGECVAR RECEIVER: PROCESS_NAME;
MSG: UNIV MESSAGE BUFFER?
VAR EVENT: INTEGER);

SEND _SYSTEM_MESSAGECVAR RECEIVER: PROCESS_NAME;s.
MSG: UNIV MESSAGE _ SUFFER?
VAR EVENT: INTEGER);

SENO_ANSWERCANS: UNIV MESSAGE_BUFFERZ EVENT: INTEGER);
SENO_SYSTEM_ANSWERCANS: UNIV MESSAGE_SUFFERs EVENT: INTEGER):
SEND_SIGNALCVAR RECEIVER: PROCESS_NAME);

IDENTIFY_SENDERCEVENT: INTEGERS VAR PROC: INTEGERS VAR OK: BOOLEAN)=

GET_PROC_NAMECVAR PROC_NAME: PROCESS _NAME) +
GET_PROC_IDENTCVAR PROC_NAME: PROCESS_NAMEs VAR FOUNO: S00LEAN)s

WAIT_MESSAGECDELAY: INTEGERZ VAR MSG: UNIV MESSAGE _BUFFER?
VAR EVENT: INTEGERS VAR EVTTYPE: EVENT_TYPED;

WAIT_LSYSTEM_MESSAGECDELAY: INTEGER;
VAR MSG: UNIV MESSAGE_BUFFER,

VAR EVENT: INTEGERS
VAR EVTTYPE: EVENT_TYPE); -

WAITLANSWERCDELAY: INTEGERS EVENT: INTEGERS
VAR ANS: UNTV MESSAGE _SUFFER;
VAR EVTTYPE: EVENT_TYPE);s

WAIT_SYSTEM_ANSWERCDELAY: INTEGER? EVENT: INTEGER,
VAR ANS: UNIV MESSAGE SUFFER;
VAR EVTTYPE: EVENT_TYPED?

WAITLEVENTCOELAY: INTEGER? EVTMSK: EVENT MASK;
: VAR MSGs UNIV MESSAGE_BUFFERs

VAR EVENTs INTEGER?
VAR EVTTYPE: EVENT_TYPE);

SAVE_LEVENTCEVENT: INTEGER);
RESTORE_LEVENTSCEVTTYPE: EVENT_TYPE);

TERMINATECCC:s COMPLETION_CODE);

READ_TIMECVAR TIME: DATE_TIME_GROUP):

CSS/006/RFM/0001

sign/dato sice

CR80 PASCAL PHD/800619 162

REFERENCE MANUAL erstatter projekt

266: PROCEDURE START_PROCESS(PROC: INTEGER, VAR ILLEGAL: BOOLEAN) +

25672 PROCEDURE STOP_PROCESSC(PROC: INTEGERs VAR ILLEGAL: BOOLEAN)?

263: PROCEDURE PROCESS_STATUS (PROC: INTEGER: VAR ILLEGAL: BOOLEAN;

2692 VAR PROC_ATTR: PROCESS_ATTRIBUTES) >

270: PROCEDURE REMOVE_PROCESSC(PROC: INTEGER? VAR ILLEGAL: SOOLEAN);

271: PROCEQURE GET_NEXT_PROCESSC(VAR PROC: INTEGER? VAR NONE: SOOLEAN);

272: PROCEDURE ADOPT_PROCESS(PROC: INTEGER? VAR ILLEGAL: BOOLEAN)?

273: PROCEDURE CREATE_PROCESSCVAR CB: CREATION_BLOCK? VAR RESULT: INTEGER);

274: PROCEDURE GET_CPU_PARAMETER(CPU: INTEGERS PAR: CPUPARAMETER?

275: PRIORITY: INTEGERS VAR VAL: INTEGER:

2763 VAR OK: BOOLEAN)Ds

277: PROCEDURE SET_CPU_PARAMETER(CPU: INTEGER? PAR: CPUPARAMETER?

2783 PRIORITY: INTEGERS VAL: INTEGER;

2793 VAR OKs BOOLEAN),

280: PROCEDURE LOOKUP_CPUCVAR CPU_NAME: PROCESS_NAMEs VAR FOUND? BOOLEAN);

281:
282: PROCEDURE GET_BUFFERCWORD_CLAIM: INTEGER?

283: VAR MEMORY: MEMORY _PARM;

284: VAR ADOR:. WORO_ADDRESS>

285: VAR WORDS ALLOCATED: INTEGER?

286: VAR OKs SOQOLEAN);

287: PROCEDURE GET_BUFFER_ADOR (MEMORY: MEMORY_OARM;

288: ‘VAR ADDR: WORD_ADORESSs

289: VAR SIZE_LIN_WORDS: INTEGER?

2903 VAR OK: BOOLEAN);

2912 PROCEDURE RELEASE_BUFFERCMEMORYS MEMORY_PARMs VAR OKs BOOLEAN);

2923

293: PROCEDURE CREATECFSN: FILE_SYSTEM_NAME;
2963 ATTRIBUTES: FILE_ATTRISUTES:

295: VAR Fs FILE;

2963 VAR COCs COMPLETION_CODE);

2972 PROCEDURE DISMANTLE(F: FILE? VAR CC: COMPLETION_CODE);

298: PROCEOURE PROTECTCF: FILEs

2998 ACCESS: ACCESS_DESCRIPTION,s

300: VAR CC: COMPLETION_CODE);

301s PROCEDURE RESETCF: FILEs VAR CC: COMPLETION_CODE)-

302: PROCEOURE OFFERC(F: FILEs USER: USERTO?# VAR CC: COMPLETION_CODE)?

303: PROCEDURE ACCEPTCFSN:s FILELSYSTEM_NAMEs -:

304: VAR Fe FILEs
305: VAR CC: COMPLETION_CODE);

3O6: PROCEDURE GET_LFILE_INFORMATIONC(CF: FILE? INE _TYPE: FPILE_INFORMATION_TYPE;

307: VAR INF: UNIV LONG_INTEGER?

308: VAR CC: COMPLETION _COOE);

309: PROCEDURE ASSIGNCFSN: FILE_SYSTEM_NAMEs :

310: DESCRIPTION: DEVICE_DESCRIPTION;

311: VAR CC: COMPLETION _CODE);
312: PROCEOURE DEASSIGNCFSN: FILE_SYSTEM_NAMEs
313: . DEVICE: DEVICE_NAMEs
B14: VAR CCs COMPLETION_CODE);
37153 PROCEDURE MOUNTCFSN: FILE_SYSTEM_NAMGE;
316: OEVICE: DEVICE_NAME;
317: VOLUME: VOLUME_NAME;

318: VAR CC: COMPLETION_CODE);
319: PROCEDURE DISMOUNTCFSN: FILE_SYSTEM_NAMEs

320: VOLUME: VOLUME_N4ME;

321: VAR CC: COMPLETION_COODE);

322: PROCEDURE FORMATCFSN: FILE_SYSTEM_NAME?s

323: DEVICE: DEVICE_NAME;

3263 VAR SECTORADDR: SECTOR_ADORESS;

325: BLE_POINTER: BLEPTR:

3263 VAR CC: COMPLETZION_CODE);

327: PROCEDURE GET_ROOTC(FSN: FILE_SYSTEM_NAME;

328: VOLUME: VOLUME_NAME;

329s VAR ROOT_DIRECTORY: FILE?

330: VAR CC: COMPLETION_CODE);

3372 PROCEDURE USER_ONCFSN: FILE_SYSTEM_NAME,
332: USER: USERID-s

333: VAR CC: COMPLETION _COOS);

334: PROCEDURE USER_OFFCFSN: FILE_SYSTEM NAMES

335: USER: USERIDs

336: VAR CC: COMPLETION_CODE);

327: PROCEDURE ENTERCOIRECTORY: FILEs

3383 SUBJECT: FILE-
3393 NAME: FILENAME?

3403 VAR CC: COMPLETION_CODE);

CSS/006/RFM/0001

sign/dato sida ?

CR80 PASCAL PHO/800619 164

REFERENCE MANUAL ‘ileal hla

3417s PROCEQURE LOOKUPCDIRECTORY: FILE?

362: NAME: FILE_NAME?S
343: VAR Fe FILE:

344: VAR CCs COMPLETION_CODE)>

3452 PROCEDURE OESCENTC(VAR F: FILE?

346s NAME: FILENAME?
347: VAR CCs COMPLETION_CODE)?

348: PROCEDURE FIND_LFILECFROM_ADAM: BOOLEANS

B4APs FSN: FILE_SYSTEM_NAME;

350: VOLUME: VOLUME NAME;

354: NAMELIST: NAMELISTTYPE;

352: NAME_NO: INTEGER;

53: OIRECTORY: FILE;

354: VAR Fs: FILES

3553 VAR CCs COMPLETION_CODE);

356: PROCEDURE RENAMECOIRECTORY: FILES

257s OLONAME: FILE_NAMES3

358: NEWNAME: FILE_NAME;

3593 VAR CC: COMPLETION CODE);

360: PROCEOURE REMOVECDIRECTORY: FILE;

3613 NAME: FILE_NAME;

362: VAR CC: COMPLETION_CODE);

363: PROCEDURE READ _SECTORSC(CFSN: FILE_SYSTEM_NAME;

364: DEVICE: DEVICE _NAME;

365: VAR SECTORAOOR: SECTOR_ADORESS;

366s BLE_POINTER: BLEPTR;

367: VAR CC: COMPLETION_CODE)2

368: PROCEDURE WRITE_SECTORSCFSN: FILE_SYSTEM_NAME;

369s OEVICE: DEVICE_NAME;

370: VAR SECTORAODR: SECTOR_ADDRESS;

371: BLE_POINTER: BLEPTR;

372: VAR CC: COMPLETION_COOED;

3732 PROCEDURE WRITE_AND_PROTECTCFSN: FILE_SYSTEM_NAME;

374s DEVICE: DEVICE NAME;

3753 VAR SECTORADOR: SECTOR_ADORESS;

3763 BLE_POINTER: SLEPTR;

377: VAR CC: COMPLETION _CODE);

378: PROCEDURE WRITE_ANO_MARKCFSN: FILE_SYSTEM_NAME?Z

379s OEVICEs DEVICE _NAME;

330: VAR SECTORADODR: SECTOR_ADORESS;

334: GLE_POINTER: BLEPTR>

382: VAR CCs COMPLETION_CODE);:

383: PROCEDURE READ_BYTESCF: FILES

384: VAR FILELAOODR:s FILE_ADDRESS;

385: BLE_POINTER: BLEPTRe

386: VAR CCs COMPLETION_COOE);

387: PROCEDURE MODIFY_BYTESC(F: FILE?

388: VAR FILE_ADOR: FILE_ADORESS;

389: BLE_POINTER: SLEPTR:

390s VAR CC: COMPLETION_COOE);
3912 PROCEDURE APPEND _BSYTESCF: FILE;

392: VAR FILE_ADOR: FILE_ADORESS-s 29

393: BLE_POINTER: BLEPTRs

3943 VAR CC: COMPLETION_CODE);

395: PROCEDURE INIT_READ_BYTESCF: FILES

396: VAR FILE_ADOR: FILE_AODRESS?
397s SLE_POINTER: BLEPTRe

398: VAR OPREF: OPERATION REFERENCES

399: VAR CC: COMPLETION_CODE);

400: PROCEDURE INITLMODIFY_BYTES(F: FILES

4013 _ VAR FILE_AOOR: FILE_ADDRESS;>

402: - BLELPOINTER: SLEPTRe

403: VAR OPREF: OPERATION_REFERENCE;

404: VAR CC: COMPLETION _CODE)-;

405: PROCEDURE INIT_APPEND_BYTESCF: FILE;

406: VAR FILE_ADOR: FILE_AODRESS;

407: BLELPOINTERs BLEPTR;

408: VAR OPREF: OPERATION_REFERENCE;

409: VAR CCCs COMPLETION CODED?

410: PROCEDURE WAIT_OPERATIONCOPREF: OPERATION_REFERENCE;

411s VAR CCs COMPLETION_CODE):

412: PROCEDURE TEST_OPERATIONCOPREF: OPERATION_REFERENCE;

413: VAR FINISHEO: BOOLEAN?

4143 VAR CC: COMPLETION_CODE)D;

415: PROCEDURE CANCEL_OPERATIONCOPREF: OPERATION_REFERENCE;

416: VAR CC: COMPLETION_COOE);

4173

CSS/006/RFM/0001

sign’ data side .

CR80 PASCAL PHD/800619 164
REFERENCE MANUAL

erstatter projekt

418:

4193
420:
4213
422:
423s
4263
4253s
4263
42783

. 428:
429
430:
431:
432:
433:
6343
435:
436:

437:
438:
439:

4403:
4413
4423
443:
444:
445:

446:
4472
448:
449:
450:
451:

452:
453:
454s
4552
456:
457:
458:
459:
460:
441:
462:
463:
464:
465:

666:
467:
468:
569%
470:
471;

PROCEDURE CONNECT(F: FILE?
Ms MODES”
VaR S: STREAMS
VAR CC: COMPLETION CODE);

PROCEDURE DISCONNECT(S: STREAMS
VAR Fs FILES
VAR CC: COMPLETION _CODE):.

PROCEDURE GET_POSITION(S: STREAMS
VAR POSITION: STREAM_POSITIONS
VAR CCs COMPLETION_CODE);

PROCEDURE SET_POSITION(S: STREAM?
POSITION: STREAM_POSITIONS
VAR CC: COMPLETION_CODE)?

PROCEDURE INBYTE(S: STREAMS VAR Bs UNIV BYTES VAR CC: COMPLETION_CODEDs
PROCEOURE INWORD(S: STREAM;

VAR WORD: UNIV INTEGERS
VAR CC: COMPLETION_CODE);

PROCEDURE BACKSPACE(S: STREAM? VAR CC: COMPLETION_COOE);
PROCEDURE INREC(S: STREAMS

7 VAR FIRST ELEMENT: UNIV ELEMENTS
VAR RECORD_LENGTH_IN_BYTES: INTEGER?
VAR CC: COMPLETION_CODE):

PROCEDURE OUTSYTECS: STREAMS B: UNIV BYTES VAR CC: COMPLETION CODED:
PROCEDURE OUTWORD(S: STREAM?

WORD: UNIV INTEGER?
VAR CG: COMPLETION_CODEDs

PROCEDURE OUTREC(S: STREAM;
EIRST_ELEMENT: UNIV ELEMENT?
VAR RECORD_LENGTH_IN_SYTES: INTEGER:
VAR CC: COMPLETION_CODE);

PROCEDURE FLUSH(S: STREAM? VAR CC: COMPLETION_CODE);
PROCEOURE INTYPE(S: STREAMS

VAR CH: CHAR;

VAR CH_TYPES CHAR_TYPE?
VAR CC: COMPLETION_CODE)?

PROCEDURE INELEMENT(S: STREAM?
VAR ELEM: ELEM_REC;
VAR CC: COMPLETION CODE):

PROCEDURE ININTEGER(S: STREAM;
VAR INT: INTEGER;
VAR CC: COMPLETION_CODE);

PROCEDURE INLONG_INTEGER(S: STREAM?
VAR LINT: LONG_INTEGER?
VAR CC: COMPLETION_CODE)?

PROCEDURE INNAMECS: STREAMS
VAR Ns PACKEO_NAME;

VAR CC: COMPLETION CODE);
PROCEDURE INFILEID(S: STREAM?

VAR FROM_ADAM: BOOLEAN;

VAR FSN: FILE_SYSTEM_NAMES
VAR VOLUME: VOLUME_NAME;

VAR NAMELIST: NAMELISTTYPE?
VAR NAME_NO: INTEGER?
VAR CC: COMPLETLON_CCOED;

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PH@/800619 1 65

REFERENCE MANUAL eretattar projekt

472:
473s
47h:
4753
476:
477:
478:
4793
480:
4813
4682:
483:
4843
685:
6863
6873:
4388:
4893
490:
4913
4922
4933

4963
4953
4968
4973
498:
4993
500:
501:
S02:
503:
5043
505:
506:
5073
5038:
509:
5103
Sit:
512:
513:
514:
515
516:
517:
518:
519:
52C:
S21:
522:
523:
5246s
525:
526:
S27:
5283
5293

PROCEDURE OUTTEXT(S: STREAM?
UNPACKEO_TEXT: TEXT:
VAR CC: COMPLETION_CODE);

PROCEDURE OUTSTRING(S: STREAM?
UNPACKED_TEXTs TEXT:
NO_OF_CHARS: INTEGER?
VAR CC: COMPLETION_CQDE);

PROCEDURE OUTHEXACS: STREAM;
INT: UNIV INTEGERS

~ PAD_CHAR: CHAR?
VAR CCs COMPLETION_CODE);

PROCEDURE OUTINTEGER(S: STREAM:
INTs UNIV INTEGER?
FORMAT: UNIV INTEGER;
VAR CC: COMPLETION_CODE):-

PROCEDURE OUTLONG_INTEGER(S: STREAM;
LINT: UNIV LONG_INTEGER?
FORMAT: UNIV INTEGER:
VAR CC: COMPLETION_CODE):

PROCEDURE OUTNL{(S: STREAMZ VAR CC: COMPLETION_CODE);

PROCEQURE MARKC(VAR TOP: INTEGER);
PROCEDURE RELEASECTOP: INTEGER)?
FUNCTION FREE_SPACE: INTEGER;
FUNCTION CONTENTSCBASE_REL_AODR: LONG_LINTEGER): INTEGER;

PROCEDURE EXIT;
PROCEDURE CURRENT_LEVELCVAR LEVEL: INTEGER) s
PROCEDURE LONG_EXITCLEVEL: INTEGER);
FUNCTION CURRENTLLINES INTEGER;
FUNCTION REL ADDRC(FIRST_ELEMENT: UNIV ELEMENT): INTEGER;
PROCEDURE GET_ABS_AODORC(FIRSTLELEMENT: UNIV ELEMENT,

VAR WORD_ADOR: WORD_ADORESS); .
PROCEDURE COPYCSOURCE, DEST: BYTE_ADORESS? NOLOF_SYTES: INTEGER)?
PROCEDURE PACKCFIRST_ELEMENT_OF_UNPACKED: UNIV ELEMENT;

VAR FIRST_ELEMENT_OF_PACKED: UNIV ELEMENT?
NO_LOF_LBYTES: INTEGER);

PROCEDURE UNPACK(FIRST ELEMENT _OF_PACKEO: UNIV ELEMENT?
- VAR FIRST ELEMENT OF _UNPACKED: UNIV ELEMENT,

NO_LOF_SYTES: INTEGER);
PROCEDURE PACK_SWAPPEDCFIRST_ELEMENT_OF_UNPACKED: UNIV ELEMENT;

VAR FIRSTLELEMENT_OF PACKED: UNIV ELEMENTz

NO_LOF_SYTES: INTEGER);

PROCEDURE UNPACK_SWAPPEOCFIRST_ELEMENT_OF_PACKEO: UNIV ELEMENT; .

VAR FIRSTLELEMENT_OF_UNPACKED: UNIV ELEMENT?

NO_OF_3YTES: INTEGER);

PROCEDURE RUNCF: FILEs VAR PARAM: PARAMTYPEs
VAR LINE: INTEGERS VAR RESULT: PROGRESULT)2

FUNCTION CREATE_LONG(LEAST, MOST: UNIV INTEGER): LONG INTEGER;

PROCEDURE SPLIT_LONG(L: LONG _INTEGERs VAR LEAST» MOST: UNIV INTEGER);

PROCEDURE ASSIGNBITSCVALUE: UNIV @ITVALUES VAR Pz UNIV PAGE,

FIRSTSITs NO_LOF_SITS: INTEGER);
PROCEDURE SKIPBITSCVALUE: UNIV 3ITVALUEs Ps UNIV PAGE;

VAR FIRSTBIT: INTEGERS NOLOF_@ITS: INTEGER?
VAR BITSSKIPPED: INTEGER);

PROCEDURE SET_TRACECS: STREAM? MASK: INTEGER)-

PROCEQURE PRINT TRACECON: BOOLEAN);

PROGRAM MAINCVAR PARAM: PARAMTYPE);

a}
te
t
e
e

