400-571-2

TITLE:

DOCUMENT NO:

PREPARED BY:
APPROVED BY:

AUTHORIZED BY:

DISTRIBUTION:

CR80 AMOS
PASCAL COMPILER :

- REFERENCE MANUAL

CSS/450/RFM/ 0004

PER H@PJMARK
JPRGEN HOG

JORGEN H@G

ISSUE : 1

DATE: | g00619

CSsS/006/RFM/0001

sign/date page
REFERENCE MANUAL re! S
PAGE RECORD AND ISSUE LOG.
(- I1SSUE oAGE ISSUE e 1SSUE
1[2]3]a[s]6]7 s t2]3]a]s]s 8 112(3la]s]s]7]s

01 3% 67
02 35 68
03 36 69
04 37 70
05 38 71
06 39 72
07 40 73
08 41 e
09 42 75
10 43 76
1 4t 77
12 45 78
13 46 79
14 47 80
15 48 81
16 43 82
17 50 83
18 51 84 ;
19 52 85 |
20 53 86 '
21 54 87
22 55 88
23 56 89
2 57 30
25 58 91
2 59 92
27 60 93
28 61 9
29 62 95
30 63 96
N 64 97
32 65 98
33 66 99

100

fsuE SATE PREPARED APPROVED AUTHORIZED
BY N Y B’Y By .
1 800619 @%zif ;ﬁ¢? Eﬂ%?y

400- 919

b

CSS/006/RFM/0001

sgn/aate page .
ERGONERESERL [PH@/800619 e
REFERENCE MANUAL ree! proLect
PAGE RECORD AND ISSUE LOG.
oace I1SSUE P ace I1SSUE once ISSUE
1]2[3[a|s]6]7]a 2|3({4(s5]s 1{2]3]|asfs!l7]s
01 3% 67
02 35 68
03 36 69
04 37 70
05 38 7 |
06 39 72
07 . 40 73
08 41 74 !
09 42 75
10 43 76
1 4b 77
12 45 78
13 46 79
14 47 80 [;
15 48 81
16 I 49 82 !
17 50 1 83 Pt i
18 51 84 i1 |
19 52 85 i :
20 53 86 |
7 54 87 ;
22 55 88 | |
23 56 89
% 57 90
25 58 9
26 59 92 |
27 60 93 i J.
28 61 9% | |
29 62 95 :
[30 63 96
31 64 97 |
32 65 98 !
33 66 99 i
100 |
PREPARED APPROVED AUTHORIZED
ISSUE DATE av ey By
1 200513 24 22 ”,W/

«30- 919

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL "~ |PHP/800619 iii
erstatter projekt D =.
REFERENCE MANUAL

TABLE OF CONTENTS

Section PAGE
1. INTRODUCTION 1
2. APPLICABLE DOCUMENTS 2

3. THE CR80 PASCAL LANGUAGE
3.0 Introduction to CR80 PASCAL
3.1 Notation, Terminology, and

Vocabulary 9
3.2 Identifiers, Numbers, and
Ccharacter Strings 12
Constant Definitions 15
3.4 Type Definitions 16
3.4.1 Simple Types 16
3.4.1.1 Standard Simple Types 16
3.4.1.2 Enumerated Types 18
3.4.1.3 Subrange Types 18
3.4.2 Structured Types 19
3.4.2.1 Array Types 19
3.4.2.2 Record Types 20
3.4.2.3 Set Types 22
3.4.3 Pointer Types 22
3.5 Declaration and Denotation of Variables 24
3.5.1 Entire Variables 25
3.5.2 Component Variables 25
3.5.2.1 Indexed Variables 25

3.5.2.2 Field Designators 26

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PHP/800619 iv
REFERENCE MANUAL eratater projekt

3.5.3 Referenced Variables 27

3.6 Procedure and Function Declarations 28
3.6.1 Procedure Declarations 28

3.6.2 Function Declarations 31

3.6.3 Parameters 33

3.6.4 Standard Procedures 35

3.6.5 Standard Functions 35

3.7 Expressions 37
3.7.1 Operators -38
3.7.1.1 Arithmetic Operators 39

3.7.1.2 Boolean Operators 40

3.7.1.3 Set Operators 41

3.7.1.4 Relational Operators 41

3.7.2 Function Designators 43

3.8 Statements 44
3.8.1 Simple Statements 44
3.8.1.1 Assignment Statements 44

3.8.1.2 Procedure Statements 45

3.8.2 Structured Statements 46
3.8.2.1 Compound Statements 46

3.8.2.2 Conditional Statements 47

3.8.2.2.1 If Statements 47

3.8.2.2.2 Case Statements 48

3.8.2.3 Repetitive Statements 49

3.8.2.3.1 Repeat Statements 50

3.8.2.3.2 While Statements 51

. 3.8.2.3.3 For Statements 51
3.8.2.4 With Statements 54-.

3.9 Program and Prefix 56
3.10 Scope Rules 59
3.1 Type Compatibility 62
3.12 Syntax Graphs 63

CSS/006/RFM/0001

sign/dato side
CRO0TERSEAL PHE /800619 v -
REFERENCE MANUAL erstatter projekt
4. DIFFERENCES BETWEEN CR8(0 PASCAL AND JW PASCAL 72
5. DATA REPRESENTATION IN CR80 PASCAL 77
6. THE RUNTIME SYSTEM: AN INNER LOOK 80
6.1 The Runtime Stack 80
6.2 Register Allocation in the Runtime System 82
6.3 The Virtual Code 83
6.4 Addressing and Layout of Variables 84
6.4.1 Global Variables 84
6.4.2 Local Variables - 86
6.4.3 Parameter Passing 88
Work Areas 92
) Inserting Assembly Code 93
7. THE AMOS STANDARD PREFIX 96
8. COMPILE TIME DIRECTIVES 143
9. THE CR80 PASCAL COMPILER 150
9.1 Activating the Compiler 150
9.2 Preparing the Program Source 152
9.3 Example 154
10. RUNTIME ERROR CODES 155
APPENDIX A. LISTING OF PREFIX 158

CSS/006/RFM/0001

| sign dato ‘I‘_jlde

'PH@/800619 7

CRBO PASCAL i arstattar Il projekt

REFERENCE MANUATL i |

1. Introduction

The main purposes of this document are:
e to define the CR80 PASCAL language

® to describe the system procedures and functions
available to the programmer in a CR80 PASCAL
program

e and to explain how the CR80 PASCAL compiler is
operated

The document is not intended to be a tutorial on
PASCAL.

CSS/006/RFM/0001

| sign date < nde
‘PHQ/800619
erstatter crojekt

CR80 PASCAL
REFERENCE MANUAT

2. Applicable documents

1. Jensen, Kathleen & Niklaus Wirth:
PASCAL User Manual and Report.
Second Edition.

Springer-Verlag. 1978.

2. CR80 AMOS, KERNEL
PRODUCT SPECIFICATION
CSs/302/pPsp/0008

3. CR80 AMOS, I/O SYSTEM
PRODUCT SPECIFICATION
CSs/006/PSP/0006

4. CR FILE SYSTEM PSP
CSS/910/EWP/0001

5. CR80 AMOS, FILE NAME UTILITIES
PRODUCT SPECIFICATION
CSs/317/PSP/0014

6. CR80 AMOS, COMMAND INTERPRETER
USER”S MANUAL
CSs/381/UsM/0037

7. CR80 Minicomputer Handbook
CSD/HDBK/0001

8. CR80 AMOS, ASSEMBLER
- USER™S MANUAL
CSS/401/UsM/0042

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

! sign dato side

' PH®/ 800619 |

:' erstatter | projekt

3 THE CR80 PASCAL LANGUAGE

=

b

CSS/006/RFM/0001

CR80 PASCAL _PH@/800619 .
REFERENCE MANUAL

: s1gn dato ! side 4

| erstatter orojekt

Introduction to CR80 PASCAL

The following text is intended for readers with some
experience in high level languages. For readers not
acquainted with other programming languages it will

be hot stuff. This introductory section tries to present
an overview of CR80 PASCAL so that the reader can view

the forest before examining individual trees.

A CR80 PASCAL program consists of two essential parts,
a description of the actions to be performed, and a
descriﬁtion of the data which are manipulated by these
actions. Actions are described by statements, and data

are described by declarations and definitions.

The data are represented by values of variables. Every
variable occurring in a statement must be introduced

by a variable declaration which associates an identifier

and a data type with that variable. The data type
essentially defines the set of values which may be

assumed by that variable. A data type may in CR80 PASCAL

be either directly described in the variable declaration,
or it may be referenced by a type identifier, in which

case this identifier must be described by an explicit

type definition, or be one of the standard type identifiers
BOOLEAN, INTEGER, CHAR or LONG_INTEGER.

Enumerated types are defined by indication of an ordered

set of values, i.e. by introduction of identifiers

standing for each value of the type.

CSS/006 /RFM/0001

sign dato 2
CR80 PASCAL pag,/ 800619, 5
| erstatter i projekt

REFERENCE MANUAL ! !

A type may also be defined as a subrange of one of
the types INTEGER, CHAR or BOOLEAN.

Structured types are defined by describing the types

of their components and by indicating a structuring

method. The various structuring methods differ in the
selection mechanism serving to select the components
of a variable of the structured type. In CR80 PASCAL
there are three basic structuring methods available:
array structure, record structure, and set structure.

In an array structure all components are of the same

type. A component is selected by an array selector, or
index, whose type is indicated in the array type definition.
Given a value of the index type, an array selector

ylelds a value of the component type. Every array variable
can therefore be regarded as a mapping of the index type
onto the component type.

In a record structure the components (called fields)

are not necessarily of the same type. Each component has
attached to it an identifier (declared in the record type

definition) which is used when the component is selected.

A record type may be specified as consisting of several
variants. This implies that different variables, although
said to be of the same type, may assume structures which
differ in a certain manner. The difference may consist

of a different number and different types of components.
The variant which is assumed by the current value of a

record variable is indicated by a component field which

CSS/006/RFM/0001

L sign dato : side 6
CR80 PASCAL PH@/ 800619 | N ’
| erstatter | projekt

REFERENCE MANUAL

is common to all variants and is called the tag field.

A set structure defines the set of values which is

the powerset of its base type, i.e. the set of all
subsets of values of the base type.

Variables declared in éﬁ%&icit declarations are called
static. The declaration associates an identifier with
the variable which is used to refer to the variable. In
contrast, variables may be generated by an executable
statement. Such a dynamic generation yields a pointer,
which sﬁbsequently serves to refer to the variable. This
pointer may be assignhed to other variables, namely variab-
les of type pointer. Every pointer variable may assume
values pointing to variables of the same type T only,
and it is said to be bound to this type T. It may,
however, also assume the value NIL, which points to no

variable.

The most fundamental statement is the assignment

statement. It specifies that a newly computed value be
assigned to a variable, or a component of a variable.

The value is obtained by evaluating an expression.

Expressions consist of variables, constants, sets, opera-
tors, and functions operating on the denoted quantities
and producing new values. CR80 PASCAL defines a fixed

set of operators, each of which can be regarded as
describing a mapping from the operand types into the
result type. The set of operators is subdivided into
groups of arithmetic operators (addition, subtraction,

sign inversion, multiplication, division, and computing

the remainder), boolean operators (negation, union, and

CSS/006/RFM/0001

s1gn dato { side 7

CR80 PASCAL ' PH®/800619

REFERENCE MANUAL

i arstatter | projekt

set difference), and relational operators (equality,

inequality, ordering, set membership, and set inclusion).

The procedure statement causes the execution of the

designated procedure (see below). Assignment and
procedure statements are the components or building

blocks of structured statements, which specify sequential,

selective, or repeated execution of their components.
Sequential execution of statements is specified by the

compound statement, conditional or selective execution

by the if statement and the case statement, and repeated

execution by the repeat statement, the while statement,

and the for statement. The if statement serves to make

the execution of a statement dependent on the value of

a boolean expression, and the case statement allows for
the selection among many statements according to the
value of a selector. The for statement is used when the
number of iterations is known beforehand, and the repeat

and while statements are used otherwise.

A statement can be given a name, and be referenced through
that name. The statement is then called a procedure, and

its declaration a procedure declaration. Such a declaration

may additionally contain a set of variable declarations
and type definitions. The variables and types thus intro-
duced can be referenced only within the procedure itself,
and are therefore called local to the procedure. Their
identifiers have significance only within the program text
which constitutes the procedure declaration and which

is called the scope of these identifiers. Entities which
are declared in the main program, i.e. not local to some

procedure, are called global. A procedure has a fixed number

CSS/006/RFM/0001

: si1gn dato . side 8
CR80 PASCAL pHp/ 800619

REFERENCE MANUAL | et g o

of parameters (if any), each of which is denoted within

the procedure by an identifier called the formal para-

meter. Upon an activation of the procedure statement,
an actual quantity has to be indicated for each formal

parameter. This quantity is called the actual parameter.

A function 1is declared analogously to a procedure.
The only difference lies in the fact that a function
yields a result the type of which must be specified in
the function declaration. Functions may therefore be

used as constituents of expressions.

CSS/006/RMF/0001

CR80 PASCAL PHP /800619
REFERENCE MANUAL

sign/dato side 9

arstatter projekt

3.1

Notation, terminology, and vocabulary

Syntactic constructs are denoted by English words
enclosed between angular brackets < and >. Zero or

more repetitions of a construct is indicated by enclosing
the construct within metabrackets { and } . The brackets
[_and 1 are part of the CR80 PASCAL language, but are
also used as metasymbols. When used as metasymbols, they

will be underlined ([,].). [X] means 0 or 1 instance
of X. A bar (|) is used to indicate alternatives.

A "shorthand" will be used to avoid repetition that is
more distracting than illuminating: ¢onstructs of the

form:

<X identifier> ::= <identifier>
will not be shown. All particular identifiers are
instances of identifier. Also, in the verbal description

we will write g for the non-terminal symbol <g>.

The basic vocabulary of CR80 PASCAL consists of letters,
digits, and special symbols.

<letter> ::= A|B|C|D|E|F|G|H|I|J]
K|L|M[N|O|P|Q|R]|S|T]|
ulviwlxly|z|_

<digit> ::= 0]1]2[3|4|5]|6]7|8]|9]

Note: Underscore is a 1etter.

CSS/006/RFM/0001

! sign dato ' sige] O

CR80 PASCAL . PH@/ 800619

REFERENCE MANUAL | sraseuer e

<special symbol> ::= +|-|*|/|=]|<]
>IL T

: 3] (]

<=|>=|:=|

.
> 7

r

) [<>

«o| <word symbol>

<word symbol> ::= AND|ARRAY|BEGIN|CASE|
CONST|DIV|DO|DOWNTO|
ELSE | END | FOR | FORWARD |
FUNCTION | IF|IN|MOD|
NOT | OF | OR| PROCEDURE |
PROGRAM | RECORD | REPEAT |
SET | THEN | TO| TYPE | UNIV|
UNTIL|VAR|WHILE|WITH|

Special symbols have fixed meanings (except within
character strings and comments). Thus, word symbols

cannot be used as identifiers.
The construct

"<any sequence of characters not containing a

double quote>"

is a comment if it does not occur within a character
string. The substitution of a space for a comment
will not alter the meaning of a CR80 PASCAL program.

Lexical tokens used to construct CR80 PASCAL programs
can be classified into special symbols, identifiers,

unsigned numbers and character strings. Comments, spaces,

CSS/006/RFM/0001

~ sign aato : side
CR80 PASCAL ' PH®/800619 11

| erstatter ¢ projekt
REFERENCE MANUAL ! |

and the NL- and FF-character are token separators.

Zero or more token separators may occur between

any two consecutive tokens, or before the first token

of a program text. There shall be at least one separator
between any pair of consecutive tokens made up of
identifiers, word symbols or unsigned numbers. No
separator may occur within tokens.

CSS/006/RFM/0001

sign dato side] 2
CR80 PASCAL PHg,/ 800619

| erstatter : projekt

REFERENCE MANUAL f ;

Identifiers, Numbers and Character Strings

Identifiers denote constants, types, variables, formal
parameters, procedures, functions, programs, and fields

and tag fields in records.

13
<identifier> ::= <letter> { <letter or digit> }6“9
<letter or digit> ::= <letter> | <digit>
All characters of an identifier are significant.
Examples of identifiers:
X _A_FUNNY_ONE_ A38
Numbers are the constants of the standard data types
INTEGER and LONG_INTEGER.
<digit sequence> ::= <digit> {<digit>}
<hexa digit> ::= A[B|C|D|E|F| <digit>
<hexa digit sequence> ::= <hexa digit> {<hexa digit>}
<unsigned integer> ::= <digit sequence> [
<hexa digit sequence>
<unsigned long_integer> ::= <digit sequence>L |
4fkhexa digit sequence>L
<signed integer)> ::= [<sign>]<unsigned integer>
<signed long_integer> ::= E<sign>] <unsigned long integer>
<sign> ::= + | - -

Examples of signed integer numbers:

T +100 #FFFF -#4711

CSS/006/RFM/0001

' sign dato side]

CR80 PASCAL _PHP/800619

(O3]

| erstatter projekt

REFERENCE MANUAL | |

Examples of signed long 'integer numbers:

1L +100L # ABEL -~-# 4711FFFFL

Numbers without a preceding # —character are in base 10.

Numbers with a preceding # -character are in base 16.

Character strings are sequences of string elements
enclosed by apostrophes. Character strings consisting
of a single string element are the constants of the
standafa type CHAR. Character strings consisting of n
(1 <n <=80) enclosed string elements are constants of
the type

ARRAY [1..n] OF CHAR

If the character string is to contain an apostrophe,
this apostrophe must be written twice. Empty strings
are not allowed.

<character string> ::= '<string element>
{<string element>}739'
<string element> ::= <apostrophe image>|
<string character> |
(:<digit sequence>:)
<apostrophe image> ::= ''
<string character> ::= any ASCII character except

EM and NL.

A string element of the form (:<digit sequence>:) can be

used if a character is difficult to punch or unprintable

CSS/006/RFM/0001

sign dato sige] 4

CR80 PASCAL PH@/ 800619
REFERENCE MANUAL f ersatier proiskt

(or if it equals EM or NL). The digit sequence must
equal the ordinal value of an ASCII character, i.e.

be in the closed interval from 0 to 127.

Examples of character strings:

TAY ;o vttt t(:10:):) (325:)

~e

The last character string has the length 4 and contains
an NL-character followed by a colon, a right parenthesis,

and an EM-character.

CSS/006/RFM/0001

sign dato _snde 1 5
CR80 PASCAL | PH@/ 800619 !

REFERENCE MANUAL ! rsateer j ook

3.3 Constant definitions

A constant definition introduces an identifier to

denote a constant.

<constant definition> ::= <identifier> = <constant>
<constant> ::= <unsigned integer |
<unsigned long integer> |
<constant identifier> |
<character string>
Note: If an identifier is to denote a negative number,
this number must be written in the hexadecimal notation --
(e.g. -1 must be written #FFFF and -2L must be written
#FFFFFFFEL, because the representation is 2's complement).

CSS/006/RFM/0001

| sign dato , SJQe] 6
CR80 PASCAL ' pHg/ 800619,
E erstatter | projekt

REFERENCE MANUAL |

3.4 Type definitions

A type determines the set of values which variables
of that type may have and the operations which may be
performed upon values of that type. A type definition
associates an identifier with a type.

<type definition> ::= <identifier> = <type>
<type> ::= <simple type> |

<structured type> |

<pointer type>

3.4.1 Simple types

<simple type> ::= <ordinal type> |
<long integer type>
<ordinal type> ::= <enumerated type> |
<subrange type> |
INTEGER |
BOOLEAN |
CHAR [
<ordinal type identifier>
<long integer type> ::= LONG_INTEGER |
<long_integer type identifier>

3.4.1.1 Standard simple types

The values belonging to the standard types may be
manipulated by means of predefined primitive operations.

The following types are standard:

INTEGER : The values are the subset -32768 to

32767 of the whole numbers, denoted
as specified in 3.2 by the signed

integer values.

CSS/006 /RFM/0001

CR80 PASCAL
REFERENCE MANUAL

' sign dato side
| PH@/ 800619 ll 17

erstatter | projekt

LONG_INTEGER

BOOLEAN

CHAR

The values are the subset
—2147483648L to 2147483647L
of the signed long_;nteger values

as specified in 3.2

The values are the truth values
denoted by the predefined constant
identifiers FALSE and TRUE, where
FALSE is the predecessor of TRUE.
The ordinal numbers of FALSE and
TRUE are 0 and 1 respectively.

The values are the character strings
of length 1 as specified in 3.2. The
ordering relationship between two
character values is the same as

between their ordinal numbers.

Note: Operators applicable to standard types are

specified in 3.7.1.

CSS/006 /RFM/0001

:IS|gn dato side] 8
CR80 PASCAL ' PH®/ 800619

REFERENCE MANUAL . J

i erstatter | projext

3.4.1.2

3.4.1.3

Enumerated types

An enumerated type defines an ordered set of values

by enumeration of the identifiers which denote these
values. The ordering of the values is determined by

the sequence in which their identifiers are listed, i.e.

if x precedes y then x<y. The identifiers in the identifier
list are mapped onto consecutive nonnegative integer

values starting from zero.

<enumerated type> ::= (<identifier list>)
<identifier list> ::= <identifier> {,<identifier>}

Examples of enumerated types:

(RED, YELLOW, GREEN, BLUE, TARTAN)
(MARRIED, DIVORCED, WIDOWED, SINGLE)

Subrange types

A type may be defined as a subrange of an ordinal type

(the host type) by indication of the smallest and the
largest value in the subrange. The first constant specifies
the lower bound which shall be less than or equal to the
upper bound.

<subrange type> ::= <constant>..<constant>
Examples of subrange types:
1..100

'‘A',.'2'
RED. .GREEN

CSsS/006 /RFM/0001

: sign dato If'de] 9
CR80 PASCAL iPH¢/800619f
fStatie ! projek
REFERENCE MANUAL erstatt projekt

3.4.2 Structured types

A structured type is characterized by the type(s) of
its components and by its structuring method. If a
component type is itself structured, the resulting

structured type exhibits several levels of structuring.

<structured type> ::= <array type> |
<record type> |
<set type> [

8 <structured type identifier>

3.4.2.1 Array types

An array type is a structured type consisting of a

fixed number of components that are all of one type,

called the component type. The elements of the array

are designated by one or more indices, which are values

of the corresponding index types. The array type definition
specifies both the component type and the index types.

<array type> ::=
ARRAY ¢1p> <index type> {,<index type>} <rb>
OF <component type>

<index type> ::= <ordinal type>
<component type> ::= <type>
<1lb> ::= [] (.

<rb> :: <)

]

Examples of array types:

ARRAY [1..100, 'A'..'Z'] OF INTEGER
ARRAY [BOCLEAN] OF COLOUR

CSS/006/RFM/0001

I sign dato v [side 2 O
CR80 PASCAL | PH@/ 800619

erstatter | projekt
REFERENCE MANUAL ! statt Efo i

3.4.2.2 Record types

A record type is a structured type consisting of a

fixed number of components, possibly of different types.
The record type definition specifies for each component,
called a field, its type and an identifier that denotes
it. The scope of these field identifiers is the record
definition itself, and they are also accessible within
a field designator (see 3.5.2.2) referring to a record
variable of this type.

The synkax of a record type permits the specification

of a variant part. This enables different values, although
of identical type, to exhibit structures which differ

in the number and/or types of their components. A certain
field in the variant part is designated as the tag field.
The value of the tag field at any time indicates which
variant is assumed by the record variable at that time.
Each variant is introduced by one or more case labels,
which must be distinct and of a type compatible (see 3.11)
with the tag type. A change of variant occurs only when

a value is assigned to the tag field. Assignment to the
tag field causes the rest of the fields in the variant
part to be filled with zerobits. A runtime error will
result if a reference is made to a field of a variant

other than the current variant.

<record type> ::= RECORD <field list> END
<field list> ::= <fixed part>£; <variant part}JM]

<variant part>

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

| sign’'dato side

21

| PH@/ 800619 |
l erstatter i projekt

f

<fixed part>
<record section)
<variant part> ::= CASE <tag field>

<tag field»>
<tag type>
<variant)

<case constant list>

<case constant) ::

<record section>[i <record section>}
<identifier list>

<type>
<tag type> OF
<variant>{ i<variant> !

<identifier>

<ordinal type identifier>

<case constant list>
(<field 1list>)

<{case constant>

{, <case constant>!}

<constant>

The ordinal value of the case constants must be contained

in the closed interval from 0 to 15. The type in a record

section must not be the defining occurence of an enu-

merated type.

Note:

It is a syntax error to place a semicolon in front

of the final END in a record type definition.

Examples of record types:

RECORD
YEAR:
MONTH:
DAY:

END

INTEGER;
1..12;
1..31

RECORD
NAME, FIRSTNAME: ARRAY [J..ZO] OF CHAR;

CASE S: SEX OF
MALE: (ENLISTED, BEARDED: BOOLEAN) ;
FEMALE: (PREGNANT: BOOLEAN)

END

CSS/006/RFM/0001

! sign dato side 2 2
CR80 PASCAL | PH®/ 800619

REFERENCE MANUAL

| arstatter projekt

3.4.2.3

This record type contains a defining occurrence

of an enumerated type and is therefore not allowed:

RECORD
COLOUR: (RED, GREEN, BLUE)
END

Set types

A set type defines the range of values which is the
powerset’ of its base type. Thus each value of a set
type is a set whose members are unique values of the
base type. The largest and smallest values of integer
type permitted as members of a value of a set type are
127 and 0. The base type appearing in a set type must
not possess a value outside these limits.

<{set type> ::= SET OF <base type>
<base type> ::= <ordinal type>

Operators applicable to values of set types are specified
in 3.7.1.

Pointer types

A pointer type consists of a set of values each
identifying one variable of a given type. This set of
values is dynamic, in that the variables and the values
pointing to them may be created and destroyed during
the execution of the program. No operators are specified
regarding pointers except the tests for equality and

CSS/006 /RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato side

~ 7
pig, 800619 | 23

arstatter projekt

inequality.

Pointer values are created by the standard procedure
NEW. NEW(P) allocates a new variable V in the so-called
heap. The programmer is able to reallocate already

allocated variables in the heap. This is done through

use of the two prefix procedures (see 3.9) MARK and
RELEASE:

PROCEDURE MARK (VAR TOP: INTEGER);

Returns in TOP information to be used by RELEASE
in recollecting storage allocated by subsequent
calls of the standard procedure NEW.

PROCEDURE RELEASE (TOP: INTEGER);

Releases storage allocated by the standard procedure
NEW since the call of MARK which returned the value
of TOP.

The heap is thus (despite the name) manipulated as a

stack.

The pointer value NIL belongs to every pointer type;

it points to no elemént at all.

<pointer type> ::= 3 <type identifier> [
<pointer type identifier>

CSS/006/RFM/0001

' sign dato side - 4
CR80 PASCAL _PH®/gog619 . &%
REFERENCE MANUAL erstatter | Orojext
3.5 Declaration and denotation of wvariables

Variable declarations consist of a list of identifiers
denoting the new variables, followed by their type.

<variable declaration> ::=
<identifier list> : <type>

A variable declared in the program block (see 3.9) or in
a rOut;ne block (see 3.6.1) exists from the time the
block is activated, until its statement part is completed.
This implies that each activation of a block introduces

a distinct set of local variables.

Example:

A: ARRAY[0..63] OF LONG_INTEGER
C: COLOUR

M: ARRAY[1..10, 1..10] OF INTEGER
HUEL, HUE2: SET OF COLOUR

A denotation of a variable designates either an entire
variable, a component of a variable, or a variable

referenced by a pointer.

<variable> ::= <entire variable> |
<component variable> |

<referenced wvariable>

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL crstaner | Prow

sign dato siae

' PHP/800619

3%
Ui

I Bl

Entire variables

An entire variable is denoted by its identifier:

<entire wvariable> ::= <variable identifier>

Component variables

A component of a variable is denoted by the variable
followed by a selector specifying the component. The
form of the selector depends on the structuring type
of the variable.

<component variable)> ::= <indexed variable> |

<field designator>

Indexed wvariables

A component of an n-dimensional array variable is

denoted by the variable followed by n index expressions.

<indexed variable> ::= <array variable>
<1lb> <expression){,<expression>}<rb>
<array variable> ::= <variable>

An array variable shall be a variable of an array type.
Each index expression must be compatible (see 3.11) with
the corresponding index type specified in the definition
of the array type. A runtime error will occur if an index
expression is out of range.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign dato
_PHP/ 800619 - 26

| erstatter projext
|]

3.5.2.2

Example:

Suppose we have
TYPE NAME: ARRAY [1..7] OF CHAR;
VAR
A: NAME; .
B: ARRAY [BOOLEAN| OF NAME;
M: ARRAY [1..10, 1..10] OF INTEGER;

Then the following are indexed variables:

a [7]°
B [FALSE| [3]
M [5, 5]

The second indexed variable cannot be written B [FALSEr3 1=

Field designators

A component of a record variable is denoted by the
record variable followed by the field identifier of the

component.

<field designator> ::=
<record variable).<field identifier>

{record variable> ::= <variable>

Example:

If the variable REC is declared
REC: RECORD
MONTH, YEAR: INTEGER
END

CSS/006/RFM/0001

i sign dato side 2 -
CR80 PASCAL | PH@/ 800619, /
REFERENCE MA._NUAL ;erstaner projent
then
REC.YEAR
is a field designator.
3.5.3 Referenced variables
<referenced variable> ::= <pointer variable> 39
<pointer wvariable> ::= <variable>

L}

If P is a pointer variable which is bound to a type

T, then P denotes that variable and its pointer value,
whereas P3 denotes the variable of type T referenced
by P. A runtime error will occur if a pointer variable

has the value NIL when it is de~referenced.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign dato l'gide
P/ 800619 28

erstatter | projekt

Procedure and function declarations

Procedure declarations

A procedure declaration associates an identifier

with a part of a program so that it can be activated

by a procedure statement. If a procedure is referenced
textually before its procedure block is defined (i.e.
referenced within another preceding procedure or function
declar;tion), it must be introduced first by means of

its heading followed by the symbol FORWARD. The procedure
can then be completed later by repeating its heading
without the formal parameter list but followed by the
procedure block.

<procedure declaration> ::=
<procedure heading><procedure block> |
<procedure heading> FORWARD

The procedure heading specifies the identifier naming

the procedure and the formal parameters (if any).

<procedure heading> ::=
PROCEDURE <identifier> [<formal parameter list3] ;
<procedure block> ::= <rout££é block> o
<routine block> ::= [<definition part> |
-f2variable declaraEZon part>;L
—Qstatement part>
<definition part> ::=
<constant definitions> |
<type definitions> |

<definition part> <constant definitions>

<definition part> <type definitions>

CSS/006/RFM/0001

sign dato iy ~
CR80 PASCAL _pup/ 800619 &9
REFERENCE MANUAL . erstatter arojest

<const5§£ definitions> ::=

CONST <copnstant definition>;{ <constant definition;}

<type definitions> ::=
TYPE <type definition.s ;{ <type definition>; 1}

<variable declaration part> ::=
VAR <variable declaration>;{<variable declaration>;}

<statement part> ::= <compound statement>

(<formal parameter list> is defined in 3.6.3)

The algorithmic actions that will be executed upon
activation of the procedure by a procedure statement
are specified by the statement part of the procedure
block.

All identifiers introduced in the formal parameter

list and theé procedure block are local to the procedure
declaration which is called the scope of these identifiers.
They are not known outside their scope. In the case

of local wvariables, their values are unpredictable at

the beginning of the statement part.

The use of the procedure identifier in a procedure
statement within its declaration implies recursive

execution of the procedure.

CSS/006/RFM/0001

sign/dato side 3 O
PH@/800619
CRSO PASCAL eratatter projekt T

REFERENCE MANUAL

Example:

PROCEDURE MINMAX (A:LIST;VAR MIN,MAX:INTEGER);
VAR TEMP, I: INTEGER;

BEGIN
MIN := A [1] ;
MAX := MIN;
FOR I := 2 TO LIST MAX DO
BEGIN

TEMP := A [I] ;

IF TEMP > MAX THEN
MAX := TEMP

ELSE

IF TEMP < MIN THEN
MIN := TEMP

END
END

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign dato ae 3 ‘

_PH®/ 800619 .

! erstatter L projent
! i

Function declarations

A function declaration serves to define a part of

the program that computes a value of a simple type

or a pointer type. A function is activated by
evaluation of a function designator (see 3.7.2), that

is a constituent of an expression.

If a function is referenced textually before its
function block is defined, it must be introduced

first '‘by means of its heading followed by the symbol
FORWARD, and then completed later by repeating its
heading without the formal parameter list, and without
the result type, followed by the function block.

<function declaration)> ::=
<function heading><function block> |
<function heading> FORWARD

The function heading specifies the identifier naming
the function, the formal parameters (if any), and the
type of the function.

<function heading> ::= FUNCTION <identifier>
[<formal parameter list>J_: <result type>;
<ré§hlt type> ::= <simple f;;e identifier> |
<pointer type identifier>
<function block> ::= <routine block>

CSs/006 /RFM/0001

sign dato sige 3 2
CR80 PASCAL _PHO/R00619 D
REFERENCE MANUAL

erstatter Orojert

The algorithmic actions that will be executed upon
activation of the function by a function designator
are specified by the statement part of the function
block.

The function block should contain at least one
assignment statement that assigns a value to the
function identifier. The result of the function is the
last value assigned. If no assignment occurs the value

of the function is unpredictable.

Occurrence of the function identifier in a function
designator within its declaration implies recursive
execution of the function.

Examples:

FUNCTION GCD(M,N: INTEGER) :INTEGER;FORWARD

FUNCTION LONG_MOD (A,B:LONG_INTEGER) : LONG_INTEGER;
BEGIN

LONG_MOD := A-(A/B)*B
END

FUNCTION GCD" (M,N:INTEGER) : INTEGER";
BEGIN

IF N = 0 THEN

GCD := M

ELSE

GCD := GCD(N, M MOD N)
END

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PH@/800619 29

REFERENCE MANUAL

erstatter projekt

3.6.3

Parameters

In the following the term routine will be used for

a procedure or function.
There are two kinds of parameters:

Value parameters and variable parameters. A parameter
section without a preceding specifier is a list of va-
lue parameters; a parameter section with the specifier
VAR preceding is a list of variable parameters.

<formal parameter list> ::=
(<formal parameter section>

{ ; <formal parameter section })

<formal parameter section>
[VAR] <identifier list>
[UNIV] <type identifier>

A value parameter represents an expression that is eva-
luated when the routine is called. Its value cannot be
changed by the routine. In the case of a variable para-
meter, the actual parameter must be a variable, and the
corresponding formal parameter represents this actual
variable during the entire execution of the routine.
Variable parameters are called by reference, and the

address is evaluated when the routine is called.

In general formal and actual parameters must be com-

patible. However, there are 2 exceptions:

1) The word UNIV in front of the type identifier
in a formal parameter section suppresses
compatibility checking. An actual parameter
of

CSS/006/RFM/0001

CR80

REFERENCE MANUAL

PASCAL PH¢/8006?9 J

sign/dato side < 4

erstatter projekt

type Tl is compatible with a formal UNIV-parameter

of type T2 if both types are not of pointer type

(or do not contain a component of pointer type) and

if variables of both types take up the same number of
machine words. In addition, if the formal parameter is
of record or array type, the actual parameter must

be a variable. The type checking is only suppressed
in routine calls. Inside the given routine the formal
parameter is considered to be of type T2, and outside
the routine call the actual parameter is considered

to be of type Tl. The strict type checking in CR80
PASCAL is generally a great advantage to the programmer.
Therefore the UNIV-loophole should be used with care.
However, situations may occur, especially when CR80
PASCAL is being used as a systems programming language,
in which the UNIV-facility is applicable - or even
indispensable.

2)An actual parameter corresponding to a formal value

parameter of type ARRAY [1..N] OF CHAR may be a character .
string (i.e. of type ARRAY 1..M OF CHAR) of any length.
This relaxation makes it possible e.g. to write one

single procedure to print character strings of any
length.

CSsS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/dato side

PH@/800619 ;_5_

erstatter projekt

3.6. 4 Standard Procedures

The only standard procedure in CR80 PASCAL is the
procedure NEW. NEW(P) allocates a variable V with

unpredictable contents in the heap. A pointer to V

will be assigned to the pointer variable P. A runtime

error will occur if allocation is impossible.

3.6. 5 Standard Functions

ABS (X)

CHR (X)

LONG (X)

ORD (X)

PRED (X)

X must be an expression of integer or

long integer type. The result (of the

same type as X) is the absolute value of X.
Overflow may occur.

X must be an expression of integer type.
The result is the value of char type whose
ordinal number is equal to the expression
X.

X must an expression of integer type. The
result is the long integer with the aame

value as X.

X must be an expression of char type. The
integer type result is equal to the ordinal

value of the character.

X must be an expression of ordinal type. The
function will yield a value of the same type
as X whose ordinal number is one less than
that of the expression X. No check for

"underflow".

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/dato side 2
19 36

erstatter rprojekt

SHORT (X)

SUCC (X)

X must be an expression of long_integer
type. The result is the integer with the

same value as X. Overflow may occur.

X must be an expression of ordinal type.
The function will yield a value of the same
type as X whose ordinal number is one
greater than that of the expression X.

No check for "overflow".

CSS/006/RFM/0001

sign datw L Sde
CR80 PASCAL ' PHP/ 800619 37
REFERENCE MANUAL | orsaver fiprofext
3.7 Expressions

Expressions consist of operators and operands, i.e.
variables, constants and function designators. The
rules of composition specify operator precedences
according to four classes of operators. The operator
NOT has the highest precedence, followed by the multi-
lying operators, then the adding operators and signs,
and finally, with the lowest precedence, the relational
operators. Sequences of two or more operators of the same
precedence separated by operands are executed from left to
right. The rules of precedence are reflected by the fol-
lowing syntax: '
<factor> ::= <variable> |

<constant> |

NIL |

<function designator> |

<set> |

(<expression>)

NOT <factor>

<set> ::= <1lb> <expression list> <rb>
<expression list>;::-= [<expression>{ , <expression>}]
<term> ::= <factor>

<term> <multiplying operator> <factor>

<simple expression> ::= <term>

<simple expression> <adding operator> <term>
<sign> <term>

<expression> ::= <simple expression>

<simple expression> <relational operator> <simple expression>

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

" sign’dato ' sude 3 0O
. PH®/ 800619

i erstatter | projekt

Expressions which are members of a set must be compatible

with the base type of the set.
empty set.

Examples are as follows:

Factors: X
15
(X + Y + 2)
ORD ('0'")
[RED, GREEN |
NOT P

X*y
I/ (1-1)
(X <=Y) AND (Y < Z)

Simple expressions:

15

Expressions: X

(I <J) =

3.7.1 Operators

<multiplying operator> ::=

<adding operator>

<relational operator

[]or

(J < K)

(..) denote the

*| / \DIV{
MOD IAND

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

! sign dato

| PH@/

| side
800619:”

! erstatter

projekt

3.7.1.1

Aritmetic operators

The types of operands and results for dyadic and monadic

operations are shown in the following two tables:

Dyadic operations

operator | operation type of operands type of result
INTEGER INTEGER .
¥ Hedicn LONG_INTEGER LONG_INTEGER
= subtraction INTEGER INTEGER
LONG_INTEGER LONG_INTEGER
* miltiplica~ INTEGER INTEGER
tion LONG_INTEGER LONG_INTEGER
/ division LONG_INTEGER LONG_INTEGER
DIV division INTEGER INTEGER
MOD remainder _INTEGER INTEGER

Both / and DIV are division with truncation
(-3)
and 4L / (-2L) =

2

1,

pIv. 2 = -1,
-2L).

(-3) DIV (-2)

(e.g. 3 DIV

1, 3L / 2L = 1L,

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

! sign dato

_PHO/ 800619 40

| erstatter
{
!

i'uro:'e'nt

Monadic operations

f
operator operation type of operand type of result
INTEGER INTEGER
* ety LONG_INTEGER LONG_INTEGER
sign. INTEGER INTEGER
SIEESCOR LONG_INTEGER LONG_INTEGER
Note: The symbol - is also used as a set operator.

3.7.1.2 Boolean operators

The types of operands and results for boolean operations

are shown in the following table:

bperator operation type of operands(s) |type of results
OR logical or BOOLEAN BOOLEAN
AND logical and BOOLEAN BOOLEAN
NOT logical BOOLEAN BOOLEAN
negation
Note: The symbols AND and OR are also used as set

operators.

CSS/006 /RFM/0001

' sign daro

!‘.snde

CR80 PASCAL _PH®/ 800619 41
REFERENCE MANUAL | sroaner o
3.7.1.3 Set operators
The types of operands and results for set operations
are shown in the following table:
operator operation type @f operands- type of result
OR set union
- set difference Any set type T T
AND set intersec-
tion

3.7.1.4

Relational operators

The types of operands and results for relational ope-

rations are shown in the following table:

operator type of operands type of result
|
= <> any type BOOLEAN
< > any simple or string type BOOLEAN
<= >= any set, simple or string type BOOLEAN
IN left operand: any ordinal type T BOOLEAN
right operand: set of T

CSS/006/RFM/0001

‘ sign dato side

CR80 PASCAL PH®/ 800619 |

42

| wrstatter | projekt

REFERENCE MANUAL |

The operands of =, <>, <, >, <= and >= shall be of
compatible type.

The operators =, <>, <, > stand for "equal to", "not
equal to", "less than" and "greater than" respectively.
Except when applied to sets, the operators <= and >=
stand for "less than or equal to" and "greater than or

equal to" respectively.
If U and V are operands of set type, U <= V denotes
the inclusion of U in V, and U »>= V denotes the inclu-

sion of V in U.

Since the BOOLEAN type is an ordinal type with FALSE <

TRUE, then if P and Q are operands of BOOLEAN ‘type, P = Q

denotes their equivalence and P <= Q means P implies Q.

When the relational operators =, <>, £, >, <=, >= are
used to compare strings, they denote lexicographic or-

dering according to the ordering of the character set.

The operator IN yields the value TRUE if the value of
the operand of ordinal type is a member of the set,
otherwise it yields the value FALSE. In. particular,
if the ordinal value is outside the closed interval

from 0 to 127 a runtime error will occur.

CSS/006/RFM/0001

! sign’'dato

| side
CR80 PASCAL . PH@/ 800619 43
REFERENCE MANUAL | aerstatter projekt

3.7.2 Function designator

A function designator specifies the activation of a
function denoted by the function-identifier. If neces-
sary the function designator shall contain a list of
actual parameters that are bound to their corresponding
formal parameters defined in the function declaration.

The correspondence is established by the positions of the
parameters in the lists of actual and formal parameters
respectively, and the number of actual parameters must be
equal to the number of formal parameters. An actual para-
meter must be compatible with its corresponding formal pa-
rameter. The selection of an actual variable parameter
and the evaluation of an actual value parameter are ‘done

once before the function is activated.

<function designator> ::=

-

<function identifier> [<actual parameter list>]

<actual parameter list> ::=

(<actual parameter> { <actual parameter> })

' 4

<actual parameter> te= <expression> |
<variable>

Examples:

LONG_MOD (A, 10L)
GCD(147, K)
ORD (F"3)

CSS/006 /RFM/0001

! sign dato . I side 4
CR80 PASCAL ' PH@/800619 4
REFERENCE MANUAL | ersacer e
3.8 Statements

Statements denote algorithmic actions, and are said to
be executable.

<statement> ::= <simple statement> |

<structured statement>

3.8.1 Simple statements

A simple statement is a statement of which no part
constitutes another statement. The empty statement

consists of no symbols and denotes no action.

<simple statement> ::= <assignment statement> |
<procedure statement> |

<empty statement>

<empty statement>

3.8.1.1 Assignment statements

The assignment statement serves to replace the current
value of a variable or function identifier by a new

value specified as an expression.
<assignment statement> HEE
<variable> := <expression> |

<function identifier> := <expression>

The expression must be compatible with the variable or the func-~
tion identifier.

Examples:

= I) AND (C IN [RED, BLUE])

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato side

/800619 | 4§i_"

arstatter projekt

3.8.1.2

Procedure Statements

A procedure statement serves to execute the procedure
denoted by the procedure identifier. If necessary the
procedure statement shall contain a list of actual pa-
rameters that are bound to their corresponding formal
parameter defined in the procedure declaration. The
correspondence is established by the positions of the
parameters in the list of actual and formal parameters
respectively, and the number of actual parameters must

be equal to the number of formal parameters.

An actual parameter must be compatible with its cor-
responding formal parameter. The selection of an actual
variable parameter and the evaluation of an actual value

parameter ares done once before the procedure is activated.

<procedure statement> ::=

<procedure identifier> [<actual parameter list>T]

Examples:

MINMAX (LIST, MIN, MAX
NEW (P)

CSsS/006/RFM/0001

CR80 PASCAL PH®/800619 46
REFERENCE MANUAL

sign/dato side

erstatter projekt

3.8.2

3.8.2.1

Structured Statements

Structured statements are constructs composed of other

statements which have to be executed either in sequence
(compound statement), conditionally (conditional state-
ments), repeatedly (repetitive statements), or within a

special scope (with statements).

<structured statement> ::=
<compound statement> |
<conditional statement> |
<repetitive statement> |
<with statement>

Compound statements

The compound statement specifies that its component
statements are to be executed in the same sequence as
they are written. The symbols BEGIN and END act as
statement brackets, and the semicolon is used as a

statement separator.

CSS/006 /RFM/0001

' sign dato side

CR80 PASCAL ' PH@/800619 - 47

REFERENCE MANUAL ; sratatter jrereent

<compound statement> ::=
BEGIN <statement>{ ; <statement>} END

Example:

BEGIN Z := X; X :=Y END

3.8.2.2 cConditional statements

A conditional statement selects for execution a single one

of its component statements.
<conditional statement> ::=
'<if statement> |

<case statement>

3.8.2.2.1 If statements

<if statement> ::= IF <boolean expression>
THEN <statement> [<else-part>]

<else=-part> 1= ELSE <statement>

<booclean expression> ::= <expression>

If the boolean expression yields the value TRUE, the
statement following the THEN is executed. If the boolean
expression yields FALSE, the action will depend on the
existence of an else-part. If the else-part is present
the statement following the ELSE is executed, otherwise

an empty statement is executed.

The so-called "dangling else" ambiguity is resolved by
pairing an else-part with the nearest preceding unpaired
THEN. Thus the construct

CSS/006/RFM/0001

' sign aato i side

CR80 PASCAL . PH@/ 800619 48

REFERENCE MANUAL | eratarier | Proien

iIF -<expression 1> THEN
IF <expression 2> THEN <statement 1>
ELSE <statement 2>

is equivalent to
IF <expression 1> THEN
BEGIN
IF <expression 2> THEN <statement 1>
ELSE <statement 2>
END

Example:

IF I < JTHENI := J ELSE T

o
g
1

3.8.2.2.2 Case statements

The case statement consists of a case index and a list

of statements, each being preceded by one or more case
constants. All case constants shall be distinct and shall
be of the same ordinal type as the case index.

The case statement specifies execution of the statement
whose case constant 1is equal to the value of the case

index upon entry to the case statement.

<case statement> ::= CASE <case index> OF
<case list element> { ; <case list element>} END

<case list element> =

<case constant list> : <statement>

<case 1index> ::= <expression>

CSS/006 /RFM/0001

REFERENCE MANUAL

I' sign dato 4 | side
CR80 PASCAL . PHp/800619 . 49

| erstatter ! projekt
H

|

1

3.8.2.3

Note: It is a syntax error to place a semicolon imme-

diately before the last END of a case statement.

The ordinal value of a case constant must belong to the

closed interval from 0 to 127.

If the case index does not match a case constant, one of

two things will happen:

1) There is a case constant with a larger ordinal value than
the case index value, and there is also a case constant
with a smaller ordinal value than the case index value:

The empty statement will be executed.

2) The conditions in 1) are not fulfilled: A runtime

error will result.
Example:

CASE OPERATOR OF

PLUS: X := X + Y;
MINUS: X := X - Y;
TIMES: X := X *#* Y

END

Repetitive statements

Pepetitive statements specify that certain statements
are to be executed repeatedly. If the number of repe-
titions is known before the repetions are started, the
for statement is the appropriate construct to express
this situation; otherwise the while or repeat state-
ment should be used.

CSS/006 /RFM/0001

: sign aata { side -

CR80 PASCAL . PH@/ 800619 . 5U
REFERENCE MANUAL | srsarcr ook
<repetitive statement> ::= <repeat statement> l

<while statement> |
<for statement>

3.8.2.3.1 Repeat statements

<repeat statement> ::=

REPEAT < statement sequence> UNTIL <boolean expression>

<{statement sequence> ::=

<statement> {; <statement>}

The sequenbe‘of statements between the tokens REPEAT

and UNTIL is repeatedly executed until the boolean ex-
pression yields the value TRUE on completion of the
statement sequence. The statement sequence is executed

at least once, because the boolean expression is evaluated

after execution of the statement sequence.
Example:

REPEAT
K :
I :
J
UNTIL J = O

[}
N 49 H

CSS/006/RFM/0001

: sign dato . side 5]
CR80 PASCAL ' PH@/ 800619

| erstacter | projekt

REFERENCE MANUAL ! |

3.8.2.3.2 While statements

<while statements ::=
WHILE <boolean expression> DO <statement>

The statement is repeatedly executed until the ex-
pression becomes FALSE. If its value is FALSE at the
beginning, the statement is not executed at all.
Example:
WHILE A [1] <> X DO
BEGIN

END

3.8.2.3.3 For statements

The for statement indicates that a statement is to be
repeatedly executed while a progression of values is
assigned to a variable which is called the control

variable of the for statement.

<for statement> 1=
FOR <control variable> := <initial value>
TO <final value> DO <statement> |

FOR <control variable> := <initial value>

DOWNTO <final value> DO <statement>

<control wvariable> ::= <entire variable>

<initial wvalue> o <expression>

<final wvalue> 32 <expression>

CSS/006/RFM/0001

CR80 PASCAL | PHQ/ 800619

! sign dato | side

REFERENCE MANUAL i arstatter ' projent

The control variable shall be of an ordinal type, and
the initial value and final value shall be of a type com-

patible with this type. The final value is only cal-
culated once.

The programmer is not allowed to change the value of
the control variable within the statement of the for
statement.

The for statement

FORV := E1 TO E2 DO BODY

where E1 and E2 are general expressions, is equivalent
to

BEGIN
TEMP1 : E1;
TEMP2 := E2
IF TEMP1 <= TEMP2 THEN
BEGIN
V := TEMPI1;
BODY; .
WHILE V <> TEMP2 DO
BEGIN
v
BODY
EN
END
END

~e

SUCC (V) ;

and the for statement
FOR V := E1 DOWNTO E2 DO BODY

is equivalent to

CSS/006/RFM/0001

i sign dato side

CR80 PASCAL PH@/ 800619 : 53

REFERENCE MANUAL ! arstatter ! projekt

BEGIN
TEMP1 := E1;
TEMP2 := E2;
IF TEMP1 >= TEMP2 THEN
BEGIN
vV := TEMP1;
BODY;
WHILE V <> TEMP2 DO
BEGIN
v :
BODY
END
END

PRED (V) ;

END

where TEMP1 and TEMP2 are auxiliary variables that

do not occur elsewhere in the program.

Examples of for statements are:

FORI := 2 TO 63 DO
IF A [I] > MAX THEN MAX := A [II
FORI := 1 TO N DO
FORJ := 1 TO N DO
BEGIN
X :=0;
FORK := 1 TO N DO
X := X + M [I, K1* M2 [K, J]
M[I, J7] := X

CSS/006 /RFM/0001

! sign dato ’ side

CR80 PASCAL | PH@/ 800619 :

54

REFERENCE MANUAL | erstaner | Proieke

3.8.2.4 With statements

<with statement> ::=
WITH <record variable list> DO <statement>

<record variable list> ::=

<record variable> { , <record variable>}

Within the component statement of the with statement,
the components (fields) of the record variable(s) spe-
cified by the record variable list can be denoted by
their field identifier only, i.e. without preceding
them with the denotation of the entire record variable.
The scope containing the field identifiers of the spe-
cified record variable(s) is effectively opened, so
that the field identifiers may occur as variable iden-
tifiers.

The statement

WITH V1, V2, .., VN DO S

is equivalent to

WITH V1 DO
WITH V2 DO, ..., VN DO S

CSS/006/RFM/0001

! sign dato | side

CR80 PASCAL | PH@/ 800619 | 55
REFERENCE MANUAL | erstaner i projeks
| L
Example:

The statement

IF DATE.MONTH = 12 THEN
BEGIN
DATE.MONTH := 1;
DATE.YEAR := DATE.YEAR + 1
END
ELSE
DATE.MONTH := DATE.MONTH + 1

is equjivalent to the with statement

WITH DATE DO
IF MONTH = 12 THEN

BEGIN
MONTH := 1;
YEAR := YEAR + 1
END
ELSE

MONTH := MONTH + 1

CSS/006/RFM/0001

: sign caro i side 7
CR80 PASCAL | PHO/ ana619 56

| erstatzer

REFERENCE MANUAL . | BE2ieSt

3.9 Programs and prefix

A CR80 PASCAL program consists of a prefix followed by
a program block.

_<program > ::= <prefix> <program block>

A CR80 PASCAL program interacts with its runtime envi-
ronment by means of procedures and functions implemented
within that environment. These interface procedures and
functions together with their parameter types are declared
in the prefix. The prefix enables the compiler to make
complete type checking of calls to the runtime environ-
ment.

The compiler has virtually no inherent knowledge about the
runtime milieu for which it generates code. Instead the
programmer supplies the neccessary information by giving

a prefix tailored to that milieu. Needless to say that
the programmer should be on the alert that he is supplying
the right prefix.

<prefix> ::= [<definition part>]
[<prefix routines> 7}

<program heading>

<prefix routines> ::= <procedure heading> |
<function heading> |
<prefix routines> <procedure heading>
<prefix routines> <function heading>

CSS/006 /RFM/0001

' sign gata i side

CR80 PASCAL . PHQ/ 800619 57
REFERENCE MANUAL |l erstatter ' projent

<PrOgram heading> s e =
PROGRAM <identifier> <formal parameter list>;

<program block> ::=
[Kdefinition part>)
i?variable declarézion part>}
Broutine declaratiOnsil

<compound statement> g

<routine declarations> ::=
<procedure declaration> |
<function declaration> |
< routine declarations> <procedure declaration> |

<routine declarations> <function declaration>

The variables declared in the program block exist through-
out the execution of the program. They are called global
variables. Their values are unpredictable at the begin-
ning of the compound statement.

The formal parameter list in the program heading can be
used by a loader process to pass information to the pro-
gram. The program may pass information back to the loa-
der process, if the parameter list contains a wvariable
parameter.

Examples of CR80 PASCAL programs:

PROGRAM P;
BEGIN END.

CSS/006/RFM/0001

sign/dato side
CR80 PASCAL PH@ /800619 58
; erstatter projekt
REFERENCE MANUAL

CONST
TABMAX = 15;
TYPE
INDEX = 1..TABMAX/
BUFPTR = ZBUFFER/
BUFFER = ARRAY [INDEX] OF INTEGER,

FUNCTION TAND(M1, M2: INTEGER) : INTEGER,
PROGRAM PIP(VAR PTR: BUFPTR),
TYPE
REC = RECORD
A, B: CHAR:

C: BUFFER
END»
CONST.
PAP = 4711
VAR

I: INTEGER?
POP, PUP: REC/
PROCEDURE INIT;

BEGIN
WITH POP DO
BEGIN'
A 2= °A°;
8 := “C°;
C := PTRA?
I := CL71;
END;
PUP := POP;
END’
BEGIN
INIT,

IF PTRAC1] = PAP THEN
I := IAND(POP.CC2], #00FF);
PTRALTABMAX] := I;-
END.

n

»

L

Lo}

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

| sign.dato I side

| PHO/ 800612 59

I aerstatter | projekt

3.10

Scope rules

A scope is a region of program text in which an
identifier is used with a definite meaning. More
precisely a scope is (a part of) the program, (a part
of) the prefix, (a part of) the program block, (a part
of) a procedure or function, or a record variable or

a with-statement.

The general rule is that an identifier must be introduced
before, it is used. However, in order to make list
processing feasible, it is allowed in pointer type
definitions to refer to a type that has not yet been
defined.

When a scope is defined within another scope we have

an outer scope and an inner scope that are nested. An
identifier can only be introduced with one meaning

in a scope. It can, however, be introduced with another
meaning in an inner scope. In that case the inner
meaning applies in the inner scope, and the outer meaning

applies in the outer scope.

Components of a record variable can be referenced through
field designators or with-statements. The record variable
within which components are selected must be known in

the scope in which the selection is indicated.

The hierarchy of scopes can be illustrated like this:

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PHO/800619 | 60
REFERENCE MANUAL arstatter projext

Universal level
Prefix level
Program block level

Routine level
Nested with statements
within routines

Nested with statements in the

compound statement of the pro-

gram block.

“A&t the universal level the following standard iden%ifiers
exist: FALSE, TRUE, INTEGER, LONG_INTEGER, BOOLEAN,

CHAR, NIL, NEW, ABS, CHR, ORD, LONG, SHORT, PRED, and
SUCC.

The predefined meaning of these standard identifiers may

be overruled by declarations and/or definitions in inner
scopes.

The following program tries to illustrate how the
interpretation of an identifier may change within a
program:

CSs/006/RFM/0001

sign/dato s,ide
CR80 PASCAL PH®/800619 | 61
REFERENCE MANUAL sretatter wame

“ILLUSTRATION OF SCOPE RULES"

CONST CHAR = 13;
“IT IS NOW IMPOSSIBLE TO DECLARE VARIABLES OF STANDARD TYPE CHAR"
TYPE PTR = 3REC;
“THE TYPE REC HAS NOT BEEN DEFINED YET"
REC = RECORD

NIL : INTEGER;

A: BOOLEAN:

CHAR: LONG_INTEGER

END;

PROCEDURE PROC(I, J: INTEGER)?
"“ASSUME THIS IS THE ONLY PREFIX ROUTINE"

PROGRAM MAINC(PARM: INTEGER)’
TYPE SUBT = 1..CHAR; "CORRESPONDS TO 1..13"
CONST CHAR = °C”;
TYPE SUB2 = “A°..CHAR; "°A",.“C“"
P = BREC; "POINTER TO REC IN PREFIX"
REC = RECORD
A: LONG_INTEGER?
CHAR: PTR
END;
Q = QREC; "POINTER TO REC IMMEDIATELY ABOVE"
VAR P_PTR: Ps -
Q_PTR: Q;
SUB1_VAR: SUB1;
SUB2_VAR: SuB2;
4: INTEGER?

PROCEOURE PROC1(P: INTEGER)’
VAR
A: RECS
BEGIN:
A.A 3 4711L5
NEW(A.CHAR);
WITH A.CHARA DO
CHAR := 4712L;
WITH A DO
CHAR == NIL;
PRQOC(1, 0); "CALL OF PREFIX ROUTINE"

ENDZ

PROCEDURE PROC(I, J: INTEGER);

BEGIN
"IN THIS PROCEDURE THE IDENTIFIER A HAS 3 MEANINGS"
A := 17

WITH Q_PTR® 00
BEGIN
A = 1L2
WITH P_PTR3 DO
A 2= TRUE;
END/
ENDZ

PROCEOURE PROC2;
3EGIN

PROC(1, 0); "CALL OF THE ABOVE DEFINED PROCEDURE"
END.

3dEGIN -
SUBT_VAR := 1
SUB2_VAR := *
NEW(P_PTR);
NEWC(Q_PTR);
Q_PTRI.CHARDI.CHAR := LONGC(ORDCCHAR)):
"IN THE STATEMENT ABOVE CHAR HAS 3 MEANINGS"
P_PTRA.NIL := 17;
P_PTR := NIL’

END.

w2

L

.

CsSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dato side
1

PH@/800619

ersiatter projekt

o

3.11

Type Compatibility

Two types are compatible if

or

or

or

or

1)

2)

3)

4)

5)

they are defined by the same type
definition

both are subranges of a single type

they are string types of the same length
they are set types whose members are of
the same ordinal type

they are set types, one (or both) of
which is the null set type.

1 [—

Css/006/RFM/0001

sign/dato snaie

CR80 PASCAL PHP/800619

REFERENCE MANUAL erstattar projekt

3.12 Syntax graphs

identifier

letter

g

f

unsigned integer

digit

hexa digit

i

unsigned long_ integer

. unsigned integer _._‘ :)__..

constant
®™ constant identifier =
— ™| unsigned integer =
™ unsign;ad long_integer . =

string element

CSsS/006/RFM/0001

sign/dato

side

CR80 PASCAL PHP/800619 64
REFERENCE MANUAL orstetter projekt
simple type
#1 type identifier —
identifier -@—-
——® constant —.O—U constant
type
simple type =
' -< :)‘ 1 type identifier P .
O
o simple type type |-=
SET OF type o
' field list —{ END j\

CSsS/006/RFM/0001

sign/dato aside _
CR80 PASCAL PH@/800619 65
REFERENCE MANUAL eratattar projekt
field list
identifier ‘O—‘ type ‘...

.——(CASE identifier ..O_.r type identifier OF
L— s constant ’ ° field list .())
\

variable

. g T
r_- variable identifier vt

[}

® field identifier —— [expression —@_.

O

)
S

field identifier

-

Ca

Il

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL PHP/800619 66

REFERENCE MANUAL erstatter projekt

factor
—® constant 1 -
&~ variable -
— function identifier expression

9,

r

() ™! expression _—.Q -
factor =

*"@_T expression L—@ o

——

7

1

SETITITE

term

CSsS/006/RFM/0001

sign/dato

gide

CR80 PASCAL PHP/800619 67
REFERENCE MANUAL erstatter projekt
simple éxpression
term >

—O
—(—

expression

T—- simple expression

224

parameter list

identi-
fier

type identifier

N

L

i

]

Ll

i

CSsS/006/RFM/0001

aign/dato side
CR80 PASCAL PHP/800619 68
REFERENCE MANUAL erstatter projakt
statement

|
™ variable expressioT

function identifier

- procedure identifier '() : expression G i |

ey B o ..

4’@" expression '@' statementJ'(ELSE)‘- statement [~

CASE expression"@ | | constant statementj@_—

WHILE [expression '. ™ statement >
@ statement UNTIL expression
FOR variable identifier “'@"‘ expression

'l expression statement |f————=8»
DOWNTO

— ¥, e
WITH variable Q statement

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/dato side

PH@/800619 69

erstatter projekt

routine block

CONST

VAR

identifier

(:) constant

-

identifier

oIz o

identifieq (:) type

BEGIN

statement

—— T ——

-
o ———

— — ———— — ——

CSsS/006/RFM/0001

sign/dato side
CR80 PASCAL PH®/800619 70U
REFERENCE MANUAL prataitar projekt
program block
L]
A
CCONST identifiex —'@——-' constant —'O'_'
' A
TYPE identifier ——@—’ type —‘O
identifier l.() : type
r——_@_ routine block ()
identifier ™1 parameter list
; ¢ F parameter L type g
identifier [Aot PO‘ {dentisiie
statement

7
_

1
y—

1
1

4

1
]

"y LR |
't

|

|

1

I}

1

CSS/006 /RFM/0001

sign/dato side
CR80 PASCAL PH@/800619 71
REFERENCE MANUAL erstatter projekt
prefix
———] CONST r— identifier ——@—— constant :
identifier —-@—-— type
L

O¢

_.'(PROCEDURE)"""‘ identifier[™| parameter list s
FUNCTION)"‘ identifiexr[™] parameter list‘FC} type identifier [
_"(PROGRAM)" identified ™[parameter list _"(>_"
program
— . SEE—— ————
prefix program block

r

CSS/006/RFM/0001

! sign dato side 7 2
CR80 PASCAL PH®/800619 !

| erstatte © | projek
REFERENCE MANUAL | erstatter projekt

4. Differences between CR80 PASCAL and JW PASCAL

The term JW PASCAL will be used for the language
defined in Jensen, Kathleen & Niklaus Wirth: PASCAL
User Manual and Report. Second edition. Springer-Verlag.
1978.

Letters and special symbols:

The underscore character __ is a letter in CR80 PASCAL.

The character 3 is used in CR80 PASCAL instead of the
character Tin JW PASCAL.

In CR80 PASCAL the brackets [andj can also be written
(. and .) respectively.

Word symbols:

The word symbols of JW PASCAL FILE, GOTO, LABEL, PACKED
and NIL are not word symbols in CR80 PASCAL.

The word symbols of CR80 PASCAL FORWARD and UNIV are
not word symbols of JW PASCAL.

Prefix:
The notion of a prefix is not known in JW PASCAL.
Comments:

CR80 PASCAL: Uses the character " to begin and to end

a comment.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

' sign dato ' side 7 3

PHA/800619

| erstatter © projekt
| |

JW PASCAL: Uses { t& begin a comment and } to énd a
comment.

Labels and label definition part:

There are no labels and no label definition part in
CR80 PASCAL.

Constant and type definitions:

Constant and type definitions can be intermixed and
appear any number of times in CR80 PASCAL, whereas
JW PASCAL requires the constant definitions (if any)
to appear before the type definitions (if any).

Constants in constant definitions must be unsigned
in CR80 PASCAL.

It is not allowed in CR80 PASCAL to define an enumerated
type within a record type definition.

CR80 PASCAL requires a variant record to contain a

tag field, and the ordinal value of the case labels in
the variant part must be contained in the closed interval
from 0 to 15.

A record type definition in CR80 PASCAL cannot have a
semicolon immediately before the final END of the
definition.

CSS/006/RFM/0001

! sign dato , side
| PH@/800619" |

| erstatter ! Proent
! 1

~l
D

CR80 PASCAL
REFERENCE MANUAL

Standard types:

The type REAL of JW PASCAL is replaced by LONG _INTEGER
in CR80 PASCAL. The type FILE is not an inherent type
in CR80 PASCAL.

Procedures and functions:

Procedures and functions cannot be nested in CR80
PASCAL (i.e. it is not possible to declare a routine

within another routine).

Assignment to formal value parameters is not allowed
in CR80 PASCAL.

The UNIV-facility does not exist in JW PASCAL.

Procedures and functions cannot be used as formal
parameters in CR80 PASCAL.

Standard procedures and functions:

The only standard procedure in CR80 PASCAL is NEW.
The standard functions are LONG, SHORT, ORD, CHR,
SUCC and PRED.

Statements:

GOTO-statements are not part of the CR80 PASCAL language.

CSS/006/RFM/0001

T sign dato side 7 5
CR80 PASCAL PH®/ 800619 ,

| erstatter projekt

REFERENCE MANUAL |

A case statement in CR80 PASCAL cannot have a
semicolon immediately before the final END of
the statement.

Sets and set operators:

The ..-notation used in JW PASCAL is not allowed
in CR80 PASCAL (e.g’. the set ['A', 'B', 'c'] cannot
be written ['A'..'C']).

Set union is indicated by OR in CR80 PASCAL and +
in JW PASCAL.

Set intersection is indicated by AND in CR80 PASCAL
in contrast to * in JW PASCAL.

Comparison operators:

Records: Comparison for equality and inequality between
records are allowed in CR80 PASCAL, but not in
JW PASCAL.

Arrays: It is possible to compare arrays of other
types than CHAR for equality and inequality in

CR80 PASCAL.

Integer constants:

The hexadecimal notation possible in CR80 PASCAL is
not allowed in JW PASCAL.

CSS/006/RFM/0001

CR80 PASCAL

' sign dato | siae
_PHB/B00619 /6

REFERENCE MANUAL | ereeser e

Character strings:

JW PASCAL does not relax the type checking for value
parameters of the type ARRAY [1..N] OF CHAR.

String elements of the form (:<number>:)”are not
allowed in JW PASCAL.

Program heading:

The parameter list of a CR80 PASCAL program heading
can be empty, whereas JW PASCAL requires at least one
formal parameter to be specified.

Scope Rules:

In JW PASCAL, the scope of an identifier is directly
related to the block structure. A definition/decla-
ration of an identifier prohibits that identifier from
indicating another object throughout the entire pro- .
cedure.

CR80 PASCAL uses a subtle different rule, called 'one
pass scope', in which a definition of an identifier
prohibits only subsequent uses of the identifier with-

in the block form indicating an object outside the
block.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page 7 -

PH@/800619 /

repl project

Data Representation in CR80 PASCAL

This chapter provides information which is useful

when calculating the size of the needed runtime stack.
It is also a prerequisite for using the UNIV-facility
(see 3.6.3) and for inserting assembly code into a

CR80 PASCAL program by the %CODE compile time directive
(see chapter 8).

In the following a word is a CR80 machine word of 16 bits,
and a byte is the 8 rightmost or leftmost bits of a
word. All addresses shown are word addresses.

INTEGER Integer variables are represented

in 2's complement. They are
contained in 1 word. The range is
-32768 to 32767.

BOOLEAN A boolean variable is contained in

1 word. The value of the word is
either 0 corresponding to FALSE, or
1 corresponding to TRUE.

CHAR : Contained in 1 word. The rightmost
byte holds the ASCII value of the
character, and the leftmost byte is
0.

CSS/006/RFM/0001

sign/date page 7 8
CR80 PASCAL PH@/800619
REFERENCE MANUAL ree! Shani
POINTER : Contained in 1 word. The special

value NIL is represented as 0.
Otherwise it contains a process base
relative address of the first word
(i.e. the word with the lowest machine
word address) of the object pointed
at.

ENUMERATED TYPE

A variable of enumerated type is
represented in 1 word. In a
declaration T = (C0, C1, C2,...., Cn)
will CO correspond to 0, C1 to 1, ...
and Cn to n.

LONG_INTEGER

(13

Long_integer variables are contained
in 2 words. The representation is
2's complement, and the range is
~2147483648L to 2147483647L.

15 0

addr. Least significant

addr. +1 Most significant

SET

A set variable is always layed out
as 8 words:

addr. 15 0
addr.+1 | 31 16
addr.+7 (127 112

Member no. n:is included in the set

if and only if bit no. n is 1.

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

PH®/800619 |

sign/date IDMJL' -—
/9

repi project

ARRAY

RECORD

Arrays are layed out in lexicographical

order. Example:

A: ARRAY ['A'.. 'B'; 1.. 2]

OF INTEGER;
addr. ala', 1]
addr.+1 aAl'a', 2]
addr.+2 Al'B', 1]
addr.+3 | A['B', 2]

Space is always allocated for the

largest possible variant. The first

field in the record gets the

lowest

address, and the last field gets the

highest address.

Example:
R: RECORD
I, J: INTEGER;
CASE B: BOOLEAN OF
FALSE: (C: CHAR);
TRUE: (L: LONG_INTEGER)
END '

addr.

addr.+1

addr.+2

addr.+3

addr.+4

I
J

B

],
J

CR80 PASCAL
REFERENCE MANUAL

CSS/006 /RFM/0001

| sign dato | side 4
'PH(/800619 80

T
| projekt

erstatter i
|

6.1

The runtime system: An inner look

The scope of this section is to provide the necessary
information to enable a programmer with previous

experience in CR80 assembly language programming to

insert native CR80 machine code into a CR80 PASCAL program
by utilizing the %CODE compile time directive. Assembly
code can be inserted to make a monitor function not suppor-
ted by the prefix accessible, or to minimize the CPU-time
used at certain bottle-necks in a program.

Although insertion of assembly code should not be the
province of the ordinary programmer, he might skim this
section to gain further insight into the CR80 PASCAL
system.

The runtime stack

When a CR80 PASCAL program is executing, it uses a stack
and a heap. The stack contains variables, temporary
results, and parametefs and return information for
procedures and functions. The heap contains variables
allocated by the standard procedure NEW.

The following figure illustrates the layout of the data
part of an executing CR80 PASCAL program. A procedure
has just been called by another procedure, which was called

in the program block:

CSS/006/RFM/0001

sign.dato “| side 8 1

[PHp /800619 ! '

CR80 PASCAL
REFERENCE MANUATL

erstatter | projekt

PROCESS:

. PROCESS HEADER

BASE — SYSTEM DATA

SAVE AREA FOR
RUNTIME SYSTEM

HEAP
<— HEAPTOP
FREE SPACE
s
LOCAL VARIABLES
«— B
DYNAMIC LINK
PARAMETERS
TEMPORARIES
TsTack LOCAL VARIABLES l
DYNAMIC LINK HIGH
PARAMETERS ADDRESSES
TEMPORARIES
GLOBAL VARIABLES
—g

PROGRAM LINK

PARAM RECORD

LARGE CONSTANTS

AREA USED BY
THE I/O-SYSTEM

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date |qage
PH@/800619 8 2

repi project

Register Allocation in the Runtime System

The PASCAL runtime system maintains 4 registers:

G: The global base register. R3
is used.

B: The local base register. R6
is used.

Q: The program counter in

the virtual code. R4
is used.

S: The stack top pointer. R5
is used.

A programmer inserting assembly code into a CR80 PASCAL
program can use registers RO, R1l, R2, R4, and R7 as
work registers. He can use R4 because this register

is only used to contain the return link when a jump has
been performed to the runtime system.

Registers R3, R5, and R6 shall after the execution of
the inserted code have the same contents as before the
code was executed.

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date

PH@®/800619

page 8 3

repl

project

6.3 The Virtual Code

The program part of a CR80 PASCAL program has this

format:

31
32

255
256
257

The execution of a
monitor call which
addresses of those

which emulates the

PROGRAM HEADER

JUMPTABLE

MON PASCALINIT

VIRTUAL CODE

virtual instructions.

CRB0 PASCAL program starts with a
initializes the jumptable with the
subroutines in the runtime system
The virtual

code consists of JMPI S4 P8 instructions, possibly

followed by parameters.

Thus although the code is said

to be virtual, it is basically CR80 machine code,

and this fact makes insertion of "normal" CR80 machine

code feasible.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page
PH®/800619 84

repi project

Addressing and Layout of Variables

All addresses of variables or parameters are normal
CR80 process base relative word addresses. The address
of a variable or parameter that takes up more than

1 word is the address of the first word, i.e. the word
with the lowest address. See also chapter 5 of this
document.

Global Variables

Global variables are allocated in the order in which
their declarations are met. They are addressed relative
to the global base G (R3) with negative displacements
such that the absolute value of the displacement is
least for the first declared variable.

Example:

PROGRAM P;

VAR
A: ARRAY [1..3] OF INTEGER;
L: LONG_INTEGER;
C, D: CHAR;

BEGIN

END.

CSs/006/RFM/0001

sign/date ppge 8

CR80 PASCAL PH®/800619

(&a

REFERENCE MANUAL rep| projact

When the program is executing, we will have this

situation:

-7 D

-6 C

-5 L.LEAST

-4 L.MOST

-3 All

-2 Al2

-1 Al3)

+0 <~ G(R3)

+1 PROGRAM
. LINK

If the inserted code among other things had to move
the variable C to RO, the code might include:

MOV R3 R7
ADDC =6 R7
MOV 0. X7 RO

CSS/006/RFM/0001

sign/date page
CR80 PASCAL PH@/800619 86

REFERENCE MANUAL

repl project

Local Variables

Local variables are dynamically allocated at procedure

or function entry and deallocated at exit. They are

laid out in the order in which their declarations are
met, and are addressed relative to the local base B (R6)
with negative displacements, such that the absolute value
of the displacement is least for the first declared

variable.

Example:

PROCEDURE PIP;
VAR
I, J: INTEGER;
REC: RECORD

Fl: CHAR;
CASE LARGE: BOOLEAN OF
TRUE: (L: LONG_INTEGER) ;
FALSE: (I: INTEGER)
END;
A, D: ARRAY [1..2, BOOLEAN] OF 1..3;
BEGIN
"PROCESSING"

END;

CSs/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date

PH@/800619

page

8

rep! project

Within the procedure block we will have this picture:

-14 | b [1, FALSE]
-13 | D [1, TRUE]
-12 | D |2, FALSE]
-11 | D [2, TRUE]
-10 | A [1, FALSE]
-9 | A [1, TRUE]
-8 | A [2, FALSE]
-7 | A [2, TRUE]
-6 | F1

-5 | LARGE

-4 |11

=3 L

-2 | J

-1 |1

+0 < B (R6)
+1 | DYNAMIC LINK

If the inserted code should include a move of the 2

first elements of A to the 2 first elements of D we

might have
MOV R6 R7; B
ADDC -14 R7; -14 => REF D;
MOVL 4.%7 RO1; Afl, *]
MOVL ROl 0.X7; => D [1, *];

CSs/006/RFM/0001

sign/date page 8 e}
CR80 PASCAL PH@/800619 O
re project
REFERENCE MANUAL . '
6.4.3 Parameter Passing
Suppose the procedure PAP(parm1, parm,, ..., parmn)

arm. .
P 1l

has just been called.

When the procedure is entered,

the stack will contain at the point just before the

first statement in the procedure block:

+0
+1
+2
+3
+4

HEAP

LOCAL

- VARIABLES

DYNAMIC

LINK

pn
Pp-

e o=

P1

+S (R5)

<B (R6).

The symbol P either represents the value of the actual

parameter parm, or the process base relative address of

Each p; can take up 1, 2 or 8 words.

CSS/006/RFM/0001

sign’/date page

CR80 PASCAL PH@/800619 89

e project
REFERENCE MANUAL > '

When a function is called, e.g. by A := PEP

(parml, Parm,, .., parmn), the stack will contain
at the point just before the first statement in the
function block:

HEAP
<«S (R5)
LOCAL
-1 VARIABLES
+0 <B (R6)
+1 DYNAMIC
+2
+3 LINK
+4
Pn
pn--l
Py
ROOM FOR
THE RESULT
OF THE
FUNCTION

Again each p; can be in 1, 2 or 8 words. The value of
a function is either of simple type or pointer type.
Thus the space for the result is either 1 or 2 words
(2 for LONG INTEGER type) .

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page ;
PHE/800619 90

repl project

A parameter can be declared as a variable or value
parameter. A variable parameter is prefixed by the
word VAR and represents a variable to which the
routine may assign a value. An actual variable
parameter will have its process base relative address
pushed on the stack before the routine is entered.
Hence, Py being an address.

A value parameter is not prefixed by the word VAR, and
it is not supposed to have its value changed in the
routine. Actual value parameters of simple type,
LONG_INTEGER type, pointer type and set type will have
their value pushed on the stack before the routine is

entered. Hence, 12 being a value.

Actual value parameters of array type and record type
will always have their process base relative address

pushed on the stack.
Example:

PROCEDURE P (

I: INTEGER;

VAR J: INTEGER;
LONG1: LONG_INTEGER;
VAR LONG2: LONG_INTEGER;
TXT1: IDENTIFIER;
VAR TXT2: IDENTIFIER) ;

where TYPE IDENTIFIER = ARRAY [1..10] OF CHAR;

CSS/006/RFM/0001

marrams . Y

CR80 PASCAL PH®/800619

repl roject
REFERENCE MANUAL P e

The call P(I1, I2, L1, L2, Tl, T2) will result in the
following stack just before the first statement in the
procedure block:

HEAP

LOCAL ® 8 (R5)
-1 VARIABLES
+0 <« B (R6)
+1 DYNAMIC
+2
+3 LINK
+4

+5 | address of T2

+6 | address of T1

+7 | address of L2.

+8 | least sign. part of Ll
+9 | most sign. part of L1
+10 | address of I2
+11 | value of 11
+12

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page
PH®/800619 9 2

repi project

Work Areas

When assembly code is inserted, a need for work areas
(save areas) may arise. The programmer can either
declare variables in the CR80 PASCAL program to be
used as register save areas (see 6.6), or he can use
the space between the stacktop and the heaptop. To
get the size of the free area between the stack and
the heap, it is necessary to use the merge file

@ **GENS .D*PASASM defining the address of the memory
location where the current value of the heaptop is
stored. The label is HEAPTOP, and the following
sequence can be used to get the size of the free area
into Rl:

MOV HEAPTOP RO ;
MOV R5 Rl ;
SUB RO Rl ;

It should be noted that HEAPTOP contains the address of
the first word after the heap, while R5 contains the
address of the top stack element.

The merge file @##GENS.D*PASASM also defines a
consecutive register save area of 8 words, which can
be freely used by the programmer. The layout of the
save area is:

REGSO : 0 ;
REGS1: 0

-

REGS7 0

-

.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date 'pnge
PH@®/800619 9 3

repi project

Inserting Assembly Code

As an example it will be shown how a monitor function
can be made accessible in a CR80 PASCAL program.

We will implement:

PROCEDURE READ INTEGER (
S: STREAM;
VAR INT: INTEGER;
VAR CC: COMPLETION_ CODE) ;

"THIS PROCEDURE IS USED FOR READING INTEGERS.

IT CALLS THE MONITOR FUNCTION STREAM, INELEMENT
(REF. 3) AND SKIPS ANYTHING ENCOUNTERED WHICH

IS NOT AN INTEGER. HOWEVER, IF A NUMBER OQUTSIDE
THE INTERVAL -32768..32767 IS READ, THE PROCEDURE
WILL RETURN WITH CC INDICATING 'ELEMENT OVERFLOW'"

CSsS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date

PH®/800619

page 94_

repi

projact

Assuming that the binary assembly code is contained
in the file @:**READ_INT, the input to the CR80 PASCAL

compiler will have this outline:

"PREFIX"
"CONST AND TYPE DECLARATIONS"
"VARIABLE DECLARATIONS"
"PROCEDURE DECLARATIONS"
PROCEDURE READ INTEGER (

S: STREAM;
VAR INT: INTEGER;
VAR CC: COMPLETION_CODE) ;
VAR SAVE_R6:. INTEGER;
BEGIN
%CODE = 3**READ INT ..
END; i
"MORE PROCEDURE DECLARATIONS"
BEGIN
"PROCESSING"
END.

At the point where the code is inserted, the picture is:

+0
+1
+2
+3
+4
+5
+6
+7

SAVE_R6

DYNAMIC

LINK

REF. CC
REF. INT
VAL. S

+<R5
+R6

CSs/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date i pnage -~
PH@/800619 99
repl project

LIET

The input source file to be merged and then assembled
out into @##READ_ INT will contain:

BEGIM MODULE

HDOATAE =
+PROGRAN
MOLIST

FRLEZES
FALZES

TyesSEHI. DeAMOZISL S

LIZT

UZE BR=E
ZAYERS =
REFCIC:
FEFIMT:=
EWALLE:
IIZE PROG

REP:

IDEMTI:
ZPECIA:

MUMEER:
IERROR:

P ZEE?
EMD

mas
MO
Mg
Mo

Mas
Moy
Mo
I
AMF
Ame
JHP

man
AME

RInRY
Moy
Mo
Mas
Mav

ns
ZAVERG+SS
REFCC+15
REFIMT+1%

FVALUE. ¥

L&

U=ET

D e R O |

REFIMT.®S

=TRERAM.

)
=

e

2

R

RO
R

TAVERG . KT

REFLCC,

e
e

RT

TO DEFIME =TRERM AMD

SRAYERS.

IMELEMENT

IERROR
HUMEER
IDENTI
ZFECIHA

FEF

AN

RO S R TR |

‘EE AN ‘A5 ‘S8 'Es 'S8 SN ‘SS 'SE ‘A8 AN 'AN ‘AL ‘AN 'AB "Sd ‘A ‘S8 ‘AL ‘FA ‘A8 ‘as ‘s

"IMPLEMENTATION OF THE FROCEDURE RERD_IMTESER"

IMELEMEMTS

ZANE CE S
ZAVE 50 s
ZAVE_RGS
ETRERM:

= BYTE_COUMTS
FEF.IMT =3 RDDRS
ITHELEMENT ¢
ERROR: 5070
HUMEER: =070
IDEMTIFIER:OTO
ZPECIAL: =070
IDEMTI:
SZFECIAR: -
FEEZTORE ©=0
=0TO REPS
MUMEBER :
IERROR:
REZTORE ¢=2
REZTORE ¥52
FEZTORE CB»
FHEF.CCH
COMPLCODE

T

IERRORS
NUMEERSS
IDEMNTIS
ZFECIR» S

e

b=l
I
N
hl 1
N
.
-

CSS/006/RFM/0001

CR80 PASCAL

sign/date . page

PHP/800619 96

REFERENCE MANUAL rept project

The AMOS standard prefix

This chapter describes the AMOS standard prefix. The pre-
fix, which is listed in appendix A, contains a

number of type and constant definitions and a list of 133
assembly coded procedures and functions. These prefix
routines are included in the PASCAL runtime system and
are directly available to the programmer.

Most of the data types are introduced to mirror data
structures in the AMOS kernel, the I/O system or the file
system. These data types should be regarded as a sort of
intrinsic data types. E.g. it should be ignored that a
variable of type FILE actually is nothing but an integer

variable.

A few of the data types in the prefix may need a little

explanation:

1) TYPE ELEMENT =
ARRAY [1..1] OF INTEGER;

This type is e.g. used in the prefix routine OUTREC:

PROCEDURE OUTREC (
S: STREAM;
FIRST ELEMENT: UNIV ELEMENT;
VAR RECORD_LENGTH. IN_BYTES: INTEGER;
VAR CC: COMPLETION_ CODE) ;

The ideal would have been a procedure with the fol-

lowing outline:

PROCEDURE OUTREC (
S: STREAM;
REC: ANY TYPE;
VAR CC: COMPLETION_CODE) ;

CSS/006/RFM/ 0001

CR80 PASCAL

REFERENCE MANUAL

sign/date i page

PH@®/800619

97

rapi project

2)

This could have been achieved by making OUTREC

a standard procedure. Now it is a prefix procedure,
and the compiler does all its type checking. The
way OUTREC is declared makes it possible to output
most variables and subparts of structured variables.

A variable declared as
‘A: ARRAY [4711..5001] OF CHAR
can be output like this:

BYTELENGTH: = (5001=4711+1) *2;
OUTREC (STRM, A [4711], BYTELENGTH, CC);

We simply use the fact that the address of any
variable is the address of its first "element".

The type ELEMENT is introduced because OUTREC needs
the address of the first word to be transferred.

If the second formal parameter of OUTREC had been
declared FIRST_ELEMENT: UNIV INTEGER, then OUTREC

would have received the value of the first word.

PACKED_NAME = ARRAY [0..7] OF INTEGER;
PACKED NAME2 = ARRAY [0..1] OF INTEGER;
PACKED NAME3 = ARRAY [o .2] OF INTEGER;
FILE_NAME = PACKED_NAME;

In CR80 PASCAL arrays of CHAR are not packed as in
the kernel or file system. This makes it a little

inconvenient e.g. to build a file name. Example:

CSS/006/RFM/0001

sign/gate page

CR80 PASCAL PH@/800619 98
REFERENCE MANUAL rep oo act

Lookup the file named PASCALCOMPILER in the directory
contained in the file variable DIR:

BUF = 'PASCALCOMPILER(:0:) (:0:)';
PACK (BUF[1], NAME[0], 16);
LOOKUP (DIR, NAME, F, CC);

where

BUF: ARRAY [1..16] OF CHAR;
NAME: FILE NAME;

and PACK and LOOKUP are prefix routines.

The 4 "packed" types above only contains packed
characters when the programmer does the packing, or
when he assigns/reads something which is already
packed. Because an INTEGER variable and a variable
of type CHAR both take up 1 word, PACKED NAME
could also have been an ARRAY [0..7] OF CHAR.
However, then the compiler would not have detected
an erroneous call such as LOOKUP (DIR, 'OBJECT',

F, CC), because of the relaxed type checking in
procedure and function calls (see 3.6.3).

3) BUFFER _LOCATION = (LOCAL, EXTERNAL);
BLEPTR = @BLE;
BLE =
RECORD
LINK: BLEPTR;
CASE XL: BUFFER LOCATION OF °
LOCAL:)
(BUFADDR, BUFSIZE_IN BYTES: INTEGER) ;
EXTERNAL :) ‘
(MEMORY : MEMORY PARM)
END;

CSs/006/RFM/0001

>

-in dato] U 9
CR80 PASCAL - _ _PHP/800619 9 2
REFERENCE MANUAL

erstatier projek:

These types are used when direct I/0 (as opposed
to stream I/0) is performed. Their use should be
deducible from the following program example:

CSS/006/RFM/0001

eign/dato

CR80 PASCAL PH®/800619

side

100

arstatter

REFERENCE MANUAL

projekt

PROCEDURE DIRECT_IO(F: FILE),
“THIS PROCEDURE READS 1016 WORDS FROM F."
"THE FIRST 16 ARE DELIVERED IN HERDER,"

"AND THE LAST 1000 ARE READ INTO AN EXTERNAL BUFFER."

VAR
HEADER: ARRAYL1..16] OF INTEGERS
BLE_POINTER: BLEPTR;

MEM: MEMORY_PARM;
CC: COMPLETION_CODE;
TOP, ALLOC: INTEGER;
WA: WORD_ADDRESS;
FA: FILE_ADDRESS;.
0K: BOOLEAN;

8EGIN

GET_BUFFER(1000, MEM, WA, ALLOC, OK); "PREFIX ROUTINE"
IF NOT OK THEN ERROR; "“ERROR DECLARED ELSEWHERE"

MARK(TOP), "PREFIX ROUTINE"
NEW(BLE _POINTER)?

WITH BLE_POINTER® DO
BEGIN
XL = LOCAL/

BUFADOR := REL_ADDR(HEADER[1]), "PREFIX ROUTINE"

BUFSIZE_IN_BYTES := 16*2;
NEW(LINK)?
WITH LINK3 DO
BEGIN
XL := EXTERNAL:
MEMORY 2= MEM;-
LINK := NIL, "LAST IN CHAIN"

END;
END;
WITH FA DO
BEGIN
FIRST_BYTE := OL;
BYTE_COUNT := (16L + 1000L)*2L;

END,

READ_BYTES(F, FA, BLE_POINTER,: CC)~;
IF (CC <> IO_OK) OR

(FALBYTE_COUNT <> FA.TRANSFERRED_BYTES)
"DO THE INTENDED PROCESSING”
RELEASE_BUFFER(MEM, 0OK)/
IF NOT OK THMEN ERROR;
RELEASE(TOP),

END "OIRECT_IO"?

THEN ERROR’

CSS/006 /RFM/0001

. sign dato siae] O]
CR80 PASCAL PHP/800619 L

REFERENCE MANUAL arstatter nrojent

4) PARAMTYPE =

RECORD
"CURRENT FILE SYSTEM NAME"
FSN: FILE SYSTEM NAME;
"CURRENT VOLUME NAME"
VOL: VOLUME NAME;
"CURRENT PARAMETER FILE"
PFILE: FILE;
"CURRENT DIRECTORY FILE"
DFILE: FILE;
"CURRENT INPUT FILE"
IFILE: FILE;
"CURRENT OUTPUT FILE"
OFILE: FILE;
"PARENT OF PROCESS"
PARENT: PROCESS_ NAME;
PTR: POINTER

END; o

PASCAL utility programs (i.e. programs not com-
piled with the SNONUTILITY toggle on) will have
their PARAM-record initialized by the runtime
system when they are loaded. For nonutility

programs the contents of this record are undefined.

More information can be found in ref. 6 under the
START command. The use of the PTR-field is explai-
ned under the description of the prefix routine
RUN.

CSS/006/RFM/0007

sign‘/date j page

CR80 PASCAL PH@/800619 | 102

REFERENCE MANUAL repi project

The rest of this chapter gives a brief description of
each prefix procedure and function. The routines are de-

scribed in order of appearance in the prefix.
Two things should be noted:

1) The outcome of an I/O-procedure is only as indica-
ted when the returned completion code equals IO_OK.

2) Actual variable parameters will most likely have
their old contents destroyed, even though the rou-
tine call was not successful. For example, if
INBYTE is called with a non-connected stream, the
CC parameter will indicate this fact, but the second
parameter will nevertheless receive some unpredict-

able garbage "byte".

CSS/006/RFM/0001

sign/dace |' page 4
CR80 PASCAL PH@®/800619 | 102
REFERENCE MANUAL repi project

FUNCTION IAND (
MASK1, MASK2 : UNIV INTEGER): INTEGER;

The two masks are and'ed logically.

FUNCTION IOR
MASK1, MASK2 : UNIV INTEGER): INTEGER;

The two masks are or'ed logically.

FUNCTION XOR (
MASK1, . MASK2 : UNIV INTEGER): INTEGER;

The two masks are exclusive or'ed logically.

FUNCTION INV(
MASK: UNIV INTEGER): INTEGER;

The result is the mask inverted (i.e. 1 bits are
changed to 0 bits and 0 bits are changed to 1 bits).

FUNCTION LEFTSHIFT(
BITS: UNIV INTEGER; SHIFTS: INTEGER): INTEGER;

The result 1is BITS shifted logically to the left as
indicated by SHIFTS. If SHIFTS >= 16 the result is
0. If SHIFTS <= 0 no shifts are performed.

FUNCTION RIGHTSHIFT(
BITS: UNIV INTEGER; SHIFTS: INTEGER): INTEGER;

The result is BITS shifted logically to the right as
indicated by SHIFTS. If SHIFTS >= 16 the result is 0.
If SHIFTS <= 0 no shifts are performed.

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date

PH®/800619

!' page

104

repl

projact

FUNCTION ADD(
A, B: INTEGER): INTEGER;

The two integers A and B are added. There is no test
for overflow. If A and B were added by using the normal

plus operator +, overflow would have caused a runtime

error.

FUNCTION SUBSTRACT (
A, B: INTEGER): INTEGER;

The integer B is subtracted from A. There is no

test for overflow. If B was subtracted from A by using

the normal minus operator -, overflow would have caused

a runtime error.

FUNCTION GETBITS (

BITS: UNIV INTEGER; LEFTMOST: BITPOSITION;

FIELDLENGTH: BITFIELDLENGTH) :

Let M = MINIMUM (LEFTMOST + 1,

INTEGER;

FIELDLENGTH) .

GETBITS

extracts a bit field from BITS of length M. The bit

numbers selected are LEFTMOST,

LEFTMOST - 1,

s 0o g

LEFTMOST + 1 - M. The result is the extracted bit field
right justified possibly (if M < 16) extended to the
left with 0-bits. If FIELDLENGTH = 0 the result is 0.
If LEFTMOST or FIELDLENGTH are not within range

(0 < = LEFTMOST < = 15 ;

FIELDLENGTH <

a runtime error (range error) will occur.

PROCEDURE PUTBITS (

FROM: UNIV INTEGER; VAR TO_

UNIV INTEGER;

= 16)

LEFTTO: BITPOSITION; FIELDLENGTH: BITFIELDLENGTH) ;

CSsS/006/RFM/0001

sign/date] page

CR80 PASCAL PH@/800619 105

REFERENCE MANUAL =y T

Let M = MINIMUM (LEFTTO + 1, FIELDLENGTH). PUTBITS
extracts a bit field of M bits from the parameter FROM
consisting of the least significant M bits and inserts
this bit field from bit number LEFFTO to bit number
LEFTTO - M + 1 in the second parameter TO_. The other
bits of TO_ are left unchanged. If FIELDLENGTH = O,
TO_ is not changed. If LEFTTO or FIELDLENGTH are not
within range (0 < = LEFFTO < = 15; 0 < = FIELDLENGTH

< = 16) a runtime error (range error) will occur.

FUNCTION TESTBIT(
BITS: UNIV INTEGER; BITNUMBER: BITPOSITION): BOOLEAN;

If bit number BITNUMBER is set (i.e. equal to 1) in
BITS, the result is TRUE. Otherwise it is FALSE.

A runtime error (range error) will occur, if BITNUMBER
is not wifhin range (0 < = BITNUMBER < = 15).

PROCEDURE SETBIT(_
VAR BITS: UNIV INTEGER; BITNUMBER: BITPOSITION) ;

The procedure sets to 1 the bit in BITS with number
BITNUMBER. All other bits in the parameter BITS are
left unchanged. A runtime error will be produced if
BITNUMBER is not within range (0 < = BITNUMBER < = 15).

PROCEDURE CLEARBIT (
VAR BITS: UNIV INTEGER; BITNUMBER: BITPOSITON) ;

The procedure clears to 0 the bit in BITS with number
BITNUMBER. All other bits in the parameter BITS are
left unchanged. A runtime error will be produced if
BITNUMBER is not within range (0 < = BITNUMBER < = 15).

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PH@/800619 106

REFERENCE MANUAL repl project

PROCEDURE SENSE_IO(
DEVICE: INTEGER; VAR STATUS: UNIV INTEGER) ;

The 6 least significant bits of DEVICE are the address
of an I/O-device, while the remaining 10 bits may be
used as a command with a device dependent meaning. The
contents of the device control register of the selected
device are delivered in the parameter STATUS.

PROCEDURE READ IO(
DEVICE: INTEGER; VAR DATA: UNIV INTEGER);

The 6 least significant bits of DEVICE are the address
of an I/O-device, while the remaining 10 bits may be
used as a command with a device dependent meaning. The
procedure reads a data word from the selected device
and delivers it in the parameter DATA.

PROCEDURE CONTROL_IO({
DEVICE: INTEGER; STATUS: UNIV INTEGER) ;

The 6 least significant bits of DEVICE are the address
of an I/O-device, while the remaining 10 bits may be
used as a command with a device dependent meaning. The
control word contained in the parameter STATUS is
transferred to the selected device.

PROCEDURE WRITE_IO(
DEVICE: INTEGER; DATA: UNIV INTEGER);

The 6 least significant bits of DEVICE are the address
of an I/O-device, while the remaining 10 bits may be
used as a command with a device dependent meaning. The
procedure transfers the word contained in the second

parameter DATA to the selected device.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date [page
PH®/800619 1 0;7

repi project

PROCEDURE RESERVE_INTERRUPT(
DEVPR: INTEGER; VAR INTRPT: INTEGER);

The monitor function RESERVEINTERRUPT is called.

The parafieter DEVPR shall contain the concatenation of
a 6 bit I/0-device address (in bits 2 to 7) and a
priority (in bits 0 to 1). If DEVPR is valid and not
reserved by another process, an identification of

the interrupt will be returned in the parameter INTRPT.
This identification musf be used for all other inter-

rupt functions. If the reservation was not successful,

INTRPT will contain -1.

PROCEDURE RELEASE_INTERRUPT(
INTRPT: INTEGER);

The monitor function RELEASEINTERRUPT is called.
The interrupt is released, if INTRPT is an identifica-
tion of an interrupt reserved by the calling process.

Otherwise nothing happens.

PROCEDURE CLEAR_INTERRUPT(
INTRPT: INTEGER);

The monitor function CLEARINTERRUPT is called.
The interrupt counter is cleared to zero, if INTRPT
contains an identification of an interrupt reserved

by the calling process.

PROCEDURE WAIT_INTERRUPT(
DELAY, INTRPT: INTEGER; VAR TIMED_OUT: BOOLEAN) ;

First the monitor function SETINTERRUPT is called,
followed by a call of the monitor function WAITEVENT
waiting for interrupts and time outs. The procedure
returns when the interrupt identified by INTRPT (and
previously reserved by the process) is or already has
been recedived, or when DELAY*100 ms have elapsed,
whatever happens first. At return the parameter

TIMED OUT indicates whether the process was timed out
or the interrupt was received.

CSS/006/RFM/0001

iign/date page] O 8
CR80 PASCAL PH@/800619
REFERENCE MANUAL repi project

PROCEDURE SET_INTERRUPT (
INTRPT: INTEGER);

The monitor function SETINTERRUPT is called.

If INTRPT is an identification of an interrupt reserved
by the calling process, this interrupt will be the one
waited for when the prefix procedure WAIT EVENT is
called with an event mask specifying that interrrupts
are awaited. ‘

PROCEDURE SET_CYCLE (
CYCLE: INTEGER):;

The monitor function SETCYCLE is called.

PROCEDURE SEND_MESSAGE (
VAR RECEIVER: PROCESS_NAME;
MSG: UNIV MESSAGE_BUFFER; VAR EVENT: INTEGER);

The monitor function SENDMESSAGE is called. The
contents of the parameter MSG are copied to a message
buffer, the contents of which are delivered to the
Process identified by RECEIVER, when this process calls
the prefix procedure WAIT EVENT or WAIT MESSAGE.

An identification of\the:message is delivered in the
last parameter EVENT. Note: RECEIVER. NAME must contain
the name of the process in packed form (first character
in byte 0, second character in byte 1, c«.). The first
parameter RECEIVER is a variable parameter, because
RECEIVER. NAME IDENT might be updated to allow faster
lookup next time this process is referenced.

PROCEDURE SEND_SYSTEM_MESSAGE(
VAR RECEIVER: PROCESS_NAME;
MSG: UNIV MESSAGE_BUFFER; VAR EVENT: INTEGER) ;

The monitor function SENDSYSTEMMESSAGE is called.
Analoguos to SEND_MESSAGE above.

1

e 109

project

CSS/006/RFM/000
sign/date

pPH@/800619

—

C
R80 pascan

RENC

PROCEDURE SEND_ANSWER(
ANS: UNIV MESSAGE_BUFFER EVENT: INTEGER):

The monitor function SENDANSWER is called. The contents

of ANS are copied to @ nessage puffer: the cO
of which are sent to the originator of the event

ntents

contained in EVENT.

PROCEDURE SEND_SYSTEM AN SWER(
ANS: UNIV MESSAGE_BUFFER/ EVENT: INTEGER);

The monitor function SENDSYSTEMANSWER is called. The

contents of ANS are copied to a message puffer:. the

contents of which are sent to the originator of the

event contained in EVENT.

PROCEDURE SEND_SIGNAL(
VAR RECEIVER: PROCESS_NAME);

The monitor function SENDSIGNAL is called. The signal
ECEIVER is set,

poolean in the process identified by R

and if the recelving process wWas awaiting the signal:

it is 1inked to its CPU ready queue.

PROCEDURE INDENTIFY_SENDER(
EVENT: INTEGER; VAR pROC: INTEGER; VAR OK: BOOLEAN) i

The monitor function IDENTIFYSENDER ig called. The PCB

index of the process originating the EVENT 18 delivere

in PROC. If the EVENT was received by the calling

process, OK is set toO TRUE, otherwise to FALSE. (The

process name of the originator can pe found PY callin

the prefix procedure GET_?ROCﬂNAME).

CR80 PASCaAT,

™ 110

PROC_NAME. NAME, Otherwisge 2 dummy name equal to
'2222727: is returnegq,

PROCEDURE WAIT MESSaGg(
PELAY: INTEGEg, VAR MSG: uynry MESSAGE_BUFFgg,
VAR EVENT, INTEGER; vag EVTTYPE, EVENT_rvpE),

The last Parameter EVTTYPE tells which event actually
happeneg first,

PROCEDURE WAIT_SYSTEM MESSAGE(

—

DELAY. INTEGER; VAR MsG. UNIV MESSAGE_BUFFER;
VAR EVENT; INTEGER; VAR EVTTYPE, EVENT_TYPE);

CSS/006/RFM/0001

sign/date page
111

CR80 PASCAL PH@/800619 !

REFERENCE MANUAL Fee! RESISES

PROCEDURE WAIT_ANSWER(
DELAY: INTEGER; EVENT; INTEGER;
VAR ANS: UNIV MESSAGE_BUFFER; VAR EVITYPE: EVENT TYPE);

The monitor function AWTANSWER is called. The procedure
returns when the specific answer corresponding to

EVENT is received, or when DELAY*100 ms have elapsed,
whatever happens first. If an answer is received, it
will be delivered in ANS and EVITYPE will be equal to
ANSWER. Otherwise EVTTYPE will be equal to TIME_OUT.

PROCEDURE WAIT_SYSTEM_ANSWER(
DEALY: INTEGER; EVENT: INTEGER;
VAR ANS: UNIV MESSAGE BUFFER; VAR EVTTYPE: EVENT_TYPE) ;

The monitor function AWTSYSTEMANSWER is called. The
procedure is analogous to WAIT_ ANSWER above.

PROCEDURE WAIT EVENT (
DELAY: INTEGER; EVTMSK: EVENT_MASK;
VAR MSG: UNIV MESSAGE BUFFER;
VAR EVENT: INTEGER; VAR EVTTYPE: EVENT TYPE);

The monitor function WAITEVENT is called. EVTMSK is a
bit mask specifying those eventtypes to be awaited.

If none of the eventtypes specified have yet occured,
the process is suspended until an occurence. It returns
with the most urgent event. The resulting eventtype is
delivered in EVTTYPE, and if the eventtype is of message
or answer type an identification of the message/answer
is delivered in EVENT, and the contents of the message/
answer are delivered in MSG. The value of DELAY is

only used if time outs are awaited.

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date

PH®/800619

o112

repl

project

PROCEDURE SAVE_EVENT (

EVENT: INTEGER) ;

The monitor function SAVEEVENT is called. The message
or answer (ordinary, system, or path) corresponding to
EVENT is gqgueued such that it later on can be retrieved
by calling the prefix procedure RESTORE_EVENTS followed
by a call of WAIT_EVENT, WAIT MESSAGE, or

WAIT SYSTEM MESSAGE.

PROCEDURE RESTORE_EVENTS (

EVTTYPE: EVENT TYPE);

The monitor function RECOVEREVENTS is called. If the
eventtype specified is of message or answer type
(ordinary, system, or path) the corresponding list of
saved events is transferred to the front of the corres-

ponding event queue.

PROCEDURE TERMINATE (

CC: COMPLETION_CODE) ;

The monitor function TERMINATE is called. The value of
CC should be between 0 and 255, because the upper byte
is reserved. The process is suspended with SSTATE =
STOPPED, and the value of CC (with bit 15 set by the
kernel) and the program source line number of the
procedure call are stored in SERROR in the PCB. If the
program was compiled with the %NONUMBER toggle on, the
line number stored is that of the line containing the
first BEGIN of the program or routine block, in which
TERMINATE is called. A parent signal is sent to the
parent of the calling process. If CC <> 0 a line number
trace is written on current output. The trace makes

it possible to follow on a procedure/function basis
the execution which lead to this severe situation

requiring a forced abend.

CSS/006/RFM/0001

sign/date

page
CR80 PASCAL PHQ®/800619 113

REFERENCE MANUAL repi praject

PROCEDURE READ TIME (
VAR TIME: DATE_TIME_GROUP) ;

The monitor function READRTC is called. The clock
and date are returned. TIME.YEAR will be the actual
year (e.g. 1980).

PROCEDURE START PROCESS (
PROC: INTEGER; VAR ILLEGAL: BOOLEAN) ;

The monitor function STARTPROCESS is called. If PROC
is the PCB index of a child process of the calling
process and its state is stopped (or to be stopped),
ILLEGAL is set to FALSE, and the state of the child
is set to preemted. Otherwise ILLEGAL is set to TRUE.

PROCEDURE STOP_PROCESS (
PROC: INTEGER; VAR ILLEGAL: BOOLEAN) ;

The monitor function STOPPROCESS is called. If PROC
is the PCB index of a child process of the calling
process, ILLEGAL is set to FALSE and the child is
stopped. Otherwise ILLEGAL is set to TRUE.

PROCEDURE PROCESS_STATUS (
PROC: INTEGER; VAR ILLEGAL: BOOLEAN;
VAR PROC_ATTR: PROCESS_ATTRIBUTES);

The monitor function GETATTRIBUTES is called.
If PROC is a PCB index, ILLEGAL is set to FALSE
and the attributes are delivered in PROC_ATTR.
Otherwise ILLEGAL is set to TRUE.

CSS/006/RFM/0001

sign/darte page 1] 4
CR80 PASCAL PH@®/800619

REFERENCE MANUAL fepl project

PROCEDURE REMOVE_PROCESS (
PROC: INTEGER; VAR ILLEGAL: BOOLEAN);

The monitor function REMOVEPROCESS is called. If
PROC is the PCB index of a child of the calling
process, ILLEGAL is set to FALSE and the process

is removed. Otherwise ILLEGAL is set to TRUE.

(As can be seen,the memory parameter of the removed
process is not returned as in the assembly language
version) .

PROCEDURE GET_NEXT PROCESS (
VAR PROC: INTEGER; VAR NONE: BOOLEAN) ;

The monitor function GETCHILD is called. Successive
calls of GET_NEXT_ PROCESS will step through the cir-
cular list of child processes, delivering their PCB
index in PROC. If the list is empty, NONE is set to
TRUE, otherwise to FALSE.

PROCEDURE ADOPT_PROCESS (
PROC: INTEGER; VAR ILLEGAL: BOOLEAN);

The monitor function ADOPTPROCESS is called.

If PROC is the PCB index of a child of the calling
process, and if the calling process has a parent,

the parenthood of the child is transferred to the
grandparent of the child and ILLEGAL is set to FALSE.
Otherwise ILLEGAL is set to TRUE.

PROCEDURE CREATE PROCESS (
VAR CB: CREATION_ BLOCK; VAR RESULT: INTEGER) ;

The monitor function CREATEPROCESS is called. The
completion code (see ref. 2) is delivered in RESULT.

CSS/006/RFM/0001

sign/date page 1] 5
CR80 PASCAL PH@/800619
REFERENCE MANUAL repi project

PROCEDURE GET_CPU_PARAMETER(
CPU: INTEGER; PAR: CPUPARAMETER;
PRIORITY: INTEGER; VAR VAL: INTEGER; VAR OK: BOOLEAN) ;

The monitor function GETCPUPARAMETER 1is called

(see ref 2).

PROCEDURE SET_CPU_PARAMETER(
CPU: INTEGER; PAR: CPUPARAMETER;
PRIORITY: INTEGER; VAL: INTEGER; VAR OK: BOOLEAN) ;

The monitor function SETCPUPARAMETER is called

(see ref 2).

PROCEDURE LOOKUP_CPU (
VAR CPU_NAME: PROCESS_NAME; VAR FOUND: BOOLEAN) ;

The monitor function LOOKUPCPU 1is called. The CPU

jdentified by CPU_NAME.NAME is looked up. If found
the CPUCB index is returned in CPU_NAME.NAME_IDENT,
and FOUND is set to TRUE. Otherwise FOUND is set.to

FALSE.

PROCEDURE GET_BUFFER(
WORD_CLAIM: INTEGER; VAR MEMORY: MEMORY_ PARM;
VAR ADDR: WORD_ADDRESS;
VAR WORDS_ALLOCATED: INTEGER; VAR OK: BOOLEAN) ;

The monitor function GETBUF 1is called. The memory
manager is asked to allocate a contiguous memory area
at least containing WORD_CLAIM words. If the alloca-
tion is successful, OK is set to TRUE and 1) an identi-
fication of the area is returned in MEMORY, 2) the start
address of the area is returned in ADDR such that
ADDR.MEMORY SECTION may be used directly as a PSW
value, i.e. the page number is contained in bits 2

and 3, and 3) the number of words actually allocated
"is returned in WORDS_ ALLOCATED. Otherwise OK is set
to FALSE.

CSS/006/RFM/0001

CR80 PASCAL

sign/date

PH@/800619 |

page

116

REFERENCE MANUAL rel 'Wm“'

PROCEDURE GET_BUFFER ADDR (

MEMORY:MEMORY_PARM; VAR ADDR: WORD_ADDRESS;
VAR SIZE_IN_ WORDS: INTEGER; VAR OK: BOOLEAN) ;

The monitor funciton ADRBUF is called. If MEMORY
identifies a memory area belonging to the calling
process, the start address of this area is delivered
in ADDR (such that ADDR.MEMORY_ SECTION may be used
as a PSW), the size of the area is delivered in

SIZE_IN_WORDS, and OK is set to TRUE. Otherwise OK
is set to FALSE.

PROCEDURE RELEASE_BUFFER (

MEMORY: MEMORY_ PARM; VAR OK: BOOLEAN) ;

The monitor function RELBUF is called. If the memory
area identified by MEMORY belongs to the calling pro-
cess, the area is returned to the vacant area pool,
and OK is set to TRUE. Otherwise OK is set to FALSE.

PROCEDURE CREATE (

FSN: FILE_SYSTEM_NAME; ATTRIBUTES: FILE ATTRIBUTES;
VAR F: FILE; VAR CC: COMPLETION_CODE);

The monitor function I0, CREATE is called. A new file
is created on the file system FSN with the attributes

specified. The file is returned through F as an "open"
file.

PROCEDURE DISMANTLE (

F: FILE; VAR CC: COMPLETION_CODE);

The monitor function IO, DISMANTLE is called. The
file F is dismantled.

CSS/006/RFM/0001

sign/date

. page
CR80 PASCAL PH@/800619 117

REFERENCE MANUAL repi project

PROCEDURE PROTECT (
F: FILE; ACCESS: ACCESS_DESCRIPTION;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, PROTECT is called (see ref 3).

PROCEDURE RESET (
F: FILE; VAR CC: COMPLETION_CODE) ;

The monitor function IO, RESET is called. All storage
allocated to the file is deallocated.

PROCEDURE OFFER (
F: FILE; USER: USERID; VAR CC: COMPLETION_CODE) ;

The monitor function IO, OFFER is called. The file F
is made available for ACCEPTing (see below) to the USER.

PROCEDURE ACCEPT (
FSN: FILE SYSTEM NAME; ,
VAR F: FILE; VAR CC: COMPLETION_CODE) ;

The monitor function IO, ACCEPT is called. A file,
which was previously OFFERed by another user, from the
specified file system is delivered in F as an "open"
file.

PROCEDURE GET_FILE_INFORMATION (
F: FILE; INF_TYPE: FILE INFORMATION_TYPE;
VAR INF: UNIV LONG_INTEGER; VAR CC: COMPLETION_CODE) ;

The monitor function IO, GETFILEINFORMATION is called.
The information about the file F specified by INF_TYPE
is returned in INF. If the requested information only

occupies one word, it is returned in the least signi-

ficant word of INF, and the most significant word

is set to 0.

CSS/006/RFM/0001

CR80 PASCAL

sign/date page

PH®/800619 11 8

REFERENCE MANUAL repl project

PROCEDURE ASSIGN (

FSN: FILE SYSTEM NAME;
DESCRIPTION: DEVICE_ DESCRIPTION;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, ASSIGN is called. The device
identified by DESCRIPTION is included in the set of

dévices which can be wéé&:ﬁy the file system, and the
device can now be referrred to by DESCRIPTION. DEVICE.

PROCEDURE DEASSIGN (

FSN: FILE SYSTEM_NAME;
DEVICE: DEVICE NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, DEASSIGN is called.

The DEVICE is deassigned from the specified file
system.

PROCEDURE MOUNT (

FSN: FILE SYSTEM NAME; DEVICE: DEVICE_NAME;
VOLUME: VOLUME NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, MOUNT is called. The volume

VOLUME is connected to the device DEVICE on the speci-
fied file system.

PROCEDURE DISMOUNT (

FSN: FILE_SYSTEM NAME;
VOLUME: VOLUME NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, DISMOUNT is called. The
volume VOLUME is dismounted from the file system.

CSsS/006/RFM/0001

sign‘date page

CR80 PASCAL PH@®/800619 119

REFERENCE MANUAL rep! project

PROCEDURE FORMAT (
FSN: FILE_SYSTEM_NAME; DEVICE: DEVICE NAME;
VAR SECTORADDR: SECTOR_ADDRESS;
BLE_POINTER:BLEPTR; VAR CC: COMPLETION_ CODE) ;

The monitor function IO, FORMAT is called. The
volume on the specified DEVICE is formatted. The
BLE POINTER is a dummy parameter. The sectors to be
formatted are selected by SECTORADDR. At return the
number of sector actually formatted is delivered in
SECTORADDR. TRANSFERRED SECTORS.

PROCEDURE GET_ROOT (
FSN: FILE_SYSTEM_NAME; VOLUME: VOLUME NAME;
VAR ROOT_DIRECTORY: FILE; VAR CC: COMPLETION_ CODE) ;

The monitor function IO, GETROOT is called. The root
directory of the indicated volume is returned in
ROOT_DIRECTORY as an "open" file (e.g. ready to
ENTER a file into). .

PROCEDURE USER_ON (
FSN: FILE SYSTEM NAME;
USER: USERID; VAR CC: COMPLETION_ CODE) ;

The monitor function IO, USERON is called. The USER
can now use the file system FSN.

PROCEDURE USER_OFF (
FSN: FILE_SYSTEM NAME;
USER: USERID; VAR CC: COMPLETION CODE) ;

The monitor function IO, USEROFF is called. The USER
is logged off the file system FSN.

CSS/006/RFM/0001

CR80 PASCAL

sign/date page

PH@®/800619 1

REFERENCE MANUAL fem e

PROCEDURE ENTER (

DIRECTORY: FILE; SUBJECT: FILE;
NAME: FILE NAME; VAR CC: COMPLETTION CODE);

The monitor function IO, ENTER is called. The
SUBJECT file is entered (or catalogged) in the
DIRECTORY file under the specified NAME.

PROCEDURE LOOKUP (

DIRECTORY: FILE; NAME: FILE NAME;
VAR F: FILE; VAR CC: COMPLETION_CODE) ;

The monitor function IO, LOOKUP is called. If the
returned CC = IO _OK, a file with name NAME was found
in DIRECTORY. The file is returned as an "open" file
through F.

PROCEDURE DESCENT (

VAR F: FILE; NAME: FILE NAME;
VAR CC: COMPLETION CODE) ;

The monitor function IO, DESCENT is called. If the
returned CC = IO _OK, a file with name NAME was found
in the directory F. The directory F was then "closed",
and the file with name NAME is returned as an "open"
file through F.

PROCEDURE FIND FILE(

FROM_ADAM: BOOLEAN; FSN: FILE_SYSTEM NAME;
VOLUME: VOLUME NAME; NAMELIST: NAMELISTTYPE;
NAME NO: INTEGER; DIRECTORY: FILE;

VAR F: FILE; VAR CC: COMPLETION_CODE) ;

(In retrospect: The layout of this procedure is a

blunder). The monitor function FINDFILE is called
(see ref 5).

CSS/006/RFM/0001

sign/dato side

CR80 PASCAL G /80061.9 121

REFERENCE MANUAL erstatter projekt

PROCEDURE RENAME (
DIRECTORY: FILE; OLDNAME: FILE_NAME;
NEWNAME: FILE NAME; VAR CC: COMPLETION_CODE) ;

The monitor function IO, RENAME is called. If the

returned CC = IO OK, the file with name OLDNAME was
found in the DIRECTORY and was renamed to the name
NEWNAME.

PROCEDURE REMOVE (

DIRECTORY: FILE; NAME: FILE NAME;
VAR CC: COMPLETION_ CODE) ;

The monitor function IO, REMOVE is called. The file
with name NAME is no longer catalogged in DIRECTORY.

PROCEDURE READ SECTORS (
FSN: FILE_SYSTEM NAME; DEVICE: DEVICE NAME;
VAR SECTORADDR: SECTOR_ADDRESS; BLE_POINTER: BLEPTR;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, READSECTORS is called. The
sectors specified by SECTORADDR on DEVICE are trans-
ferred to the memory area (s)’ specified by BLE_POINTER.
The number of sectors actually transferred is delivered
in SECTORADDR. TRANSFERRED SECTORS.

PROCEDURE WRITE_ SECTORS (
FSN: FILE_SYSTEM NAME; DEVICE: DEVICE_NAME;
VAR SECTORADDR: SECTOR_ADDRESS; BLE_POINTER: BLEPTR;
VAR CC: COMPLETION CODE) ;

The monitor function IO, WRITESECTORS is called. The
memory area (s) specified by BLE_POINTER is (are) writ-
ten on the sectors specified by SECTORADDR on DEVICE.
The number of sectors actually transferred is delivered
in SECTORADDR. TRANSFERRED SECTORS.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PH®/800619 1

n
PO

REFERENCE MANUAL reol project

PROCEDURE WRITE_AND PROTECT (
FSN: FILE_SYSTEM NAME; DEVICE: DEVICE NAME;
VAR SECTORADDR: SECTOR_ADDRESS; BLE_POINTER: BLEPTR;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, WRITEANDPROTECT is called.

PROCEDURE WRITE_AND MARK (
FSN: FILE_SYSTEM NAME; DEVICE: DEVICE NAME;
VAR SECTORADDR: SECTOR_ADDRESS; BLE_POINTER: BLEPTR;
VAR CC: COMPLETION_ CODE) ;

The monitor function IO, WRITEANDMARK is called.

PROCEDURE READ_BYTES (
F: FILE; VAR FILE ADDR: FILE ADDRESS;
BLE _POINTER: BLEPTR; VAR CC: COMPLETION_CODE) ;

The monitor function IO, READBYTES is called. Data is
read into the buffer (s) specified by BLE POINTER

from the specified file address. The number n of bytes
actually read is returned in FILE ADDR.TRANSFERRED BYTES.
(n = MINIMUM (FILE_ADDR. BYTE COUNT, '

sum of buffer lengths, no. of bytes in the file from
FILE ADDR. FIRST BYTE and to the end of the file)).

PROCEDURE MODIFY BYTES(
F: FILE; VAR FILE_ADDR: FILE ADDRESS;
BLE_POINTER: BLEPTR; VAR CC: COMPLETION_ CODE) :

The monitor function IO, MODIFYBYTES is called. Data
is written from the buffers specified by BLE_POINTER
onto the file from the specified file address. The
number n of bytes actually written is returned in
FILE_ADDR. TRANSFERRED BYTES. (n = MINIMUM (sum of
buffer lengths, FILE_ADDR. BYTE_COUNT)).

CSs/006/RFM/0001

sign/date page

CR80 PASCAL PH®/800619 1

(a0
(N

REFERENCE MANUAL repl project

PROCEDURE APPEND_BYTES (
F: FILE; VAR FILE ADDR: FILE ADDRESS;
BLE POINTER: BLEPTR; VAR CC: COMPLETION_CODE) ;

The monitor function IO, APPENDBYTES is called.
Analogous to MODIFY BYTES above, but data is appended
(i.e. the value of FILE ADDR. FIRST_BYTE is irrele-

vant) .

PROCEDURE INIT READ BYTES (
F: FILE; VAR FILE_ADDR: FILE ADDRESS;
BLE POINTER: BLEPTR; VAR OPREF: OPERATION_ REFERENCE;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, INITREADBYTES is called.
Analogous to READ_BYTES, but the transfer is only
initiated. The operation may be awaited/tested for
completion by calls of WAIT OPERATION or TEST_OPERATION.
An identification of the initiated transfer is deli-
vered in OPREF. Note: Because FILE_ADDR and the buf-
fers are updated after return from the procedure, they
should not be used, or implicitly or explicitly

deallocated, until the operation is finished.

PROCEDURE INIT MODIFY BYTES(
F: FILE; VAR FILE ADDR: FILE_ADDRESS;
BLE_POINTER: BLEPTR; VAR OPREF: OPERATION_ REFERENCE;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, INITMODIFYBYTES is called.
Analogous to MODIFY BYTES, but the transfer is only
initiated. See also INIT READ BYTES above.

CSS/006/RFM/0001

CR80 PASCAL

sign ‘date iDBg!

PHP/800619 | 124

REFERENCE MANUAL ree! e

PROCEDURE INIT_ APPEND BYTES (
F: FILE; VAR FILE_ADDR: FILE ADDRESS;
BLE POINTER: BLEPTR; VAR OPREF: OPERATION_ REFERENCE;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, INITAPPENDBYTES is called.
Analogous to APPEND_BYTES, but the transfer is only
initiated. See also INIT_READ BYTES.

PROCEDURE WAIT OPERATION (
OPREF: OPERATION_REFERENCE;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, WAITOPERATION is called.

If the returned CC = IO0O_OK, the operation identified
by OPREF is successfully completed. The
TRANSFERRED_BYTES field of the FILE_ADDRESS variable
used when initiating the operation now contains the
number of bytes actually transferred.

PROCEDURE TEST OPERATION (
CPREF: OPERATION_REFERENCE; VAR FINISHED: BOOLEAN;
VAR CC: COMPLETION_CODE) ;

The monitor function IO, TESTOPERATION is called. If
the returned CC = IO_OK, then FINISHED indicates
whether the operation identified by OPREF is finished
or not. The difference between WAIT OPERATION and
TEST_OPERATION is that TEST_OPERATION returns im-
mediately, but WAIT OPERATION returns when the opera-
tion is finished.

PROCEDURE CANCEL_OPERATION (
OPREF: OPERATION_REFERENCE; VAR CC: COMPLETION_CODE) ;

The monitor function I0, CANCEL is called. The opera-
tion identified by OPREF is cancelled (if it was not
already finished).

CSS/006/RFM/0001

sign/date [page

CR80 PASCAL PHP/800619 | 125

REFERENCE MANUAL = IRt

PROCEDURE CONNECT (
F: FILE; M: MODE; VAR S: STREAM;
VAR CC: COMPLETION_ CODE) ;

The monitor function STREAM, CONNECT is called. The
stream S is connected to the file F for either input
or output as specified by M.

PROCEDURE DISCONNECT (
S: STREAM; VAR F: FILE; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, DISCONNECT is called.
The stream S is disconnected, and the file to which

the stream was connected is returned in F.

PROCEDURE GET POSITION (
S: STREAM; VAR POSITION: STREAM POSITION;
VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, GETPOSITION is called.
The current position on the stream S is returned in
POSITION (for later user by SET POSITION).

PROCEDURE SET_ POSITION (
S: STREAM; POSITION: STREAM POSITION;
VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, SETPOSITION is called.
The current position on the stream S is now as speci-
fied by POSITION.

PROCEDURE INBYTE (
S: STREAM; VAR B: UNIV BYTE; VAR CC: COMPLETION_ CODE) ;

The monitor function STREAM, INBYTE is called. The
next byte on the stream S is delivered in B (the high
order byte of B contains 0).

CSS/006/RFM/0001

CR80 PASCAL

sign/dare Rage

PH@/800619 126

REFERENCE MANUAL e e

PROCEDURE INWORD (
S: STREAM; VAR WORD: UNIV INTEGER;
VAR CC: COMPLETION_ CODE) ;

The next two bytes on the stream S are delivered in
WORD with the first byte in the rightmost byte of
WORD.

PROCEDURE BACKSPACE (
S: STREAM; VAR CC: COMPLETION CODE) ;

The monitor function STREAM, BACKSPACE is called.

The effect is, no matter how many times it is called,
that INBYTE will deliver the same byte as the last
call of INBYTE.

PROCEDURE INREC (
S: STREAM; VAR FIRST ELEMENT: UNIV ELEMENT;
VAR RECORD_LENGTH_IN_ BYTES: INTEGER;
VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, INREC is called. The
next RECORD_LENGTH_IN BYTES bytes from the stream S
are delivered in the memory locations that start at
FIRST_ELEMENT. At return RECORD_LENGTH_IN_BYTES con-
tains the number of bytes actually transferred. This
number may be less than requested, if the end of the
stream is reached. CC will be IO_OK if any bytes are
delivered.
Example: The two fields T and L in the record
REC: RECORD

I: INTEGER;

T: ARRAY [7..18] OF CHAR;

L: LONG_INTEGER;

B: BOOLEAN
END
shall be initialized by a call of INREC:
LENGTH: = (18=7+1) *2 + 4;

INREC (STRM, REC. T[7], LENGTH, CC);

CSS/006/RFM/0001
sign/date page
CR80 PASCAL PHP/800619 127
REFERENCE MANUAL s

project

PROCEDURE OUTBYTE (
S: STREAM; B: UNIV BYTE; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTBYTE is called.

The rightmost byte of B is written to the next posi-
tion on the stream.

| PROCEDURE OUTWORD (

| S: STREAM; WORD: UNIV INTEGER;
| VAR CC: COMPLETION_CODE);

| The contents of the WORD are written on the stream S.
| The least significant byte is written first.

PROCEDURE OUTREC (

S: STREAM; FIRST ELEMENT: UNIV ELEMENT;
VAR RECORD LENGTH_IN BYTES: INTEGER;
VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTREC is called.
Analogous to INREC above.

PROCEDURE FLUSH (
S: STREAM; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, FLUSH is called. The
currently buffered data is output to (the file connected
to) the stream S. FLUSH is used e.g. in an inter-

active program when the user is prompted.

PROCEDURE INTYPE (

S: STREAM; VAR CH: CHAR; VAR CH_TYPE: CHAR_TYPE;
VAR CC: COMPLETION_CODE);

The monitor function STREAM, INTYPE is called.
The next character (byte) is read from the stream and

delivered in CH. CH_TYPE contains the type of the
character:

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date

PH®/800619

page

repl project

CHARACTER CHAR _TYPE
SPACE TSPACE
'0'..'9" TDIGIT
‘a'..'z', '.', '-', NULL TLETTER
OTHER CHARACTERS TOTHER

PROCEDURE INELEMENT (
S: STREAM; VAR ELEM: ELEM REC;
VAR CC: COMPLETION CODE) ;

The monitor function STREAM, INELEMENT is called.
The next "element" (i.e. integer, long integer,
identifier or special character) from the stream S
is delivered in the variant record ELEM. The

declaration of an ELEM_REC is

RECORD
DELIM: CHAR;
BYTE_COUNT: INTEGER;
CASE ELEM TYPE: ELEMENT TYPE OF

TINTEGER: (INT: INTEGER) ;

TLONG_INTEGER: (LINT: LONG_INTEGER) ;

TIDENTIFIER: (NAME: PACKED_NAME) ;

TSPECIAL: (SPEC_CHAR: CHAR)
END;

The syntax of the various constructs is

[+]-] <digit> {<digit>} |
#<hexadigit> {<hexadigit>}
-32768..32767"
<letter> {<letter>| <digit>}

NULL CHAR| A | B | ... | Y | 2
(<digit> and <hexadigit> are as expected).

<integer> ::

<long_integer>::=<integer> "outside

<identifier> ::
<letter> ::

CSs/004/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date page

PH@/800619 129

repl project

At return the stream is always positioned such that
the next byte will be that immediately after the

"olement" delivered. The contents of the record

fields depend on the value of ‘the tag field ELEM TYPE:

TINTEGER:
DELIM:

BYTE COUNT:

INT:
TLONG_INTEGER:

DELIM:

BYTE COUNT:

LINT:

TIDENTIFIER:
DELIM:

BYTE_COUNT:

NAME:

Contains the character immediately
after the number. This character will
be the:one delivered if INBYTE is cal-
led next.

2.

The integer value.

As for TINTEGER.
4.

The long_integer value.

Contains the character immediately
after the identifier. This character
will be the one delivered if INBYTE

is called next.

The number of characters in the identi-
fier. If the identifier is longer than
16 characters, it will be truncated
such that only the first 15 an the last
character are delivered. In this case
BYTE_COUNT will be 16.

The identifier (packed). If BYTE_COUNT
is less than 16, the last 16 -

BYTE COUNT characters will be null-

characters.

CSS/006 /RFM/0001

sign/date page

CR80 PASCAL PH@ /800619 130
REFERENCE MANUAL rep project

TSPECIAL:
DELIM: The special character itself (not the
following).
BYTE COUNT: 1.
SPEC_CHAR: If the "element" in the stream was not

an integer, long: integer or identifier,

the first character read is delivered

in SPEC_CHAR. It should be noted that

1) a semicolon will never be returned.
If a semicolon is encountered in the
stream, skipping to the next NL-
character takes place, and this cha-
racter is returned.

2) if a space character is returned,
the next "element" cannot be a space
because INELEMENT skips spaces and
only delivers the last in a sequen-
ce.

PROCEDURE ININTEGER (
S: STREAM; VAR INT: INTEGER; VAR CC: COMPLETION_CODE) ;

If the returned CC = IC_OK, the stream contained an
integer (in the notation specified under INELEMENT),
the value of which is delivered in INT. No other cha-
racters but spaces are allowed in front of the number.

PROCEDURE INLONG_INTEGER (
S: STREAM; VAR LINT: LONG_INTEGER;
VAR CC: COMPLETION_CODE) ;

If the returned CC = IO_OK, the stream contained a
long_integer (in the notation specified under INELEMENT),
the value of which is delivered in LINT. No other cha-

racters but spaces are allowed in front of the number.

CSS/006/RFM/0001

sign/dave page

CR80 PASCAL PHQ /800619 51

repl project

REFERENCE MANUAL

PROCEDURE INNAME (
S: STREAM; VAR N: PACKED_NAME;
VAR CC: COMPLETION_CODE) ;

If the returned CC = IO _OK, the stream contained an
identifier (in the notation specified under INELEMENT) ;
which is delivered in N in packed form. No other cha-
racters but spaces are allowed in front of the identi-
fier. If the identifier read is shorter than 16 cha-
racters, the rest of the characters in N will be null-
characters. If the identifier was longer than 16 cha-
racters, the first 15 and the last are delivered.

PROCEDURE INFILEID (
S: STREAM; VAR FROM_ADAM: BOOLEAN;
VAR FSN: FILE SYSTEM NAME; VAR VOLUME: VOLUME NAME;
VAR NAMELIST: NAMELISTTYPE; VAR NAME NO: INTEGER;
VAR CC: COMPLETION_ CODE) ;

(In retrospect: The layout of this procedure is a
blunder). The monitor function INFILEID is called

(see ref 5).

PROCEDURE OUTTEXT (
S: STREAM; UNPACKED_TEXT: TEXT;
VAR CC: COMPLETION_COCDE) ;

The UNPACKED TEXT is packed and then output to the
stream (or stated alternatively: the rightmost byte

of each CHAR is output). The last character written

is the one immediately before the first null-character.
Because of the relaxed type checking concerning cha-
racter arrays as actual parameter, the second para-
meter only needs to be a one-dimensional array of

CHAR or a character string.

CSS/006/RFM/0001

sign/gate page]

CR80 PASCAL PH® /800619

sl
PO

REFERENCE MANUAL repl project

PROCEDURE OUTSTRING (
S: STREAM; UNPACKED TEXT: TEXT;
NO_OF CHARS: INTEGER; VAR CC: COMPLETION_ CODE) ;

Analogous to OUTTEXT above. However, exactly
NO_OF _CHARS characters (null-characters and all) are
output.

PROCEDURE OUTHEXA (
S: STREAM; INT: UNIV INTEGER; PAD_CHAR: CHAR;
VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTHEXA is called. The
value in INT is output to the specified stream as 4
hexadecimal characters preceded by the character in
PAD_CHAR. However, if this character equals NL, only

the 4 hexadecimal characters are output.

PROCEDURE OUTINTEGER (
S: STREAM; INT: UNIV INTEGER;
FORMAT: UNIV INTEGER; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTINTEGER is called.
The value of INT is output as a decimal number to the
specified stream. The format of the number is
governed by FORMAT:

BIT 15: Set: the number is treated as an unsig-
ned number (0..65535).
Reset: the number is treated as a normal
signed integer (-32768..32767).
BIT 14-8: Field with. If the number cannot
be accomodated in the field, the

field is expanded.

CSsS/006/RFM/0001

sign/date [pngo

CR80 PASCAL PHP /800619 | 1595

REFERENCE MANUAL el Sroree:

BIT 7-0: Padding character. If the field
is longer than needed to contain
the number, the number is right
justified padded to the left with

this character.

The sign is only printed for negative numbers.

PROCEDURE OUTLONG_INTEGER (
S: STREAM; LINT: UNIV LONG_INTEGER;
FORMAT: UNIV INTEGER; VAR CC: COMPLETION_CODE) ;

The monitor function STREAM, OUTLONGINTEGER is called.
Analogous to OUTINTEGER above.

PROCEDURE OUTNL (
S: STREAM; VAR CC: COMPLETION_CODE);

The monitor function STREAM, OUTNL is called.

A NL-character is output to the specified stream.

PROCEDURE MARK (
VAR TOP: INTEGER) ;

Returns in TOP information to be used by the prefix
procedure RELEASE in recollecting stofage in the heap
allocated by subsequent calls of the standard proce-
dure NEW.

PROCEDURE RELEASE (
TOP: INTEGER) ;

Releases storage allocated in the heap by the standard
procedure NEW since the call of the prefix procedure
MARK which returned the value of TOP.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PHQP /800619 154

REFERENCE MANUAL repl projact

FUNCTION FREE_SPACE: INTEGER;

The stack (which contains global and local variables)
and the heap (which contains variables allocated by
the standard procedure NEW) grow towards each other.
The function FREE_SPACE delivers the number of un-
used words between the stack and the heap.

FUNCTION CONTENTS (
BASE_REL_ADDR: LONG_INTEGER) : INTEGER;

Delivers the contents of the memory location with the
indicated process base relative address. The address
is taken modulo 64K.

PROCEDURE EXIT;

This is a very useful procedure because of the lack

of GOTO-statements in CR80 PASCAL. When the procedure
is called in the program block, the program terminates
as if the last END. had been reached. When EXIT is
called in a procedure or function, the execution of
the routine is terminated as if the last END in the
routine had been reached.

PROCEDURE CURRENT_LEVEL (
VAR LEVEL: INTEGER) ;

Returns in LEVEL information to be used by the prefix
procedure LONG_EXIT.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PHP /800619 1

i
(&

REFERENCE MANUAL rep! ero)act

PROCEDURE LONG_EXIT(
LEVEL: INTEGER);

This procedure is perhaps best introduced by an

example. Suppose we have the following sequence

CURRENT_LEVEL (LEVEL) ;
A: =A+B;
REPEAT

READ COMMAND (OK) ;

IF NOT OK THEN ERROR;

UNTIL OK;
EXECUTE_COMMAND;
FOR I : = 1 TO 4711 DO

-

and suppose READ COMMAND calls other routines which in
turn may call other routines, and so on. Then a call
LONG_EXIT (LEVEL) in READ_COMMAND or any of the rou-
tines reached from READ COMMAND will force the exe-
cution to continue with the IF-statement immediately
after the call of READ _COMMAND (assuming, of course,
that LEVEL has not been changed). A call LONG_EXIT
(LEVEL) in EXECUTE COMMAND or any routine reached
from EXECUTE_COMMAND will force execution to continue
with the FOR-statement. Generally speaking LONG_EXIT
(LEVEL) performs a sequence of EXIT calls until the
routine or program block in which LEVEL was initia-
lized by a call of CURRENT LEVEL is reached. A run-
time error (rangeerror) occurs if LEVEL does not con-

tain the-value of an active "level".

CSS/006/RFM/0001

sign/date | page]

CR80 PASCAL PH® /800619

(&}
(Ox)

repi project
REFERENCE MANUAL

FUNCTION CURRENT LINE: INTEGER;

Returns the program source line number in which it
is called. However, if the program was compiled with
the %NONUMBER toggle on, the line number delivered is
that of the line containing the first BEGIN of the

(program-or routine) block in which the function is
called.

FUNCTION REL_ADDR (
FIRST ELEMENT: UNIV ELEMENT): INTEGER;

Returns the process base relative address of the para-
meter. The function is primarily intended for use when
setting up BLE's specifying local buffers.

PROCEDURE GET ABS_ADDR (
FIRST ELEMENT: UNIV ELEMENT;
VAR WORD ADDR: WORD_ADDRESS) ;

The absolute address of the first parameter is deli-
vered. WORD ADDR.MEMORY SECTION contains in bits

3-2 the page number, and the 3 leftmost bits are all
ones {(i.e. the word can be used directly as a PSW).
WORD_ADDR: WORD_ DISPLACEMENT contains the woxrd address
within the page.

PROCEDURE COPY (
SOURCE, DEST: BYTE_ ADDRESS; NO_OF_ BYTES: INTEGER) ;

This procedure can be used for inter page copying.
The number of bytes specified by the last parameter
are copied from the source to the destination. Only
non-negative BYTE_DISPLACEMENTs should be used in the
two BYTE_ADDRESSes.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date | page] 7
/

PHP /800619 |

repi project

PROCEDURE PACK (

FIRST ELEMENT OF UNPACKED: UNIV ELEMENT;
VAR FIRST_ELEMENT OF PACKED: UNIV ELEMENT;
NO_OF BYTES: INTEGER);

The rightmost bytes (0, 2, 4, ...) of UNPACKED are
packed into PACKED like this:

FOR I := 0.TO NO_OF_BYTES - 1 DO
PACKED.. BYTE [I] := UNPACKED. BYTE [2 * I];

Example:
A, B: ARRAY [1..5] OF CHAR;

0ld contents:

A: ['Al .'B] 'C] fnl 'E|

B: ['F["6] "H] "I[K'J]

PACK (A [3] , B [4] , 3);

New contents (A unchanged) :

B: | 'F| 'c| 'H|D'C[K'E]

PROCEDURE UNPACK (

FIRST ELEMENT OF PACKED: UNIV ELEMENT;
VAR FIRST ELEMENT OF UNPACKED: UNIV ELEMENT;
NO_OF BYTES: INTEGER);

The bytes in PACKED are unpacked into UNPACKED like
this:

FOR I : = NO_OF_BYTES- ¥ DOWNTO 0 DO

BEGIN
UNPACKED. BYTE [2 * I] := PACKED. BYTE [I];
UNPACKED. BYTE [2 * I + 1] := 0;

END;

CSS/006/RFM/0001

| sign/date wage
CR80 PASCAL ' PHP /800619 138

REFERENCE MANUAL e F

PROCEDURE PACK_SWAPPED (
FIRST ELEMENT OF UNPACKED: UNIV ELEMENT;
VAR FIRST_ELEMENT OF_ PACKED: UNIV ELEMENT;
NO_OF_BYTES: INTEGER);

The bytes of UNPACKED are packed into PACKED like

this:
FOR I := 0 TO NO_OF_BYTES ~ 1 DO
BEGIN
IF IMOD 2 = O THEN J := I + 1 ELSE J := I = 1;
PACKED. BYTE [J] := UNPACKED. BYTE [2 * IJ;
END;

PROCEDURE UNPACK_SWAPPED (
FIRST ELEMENT OF_ PACKED: UNIV ELEMENT;
VAR FIRST ELEMENT OF UNPACKED: UNIV ELEMENT;
NO_OF BYTES: INTEGER);

The bytes of PACKED are unpacked into UNPACKED like

this:
FOR I := 0 TO NO_OF_BYTES - 1 DO
BEGIN |
IF I MOD 2 = 0 THEN J := I + 1 ELSE J := I - 1;
UNPACKED. BYTE [2 * I] := PACKED. BYTE [J];
UNPACKED. BYTE [2 * I + 1] := 0;
END;

PROCEDURE RUN (

F: FILE; VAR PARAM: PARAMTYPE; VAR LINE: INTEGER;
VAR RESULT: PROGRESULT) ;

This procedure makes it possible from a CR80 PASCAL
program to execute another CR80 PASCAL program -
almost as if the called program was a procedure.
The operations of RUN are:

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page 1 7 9

PH® /800619

repi projact

1) Create a temporary file and save the calling
program. Only the program code is saved; its

variables are still in memory.

2) Load the new program from the file F into the
locations which previously held the calling pro-
gram. The new program's program code require-
ment must not be larger then the requirement of
the initially loaded program. (Small programs
that call RUN can adjust their size by the
$OVERLAY-directive) .

3) Give the loaded program access to the PARAM-

record, and start its execution.

4) When the loaded program terminates, the caller

is reloaded and continues execution.

A program and the program it RUNs exchange informa-
tion through the PARAM-type record and the heap.

In the standard prefix the PTR field in a PARAMTYPE
record points to an integer. However, because a
pointer is always contained in one word, the PTR
field could just as well e.g. be edited to be a poin-
ter to a record containing a number of pointers (and
other fields, too). Any conceiveable data structure
can thus be made common to a program and the program
it RUNs, the only restriction being that the data

structure must be contained in the heap.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page i
PHQ /800619 140

repl project

The local and global variables of a RUNned program
are deallocated when the program returns to the cal-
ler. But the variables allocated in the heap conti-
nue to exist, because the program might have linked
these new variables to the common data structure.

If the program that calls RUN has no interest in
variables allocated in the heap by the RUNned pro-
gram, it should surround RUN by calls of MARK and
RELEASE.

It is allowed for a RUNned program to call RUN.

At return the last parameter RESULT should be tested.
A;yélﬁe different from-TERMINATED indicates an error.
The parameter LINE contains the number of the last

program source line executed in the called program.

FUNCTION CREATE’ LONG (

LEAST, MOST: UNIV INTEGER): LONG_INTEGER;

A long integer value is created by concatenating

the two parameter values.

PROCEDURE SPLIT LONG (

L: LONG_INTEGER; VAR LEAST, MOST: UNIV INTEGER) ;

The least significant word of L is delivered in
LEAST, and the most significant word of L is deli-
vered in MOST.

CSS/006/RFM/0001

sign/date | page

CR80 PASCAL PHQ /800619 14

REFERENCE MANUAL repl project

PROCEDURE ASSIGNBITS (
VALUE: UNIV BITVALUE; VAR P: UNIV PAGE;
FIRSTBIT, NO _OF BITS: INTEGER);

This rather special procedure was tailored to the
file system. The bits in P are numbered

0, 1, 2, ..., 16*256-1 from right to left.
ASSIGNBITS puts VALUE in bitnumber FIRSTBIT to bit-
number FIRSTBIT+NO_OF BITS-1 of P. All other bits
in P are left unchanged.

PROCEDURE SKIPBITS (
VALUE: UNIV BITVALUE; P: UNIV PAGE;
VAR FIRSTBIT: INTEGER; NO_OF_BITS: INTEGER;
VAR BITSSKIPPED: INTEGER) ;

This rather special procedure was tailored to the file
system. The bits in P are numbered 0, 1, 2, ...,
16*256~-1 from right to left. SKIPBITS searches for

a bit in P with value VALUE. The search starts at
bitnumber FIRSTBIT and upto NO_OF_BITS are investiga-
ted. At return FIRSTBIT is the bitnumber of the first
matching bit, and BITSSKIPPED is the number of bits
skipped until the match. When there is no match,
BITSSKIPPED will equal NO_OF BITS at return.

PROCEDURE SET_TRACE (
S: STREAM; MASK: INTEGER) ;

In extreme debugging situations this procedure may
be helpful, because it can provide a trace of the
program execution. It can also be used to find the
optimal value in the %STACK directive. A call of
SET_TRACE with a MASK different from 0 will slow

execution down with a factor 3.

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date page

PH@ /800619 142

repi praject

MASK:
BIT 1:

BIT 2:

BIT 3:

BIT 6:

When set a line is output every time a
user-declared routine is called. The infor-
mation printed contains the line no. of the
entered routine, the line no. of the call,
and the value or process base relative add-

ress of each parameter.

When set a line is output every time a pre-
fix routine is called. The information
printed indicates which routine is called
(they are numbered 0, 1, ... in order of
appearance in the prefix) and from where it

was called.

When set a line of information is ocutput
every time a user-declared routine is exi-
ted.

When set the minimum number of free words
between the stack and the heap during the
rest of the execution will be printed on

current output when the program terminates.

See also PRINT_ TRACE below.

PROCEDURE PRINT_TRACE (
ON:BOOLEAN) ;

The first time SET TRACE is called with one or more

of bits 1,

2 or 3 set, output will be written on the

trace stream until PRINT TRACE is called with ON

equal to FALSE. Trace output is resumed when

PRINT TRACE is called with ON equal to TRUE.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign-date page

PHP/800619 145

repl project

Compile Time Directives

All directives to the compiler begin with a $%$-character,
which can be placed in any character position on the
line. The characters from the end of the directive and
until the first NL-character are skipped, i.e. this
field can be used for a comment without enclosing the
comment between "-characters. Syntactically directives
are equivalent to a single NL-character. They must

appear before the final END. in the program source.

Excepting 3LIST, $NOLIST, and %CODE, directives have a
global influence and can be placed in any line with the
same effect. 1If a 'global' directive is encountered

more than once, the last occurrence applies.

Some of the directives include a <number> or a <name>:

<number> ::= <digit> {<digit>}

<hexa> {<hexa>}
<name > ::= <letter> {<letter>|<digit>}
<digit> ::= 0|1]2|3|4|5]6]|7]|8]9
<hexa> ::= <digit>|A|B|C|D|E|F
<letter> ::= A[B|C|...Y|2]|_

Negative numbers in a directive can only be written in

the hexa-decimal notation.

If a name in a directive is longer than 6 characters

only the first 5 and the last character are read.

The following directives are implemented:

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page ’
PH@/800619] 4£l

repl projact

3LIST and %NOLIST

By default the source text is listed on the print file.
If the $NOLIST directive is used, the source text will

not be printed until a 3LIST directive is encountered.

The change in listing state is effective in the line

immediately after the directive.

$NUMBER and $%NONUMBER

The compiler generates for every line in the program
block and every line in the routine blocks a special
NEWLINE-instruction, when the program is compiled with
the FNUMBER toggle. This makes it possible for the
PASCAL runtime system to specify exactly which program
line was executing, when a runtime error occurred.

This feature is vital in program testing. However, the

program will take up more memory space (usually about

one third) and run slower. By default NEWLINE-instructions

are generated. $%NONUMBER will tell the compiler not
to generate these.

$CHECK and %NOCHECK

By default the compiler generates special runtime checks:

o Range checks of actual procedure or function value
parameters of enumerated type, subrange type, BOOLEAN

type, and CHAR type. The checks are done at the point
of call.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PH@/800619 145

REFERENCE MANUAL

repi projact

0 pointer checks to ensure that NIL-valued pointers

are not used as references.

o Variant checks to ensure that only currently defined

variant fields in a record are referenced.
The code generated will also initialize global variables
at program entry and local variables at routine entry

to contain only 0-bits.

Runtime checks will not be generated, and initialization
will not take place, if %NOCHECK is used.

$SUMMARY and 3%NOSUMMARY

Some statistics (compiler release, size of program part,
directive values used) on the object program will by
default be written on the print file after the source
listing. The %NOSUMMARY will tell the compiler not to

generate the summary.

$STACK = <number>

The number specifies how many words of memory the program
needs for its variables in the stack (and the heap) at
runtime. The default memory claim is 2048 words. The
total process size of a CR80 PASCAL program cannot exceed
64K. If the stack claim is so large that this limit will
be violated, the claim will be adjusted by the compiler
such that the process size will be exactly 64K. The
directive SWORKAREA = <number> has precisely the same
effect as %STACK= <number>.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/dete page l 4 y

PH@/800619 + O

repi projec?

8.7

8.8

%OVERLAY = <number>

The directive enlarges the program part of a CR80 PASCAL
object program with a so-called overlay area of <number>
words. It is only relevant to create an overlay area
for a program that uses the prefix routine RUN. When

a program calls RUN, the size of the program part of the
loaded program must not be greater than the size of the
calling program, and it is therefore necessary to create
an overlay area, when a program RUNs a program with a

larger program part. The default overlay area size is 0.

3REENTRANT and ¥NONREENTRANT

The object program is marked reentrant (the default) or
nonreentrant. A program that calls the prefix procedure
RUN should be marked nonreentrant.

SUTILITY and 3NONUTILITY

By default an object program is marked as being a utility
program. A utility program will be loaded by the CMI
(ref. 6) and will have its PARAM record initialized by
the PASCAL runtime system. Programs to be loaded
otherwise, for example as part of a boot module, should
use the $NONUTILITY toggle.

%2CODE = <file-id>

The file-id shall be written in the format specified in
ref. 6. The total contents of the file - hopefully
machine or virtual PASCAL code - are inserted at this
point in the object code, and the virtual location counter
is incremented by the number of words in the file.

More information about the use of %CODE can be found

in chapter 6 of this document.

CSsS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page
PHP/800619 l 47

rep! projact

8.12

3UNIVCHECK and $NOUNIVCHECK

The word UNIV in front of the type identifier in a
formal parameter section suppresses compatibility
checking. However, the formal and the actual parameter
must take up the same number of machine words, and none
of them may contain or be a pointer. These two
restrictions are removed if the %NOUNIVCHECK option is
used. The default is %UNIVCHECK.

3CODESTATISTICS and 3NOCODESTATISTICS

If %CODESTATISTICS is used, an area of 226 words is
layed out in the process part of the program. This
area is intended for counting the number of times each
virtual instruction is executed. At present, however,
the PASCAL runtime system does not make any use of this
area. The default is %NOCODESTATISTICS.

SLINESTATISTICS and $NOLINESTATISTICS

If ILINESTATISTICS is used, an area is layed out in the
process part of the program. This area is intended for
counting the number of times each line of the program

is executed in order to provide a runtime profile of the
program. At present, however, the PASCAL runtime system
does not make any use of this area. The default is
¥NOLINESTATISTICS.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page

PH@/800619 148

repi project

8.15

8.18

8.19

3PROGRAMNAME = <name>

The name is inserted in the program name field of the
program header. Default: 6 NULL-characters.

$PROCESSNAME = <name>

The name is inserted in the process name field of the
process header. Default: 6 NULL-characters.

3CPUNAME = <name>

The name is inserted in the CPU name field of the process
header. Default: 6 NULL-characters.

$VERSION = <number>

The number is inserted in the version field of the

program header. Default: O0.

3¥PRIORITY = <number>

The number is inserted in the priority field of the
process header. Default: 1.

$CAPABILITIES = <number>

The number is inserted in the capability requirement
field of the process header. Default: 0.

$FDS = <number>

The number of file descriptions used by the program.
Default: 4. The number of FDS should equal the
maximum number of simultaneously 'open' files during

the program execution.

CSS/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page R
PH@/800619 147

- rep! project

8.21

8.22

8.24

$STREAMS = <number>

The specified number should equal the maximum number of
streams simultaneously connected during the program

execution. Default: 2.

$IOCBS = <number>

The number of I/O control blocks required by the program.
There should be 2 IOCBS for each input stream and 1 for
each output stream plus one for each outstanding direct
I/0 request. Default: 4.

3TLES = <number>

The number of transfer list elements used by the program.
Usually 3#IOCBS, Default: 12.

$MESSAGES = <number>

The number of message buffers required by the program.
At least 1 + IOCBS. Default: 5.

$USERIDO = <number>
$USERID1 <number>

The 2 numbers are inserted in the user id field of the
process header with that after 2USERIDO in the word
with the lowest address. Both values default to O.

$EXECLEVEL = <number>

The number is inserted in the execution level field of
the process header. Programs doing I/O need an

execution level of 2., Default: 0.

CSs/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page

PH@/800619

150

vepi project

3) -

The CR80 PASCAL Compiler

The compiler consists of 9 separate programs:

1) PASCAL
Reads the parameters and calls

2) SPASCA .OBJECT
This is the pass driver that invokes the
7 passes of the compiler one by one.

9) The passes of the compiler are named
SPASS1.0BJECT,
SPASS2.0BJECT,

SPASS7.0BJECT.

Activating the Compiler

The syntax of a call of the CR80 PASCAL compiler is
as follows:

PASCAL {<file parameter>}{/<control letter>}
where

<file parameter> ::= <source file> |
<object file> |
<print file>

<source file> 1:= {i} : <file id>
<object file> ::= g : <file id>
P
L

<print file> R : <file id>

<control letter> ::=

CSS/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/date page 1

PHP/800619

w

repl project

For the syntax of a file id, please see ref. 6.

If a file id is not a complete description of a

file, the file is searched relative to the current

directory.

source file :

object file

e

print file

The o0ld contents,

If this parameter is not specified,
the compiler will use the current
input file as source file. The
user will be prompted, when he has

to enter the program text.

The compiler generates the object
program into this file. If the
parameter is not present, the
compiler will use (and create when
non-existent) the file PASCAL.OBJECT
in the current directory.

Otherwise the file must exist
beforehand.

If this parameter is not specified,
the compiler will use the current
output file as the print file.
Otherwise the indicated file must

exist beforehand.

if any, of the object file and the

print file are deleted.

CSS/006/RFM/0001

sign/date page
CR80 PASCAL PH@/800619] 5‘3

REFERENCE MANUAL rep! project

The meaning of the control letters are:

L: Ignore %LIST and $NOLIST
directives and list the whole source.

N: Ignore 3LIST and %NOLIST

directives and do not list the source.

T: Generate test output for compiler

maintenance purposes.

9.2 Preparing the Program Source

The compiler is able to take input from any number of
source files. When it encounters a $-sign (ASCII 36) -
as the first character on a line, it either expects

a < character (less than character) or a file id.

Anything else will terminate the compilation:

O A < character is read:

The rest of the line is skipped, and the compiler
begins reading from the current input file.

If this file is the terminal, the user will be
prompted. When the end of the file is met,

the compiler returns to the line in the old
source file just after the line that contained

$< as the first 2 characters.

CSs/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date

PH®/800619

page

153

repl

project

o A file id is read:

The rest of the line is skipped, and the

compiler begins to read from the indicated
file. When the end of this file is reached,

the compiler resumes reading in the old source

file just after the line that contained the

$file id.

This file merge may continue to a level of 3.

CSS/006/RFM/0001

sign‘date page] C 4
CR80 PASCAL PH®/800619 J

rapi pProjece
REFERENCE MANUAL °

9.3 Example:

ZOPY I:EXAMPLE
FOOO14 LOARDED

FM: FPOOD14

FDIFECTIVES "COMTRIMED IM CDIR"

k<

=MOLIET

Fyee3EMT, I+PREFI X "THE =ZTAMOARD FREFIx™
“LIET

E

FM: FHO
PO0014 TERMIMATED: RESULT= #2000 AT LIME

X}
[}
)|

1233 CRU MIECES LUZED

PPREZCAL I:EXAMPLE O:QEBJECT Fif
FOools4 LORDED

FM: POOO1g

FRZZ 1 I% EXECUTIMG.

FLERZE EMTER THE FROGRAM TEYT

"THIZ IZ OMLY A TE=ST® (LAST 2 CHARACTERS: NL and EM)
FLEREZE FROCEED

TBESIMEMD "FILE TH CDIR"

FREE 2 IZ EXECUTING.

PRZZ 2 12 EXECUTING.,

FREE 4 IZ EXECUTIMS.

FRZZ 5 IZ2 EXECUTIMG.

PREZEZ & IZ EXHECUTING,

PREEZ 7 IZ EXECUTIMG.

COMPILATION =SUCCESIFLL

FM: FHO

Foonl4 TERMIMATEDs RESULT= #2000 AT LIME 11n0s 2847 CPLY MZECE USED

ZOPY IP
FOOO1l4 LOATED

FM: POOO14

e

*++ CRI0 PRECAL COMPILER (VERSION: 2001230

*++ COMFILATION STARTED 20-05-02 AT 19:44

+++ ZOURCE FILE: QDHHHUD—FILEOCEPUDDl*ND#UTILITT.D*PHECHL.D*EHHNPLE
+++ OEJECT FILE: QDMHDﬂD-FILE*CHPDDUI*ND*UTILITT.D*PHEEHL.D*DEJECT
*b>P

o001l XHOZUMMARY

oogz "THIS I OMLY A TE=ST®
ooz XHOLIET

ns24 EBESINM

035 EMD.
Fi: FHO
Fooold TERMIMATEDs RESULT= #2000 AT LIME St 123 CFU MIECE IUZED

CSs/006/RFM/0001

CR80 PASCAL

REFERENCE MANUAL

sign/date page 1

PH@/800619

w
N

repi project

10.

Runtime Error Codes

When a CR80 PASCAL program terminates, the CMI (ref. 6)
will indicate a completion code, and which program line
was executed last. However, if the program was compiled
with the INONUMBER toggle, the line number indicated
will be the number of the line containing the first
BEGIN of the (program or routine) block executed last.

If the completion code is different from # 8000, the
runtime system will print a dynamic line number trace
on the current output. This requires that the runtime
system can connect the current output file to a free
stream. The programmer should therefore always specify
one stream more than he actually uses himself in the
3STREAMS directive to be sure getting this trace.

CSsS/006/RFM/0001

sign/date page 1 56
CR80 PASCAL PH@/800619
REFERENCE MANUAL repi project

List of completion codes generated by the runtime system:
8000: OK
8701: Arithmetic overflow.

8702: Pointer error. A NIL-valued pointer was

used when referencing a variable.

8703: Range error. For example when indexing an
array .-
8704: Variant error. A field of a variant other

than the current variant was referenced in
a record.

8705: Heap limit. A call of the standard procedure
NEW was unsuccessful due to lack of memory.
Recompile with a larger value in the $%STACK
directive.

8706: Stack limit. Not enough memory to the runtime
stack. Recompile with a larger value in the
$STACK directive.

8720: Mismatch. The program might not run successfully

under the current runtime system. Recompile.

CSS/006/RFM/0001

sign/date page

CR80 PASCAL PHP/800619 157
REFERENCE MANUAL e provect
8721: Trace error. Something went wrong after a

call of the prefix routine SET_TRACE.

The 'line number' printed by the CMI will

be the completion code received from the I/O
system indicating the nature of the error.

8722: Not a PASCAL program. A non-PASCAL program
has called the monitor function PASCALINIT.

8723: Initialization error. During program initiali-
zation the runtime system received a completion
code <> IO_OK. This completion code is

returned as the line number.

8724: I/0 error in prefix routine RUN. The completion
from the I/O system is returned as the line

number.

When a CR80 PASCAL program terminates with a completion
code not contained in the above list, the completion code
has been generated by the prefix procedure TERMINATE.

CSS/006/RFM/0001

sign/sdato sida
CR80 PASCAL PH®/800619 158
REFERENCE MANUAL erstatter projekt

APPENDIX A. LISTING OF CR80 PASCAL STANDARD PREFIX.

1: "CRB0O PASCAL STANDARD PREFIX. PHO-800522"
22 CURBARUBBRARBBBONAEBALABBERURARBRAR AR
T: "wrnnenennw A M 0 S P TR T Y L
Gr “HUABRANARRBERAARGURBAURRUARANRRRRENANRAAR"

6: CONST NL = “(2102)

; FF = *(2123)°; CR = “(:13:)°7 EM = “(:253)°7
7: CONST NULL = “(:0:3)°

5 sP=

)

9: CONST LINELENGTH = 1322

10: TYPE LINE = ARRAY [1..LINELENGTH] OF CHAR?

11: TYPE TEXT. = LINE,

12:

1%3: TYPE PROGRESULT = (TERMINATED, OVERFLOW, POINTERERROR.,
14: RANGEERROR, VARIANTERROR, HEAPLIMIT,
152 STACKLIMIT, CODELIMIT, TIMELIMIT, CALLERROR);
16:

17: TYPE BITPOSITION = 0..157

18: TYPE BITFIELOLENGTH = 0..16/

19: TYPE BITVALUE = (LOW, HIGH);

20:

21: TYPE MESSAGE_BUFFER = ARRAY (1..5] OF INTEGER:

22z

23: TYPE WORD_ADDRESS = RECORD

262 MEMORY_SECTION: INTEGER;::

2S: WORD_DISPLACEMENT:INTEGER

26: END?

27:

28: TYPE BYTE_ADORESS = RECORD

29: BYTE_DISPLACEMENT: INTEGER’

30: WORD_ADDR: WORO_ADDRESS

31: END;

32:

33: TYPE FILE = INTEGER,

34: TYPE COMPLETION_CODE = INTEGER;

35: TYPE ELEMENT = ARRAY [1..1] OF INTEGER;

36: TYPE PACKED_NAME = ARRAY [0..7] OF INTEGER:

37: TYPE PACKED_NAME3 = ARRAY [0..2] OF INTEGER;
38: TYPE PACKED_NAME2 = ARRAY [0..1] OF INTEGER/

39:

40: TYPE PROCESS_NAME = RECORD

412 NAME: PACKED _NAME3,

42: NAME_IDENT: INTEGER

43 END,

'Y

45: TYPE FILE_SYSTEM_NAME = RECORD

Y PNAME: PROCESS _NAME;
47: GNAME: PACKED_NAME?2
48: ENO/

49: TYPE VOLUME_NAME = PACKED_NAME/ -

50: CONST DIRECTORY = 10; CONTIGUOUS = 12; RANDOM = 14;
51: TYPE FILE_ORGANIZATION = DIRECTORY..RANDOM;

523 TYPE FILE_ATTRIBUTES = RECORD

53: VOLUME: VOLUME_NAME,

542 ORGANIZATION: FILE_ORGANIZATION,
55: ALLOC_SIZE: LONG_INTEGER’

563 AREA_SIZE: INTEGER

57: ENDZ

5S8: TYPE USERID = ARRAY [0..11 OF INTEGER;
59: TYPE ACCESS_DESCRIPTION = RECORD

60: USER: USERID;
61: - RIGHTS: ARRAY [0..13 OF INTEGER
62: ’ END?

63: TYPE FILE_INFORMATION_TYPE = (F_ORGANIZATION, F_SIZISE, F_ALLOCSIZE,
64: F_BODYADOR, F_AREASIZE, F_THRESHOLD,
652 E_LINKS, F_IN3FD, F_BFONBR);

66: TYPE DEVICE_NAME = PACKED_NAME2;

47: TYPE DEVICE_DESCRIPTION = RECORD

63: DEVICE_XIND: INTEGER,
59 DEVICE_A0ODR: INTEGER:
70: UNIT: INTEGER:

71: SUSUNIT: INTEGER,

72: DEVICE: DEVICE _NAME

73: END/

CSS/006/RFM/0001

sign/dato side =
CR80 PASCAL PHP/800619 157
tatter rojekt
REFERENCE MANUAL ool
74: TYPE FILE_NAME = PACKED_NAME;
75: TYPE FILE_AOORESS = RECORD]
762 FIRST_BYTE: LONG_INTEGER’
77: BYTE_COUNT: LONG_INTEGER;
78: TRANSFERRED_BYTES: LONG_INTEGER
79: END/
H R_ADORESS = RECQORD
g?; TYPE SECTOR.A FIRST_SECTOR: LONG_INTEGER/
82: SECTOR_COUNT: LONG_INTEGER:
83: TRANSFERRED_SECTORS: LONG_INTEGER
842 END? :
85: TYPE MODE = (INPUT_MODS, OUTPUT_MODE)’
86: TYPE STREAM = INTEGER:
87: TYPE STREAM_POSITION = LONG_INTEGER?
88: TYPE BYTE = 0..255/
89: TYPE OPERATION_REFERENCE = INTEGER’
90: TYPE MEMORY_PARM = INTEGER’
91
92: TYPE BUFFER_LOCATION = (LOCAL, EXTERNAL);
33: TYPE BLEPTR = 3JBLE,
94: TYPE BLE = RECORD
S LINK: BLEPTR?
96: CASE XL: 3UFFER_LOCATION OF)
97 LOCAL: (3UFADOR, BUFSIZE_IN_8YTES: INTEGER);
98: EXTERNAL: (MEMORY: MEMORY_PARM)
99: END/
100:
101: TYPE EVENT_TYPE = (SIGNAL, MESSAGE, ANSWER, SYSTEM_MESSAGE,
102: SYSTEM_ANSWER, PATH_MESSAGE, PATH_ANSWER,
103 INTERRUPT, TIME_OUT, PARENT_SIGNAL)’
104:
105: TYPE EVENT_MASK = INTEGER;
106:
107: TYPE DATE_TIME_GROUP = RECORD
103: YEAR, MONTH, DAY: INTEGER’
109: HOUR, MIN, SEC: INTEGER
1102 END’
111:
112: TYPE PRQC_TIME = ARRAY [0..2] OF INTEGER;
113:
114: TYPE PROCESS_ATTRIBUTES = RECORD
1152 ACCESS_RIGHTS, STATE: INTEGER’
116 ERROR_CODE, ERROR_LOC: INTEGER/S
117: CONSUMEO_TIME, CREATION_TIME: PROC_TIME
118: ENDJ
119:)
120: TYPE CREATION_BLOCK = RECORD
121: VNAME: PROCESS_NAME;
122: VPROG, VINIT, VMICRO, VCAPAB: INTEGER,
123 YCPU, VPRIO, VLEVEL, VBASE: INTEGER’
1264 VSIZE, VBOUND, VMEMORY, VMSGS: INTEGER?
125: VUSER: USERID
126 END/
127:
128: TYPE CPUPARAMETER = (VCPUNMB, VINTERRUPTMASK, VSCHEDULERESETCOUNT.
129: VSLICESIZE, VELAPSEDTIME, VHWPRIORITY),
130:
131: TYPE CHAR_TYPE = (TSPACE, TDIGIT, TLETTER, TOTHER);
132:

133: CONST PAGELENGTH = 256’
134: TYPE PAGE = ARRAY [1..PAGELENGTH) OF INTEGER;

135:

136: TYPE ELEMENT_TYPE = (TERROR, TINTEGER, TIDENTIFIER,

137: TSPECIAL, TLONG_INTEGER)?

138:

139: TYPE ELEM_REC = RECORD

140: DELIM: CHAR?

141 BYTE_COUNT: INTEGER’

142: CASE ELEM_TYPE: ELEMENT_TYPE OF

143: TINTEZGER: (INT: INTEGER),

144: TLONG_INTEGER: (LINT: LONG_INTEGER);
1453 - ’) TIDENTIFIER: (NAME: PACKED_NAME),
146: TSPECIAL: (SPEC_CHAR: CHAR)
1473 END?

148: e

e ———

CSs/006/RFM/0001

CR80 PASCAL
REFERENCE MANUAL

sign/dato

PH®/800619

side

16

Gioy

U

arstatter

projekt

149
150:
151:
152:
153:
154
15S:
156:
157:
158:
159+
160:
161:
1622
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
1742
175:
176
177:
178:
179:
180:
181:
182:
183:
184
185:
186:
187:
188:
189:
190:
191
192:
193:
194
195¢
196:
1972

TYPE POINTER = FIINTEGER:

TYPE PARAMTYPE = RECORD

FSN:
voL:
PFILE:
DFILE:
IFILE:

OFILE:.
PARENT:

PTR:

ENDZ

CONST
10_0K
NO_FDS_AVAILABLE
NO_I10C3S_AVAILABLE
NO_STREAMS_AVAILABLE
~SNO_XFELEMS_AVAILABLE
ILLEGAL_BLE

DIFFERENT _FILE_SYSTEMS

ILLEGAL_CGMMAND
NCT_ENOUGH_SPACE
ILLEGAL_MEMORY_PARM
NOT_CONNECTED
NOT_INPUT_MODE
SYNTAX_ERROR

NONEXISTING_DEVICE
ILLEGAL_CR80_ADDR
ILLEGAL_UNIT
WRONG_VOLUME_NAME
VOLUME _MOUNTED
ILLEGAL_FILE
ILLEGAL_ALLOC_SIZE
ILLEGAL_RESET
FILES_OPEN
NONEXISTING_USER
NO_CONNECTION
ILLEGAL_CALLER
DISK_COMMAND
DISK_DRIVER_FAILURE
ACL_FULL
NO_ACCESS_RIGHTS
ILLEGAL_DIRECTORY
NONEXISTING_NAME

PRI I R O O R O U L I LB I B U

CONST NAMELISTMAXINDEX = 10}

TYPE NAMELISTTYPE =

FILE_SYSTEM_NAME; “CURRENT FILE SYSTEM NAME"
VOLUME _NAME; "CURRENT VOLUME NAME"
FILEZ "CURRENT PARAMETER FILE"
FILEZ "CURRENT OIRECTORY FILE"
FILE; "CURRENT INPUT FILE"
FILES YCURRENT OUTPUT FILE"
PROCESS_NAME; "PARENT OF PROCESS"
POINTER
0; EOF = #2017
#2027 ILLEGAL_FD = #2037
#2047 ILLEGAL_TIOCSH = #2057
4206, ILLEGAL_STREAM = #2077
#2087 ILLEGAL _ADDRESS = #2097
#20A;. FILE_NOT_OPEN = #2087
#20C> UNKNOWN_FILE_SYSTEM s 4200;
B20E7 I0O_SYSTEM_ERROR = #20F;
#2107 ILLEGAL_MODE = 4211,
#2127 NO_BUFFER_SPACE = #2137
#2147 NOT_CUTPUT_MODE = #2157
#2167 SLEMENT_OVERFLOW = #217;
#2187
44007 ILLEGAL _DEVICE_KIND = #4017
BeQ2; DEVICE _NAME_IN_USE = #4037
RB4Q4; ILLEGAL_SUBUNIT = #4055
#406; NONEXISTING_VOLUME = #4077
#4087 DIFFERENT_VOLUMES = #4409/
#404; ILLEGAL_ORGANIZATION = 44087
#4CCo ILLEGAL_AREA_SIZE = #4007
#40E; ALLOC_TO_CONTIGUOUS_FILE = H40F;
#4107 NO_FILE_TO_ACCEPT = #6115
Be12; USER_ALREADY_ACTIVE = R413;
| 2 'Y ILLEGAL_USER = #4157
BL167 OTHER_USERS = #6177
#4137 QUT_OF _RANGE = #4197
46143 FILE_FULL- = #4187
B61C: PROTECTION_FAILURE = #4107
B41E7 BFD_ERROR = 441F;
#6207 NAME_EXISTS = 8421
#6225 NOT_ALLOCATABLE = #6235

ARRAY [1..NAMELISTMAXINDEX] OF PACKED_NAME?

CSS/006/RFM/0001

sign/dato 31de 4
CR80 PASCAL PH@/800619 161

REFERENCE MANUAL erstatter projekt

198: FUNCTION IAND(MASK1, MASK2: UNIV INTEGER): INTEGER;
199: FUNCTION IOR(MASK1, MASK2: UNIV INTEGER): INTEGER?

200: FUNCTION XOR(MASK1, MASK2: UNIV INTEGER): INTEGER;

201: FUNCTION INVC(MASK: UNIV INTEGER): INTEGER/

203: FUNCTION LEFTSHIFT(BITS: UNIV INTEGER; SHIFTS: INTEGER): INTEGER’
204: FUNCTION RIGHTSHIFT(BITS:z UNIV INTEGER; SHIFTS: INTEGER): INTEGER;

206: FUNCTION ADDCA, B: INTEGER): INTEGER;
207: FUNCTION SUBTRACT(A, B: INTEGER): INTEGER;

208:

209: FUNCTION GETBITS(BITS: UNIV INTEGER; LEFTMOST: BITPOSITION/

210: FIELDLENGTH: BITFIELDLENGTH): INTEGER,

211: PROCEDURE PUTBITS(FROM: UNIV INTEGER, VAR TO_: UNIV INTEGER?

212 LEFTTO: BITPOSITION, FIELDLENGTH: BITFIELOLENGTH)/

213: FUNCTION TESTSIT(BITS: UNIV INTEGER, BITNUMBER: BITPOSITION): BOOLEAN,
214: PROCEDURE SETBIT(VAR BITS: UNIV INTEGER; BITNUMBER: BITPOSITION)’
PROCEDURE CLEARBIT(VAR BITS: UNIV INTEGER; BITNUMBER: BITPOSITION)/

PROCEOQURE READ_IO(DEVICE: INTEGER, VAR DATA: UNIV INTEGER);
PROCEDURE CONTROL_IO(DEVICE: INTEGER; STATUS: UNLIV INTEGER);

62
217: PROCEDURE SENSE_IOCDEVICE: INTEGERZ VAR STATUS: UNIV INTEGER);
8:
9:
: PROCEDURE WRITE_IOCDEVICE: INTEGER; OATA: UNIV INTEGER);

NN
NN
-
. a

222: PROCEDURE RESERVE_INTERRUPT(DEVPR: INTEGER; VAR INTRPT: INTEGER);

223: PROCEDURE RELEASE_INTERRUPTC(INTRPT: INTEGER);

224: PROCEDURE CLEAR_INTERRUPT(INTRPT: INTEGER),

225: PROCEDURE WAIT_INTERRUPT(DELAY, INTRPT: INTEGER; VAR TIMED_OUT: 300LEAN);
2263 PROCEDURE SET_INTERRUPT(INTRPT: INTEGER)/

227: PROCEDURE SET_CYCLE(CYCLE: INTEGER)’

2283

229: PROCEOURE SEND_MESSAGE(VAR RECEIVER: PROCESS_NAME;

230: MSG: UNIV MESSAGE_BUFFER;

231: VAR EVENT: INTEGER),

232: PROCEDURE SEND_SYSTEM_MESSAGE(VAR RECEIVER: PROCESS_NAME;.
233: MSG: UNIV MESSAGE_BUFFER/?
234: VAR EVENT: INTEGER):,

235: PROCEDURE SEND_ANSWER(ANS: UNIV MESSAGE_BUFFER; EVENT: INTEGER);

236: PROCEDURE SEND_SYSTEM_ANSWER(ANS: UNIV MESSAGE_BUFFER; EVENT: INTEGER);

237: PROCEDURE SEND_SIGNAL(VAR RECEIVER: PROCESS_NAME);

238: PROCEDURE IDENTIFY_SENDERCEVENT: INTEGER, VAR PROC: INTEGER; VAR OK: BOOLEAN);
239:

240: PROCEDURE GET_PROC_NAME(VAR PROC_NAME: PRQOCESS_NAME):

2413 PROCEDURE GET_PROC_IDENT(VAR PROC_NAME: PROCESS_NAME; VAR FOUND: BOOLEAN);
2462

243: PROCEDURE WAIT_MESSAGE(DELAY: INTEGER; VAR MSG: UNIV MESSAGE_BUFFER’

246 VAR EVENT: INTEGER, VAR EVTTYPE: EVENT_TYPE);

24S: PROCEDURE WAIT_SYSTEM_MESSAGE(DELAY: INTEGER;

2463 VAR MSG: UNIV MESSAGE_BUFFER;,

247: VAR EVENT: INTEGER:

2483 VAR EVTTYPE: EVENT_TYPE), -
269: PROCEDURE WAIT_ANSWER(CDELAY: INTEGER, EVENT: INTEGER/

250: VAR ANS: UNIV MESSAGE_BUFFER?

251: VAR EVTTYPE: EVENT_TYPE)’

252: PROCEDURE WAIT_SYSTEM_ANSWER(DELAY: INTEGER; EVENT: INTEGER:’

253: VAR ANS: UNIV MESSAGE_BUFFER?

2542 VAR EVTTYPE: EVENT_TYPE);

255: PROCEDURE WAIT_EVENT(DELAY: INVEGER; EVTMSK: EVENT_MASK?
256: . VAR MSG: UNIV MESSAGE_BUFFERSZ
257: . VAR EVENT: INTEGER,

258: ‘ VAR EVTTYPE: EVENT_TYPE);
259: PROCEDURE SAVE_EVENT(EVENT: INTEGER);

260: PROCEDURE RESTORE_EVENTS(EVTTYPE: EVENT_TYPE),
261:

262: PROCEDURE TERMINATE(CC: COMPLETION_CODE)?

263:

264: PROCEDURE READ_TIME(VAR TIME: DATE_TIME_GROUP)’
265

CSS/006/RFM/0001

sign/dato siga
CR80 PASCAL PHQ/800619 162
REFERENCE MANUAL erstatter projekt
266: PROCEDURE START_PROCESS(PROC:.INTEGER; VAR ILLEGAL: BOOLEAN):
267: PROCEDURE STOP_PROCESS(PROC: INTEGER: VAR ILLEGAL: BOOLEAN)?
263: PROCEDURE PROCESS_STATUS(PROC: INTEGER; VAR ILLEGAL: BOOLEAN?
269: VAR PROC_ATTR: PROCESS_ATTRIBUTES)/
270: PROCEDURE REMOVE_PROCESS(PROC: INTEGER; VAR ILLEGAL: SO0OLEAN)?
271: PROCEDURE GET_NEXT_PROCESS(VAR PROC: INTEGER; VAR NONE: BO0O0LEAN)Z
272: PROCEDURE ADOPT_PROCESS(PROC: INTEGER; VAR ILLEGAL: BOOLEAN)Z
273: PROCEDURE CREATE_PROCESS(VAR CB: CREATION_BLOCK; VAR RESULT: INTEGER);
274: PROCEDURE GET_CPU_PARAMETER(CPU: INTEGER; PAR: CPUPARAMETEZR’
275: PRIORITY: INTEGER; VAR VAL: INTEGER:
276: VAR OK: BOOLEAN):
277: PROCEDURE SET_CPU_PARAMETER(CPU: INTEGER; PAR: CPUPARAMETER:
278: PRIORITY: INTEGER; VAL: INTEGER/
279: VAR 0K: BOOLEAN),
280: PROCEDURE LOOKUP_CPU(VAR CPU_NAME: PROCESS_NAME; VAR FOUND: BOOLEAN);
281:
282: PROCEDURE GET_BUFFER(WORD_CLAIM: INTEGER,
283: VAR MEMORY: MEMORY_PARM;
284: VAR ADDR:. WORD_ADDRESS:
285: VAR WORDS_ALLOCATED: INTEGER;
2862 VAR 0Kz 8S00LEAN)/
287: PROCEDURE GET_BUFFER_ADDR(MEMORY: MEMORY_PARM;
288: 'YAR ADDR: WORD_ADDRESS,
289: VAR SIZE_IN_WORDS: INTEGER’
290 VAR OK: BOOLEAN);
291: PROCEDURE RELEASE_BUFFER(MEMORY: MEMORY_PARM, VAR OK: BOOLEAN)/
292:
293: PROCEDURE CREATE(FSN: FILE_SYSTEM_NAME;
294: ATTRIBUTES: FILE_ATTRIBUTES!?
295: VAR F: FILE;
2963 VAR CC: COMPLETION_CODE)/
297: PROCEDURE DISMANTLE(F: FILE; VAR CC: COMPLETION_CODE);
298: PROCEDURE PROTECT(F: FILE?
2599 ACCESS: ACCESS_DESCRIPTION;
300: VAR CC: COMPLETIGON_CODE)};
201: PROCEDURE RESET(F: FILE; VAR CC: COMPLETION_CODE):Z
302: PROCEDURE OFFER(F: FILE; USER: USERID; VAR CC: COMPLETION_CODE);
303: PROCEDURE ACCEPT(FSN: FILE_SYSTEM_NAME; - ¥
304: VAR F: FILE,
305: VAR CC: COMPLETION_CODE)’
306: PROCEDURE GET_FILE_INFORMATION(F: FILE’ INE_TYPE: FILE_INFORMATION_TYPE;
307: VAR INF: UNIV LONG_INTEGER?
308: VAR CC: COMPLETIOQON_COOQE)’
309: PROCEDURE ASSIGN(FSN: FILE_SYSTEM_NAMEZ .
310: DESCRIPTION: DEVICE_DESCRIPTION,
311: VAR CC: COMPLETION_CODE)”
312: PROCEDURE DEASSIGN(FSN: FILE_SYSTEM_NAME’;
313:) DEVICE: DEVICE_NAME/
314 VAR CC: COMPLETION_CODE);
315: PROCEDURE MOUNT(FSN: FILE_SYSTEM_NAME;
3163 DEVICE: DEVICE_NAME?
317: VOLUME: VOLUME_NAME;
318: VAR CC: COMPLETION_CODED?
319: PROCEDURE DISMOUNT(FSN: FILE_SYSTEM_NAME;
320: VOLUME: VOLUME_NAME;
321: VAR CC: COMPLETION_CODE),
322: PROCEDURE FORMAT(PSN: FILE_SYSTEM_NAME;
323: DEVICE: OEVICE_NAME:
324 VAR SECTORADDR: SECTOR_ADORESS,
325: BLE_POINTER: BLEPTR;
326 VAR CC: COMPLEZTION_CODE);
327: PROCEDURE GET_ROOT(FSN: FILE_SYSTEM_NAME;
328: VOLUME: VOLUME_NAME;
329: VAR ROOT_DIRECTORY: FILE’
330: VAR CC: COMPLETION_CODE):
331: PROCEDURE USER_ONCFSN: FILE_SYSTEM_NAME;
332 USER: USERID-
333: VAR CC: COMPLETION_CODE);
334: PROCEDURE USER_OFF(FSN: FILE_SYSTEM_NAME;
335: USER: USERID;
336: VAR CC: COMPLETION_COODE)};
317: PROCEDURE ENTER(DIRECTORY: FILES
338: SUBJECT: FILE,
339: NAME: FILE_NAME;
340: VAR CC: COMPLETION_CODE);

CSsS/006/RFM/0001

sign/dato sige 2
CR80 PASCAL PHP/800619 163
REFERENCE MANUAL b projekt
341: PROCEDURE LOOKUP(DIRECTORY: FILE;
342: NAME: FILE_NAME?
343 VAR F: FILE,
344 ' VAR CC: COMPLETION_CODE);
345: PROCEDURE OESCENT(VAR F: FILE’
346 NAME: FILE_NAME’
347: VAR CC: COMPLETION_CODE)?
348: PROCEDURE FINO_FILE(FROM_ADAM: BOOLEAN?
349 FSN: FILE_SYSTEM_NAME;
350: VOLUME: VOLUME_NAME;
3512 NAMELIST: NAMELISTTYPE,
352: NAME_NO: INTEGER’
X53: OIRECTORY: FILE;
3542 VAR F: FILE;
355: VAR CC: COMPLETION_CODE);
3I56: PROCEDURE RENAME(DIRECTORY: FILE,
257: OLDNAME: FILE_NAME;
358: NEWNAME: FILE_NANME;
359: VAR CC: COMPLETION_CODE)’
3602 PROCEDURE REMOVE(DIRECTORY: FILE,
3612 NAME: FILE_NAME;
3622 VAR CC: COMPLESTION_CODE)?
363: PROCEDURE READ_SECTORS(FSN: FILE_SYSTEM_NAME’
364 DEVICE: DEVICE_NAMES
3465 VAR SECTORADOR: SECTOR_ADORESS/
366: BLE_POINTER: BLEPTR;
367: VAR CC: COMPLETION_CODE)?
368: PROCEDURE WRITE_SECTORS(FSN: FILE_SYSTEM_NAME’
369 DEVICE: DEVICE_NAME;
370: VAR SECTORAODR: SECTOR_ADDRESS,
371: BLE_POINTER: BLEPTR,
372: VAR CC: COMPLETION_CODE)’
373: PROCEDURE WRITE_AND_PROTECT(FSN: FILE_SYSTEM_NAME,
374 DEVICE: DEVICE_NAME?
375: VAR SECTORADDR: SECTOR_ADDRESS’
3I76: BLE_POINTER: BLEPTR?
377: VAR CC: COMPLETION_COOE)?
378: PROCEDURE WRITE_AND_MARK(FSN: FILE_SYSTEM_NAME;
379: DEVICE: DEVICE_NAME/,
380: VAR SECTORADDR: SECTOR_ADDRESS’
381: BLE_POINTER: BLEPTR/
382: VAR CC: COMPLETION_COQODE);
383: PROCEDURE READ_BYTES(F: FILE’
3184: VAR FILE_AODR: FILE_ADDRESS/
385: SBLE_POINTER: BLEPTR,
386 VAR CC: COMPLETION_CODE),
387: PROCEDURE MODIFY_BYTES(F: FILE;
388: VAR FILE_ADOR: FILE_ADDORESS/
389« BLE_POINTER: SLEPTR’
390: YAR CC: COMPLETION_CODE);
391: PROCEDURE APPEND_BYTES(F: FILE;
I92: VAR FILE_ADDR: FILE_ADDRESS,]
393: BLE_POINTER: BLEPTR,
3942 VAR CC: COMPLETION_CODE);
395: PROCSDURE INIT_READ_BYTES(F: FILE;
3963 VAR FILE_ADOR: FILE_ADDRESS;
397: SLE_POINTER: BLEPTR;
398: VAR OPREF: OPERATION_REFERENCE:
199: VAR CC: COMPLETION_CODE);
400: PROCEDURE INIT_MODIFY_BYTES(F: FILE’
401: = VAR FILE_AOOR: FILE_ADDRESS;
402 - BLE_PQINTER: BLEPTR,
403: VAR OPREF: OPERATION_REFERENCE?
404 VAR CC: COMPLETION_CODE)/
40S: PROCEDURE INIT_APPEND_BYTESC(F: FILE/,
406: VAR FILE_ADOR: FILE_ADDRESS?
407: BLE_POINTER: BLEPTR;
408: VAR OPREF: OPERATION_REFERENCE’;
409: VAR CC: COMPLETION_CQDZ),
410: PROCEDURE WAIT_OPERATIONCOPREF: QPERATION_REFERENCE,
411 VAR CC: COMPLETION_CODE),
412: PROCEDURE TEST_OPERATION(CQOPREF: OPERATION_REFERENCES
413: VAR FINISHEQO: BOOLEAN?
414 VAR CC: COMPLETION_CODE);
615: PROCEDURE CANCEL_OPERATION(COPREF: OPERATION_REFERENCE;
6162 VAR CC: COMPLETION_CODE),

417

CSS/006/RFM/0001

s1gn/data s1de =
CR80 PASCAL PH@/800619 164
REFERENCE MANUAL erstatter projekt

4182
419
420
421:
422:
423:
4263
425:
4263
427
428
429:
4302
431:
432:
433:
4342
435:
4362
437
4382
4392
440:
441
4422
643
444
445:
446
4472
448:
449
4502
451:
4522
453:
654
455
4562
457:
4582
459:
460z
4413
4622
463:
bb64:
L65:
466
6672
4682
4693
470:
471;:

PROCEDURE CONNECT(F: FILE;
M: MODE;"
VAR $: STREAM;
VAR CC: COMPLETION_CODE);
PROCEDURE DISCONNECT(S: STREAM;
VAR F: FILE;
VAR CC: COMPLETION_CODE);.
PROCEDURE GET_POSITION(S: STREAM;
VAR POSITION: STREAM_POSITION;
VAR CC: COMPLETION_CODE);
PROCEDURE SET_POSITION(S: STREAM; '
POSITION: STREAM_POSITION
VAR CC: COMPLETION_CODE);
PROCEDURE INBYTE(S: STREAM; VAR B: UNIV BYTE; VAR CC: COMPLETION_CODE);
PROCEOURE INWORD(S: STREAM;
VAR WORO: UNIV INTEGER;
VAR CC: COMPLETION_CODE);
PROCEDURE BACKSPACE(S: STREAM; VAR CC: COMPLETION_CODE):
PROCEDURE INREC(S: STREAM;
3 VAR FIRST_ELEMENT: UNIV ELEMENT;
VAR RECORD_LENGTH_IN_BYTES: INTEGER;
VAR CC: COMPLETION_CODE);
PROCEOURE OUTBYTE(S: STREAM; B: UNIV BYTE; VAR CC: COMPLETION_CODE);
PROCEDURE OUTWORD(S: STREAM;
WORD: UNIV INTEGER]
VAR CC: COMPLETION_CODE);
PROCEDURE OUTREC(S: STREAM;
EIRST_ELEMENT: UNIV ELEMENT;
VAR RECORD_LENGTH_IN_B3YTES: INTEGER:
VAR CC: COMPLETION_CODE);
PROCEDURE FLUSH(S: STREAM; VAR CC: COMPLETION_CODE);
PROCEOURE INTYPE(S: STREAM;
VAR CH: CHAR’
VAR CH_TYPE: CHAR_TYPE;
VAR CC: COMPLETION_CODE);
PROCEDURE INELEMENT(S: STREAM;
VAR ELEM: ELEM_REC;
VAR CC: COMPLETION_CODE);
PROCEDURE ININTEGER(S: STREAM;
VAR INT: INTEGER;
VAR CC: COMPLETION_CODE);
PROCEDURE INLONG_INTEGSR(S: STREAM;
VAR LINT: LONG_INTEGER;
VAR CC: COMPLETION_CODE);
PROCEDURE INNAME(S: STREAM;
VAR N: PACKED_NAME?
VAR CC: COMPLETION_CODE);
PROCEDURE INFILEID(CS: STREAM;
VAR FROM_ADAM: BOOLEAN:
VAR FSN: FILE_SYSTEM_NAME;
VAR VOLUME: VOLUME_NAME;
VAR NAMELIST: NAMELISTTYPE;
VAR NAME_NO: INTEGER;
VAR CC: COMPLETION_CCDE);

CSs/006/RFM/0001

3ign/dato aide
CR80 PASCAL PH@/800619 1 65
REFERENCE MANUAL arstatter projekt

472:
473
4746
475:
4762
477:
478:
479
480:
481:
482:
4832
4843
485
4863
4873
438:
489:
490:
491:
632:
4932
4§94
49532
4962
497:
493:
499
500:
501:
5022
503:
504:
505z
506:
507
508:
509:
510:
511:
512:
513:
S14:
5152
516:
$17:
518:
519:
520C:
521
522:
523:
5243
525:
526:
S527:
528:
329:

PROCEDURE OUTTEXT(S: STREAM;
UNPACKED_TEXT: TEXT;
VAR CC: COMPLETION_COODE);
PROCEDURE OUTSTRING(S: STREAM;
UNPACKED_TEXT: TEXT;
NO_OF_CHARS: INTEGER:
VAR CC: COMPLETION_COQDE);
PROCEDURE OUTHEXA(S: STREAM;
INT: UNIV INTEGER;
~ PAD_CHAR: CHAR;
VAR CC: COMPLETION_CODE);
PROCEDURE OUTINTEGER(S: STREAM;
INT: UNIV INTEGER;
FORMAT: UNIV INTEGER;
VAR CC: COMPLETION_CODE);"
PROCEDURE OUTLONG_INTEGER(S: STREAM;
LINT: UNIV LONG_INTEGER;
FORMAT: UNIV INTEGER:
VAR CC: COMPLETION_CODE);
PROCEDURE OUTNL(S: STREAM; VAR CC: COMPLETION_CODE);

PROCEDURE MARK(VAR TOP: INTEGER),
PROCEDURE RELEASE(TOP: INTEGER):
FUNCTION FREE_SPACE: INTEGER?
FUNCTION CONTENTS(BASE_REL_ADDR: LONG_INTEGER): INTEGER’
PROCEDURE EXIT;
PROCEDURE CURRENT_LEVEL(VAR LEVEL: INTEGER)/
PROCEDURE LONG_EXITCLEVEL: INTEGER),
FUNCTION CURRENT_LINE: INTEGER?
FUNCTION REL_ADDR(FIRST_ELEMENT: UNIV ELEMENT): INTEGER/
PROCEDURE GET_ABS_AODR(FIRST_ELEMENT: UNIV ELEMENT.
VAR WORO_ADDOR: WORD_ADORESS); :
PROCEDURE COPY(SOURCE, DEST: BYTE_ADORESS; NO_OF_BYTES: INTEGER)?
PROCEDURE PACK(FIRST_ELEMENT _OF_UNPACKED: UNIV ELEMENT;
VAR FIRST_ELEMENT_OF _PACKED: UNIV ELEMENT?
NO_OF_BYTES: INTEGER)/
PROCEDURE UNPACK(FIRST_ELEMENT_OF_PACKED: UNIV ELEMENT/
- VAR FIRST_ELEMENT_OF_UNPACKED: UNIV ELEMENT;
NO_OF_B8YTES: INTEGER);
PROCEDURE PACK_SWAPPED(FIRST_ELEMENT_OF _UNPACKED: UNIV ELEMENT/
VAR FIRST_ELEMENT_OF _PACKED: UNIV ELEMENT,
NO_OF_SYTES: INTEGER);
PROCEDURE UNPACK_SWAPPED(FIRST_ELEMENT_OF _PACKED: UNIV ELEMENT/ -
VAR FIRST_ELEMENT_OF _UNPACKED: UNIV ELEMENT/
NO_OF_3YTES: INTEGER),
PROCEDURE RUN(F: FILE; VAR PARAM: PARAMTYPE:
VAR LINE: INTEGER; VAR RESULT: PROGRESULT):
FUNCTION CREATE_LONGC(LEAST, MOST: UNIV INTEGER): LONG _INTEGER?
PROCEDURE SPLIT_LONG(L: LONG_INTEGER;, VAR LEAST, MOST: UNIV INTEGER)?
PROCEDURE ASSIGNBITS(VALUE: UNIV BITVALUS; VAR P: UNIV PAGE;
FIRSTBIT, NO_OF_3ITS: INTEGER);
PROCEDURE SKIPBITSC(VALUE: UNIV 3ITVALUE; P: UNIV PAGE;
VAR FIRSTBIT: INTEGER, NO_OF _B8ITS: INTEGER.
VAR BITSSKIPPED: INTEGER),
PROCEDURE SET_TRACE(S: STREAM; MASK: INTEGER)?
PROCEDURE PRINT_TRACE(ON: BOOLEAN);

PROGRAM MAIN(VAR PARAM: PARAMTYPE);

