e —————— v

Dansk Data Elektronik A/S

SUPERMAX
BASIC UTILITIES
System V Reference Manual
Section 1, Essential Utilities
Release 3.1, Version 2.6

©Copyright 1990 by
Dansk Data Elektronik A/S and AT&T

©1986 AT&T, USA

©1990 Dansk Data Elektronik A/S, Denmark
All Rights Reserved

Printed in Denmark

Stock no.: 94300111

NOTICE

The information in this document is subject to change without notice.
AT&T or Dansk Data Elektronik A/S, Denmark assumes no responsi-
bility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T in the USA and other coun-
tries.

SUPERMAX is a registered trademark of Dansk Data Elektronik
A/S, Denmark.

Permuted Index

This is a permuted index of all the articles found in the Supermax
System V, Reference Manuals. Each line in the index consists of three
fields:

1) A possibly empty "head’ field.

2) A ’key’ field, followed by a number of periods.
3) A ’reference’ field..

The index is sorted alphabetically by the key field.

Most lines in the index are taken directly from the "NAME’ section of
each article. Each word of that short description of the article is used
as a key in the key field.

The head field contains the part of the description preceding the key.
The reference field tells the reader where to find the article.

As an example consider the article about the /s in Section 1 of the
Reference Manuals. The purpose of Is is to ’list contents of directory’.
Therefore Is may be found in the permuted index in four places,
namely under Is, under list, under conients, and under directory,
thus:

Is: list contents of directory.................. 1s(1)

Is: list of contents directorycccccecrreiriieecreerreerveeens 1s(1)
Is: list contents of directory............ Is(1)

Is: list contents of directory...... Is(1)

The most common words, such as ’a’, 'the’, 'of’, etc., are not used as
keys.

SUPERMAX SYSTEM V REFERENCE MANUALS PI-i

k3

Permuted Index

This page is intentionally left blank

Pl-ii Permuted Index

Permuted Index

13tol, 1tol3: convert between
diff3

abs: integer

ceil, fmod, fabs: floor, ceiling, remainder

touch: update

utime: set file

par_chm: change

Idfen: common object file

deopy: copy file systems for optimal
locking: provide exclusive

getutent, getutid, getutline

pututline, setutent:

endutent, utmpname:

access: determine

acct: enable or disable process
acctconl, acctcon2: connect-time
ckpacet, dodisk: shell procedure for
monacct, nulladm: shell procedure for
prdaily: shell procedure for

pretmp, prtacct: shell procedures for
startup, turnacct: shell procedures for
acctdusg, accton, acctwtmp: overview of
overview of accounting and misc.
diskusg: generate disk

acct: per-process

acctcom: search and print process
acctmerg: merge or add total

acctcms: summary from per-process
fwtmp, wtmpfix: manipulate connect

runacct: run daily

SUPERMAX SYSTEM V REFERENCE MANUALS

3-byte integers and long integers................... 13tol(3C)
3-way differential file comparison................. diff3(1)
a64], 164a: convert betweenc..c.ceves a641(3C)
abort: generate an IOT fault abort(3C)
abs: integer absolute value... .. abs(3C)
absolute value abs(3C)
absolute value functions............ccccooovvurrennnn. floor(3M)
accept, reject: allow/prevent LP requests ... accept(1M)
access and modification times of a file.......... touch(1)
access and modification times..............ccco..... utime(2)
access: determine accessibility of a file.......... access(2)
access rights to partition..........c.cocceeceveieennn. par_chm(2)
ACCESS TOULINGS ..voviiiirieiiiriisirisisnesn s eseenanis Idfen(4)
BCCESS TIME . iiiiiieiiiniiiiiie it dcopy(1M)
access to a byte range..........c.ccoovnvrveeeniierenns locking(2)

getut(3C)
.. getut(3C)
.. getut(3C)

access utmp file entry..

access utmp file entry ..
access utmp file entry.....

accessibility of a file access(2)
ACCOUNEINE....ccceevermiiiiiisierieessareeeete s saens acct(2)
ACCOUNEINEG.....coiecv ettt acctcon(1M)
accounting. acctsh(1M)
ACCOUNEINE. ..ot acctsh(1M)
T eTTE (1A) o= Y acctsh(1M)
ACCOUNING......cceivereniarrrriiiire it acctsh(1M)
ACCOUNEINE......cveverceereninrreerre e acctsh(1M)
accounting and misc. accounting.... acct(1M)
accounting commands acct(1M)

accounting data by user ID .. diskusg(1IM)

aceounting file format acct(4)
aceounting files.......oovveveevieneccicne e, acctcom(1)
accounting files acctmerg(1M)
accounting records acctems(1M)
accounting records...........cviiiiiinisiinisniinnns fwtmp(1M)
ACCOUNEING....ivvvrrrrsrrrrnersrareesisieseeniea . runacct(1M)

Pl-1

Permuted Index

acctconl

acctdis

acctdis, acctdusg

acetprel

acctdis, acctdusg, accton
sin, cos, tan, asin
killall: kill all

time a command:

report process data and system
acctmerg: merge or
putenv: change or
set_parm: define
udamind:

uadmin:

alarm: set a process

aliens: the

killall: kill

wall: write to

brk: change data segment space
sbrk: change data segment space
malloe, free: main memory
realloc, calloc: main memory
calloc, mallopt: fast main memory
mallinfo: fast main memory

accept, reject:

Pl-2 Permuted Index

T TR e ™ IOl AP i BTN TN

acct: enable/disable process accounting acct(2)

acct: pre-process accounting file format acct(4)
acctcms: summary from per-process............. acctems(1M)
acctcom: search and print process acct......... acctcom(1)
accteonl, accteon2: connect-time acent......... acctcon(1M)
accteon2: connect-time accounting.............. acctcon(1M)
acctdis, acctdusg, accton: overview of acct(1M)
acctwtmp: overview ofccciiiiiniiiiiiiienn, acct(1M)
acetdusg, accton, acctwtmp: overview of acct(1IM)
acctmerg: merge/add total accounting files.. acctmerg(1M)
accton, acctwtmp: overview of acct and........ acct(1M)

acctprel, acctpre2: process accounting.......... acctpre(IM)
. acctpre(1M)

.. acct(1M)

acctpre2: process accounting

acctwtmp: overview of acct and....

acos, atan, atan2: trigonometric functions... trig(3M)
active processes killall(1M)
ACEIVILY .vevve e rtiece e e timex(1)
ACEIVILY .ot timex(1)

add total accounting files...........ccvvevrcnicccnnenn acctmerg(1M)
add value to environmentc.ococeevecvvreviinens putenv(3C)
additional system call params............c.ccccounne. set_parm(2)
administrative control uadmin(1M)
administrative control . uadmin(2)
alarm clock . . alarm(2)

alarm: set a process alarm clock .. alarm(2)

alien invaders attack the earth.................... aliens(6)
aliens: the alien invaders attack the earth... aliens(6)
all active ProCesses........vevviieririeveeinnernns killall1M)
Al USEL'S...ccoemieunrirereeccrcrmennenerierressereren e renes wall(1)
allocation..... brk(2)
Allocation ... brk(2)
AllOCALOT sigumsimsssssssssammussussssnsis pasmsepspuymHmsms: malloc(3C)
allocator malloc(3C)
allocator malloc(3X)
allocator malloc(3X)

allow or prevent LP requests.... .. accept(1IM)

amsgop: asynchronous message operations..

amsgop(2)

yacc: yet
su: become super-user or

write: write to

be:

ar:

cpio: format of epio

ar: common

read the archive header of a member
ldahread: read the

tar: tape file

cpio: copy file

varargs: handle variable
vsprintf: print formatted output
xargs: construct

getopt: get option letter from
expr: evaluate

echo: echo

be: arbitrary precision

as
164a: conv.btw.long integer and base-64

ascii: map of

ctime, localtime, gmtime
sin, cos, tan
a.out: common

as, as20:

assert: verify program
setbuf, setvbuf:

amsgop:

SUPERMAX SYSTEM V REFERENCE MANUALS

another compiler-compiler

another user ...

another user

a.out: assembler and link editor output.
ar: archive and library maintainer.....
ar: common archive file formatovnenee.
arbitrary precision arithmetic language........
archive and library maintainer......................

archive

archive file format.........ccocvveveivieiieeenecnnnens

archive file

archive header of a member

archiver

archives in and out

aread: asynchronous read ..

argument list

argument list
argument lists and execute ecmd

argument vector.........ccocovvviniiicnciiinnninnen
arguments as an expression.............oovviiiren
ArGUIMENES .ccorveeecirieiieen e e e ens

arithmetic language

arithmetic: provide drill in number facts

as, as20: assemblerccocuiecerernnrecneniiennnnn,
as20: assembler
ASCIT

ASCII character set

aseii: map of ASCII character set....

asctime, tzset: convert date and time

asin, acos, atan, atan2: trigonometric...........

assembler and link editor output

assembler

assert: verify program assertion....................
ASSEIHION.....cviiiiiiiiie s
assign buffering to a stream

asuspend: asynchronous suspend

asynchronous message operations.................

ar(l)

.. cpio{4)

ar(4)
Idahread(3X)
ldahread(3X)

.. tar(1)

cpio(l)

.. aread(2)
.. varargs(5)

vprintf(3S)
xargs(1)
getopt(3C)
expr(1l)
echo(1)

be(1)
arithmetic(6)
as(1)

as(l)

. a641(3C)
.. ascii(b)

.. ascii(5)

ctime(3C)
trig(3M)
a.out(4)
as(1)
assert(3X)
assert(3X)
setbuf(3S)
asuspend(2)
amsgop(2)

PI-3

I T

D Lyl | i) e B4]

3

Permuted Index

aread:
asuspend:

awrite:

sin, cos, tan, asin, acos

sin, cos, tan, asin, acos, atan
strtod

strtol, atol

strtol

par_att:

alien: the alien invaders

wait:

ungetc: push character

back: the game of
finc: fast incremental

frec: recover files from a

terminfo: terminal capability data
ab4l, 164a: conv.btw.long integer and

vedit: sern.oriented (visual) display ed
at
bre

cb: C program

su:

j0, i1, jn, y0, y1, yn:
13tol, 1tol3: convert
a64], 164a: convert

bdiff:

bsf:

fread, fwrite:

bsearch:

Pl-4 Permuted Index

2 T e i R . [M Vo

—

asynchronous read........ccocvininiiicnvciciieniin aread(2)
asynchronous suspend..........cccovveverecncnnnanine asuspend(2)
asynchronous write.........coocvevecinineciinioininns awrite(2)
at, batch: execute cmd at a later time at(1)

atan, atan2: trigonometric functions trig(3M)
atan2: trigonometric functions.........cccocevaue trig(3M)
atof: conv. string to dbl-precision number ... strtod(3C)
atoi: convert string to integer .. strtol(3C)

atol, atoi: convert string to integer .. strtol(3C)

attach a memory partition .. par_att(2)
attack the earth .. aliens(6)
await completion of processc.cooecrreiiians wait(1)
awk: pattern scan and process language awk(1)
awrite: asynchronous write............ccccccveiiins awrite(2)
back into input stream..........coeeiinnens ungetc(3S)
back: the game of backgammon back(8)
backEaMMON.......ccoveieriercesssssesiessessssssesssraiensse back(6)
backup finc(1M)
backup tape............ frec(1IM)
banner: make posters.... .. banner(1)

base....
base-64 ASCIT

based on ex

terminfo(4)
.. a641(3C)
vi(l)

basename,dirname: deliver portions of basename(1)
batch: execute cmd at a later time...........o... at(1)
be: arbitrary precision arithmetic language. be(1)
beheckre: system initialization procedures... brf(1M)
bdiff: big diff ... bdiff(
beautifier......cciiiviiics et cbh(D)
become super-user or another user............... su{1M)
Bessel functionscccocevecnnnnneenccnerencon bessel(3M)
btw. 3-byte integers and long integers.......... 13t0l(3C)
btw. long integer and base-64 ASCII .. a641(3C)

.. bdiff(1)
big file SCANNET ..ot ersr e bfs(1)
binary input and output......ccccoovevrriccoiiiiennn fread(3S)
binary search a sorted table......c...ccocviinn bsearch(3C)

tsearch, tfind, tdelete, twalk: manage

bj: the game of
sum: print checksum and
sync: update the super

df: report number of free disk

stdio: standard
streamdrv: copy with
setbuf, setvbuf: assign
mknod:

locking: provide excl.access to a
size: print section size in
swab: swap

ce:

cflow: generate

cpp: the

cb:

lint: a

cxref: generate

ctrace:

clist: list

list: procedure

sync: write disk

de: desk
cal: print

set_parm: define additional system
stat: data returned by stat system
malloc, free, realloe

malloc, free, realloc

Ip, cancel: send or

Ip

SUPERMAX SYSTEM V REFERENCE MANUALS

23

Permuted Index

binary search trees tsearch(3C)
bj: the game of black jack.. bj(6)

black JACKccevvereiiiminniini s bj(6)

block count of a file..........ccccccunniiiiiiiiicnciiae sum(l)
blockcvrenienans . sync(1M)
blocks and i-nodes...........oocerrvrsrrnnenesrsnssnins df(1)

bre, beheckre: system init. procedures.......... brf(1M)
brk, sbrk: chg data segment space alloc brk(2)
bsearch: binary search a sorted table............ bsearch(3C)
bsf: big file scanner.........cocevrirevrininnnins bfs(1)
buffered input-output package..............ccc..... stdio(38)
buffering............. iR streamdrv(1)
buffering to a stream..........ccocoovccrrnceveenenes setbuf(3S)
build special file .. mknod(1M)
byte range......... locking(2)
bytes of common object filescccerinnnns size(l)
DFEES vttt et swab(3C)

C cOMPIler....cocriiiiiinicciein e e ce(l)

C flowgraph cflow(1)

C language preprocessor.... cpp(l)

¢ program beautifier cb(1)

C program checker. ... lint(1)

C program cross-reference...........ccoocvvniiiiins cxref(1)

C program debUggercoemrceriessisiinins ctrace(1)

C Programs..........cceecveevnenes clist(1)

C source listing from a common obj.file list(1)
cache to disK......oovrcecciinens sync(2)

cal: print calendar...........ccccconevevierneerennninininen cal(1)
calculator de()
calendar.........coocernnnen cal(1)
calendar: reminder service...............ccovieinines calendar(1)
call parameters.........ccouneevvvennvnnevinniininanines set_parm(2)
call stat(b)
calloc: main memory allocator.........cc.ceccceceve. malloc(3C)
calloc, mallopt, mallinfo; fast main malloc(3X)
cancel requests to LP line printer................. Ip(1)
cancel: send/cancel req. to LP line printer.. Ip(1)

PI-5

Permuted Index

Pl-6

terminfo: terminal

edit: text ed.(variant of ex for

floor

floor, ceil, fmod, fabs: floor

par_chm:

brk, sbrk:

chlds:

passwd:

chmod:

chmod:

putenv:

chown:

chown, chgrp:

par_cho:

nice:

chroot:

chroot:

chhw:

shutdown: shut down system
newform:

cd:

chdir:

pipe: create an inter-process
ungetc: push

cuserid: get

gete, getchar, fgete, getw: get
putc, putchar, fputc, putw: put
ascii: map of ASCII
1S0-8859/1: international
fgrep: search a file for a
toupper, tolower, toasci: translate

isalpha. isupper, islower: classify

Permuted Index

capability data base........cccccoovcrevrncciericniennnn terminfo(4)
€asual USETS)c.oocvmvmveirimirvninnennncneeia e edit(1)

cat: concatenate and print files.........ccccecuee. cat(1)

¢b: C program beautifiercccorevrcennnnee cb(1)

cc: C compiler ce(1)

cd: change working directory .. cd(@)

ceil, fmod, fabs: floor, ceiling remainder....... floor(3M)
ceiling, remainder, abs.value function floor(3M)
cflow: generate C flowgraph............ccoovvveeeeces cflow(1)
change access rights to partition.................. par_chm(2)
change data segment space allocation........... brk(2)
change logical disk size...........ccocovreeccicenianans chlds(1M)
change login password............ceceveciecerennen. passwd(1)
change mode of a filecocccirmnvciiiciicnnnncns chmod(1)
change mode of a filec..cvieccciicniennncs chmod(2)
change or add value to environment............. putenv(3C)

change owner and group of a file chown(2)

.. chown(1)

change owner and group ID of a file

change owner/group-ID of a partition .. par_cho(2)
change priority of a process........c.cccceveenrnnee. nice(2)
change root directory...........ocvvrmveccciiinninens chroot(2)
change root directory for a command........... chroot(1m)
change system configuration.............cccoeceuins chhw(1M)

change system state.........c.c.ovreiveerrrvenreccinenions shutdown(1M)
newform(l)
cd(1)

chdir(2)

.. pipe(2)

.. ungetc(3S)

.. cuserid(3S)

character or word from stream getc(38)

character back into input stream..

character login name of the user

character or word on a stream.............ce....... putc(38)
character Set...........occcomriremcncrenienercncininenae ascii(5)
character set...ssammmmnnasrnnsassuitsme 1S0O-8859/1(5)
character string........ccovvevivvivenreenniniineens fgrep(1)
characters ... conv(3C)

characters .. ctype(3C)

[o]3

1

isdigit, isprint, isgraph: classify
iscntrl, isascii, isxdigit: classify |
isalnum, isspace, ispunct: classify
sumdir: sum and count

tr: translate

fsck, fsck512: file system consistency
dfsck: file system consistency

lint: a C program

pwek, grpek: password and group file

sum: print

chown

times: get process and

wait, waitx: wait for

cioc: the

chargefee

isalpha, isupper, islower, isdigit:
isprint, isgraph, iscntrl, isascii:
isxdigit, isalnum, isspace, ispunct:
clri:

ferror, feof'

csh: a shell with

alarm: set a process alarm

cron:

£

Permuted Index

characterscurisnic e ctype(3C)
Charactersouivmnmrmmsmsissnsse e ctype(3C)
characters ctype(3C)
characters in files in given directory. .. sumdir(1)
characters tr(D)

chargefee, ckpacct, dodisk: shell proced acctsh(1M)

chdir: change working directory.................... chdir(2)
check and interactive repaircccovevevicrorene fsck(1M)
check and interactive repair ... fsck(1M)
checker lint(1)
checkers pwck(1M)
cheeklist: list of file systems processed by.... checklist(4)
|checksum and block count of a file............... sum(1)
chgrp: change owner/group-ID of a file........ chown(1)
chhw: change system configuration chhw(1M)
child process elapsed times.... . times(2)
child process to stop or terminate................. wait(2)
chlds: change logical disk size..........ccccoocusine. chlds(1M)
chmod: change mode of a file...........cccc..c..e. chmod(1)
chmod: change mode of a file........ccccccceenn..e. chmod(2)
chown: chg owner and group of a file........... chown(2)
chown, chgrp: chg owner/group ID of file.... chown(1)
chroot: change root directory . chroot(2)
chroot: chg root direct. for a command chroot(1M)
chstack: set load module stack size............... chstack(1)
CIOC devicesccveureeereuerirrrennne cioc(7)
cioc: the CIOC devices........occrrreeeeereerrunnseaenes cioc(7)
ckpacct, dodisk: shell procedures for acctsh(1M)
classify characters............cocooveevceinniasans ctype(3C)
classify characters ... ctype(3C)
classify characters.........ceovveeiiicicciresnnnne. ctype(3C)
clear i-node ..o clri(1M)
clearerr, fileno: stream status inquiries........ ferror(3S)
C-like SYNtax......cocvivereivenierirrnninrernerereerenaenns csh(l)
clist: list C programs clist(1)

. alarm(2)
clock daemon.... A cron{1M)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-7

3

Permuted Index

ldclose, ldaclose:

close:

fclose, fAush:

seek to line-no of a section

nice: run a

chroot: chg root directory for a
env: set environment for

nohup: run a

getopt: parse

sh, rsh: shell, the std.and restricted
timex: time &

acctcms:

system: issue a shell

test: condition evaluation

time: time a

xargs: construct arg.lists and execute
of accounting and misc.aceounting
at, batch: execute

install: install

re2: run

rc0: run

mes: manipulate the object file

ar:

a.out:

Idfen:

cprs: compress a

ldopen, ldsopen: open a

Iditem: manip.line-no entries for a
1dclose, 1daclose: close a

Idfhread: read file header for a
Idohseek: seek opt.file header for a

seek reloc. entries of a section for a

Pl-8 Permuted Index

clock: report CPU time used

close a common object file
close a file-descriptorccveveeeieccirinne.
close: close a file-descriptor.........c.c.ovcvverinnen.
close or flush a stream..........iccceeenreeciicinenns

clri: clear i-nodeccovvvveeeeinveccceee i

command tion

command immune to hangups and quits......

command options
command programming language
command: report process data and system ..
command summ.from pre-proc.accounting ..

command.........

command.

command.

commands at a later time

commands......
cmd’s performed for multi-user envimnt.
cmd’s performed to stop opr.system

comment SeCtioncccoerecrirecreernereeneeniinne

common assmbl.and link editor output........
common object file access routines................

common object file

common object file for readingc.cccveuen.
common object file function..........ccccoiviiinenne
common object filecccciiimiinn.

common object file

common object file

common object file

.. clock(3C)
.. ldclose(3X)

close(2)
close(2)
felose(38)
clri(IM)
cmp(l)
1dlseek(3X)
comm(1)

nice(1)

.. chroot(1M)

env(l)
nohup(1)
getopt(1l)
sh(1)
timex(1)
acctems(1M)
system(3S)
test(l)
time(1)
xargs(1)
acct(1M)

. at(l)
. install(1M)

rc2(1M)
rcO(1M)
mes(1)
ar(4)
a.out(4)
ldfen(4)
cprs(1)
Idopen(3X)
1dIread(3X)
Idclose(3X)

.. 1dfhread(3X)
.. ldohseek(3X)
.. 1drseek(3X)

48

13

read indexed/named section header of a
seek indexed/named section of a
compute index symbol table entry of a
read indexed symbol table entry of a
Idtbseek: seek symbol table of a
linenum: line number entries of a
list: produce C source listing of a
nm: print name list of a

reloc: relocation information of a
scnhdr: section header for a

strip symbol and line-no info of a
ldgetname: retrieve symbol name of a
syms:

filehdr: file header for

Id: link editor for

size: print sect.sizes in bytes of
comm: select or reject lines

ipes: report inter-process

stdipe, ftoc: standard inter-process
diff: differential file

cmp:

diff3: 3-way differential file

diremp: directory

regemp, regex:

regexp: regular expression

regemp: regular expression
terminology:

term: format of

cc: C

tic: terminfo

yace: yet another

erf, erfc: error function and

wait, await

cprs:

pack, pcat, unpack:

ldtbindex:

cat:

SUPERMAX SYSTEM V REFERENCE MANUALS

k3

Permuted Index

common object filecooevvieiiniirniiinennns
common object file
common object file.

common object file.

common object file
common object filecoccorenerieenneninnennns
common object filecccveierineenncnieniens
common ohject filecccorevereniinreriennineenn
common object filecccoeerererernneeininnenn
common object filec..ccoeveerierniiiienena
common ohject filecocvivirrievniniinererennns
common object file symbol table entry
common object file symbol table format.......
common object fileccoceviieecininncieeninnn,

common object file

common object files...

common to two sorted lines

communication facilities status ...

communications package..............ccoieiivinenne.
COMPATALOL....oicuiivcarsiiiriaeisessiioressinsianascsibitidenree
compare tWo filesoeverrrnsrnnenisnnr s ennens

comparison....

comparison

compile and execute reg. expression.............
compile and match routines..............cccoeeennn.

compile.........

compile VTI programs..

compiled term file ..

compiler

compiler

compiler-compiler.........co.ccoovincicnniiininnn,
complementary error functions..............cevens
completion: of Process...........coevireceiriennicininans
compress a common object fileccoieins
compress and expand files..........c..ccccvvniriinns
compute index of symbol table entry............

concatenate and print files...........ccovveeiinnnn:

ldshread(3X)
1dsseek(3X)

. ldtbindex(3X)
. 1dtbread(3X)

1dtbseek(3X)
linenum(4)
list(1)

nm(1)

reloc(4)
scnhdr(4)
strip(1)
ldgetname(3x)
syms(4)
filehdr(4)

. 1)
. size(l)
. comm(1)

.. ipes(1)

stdipc(3C)
diff(1)
cmp(1)

.. diff3(1)

diremp(1)
regemp(3X)
regexp(b)
regemp(1)

. terminology(1)
. term(4)

ce(l)
tic(IM)
yace(1)
erf(3M)

cprs(1)

pack(1)
1dtbindex(3X)

Pl-9

k3

Permuted Index

test:

chhw: change system

config: print system

Ipadmin:

fwtmp, wtmpfix: manipulate
dial: establish outgoing terminal line
acctconl, acctcon2:

fsck, fsck512, dfsck: file system
math: math functions and
mkfs, mkfs512:

xargs:

deroff: remove nroff, troff, tbl, and eqn
Is: list

csplit:

fentl: file

init, telinit: process

ioctl: device

msgetl: message

semctl: semaphore

shmctl: shared memory

fentl: file

udamind: administrative
uadmin: administrative

tty:

term:

units:

dd:

13tol, Itol3:

a64], 164a:

ctime, localtime, gmtime, asctime, tzset:
ecvt, fevt, gevt:

scanf, facanf, sscanf:

strtod, atof:

strtol, atol, atoi;

dd: convert and

cpio:

PI-10 Permuted Index

condition evaluation command

config: print system configuration...

configuration...

configuration...

configure the LP spooling system..................
connect accounting records........coceecieirieinnnns

connection......

connect-time accounting...........cccceveerieeririnen.
consistency check and interactive repair......

constants

construct a file system......
construct arg. lists and execute cmd

constructs

contents of directory...........cccoucenverrecencrennnnn

context split

CONBEOL . ccirii v cyobiniaermes s S EsEEHE DR
control initializationceveemmermsineraessranns

control..........

control operations

control operations

control operations

control operations

control..

control..

controlling terminal..........ccooicciiiiiinicn
conventional names for terminals...............
COTVETSION PrOBTAILLcove.eiiiersecsisssiisssiniesses

convert and copy a file

convert btw. 3-byte integer and long............
conv.btw. long integer and base-64 ASCILI....
convert date and time..........cccoecveveriviinnnnes
conv. floating-point number to string...........
convert formatted input.......c.coovevereneninne

convert string to dbl-precision number

convert string to integer

copy a file

copy file archives in and outccceceiiiiens

. test(1)
.. config(IM)

chhw(1M)
config(1M)
Ipadmin(1M)
fwtmp(1M)

.. dial(3C)

acctcon(1M)
fsck(1M)

.. math(5)
. mkfs(1M)
. xargs(l)
.. deroff(1)

Is(1)
esplit(1)
fentl(2)
init(1IM)
ioctl(2)
msgetl(2)

. semctl(2)

shmetl(2)
fentl(5)
uadmin(1M)
uadmin(2)
tty(7)
term(5)
units(1)
dd(1)
13tol(3C)
a641(3C)
ctime(3C)
ecvt(3C)
scanf(3S)
strtod(3C)

.. strtol(3C)

dd(1)
cpio(1)

I3

15

e —

dcopy:

¢p, In, mv:

make literal:

streamdrv:

sin:

sinh

sumdir: sum and

sum: print checksum and block
we:

millisec: get millisecond

cpio: format of

clock: report

craps: the game of

crash: provoke system

par_cre:

tmpnam, tempnam:
creat:

fork:

tmpfile:

pipe:

umask: set and get file

crontab: user

cxref: generate C program
cref: make
curses:

pg: file perusal filter for

Permuted Index

copy file systems for opt. access time .. dcopy(1IM)
copy, link or move files cp(l)

copy of file system volcopy(1M)
copy with buffering..........ccoceceimvvvvvrnirninnnnns streamdrv(1)
cos, tan, asin, acos, atan, atan2................... trig(3M)
cosh, tanh: hyperbolic functions..........c..c...... sinh(3M)
count characters in the file in given.............. sumdir(1)
count of a file .. sum(1)
word count we(l)
counter ... millisec(2)
¢p, In, mv: copy, link or move files................ cp(l)

€pio archive.........ccccocvicnnnccccneninnncee i cpio(4)
cpio: copy file archives in and out cpio(1)
cpio: format of cpio archive...... .. cpio(4)
cpp: the C language pre-processor cpp(1)
cprs: compress a common object file............. cprs(l)
CPU time used clock(3C
(114 - SN craps(6)
craps: the game of €raps........c.oovecevnccineecs craps(6)
crash . crash(1M)
crash: provoke system crash crash(1M)

creat: create new file or rewrite existing...... creat(2)

create a memory partition...........cceeine par_cre(2)
create a name for a temporary file................ tmpnam(3S)
create a new file or rewrite an existing........ creat(2)
create a new process . fork(2)
create a temporary file ... tmpfile(3S)
create an inter-process channel..................... pipe(2)
creation mask .. umask(2)
cref: make cross-reference listing.................. cref(1)
cron: clock daemons.........c.coo.ccomnvcvervriecnccnene cron(1M)
crontab file............... crontab(1)
crontab: user crontab file.. crontab(1)
cross-reference cxref(1)
cross-reference Hsting...........ccocoovvceverinvienns cref(l)
CRT screen handling and opt. package curses(3X)
CRT’s pe(l)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-11

£

Permuted Index

csh:

uname: get and set name of
print name of

ttyslot: find slot in utmp file of |
getewd: get pathname of

cut:

cron: clock

runacct: run

timex:time a command:report process
terminfo: terminal capability

diskusg: generate disk accounting
fedit, Aook: inspect and edit

plock: lock process, text, or

prof: display profile

stat:

brk, sbrk: change

type: primitive system

join: relational

tput: init.a terminal or query terminfo
localtime, gmtime, asctime, tzset: convert

date: print and set the

ctrace: C program

Pl-12 Permuted Index

crypt, setkey, encrypt: generate hashing...... crypt(3C)

csh: a shell with C-like syntax...........c.c.ccc...e. csh(l)
csh: C-shell ... csh(l)
C-shell ... e eses csh(l)
csplit: contest SPlit.....cccooicivivnnreciinenieieienns esplit(1)

ctermid: generate file name for terminal...... ctermid(3S)
ctime, localtime, gmtime, asctime, tzset....... ctime(3C)

ctrace: C program debugger.... .. ctrace(l)

current operating system........... ... uname(2)
current UNIX systemcocovivviniiinimieneeennn uname(1)
current user.......... ttyslot(3C)
current working directory..........ccooveererenennnn, getewd(3C)

curses; CRT screen handl.and optimization. curses(3X)
cuserid: get char. login name of user............ cuserid(3S)
cut: cut out selected fields of each line......... cut(l)

cut out selected fields of each line of a file... cut(l)

cxref: generate C program cross-reference... cxref(1)
daemon cron(1M)
runacct(1M)

timex(1)

daily accounting ...

data and system activity

data base .. terminfo(4)
data by user ID s wmmsaim i diskusg(1M)
data file or name partitionsc.cceceercecne fedit(1)
data in memory «eee plock(2)
data. SSasnsEa R TR TS prof(1)

data returned by stat system call.................. stat(5)

data segment space allocation...............c.c...... brk(2)

data tyPes....oceviii i types(5)
database operator .. join(1)

database tput(l)

date and time.. .. ctime(3C)
date.., date(1)
date: print and set the..........ccoveeervrreccennns date(1)
de: desk calculator de(1)
dcopy: copy file systems for opt. access......... deopy(1IM)
dd: convert and copy a filecc..ccoveenrrnenn dd(1)

debDUBEET ...t s ctrace(1)

gl

17

fsdb: file system
sdb: symbolic
timezone: set
set_parm:
par_del:

basename, dirname:

tail:

mesg: permit or

de:

par_det:

access:

file:

ioctl:

error: the Operating system error
devnm:

null: the null

gendev: generate

cioe: the CIOC

kmem: the kernel memory

fsck, fsck512

bdiff: big

sdiff: side-by-side
diff:
diff3: 3-way

dir: format of

link, unlink: link, unlink files and
rm, rmdir: remove files or

sum and count char.in files in given

cd: change working|

Permuted Index

debugger. ... e fsdb(1M)
debugger........ciciini e sdh(1)

timezone(4)

default system time zone

define additional system call param . set_parm(2)
delete a named partition .. par_del(2)
deliver portions of path names...................... basename(1)
deliver the last part of a file...........ccccoourienncne tail(1)

deny MeSSAEESccoveveeveireereemrieniensisinesrianns mesg(l)
deroff: remove nroff, troff, tbl and eqn......... deroff(1)
desk calculator..........ccoovcevnninennnnss . de(1)
detach a memory partition.... .. par_det(2)
determine accessibility of a file.........ccco...c..... access(2)
determine file type...coooveviviveincrcneeen file(1)
Aeviee CONETOL vuvvevererererereinisiirersssssssreeserennns ioctl(2)

devi error(7)
device name devnm(1M)
device null(7)
device numbers...........ccoiiiiiin . gendev(1M)
devices uuimma G ML G e eereeenreneranas cioc(7)
AEVICES ..o kmem(7)
devnm: device NAME.........oeevereererersescsensnsennnas devnm(1M)

df: report number of free disk blocks and.... df(1)
dfsck: file system consistency check and....., fsck(1M)
dial: establish an out-going terminal line..... dial(3C)

diff i R e bdiff(1)
diff: differential file comparator..................... diff(1)
diff3: 3-way differential file comparison diff3(1)
difference program sdiff(1)
differential file comparator e difF(D)
differential file comparison diff3(1)
dir: format of directories...........vcvuiesreriviarans dir(4)
dircmp: directory comparison..............coceueees dircmp(1)
directories......... dir(4)
directories link(1M)
directories.... .. rm(1)
directories . sumdir(1)
directory..... cd(1)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-13

M= i)
[(=r e
=]

= m I s e 5 e oV e LT] R 2 T I T b T T e)

—

Permuted Index

chdir: change working
chroot: change root
dircmp:

unlink: remove a
chroot: change root
getcwd: get path-name of curr.working
Is: list contents of|
mkdir: make a

mvdir: move a

pwd: print working
mknod: make a

basename:

dis

enable

enable, disable: enable or

acct: enable or

dis, dis20:

set term.type, modes, speed, and line
diskusg: generate

df: report number of free

sync: write

setdioc: display or set
chlds: change logical
dsize: display

sync: write disk cache to
du: summarize

disk:

dsize:

vi, view, vedit: scr.oriented (visual)
sysvers:

setdioc:

prof:

led: flash hyphens in MCU

hypot: Euclidean

Pl-14 Permuted Index

directory chdir(2)
QILECLOTY .covveereece s st siians chroot(2)
directory comparisoncviencinenons dircmp(1)

directory entry ... unlink(2)

directory for a command..........c.cceveevreieninens chroot(1M)

directory.. getcwd(3C)
directory 1s(1)
QIr@CLOTY wuesnsvsnssisensasrisesinnesnsoncmmssesisssssnssessienes mkdir(1)
AITRCLOTY ..o mvdir(1M)
directory Namec.occveceeenenecereneneenens pwd(1)
directory, or special or ordinary file.............. mknod(2)
dirname: deliver portion of path names basename(2)
dis, dis20: disassembler.......c.....ccceveeererneenne. dis(1)

dis20: di nbler........ veereerene d18(1)
disable: enable or disable LP printers enable(1)
disable LP printersccovivininnirincana. enable(1)
disable process accounting...........cveiiiieenens acct(2)
disassembler .. dis(1)
AISCIPIINEeeciiiciiciiistiisciinn it getty(1M)
disk accounting data by user ID.................... diskusg(1M)
disk blocks and i-nodes........c.ccoconieiiieiiiennns df(1)

disk cache to disk.........ccccevrmvericrencns syne(2)
disk: disks......oceeecmiiiiiennins disk(7)

disk operation modes... . setdioc(1M)
disk size chlds(1IM)
disk size .. dsize(1)
QK et sync(2)
disk USAEE -..occeeirieie s du(l)

QASKE 1oeceenieneencrcr e disk(7)
diskusg: generate disk accnt.data by user diskusg(1M)
display disk size.... dsize(1)

display editor based on ex

display operating system versions.............c... sysvers(1M)
display or set disk operating modes setdioc(1M)
display profile data.........cccocoomeinrnniineiiniens prof(1)

led(1M)
hypot(3M)

display

distance function

8l

19

drand48, erand48: generate uniformly
Irand48: generate uniformly

nrand48, mrand48: generate uniformly
jrand48: generate uniformly

signal: specify what to

chargefee, ckpacct

whodo: who is

hack: exploring the dungeon of

strtod, atof: convert string to

shutdown: shut

arithmetic: provide

od: octal
dump:
hack: exploring the

dup:
cut: cut out selected fields of|
aliens: the aliens invaders attack

echo:

end, etext

fedit, flook: inspect and

editor:
view, vedit: screen oriented display
ed, red: text

ex: text
1d: link

Permuted Index

distributed pseudo-random numbers............ drand48(3C)
distributed pseudo-random numbers............ drand48(3C)
distributed pseudo-random numbers............ drand48(3C)
distributed pseudo-random numbers .. drand48(3C)
do upon receipt of a signal signal(2)
dodisk: shell proced. for accounting.............. acctsh(1M)
doing what ..o whodo(1M)
doom hack(6)
double-precision number..........co.oocieieienrn, strtod(3C)
down system, change system state................ shutdown(1M)
drand48, erand48, Irand48: generate unif.... drand48(3C)
drill in number facts.......c.occrcericeserereiennnes arithmetic(6)
dsh: shell with history facilityo..ccuc.. dsh(1)

dsize: display disk size..........c.ccceererriiecericnnnn. dsize(1)

du: summarize disk usage........c.coccocoiiiiicinee du(1)

dump: dump selected part of object file........ dump(1)

dump - od(1)
dump selected parts of object file.................. dump(1)
dungeons of doom hack(6)
dup: duplicate an open file-descriptor-........... dup(2)
duplicate an open file-descriptor.................... dup(2)
each line of a file........coccovrueeninccricenreinnnns cut(1)
earth . aliens(6)
echo argumentsccocciiiiiiiicnnnnnceeneenns echo(1)
echo: echo arguments echo(1)
ecvt, fevt, gevt: conv.floating-point number . ecvt(3C)
ed, red: text editor .. ed(1)
edata: last locations in program..................... end(3C)
edit data file or named partitions.................. fedit(1)
edit, medit: update a line of text from a....... edit(2)

edit: text editor (variant of ex for casual)..... edit(1)

edit text files .. editor(1)
editor based on €X ... vi(1)
editor SRS, o ffh s e oereanes ed(1)
editor: edit text files.........ovceererercecnieiecriinnns editor(1)
editor ex(1)
editor for common object files 1d(1)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-15

Iy | m | e, W Sy S W B = ¢~ 1 1 || IR0 "l Vil W O L)

Permuted Index

a.out: common assembler and link
sed: stream

edit: text

effective-user-1D, real group-ID,and
getgid: get real-user-ID

geteuid, getegid: get rel-user-iD

times: get process and child process

enable, disable:

acct:

crypt, setkey

crypt, setkey, encrypt: generate hashing

setgrent

seteof: set

setpwent

pututline, setutent

nlist: get

linenum: line number

1dlinit, ldlitem: manipulate line number
Idlseek, ldniseek: seek to line number
ldrseek, ldnrseek: seek to relocation

utmp, wtmp: utmp and witmp

getgrent, getgrgid, getgrnam: get group file
setgrent, endgrent, fgetgrent: get group file
getpwent getpwnam: get password file
getpwuid: get password file

endpwent, fgetpwent: get password file
getutent, getutid, getutline: access utmp file
setutent, endutent, utmpname: access utmp file
gymbol name for comm.obj.file symbol table
Idtbindex: compute index of symbol table
ldtbread: read indexed symhol table
putpwent: write password file

unlink: remove a directory

Pl-16 Permuted Index

—

editor outpuLt........covueriiriiire s a.out(4)
editor sed(1)
editor (variant of ex for casual user) edit(1)
effective-group-ID getuid(2)
effective user-ID, real-group-ID.......cccoovueens getuid(2)
effective user-ID, real-group-ID.........cc.cceonen. getuid(2)
egrep: search file for pattern using full egrep(l)
elapsed HImesccccovevveveeenceniiniiccn times(2)
enable, disable: enable/disable LP prts........ enable(1)

enable or disable LP printers .. enable(1)

enable or disable process accounting acct(2)
encrypt: generate hashing encryption........... crypt(3C)

[3 463 ' 1 510} ¢ OV OUOPRON crypt(3C)
end, etext, edata: last locations in prg. end(3C)
endgrent, fgetgrent: get group file entry getgrent(3C)
eN-0f-fle oo seteof(2)
endpwent, fgetpwent: get password file........ getpwent(3C‘)
endutent, utmpname: access utmp file......... getut(3C)
entries from name list ..., vaiimmmn nlist(3C)

entries in common object file .. linenum(4)

entries of common object file function. .. 1dIread(3x)
entries of section of common object file........ 1diseek(3X)
entries of section of common object file........ ldrseek(3X)
entry formats..........ouemeiierimimimianiisnisssssssnienns utmp(4)
ENIETY 11vvvtsttrareesssesersssesessessesssenssasacscessnsenessenens getgrent(3C)
133 (1 P RY getgrent(3C)
BN st bt piases .. getpwent(3C)
L N i SOOI getpwent(3C)
ENETY ottt et getpwent(3C)
121111 o 2SI = e soec sk e i .. getut(3C)
BIILTY 1ttt rrssesssis s et s getut(3C)

123 117 OO OOV PRP T OOU PPN ldgetname(3X)

entry of a common object file .. 1dtbindex(3X)
.. 1dtbread(3X)
putpwent(3C)

entry unlink(2)

entry of a common object file..

entry

env: set environment for cmd executions..... env(l)

814

21

Permuted Index

environ: user

env: set

getenv: return value for

putenv: change or add value to

rc2: run cmd performed for multi-user
deroff: remove nroff, troff, tbl and
drand48

erf

perror

error: the Operating system

erf, erfe:

erf, erfc: error function and complementary
errout: write an

perror, errno, sys_errlist, sys_nerr: system

matherr:

errlog: log system

dial:

setmnt:

end

hypot:

expr:

test: condition

edit: text editor (variant of

oriented (visual) display editor based on
robots:
locking: provide

execl, execy
execl, execv, execle, execve

execl, execv, execle, execve, execlp, execvp

SUPERMAX SYSTEM V REFERENCE MANUALS

environ: user environment.............c.coueerennees environ(5)
environment ..o, HoererEs T environ(5)
environment for command executions.......... env(1)
environment name .. getenv(3C)
environment putenv(3C)
environment .. re2(1M)
eqn constructs deroff(1)
erand48, lrand48: generate uniformly drand48(3C)
erf, erfc: error function and........................... erf(3M)
erfc: error function and complementary....... erf(3M)
errlog: log system errors..........cc.veessseeersnencs, €rrlog(1M)
errno, sys_errlist, sys_nerr: system error perror(3C)
error device... error(7)
error function and compl. error function..... erf(3M)
error function .. erf(3M)
eITor Iy g errout(3C)
error n g : perror(3C)
error: the Operating system error device..... error(7)
error-handling function.........cccccccccuvvrnvernncen. matherr(3M)
(2 5 Xo) o TSPV OUR errlog(1M)
errout: write an error message...................... errout(3C)
establish out-going term-line connection...... dial(3C)
establish mount table ... setmnt(1M)
etext, edata: last locations in program.......... end(3C)
Euclidean distance function.........ccccovvvnee... hypot(3M)
evaluate arguments as an expression............ expr(1l)
evaluation command.... test(1)

ex for casual user) edit(1)

ex: text editor........... ex(1)

ex vi(l)
escape from the robotsooviveveiererrerinins robots(6)
exclusive access to a byte range..........c...co..... locking(2)
execl, execv, execle: execute a file.................. exec(2)
execve, execlp, execvp: execute a file............. exec(2)
execle, execve, execlp, execvp: execute.......... exec(2)
execlp, execvp: execute a file.......ocoecveeenenennn. exec(2)
execute a file exec(2)

PI-17

g Ll e T S e, [, T A W S N Rl T N e A i) G Z S
===
iSa———]

—

Permuted Index

xargs: construct argument lists and
at, batch:

regemp, regex: compile and

env: set environment for command
sleep: suspend

sleep: suspend

monitor: prepare

resume: resume process

suspend: suspend process

profil:

execl

execl, execv, execle

execl, execv, execle, execve, execlp

creat: create new file or rewrite an

exit

pack, pcat, unpack: compress and
hack:
exp, log, logl0, pow, sqrt:

regexp: regular

regemp: regular

expr: evaluate arguments as an

regem, regex: compile and execute regular
search file for pattern using full regular
floor, ceil, fmod

ipes: report inter-process communications

dsh: shell with history

factor: obtain the prime

arithmetic: provide drill in number
true

finc:

free, realloe, calloc, mallopt, mallinfo:

abort: generate an 10T

PI-18 Permuted Index

|execute commands at a later time..

execule command...... .. xargs(l)

.. at(l)

execute regular expression regemp(3X)
EXECULION. ... ismrser e isspsnsuinisersssstonshsnsasnasasnorsssss env(l)
execution for an interval...........cccovicnrennenns sleep(1l)
execution for intervalcccriiiniiicinn sleep(3C)
execution profile..........ciiinniiimienenenn. monitor(3C)
execution .. resume(2)
execution.............. .. suspend(2)
execution time profile...........cocoveeirriniriniinns profil(2)
execv, execle, execve, execlp, execvp: exec(2)

execve, execlp, execvp: execute a file. .. exec(2)

execvp: execute a filecinnnnn . .. exec(2)
existing one creat(2)
exit, _exit: terminate process............cccocoiieins exit(2)
_exit: terminate processccviiiieniiains exit(2)
exp, log, logl0, pow, sqrt: exponential exp(3M)
expand files................... pack(1)
exploring the dungeons of doom..............c..... hack(6)
exponential, logarithm, power, square root.. exp(3M)
expr: evaluate args. as an expression............ expr(l)
expression compile and match routines........ regexp(5)

expression compile regemp(1)

expression .. expr(l)
expression regemp(3X)
expressions egrep(1)
fabs: floor, ceiling remainder, abs.value........ floor(3M)
facilities status ... ipes(1)
facility dsh(1)
factor: obtain prime factors of a number factor(1)
factors of a number.........cccovmeciiinniiiiicinns factor(1)
facts ... arithmetic(6)
false: provide truth values.............ccccoceniiiiene true(1)

fast incremental backup............cccvinniiinns fine(1M)
fast main memory allocatorccocveunnee malloc(3X)
fault abort(3C)
fclose, fllush: close or flush a stream............. felose(3S)

I44

23

ecvt

fopen, freopen

ferror

felose

gete, getchar
setgrent, endgrent
setpwent, endpwent
gets

cut: cut out selected

utime: set

ldfen: common object

access: determine accessibility of a
tar: tape

cpio: copy

pwek, grpck: password and group
chmod: change mode of a

chmod: change mode of a

chown, chgrp: change owner/group ID of a|
chown: change owner or group of a
mes: manipulate the object

diff: differential

diff3: 3-way differential

fentl:

fentl:

cprs: compress a common object
umask: set and get

crontab: user crontab

cut: cut out selected fields of a

dd: convert and copy a

dump: dump selected parts of object

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

fentl(2)
.. fentl(5)
fevt, gevt: convert floating-point number ecvt(3C)

fentl: file control

fentl: file control options..

fdopen: open a streamcocevevevrncnnnnae fopen(3S)
fedit, flook: inspect and edit data file or fedit(1)
feof, clearerr, fileno: stream status............... ferror(38)

ferror, feof, clearerr, fileno: stream status... ferror(3S)
ff: list file names and statistics for a file....... ff(1M)
fclose(3S)
fgetc, getw: get char. or word from stream.. getc(3S)

fllush: close or flush a stream

fgetgrent: get group file entry........................ getgrent(3C)
fgetpwent: get password file entry getpwent(3C)
fgets: get a string from a stream................... gets(3S)

fgrep(1)
.. cut(l)

fgrep: search a file for a char. string ...

fields of each line of a file

file access and modification times utime(2)
file access rOULINESc.cooveeeriecrcierinvearnnns 1dfen(4)
file.... access(2)
file archiver....... tar(1)

file archives in and out.......cc.ocoveveveiveiiiieeniiins cpio(l)
file checkers pwek(1M)
file chmod(1)
fle .. coviciiiiiiiy i s e chmod(2)
file verenner ChOWR(1)
ile. it chown(2)
file comment section mes(1)

file comparator diff(1)

file comparison diff3(1)
file cONLTOL......cccoeomicieerrre et fentl(2)
file control Optionsccecevuerierercreicreeianan fentl(5)
file....... cprs(1)
file creation mask umask(2)
file crontab(1)
file cut(l)

file dd(1)

file: determine file types..........ccocoiviiniivinininen file(1)

file dump(1)

PI-19

9=

Permuted Index

getgrent, getgrgid, getgrnam: get group
setgrent, endgrent, fgetgrent: get group
getpwent, getpwnam: get password
getpwuid: get password

setpwent, endpwent: get password
fgetpwent: get password

getutent, getutid, getutline: access utmp
setutent, endutent, utmpname: access utmp
pupwent: write password

execle, execve: execute a

execlp, execvp: execute a

fgrep: search a

grep: search a

egrep: search a

1dopen, 1daopen: open a common object
acct: per-process accounting

ar: common archive

line number entries of a comm.object
group: group

filehdr:

ldfhread: read the

ldohseek: seek to the optional

split: split a

issue: issue identification

archive header of member of an archive
Idclose, 1daclose: close a common object
read file header of a common object
number entries of section of comm obj
to the optional file header of comm obj
entries of a section of comm object

or named section header of comm obj
an indexed/named section of comm obj
of a symbol table entry of comm ohj
indexed symbol table entry of comm ohj
seek to the symbol table of comm obj
linenum: linenum entries of comm obj

link: link to &

Pl-20 Permuted Index

g
l
!
r_-

file @NETY..ooiireieceece et getgrent(3C)
file eNETY....ccviirrieceieeee e re e s getgrent(3C)
file entry....... .. getpwent(3C)
file entry......ccocemrrerenveraenens .. getpwent(3C)
file entry.....cocoieicniicc e getpwent(3C)

file entry.... getpwent(3C)
getut(3C)
getut(3C)

... putpwent(3C)

file entry....

exec(2)

.. exec(2)

file for a character string farep(1)

file for a pattern ... grep(l)
file for a pattern using full regular egrep(1)
file for reading.........cccociveeiiinivicnnicieenne Idopen(3X)
file format acct(4)

file format ar(4)

.. 1dlread(3X)

file function..

... group(4)
file header for common object files................ filehdr(4)
file header of a common object file................ ldfhread(3X)
file header of a common object file................ ldohseek(3X)
file INtO PIECES.....ceververiiiiaeiiisiit s smananas split(1)
file. issue(4)
OO Idahread(3X)
file..oooiciieieiens Idclose(3X)
1 LT SRR ldthread(3X)
file ldlseek(3X)

file
file

ldohseek(3X)
.. ldrseek(3X)

AL ettt e 1dshread(3X)
51 (OO OO RPOUV-V PR o 2O Idsseek(3X)
Al s S SR e e Idtbindex(3X)
file..ceinirsicesresmisrem et a1 R TRESATRRIIT - 5o oo Idtbread(3X)
FI1€ s et e Idthseek(3X)

file

file

.. linenum(4)
link(2)

e

25

produce C source listing from comm obj
mknod: build special

make directory, or special, or ordinary
ctermid: generate

mktemp: make a unique

fT: list

newform: change the format of a text
nm: print name list of common object
ttyslot: find the slot in the utmp

open: open &

fuser: identify processes using a

fedit, flook: inspect and edit data

creat: creat a new

passwd: password

of several files or subs. lines of one

Pg:

fseek, ftell, rewind: reposition a

read: read from

relocation info for a common object

bsf: big

scesfile: format of an SCCS

scnhdr: sect.header for a common object
fsstat: report

stat, fatat: get

line number info from a comm obj.
fuser: identify processes using a file or
sum: print checksum and block count of a
retrieve symbol name for common ohject
syms: common ohject

fsck, fsck512, dfsck:

fsdb:

ft: list file names and statistics for a

mkfs, mkfs512: construct a
mount, umount: mount and unmount
mount: mount

ustat: get

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

file

file or file structure

file or name partition..........oeveecoeericcccenennnan

file or rewrite an existing one.........ccocoecnnne

file perusal filter for CRT’s
file pointer in a stream
Bler e il e seenersasasssanss
file....ccoriiniinninens

file scanner

BB T e

file structure
file
file symbol table entry

file symbol table format
file syst.consistency check and interactive ...
file system debuggerccovevercapivnereneannns

file system.............

file system: format of system volume............

file system

file system.

file system....

file system statistics.........cooeeiiiienincnncnrnen,

list(1)
mknod(1M)
mknod(2)

.. ctermid(3S)

mktemp(3C)
fF(1M)
newform(1)

... nm(1)

.. ttyslot(3C)
. open(2)

.. fuser(1M)

fedit(1)
creat(2)
passwd(4)

.. paste(l)

. pg(l)
.. fseek(38)

read(2)
reloc(4)
bfs(1)
scesfile(4)
scnhdr(4)
fsstat(1M)
stat(2)
strip(1)

. fuser(1M)

sum(1)

.. ldgetname(3X)
.. Syms(4)

fsck(1M)
fsdb(1M)
fE(1M)

fs(4)
mkfs(1M)
mount(1M)

.. mount(2)

ustat(2)

Pl-21

R ===
=)
[F]

Permuted Index

mnttab: mounted

umount: unmount a

make literal copy of

dcopy: copy

labelit: provide labels for

mountall, umountall: mount/unmount multiple
checklist: list of’

tail: deliver the last part of a

term: format of compiled term

tmpfile: create a temporary

tmpnam, tempnam: create name for temporary
update access and modification time of a

ftw: walk a

file: determine

uniq: report repeated lines in a

write, write_t: write to

umask: set

close: close a

dup: duplicate an open

ferror, feof, clearerr
Iseek: move

acctcom: search and print proc ting

file system table

file system

file SYStemMovrirriiririsesriinrnessrsisr s

file systems for optimal access time

file systems........

file systems

file systems processed by fsck.........

file tree

. mnttab(4)

umount(2)
volcopy(1M)
deopy(1M)
labelit(1M)

.. mountall(1IM)
.. checklist(4)

tail(1)
term(4)
tmpfile(3S)
tmpnam(3S)

.. touch(1)

file tYPe oot

file

file

file-creation mode Mask........cccoieiminsiorierenns

file-descriptor

file-descriptor

filehdr: file header for common object files..

fileno: stream status inquiries

file-pointeroccovvvicrnennninniinieen,

files

acctmerg: merge or add total accounting!

link, unlink: link and unlink

cat: concatenate and print

cmp: compare two

select/reject lines common to two sorted
¢p, In, mv: copy, link, or move

mv: rename

editor: edit text

filehdr: file header for common object
find: find

frec: recover

fspec: format specification in text
sumdir: sum and count characters in the

1d: link editor for common object

Pl-22 Permuted Index

files

THES oottt

files

files

files

files.......

files

files from a backup tape

files

. fspec(4)

files in given directories

files

. 1d)

ftw(3C)
file(1)

.. uniq(1)

.. write(2)

umask(1)
close(2)
dup(2)
filehdr(4)
ferror(3S)
Iseek(2)
acctcom(l)
acctmerg(1M)
link(1M)
cat(l)
cmp(1)

comm(1)

.. cp()

cp(1)
editor(l)
filehdr(4)
find(1)
frec(IM)

sumdir(1)

92

27

lockf: record locking on

rm, rmdir: remove

paste: merge same lines of several

pack, pcat, unpack: compress and expand
pr: print

print section sizes in bytes of common obj
sort: sort or merge

pg: file perusal

nl: line numbering

find;

ttyname, isatty:
lorder:

ttyslot:

fish: the game Go

tee: pipe

led:

isnand, isnanf: test for

ecvt, fevt, gevt: convert

frexp, ldexp, modf: manipulate parts of
fedit

floor, ceil, fmod, fabs:
cflow: generate C
fclose, fHush: close or

floor, ceil

acct: pre-process accounting file
ar: common archive file
newform: change the

inode:

scesfile:

term:

cpio:

SUPERMAX SYSTEM V REFERENCE MANUALS

f188 wupsasisiisiiinisisisisiameissnmsnsssstitiirme rerensererarasasoss lockf(3C)

files or directoriesc....coiiviivmrereccarnranans rm(1)
files or subsequent lines of one file............... paste(1)
)L R e pack(l)
files pr(1}
files size(1)
files . sort(1)
filter for CRT’S.....c.ccovicvvrmnnnnceneinreeenennane pe(1)
IEEr ... 500 o iR R R AT nl(1)
finc: fast incremental backup......................... fine(1M)
find files find(1)
find: find files find(1)
find name of a terminal. ttyname(3C)

find ordering relation for an object library .. lorder(1)
find the slot in the utmp file of current ttyslot(3C)

Fish...oooccccinen e . fish(6)
fish: the game Go Fishccccecvivevienireennne. fish(6)
fitting ... tee(l)
flash hyphens in MCU displays . led(1M)
floating point NaN (Not-a-Number).............. isnan(3C)
floating point number to string.................... ecvt(3C)
floating point numbers..........ccccoceevercrernnnnn. frexp(3C)
flook: inspect and edit data file or named fedit(1)
floor, ceil, fmod, fabs: floor, ceiling floor(3M)
floor, ceiling remainder, absolute value........ floor(3M)
flowgraph . cflow(1)
flush a stream fclose(3S)
fmod, fabs: floor, ceiling remainder, abs....... floor(3M)
fopen, freopen, fdopen: open a stream.......... fopen(3S)
fork: create a new process................ovevvurveee. fork(2)
format. acct(4)
format ar(4)
format of a text file........covvevvveceeriiercncecnns newform(1)
format of an i-nodec...ccooeeecveevereirresienens inode(4)
format of an SCCS file........coovvevevcccrnrninnenas scesfile(4)
format of compiled term file............ccccc......... term(4)
format of cpio archive.........o.ccevcecereccrerrneenen. Cpio(4)

PI-23

PE==_2= feE=————— == T e e EE=ma— s
—] d&
e | !

Permuted Index

dir:
file system:

fspec:

syms: common object file symbol table

utmp, wtmp: utmp and wtmp entry

scanf, fscanf, sscanf: convert
vprintf, viprintf, vsprintf: print
printf, fprintf, sprintf: print
printl

putc, putchar

puts

df: report number of]
malloc
malloc

fopen

scanf

checklist: list of file syst.pro d by

.. dir(4)

fs(4)

.. fspec(4)
format..... s s s R oo oo syms(4)
formats. .. o s I o utmp(4)
formatted input scanf(38)
formatted output of varargs arg. list............. vprintf(38)
formatted output printf(3S)
fprintf, sprintf: print formatted output printf(38)
fputc, putw: put char/word on a stream...... putc(3S)
fputs: put a string on a stream...........ccco.ee.. puts(38)
fread, fwrite: binary input and output.......... fread(3S)
frec: recover files from a backup tape........... frec(1IM)
free disk blocks and i-nodes ... df(1)

free, realloc, calloc: main memory allocator. malloc(3C)
free, realloc, calloc, mallopt, mallinfo: fast... talloc(3X)
freopen, fdopen: open a stream fopen(3S)
frexp, ldexp, modf: manipulate parts of........ frexp(3C)
fscanf, sscanf: convert formatted input scanf(39)
fsck . checklist(4)

fsck

stat
fseek
stdipe

egrep: search a file for pattern using

erf, erfc: error

erfc: error funct. and complmt.error

gamma: log gamma
hypot: Euclidean distance

line number entries of common obj file

PI-24

matherr: error-handling

Permuted index

fsck, fsck512, dfsck: file system consistency. fsck(1IM)
feck512, dfsck: file sys.consistency check...... fsck(1M)
fsdb: file system debugger........c.cccccociviceennrne fsdb(1M)

fzeek, ftell, rewind: reposition a file pointer. fseek(3S)

fspec: format specification in text files.......... fspec(4)
fsstat: report file status...........cooeeeciiimnnininns fsstat(1M)
fstat: get file status - stat(2)
ftell, rewind: reposition a file pointer in a.... fseek(3S)

ftoc: standard inter-proc. communication stdipe(3C)
ftw: walk a file tree..........ccvevrinmciivciinininns ftw(3C)

full regular expressions...........c.ccviniinnns egrep(1)
function and complementary error funct. erf(3M)
FUNCHION ... i imaiisimsriii i ki fe e emnn o on erf(3M)
function = gamma(3M)
TUNCHION .. s hypot(3M)
FUTCLION ot Idiread(3X)
function matherr(3M)

82

29

eeaam——=———— == e s e

—

prof: profile within a

math: math

j0, i1, jn, y0, y1, yn: Bessel

exponential, logarithm, power, square root
floor, ceiling remainder, abs.value

sinh, cosh, tanh: hyperbolic

smsys: machine specific

tan, asin, acos, atan, atan2: trigonometrie

[read

fish: the
back: the
bj: the
craps: the
life: the
gamma: log

ecvt, fevl

termio:

abort:

cflow:

cxref:

gendev:

diskusg:

ctermid:

crypt, setkey, encrypt:
ncheck:

lex:

drand48, erand48, lrand48:
nrand48, mrand48, jrand48:
srand48, seed48, lcong48:

rand, srand: simple random number

gete

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

FUNCEION ..vevvecree e sreresess e s erseonens prof(5)
functions and constantsc.ccceerivninnn. math(5)
functions .. . bessel(3M)
functions.... exp(3M)
functions..... .. floor(3M)
functions....... .. sinh(3M)
functions smsys(2)
functions trig(3M)
fuser: identify processes using a file or......... fuser(1IM)
fwrite: binary input and output. fread(3S)
fwtmp, wtmpfix: manipulate connect .. fwtmp(1M)
game Go Fish fish(6)
game of Backgammon...........ccvueeereciininrninnnn. back(6)
game of Black JacK.........cccovrervrrnirccccnninnnn, bj(6)

game of Craps......coccoveiiincrnnconneresisss e craps(6)
game of Life...... ... life(6)
gamma function gamma(3M)
gamma: log gamma function... gamma(3M)
gevt: convert floating-point number to.......... ecvi(3C)
gendev: generate device numbers.................. gendev(1M)
general terminal interface............coo.oveecevennen. termio(7)

abort(3C)
.. cflow(1)

generate an IOT fault....

generate C flowgraph

generate C program cross-reference cxref(1)
generate device numbers............cccccviiniiiininne gendev(1M)
generate disk accounting data by user ID.... diskusg(1M)
generate file name for terminal...................,. ctermid(3S)
generate hashing encryption...........ccccooueuenen. crypt(3C)
generate path names from i-numbers........... ncheck(1M)

generate programs for simple lexical tasks.. lex(l)

generate uniformly distrb.pseudo-random ... drand48(3C)
generate uniformly distrb.pseudo-random ... drand48(3C)
generate uniformly distrb.pseudo-random ... drand48(3C)
BENErator........ccoveiuirinreesiaeireeie et et eaeanes rand(3C)

getc, getchar, fgetc, getw: get character or... getc(3S)
getchar, fgetc, getw: get character or word.. getc(3S)
getcwd: get path-name of current working.. getewd(3C)

PI-25

A=

He=—==—= O e S N W e e e =
& —
Mm—

Permuted Index

getuid, geteuid, getgid |getegid: get real-user-ID, effective-user-ID... getuid(2)

getenv: return value for environment.. .. getenv(3C)

getuid | geteuid, getgid, getegid: get real-user-ID...... getuid(2)

getuid, geteuid |getgid, getegid: get real-user-ID getuid(2)
getgrent, getgrgid, getgrnam: get group file. getgrent(3C)
getgrent|getgrgid, getgnam: get group file entry......... getgrent(3C)
getgrent, getgrgid|getgnam: getgroup file entry...........ccooviennnne getgrent(3C)
getlogin: get login name...........cccccomieninniiens getlogin(3C)
getopt: get option letter from arg. vector..... getopt(3C)
getopt: get parse command options............... getopt(1)
gelpass: read a password...........coovecveencennne. getpass(3C)
getpid | getpgrp, getppid: get process-ID.................... getpid(2)

.. getpid(2)
.. getpid(2)

getpid, getpgrp, getppid: get process-ID..
getpid, getpgrp|getppid: get proc-ID, proc-group-1D, ...

getpw: get name from user-ID ... getpw(3C)
getpwent, getpwuid: get password file getpwent(3C)
getpwnam: get password file..........cccccevennne. getpwent(3C)
getpwent, getpwuid | getpwnam: get password file entry................ getpwent(3C)
getpwent|getpwuid, getpwnam: get password file getpwent(3C)
gets, fgets: get a string from a stream.......... gets(39)
gettydefs: speed and term.settings used by |etty.......c.vveervereicrecenecrcen s gettydefs(4)
......... getty(1M)
...... gettydefs(4)
... getuid(2)

getutent, getutid: access utmp file getut(3C)
getut(3C)

gelutent | getutid, getutline: access utmp file entry getut(3C)

getutline: access utmp file...

getutent, getutid |getutline: access utmp file entry........ccocceovn. getut(3C)
getc, getchar, fgetc|getw: get char/word from stream gete(3S)
sum and count characters in the files in|given directories...........ocovivviinnineinnicniens sumdir(1)

ctime, localtime|gmtime, asctime, tzset: conv. date+time..... ctime(3C)

fish: the game|Go Fish.......... fish(6)
setjmp, longjmp: non-local | Zoto ... setjmp(3C)
grep: search a file for a pattern..................... grep(1)
pwck, grpek: password and |group file checkers ... pwck(1M)
getgrent, getgrgid, getgrnam: get|group file entry. . getgrent(3C)
setgrent, endgrent, fgetgrent: get|group file entry.... . getgrent(3C)

Pl-26 Permuted Index

0e

31

=y

group:

chown, chgrp: change owner or

id: print user and

newgrp: log in to a new

chown: change owner and

kill: send a signal to a process or a
par_cho: change owner-ID and

setuid, setgid: set user-ID and

make: maintain, update, and regenerate
pwck

ssignal

varargs:

curses: CRT screen

nohup: run a command immune to
hsearch, hcreate, hdestroy: manage
crypt, setkey, encrypt: generate
hsearch

hsearch, hereate

scnhdr: section

filehdr: file

Idthread: read the file

Idohseek: seek to the optional file
ldnshread: read an indexed/named section
Idahread: read the archive

dsh: shell with

sinh, cosh, tanh:
led: flash

diskusg: generate disk acctg data by user
getpw: get name from user
message queue, semaph. set,or shared mem.

chown, chgrp: change owner or group

issue: issue

SUPERMAX SYSTEM V REFERENCE MANUALS

- —— ey

—

Permuted Index

group file

group: group file.......cccoceverrervvenevennreicieenenns
group ID of a file.....coceerereasssasssnssensnrnnnennns

group IDs and names

(L1
group of a filecoccoeviveviiieneceene e,

EToup of Processes........coouiievnnriiecscesnsrensinns
group-ID of a partitionccccoevvecrivenennns

group-ID.......ccovnue
groups of Programs............cceececcrnerenciernerennnnns
grpck: password and group file checkers......

gsignal: software signals

hack: exploring the Dungeons of Doom........

handle variable argument list

handling and optimization package....

hangups and quits

hash search tables

hashing encryptions........cccoccovevierciieeeannnns
hcreate, hdestroy: manage hash search........
hdestroy: manage hash search tables

header for a common object file ..

header for common object files......................
header of a common object file.......cocvurmereenens
header of a common object file......................
header of a common object file............ccrninrne

header of a member of an archive file

history facility
hsearch, hereate, hdestroy: manage hash.....
hyperbolic functionscccooveereriiirecrnnnnen
hyphens in MCU displaysc..ocoovcreeruerennnn.

hypot: Euclidean distance function...............

id: print user and group IDs and names......

identification filecccviieiinicinnenninenenens

group(4)
group(4)
chown(1)

. id(1)

newgrp(1M)
chown(2)
kill(2)
par_cho(2)
setuid(2)
make(1)
pwck(1M)

. ssignal(3C)

hack(6)
varargs(5)

.. curses(3X)

nohup(1)
hsearch(3C)
crypt(3C)
hsearch(3C)
hsearch(3C)

. senhdr(4)

filehdr(4)

ldfhread(3X)
Idohseek(3X)
1dshread(3X)
ldahread(3X)

.. dsh(1)

hsearch(3C)
sinh(3M)
led(1M)
hypot(3M)
diskusg(1M)
getpw(3C)
iperm(1)
chown(l)
id(D)

issue(4)

PI-27

[.
[i)
]

Permuted Index

fuser:

id: print user and group

nohup: run a command

finc: fast

1dtbindex: compute the

ldshread, ldnshread: read an
Idsseek, ldnseek: seek to an
ldtbread: read an

reloc: relocation

strip: strip symbol and line number
Ipstat: print LP status

smos_var: get Supermax Operating System
inittab: script for the

init, telinit: process control
rsetsioc:

popen, pclose:
clri: clear

inode: format of an

df: report number of free disk blocks and
fread, fwrite: binary

scanf, fscanf, sscanf: convert formatted
ungetc: push character back into

stdio: standard buffered

ferror, feof, clearerr, fileno: stream status
fedit, flook:

install:

abs:

a64], 164a: convert between long

strtol, atol, atoi: convert string to

13tol, ltol3: convert between 3-byte
Itol3: conv btw 3-byte integers and long
mailx

dfsck: file system consistency check

Pl-28 Permuted Index

identify processes using a file or.

.. fuser(1M)
id(1)

IDs and names...

immune to hangups and quits.... nohup(1)
incremental backupc...ccoioeenneiiinecnnnies finc(1M) ‘
index of a symbol table entry of Idtbindex(3X)
indexed or named section header of.............. ldshread(3X)
indexed or named section of a common........ ldsseek(3X)

indexed symbol table entry of a common ldtbread(3X)

information for a common object file............ reloc(4)
information from a common object file........, strip(1)
INformation........ccrivnniee e Ipstat(1)
information......... smos_var(2)
INit ProCessceveveeeeeereieieriennnsy ... inittab(4)
init, telinit: process control initialization..... init(1M)
INIHABZALION ...t init(1IM)
initialize terminal or printer............cccoc..o..... rsetsioc(1)
initiate pipe to or from a process popen(3S)
inittab: script for the init processc..oic.. inittab(4)
i-node clri(IM)
inode: format of an i-node.......cccoremmrensrariees inode(4)

F 10T LN inode(4)
i-nodes df(1)

input and output fread(3S)
input scanf(38)
INPUL SETEAM ...vvvecereereicieiesce et enenes ungetc(3S)
input-output packageccoccecrreieeeniniienne stdio(3S)
INQUITIES .covveeeircereereree e ferror(3S)
inspect and edit data or namedccccuee. fedit(1)
install commandscc.cooeveinnineenrcscrennens install(1M)
install: install commandscccccecrcrerennnnn install(IM)
integer absolute value..............cccooeevevierrreneniens abs(3C)
integer and base-64 ASCII............c.cccecvenreee a641(3C)
INLEEEY i rassssissnss o FeE ST N e e e nereee strtol(3C)
integers and long integers.... .. 13tol(3C)
integers 13tol(3C)

interactive message processing system .. mailx(1)

interactive repairc.ccevevenninincsineeneen fsck(1M)

ce

33

terminology: compile Virtual Terminal
termio: general terminal

vti: Virtual Terminal

I1S0O-8859/1:

pipe: create an

ipcs: report

stdipe, ftoc: standard

sleep: suspend execution for an
sleep: suspend execution for

bre, bcheckre: system

tput:

ungete: push character back

split: split a file

ncheck: generate path names from
aliens: the alien

abort: generate an

whodo: who
who: who

isxdigit

isprint, isgraph, iscntrl
ttyname

isprint, isgraph

isalpha, isupper, islower
isprint

isalpha, isupper

isnand

isxdigit, isalnum, isspace

isxdigit, isalnum

SUPERMAX SYSTEM V REFERENCE MANUALS

k3

Permuted Index

Interface programs

INEETTACE ..ottt

Interface.......ccococervennnoiesiennnecvnneninnns

International character set ...

inter-process channel
inter-process communications fac. status.....
inter-process communication package
interval........ccovii e

interval

initialization procedures

initialize a term. or query terminfo

into input stream....

into pieces..

F-NUMDETS ...covvneietreeineeireereeerecescsisseasnesrne e

10T fault....
ipcrm: remove message queue, semaphore...
ipes: report inter-process communication
is doing what ...
iS 0N the SyStemccoevecniinreieencereriae s
isalnum, isspace: classify characters.............
ispunct, isalpha: classify characters..............

isalpha, isupper: classify characters...

islower, isdigit: classify characters................
isascii: classify charactersc.cccoecvueviannens
isatty: find name of a terminal.......................
iscntrl, isascii: classify characters.................
isdigit: classify characters..........ccccoevveeennnnne.
isgraph, iscntrl, isascii: classify characters...
islower, isdigit: classify characters................
isnand, isnanf: test floating point NaN.........
isnanf: test for floating point NaN................
IS0O-8859/1: International char.set...............
isprint, isgraph, iscntrl: classify char....

ispunct: classify characters

isspace, ispunct: classify characters...

terminology(1)
termio(7)
vti(5)
1S0-8859/1(5)

. pipe(2)

ipes(1)
stdipe(3C)
sleep(1)
sleep(3C)
brf(1M)
tput(l)
ungetc(38)
split(1)
ncheck(1M)
aliens(6)
ioctl(2)

. abort(3C)

iperm(1)
ipes(1)
whodo(1M)
who(1)
ctype(3C)
ctype(3C)

. ctype(3C)

ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
isnan(3C)
isnan(3C)
1S0-8859/1(5)

.. ctype(3C)
. ctype(3C)
.. ctype(3C)

PI-29

B ESSR————T

Permuted Index

system:

issue:

isalpha

news: print news|i

jo
by
io, i1

nrand48, mrand48
kmem: the
killall:

a641

labelit: provide

awk: pattern scanning and process.

be: arbitrary precision arithmetic

cpp: the C

the std. and restricted cmd programming
end, etext, edata:

tail: deliver the

at, batch: execute commands at a
shl: shell

srand48, seed48

1dclose

ldopen

PI-30 Permuted Index

issue a shell command
issue identification file

issue: issue identification file....

isupper, islower, isdigit: classify char.
isxdigit, isalnum: classify characters.............

isspace, ispunct: classify characters...............

i1, jn, y0, y1, yn: Bessel functions....

the game of black jack

jn, ¥0, y1, yn: Bessel functions......c...ccccvueneen
join: relational database operator..................

jrand48: generate uniformly distrb.

kernel memory device

kill all active processes

kill: send a signal to a process or a...............
kill: terminate a Process............ccoevvvnininnen
killall: kill all active processes..........cccccceuunvs
kmem: the kernel memory devices................
13tol, 1tol3: conv. btw. 3-byte integers...........
164a: conv. btw. long integer and base-64
labelit: provide labels for file systems...........

labels for file systems

language..........

language pre-processor

language...

last locations in program.........ccoeecerrverniiccnien
last part of a file.....covninimmmnmmmeiiesenn
lastlogin, monacct, nulladm: shell proced.....

later time....

layer manager.........c.coeoinieeicenincnnnnnnnes
lcong48: generate uniformly distributed.......
1d: link editor for common object files ..
Idaclose: close a common object file
Idahread: read the archive header of a..........

ldaopen: open a common object file for.........

system(3S)
issue(4)
issue(4)
ctype(3C)
ctype(3C)
ctype(3C)

news(l)

.. bessel(3M)
. bessel(3M)
.. bj(6)

bessel(3M)
join(1)
drand48(3C)
kmem(7)

.. killall(IM)

kill(2)
kill(1)
killall(1M)
kmem(7)
13tol(3C)
a641(3C)
labelit(1M)
labelit(1M)
awk(1)

.- be(1)

cpp(l)

. sh(1)

end(3C)
tail(1)
acctsh(1M)
at(1)

shl(1)
drand48(3C)

. A

Idclose(3X)
ldahread(3X)
1dopen(3X)

e

35

frexp

Idlread
IdIread, ldlinit

Idlseek
Ildrseek
Idsseek
ldshread

getopt: get option

lex: generate programs for simple
lsearch
lorder: find ordering relation for an obj

ar: archive and

life: the game of |1i

ulimit: get and set user

dial: establish and out-going term
getty: set term type, modes, speed and
line: read one

linenum:

IdIread, Idlinit, ldlitem: manipulate

SUPERMAX SYSTEM V REFERENCE MANUALS

k3

Permuted Index

ldclose, ldaclose: close a common obj file......
ldexp, modf: manipulate parts of...................
ldfen: common object file access routines.....
ldfhread: read the file header of a.................
ldgetname: retrieve symbol name for
1dlinit, ldlitem: manipulate line number
Idlitem: manipulate line number entries......

IdIread, 1dlinit: manipulate line number.......

. |1dlitem: manipulate line number entries......

ldlseek, ldnseek: seek to line number...........
ldnlseek: seek to line number entries of.......
ldnrseek: seek to relocation entries of
ldnseek: seek to an indexed/named section .
ldnshread: read an indexed/named section..
Idohseek: seek to the optional file header.....
Idopen, ldaopen: open a common obj file......
ldrseek, ldnrseek: seek to relocation.............
ldshread, ldnshread: read an indexed or
Idsseck, ldnseek: seek to an indexed or
Idtbindex: compute the index of a symbol....
ldtbread: read an indexed symbol table........
Idtbseek: seek to the symbol table of a.........
led: flash hyphens in MCU displays..............
letter from argument vectorocecvenenen.
lex: generate programs for simple lexical.....
lexical tasksococciviniervsinnesciccrene e
Ifind: linear search and update........c.............
library.
library maintainer.............cceeveieeneerrererncenenns

life: the game of life

limits

line connections

line discipline

TN @uyuinsnrnsisississsmisisinasssbsseionsicnsesesaransanas ffrasissee

line number entries in a common object......

line number entries.of a cgmmon chject

ldclose(3X)
frexp(3C)
ldfen(4)
ldfhread(3X)
ldgetname(3X)

.. ldlread(3X)

1dlread(3X)
1dlread(3X)
l1dIread(3X)
1dlseek(3X)
ldlseek(3X)
ldrseek(3X)
ldsseek(3X)
ldshread(3X)
Idohseek(3X)
ldopen(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
1dtbindex(3X)
ldtbread(3X)
1dtbhseek(3X)
led(1M)
getopt(3C)
lex(1)

lex(1)
Isearch(3C)
lorder(1)
ar(l)

.. life(6)

life(6)
ulimit(2)

. dial(3C)

getty(1M)
line(1)
linenum(4)
1dIread(3X)

PI-31

— de

Permuted Index

ldlseek, ldnlseek: seek to
strip: strip symbol and

nk

cut: cut out selected fields of each

edit, medit: update a

Ip, cancel: send/cancel req. to an LP

Isearch, 1find:

comm: select or reject

uniq: report repeated

merge same lines of several files or

paste: merge same

link, unlink:

1d:

a.out: common assembler and

¢p, In, mv: copy

link:

clist:
Is:
ff:

nlist: get entries from name

nm: print name
checklist:

varargs: handle variable argument

print formatted output of a varargs

Pi-32

cref: make cross-reference

list: produce C source

xargs: construet argument

make
cp

chstack: set

Permuted Index

ctime

line number entries of a section of Idlseek(3X)
line number info from common object.......... strip(1)
line numbering filter . nl(1)

line of a file........... cut(1)

line of text from a terminalcccoocvvinrere edit(2)

line printer Ip(1)

line: read one line line(1)

linear search and update .. 1search(3C)

. linenum(4)

linenum: line number entries in a..

lines common to two sorted .. comm(1)
lines in a file..cccoeeveieniiie e unig(1)
lines of one file........................ paste(1)
lines of several files or subsequent................ paste(1)
link and unlink files and directories.............. link(1M)
link editor for common object files................ 1d(1)
link editor output a.out(4)
link: link to & filecoovvveereeccrneirisiiasisinans link(2)
link, or move files...........covvvvveriiiiiissnissiesnens cp(1)
link to a filecocovvueeeeeenrnrereecnnes link(2)
link, unlink: link and unlink files and.......... link(1M)

lint: a C program checker lint(1)

clist(1)

list C programs

list contents of directory 1s(1)

list file names and statistics for.............ccc0e. ff(1M)

S crvetmeninenssrrnrse s s s e sssnn e srn b ene nlist(3C)
list of common object filecoerevccncnccne nm(1)

list of file systems processed by fsck............. checklist(4)
list: produce C source listing from a............. list(1)

list . varargs(b)
list vprintf(3S)

listing ... cref(l)

listing from a common object file................... list(1)

list and execute command...........cccoveeee. - xargs(1)

literal copy of file system volcopy(1M)
In, mv: copy, link, or move files . ep(l)
load module stack size .. chstack(1)

localtime, gmtime, asctime, tzset: convert.... ctime(3C)

9€

37

end, etext, edata: last
plock:

lockf: record

gamma:

newgrp:

exp

errlog:

exp, log

exp, log, logl0, pow, sqrt: exponential
chlds: change
getlogin: get
logname: get

cuserid: get character
logname: return
passwd: change

a64l, 164a: convert between
1tol3: convert btw 3-byte integers and

setjmp

nice: run a command at

Ip, cancel: send or cancel requests to an
enable, disable: enable or disable

accept, reject: allow or prevent

Ipsched, Ipshut, lpmove: start or stop the
lpadmin: configure the

Ipstat: print

Ipsched, Ipshut

Ipsched

Permuted Index

locations in program.............eecrveeinnna, end(3C)
lock process. text, or data in memory........... plock(2)
lockf: record locking on filescccvuecununnnn. lockf(3C)
loeking on files.......c.cooovvurireeenneess e, lockf(3C)
locking: provide exclusive access to............... locking(2)

log gamma functions............ .. gamma(3M)

log in to a new group newgrp(1M)
log, logl0, pow, sqrt: exponential exp(3M)
log SyStem errors.......ccccveveecreeivceeisnesrnnrnnnes errlog(1M)

logl0, pow, sqrt: exponential, logarithm....... exp(3M)

logarithm, power, square root exp(3M)
logical disk size chlds(1M)
login name........ getlogin(3C)
10gIN NAMEcveveecrier et logname(1)
login name of the UBer........c..cccceveeeerereiinnnnns cuserid(3S)
login name of USerccoccveeerririerieereiinens logname(3X)
login password........c.ccoveevcrenneceieiensieneiene passwd(1)
login: sign on login(1)
logname: get login name...........ccovuevrereerennae. logname(1)
logname: return login name of user.............. logname(3X)
long integer and base-64 ASCIL..................... a641(3C)
long integers...........ccovnuannn 13tol(3C)
longjmp: non-local goto setjmp(3C)
lorder: find ordering relation for lorder(1)
low priority....... nice(1)

Ip, cancel: send or cancel req. to LP Ip(D)

LP line Printercccomrmemsrarmsssessissssasssssns Ip(1)

LP DPIinterso.cccovicvmicvrvereesneniessecssssesasssesons enable(1)
LP requests....c.ieimmmimmeisssiisesonseens accept(1M)
LP scheduler and move Ipsched(1M)

LP spooling system .. Ipadmin(1M)
LP status information ... Ipstat(1)
Ipadmin: configure the LP spooling Ipadmin(1M)
Ipmove: start or stop the LP scheduler........ 1psched(1M)
Ipsched, Ipshut: start or stop the LP Ipschced(1M)
Ipmove: start and stop the LP scheduler...... Ipsched(1M)
Ipshut, Ipmove: start and stop the LP Ipsched(1M)

SUPERMAX SYSTEM V REFERENCE MANUALS

PI-33

A — =]

—dep———————————

Permuted Index

drand48, erand48

13tol

machid;

smsys:
values:
m4:

mail, rmail: send mail to users or read

mail, rmail: send

malloc, free, realloc, calloc:

free, realloc, calloc, mallopt, mallinfo:
make:

ar: archive and library

mkdir:

mknod:

mktemp:

cref:

banner:

malloc, free, realloc, calloc, mallopt

malloc, free, realloc, calloc
tsearch, tfind, tdelete, twalk:
hsearch, hcreate, destroy:
shl: shell layer

fwtmp, wtmpfix:

1dIread, ldlinit, ldlitem:
frexp, ldexp, modf:

PlI-34 Permuted Index

Ipstat: print LP status information............... Ipstat(1)
Irand48: generate uniformly distrb................ drand48(3C)
Is: list contents of directoryccecvveinencas Is(1)
Isearch, Ifind: linear search and update. Isearch(3C)
Iseek: move file-pointer............c.cccveevivveenncn. Iseek(2)
1tol3: convert btw 3-byte integers and.......... 13tol(3C)
M4 MACTO PrOCESSOTuvveenreneremerianeernssennienns m4(1)

m69k, pdpll, u3b, u3b2, udbs, vax: get........ machid(1)
machid: m69k, pdpll, u3b, udb2, u3bs: machid(1)

machine specific functions . smsys(2)
machine-dependent values values(5)
TMNACTO PTOCESSOT ..oevtnniieensesseeseesirsasssensessanss m4(1)
1 OO mail(1)
mail, rmail: send mail to users or read......... mail(1)
mail to users or read mail..........ccoeeiiniciininn mail(1)
mailx: interactive message process................ mailx(1)

malloc(3C)
malloe(3X}))

main memory allocator

fast main memory allocator ...

maintain, update, and generate groups of ... make(1)
maintainer ... ar(1)
make a directory mkdir(1)

make a directory, or a special or .. mknod(2)

make a unique file name.... mktemp(3C)
make cross-reference listing .. cref(1)
make literal copy of file system volcopy(1M)
make: maintain, update, and generate.......... make(1)
make posters....... banner(1)
mallinfo: fast main memory allocator........... malloc(3X)

malloc, free, realloc, calloc: main memory ... malloc(3C)

malloc. free, realloc, calloc, mallopt malloc(3X)
mallopt, mallinfo: fast main memory............ malloc(3X)
manage binary search trees...........ccoonvnnn tsearch(3C)
manage hash search tablesccoinieiinn. hsearch(3C)

.............. shl(1)
. fwtmp(IM)

manipulate line number entries................... 1dlread(3X)

manipulate connect accounting records

manipulate parts of floating-point................. frexp(3C)

8€

39

mces:

ascii:

mcumask: set MCU

mcumask: set and get MCU

umask: set file-creation mode

umask: set and get file creation
reexp: regular expression compile and

math:

led: flash hyphens in
mcumask: set

mcumask: set and get

edit
ldahread: read the archive header of]

memcepy

memeccpy, memchr

memeccpy, memchr, mememp

malloc, free, realloc, calloc: main

realloc, calloc, mallopt, mallinfo: fast main
shmetl: shared

kmem: the kernel

a message queue, semaphore set, or shared
memccpy, memchr, mememp, memcpy, memset:
shmop: shared

par_att: attach a

par_cre: create a

par_det: detach a

plock: lock process, text, or data in
shmget: get a shared

memccpy, memchr, mememp, memepy

sort: sort or

manipulate the object file comment..............
map of ASCII character set.........ccoccoeeurnnens,

mask

mask

match routines

math functions and constants

math: math functions and constants....

matherr: error-handling function...

mes: manipulate the obj file comment..........
MCU displays
MCU mask
MCU mask

mcumask: set and get MCU mask

mcumask: set MCU mask

medit: update a line of text from....

member of an archive file..........ccccovrcrccnnnens

memcemp, memepy, memset: memory...........

memcpy, memset: memory operations..

memory allocator

memory allocatorccooecevvieceinierecennen,
memory control operations..........c..oceveccerecns

memory devices

memory ID

memory operations .

memory operations

memory partition

memory partition

memory partitionccooeeeericrencnnnnen e

memory

memory segment

memset: memory operations

merge files......ccooriciiiieniniienee s

SUPERMAX SYSTEM V REFERENCE MANUALS

ascii(5)
mcumask(1)
mcumask(2)

umask(1)

. umask(2)

. regexp(5)

math(5)
math(5)

. matherr(3M)

mes(1)
led(1M)
mcumask(l)
mcumask(2)

mcumask(2)

. mcumask(1)

edit(2)

1dahread(3X)
memory(3C)
memory(3C)
memory(3C)
memory(3C)

. memory(3C)

malloc(3C)
malloc(3X)
shmctl(2)
kmem(7)
iperm(1)
memory(3C)
shmop(2)

.. par_att(2)

.. par_cre(2)

par_det(2)
plock(2)

... shmget(2)
.. memory(3C)

sort(1)

PI-35

Permuted Index

acctmerg:

paste:

msgetl:

errout: write an error|t

amsgop: asynchronous
msgop:

mailx: interactive
msgget: get

ipcrm: remove a
mesg: permit or deny

errno, sys_errlist, sys_nerr: system error

millisec: get

accton,acctwtmp: overview over acct and

mkfs

umask: set file-creation

chmod: change

chmod: change

setdioc: display or set disk operation
getty: set terminal type

frexp, ldexp

touch: update acces and

utime: set file access and

chstack: set load

lastlogin

mount, umount:

mount:

setmnt: establish

PI-36 Permuted Index

merge or add total accounting files
merge same lines of several files
mesg: permit or deny messages..

message control operations

L= LT
message operationsoeeinienieciienienn
message 0perationscoceeiiiiniiinnin
message Processing systemovvvienneen

n ge queue

mesasage queue, semaphore set, or...............

=3

millisec: get millisecond counter

millisecond counter.....

miscellaneous accounting commands...
mkdir: make a directory........o.oeceveviiniennnnnns
mkfs, mkfs512: construct a file system.........
mkisb12: construct a file system
mknod: build special file.........c.ccceevrrverecerns
mknod: make a directory, or a special..........
mktemp: make a unique file name................
mnttab: mounted file system table................

mode mask

mode of a file

mode of a file

modes ...

modes, speed, and line discipline.........c.........
modf: manipulate parts of.........c..cconeicniinn
modification times of a file..........ceccvneiininine
modification times.........cccovenciiniiicniinens

module stack size

monacct, nulladm: shell procedures for........
monitor: prepare execution profile................
mount and unmount file system.........ccccoee.
mount file system
mount: mount file system

mount table

acctmerg(1M)

.. paste(l)
.. mesg(1)

msgetl(2)

.. errout(3C)

amsgop(2)
msgop(2)
mailx(1)
msgget(2)
ipcrm(1)
mesg(l)
perror(3C)

.. millisec(2)
.. millisec(2)
.. acct(1M)

mkdir(1)
mkfs(1IM)
mkfs(1M)
mknod(1M)
mknod(2)
mktemp(3C)
mnttab(4)

.. umask(1)

chmod(1)
chmod(2)
setdioc(1IM)
getty(1M)
frexp(3C)
touch(1)
utime(2}
chstack(1)
acctsh(1M)
monitor(3C)
mount(1M)

.. mount(2)

.. mount(2)
.. setmnt(1M)

ov

41

mountall, umountall:

mnttab:

mvdir:

Iseek:

cp, In, mv: copy, link, or

Ipmove: start or stop LP scheduler and
nrand48

mountall, umountall: mount, unmount
rc2: run commands performed for

cp, In

devnm: device

tmpnam, tempnam: create a
ldgetname: retrieve symbol

ctermid: generate file

getpw: get

getenv: return value for environment
getlogin: get login

nlist: get list from

nm: print

logname: get login

mktemp: make a unique file
ttyname, isatty: find

uname: get and set

print

tty: get the

cuserid: get character login

logname: return login

pwd: print working directory

fedit, flook: inspect and edit data file or
par_del: delete a

Permuted Index

mount, umount: mount and unmount file.... mount(1M)

mount and unmount multiple file................. mountall(1M)
mountall, umountall: mount, unmount mountall(1IM)
mounted file system tablec.ccorouennenen. mnttab(4)
move a directory.......c.occcvevvvvveereeiecncenenns mvdir(1M)
move file-pointercccccvveieencnevireneecinnenn. Iseek(2)
move files.. cp(l)

move requests..

mrand48, jrand48: generate uniformly......... drand48(3C)

msgetl: message control operations............... msgetl(2)
msgget: get message queueeeeneeenns msgget(2)
MSLOP: message operationsc.cceevieereienn msgop(2)
multiple file systems mountall(1M)
multi-user environmentccccccceiieiririnnns rc2(1M)

mv: copy, link, or move filescccocoon.e. cp(l)

mv: rename files...........cocoovvvvenerrniiiecennn, cp(l)

mvdir: move a directoryoooeeeeirenrnnne. mvdir(1M)
TIATIIE oy RAREAEIRNES <+ o s eov s devnm(1M)
name for a temporary filecccveriricnnnn. tmpnam(3S)

name for common object file symbol.. . ldgetname(3X)

. ctermid(3S)
getpw(3C)

name i 2 getenv(3C)
name getlogin(3C)
name list . nlist(3C)
name list of common object file..................... nm(1)
THATTIR . sne s miisn st eesneae logname(1)
NBINIC . cooae oo oo spuis s pies oA SR REGIRN s+ 0 mktemp(3C)
name of a terminal.. ttyname(3C)
name of current operating system .. uname(2)
name of current UNIX system .. . uname(1)
name of the terminal . tty(D)
name of the WSercciivivuceiionnicnnians cuserid(3S)
name of user..... logname(3X)
NAME.....ocereniinnens pwd(1)
named partitions fedit(1)
named partition........cuceveeieeereessneessesaresssaens par_del(2)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-37

TR e e e A Tl s e | e

be=n = f—==8
m —
=

Permuted Index

Idshread, ldnshread: read an indexed or
ldsseek, ldnseek: seek to an indexed or

ff: list file

basename, dirname: deliver portions of path
term: conventional

ncheck: generate path

id: print user and group IDs and

isnand, isnanf: test for floating-point

creat: create a
newgrp: log in to a

fork: create a

news: print

setjmp, longjmp:
isnand, isnanf: test floating-point NaN

deroff: remove

null: the

lastlogin, monacct

linenum: line

Idlread, ldlinit, ldlitem: manipulate line
Idlseek, ldnseek: seek to line

factor: obtain the prime factors of a
arithmetic: provide drill in

rand, srand: simple random

strip: strip symbol and line

df: report

PI-38 Permuted Index

named section header of a common ldshread(3X)

.. 1dsseek(3X)

named section of a common object

names and statistics for a file..... .. ffAM)
NAMEScevervenen .. basename(1)
names for terminals. ... term(5)
names from 1-nUMDbETrsc.cocoovveveveeiccrrinicnens ncheck(1M)
TIATNES hevr s ideseseseseoons iR id(1)

NaN (Not-a-Number).........cooiiiininiininnins isnan(3C)
ncheck: generate path names from.............. ncheck(1M)
new file or rewrite an.........ccvveennrersnsenrnnns creat(2)
new group newgrp(1M)
NEW PTOCESS.......cunee. fork(2)
newform: change the format of a.................. newform(1)

newgrp: log in to a new group newgrp(1M)
NEWS HEEIMS (.vvviiiiieree st news(1)
news: print news items........c.oeiices news(l)
nice: change priority of a process.................. nice(2)
nice: run a command at low priority nice(1)

nl: line numbering filter..........cccoucceviremiennne. nl(1)

nlist: get entries from name list.............c...,., nlist(3C)
nm: print name list of common object.......... nm(1)
nohup: run a command immune to............... nohup(1)

non-local goto
(Not-a-Number)....

nrand48, mrand48, jrand48: generate.

setjmp(3C)
... isnan(3C)
.. drand48(3C)

nroff, troff, tbl and eqn constructs................ deroff(1)

null device........ null(7)

null: the null device.........cccormirenircccrenniccnnes null(7}
nulladm: shell procedures for........ccccccovnnrne acctsh(1M)
number entries in a common object.............. linenum(4)
number entries of a common object.............. ldlread(3X)
number entries of a section of a.........ccooeeee Idlseek(3X)
number factor(1)
number [acts arithmetic(6)

rand(3C)
.. strip(1)
.. df(D)

number generator

number information from a common

number of free disk blocks and,

44

43

atof: convert string to dbl-precision

ecvt, fevt, gevt: convert floating-point

nl: line

generate uniformly distrb.pseudo-random
ldexp: manipulate parts of floating-point
modf: manipulate parts of floating-point
gendev: generate device

Idfhread: read the file header

ldfen: common

mces: manipulate the

Cprs: COMPpress a common

dump: dump selected parts of an

Idopen, ldaopen: open a common
manipulate line number entries of common
ldclose, ldaclose: close a commaon

Idfhread: read file header of common

line number entries of secrion of common |

seek optional file header of common

to relocation entries of section of common
indexed or name section header of common
seek indexed or named section of common
the index of symbol table entry of common
read indexed symbol table entry of common
1dtbseek: seek symbol table of common
linenum: line number entries in common
list: produce C source listing from

nm: print name list of common

reloc: relocation info for a common

senhdr: section header for common

an line number info from common
ldgetname: retrieve symbol name for

Syms: common

filehdr: file header for common

Id: link editor for common

size: print section sizes in bytes of

lorder: find ordering relation for an

factor:

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

DUMDET ...t rseraesenes strtod(3C)
number to string...........ccoiciivnnnn. .. ecvt(3C)
numbering filter ... nl(1)
numbers .. drand48(3C)
numbers. frexp(3C)
numbers frexp(3C)
numbers gendev(1M)
of a common object file........cc.c.cocevieiiinininen ldfhread(3X)
object file access routines.........cccoovrreriveniene ldfen(4)
object file comment section...............ccceeecine mes(1)
Object file:.. .o cprs(1)
object file dump(1)
object file for reading. .. 1dopen(3X)
object file function ldIread(3X)
OBJECL file..eeneneiieierinicie et Idclose(3X)
OBJECl file..uviiiinnnminnnerion s s ldfhread(3X)
IBCL, filesiuimimminssassibiiiianmerse Geerercreerererenas ldlseek(3X)
object file.......cccccouvreiviiiiennns ldohseek(3X)
object file .. ldrseek(3X)
object file 1dshread(3X)
object il ldsseek(3X)
object file ldtbindex(3X)
object file 1dtbread(3X)
object file 1dtbseek(3X)
object file.. .. linenum(4)
object file......cocovrevciennirnieens . list(1)
object file........coeeeinenieeiiiiiiins nm(1)
object file....corriimiiieee e reloc(4)
object file ... scnhdr(4)
object file.......coiiiinn i e strip(1)

object file symbol table entry ldgetname(3X)

object file symbol table format. syms(4)
object files.......... filehdr(4)
object files ..o e srarases 1d@)
object files.....coccvviirecieie e size(1)
object lIbraryccocovvievnneeciiiisaesenes lorder(1)
obtain the prime factors of a number........... factor(1)

PI-39

s S]
(= —
| Em—

Permuted Index

od:

creat: create new file or rewrite existing
lines of several files or subsequent lines
line: read

Idopen, 1daopen:

open:

fopen, frespen, fdopen:

dup: duplicate an

error: the

smos_var: get Supermax

rc0: run commands performed to stop the
uname: get and set name of current
sysvers: display

setdioc: display or set disk

amsgop: asynchronous message
memcepy, memchr, mememp: memory
memcpy, memset: memory

msgetl: message control

msgop: message

semctl: semaphore control

semop: semaphore

shmectl: shared memory control
shmop: shared memory

strat, strdup, strncat: string
stremp, strnemp, strepy: string
strespn, striok: string

strncpy, strlen, strchr: string
strrchr, strpbrk, strspn: string

join: relational database

dcopy: copy file systems for

curses: CRT screen handling and
getopt: get

lodhseek: seek to the

fentl: file control

stty: set the

Pl-40 Permuted Index

octal dump..

od: octal dump

one file

one line..........coiiine

open common obj file for reading..................

open a file........

open a SLreaml........coiiniiniiinniinisisissssssisioneass
open file-descriptor

open: open a file

Operating System error device......... st
Operating System information e
operating systemccccccucennreenciniins S

operating system ..

operating system versions.............c.cecveveeceenne

operation mode..

[o3123 217103 o PPN AT
OPErationsc.coveeemsmisninsnssenns rersesrasn s
0perationsco.ovveervneiins e RO
OpErationscocvevevvcins R ST AN
OPETALIONScovriiiemiisrisinieen e siecr st

operations

OPETALIONS ...eovviciiininiisiisie i

(410153 =10 100 o - O R O RSP PP P RO e ool

operations A e S o
OPETAtIONSocvviivienirieeeccerrar s

operations JERPOTORRRO

OPETALIONScovrocrarisrssrsssssesianssiinenrenens

operations ..

operations

[0 6125 1703 PPN
optimal access time...........oiicecimiiecreneensienenen
optimization package HTeirerrenreneens
option letter from argument vector
optional file header of commoneunee.

options

options for a terminal or printer..............coue.

e e e e e]
I

od(1)
od(1)
creat(2)

. paste(1)

line(1)
ldopen(3X)
open(2)
fopen(38)
dup(2)
open(2)
error(7)
smos_var(2)
rc0(1M)

. uname(2)

sysvers(1M)

.. setdioc(1M)

amsgop(2)
memory(3C)
memory(3C)
msgetl(2)
msgop(2)

.. semetl(2)

semop(2)
shmetl(2)
shmop(2)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
join(1)
dcopy(1M)
curses(3X)
getopt(3C)
ldohseek(3X)
fentl(5)
stty(1)

124

45

stty2: set the

getopt: parse command

lorder: find

mknod: make a directory, or special, or
vi, view, vedit: screen

cpio: copy file archived in and

cut: cut

dial: establish an

a.out: common assembler and link editor
fread, fwrite: binary input and

vprintf, vfprintf, vsprintf: print formatted
printf, fprintf, sprintf: print formatted
acctdis, acctusg, accton, acctwtmp:
chown: change

chown, chgrp: change

par_cho: change

curses: CRT screen handling and optim.
stdio: standard buffered input-output
ftoc: standard inter-process communication

set_parm: define additional system call

getppid: get process-1D, process-group-I1D
getopt:

tail: deliver the last

flook: inspect and edit data file or named
par_att: attach a memory

par_chm: change access rights to
par_cho: change owner-ID and group-ID
par_cre: create a memory

par_del: delete a named

par_det: detach a memory

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

options for a terminal or printer................... stty2(1)
OPLIONS ..ottt e getopt(1)
ordering relation for object library lorder(1)
ordinary file.. mknod(2)
oriented (visual) display editor....................... vi(1)

OUL oottt st ettt cpio(1)
out selected fields of each line of.................... cut(l)
out-going terminal line connection dial(3C)
OUEPUL ...t it et a.out(4)
output fread(3S)
output of varargs argument file ... vprintf(3S)

output .. printf(3S)
overview of accounting and misc.................... acct(1M)
owner and group of a filecccccorrrnrennnnne, chown(2)
owner and group ID of a file.......cccccerruenunen chown(1)
owner-ID and group-ID of a partition........... par_cho(2)

pack, peat, unpack: compres and expand pack(1)
PACKAEE. ...ttt ene e curses(3X)
PACKAEE. ...t stdio(3S)
stdipc(3C)
PAramMeters.........coviiveniicieniinis i ennees set_parm(2)
.. par_att(2)
.. par_chm(2)

par_att: attach a memory partition
par_chm: change access rights to......

par_cho: change owner-ID and group-ID par_cho(2)

par_cre: create a memory partition............... par_cre(2)
par_del: delete a named partition............c.... par_del(2)
par_det: detach a memory partition.............. par_det(2)
parent-process-ID ... getpid(2)
parse command OPtions..........cc.evvereieeeuennne. getopt(1)
part of @ filecooovveeeecceiicic e tail(1)

fedit(1)
par_att(2)
par_chm(2)

partition
partition....

partition.

partition.... .. par_cho(2)

partition par_cre(2)
PATtItioN ..o par_del(2)
partition............... par_det(2)

Pl-41

E=E————y m o= = LS e = =

Permuted Index

dump: dump selected

frexp, ldexp, modf: manipulate

pweck, grepk:

getpwent, getpwuid, getpwnam: get
setpwent, endpwent, fgetpwent: get
putpwent: write

passwd:

getpass: read a

passwd: change login

basename, dirname: deliver portions of
ncheck: generate

getewd: get

grep: search a file for a

awk:

egrep: search a file for a

pack

popen

machid: m69k

rc2: run commands
rc0: run commands
mesg:

acct:

acctems: command summary from

pg: file

split: split a file into

tee:

popen, pclose: initiate

isnand, isnanf: test for floating

fseek, ftell, rewind: reposition a file

Pl-42 Permuted Index

—

parts of an object file........ciiiiiiiiiiiiiinininin dump(1)
parts of floating-points numbers frexp(3C)
passwd: change login password passwd(1)
passwd: password file..... passwd(4)
password and group file checkers.. pwck(1M)
password file entry .. getpwent(3C)
password file entry ... getpwent(3C)
password file entry ..., putpwent(3C)
password file. ... passwd(4)
PASSWOTA ..cveeiiiniieiinerceeeeie st e emann e asenns getpass(3C)
PASSWOTd . i e oo Wil SRR R SR passwd(1)
paste: merge same lines of several paste(1}

PAth DAMEScoviveeriiircmisimies e srainaneiesnsssnsnes basename(1)
path names from i-numbers...........ccooceviennian ncheck(1M)
path-name of current working directory getewd(3C)
pattern grep(l)
pattern scanning and processing.. awk(1)
pattern using full regular expression .. egrep(1)
pause: suspend process until signal pause(2)
peat, unpack: compress and expand.............. pack(l)
pclose: initiate pipe to or from process......... popen(3S)
pdpll, udb, udb2, udbs, vax: getc.oveueee machid(1)
performed for multi-user environment......... rc2(1M)

performed to stop the operating system....... rcO(1M)

permit or deny m mesg(l)

per-process accounting file format .. acct(4)
per-process accounting records..... . acctems(1M)
perror, errno, sys_errlist, sys_nerr: . perror(3C)
perusal filter for CRT's .. pgl)

pg: file perusal filter for CRTs........ccccvevene. pg(l)
PLECES cov.vvceeiicmcnensieaeeersesnsrieen s st seneneasssnnaes split(1)
pipe: create an inter-process...........ooueeeeiivines pipe(2)
PIPe FIEEING e) tee(l)

pipe to or from a process...........coeveveveeervierares popen(3S)
plock: lock process, text, or data................... plock(2)
point NaN (Not-a-Number)..........cccooverennens isnan(3C)
pointer in 8 SEream ... fseek(3S)

[$14

a7

basename, dirname: deliver

banner: make

exp, log, logl0

log, logl0, pow, sqrt: expon.,logarithm

pretmp

be: arbitrary

monitor:

cpp: the C language
accept, reject: allow or
factor: obtain the
types:

date:

cal:

sum:

cat: concatenate and
pr:

vprintf, viprintf, vsprintf:
printf, fprintf, sprintf:
Ipstat:

nm:

news:

acctcom: search and

size:

config:

id:

pwd:

cancel: send or cancel req.to LP line
rsetsioc: initialize terminal or

stty: set the options for a terminal or
stty2: set the options for a terminal or
enable, disable: enable or disable LP
print:

Permuted Index

popen, pclose: initiate pipe to or from.......... popen(3S)
portions of path names..........cccocevverueeecrrnerenns basename(1)
posters cveraraseenesaansvas Yl banner(1)
pow, sqrt: exponential, logarithm.................. exp(3M)
power, square root func........c..cooceenrecrenens exp(3M)

pr: print files

pretmp, prdaily, prtacet: shell .. acctsh(1M)

prdaily, prtacct: shell procedures .. acctsh(1M)
precision arithmetic language.............cccu...... be(1)
prepare execution profile.........c.c.ccccoveeeciinnnns monitor(3C)
preprocessor RPN epp(l)
prevent LP requestsccccceevcvenieiininnnns accept(1M)
prime factors of a numbercc.coocevveeines factor(1)
primitive system data types.............co.cvinen.n. types(5)
print and set the date........cccoocoooeiiecncnnnnnne. date(1)
print calendar.... . cal(1)
print checksum and block count sum(1)
print files .. cat(l)
print files .. pr(l)

print formatted output of varargs vprintf(3S)
print formatted outputccccocooevreeinnrircrenns printf(3S)
print LP status information..........cccccecrvennne. Ipstat(1)
print name list of common object file nm(l)
print name of current UNIX system............. uname(1)
Print News emsc.c..ococvcrvnvennieneesennns news(1)
Print: Printerscocmiervenrnernsennrenns print(7)
print process accounting files acctcom(1)
print section size in bytes of common size(1)
print system configuration config(1M)

print user and group IDs and names. . id()

print working directory name . pwd(1)
2911175 U . Ip()
PINEET .ot rsetsioc(l)
PEANEET c..covirteiiiniinerrerreiereseesresaeres e ereeien stty(1)
12311 123 ST RS R YR e S stty2(1)

v 1)1 1 e S e e NI enable(1)
printers . print(7)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-43

=[]

Permuted Index

nice: run a command at low

nice: change

bre, beheckre: system initialization
chargefee, ckpacct, dodisk: shell
lastlogin, monacct, nulladm: shell
pretmp, prdaily, prtacct: shell
runacct, shutacct, startup, turnacct: shell
acct: enable or disable

acctprcl, acctpre2:

acctcom: search and print

alarm: set a

times: get

init, telinit:

timex: time a command: report

times: get process and ¢hild

resume: resume

suspend: suspend

exit, _exit: terminate

fork: create a new

inittab: script for the init

kill: terminate a

nice: change priority of a

kill: send a signal to a

popen, pclose: initiate pipe to or from a
ps: report

plock: lock

wait, waitx: wait for child

ptrace:

pause: suspend

wait: await completion of

checklist: list of file systems

kill: send signal to process or group of
killall: kill all active

fuser: identify

getpid, getpgrp, getppid: get process-1ID
setgrp: set

Pl-44 Permuted Index

[ErSEsS == S e == il = . Al S e

printf, fprintf, sprintf: printccouereeperee printf(38)
PTIOTILY . .voeeeeeriiceeeeeree e e e e RPN nice(1)
Priority of & Process.......ccveevveerercreercrieneeenne nice(2)
PrOCEAULESovveereeiereeerieatieseneresneresransseserseas brf(IM)
procedures for accounting............ccoeccerenicnen acctsh(1M)
procedures for accounting..........ccccoeecnicrennine acctsh(1M)
procedures for accounting..........c.ocoovvveervinenne acctsh(1M)
procedures for accounting.........occcviieeeccivcns, acctsh(1M)
Process acCoOUNtiNg........cccvevvivveeieevercrarvienianns acct(2)
process accounting. acctpre(1M)
process accounting filesoccovcveeviniiininnnnne acctcom(1)
process alarm clock ... alarm(2)
process and child process elapsed times....... times(2)
process control initialization.........cviviieeenn. iNit(IM)
process data and system activitycoes timex(1)
process elapsed times..........cicoercieneiiiinnniens times(2)
Process eXeCULIONcociaiiminiminmnisrissineenneees resume(2)
process execution suspend(2)
process ... exit(2)
PO e S S R N e fork(2)
PTOCESS. Mo G S A A .. inittab(4)
Process........ I~ ™ e kill(1)
process......... nice(2)
process or group ofccoveiuicinions e N kill(2)
proce T popen(3S)
process Status ... RS e B oesre 3 ps(1)
process, text, or data in memory................... plock(2)
process to stop or terminate ..o, wait(2)
Process trace..........coveeerueenns GHT vereeereeere b ptrace(2)
process until signal ..., pause(2)
PTOCESS. c.ctvarsaerenesinsnsntasssressseesiessnesnsssenssresarsne wait(1)
processed by f8cK.......coocoveinniicini checklist(4)
PYOCEESES «evvurainsmersrunsrrsnaessmssamanargsssssssasorsnsans kill(2)
PYOCESSES 1euivisunsnssissmarsnnsssssassnssnisnssssessersssnorans killall(1M)
processes using a file or file structure........... fuser(1M)

process-goup-1D, and parent-process-I1D....... getpid(2)
Process-group-IDccocceeeiiicniiicicniiiciinns setgrp(2)

527

49

getpid, getpgrp, getppid: get

awk: pattern scanning and

mailx: interactive message

m4: macro

machid: m69k, pdpll, u3b, u3b2: get
machid: u3b5, vax: get

list:

prof: display
monitor: prepare execution
profil: execution time

profile: system-wide user

prof:

assert: verify

cb: C

lint: a C

cxref: generate C

ctrace: C

end, etext, edata: last location in

sdiff: side-by-side difference

units: conversion

rsh: shell, the standard and restricted cmd
clist: list C

lex: generate

maintain, update, and regenerate groups of
terminology: compile Virtual Term.Interface
arithmetic:

locking:

labelit:

true, false:

pretmp, prdaily

crash:

Irand48: generate uniformly distributed

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

process-ID, process-group-ID, and................. getpid(2)
processing languagec..cooecvveeercerieccncnnenns awk(1)
Processing SYSteIMc.vccovecrirmveenmincrnncesrinnns mailx(1)
processor m4(1)

.. machid(1)
.. machid(1)

processor type truth vatue.

processor type truth value ...

produce C source listing from a... list(1)
prof: display profile data.........ccccovererirrennnae prof(l)
prof: profile within a function prof(5)
profil: execution time profile..........c.cccocceenvee profil(2)
profile data .. prof(1)
PPOSIE oot sesnaran s sn e s enneeee monitor(3C)
] 61t DRy SO Y profil(2)
BV i sns s A profile(4)
profile: system-wide user profile.................. profile(4)
profile within a function.........coccconeecneencs prof(5)
program assertion assert(3X)
program beautifier . .. ¢b(1)
program checker lint(1)
Program Cross-reference..........icieeiceiinas cxref(1)
program debUEercvevorreceemsiencssicscrnnens ctrace(1)
DPIOBTAI.cc.c.ceuieierearersaerarenreecseesssareererreaneseanes end(3C)
PLOBTAML.....ovveiueeerrenreeireseronesteasasassteserssennassess sdiff(1)
PTOBTAIML..c..cuiimiienrinnierneessesenresenessssacsrennennasenas units(1)
programming 1anguage..........cccvicinarecices sh(1)
PIOGTAINS ..cooutiniremceterenrersesesirrnaeeresreseoesrencoieness clist(1)
programs for simple lexical tasks... lex(1)

programs .. make(1)

programs.... terminology(1)
provide drill in number facts..........cccccevenns arithmetic(6)
provide excl. access to a byte range locking(2)
provide labels for file systems.........ccccevuecnee labelit(1M)
provide truth values............ccocccniiennin true(l)
prtacct: shell procedures for accounting....... acctsh(1M)
provoke system crashccenerieiinninnnnns crash(1M)

ps: report process statusc.occonviiniienns ps(l)
pseudo-random numMbers..........coovenreiveiiinnnias drand48(3C)

Pl-45

i e e R N N N)
& —
| ———

Permuted Index
jrand48: generate uniformly distributed
seed48, lcong48: gen. uniformly distrb
ungetc:
puts, fputs:

pute, putchar, fpute, putw:

pute

putc, putchar, fputc

tput: initialize a terminal or

pseudo-random NUMDErS........cccereverscerresnncas
pseudo-random nuUmMbers........ccccocovierrerncrececes

ptrace: process trace.

push character back into input stream.........

put a string on a stream

put character or word on a stream

pute, putchar, fpute, putw: put char. or.......
putchar, fpute, putw: put character
putenv: change or add value to env.
putpwent: write password file.............oceueee.
puts, fputs: put a string on a stream............
pututline, setutent, endutent, utmpname:
putw: put character or word on a.........ccuuee
pwek, grpck: password and group.........coeee.
pwd: print working directory.........c.ccocvueuneens
qsort: quicker sort

query terminfo database

msgget: get g
iperm: remove a message
gsort:

nohup: run a command immune to hangups and

rand, srand; simple

locking: provide excl.access to a byte

gelpass:

Idshread, ldnshread:

Idtbread:

aread: asynchronous

mail, rmail: send mail to users or
line:

ldahread:

Idfhread:

Idopen, ldaopen: open common obj file for
getegid: get

getegid: get

Pl-46 Permuted Index

queue
queue, semaphore set, or shared...................

quicker sort

quits

rand, srand: simple random number
random number generator.............oenienns

range

rc0: run cmds performed to stop the............
rc2: run cmds performed for multi-user.......
read a password

read an indexed or named section.................
read an indexed symbol table entry..............
read

read mail

read one line

read the archive header of a member...........
read the file header of a common..................
reading
real-user-1D, effective-user-ID

real-group-1D), effective-group-ID

drand48(3C)
drand48(3C)
ptrace(2)
ungetc(3C)
puts(3S)

. putc(38)

pute(3S)
putc(3S)
putenv(3C)
putpwent(3C)
puts(38)

... getut(3C)

pute(3S)
pwck(1M)
pwd(1)
qsort(3C)
tput(l)
msgget(2)
ipcrm(1)
qsort(3C)
nohup(1)
rand(3C)
rand(3C)
locking(2)
rc0(1M)
rc2(1M)
getpass(3C)
ldshread(3X)
Idtbread(3X)
aread(2)
mail(1)
line(1)
Idahread(3X)
Idihread(3X)
read(2)
getuid(2)

. getuid(2)

0s

51

malloc, free

malloc, free

getuid, geteuid, getgid, getegid: get

getuid, geteuid, getgid, getegid: get

signal: specify what to do upon

lockf:

cmd summary from per-process accounting
fwtmp, wtmpfix: manipulate connect acct
frec:

ed

make: maintain, update, and

regemp

regexp:
regemp:
regemp, regex: compile and execute

egrep: search a file for pattern using

accepl

comm: select or

lorder: find ordering
Join:

ldrseek, ldnrseek: seek to
reloc:

floor, ceil, fmod, fabs: floor, ceiling
calendar:

unlink:

ipcrm:

rm, rmdir:

deroff:

mv:

file system consistency check and
unig: report

clock:

fsstat:

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

realloc, calloc: main memory allocation........ malloc(3C)
realloc, calloc, mallopt, mallinfo.................... malloc(3X)
real-user-ID, effective-user-IDc.coceu..... getuid(2)
real-group-ID, effective-group-ID getuid(2)
receipt of a signaliismmnnniiimaa signal(2)
record locking on files........c.c.cceoovrvveerririiirenns lockf(3C)
e e P R acctems(1M)

.. fwtmp(1M)
.. frec(1M)

records,

recover files from a backup tape....

red: text editor ed(1)
regemp, regex: compile and execute.............. regemp(3X)
regemp: regular expression compile.............. regemp(1)
regenerate groups of programs..............c....... make(1)
regex: compile and execute regular............... regemp(3X)
regexp: regular expression compile............... regexp(5)
regular expression compile and match regexp(5)
regular expression compile.........occeeeerrernnnns regemp(l)
regular expression .. regvmp(3X)

.. egrep(l)
.. accept(1M)

regular expressions......

reject; allow or prevent LP requests.

reject lines common to two sorted lines comm(1)
relation for an object library.............ooveuen. lorder(1)
relational database operator Jjoin(1)
reloc: relocation info for a common reloc(4)
relocation entries of a section............c........... ldrseek(3X)
relocation info for a common object.............. reloc(4)
reminder, absolute value functions............... floor(3M)
TEMINAET SETVICE.....ovvveeerenereereieeteeeresresensenas calendar(1)
remove a directory entry...........ceovevriinenne unlink(2)

remove a message queue, semaphore set...... ipcrm(1)

remove files or directories..... .. rm(1)

remove nrof, troff, thl and eqn .. deroff(1)
rename files . ¢ep(1)
FEPAIT ..ot sasnsnrarssre s sress s s s en s fsck(1M)
repeated lines in a filecccoevevennnnnne. uniq(1)
report CPU time usedcccccooeoevevvrrcrcrinnnan. clock(3C)
report file status...ccuimm i, f5stat(1IM)

Pl-47

=== = S i
—
T
Permuted Index
ipcs: |report inter-process communication iprs(1)
df:|report number of free disk blocks. .. df(1)
timex: time a command: | report process data and system timex(1)
Ps: | report process statuscovceeveerivnnsieeinnieennns ps(1)
uniq: |report repeated lines in a file.........c.ccovcnens uniq(1)
fseek, ftell, rewind: |reposition a file pointer in a stream.............. fseek(3S)
accept, reject: allow or prevent LP [requests.........ccoceeireeinceieinnecnnnenviniiiacan accept(1M)
Ipmove: start or stop LP scheduler and move|requests....... Ipsched(1M)
1p, cancel: send or cancel|requests to an LP..........cccocciinecmnccncnnninnnnens Ip(1)
sh, rsh: shell, the standard and|restricted command prg. language................ sh(1)
resume: |[resume process execution resume(2)
resume: resume process execution............... resume(2)
ldgetname: [retrieve symbol name for common... ldgetname(3X)
logname: [return login name of user.... .. logname(3X)
getenv: [return value for environment name .. getenv(3C)
stat: data|returned by stat system call stat(5)
fseek, ftell|rewind: reposition a file pointer,........ fseek(3C)-
creat: create a new file or|rewrite an existing one.........ccoceveverceievcincenne creat(2)
par_chm: change access|rights to partitioncccoveevnvnncnnnenn, par_chm(2)
rm, rmdir: remove files or directories........... rm(1)
mail rmail: send mail to users or readc....... mail(1)
rm|rmdir: remove files or directories.................. rm(1)
robots: escape from the robotscc.cccouveennee robots(6)
robots: excape from the|robots ..o robots(6)
chroot: change|root directory. .. chroot(2)
chroot: change|root directory for a command. .. chroot(1M)
sqrt: exponential, logarth.,power, square|root functions .. exp(3M)
Idfen: common object file ACCE58 | FOULINES ..vvrecareerrerrmreriririsereesencnnss ldfen(4)
regexp: regular expression compile and mateh |TOULINES........ccvcriueerisesiienien e ereeeieseens regexp(5)
reetsioc: initialize term or printer................. rsetsioc(1)
sh|rsh: shell, the standard and restricted sh(l)
nice: [run a command at low priority.........ccovceninn nice(1)
nohup: |run a command immune to hangup and nohup(1)
rc2:|run commands performed for multi-user..... re2(1M)
rc0: |run commands performed to stop the........... rcO(1IM)
runacct: |run daily accounting ... runacct(1M)
runacct: run daily accounting.... .. runacct(1M)

Pl-48 Permuted Index

f4]

53

paste: merge
brk

bsf: big file
awk: pattern

scesfile: format of an

Ipsched, Ipshut, lpmove: start and stop LP

curses: CRT
vi, view, vedit:

inittab:

fgrep:

grep:

egrep:

bsearch: binary

acctcom:

lsearch, 1find: linear

hsearch, hereate, hdestroy: manage hash
tsearch, tfind, tdelete, twalk: manage binary
scnhdr:

ldshread, ldnshread: read an indexed and named
mes: manipulate the object file comment
ldnlseek: seek to line number entries of
ldnrseek: seek to relocation entries of
Idsseek, ldnseek: seck to an indexed or name

size: print

srand48

ldsseek, ldnseek:
ldsseek, ldnlseck:
Idrzeek, ldnrseek:
ldohseek:
ldtbseek:

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

runacct, shutacct, startup, turnacct: shell ... acctsh(1M)

same lines of several files OTcc.covecererinnee paste(1)
sbrk: change data segment space alloc brk(2)
scanf, fscanf, sscanf: conv formatted input.. scanf(3S)
scanner bfs(1)
scanning and processing language awk(1)
SCCS fIle ..eercireerierecrireteete e eseeeinn scesfile(4)
scesfile: format of an SCCS file.........c.ccoeeneenn scesfile(4)
scheduler and move requests...........ccceeueuenn, Ipsched(1M)
scnhdr: section header for a common........... scnhdr(4)

screen handling and optimization curses(3X)

screen oriented (visual) display vi(l)
script for the Init process........oweiirimn. inittab(4)
sdb: symbolic debugger.........ccovvvnrrriciinnns sdb(1)
sdiff: side-by-side diff program.............c......... sdiff(1)

.. fgrep(1)
.. grep(1)

search a file for a character

search a file for a pattern....

search a file for pattern using full.... egrep(1)
search a sorted table bsearch(3C)
search and print process accounting............. acctcom(l)
search and update Isearch(3C)
search tables......... hsearch(3C)
search trees tsearch(3C)
section header for a common object scnhdr(4)
section header for a common object ldshread(3X)
section mcs(1)
section of a common object file.........c.cceeunene 1dlseek(3X)
section of a common ohject file...................... ldrseek(3X)
section of a common object file...................... ldsseek(3X)
section sizes in bytes of common object size(1)

sed: stream editorc.c.ooeveereevnenrenrninennen sed(1)

seed48, lcong48: generate uniformly distrb.. drand48(3C)

seek to an indexed or named section............. ldsseek(3X)
seek to line number entries of section.......... 1d1seek(3X)
seek to relocation entries of section.............. ldrseek(3X)

Idohseek(3X)
1dtbseek(3X)

seek to optional file header

seek to the symbol table of common....

Pl-49

Permuted Index

shmget: get a shared memory
brk, sbrk: change data

comm:

cut: cut out

dump: dump

semctl:

semop:

iperm: remove a message queue

semget: get set of|

kill:

mail, rmail:

1p, cancel:

calendar: reminder

alarm:

umask:

mcumask:

ascii: map of ASCII character
timezone:

setdioc: display or

seteof:

env:

utime:

umask:

ISO-8859/1: international character
chstack:

mcumask:

uname: get and

semget: get

ipcrm: remove a message queue, semaphore
setpgrp:

settime:

tabs:

getty:

date: print and

PI-50 Permuted Index

segment

segment space allocations........ccuiaiininin
select or reject lines common to........cccevevenns

selected fields of each lines of ...

selected part of an object file ..

semaphore control operations.

semaphore operations

semaphore set, or shared memory ID...........

semaphores ..

semctl: semaphore control operations
semget: get set of semaphores ...
semop: semaphore operations...............ccoe
send a signal to process or group of..............
send mail to users or read mail...........ccovrurn
send or cancel requests to an LP

service

set a process alarm clock..

set and get file creation mask.... 2
set and get MCU masK......oiimmmniimen

set default system time zone........cococreveenrnene
set disk operation modes.........ccococverviiiiciinen
get end-of-fileocovciiiiiiiiinicii
set environment for command execution
set file access and modification.......coeennnees

set file-creation mode mask

sel load module stack size
set MCU mask

set name of current operating system

set of semaphores........cvin

set, or shared memory IDccevevvevercecnecns

set process-group-I1D

set system timeccoeevvenvneceineennnn e
set tabs on a terminal.........cccciiiiiiinniciiinin
set terminal type, modes, speed........cccoceevnuee
set the date ...

shmget(2)
brk(2)

comm(1)

... cut(l)

dump(1)
semctl(2)

.. semop(2)

iperm(1)
semget(2)
semctl(2)
semget(2)
semop(2)
kill(2)
mail(l)
Ip(1)

calendar(1)

.. alarm(2)

.. umask(2)

mcumask(2)
ascii(5)
timezone(4)
setdioc(1M)
seteof(2)
env(l)

utime(2)

.. umask(1)

ISO-8859/1(5)
chstack(1)

.. mcumask(1)

uname(2)
semget(2)
ipcrm(1)
setpgrp(2)
settime(1)
tabs(1)
getty(1M)
date(1)

12°)

55

stty:

stty2:

stime:

ulimit: get and

setuid, getgid:

setuid

crypt

gettydefs: speed and terminal

pututline
setbuf

paste: merge same lines of

shmetl:

remove a message queue, semaphore set or
shmop:

shmget: get a

system: issue a

shl:

chargefee, ckpacct, dodisk:

lastlogin, monacct, nulladm:
pretmp, prdaily, prtacct:

runacct, shutacet, startup, turnacct:
sh, rsh:

csh: a

dsh:

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

set the options for a terminal............cccc.c.... stty(1)

set the options for a terminal...........cccocoeueen. stty2(1)

set timec.cvinivii e stime(2)

set user limits .. ulimit(2)
set user-ID and group-ID...... .. setuid(2)
setbuf, setvbuf: assign buffering to a .. setbuf(3S)
setdioc: display or set disk operating .. setdioc(1IM)
seteof: set end-of-file.........cccovnviiniiiininnnns seteof(2)
setgid: set user-ID and group-ID.................. setuid(2)
setgrent, endgrent, fgetgrent: get group....... getgrent(3C)
setjmp, longimp: non-local goto...,.........c...... setjmp(3C)
setkey, encrypt: generate hashing................. crypt(3C)
setmnt: establish mount table..........c..c....... setmnt(1M)
set_parm: define additional system............... set_parm(2)
setpgrp: set process-group-IDcoviiiinnan setpgrp(2)

setpwent, endpwent, fgetpwent: get.. getpwent(3C)

.. settime(1)
.. gettydefs(4)
setuid, setgid: set user-ID and group-ID....... setuid(2)

settime: set system time.

settings used by getty ..

setutent, endutent, utmpname: access.......... getut(3C)
setvbuf: assign buffering to a stream............ setbuf(3S)
several files or subsequent lines.................... paste(1)
sh, rsh: shell, the standard and restricted ... sh(1)
shared memory control operations................ shmetl(2)
shared memory IDcciceevmvnencireennnnee, iperm(1)
shared memory operations.........c.ccccovinennsens shmop(2)
shared memory segmentcccenieverviennnen shmget(2)
shell command system(3S)
shell layer manager shl(1)
shell procedures for accounting.......c.covueenneee acctsh(1M)
shell procedures for accounting........cccveurnnn. acctsh(1M)
shell procedures for accounting.........c.ccunee. acctsh(1M)
shell procedures for accounting...........wriees acctsh(1M)
shell, the standard and restricted sh(1)

shell with C-like syntax..........ccoevvvmiivinsrnsnnane csh(l)
shell with history facilityccocoiriniiannnn dsh(1)

shl: shell layer managerccooccouicciininncns shl(1)

PI-51

(dk ——

B [E—=—1
m
==y

Permuted Index

shutdown:

runacct

sdiff:
login:
pause: suspend process until

signal: specify what to do upon receipt

kill: send a
ssignal, gsignal: software
lex: generate programs for

rand, srand:

chlds: change logical disk
chstack: set load module stack

dsize: display disk

size: print section

ttyslot: find the

ssignal, gsignal:
sort:

gsort: quicker

tsort: topological

comm: select or reject lines common to two
bsearch: binary search a

list: produce C

brk, sbrk: change data segment

mknod: build

Pl-52 Permuted Index

shmetl: shared memory control operations.. shmetl(2)

shmget: get a shared memory segment shmget(2)
shmop: shared memory operations .. shmop(2)
.. shutdown(1M)

shutacct, startup, turnacct: shell procedure acctsh(1M)

shut down system, change system....

shutdown: shut down system, change........... shutdown(1M)

side-by-side difference program..................... sdiff(1)

SIBTL OTL..eereeerircmtrsesesnaresenserssesesssssasnsesespanreseacs login(1)

signal pause(2)

SIGNAL. oo signal(2)
signal(2)
kili(2)

.. ssignal(3C)

.. lex(1)

.. rand(3C)
gin, cos, tan, asin, acos, atan, atan2:............. trig(3M)
sinh, cosh, tanh: hyperbolic functions.......... sinh(3M)
size chlds(iM)
sixe chstack(l)
BIZB.uiucriinet ittt et dsize(1)
size: print section sizes in bytes of................ size(1)
sizes in bytes of common object files............. size(1)
sleep: suspend execution for an interval....... sleep(1)

sleep: suspend execution for interval..

slot in the utmp file of the......

.. sleep(3C)
.. ttyslot(3C)

.. smos_var(2)

smos_var: get Supermax Opr. System

smsys: machine specific functions .. smsys(2)
software signals......c.cccccierervsnecneeieriereneens ssignal(3C)
s0rt oF merge files........ocoemvcrieecasrecrasrssnnsenanns sort(l)

F:10) o AT gsort(3C)
sort: sort or merge files.......cviiiiniiiniinnin sort(1)

SOTE oo il oo, SRR S tsort(1)
sorted files comm(1)
sorted table. bsearch(3C)
source listing from a common object Tist(1)
space allocation - brk(2)
special file mknod(1M)

95

57

|
L]

-

o M - > -

mknod: make a directory, or a
smsys: machine

fspec: format

signal:

getty: set terminal type, modes
gettydefs:

split;

csplit: context

Ipadmin: configure the LP

printf, fprintf

exp, log, logl0, pow

exp, sqrt: exponential, logarithm, power

rand

scanf, fscanf

chstack: set load module
sh, rsh: shell, the

stdio:

stdipe, ftoc:

Ipsched, Ipshut, lpmove:

runacct, shutacct

stat: data returned by

shutdown: shut down system, change system
ff: list file names and

ustat: get file system

fsstat: report file

Ipstat: print LP

ferror, feof, clearerr, fileno: stream

report inter-proc.communication facilities
ps: report process

stat, fstat: get file

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

special or ordinary file..........c.coerviiiririrasiinns mknod(2)
specific functions............occoieenccinicniin smsys(2)
specifications in text filescccoinciiicnninne fspec(4)
specify what to do upon receipt of................ signal(2)
speed, and line discipline............cccocociineinnne getty(1M)
speed and terminal settings used by gettydefs(4)
split a file into pieces ... split(1)
split csplit(1)

split: split a file into pieces split(1)

.. Ipadmin(1M)
.. printf(38)
exp(3M)

square root functions.........cccoveeervenvecrenccennns exp(3M)

spooling systemc..oocecevcecrrencns

sprintf: print formatted output ..

sqrt: exponential, logarithm, power .

srand: simple random number generator-..... rand(3C)

srand48, seed48, lcong48: generate............... drand48(3C)
sacanf: convert formatted input ...t scanf(38)
ssignal, gsignal: software signals................... ssignal(3C)
stack Size......ooiviviiiiii chstack(1)
standard and restricted command................. sh(1)

standard buffered input-output package....... stdio(38)
.. stdipe(3C)

standard inter-process communication

start or stop the LP scheduler....... .. Ipsched(1M)
startup, turnacct: shell procedures for acctsh(1M)
stat: data returned by stat system call stat(5)

stat, fstat, get file status..........ccoccvvuivriscreninnns stat(2)

stat system call stat(5)
BEALL.c.ceceeeneeinsere et e AR shutdown(1M)
statistics for a file system..........cociiinieiannnnns F(IM)
statistics ustat(2)

SEALUScveerectiee e s fsstat(1IM)
status information Ipstat(1)

status inquiries.. .. ferror(38)

status..... .. ipes(1)
status

status

stdio: standard buffered input-output.........., stdio(3S)
stdipe, ftoc: standard inter-process stdipe(3C)

Pi-53

E—=arey

Permuted Index

wait, waitx: wait for child process to
Ipsched, lpshut, lpmove: start or

rc0: run commands performed to

strnepy, strlen

strcmp, strnemp

streat

sed:

fclose, fflush: close or flush a

fopen, freopen, fdopen: open a

ftell, rewind: reposition a file pointer in a
fgetc, getw: get character or word from
gets, fgets: get a string from a

fputc, putw: put character or word on a
puts, fputs: put a string on a

setbuf, setvbuf: assign buffering to a
fervor, feof, clearerr, fileno:

ungetc: push character back into input

fevt, gevt: convert floating-point number to
fgrep: search a file for a character

gets, fgets: get a

puts, fputs: put a

strcat, strdup, strncat:

strcmp, strnemp, strepy:

strespn, strtok:

strncpy, strlen, strchr:

strrehr, strpbrk, strspn:

strtod, atof: convert

strtol, atol, atoi: convert
strip:

strncpy

streat, strdup

PI-54 Permuted Index

RSl = RS Y AT e A i e T
=,

stime: set time stime(2)
stop or terminateccoocoeviicnncinicenein wait(2)
stop LP scheduler and move requests . .- Ipsched(1M)
stop the operating system Tc0(1M)

strcat, strdup, strncat: string operations...... string(3C)

strchr: string operationsccocvveeennnens string(3C)
stremp, strnemp, strepy: string operations .. string(3C)
strepy: string operationsccooocvvevinnnns string(3C)
strespn, strtok: string operations.................. atring(3C)
strdup, strncat: string operations.................. string(3C)
stream editorcccceeverirenvnniece e sed(1)
SETEAIMN ...comiieiiicr ittt fclose(3S)
Streamcoceceermnrernreenns fopen(3S)
streamcocevecneninnns fseek(3S)
stream ... getc(38)
110 (=7: Y o RN e e s R gets(3S)
Streamccovveeeeneens putc(3S)
stream .. puts(3S)
streamccocvvveicenee setbuf(38)
stream status INQUIries. ... ferror(38)
stream .. ungetc(3S)
streamdrv: copy with buffering streamdrv(1)
BETINZ cvvcvvreere e e ecvt(3C)
519 9121 SO OO OTO RSP fgrep(1)
string from a stream... gets(38)

string on a stream. .. puts(38)

.. string(3C)

string operations...

string operations string(3C)
string operationscccceeeevrevercrennnrecreninane. string(3C)
string operationsooeerercnnn s string(3C)
String Operationsc.ccciveeccerenneeeinsennnenna string(3C)
string to dbl-precision number strtod(3C)
string to Integerc.cccvvinviiiiiicccniinineen, strtol(3C)
strip: strip symbol and line number strip(1)

strip symbol and line number information .. strip(1)
.. 8tring(3C)
.. string(3C)

strlen, strchr: string operations

strncat: string operations

85

59

stremp

strrchr

strrchr, strpbrk

strspn

fuser: identify proc. using a file of file

paste: merge same lines of several lines

sumdir:

du:

acctcms: command
sync: update the
smos_var: get

su: become

asuspend: asynchronous
sleep:

sleep:

suspend:

pause:

swab:

strip: strip

ldgetname: retricve

retrieve symbol name for common obj file
Idtbindex: compute the index of a
ldtbread: read an indexed

syms: common object file

Idtbseek: seek to the

sdb:

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

strnemp, strepy: string operations................ string(3C)
strnepy, strlen, strchr: string operations string(3C)
strpbrk, strspn: string operations................. string(3C)

strrchr, strpbrk, strspn: string operations... string(3C)

strspn: string operations........c..cccoccevvevuenenn. string(3C)
strtod, atof: convert string tocccceeccnenn strtod(3C)
strtok: string operations...........coeevvcevvccnnene string(3C)
strtol, atol, atoi: convert string to................. strtol(3C)
structurecccocceeene, e raens fuser(1IM)
stty: set the options for a terminal or........... stty(1)
stty2: set the options for a terminal or......... stty2(1)
su: become super-user or another user su(iM)
subsequent lines of one file.........c..ccovvccernn, paste(1)
sum and count characters in the files........... sumdir(1)
sum: print checksum and block count.......... sum(1)
sumdir: sum and count characters in........... sumdir(1)
summarize disk Usage.........cocovvvrrierecveeeronnns du(l)
summary from per-process accounting......... acctems(1M)
BUPET DlOCK ..ot sync(IM)

Supermax Operating System information.... smos_var(2)

super-user of another user... su(1M)
suspend asuspend(2)
suspend execution for an interval sleep(1)
suspend execution for interval.............cocec.. sleep(3C)
suspend process eXecution ... suspend(2)
suspend process until signalc.coceenne. pause(2)
suspend: suspend process execution suspend(2)
swab: swap bytes.. .. swab(3C)
swap bytes swab(3C)
symbol and line number information strip(1)
symbol name for common object file............. ldgetname(3X)
symbol table entry .. ldgetname(3X)
symbol table entry of a common ... Idtbindex(3X)

.. 1dtbread(3X)
.. syms(4)
1dtbseek(3X)
symbolic debuggersssesicisiiiiiiisiiins . sdb(1)

symbol table entry for a common
symbol table format.....

symbol table of a common object....

PI-55

Permuted Index

csh: a shell with C-like

perror, errno

perror, errno, errlist

timex: time a command: report process
set_parm: define additional

stat: data returned by stat
shutdown: shut down

chhw: change

config: print

fack, fsckb512, dfsck: file

crash: provoke

types: primitive

fsdb: file

error: the Operating

perror, errno, sys_errlist, sys_nerr:
errlog: log

fF: list file names and statistics for
file

smos_var: get Supermax Operating
brx, bcheckre:

Ipadmin: configure the LP spooling
mailx: interactive message processing
mkfs, mkfs512: construct a file
mount, umount: mount and unmount file
mount: mount file

run commands performed to stop the
shutdown: shut down system, change
ustat: get file

mnttab: mouned file

settime: set

timezone: set default

umount: unmount a file

print name of current UNIX

PI-56 Permuted Index

syms: common object file symbol table......... syms(4)
sync: update the super block sync(1M)
syne: write disk cache to disk. .. sync(2)
syntax ... csh(@)
sys_errlist, sys_nerr: system error................ perror(3C)
SyS_nerr: system error messages................... perror{3C)
system Activity.......cccvveiiririeiieniiiicecieciecs timex(1)
system call parameters...........cocoerviecircriiennes set_parm(2)
system callcooovecoieeniie stat(5)
system, change system state................c........ shutdown(1M)
system configuration.............c.ocvvevvircnicennnens chhw(1M)
gystem configuration..........c.covcrrniccincrnainens config(1M)
system consistency check and fsck(1M)

system crash...

.. crash(1M)

system data types. .. types(5)

system debugger-... .. fsdb(1M)
System error devicec.oecvrvevveircnirenniion error(7)
system error Ir g ... perror(3C)
system errors. errlog(1M)
SYSEeIM .o ffAM)
system: format of system volume.................. fs(4)
System informationcccocvoeeicnnniencee smos_var(2)
system initialization procedures..........c........ brf(IM)
system: issue a shell command...........ccccieeee system(3S)
system Ipadmin(1M)
system mailx(1)
gystem ... mkfs(1M)
L | . mount(1M)
SYSEEIM c.vviiiiiiciierienie e e e mount(2)
gystem re0(1IM)
system state....... shutdown(1M)
system statistics....... ustat(2)
system table...........ccoveervvvenivinnnneeneces mnttab(4)
System time..........cccoovviniccicnincn i settime(1)
system time zone.........ccocrmrveicrnnnienenens timezone(4)
system ... umount(2)
system uname(1)

09

61

uname: get and set name of current
sysvers: display operating

make literal copy of file

file system: format of’

who: who is on the

dcopy: copy file

labelit: provide labels for file

umountall: mount, unmount multiple file
checklist: list of file

profile:

bsearch: binary search a sorted
symbol name for common object file
1dtbindex: compute index of a symbol
Idtbread: read an indexed symbol
syms: common object file symbol
mnttab: mounted file system
Ildtbseek: seek to the symbol

setmnt: establish mount

hsearch, hcreate: manage hash search
hdestroy: manage hash search

tabs: set

sin, ¢os
sinh, cosh
tar:

frec: recover files from a hackup

lex: generate programs for simple lexical
deroff: remove nroff, troff|
tsearch, tfind

init
tmpnam
tmpfile: create a

tmpnam, tempnam: create a name for a

Permuted Index

SYSUOIN Giiaiidivaviissds s ARG E « e one. uname(2)
SYELRI VESIONS .ccceirrrrrriesieeinteeeevssseseeenenns sysvers(1M)
7 AR e e R SR volcopy(1M)
SYSERM VOIUME. ..ot seeaennas fs(4)

system who(1)
systems for optimal access time dcopy(1M)
sy veeeree labelit(1IM)
BYBEBINE s esiiessssasimspssdnb s s s aai st enne s aavesans mountall(1M)
systems processed by fsckc.cociiiivnnnnnnnnns checklist(4)
system-wide user profile..........ccooiieenecnninns profile(4)
sysvers: display operating sys versions......... sysvers(1M)
table PR3 o AN L bsearch(3C)
table ENtIY c.ooeeeeeeecccece e Idgetname(3X)
table entry of a common object ldtbindex(3X)
table entry of a common object 1dtbread(3X)
table format syms(4)
table.... mnttab(4)
table of a common object file Idtbseek(3X)
table . setmnt(1M)
tables hsearch(3C)
tables.......... hsearch(3C)
tabs on a terminal...........cocoevvrereenn. tabs(1)

tabs: set tabs on a terminalccoereiernne tabs(1)

tail: deliver the last part of a file .. tail(1)

tan, asin, acos, atan, atan2: trigonom. trig(3M)
tanh: hyperbolic functions .. trig(8M)
tape file archivercccccorvnvninens tar(1)

PR icvuiiviinisioniansonsis oo bis keiods s o dudeisititine s snessanes frec(1IM)
tar: tape file archiver..........cccccccicnmrvnnnnnnne, tar(1)

BASKS ..ottt lex(1)

tbl, and eqn conStIUCES........cocvueeereerissasensserans deroff(1)
tdelete, twalk: manage binary search tsearch(3C)
tee: pipe fitting......... tee(l)
telinit: process control initialization.............. init(1M)
tempnam: create a name for temporary....... tmpnam(3S)
temporary file tmpfile(3S)
temporary file tmpnam(3S)

SUPERMAX SYSTEM V REFERENCE MANUALS

PI-57

Il

Permuted Index

term: format of compiled

terminfo:

ctermid: generate file name for
edit, medit: update a line of text from
terminology: compile Virtual
termio: general

vti: Virtual

dial: establish an out-going
rsetsioc: initialize

stty: set the option for a

stty2: set the options for a
tput: initialize a

gettydefs: speed and

tabs: set tabs on a

tty: get the name of the

tty: controlling

ttyname, isatty: find name of a
getty: set

term: conventional names for
term:

kill:

exit, _exit:

wait, waitx: wait for child process to stop or
tic:

tput: initialize a terminal or query

termio: general

isnand, isnanf:
ed, red:

ex:

edit:

newform: change the format of a

PI-58 Permuted Index

term: conventional names for terminals....... term(5)
term file s i S A R e term(4)
term: format of compiled term file................ term(4)
term: terminals ..o crncreecarencicin e term(7)
terminal capability data base terminfo(4)
terminal ... ctermid(38)
terminal edit(2)
Terminal Interface programs terminology(1)
terminal interfacecooovvveeeviicciinniiinnnnns termio(7)
Terminal Interface...........cccocooneonnieroneiinanens vti(5)
terminal line connectionccoovevereeriennene dial(3C)
terminal or printeroccvvvivieeenninnn, rsetsioc(1)
terminal or Printerc.ocoeeeiivcntiareecnsenes stty(l)
terminal or printercoceeeevvincnrnnereneaen stty2(1)
terminal or query terminfo database............ tput(1)
terminal settings used by gettyccooevnene gettydefs(4)
terminal ... tabs(1)
terminal tty(1)
terminal tey(7)
terminal .. ttyname(3C)
terminal type, modes, speed and line............ getty(1M)
terminals........cociiinnns rrenne term(5)
terminals term(7)
terminate a process..........occveeveeiiiereerieiieiennnns kill(1)
terminate Process........ v reecveesierereraierennens exit(2)
terminateco.coeviemiiiiinc s wait(2)
terminfo compilercccoeevvvcnnnicniiennn tic(IM)

terminfo database tput(l)

.. terminfo(4)

terminfo: terminal capability data....

terminology: compile Virtual Terminal terminology(1)
terminal interfacecovceeiinccnnvicncenenns termio(7)
test: condition evaluation cmd.........cconcerneee test(1)

test for floating-point NaN (Not-a-Number) isnan(3C)

text @ditOrcoov.eee e ed(1)

Lext dItOT ... ex(1)

text editor (variant of ex for casual user)..... edit(1)

£ fIle . v newform(1)

29

63

eee———— e

editor: edit

fspec: format specification in
edit, medit: update a line of|
plock: lock process

tsearch

ttt:

timex:

time:

at, batch: execute commands at a later
gmtime, asctime, tzset: convert date and

dcopy: copy file systems for optimal search

profil: execution
settime: set system

stime: set

time: get
clock: report CPU

timezone: set default system

touch: opdate access and modification
times: get process and child process elapsed

utime: set file access and modification

toupper, tolower
toupper
tsort:

acctmerg: merge or add

ptrace: process

SUPERMAX SYSTEM V REFERENCE MANUALS

Permuted Index

LEXL fIle8 ..ovveirerieniss e e editor(1)
text files fspec(4)
text from a terminal ... edit(2)
text, or data in MeMOryY........cocvcevricricevncrenens plock(2)
tfind, tdelete, twalk: manage binary tsearch(3C)
tic: terminfo compiler.... .. tic(1IM)
tie-tac-toe ..o, ttt(6)

time a command: report process data........... timex(1)
time a command..........connnenrececennnen time(1)
1. P S e R at(l)

HIME 1oniiirinnsreniesrissssssi e bt ctime(3C)
time [T dcopy(1IM)
time: get timeccoovevivvninnncnn s time(2)
time profile profil(2)
HIMNE oo settime(1)
time stime(2)
time: time a command... time(1)
time time(2)
time usedocooeivriiieiiinn, clock(3C)
time zone . . timezone(4)
times: get process and child process............. times(2)
times of @ file.......ccvcncncnnncn, touch(l)
times times(2)
times . utime(2)
timex: time a command: report process timex(1)
timezone: set default system time zone........ timezone(4)
tmpfile: create a temporary file tmpfile(3S)
tmpnam, tempnam: create a name for a tmpfile(38)

toascii: translate characters .. conv(3C)

conv(3C)

tolower, toascii: translate characters...

topaological sort. tsort(1)

Lotal accounting files............ooiviniiasssnssmesraras acctmerg(1M)
touch; update access and modification.......... touch(1)
toupper, tolower, toascii: translate char....... conv(3C)
tput: initialize a terminal or query tput(1)

tr: translate characters.........cccooieiiinriciinnns tr(1)

EPACE «.ooveeeerrcrcrnrerereeneen s TS T i ptrace(2)

PI-59

k3

Permuted Index

toupper, tolower, toascii:

tr:

ftw: walk a file

tfind, tdelete, twalk: manage binary search
sin, cos, tan, asin, acos, atan, atan2:

deroff: remove nroff

pdpll, u3b, u3b2: get processor type
udbb, vax: get processor type

true, false: provide

runacct, shutacct, startup

tasearch, tfind, tdelete

cmp: compare

comm: select or reject lines common to
file: determine file

getty: set terminal

pdpll, u3b, udb2: get processor

u3b5, vax: get processor

types: primitive system data
ctime, localtime,gmtime, asctime
machid: m69k, pspll

machid: m69k, pdpll, u3b
machid: m69k, pdpll, udb, udb2

mount

PI-60 Permuted Index

translate characters.... .. conv(3C)
translate characters.... .. tr(1)

BB v sicisersesssssissnsasnss e asananesnssren e ftw(3C)
BrEeS. . tsearch(3C)
trigonometric functions...........cccccecverciinnnns trig(3M)
troff, tbl, and eqn constructsoininiine deroff(1)
true, false: provide truth values.................... true(1)
truth value.i i machid(1)
truth value.........cccococnmionneincrnne machid(1)
truth valuesccccoivvvecncnrncnicrnnns true(l)

tsearch, tfind, tdelete, twalk: manage.. .. tsearch(3C)
.. tsort(1)

ttt(6)

tsort: topological sort..........ccoceeunnnee
ttt: tic-tac-toe

tty: controlling terminal.............ccoccvverrvvvnnnnen tty(7)

tty: get the name of the terminal.................. tty(1)
ttyname, iastty: find name of terminal......... ttyname(3C)
ttyslot: find the slot in the utmp file............. ttyslot(3C)
turnacct: shell procedures for........................ acctsg(1M)
twalk: manage binary search trees tsearch(3C)
two files cmp(l)

two sorted files comm(1)
type file(1)

type, mode, speed, and line disc.ccc0nen. getty(1M)
type truth value machid(1)
type truth valuecccceeivinerucsasiscesnerennnnas machid(1)
types: primitive system data types................ types(5)
types e types(B)
tzset: convert date and time ... ctime(3C)
udb, u3b2, udb5s, vax: get processor.............. machid(1)
u3b2, udb5, vax: get processor type.............. machid(1)
u3bb, vax: get processor type truth machid(1)
uadmin; administrative control..............co.e.. uadmin(2)
uadmind: administrative control...........c.c..... uadmin(1M)
ulimit: get and set user limits ulimit(2)
umask: set and get file creation mask . .. umask(2)
umask: set file-creation mode mask............... umask(1)
umount: mount and unmount file system.... mount(1M)

9

65

mountall

drand48, crand48, Irand48: generate
nrand4B, mrand48, jrand48: generate

srand48, seed48, lcong48: generate
mktemp: make a

print name of current

link, unlink: link and

link

umount:

mount, umount: mount and
mountall, umountall: mount

pack, peat

pause: suspend process

edit, medit:

touch:

make: maintain

lsearch, lfind: linear search and
sync:

signal: specify what to do

du: summarize disk

gettydefs: speed and terminal settings
cleock: report CPU time

id: print

crontab:

cuserid: get char. login name of the
environ:

diskusg: generate disk acct data by
getpw: get name from

ulimit: get and set

logname: return login name of

profile: system-wide

Permuted Index

umount: unmount a file system..........c.......... umount(2)

umountall: mount, unmount multiple file.... mountall(1M)

uname: get and set name of current............. uname(2)
ungetc: push character back into input........ ungetc(3S)
uniformly distributed pseudo-random drand48(3C)
uniformly distributed pseudo-random drand48(3C)
uniformly distributed pseudo-random drand48(3C)
uniq: report repeated lines in a file............... uniq(1)
unique file name........c..cceceeeveeiiiiiniiiinieee mktemp(3C)
units: cONVersion Program ... units(1)
UNIX SYStemcoceoeerireenmnnreeronreerereenneesrencones uname(1)
unlink files an directoriesoccovvueccene. link(1M)
unlink: link, unlink files and directories....... link(1M)
unlink: remove a directory entry unlink(2)
unmount a file system umount(2)

. mount(1M)
. mountall(1M)

unmount file system

unmount multiple file systems ..

unpack: compress and expand files.... pack(1)
until signaliiimamEsmbms s pause(2)
update a line of text from a.......cc.covccevvccnnnnne edit(2)

update access and modification times of....... touch(1)
updale, and regenerate groups of programs. make(1)

UPAALR. ...t s as s Isearch(3C)
update the super block........ccocooveserverninnnn sync(1M)
upon receipt of a signalccccoeevverrircrennn. signal(2)
usage.... du(1)
used by getty ... gettydefs(4)
... clock(3C)
uder and group IDs and names..................... id(1)
user crontab file ..o crontab(1)
user cuserid(3S)
USer eNnVIrONMENt.........oovcvureraerirceeecmnecesrennene environ{(5)
LU ET=3 8 1 D 2O diskusg(1M)
user IDcopmmpmmremssnassgrs getpw(3C)
user limits.......... ulimit(2)
UBET .. cveenceeneenerrenertesesirranteeebeseaenteneeineeresmnanene logname(3X)
user profile.........coeviceennnncnicn s profile(4)

SUPERMAX SYSTEM V REFERENCE MANUALS PI-61

|

Permuted Index

su: become super-user or another

find the slot in the utmp file of current
write: write to another

setuid, setgid: set

edit: text editor (variant of ex for

mail, rmail: send mail to

wall: write to all

fuser: identify processes

egrep: search a file for pattern

utmp, wtmp:

getutent, getuid, getutline: access
pututline, setutent: access
endutent, utmpname: access

ttyslot: find the slot in the

pututline, setutent, endutent

abs: integer absolute

getenv: return

fmod, fabs: floor, ceiling remainder, absolute
u3b, u3b2: get processor type truth

u3bb, vax: get processor type truth

putenv: change or add

true, false: provide truth
values: machine-dependent
viprintf, vsprintf: print formatted output of|

varargs: handle

edit: text editor

machid: m69k, pdpll, udb, udb2, udbs
getopt: get option letter from argument
V1 view

assert:

sysvers: display operating system

vprintf]

P1-62 Permuted Index

user su(1M)
user....... ttyslot(3C)
user. write(1)
user-ID and group-ID ... setuid(2)
user) edit(1)
users or read mail .. mail(1)
USETS vt sttt s wall(1)

using a file or file structure fuser(1M)

using full regular expressions.. .. egrep(l)
ustat: get file system statistics.... ustat(2)
utime: get file access and modification utime(2)
utmp and wtmp entry formats........c.coceenene utmp(4)
utmp file entryoooeeiiiniiniiin getut(3C)
utmp file entry getut(3C)
utmp file entrycccceveeeeiieiciciice e getut(3C)
utmp file of current USer..........ocveeriserriesninns ttyslot(3C)
utmp, wtmp: utmp, wtmp entry formats...... utmp(4)
utmpname: access utmp file entry getut(3C)
value abs(3C)

value for environment name... .. getenv(3C)

value functions .. floor(3M)
value machid(1)
VR R S S R S machid(1)
value to enVIrONMENL.........cvrerererararesssareseseses putenv(3C)
values: machine-dependent values values(5)

] true(1)

| values(5)

varargs argument Hst ... vprintf(3S)
varargs: handle variable argument list......... varargs(5)}
variable argument listc.c.cooeeernicriininnene varargs(5)

(variant of ex for casual users) edit(1)

vax: get processor type truth .. machid(1)
vector getopt(3C)
vedit: screen oriented (visual) display........... vi(1)

verify program assertioncccecvucimrunenne. assert(3X)
VELSIONS c.eviveeerenieensrenerresresiastesme shesbesemnae s sysvers(1M)
viprintf, vsprintf: print formatted output vprintf(3S)

99

67

vi

terminology: compile

vti:

vi, view, vedit: screen oriented

file system: format of system

vprintf, vlprintf

wait, waitx:

wait

signal: specily
whodo: who is doing
whodo:

who:

streamdrv: copy

csh: a shell

dsh: shell

prof: profile

we:

getc, getchar, fgetc: get character or
fgetce, getw: get character or
pute, putchar: put character or
fpute, putw: put character or

cd: change

chdir: change

getewd: get path-name of current
pwd: print

errout:

awrite: asynchronous

SUPERMAX SYSTEM V REFERENCE MANUALS

A=

Permuted Index

vi, view, vedit: screen oriented (visual).........
view, vedit: screen oriented (visual)..............
Virtual Terminal Interface programs
Virtual Terminal Interface......ccccocecocrennnenn.
(visual) display editor based.

volume

vprintf, vlprintf, vsprintf: print formatted...
veprintf: print formatted output of

.| vti: Virtual Terminal Interface.....................

wait: await completion of process

wait for child process to stop or....

wait, waitx: wait for child process to...

waitx: wait for child process to stop or.........

| walk a file tree

wall: write to all users............cccoeeeereveevncnnaas

we: word count

what to do upon receipt.

what

who is doing what

who is on the systemcccccoecererecrineecnnn.
who: who is on the system........cccccoueecennece

whodo: who is doing what..............c.ocveueneee.

with buffering

with C-like syntax
with history facility

within a function

word count

word from stream

word from stream

word on a stream

word on a stream

working directory.

working directory.

working directory.

working directory name.........cccceeverevemmcennne
WTite an error Message.coomemrveemerneesenes
write

fs(4)
vprintf(3S)
vprintf(38)
vti(5)
wait(1)

.. wait(2)

wait(2)
wait(2)
ftw(3C)
wall(1)
we(l)
gignal(2)
whodo(1M)
whodo(1M)
who(1)
who(1)
whodo(1M)
streamdrv(1)
csh(1)
dsh(l)
prof(5)
we(l)
gete(3S
getc(3S)
pute(3S)
putc(3S
cd(1)
chdir(2)
getewd(3C)
pwd(1)
errout(3C)
awrite(2)

P1-63

Permuted Index

syne:
putpwent:
wall:
write:

write, write_t:

write

utmp, wimp: utmp and
utmp

fwtmp

j0, j1,jn
30,1, jn, y0

yace:
30, j1, jn, y0, y1
timezone: set default system time

Pl-64 Permuted Index

write disk cache to disk.........cccreveeerecrreneacens. 8yne(2)
write password file entry.......cocovvvnnncnsnrene.. putpwent(3C)
write to all users wall(1)
write to another UBer..........coriscirscencneenss. WIite(1)
write to file write(2)
write: write to another uBer..........cuenn Write(1)
write, write_t: write to file.......covvvivienneenes. Write(2)
write_t: write to file write(2)
wimp entry formats utmp(4)
wimp: utmp and witmp entry formats utmp(4)
wimpfix: manipulate connect accounting..... fwtmp(1M)
xargs: construct argument lists and.............. xargs(1)

¥0, ¥1, yn: Bessel functions. .. bessel(3M)
¥1, yn: Bessel functions .. bessel(3M)
yace: yet another compiler-compiler yace(l)

yet another compiler-compiler...........ccccuee. yace(1)

yn: Bessel functions bessel(3M)
zone timezone(4)

89

69

INTRO(1) (Essential Utilities) INTRO(1)

NAME

intro — introduction to commands

DESCRIPTION

Page 1

This section describes publicly accessible commands of Essen-
tial Utilities in alphabetic order. The Essential Utilities are
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines,
which are called by the user’s programs.

The commands generally resides in the directory /bin or
/usr/bin. These directories are searched automatically by the
command interpreter shell.

Some commands are marked (1IM) and will often be found in

the directory /etc. These (IM) commands are primarily
intended for the system administrator.

(Printed Dec.1989)

This page is intentionally left blank

0L

7

ACCEPT(1M) (Essential Utilities) ACCEPT(1M)

NAME
accept, reject — allow or prevent LP requests

SYNOPSIS
Jusr/lib/accept destinations
/usr/lib/reject [—r[reason]] destinations

DESCRIPTION
accept allows Ip(1) to accept requests for the named destina-
tions. A destination can be either a line printer (LP) or a
class of printers. Use Ipstat(1) to find the status of destina-
tions.

reject prevents Ip(1) from accepting requests for the named
destinations. A destination can be either a printer or a class
of printers. Use Ipstat(1) to find the status of destinations.
The following option is useful with reject.

—rlreason] Associates a reason with preventing Ip from
accepting requests. This reason applies to all
printers mentioned up to the next —r option.
Reason is reported by lp when users direct
requests to the named destinations and by
Ipstat(1). If the —r option is not present or
the —r option is given without a reason, then
a default reason will be used.

FILES
. /usr/spool/lp/ *
SEE ALSO
enable(1), Ip(1), Ipadmin(1M), lpsched(1M), 1pstat(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

cl

e (|

APROPOS (1) (Essential Utilities) APROPOS (1)
NAME
apropos — locate commands by keyword lookup
SYNOPSIS
/usr/bin/apropos keyword ...
DESCRIPTION

apropos shows which manual sections contain instances of any
of the given keywords in their title. Each word is considered
separately and the case of letters is ignored. Words which are
part of other words are considered; thus, when looking for
‘compile’, apropos will find all instances of ‘compiler’ also.

Try
apropos password
and
apropos editor
If the line starts ‘ filename (section) ...” you can do ‘man sec-

tion filename’ to get the documentation for it. Try
apropos format
and then
man 3s printf
to get the manual page on the subroutine printf.
apropos is actually just the —k option to the man(1l) command.

FILES
Jusr/man/whatis data base

SEE ALSO
man(1), whatis(1).

Issued May 1991 Version 3.10 Page 1

APROPOS (1)

Page 2

(Essential Utilities)

This page is intentionally left blank

Version 3.10

APROPOS (1)

Issued May 1991

73

ATQ) (Essential Utilities) AT@Q)
NAME
at, batch — execute commands at a later time
SYNOPSIS
at time [date 1 [+ increment |
at —r job...
at —1I [job ...]
batch
DESCRIPTION

ot and batch read commands from standard input to be exe-
cuted at a later time. at allows you to specify when the com-
mands should be executed, while jobs queued with batch will
execute when system load level permlts at may be used with
the following options:

-r Removes jobs previously scheduled with at.
-1 Reports all jobs scheduled for the invoking user.

Standard output and standard error output are mailed to the
user unless they are redirected elsewhere. The shell environ-
ment variables, current directory, umask, and ulimit are
retained when the commands are executed. Open file descrip-
tors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
/usr/lib/cron/at.deny is checked to determine if the user
should be denied access to at. If neither file exists, only root
is allowed to submit a job. If at.deny is empty, global usage
is permitted. The allow/deny files consist of one user name
per line. These files can only be modified by the superuser.

The time may be specified as 1, 2, or 4 digits. One and two
digit numbers are taken to be hours, four digits to be hours
and minutes. The time may alternately be specified as two
numbers separated by a colon, meaning hour:minute. A
suffix am or pm may be appended; otherwise a 24-hour clock
time is understood. The suffix zulu may be used to indicate
GMT. The special names noon, midnight, now, and next
are also recognized.

(Printed Dec.1989)

et =] H [R e R Al
——] (T = .
I—

AT(1) (Essential Utilities) AT(Q)

An optional date may be specified as either a month name fol-
lowed by a day number (and possibly year number preceded
by an optional comma) or a day of the week (fully spelled or
abbreviated to three characters). Two special ‘“days”, today
and tomorrow are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour
and tomorrow is assumed if it is less. If the given month is
less than the current month (and no year is given), next year
is assumed.

The optional increment is simply a number suffixed by one of
the following: minutes, hours, days, weeks, months, or
years. (The singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1day
at 5 pm Friday

at and batch write the job number and schedule time to stan-
dard error.

batch submits a batch job. It is almost equivalent to
“at now”, but not quite. For one, it goes into a different
queue. For another, “at now” will respond with the error
message too late.

at —r removes jobs previously scheduled by at or batch. The
job number is the number given to you previously by the at
or batch command. You can also get job numbers by typing
at —1. You can only remove your own jobs unless you are the
super-user.

EXAMPLES
The at and batch commands read from standard input the
commands to be executed at a later time. sh(l) provides
different ways of specifying standard input. Within your com-
mands, it may be useful to redirect standard output.

(Printed Dec.1989) Page 2

122

45

ATQ@Q) (Essential Utilities) AT()

This sequence can be used at a terminal:

batch
sort filename >outfile
<control-D> (hold down ’control’ and depress ’D’)

This sequence, which demonstrates redirecting standard error
to a pipe, is useful in a shell procedure (the sequence of out-
put redirection specifications is significant):

batch < <!

sort filename 2> &1 >outfile | mail loginid
!

To have a job reschedule itself, invoke at from within the
shell procedure, by including code similar to the following
within the shell file:

echo ”sh shellfile” | at 1900 thursday next week

FILES
Jusr/lib/cron main cron directory
/usr/lib/cron/at.allow list of allowed users
Jusr/lib/cron/at.deny list of denied users
/usr/lib/cron/queue scheduling information
/usr/spool/cron/atjobs spool area
SEE ALSO
cron(1M), kill(1), mail(1), nice(1), ps(1), sh(1), sort(1).
DIAGNOSTICS
Complains about various syntax errors and times out of
range.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

9L

77

AWKQ1) (Essential Utilities) AWK(1)
NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—F re] [parameter...] ’prog’] [—f progfile] [file...]
DESCRIPTION

awk scans each input file for lines that match any of a set of
patterns specified in prog. The prog string must be enclosed
in single quotes (') to protect it from the shell. For each pat-
tern in prog there may be an associated action performed
when a line of a file matches the pattern. The set of pattern-
action statements may appear literally as prog or in a file
specified with the —f progfile option.

The —F re option defines the input field separator to be the
regular expression re.

parameters, in the form x=... y=... may be passed to awk,
where x and y are awk built-in variables (see list below).

Input files are read in order; if there are no files, the stan-
dard input is read. The file name — means the standard
input. Each input line is matched against the pattern portion
of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is normally made up of fields separated by
white space. (This default can be changed by using the FS
built-in variable or the —F re option.) The fields are denoted
$1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

Either pattern or action may be omitted. If there is no action
with a pattern, the matching line is printed. If there is no
pattern with an action, the action is performed on every input
line.

Patterns are arbitrary Boolean combinations (!, | |, &&, and
parentheses) of relational expressions and regular expres-
sions. A relational expression is one of the following:

Page 1 (Printed Dec.1989)

el | e e ——————— e — = T
[

AWKQ)

(Essential Utilities) AWKQ@1)

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C, and a
matchop is either ~ (contains) or !~ (does not contain). A
conditional is an arithmetic expression, a relational expres-
sion, the special expression

var in array,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to cap-
ture control before the first input line has been read and
after the last input line has been read respectively.

Regular expressions are as in egrep [see grep(1)]. In patterns
they must be surrounded by slashes. Isolated regular expres-
sions in a pattern apply to the entire line. Regular expres-
sions may also occur in relational expressions. A pattern may
consist of two patterns separated by a comma; in this case,
the action is performed for all lines between an occurrence of
the first pattern and the next occurrence of the second pat-
tern.

A regular expression may be used to separate fields by using
the —F re option or by assigning the expression to the built-
in variable FS. The default is to ignore leading blanks and to
separate fields by blanks and/or tab characters. However, if
FS is assigned a value, leading blanks are no longer ignored.

Other built-in variables include:

ARGC command line argument count

ARGV command line argument array

FILENAME name of the current input file

FNR ordinal number of the current record in the
current file

FS input field separator regular expression
(default blank)

(Printed Dec.1989) Page 2

8L

79

AWK(1) (Essential Utilities) AWK()
NF number of fields in the current record
NR ordinal number of the current record
OFMT output format for numbers (default %.6g)
OFS output field separator (default blank)
ORS output record separator (default new-line)
RS input record separator (default new-line)

An action is a sequence of statements. A statement may be
one of the following:

if (conditional) statement [else statement]

while (conditional) statement

do statement while (conditional)

for (expression ; conditional ; expression) statement
for (var in array) statement

delete array[subscript]

break

continue

{ [statement] ... }

expression # commonly variable = expression

print [expression-list] [> expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit [expr|# skip the rest of the input;

exit status is expr
return [expr]

Statements are terminated by semicolons, new-lines, or right
braces. An empty expression-list stands for the whole input
line. Expressions take on string or numeric values as
appropriate, and are built using the operators +, —, *, /, %,
and concatenation (indicated by a blank). The C operators
++, ——, +=, —=, * =, /=, and %= are also available in
expressions. Variables may be scalars, array elements
(denoted x[i]), or fields. Variables are initialized to the null
string or zero. Array subscripts may be any string, not neces-
sarily numeric; this allows for a form of associative memory.
String constants are quoted (”).

Page 3 (Printed Dec.1989)

(Essential Utilities) AWK()

The print statement prints its arguments on the standard
output, or on a file if >expression is present, or on a pipe if |
cmd is present. The arguments are separated by the current
output field separator and terminated by the output record
separator. The printf statement formats its expression list
according to the format [see prinif(3S) in the Reference
Manuall.

awk has a variety of built-in functions: arithmetic, string,
input/output, and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand,
sin, sqrt, and srand. int truncates its argument to an integer.
rand returns a random number between 0 and 1.

srand (expr) sets the seed value for rand to expr or uses the
time of day if expr is omitted.

The string functions are:

gsub(for, repl, in)
behaves like sub (see below), except that it
replaces successive occurrences of the regular
expression (like the ed global substitute com-
mand).

index (s, t) returns the position in string s where string ¢
first occurs, or 0 if it does not occur at all.

length(s) returns the length of its argument taken as a
string, or of the whole line if there is no argu-
ment.

match(s, re) returns the position in string s where the reg-
ular expression re occurs, or 0 if it does not
occur at all. RSTART is set to the starting
position (which is the same as the returned
value), and RLENGTH is set to the length of
the matched string.

(Printed Dec.1989) Page 4

08

81

—I=

AWK(1) (Essential Utilities) AWKQ)

split(s, a, fs) splits the string s into array elements a[l],
al2], a[n], and returns n. The separation is
done with the regular expression fs or with
the field separator FS if fs is not given.

sprintf(fmt, expr, expr, ...)
formats the expressions according to the
printf(38S) format given by fm¢ and returns
the resulting string.

sub(for, repl, in)
substitutes the string repl in place of the first
instance of the regular expression for in string
in and returns the number of substitutions.
If in is omitted, awk substitutes in the
current record ($0).

substr(s, m, n) returns the n-character substring of s that
begins at position m.

The input/output and general functions are:

close(filename)
closes the file or pipe named filename.

cmd | getline pipes the output of cmd into getline; each suc-
cessive call to getline returns the next line of
output from cmd.

getline sets $0 to the next input record from the
current input file.

getline <file sets $0 to the next record from file.
getline var - sets variable var instead.

getline var <file
sets var from the next record of file.

system(cmd) executes cmd and returns its exit status.

All forms of getline return 1 for successful input, 0 for end of
file, and —1 for an error.

Page 5 (Printed Dec.1989)

AWK(@®@) (Essential Utilities) AWKQ1)

awk also provides user-defined functions. Such functions may
be defined (in the pattern position of a pattern-action state-
ment) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by
reference if array name. Argument names are local to the
function; all other variable names are global. Function calls
may be nested and functions may be recursive. The return
statement may be used to return a value.

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }

Same, with input fields separated by comma and/or blanks
and tabs:

BEGIN { FS = ”,[\tI*|[\t]1+” }
{ print $2, $1 }

Add up first column, print sum and average:

{s += $1}
END { print ”sum is”, s, ” average is”, s/NR }

Print fields in reverse order:
{for G = NF;i > 0; ——1i) print $i }
Print all lines between start/stop pairs:
/start/, /stop/
Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

(Printed Dec.1989) Page 6

28

83

AWK(Q®1) (Essential Utilities) AWK()

Simulate echo(1):
BEGIN {
for G = 1;1i < ARGC; i+ +)
printf ”"%s”, ARGVIi]
printf ”\n”
exit

}

Print file, filling in page numbers starting at 5:
/Page/ { $2 = n+ +; }
{ print }
command line: awk —f program n=>5 input
SEE ALSO
grep(1), lex(1), oawk(1), sed(1) and printf(3S).
Programmer’s Guide.
BUGS
Input white space is not preserved on output if fields are
involved.
There are no explicit conversions between numbers and
strings. To force an expression to be treated as a number add

0 to it; to force it to be treated as a string concatenate the
null string () to it.

Page 7 (Printed Dec.1989)

This page is intentionally left blank

iy 8

85

r—— Y —

BANNERQ1) (Essential Utilities) BANNER(1)
NAME
banner — make posters
SYNOPSIS
banner strings
DESCRIPTION

banner prints its arguments (each up to 10 characters long)
in large letters on the standard output.

SEE ALSO
echo(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

87

BASENAMEQ1) (Essential Utilities) BASENAMEQ)
NAME

basename, dirname — deliver portions of path names
SYNOPSIS

basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if
present in string) from string, and prints the result on the
standard output. It is normally used inside substitution
marks () within shell procedures.

dirname delivers all but the last level of the path name in
string.

EXAMPLES
The following example, invoked with the argument
/usr/sre/cmd/cat.c, compiles the named file and moves the
output to a file named cat in the current directory:

cc $1
mv a.out basename $1 \.c

The following example will set the shell variable NAME to
/usr/src/cmd:

NAME =dirname /usr/src/cmd/cat.c

SEE ALSO
sh(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

88

89

BC() (Essential Utilities) BC1)
NAME
bc — arbitrary-precision arithmetic language
SYNOPSIS
be[—c][=11 file ...]
DESCRIPTION

be is an interactive processor for a language that resembles C
but provides unlimited precision arithmetic. It takes input
from any files given, then reads the standard input. The
bc(1) utility is actually a preprocessor for dc(1), which it
invokes automatically unless the —c option is present. In
this case the dc input is sent to the standard output instead.
The options are as follows:

-c Compile only. The output is send to the standard out-
put.

-1 Argument stands for the name of an arbitrary preci-
sion math library.

The syntax for bc programs is as follows; L. means letter a—z,
E means expression, S means statement.

Comments
are enclosed in / * and * /.

Names
simple variables: L
array elements: L [E]

¥ (L

The words ‘‘ibase obase’’, and ‘‘scale”
b H

Other operands
arbitrarily long numbers with optional sign and
decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)

Page 1 (Printed Dec.1989)

BC) (Essential Utilities) BCQ)
Operators
+ = % [% " (% is remainder; " is power)
++ —— (prefix and postfix; apply to names)
== = >= = < >
= = =— =% = / =9, ="
Statements
E
{S;..;8}
if(E)S
while (E) S

for(E;E;E)S

null statement

break

quit

Function definitions

define L(L,..,L){
autoL, ..., L
S;...8
return (E)

}

Functions in —1 math library
s(x) sine
c(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
jn,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed
unless the main operator is an assignment. Either semicolons
or new-lines may separate statements. Assignment to scale
influences the number of digits to be retained on arithmetic
operations in the manner of dc(1). Assignments to ibase or
obase set the input and output number radix respectively.

(Printed Dec.1989) Page 2

06

91

(Essential Utilities) BC(1)

The same letter may be used as an array, a function, and a
simple variable simultaneously. All variables are global to the
program. ‘‘Auto’’ variables are pushed down during function
calls. When using arrays as function arguments or defining
them as automatic variables, empty square brackets must fol-
low the array name.

EXAMPLE

FILES

scale = 20
define e(x){
autoa, b, c, i, s
a=1
b=1
s=1
fori=1;1==1;i+ +){
a=axx
b=>b=*i
c=a/b
if(c = = 0) return(s)
s = s+¢

}

defines a function to compute an approximate value of the
exponential function and

for(i=1; i< =10; i+ +) e(Q)

prints approximate values of the exponential function of the
first ten integers.

/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO

Page 3

de(1).

(Printed Dec.1989)

BC(1) (Essential Utilities) BC(1)

BUGS

The bc command does not yet recognize the logical operators,
&& and | |.

The for statement must have all three expressions (E’s).

The quit command is interpreted when read, not when exe-
cuted.

(Printed Dec.1989) Page 4

c6

93

BCPIO(1) (Essential Utilities) BCPIO(1)
NAME

bepio — cpio with buffering
SYNOPSIS

bepio —o[acvV] [—M message] [—O file]

bepio —i[cdmrtuvVEsSb6k] [-M message] [—1 file]
{ pattern ...]

DESCRIPTION
bepio is a shell script setting up cepio and streamdrv to
make cpio read and write through streamdrv, using stan-
dard output and standard input pipelines. bcpio is mostly
meant for storing and restoring files on streamer tapes,
where it is important to write and read data in as big chunks
as possible, which streamdrv takes care of.

The function of the options is described in the documentation
of cpio(1), except the option M. The meaning of this options
is as follows:

—M message Define a message to use when switching
media. When you specify a character special
device as input or output device, you can use
this option to define the message that is
printed when you reach the end of the
medium. One %d can be placed in the mes-
sage to print the sequence number of the next
medium needed to continue.

EXAMPLE:
find /usr —print | bepio —oacv —O /dev/stream \
—M”Insert tape no %d”
will copy the files in /usr subdirectories to /dev/stream. If

the file archive exceeds the size of the physical medium the
user is prompted to insert a new tape.

SEE ALSO
streamdrv(1), cpio(1)

Page 1 (Printed Dec.1989)

3

BCPIO(1) (Essential Utilities) BCPIO(1)

NOTE
The bcpio and the cpio utilities do not write on streamer tape
or floppies using exactly the same format. This means that
these utilities will not always produce media readable for each
other.

(Printed Dec.1989) Page 2

¥6

85

BDIFF(1) (Essential Utilities) BDIFF(1)

NAME

bdiff — big diff

SYNOPSIS

bdiff filel file2 [n] [—s]

DESCRIPTION

bdiff is used in a manner analogous to diff (1) to find which
lines in two files must be changed to bring the files into
agreement. Its purpose is to allow processing of files which
are too large for diff.

The parameters to bdiff are:

filel (file2) The name of a file to be used. If filel (file2) is
—, the standard input is read.

n The number of line segments. The value of n
is 3500 by default. If the optional third argu-
ment is given and it is numeric, it is used as
the value for n. This is useful in those cases
in which 3500-line segments are too large for
diff, causing it to fail.

-S Specifies that no diagnostics are to be printed
by bdiff (silent option). Note, however, that
this does not suppress possible diagnostic mes-
sages from diff(1), which bdiff calls.

bdiff ignores lines common to the beginning of both files,
splits the remainder of each file into n-line segments, and
invokes diff upon corresponding segments. If both optional
arguments are specified, they must appear in the order indi-
cated above.

The output of bdiff is exactly that of diff, with line numbers
adjusted to account for the segmenting of the files (that is, to
make it look as if the files had been processed whole). Note
that because of the segmenting of the files, bdiff does not
necessarily find a smallest sufficient set of file differences.

Page 1 (Printed Dec.1989)

dE

BDIFF(1) (Essential Utilities) BDIFF(1)

FILES

SEE ALSO
diff(1).

(Printed Dec.1989) Page 2

96

97

[e==——=)
(= aowew]
) =]

BFS(1) (Essential Utilities) BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

The bfs command is (almost) like ed (1) except that it is read-
only and processes much larger files. Files can be up to
1024K bytes and 32K lines, with up to 512 characters, includ-
ing new-line, per line (255 for 16-bit machines). bfs is usually
more efficient than ed (1) for scanning a file, since the file is
not copied to a buffer. It is most useful for identifying sec-
tions of a large file where csplit(1) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is
the size of any file written with the w command. The
optional — suppresses printing of sizes. Input is prompted
with * if P and a carriage return are typed, as in ed(l).
Prompting can be turned off again by inputting another P
and carriage return. Note that messages are given in
response to errors if prompting is turned on.

All address expressions described under ed(1) are supported.
In addition, regular expressions may be surrounded with two
symbols besides / and ?: > indicates downward search
without wrap-around, and < indicates upward search without
wrap-around. There is a slight difference in mark names:
only the letters a through z may be used, and all 26 marks
are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as
described under ed(1). Commands such as — ——, + + + —,
+++ =, —12, and +4p are accepted. Note that 1,10p and
1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remem-
bered file name. The w command is independent of output
diversion, truncation, or crunching (see the xo, xt and xc
commands, below). The following additional commands are
available:

Page 1 (Printed Dec.1989)

=3

BFS(1)

(Essential Utilities) BFS(1)

xf file

Further commands are taken from the named file.
When an end-of-file is reached, an interrupt signal
is received or an error occurs, reading resumes
with the file containing the xf. The xf commands
may be nested to a depth of 10.

List the marks currently in use (marks are set by
the k command).

x0 [file]

Further output from the p and null commands is
diverted to the named file, which, if necessary, is
created mode 666 (readable and writable by every-
one), unless your umask setting (see umask(1)) dic-
tates otherwise. If file is missing, output is
diverted to the standard output. Note that each
diversion causes truncation or creation of the file.

: label

This positions a label in a command file. The label
is terminated by new-line, and blanks between the
: and the start of the label are ignored. This com-
mand may also be used to insert comments into a
command file, since labels need not be referenced.

.)xb/regular expression /label

A jump (either upward or downward) is made to
label if the command succeeds. It fails under any
of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.

3. The regular expression does not match at
least one line in the specified range, including
the first and last lines.

On success, . is set to the line matched and a jump
is made to label. This command is the only one
that does not issue an error message on bad

(Printed Dec.1989) Page 2

86

99

BFS(1)

Page 3

(Essential Utilities) BFS(1)

addresses, so it may be used to test whether
addresses are bad before other commands are exe-
cuted. Note that the command

xb/"/ label

is an unconditional jump.

The xb command is allowed only if it is read from
someplace other than a terminal. If it is read from
a pipe only a downward jump is possible.

xt number

Output from the p and null commands is trun-
cated to at most number characters. The initial
number is 255.

xv|digit] [spaces][value]

The variable name is the specified digit following
the xv. The commands xv5100 or xv5 100 both
assign the value 100 to the variable 5. The com-
mand xv61,100p assigns the value 1,100p to the
variable 6. To reference a variable, put a % in
front of the variable name. For example, using the
above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and
print each line containing a match. To escape the
special meaning of %, a \ must precede it.

g/” *\%lcds]/p

could be used to match and list lines containing
printf of characters, decimal integers, or strings.

(Printed Dec.1989)

BFS(1)

(Essential Utilities) BFS(1)

Another feature of the xv command is that the
first line of output from a UNIX system command
can be stored into a variable. The only require-
ment is that the first character of value be an !.
For example:

.w junk

xvbleat junk
Irm junk

lecho " %5”
xv6lexpr %6 + 1

would put the current line into variable 5, print it,
and increment the variable 6 by one. To escape
the special meaning of ! as the first character of
value, precede it with a \.

xv'7\!date

stores the value !date into variable 7.

xbz label

xbn label

These two commands will test the last saved
return code from the execution of a UNIX system
command (lcommand) or nonzero value, respec-
tively, to the specified label. The two examples
below both search for the next five lines containing
the string size.

(Printed Dec.1989)

xvb5

:1

/size/

xvblexpr %5 — 1
1if 0%5 1= 0 exit 2
xbn 1

xv45

.1

/size/

Page 4

00}

101

BFS1) (Essential Utilities) BFS(1)

xvdlexpr %4 — 1
lif 0%4 = 0 exit 2
xbz 1

xe [switch]
If switch is 1, output from the p and null com-
mands is crunched; if switch is 0 it is not.
Without an argument, xc reverses switch. Initially
switch is set for no crunching. Crunched output
has strings of tabs and blanks reduced to one
blank and blank lines suppressed.

SEE ALSO
csplit(1), ed(1), umask(1).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-
explanatory error messages when prompting is on.

Page 5 (Printed Dec.1989)

This page is intentionally left blank

2ot

103

E

BOOT(1M) (Essential Utilities) BOOT(1M)
NAME
boot — reboot system from an available boot disk
SYNOPSIS
/etc/boot [—x |
DESCRIPTION

The boot program is used for rebooting the system, if con-
venient with non-operator test programs.

The Supermax boot system supports up to 4 different boot
disks numbered from 0 to 3. These boot disks should be allo-
cated as subdisks on the same physical disk as the root disk.

The optional parameter —x to boot is a number from 0 to 3,
specifying from which of the 4 bootdisks the system should be
loaded.

If no boot disk number is specified the system will be loaded
from the last used boot disk.

SEE ALSO
mkwboot{(1M).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

0L

105

—

BOOTGEN(1M) (Essential Utilities) BOOTGEN(1M)

NAME

bootgen — generate a boot device

SYNOPSIS

/ete/bootgen [—dlic] device [files]

DESCRIPTION

Page 1

bootgen is used to inspect, initialize, and update a boot disk.
The device argument is the name of a (special) file identifying
the boot device. Normally, this will be a floppy disk or a par-
tition on a hard disk set aside for that purpose by
mkwboot(1M). The following flags may be specified:

d Display boot device information (short form).
1 Display boot device information (long form).
i Initialize the boot device.

c Add the named files to the boot disk.

With the —c option boofgen loads onto the boot device the
files that are to be booted into the computer. The last com-
ponent of the path name for each file must consist of one of
the following names, possibly followed by a period and extra
characters:

cioc for the software to be loaded into CIOCs.

config for the hardware configuration prepared with
chhw(1M).

dioc for the software to be loaded into DIOCs.

dioc2 for the software to be loaded into DIOC2s.
dioc3 for the software to be loaded into DIOC3s.
nioc for the software to be loaded into NIOCs.

0s00 for the software to be loaded into MCUs with
MC68000 processors.

0s20 for the software to be loaded into MCUs with
MC68020 processors.

(Printed Dec.1989)

dk —

S "

BOOTGEN(1M) (Essential Utilities) BOOTGEN(1M)

0s30 for the software to be loaded into MCUs with
MC68030 processors.

sioc for the software to be loaded into SIOCs.
sioc2 for the software to be loaded into SIOC2s.

Thus /use/os/myos/nioc.x1 is a valid name for software to
be loaded into NIOCs, but /use/os/myos/mynioc.x1 is not.

If bootgen is requested to place, for example, an 0s00 file on a
boot disk, and an 0s00 file is already present on the boot dev-
ice the old 0s00 file is replaced by the new one.

It is strongly recommended that dioc files be the first ones
specified, as their position on the boot disk is critical. bootgen
will issue an error if it cannot place a dioc file where it
should.

SEE ALSO
chhw(1M), makeos(1M), mkwboot(1M).

(Printed Dec.1989) Page 2

901

107

BRC(1M) (Essential Utilities) BRC(1M)

NAME
bre, bcheckre — system initialization procedures

SYNOPSIS
/ete/bre
/etce/beheckre

DESCRIPTION
These shell procedures are executed via entries in
/ete/inittab by init(IM) whenever the system is booted (or
rebooted). :

First, the bcheckre procedure checks the status of the root file
system. If the root file system is found to be bad, bcheckrc
repairs it.

Then, the brc procedure clears the mounted file system table,
/etc/mnttab and puts the entry for the root file system into
the mount table.

After these two procedures have executed, init checks for the
initdefault value in /etc/inittab. This tells init in which run
level to place the system. Since initdefault is initially set to
2, the system will be placed in the multi-user state via the
/etc/rc2 procedure.

Note that bcheckrc should always be executed before brc.
Also, these shell procedures may be used for several run-level
states.

SEE ALSO
fsck(1M), init(1M), rc2(1M), shutdown(1M).

Page 1 (Printed Dec.1989)

k3

This page is intentionally left blank

801

—

BTAR(1) (Essential Utilities) BTAR(1)

NAME

btar — tar with buffering

SYNOPSIS

btar [key] [files]

DESCRIPTION

btar is a shell script setting up tar and streamdrv, to make
tar read and write through streamdrv, using standard output
and standard input pipelines. btar is mostly meant for stor-
ing and restoring files on streamer tapes, where it is impor-
tant to write and read data in as big chunks as possible,
which streamdrv takes care of.

The following tar options are available t, x, ¢, v, f, d, m. The
function of the options is described in the documentation of
tar(l).

EXAMPLE

109

btar cfvd /dev/stream 10102200 /usr \
/usrl 2> /tmp/log

will copy the files in /usr and /usrl newer than Oct 10 22:00
this year, to /dev/stream and make a /tmp/log file of the files
copied.

SEE ALSO

NOTE

Page 1

streamdrv(1), tar(1)

The btar and the tar utilities do not write on streamer tape or
floppies using exactly the same format. This means that these
utilities will not always produce media readable for each
other.

(Printed Dec.1989)

Il

This page is intentionally left blank

Okt

111

CAL(1) (Essential Utilities) CALQ)

NAME
cal — print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also
specified, a calendar just for that month is printed. If neither
is specified, a calendar for the present month is printed. year
can be between 1 and 9999. The month is a number between
1 and 12. The calendar produced is that for England and the
United States.

EXAMPLES
An unusual calendar is printed for September 1752. That is
the month 11 days were skipped to make up for lack of leap
year adjustments. To see this calendar, type: cal 9 1762

BUGS
The year is always considered to start in January even
though this is historically naive.

Please notice that ‘“‘cal 83’ refers to the early Christian era,
not the 20th century.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

cil

113

1 ISR i1 - Ll o - Il T T
_
— (=—[

CALENDAR() (Essential Utilities) CALENDAR(1)
NAME
calendar — reminder service
SYNOPSIS
calendar [— |
DESCRIPTION

calendar consults the file calendar in the current directory
and prints out lines that contain today’s or tomorrow’s date
anywhere in the line. Most reasonable month-day dates such
as ‘Aug. 24, ‘august 24,” ‘8/24, etc., are recognized, but not
‘24 August’ or ‘24/8’. On weekends ‘tomorrow’ extends
through Monday.

When an argument is present, calendar does its job for every
user who has a file calendar in his or her login directory and
sends them any positive results by mail(1). Normally this is
done daily by facilities in the UNIX operating system.

FILES
/usr/lib/calprog to figure out today’s and tomorrow’s
dates
/etc/passwd
/tmp/cal *
SEE ALSO
mail(1),
BUGS

Your calendar must be public information for you to get re-
minder service.

calendar’s extended idea of ‘tomorrow’ does not account for
holidays.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

il

115

CAPTOINFO(1M) (Essential Utilities) CAPTOINFO(M)
NAME
captoinfo — convert a termcap description into a terminfo
description
SYNOPSIS
captoinfo [-v ...] [-V] [-1] [-w width] file ...
DESCRIPTION

captoinfo looks in file for termcap descriptions. For each one
found, an equivalent terminfo(4) description is written to
standard output, along with any comments found. A descrip-
tion which is expressed as relative to another description (as
specified in the termcap tc= field) will be reduced to the
minimum superset before being output.

If no file is given, then the environment variable TERMCAP
is used for the filename or entry. If TERMCAP is a full path-
name to a file, only the terminal whose name is specified in
the environment variable TERM is extracted from that file. If
the environment variable TERMCAP is not set, then the file
/etc/termcap is read.

-v print out tracing information on standard error as
the program runs. Specifying additional -v
options will cause more detailed information to be
printed.

-V print out the version of the program in use on
standard error and exit.

-1 cause the fields to print out one to a line. Other-
wise, the fields will be printed several to a line to a
maximum width of 60 characters.

-w change the output to width characters.

FILES
/usr/lib/terminfo/?/* compiled terminal description database

CAVEATS
Certain termcap defaults are assumed to be true. For exam-
ple, the bell character (terminfo &ehids saassamed to be “G.
The linefeed capability (termcape nd) 1isllasgumed to be the

Page 1 (Printed Dec.1989)

== |} f=———
=[]
HE=— _

CAPTOINFO(1M) (Essential Utilities) CAPTOINFO(1M)

same for both cursor_down and scroll_forward (terminfo cudl
and ind, respectively.) Padding information is assumed to
belong at the end of the string.

The algorithm used to expand parameterized information for
termcap fields such as cursor position (termecap cm, terminfo
cup) will produce a string which, though technically correct,
may not be optimal. In particular, the termcap operation %n
will produce strings that are especially long. Most
occurrences of these non-optimal strings will be flagged with
a warning message and may need to be recoded by hand.

The short two-letter name at the beginning of the list of
names in a termcap entry, a hold-over from an earlier version
of the UNIX system, has been removed.

DIAGNOSTICS
tgetent failed with return code n (reason).
The termcap entry is not valid. In particular, check
for an invalid ’tc=" entry.

unknown type given for the termcap code cc.
The termcap description had an entry for cc whose
type was not boolean, numeric or string.

wrong type given for the boolean (numeric, string) termcap
code cc.
The boolean termcap entry cc was entered as a
numeric or string capability.

the boolean (numeric, string) termcap code cc is not a valid
name.
An unknown termcap code was specified.

tgetent failed on TERM =term.
The terminal type specified could not be found in the
termcap file.

TERM =term: cap cc (info ii) is NULL: REMOVED.
The termcap code was specified as a null string. The
correct way to cancel an entry is with an '@’, as in
:bs@:’. Giving a null string could cause incorrect

(Printed Dec.1989) Page 2

9Ll

17

Page 3

CAPTOINFO(1M) (Essential Utilities) CAPTOINFO(1M)

assumptions to be made by the software which uses
termcap or terminfo.

a function key for cc was specified, but it already has the
value vv.
When parsing the ko capability, the key cc was
specified as having the same value as the capability cc,
but the key cc already had a value assigned to it.

the unknown termcap name cc was specified in the ko
termcap capability.
A key was specified in the ko capability which could
not be handled.

the vi character v (info i) has the value xx, but ma gives n.
The ma capability specified a function key with a
value different from that specified in another setting
of the same key.

the unknown vi key v was specified in the ma termcap capa-
bility.
A vi(1) key unknown to captoinfo was specified in the
ma capability.

Warning: termcap sg (nn) and termcap ug (nn) had different
values.
terminfo assumes that the sg (now xmec) and ug
values were the same.

Warning: the string produced for i may be inefficient.
The parameterized string being created should be
rewritten by hand.

Null termname given.
The terminal type was null. This is given if the
environment variable TERM is not set or is null.

cannot open file for reading.
The specified file could not be opened.

(Printed Dec.1989)

_——

CAPTOINFO(1M) (Essential Utilities) CAPTOINFO(1M)

SEE ALSO ,
infoecmp(1M), tic(1M), curses (3X), terminfo(4).

Chapter 10 in the Programmer’s Guide.

NOTES

captoinfo should be used to convert termcap entries to ter-
minfo(4) entries because the termcap database (from earlier
versions of UNIX System V) may not be supplied in future
releases.

(Printed Dec.1989) Page 4

218

119

CATQ) (Essential Utilities) CATQ)

NAME
cat — concatenate and print files

SYNOPSIS
cat [—u] [—s] [—v [—t] [—e]] file ...

DESCRIPTION
cat reads each file in sequence and writes it on the standard
output. Thus:)

cat file
prints file on your terminal, and:
cat filel file2 >file3
concatenates filel and file2, and writes the results in file3.

If no input file is given, or if the argument — is encountered,
cat reads from the standard input file.

The following options apply to cat:

-u The output is not buffered. (The default is buffered
output.)

—-s cat is silent about non-existent files.

-v Causes non-printing characters (with the exception of
tabs, new-lines and form-feeds) to be printed visibly.
ASCII control characters (octal 000 - 037) are printed
as "n, where n is the corresponding ASCII character in
the range octal 100 - 137 (@, A, B,C, .. ., X, Y, Z, [, \,
], °, and _); the DEL character (octal 0177) is printed
"?. Other non-printable characters are printed as M-
x, where x is the ASCII character specified by the low-
order seven bits.

When used with the —v option, the following options may be
used:

-t Causes tabs to be printed as "Is.

-e Causes a $ character to be printed at the end of each
line (prior to the new-line).

Page 1 (Printed Dec.1989)

=3

CATQ) (Essential Utilities) CAT(1)

The —t and —e options are ignored if the —v option is not
specified.

WARNING

Redirecting the output of cat onto one of the files being read
will cause the loss of the data originally in the file being read.
For example, typing:

cat filel file2 > filel
will cause the original data in filel to be lost.

SEE ALSO
cp(D), pg(D), pr(1).

(Printed Dec.1989) Page 2

(0748

121

CD()

NAME

(Essential Utilities) CD(1)

cd — change working directory

SYNOPSIS

cd [directory]

DESCRIPTION

If directory is not specified, the value of shell parameter
$HOME is used as the new working directory. If directory
specifies a complete path starting with /, ., .., directory
becomes the new working directory. If neither case applies,
cd tries to find the designated directory relative to one of the
paths specified by the $CDPATH shell variable. $CDPATH
has the same syntax as, and similar semantics to, the $PATH
shell variable. c¢cd must have execute (search) permission in
directory .

Because a new process is created to execute each command,

cd would be ineffective if it were written as a normal com-
mand; therefore, it is recognized and is internal to the shell.

SEE ALSO

Page 1

pwd(1), sh(1), chdir(2).

(Printed Dec.1989)

This page is intentionally left blank

(44}

123

|0, et e] = ————————1| (=
A=
— =

CHECKFSYS(1M) (Essential Utilities) CHECKFSYS(1M)
NAME

checkfsys — check a file system on a removable disk
SYNOPSIS

The checkfsys command allows the user to check for and
optionally repair a damaged file system on a removable
disk.

The user is asked ‘one of the following three functions:

1. check the file system
No repairs are attempted.

2. repair it interactively
The user is informed about each instance of dam-
age and asked if it should be repaired.

3. repair it automatically
The program applies a standard repair to each
instance of damage. ‘

The identical function is available under the sysadm menu:
sysadm checkfsys

The command may be assigned a password. See
sysadm(1), the admpasswd sub-command.

WARNING
While automatic and interactive checks are generally success-
ful, they can occasionally lose a file or a file’s name. Files
with content but without names are put in the /file-
system /lost + found directory.

If losing data is of particular concern, “check” the file system
first to discover if it appears to be damaged. If it is damaged,
use one of the repair mechanisms or the file system debug-
ging utility, fsdb.

SEE ALSO
fsck(1M), fsdb(1M), makefsys(1M), mountfsys(1M), sysadm(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

el

_=

CHHW (1M) (Essential Utilities) CHHW (1M)

NAME
chhw — change system configuration

SYNOPSIS
/etc/chhw [file]

DESCRIPTION
The chhw program is used for editing the system configuration
description on a boot disk or in a file that is to be used with
the bootgen(1M) command.

The file argument, if present, must be either the name of the
special file identifying the boot disk or the name of the file that
is to be used with bootgen(1M). If the file argument is present,
chhw will load an initial configuration from that file, and the
file will be the default file name used with the load and save
subcommands.

Once a configuration is loaded, either because a file argument
was specified, or through the execution of the load command,
the user may display and change the configuration.

If the boot disk is a floppy disk, it may be removed and
replaced by another boot floppy before the possibly changed
system configuration is written to the disk. In this way a sys-
tem configuration may be copied from one boot floppy to
another.

chhw will prompt for commands with an asterisk.

In the command descriptions below, a text such as “SIOC
number 8” is to be interpreted as “CPU unit number 8 which

is a SIOC”.
Legal Commands
abort will terminate chhw without storing the new sys-
tem configuration. End-of-file is equivalent to
abort.
check will make a consistency check of the system
configuration.

Rev.May 1991 Version 3.10 Page 1

CHHW (1M)

(Essential Utilities) CHHW (1M)

cioe <unit number> [<channel number> — <spec>]...

adds, removes, or changes CIOC communication
devices. <unit number> must either be a CIOC
or undefined, in which case it will be defined as a
CIOC. <spec> is 0 to disable an already enabled
channel, and 1 to enable the channel. For exam-
ple,
cioc70-11-1

specifies that unit number 7 is a

CIOC and channels 0 and 1 are
enabled.

cmd [<file>]

prints the configuration in form of commands that
may later be used as input to chhw. If <file> is
present the commands will be written to that file,
otherwise the commands will be written to the
standard output.

command [<file>]

prints the configuration is the same way as cmd,
but with an initial reset and final save and quit
commands.

console <unit number> <channel number> <spec>

Page 2

specifies the console terminal, that is, the terminal
on which system messages should be displayed
during bootstrapping or a system crash. <spec>
is any of the following:

b - <baudrate >
specifies the baud rate for the
console. The legal values are:
600, 1200, 1800, 2400, 4800,
9600, 19200.

d - <data bits >
specifies the number of data bits.
The legal values are 5, 6, 7, 8.

Version 3.10 Rev.May 1991

_

CHHW (1M)

defstreams

(Essential Utilities) CHHW (1M)

s— <stop bits> specifies the number of stop bits.
The legal values are 1 and 2.

P— <parity> specifies the parity. The legal
values are 0 for parity check dis-
abled, 1 for odd parity, 2 for even
parity and

r resets the characteristics for the
console.

For example,

console 8 0 r sets the console to be located at
SIOC number 8, channel 0, and
the characteristics for the termi-
nal to be: 9600 baud, parity even,
7 data-bits and 2 stop bits.
See the SIOC command for a
description of the channel
numbers.

enables the streams commands described below
under the heading ‘‘Streams Commands”. When
the streams commands are enabled, the cmd,
command, display, and list commands will
include information about the streams in the sys-
tem.

defulimit <number of 512 byte blocks >

set the ulimit for the system. Default is 2048
blocks.

delete <unit number>

Rev.May 1991

specifies that the indicated unit (that is, an MCU,
a SIOC, etc.) should be deleted from the
configuration. For example,

delete 9 will cause CPU number 9 to be
removed from the configuration.

Version 3.10 Page 3

———eeeeeeeeee—

CHHW (1M)

delstreams

(Essential Utilities) CHHW (1M)

disables the streams commands described below
under the heading ‘“‘Streams Commands’”’. When
the streams commands are disabled, the cmd,
command, display, and list commands will not
include information about the streams in the sys-
tem.

dioc <unit number> [<type> <channel number> — <spec >]

Page 4

adds, removes, or changes disks on a DIOC.
<unit number> must either be a DIOC or
undefined, in which case it will be defined as a
DIOC. <type> can be either d for disk channels,
or t for tty channels. The channel numbers for
disks are:

Reserved

First 1 megabyte 8" floppy disk.

Second 1 megabyte 8" floppy disk.

First 560 kilobyte 5%" floppy disk.

Second 560 kilobyte 5%" floppy disk.

First IBM compatible 8" floppy disk.

Second IBM compatible 8” floppy disk.

Streamer tapes.

First hard disk on first controller.

Second hard disk on first controller.

10 First hard disk on second controller.

11 Second hard disk on second controller.

12 First hard disk on third controller.

13 First hard disk on fourth controller.

14 First hard disk on fifth controller.

15 First hard disk on sixth controller.

16 Magtape, videostreamer or optical disk,
(Variabel Block Mode).

17 Magtape, videostreamer or optical disk,

(Fixed Block Mode).

OO0 Nk WN=O

Version 3.10 Rev.May 1991

CHHW (1M)

20

21

22

23

24

25

26

27

(Essential Utilities) CHHW (1M)

First 360 kilobyte PC-DOS compatible
5%" floppy disk

(40 tracks, 9 sectors per track).

Second 360 kilobyte PC-DOS compatible
5%" floppy disk

(40 tracks, 9 sectors per track).

First 720 kilobyte PC-DOS compatible
5%" floppy disk

(80 tracks, 9 sectors per track).

Second 720 kilobyte PC-DOS compatible
5%" floppy disk

(80 tracks, 9 sectors per track).

First 320 kilobyte X/OPEN compatible
5%" floppy disk

(40 tracks, 8 sectors per track).

Second 320 kilobyte X/OPEN compatible
5%" floppy disk

(40 tracks, 8 sectors per track).

First 640 kilobyte X/OPEN compatible
5%" floppy disk

(80 tracks, 8 sectors per track).

Second 640 kilobyte X/OPEN compatible
5%" floppy disk

(80 tracks, 8 sectors per track).

For disks <spec> is 0 to disable an already
enabled channel, and 1 to enable the channel. For
streamer tapes, <spec> may be either 1 (for
short tapes, 20 MB), 2 (for medium size tapes, 45

MB),

(for long tapes, 130 MB), 4 (for 60 MB

tapes), 5 (for 150 MB tapes), or 6 (for 320 MB
tapes). For magtapes and optical disks, <spec>
may have the following values:

Rev.May 1991

Version 3.10 Page 5

[=—

CHHW (1M)

(Essential Utilities) CHHW (1M)

0 Not installed.

1 45 MB on channel 16.
90 MB on channel 17.

2... Megabytes.

For ttys <spec> is the same as for the sioc-
command. For example,

dioc 13 t1-1 enables channel 1 (tty) on
DIOC 13.

dioc 13 d3-1 t3-1 enables channel 3 (disk) and
channel 3 (tty) on DIOC 13.

dioc8 <unit number> [<channel number> — <spec>1]...

Page 6

adds, removes, or changes disks on a DIOC3.
<unit number> must either be a DIOC3 or

undefined, in which case it will be defined as a
DIOC3.

The channel numbers for disks are:

0 For future use.

1 For future use.

2—15 Hard disks. (See the table page 7).
28 Mirror hard disk; channel 8 and 9.

29 Mirror hard disk; channel 10 and 11.
30 Mirror hard disk; channel 12 and 13.
31 Mirror hard disk; channel 14 and 15.

<spec> is a textstring:

flop to enable floppy disks

hard to enable hard disks
mirror to enable mirror hard disks
dis to disable channel.

Version 3.10 Rev.May 1991

e N

CHHW (1M) (Essential Utilities) CHHW (1M)
Channel | SCSI Interface | SCSI id.
Number
2 0 4
3 1 4
4 0 5
5 1 5
6 0 6
7 1 6
8 0 0
9 1 0
10 0 1
1 1 1
12 0 2
13 1 2
14 0 3
15 1 3
display displays various configuration information.

dumpdisk <unit number> <channel number>
specifies the physical disk on which a system crash
dump should be generated. For example,

dumpdisk 14 1 sets the crash dump disk to be
located at DIOC number 14,
channel 1.

files <number of files>
specifies the number of simultaneously open files
in the system. For example,

files 30 will allow 30 simultaneously
open files.

Rev.May 1991 Version 3.10 Page 7

CHHW (1M) (Essential Utilities) CHHW (1M)

globalp <number of processes >
allocates room for the global part of process con-
trol blocks. For example,

globalp 100 will allocate room for the global
part of process control blocks for
100 processes.

help displays the legal commands.

hypcache <size of cache >
sets the size in kilobytes of the hyper disk cache
in the MCU. Size must be 0 or a power of 2 in
the range 256 to 4096.

init <initial program >
specifies the program that is to be executed in the
master MCU after bootstrapping. A maximum of
32 characters are allowed in the file name. File
names not starting with / will be sought in the
root directory. For example,

init /etc/init will cause /etc/init to be
executed in the master-MCU
after bootstrapping.

list [<param>1]...
Displays a part of the information, like display.
<param> is any of the following:

(No argument) The same as display.

c Displays CIOC information
d Displays DIOC information
g Displays global information
m Displays MCU information
n Displays NIOC information

Page 8 Version 3.10 Rev.May 1991

e |

CHHW (1M) (Essential Utilities) CHHW (1M)

s Displays SIOC information

Displays streams information (if
enabled)

load [<file>]

will load a system configuration. If <file> is
specified, the configuration will be loaded from
that file. Otherwise the configuration will be
loaded from the file whose name was given as
argument to the invocation of chhw, if any. The
load command is able to determine if the file is a
boot device or a file that is intended for a later
bootgen (1M) command.

locks <number of lock elements >
specifies the number of record locking elements in
the system. For example,

lock 100 will allocate 100 record locking
elements.

master <MCU number>
specifies the master MCU. This is the MCU that
will contain the common data area. For example,

master 2 specifies CPU 2 to be the master
MCU.

maxio <number of file descriptors per process >
sets the number of file descriptors that a process
may open. If the number is set to a value less
than 32, the operating system will use 32. If the
number is set to a value greater than 128, the
operating system will use 128.

meu <unit number> [<spec>]...
specifies the parameters for an MCU. <unit
number > must either be an MCU or undefined, in
which case it will be defined as an MCU.
<spec> is any of the following:

Rev.May 1991 Version 3.10 Page 9

CHHW (1M) (Essential Utilities) CHHW (1M)

m— <megabytes >
specifies the maximum allowed
memory per process. This
number must be given with a
decimal point; thus 1 megabyte
must be specified as 1.0.

1- <number> specifies the number of local
process control blocks.

t— <number> specifies the number of text-
descriptors (different pro-
grams).

p— <number> specifies the number of parti-
tion descriptors.

i— <kilobytes> specifies the size of item area.

s— <dioc> [<channel > [<subdisk >
specifies the swap disk.

s—-0 no swapping.

messages <number of message queues >
allocates room for message queues. For example,

messages 2 will allocate room for 2 mes-
sage queues.

nfsmounts <number of nfs filesystems >
specifies the maximum number of simultaneously
mounted NFS filesystems.

nioc <unit number> [<channel number> — <spec>]...
adds, removes, or changes tty channels on a
NIOC. The parameters have the same significance
as with the sioc command (see this). There are
32 channels (numbered 0-31) on a NIOC.

opens <number of openings>
specifies the maximum number of simultaneously
active open operation on files. Every time an
open(2) or a creat(2) system call is executed, one

Page 10 Version 3.10 Rev.May 1991

—

CHHW (1M)

(Essential Utilities) CHHW (1M)

opening is used. The opening is released, when
the last close(2) on that file descriptor and any
derived file descriptor is issued. For example,

opens 300 will allocate room for 300 open-
ings.

pwbacktime <minutes>

quit

reset

sets the alternative backup power time, i.e. the
time the system uses the backup power before the
power fail signal is send to the init process.
/etc/inittab tells init what to do in case of power
failure. Typically shutdown is executed.

is equivalent to abort, but without writing a mes-
sage.

This command will reset the configuration as fol-
lows: Master MCU: 38, files: 20, locks: 2, global
processes: 30, 30 opens, initial program: /etc/init,
all other parameters: 0.

root <dioc number> <channel number> \

[<subdisk number >]
specifies the root disk. For example,

root 14 8 0 The root is located on subdisk 0,
channel 8 on dioc 14.

root 13 1 The location of the root is: chan-
nel 1 on dioc 13.

save [<file>]

i

Rev.May 1991

will store the system configuration. First a
configuration consistency check is made (see the
check command); if this check is unsuccessful the
user will be asked if he wants to save the
configuration anyway (if the input device is not a
terminal, save will never save an inconsistent
configuration).

If the configuration is indeed to be saved, save
proceeds as follows:

Version 3.10 Page 11

=[:3

CHHW (1M)

—

(Essential Utilities) CHHW (1M)

If <file> is specified, the configuration will be
stored in that file. Otherwise the configuration
will be stored in the file whose name was given as
argument to the invocation of chhw, if any. The
save command checks if the file already exists,
and if it does, save determines if it is a boot
device or a file that is intended for a later
bootgen(1IM) command. Then the system
configuration is written onto the file in the
relevant format.

sema <number of semaphore identifiers >

specifies the number of semaphore identifiers. For
example,

sema 14 allocates 14 semaphore identi-
fiers.

shared <number of shared memory identifiers >

allocates room for shared memory identifiers. For
example,

shared 14 allocates 14 shared memory
identifiers.

sioc <unit number> [<channel number> — <spec>]. ..

Page 12

adds, removes, or changes tty channels on a SIOC.
<Unit number> must either be a SIOC or
undefined, in which case it will be defined as a
SIOC.

<spec> is:
0 - disable an already enabled channel.

<number of windows >
— enable channel with the specified
number of windows.

<number of windows > a
— enable with associated printer.

For example,

Version 3.10 Rev.May 1991

_

CHHW (1M)

(Essential Utilities) CHHW (1M)

sioc 8 3-1 4-6 5-1a

specifies that unit 8 is a SIOC
with channel 3 enabled for a nor-
mal tty, channel 4 enabled for a
window terminal with 6 win-
dows, channel 5 enabled for a
normal terminal with an associ-
ated printer.

Channels 0-7 are the serial input/output channels
on the SIOC. Channel 8 is the parallel
input/output channel.

sioec2 <unit number> [<channel number> — <spec>] . ..

adds, removes, or changes tty channels on a
SIOC2. The parameters have the same
significance as with the sioc command (see this).
There are 33 channels (numbered 0-32) on a
SIOC2.

Streams Commands
If the operating system is equipped with the streams mechan-
ism a number of extra configurable parameters exist. The fol-
lowing streams commands are enabled if the load command
has loaded a system where the number of message blocks in
the configuration is non-zero (see the strmsize command), or
if the defstreams command has been executed.

The streams commands are:

strdef <module name> [<parameter>]. ..

Rev.May 1991

defines a stream module name. The module may
be given up to 4 parameters. This command
informs the operating system that the specified
module is present and that its initialization rou-
tines is to be called with the specified parameters.
The significance of each parameter depends on the
module and is specified on the relevant pages of
section 7 of this manual.

Version 3.10 Page 13

CHHW (1M) (Essential Utilities) CHHW (1M)

strevent <number of stream event cells >

specifies the number of stream event -cells.
Stream event cells are used for recording process-
specific information in the poll(2) system call.
They are also used in the implementation of the
streams I_SETSIG ioctl(2) calls and in the operat-
ing system streams scheduling mechanism. A
minimum value to configure would be the
expected number of processes to be simultane-
ously using poll(2) times the expected number of
streams being polled per process, plus the
expected number of processes expected to be using
streams concurrently.

strment <number of message blocks >
specifies the number of streams message blocks to
be allocated. This number should be at least twice
the number of processes expected to be using
streams concurrently, and probably considerably
greater.

strlowf <percentage>
and

strmedf <percentage>
set the low and medium fraction for message block
allocation. These numbers are the percentage of
data blocks of a given size at which low or
medium priority block allocation requests in the
operating system fail. Sensible values are 80 and
90, respectively. For example,

strlowf 80

strmedf 90 All requests will be honored if less
than 80% of the message blocks arc
used. Medium priority requests will
be honored if between 80% and 90%
are used and only high priority
requests will be honored if more than
90% of the message blocks are used.

Page 14 Version 3.10 Rev.May 1991

—=

CHHW (1M) (Essential Utilities) CHHW (1M)

strmsize <message block size> <no of message blocks >
allocates the specified number of message blocks
of the given size. The message block sizes avail-
able are 4, 16, 64, 128, 256, 512, 1024, 2048, and
4096. For example,

strmsize 4 10 allocates 10 blocks of 4 bytes
each.

strmsize 256 20 allocates 20 blocks of 256 bytes
each.

strmul <number of stream multiplexer links >
specifies the number of multiplexer links available.
One link structure is required for each active mul-
tiplexer link (as set up by the streams I LINK
toctl(2) call). This number is application depen-
dent.

strqpair <number of stream queue pairs >
specifies the number of stream queue pairs avail-
able. Each time a stream is opened, two queue
pairs are used. Whenever a module is pushed
onto a stream, an extra queue pair is used.

strrm < module name >
Removes a stream module defined with strdef.

Additional Information
All numbers in the commands are decimal.

Commands may be abbreviated as long as they remain unambi-
guous. Thus command may be abbreviated to com, but not
to eco as it would then be indistinguishable from the console
command.

The help command displays all the legal commands. It does
not, however, display the parameters of each command. The
parameter format can be found by omitting the parameters to a
command. For example, merely giving the command sioe
without parameters, will make chhw display the legal parame-
ter formats.

Rev.May 1991 Version 3.10 Page 15

CHHW (1M) (Essential Utilities) CHHW (1M)

chhw accepts command editing in a manner identical to that
used in dsh(1). The reader is referred to the manual page on
dsh (1) for further information.

SEE ALSO
bootgen(1M), chlds(1M), config(1M).

Page 16 Version 3.10 Rev.May 1991

141

~————————————— | dk |—
1 i—
CHLDS(1M) (Essential Utilities) CHLDS(1M)

NAME

chlds — change logical disk size

SYNOPSIS

chlds

DESCRIPTION

Page 1

The hard disks on a Supermax computer may be partitioned
into sub-disks. The chlds program is used to edit the sub-
disk configuration of a hard disk. The program will prompt
the user for a unit number and a channel number to identify
a hard disk. (chhw (1IM)).

Initially chlds reads the physical size of the hard disk and its
current sub-disk configuration. The user is now allowed to
change the configuration. The edited configuration will not
be saved on the hard disk before the user explicitly asks for
it.

chlds will prompt for commands with an asterisk. Pressing
the 'Restore’ function key will cause the last command to be
displayed, whereupon the user may edit it.

Legal commands:

abort will terminate chlds without storing the new
sub-disk configuration. End-of-file is equivalent
to abort.

check will make a consistency check of the sub-disk

configuration. This check makes sure that the
total size of the sub-disks does not exceed the
physical size of the hard disk.

clear will delete all sub-disks.

display This command may be used to display the sub-
disk configuration as edited by the user.

end will store the sub-disk configuration and ter-
minate chlds. First a consistency check is made
(see the check command); if this check is unsuc-
cessful the user will be asked if he wants to save
the configuration anyway. If the user answers

(Printed Dec.1989)

CHLDS(1M)

help
quit

readold

subdisk

(Essential Utilities) CHLDS(1M)

yes, the changed configuration is written onto
the hard disk, and chids terminates. If the user
does not want to save the configuration he may
continue editing it.

This command will display the legal commands.

will terminate chlds without storing the new
sub-disk configuration.

will read the old sub-disk configuration from the
hard disk. This configuration can be displayed
with the display command and modified by the
clear or subdisk commands.

adds or changes a sub-disk. The format of this
command is as indicated by the following exam-
ples:

subdisk 3 17M defines sub-disk number 3 to
be of size 17Mb (= 17825792
bytes decimal)

subdisk 3 2.6M defines sub-disk number 3 to
be of size 2.5Mb (= 2621440
bytes decimal)

subdisk 3 1048576

defines sub-disk number 3 to
be of size 1048576 bytes
decimal. The size is adjusted
so the disk size will be the
lowest multiple of 2048 bytes
greater than the specified
number.

The help command displays all Lhe legal commands. It does
not, however, display the parameters of the subdisk com-
mand. The parameter format can be found by omitting the
parameters to the command: Merely giving the command
subdisk without parameters, will make chlds display the
legal parameter formats.

(Printed Dec.1989) Page 2

fa4"

143

CHLDS(1M) (Essential Utilities) CHLDS(1M)

The new sub-disk configuration will not be effective before
the Supermax computer has been re-booted.

SEE ALSO
chhw(1M), config(1M), dsize(1).

Page 3 (Printed Dec.1989)

It

This page is intentionally left blank

1243

145

=" ——]

CHMOD1) (Essential Utilities) CHMODQ)
NAME

chmod — change mode
SYNOPSIS

chmod mode file ...
chmod mode directory ...

DESCRIPTION
The permissions of the named files or directories are changed
according to mode, which may be symbolic or absolute.
Absolute changes to permissions are stated using octal
numbers:

chmod nnn file(s)

where n is a number from 0 to 7. Symbolic changes are
stated using mnemonic characters:

chmod ¢ operator b file(s)
where o is one or more characters corresponding to user,
group, or other; where operator is +, —, and =, signifying
assignment of permissions; and where b is one or more char-
acters corresponding to type of permission.

An absolute mode is given as an octal number constructed
from the OR of the following modes:

4000 set user ID on execution

20#0 set group ID on execution if # is 7, 5, 3, or
1
enable mandatory locking if # is 6, 4, 2, or
0

1000 sticky bit is turned on ((see chmod(2))

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0070 read, write, execute (search) by group

0007 read, write, execute (search) by others

Symbolic changes are stated using letters that correspond
both to access classes and to the individual permissions

Page 1 (Printed Dec.1989)

Il

80

CHMOD() (Essential Utilities) CHMODQ@)

themselves. Permissions to a file may vary depending on
your user identification number (UID) or group identification
number (GID). Permissions are described in three sequences
each having three characters:

User Group Other
TWX TI'WX I'WX

This example (meaning that user, group, and others all have
reading, writing, and execution permission to a given file)
demonstrates two categories for granting permissions: the
access class and the permissions themselves.

Thus, to change the mode of a file’s (or directory’s) permis-
sions using chmod’s symbolic method, use the following syn-
tax for mode:

[who 1 operator [permission(s) 1, ...

A command line using the symbolic method would appear as
follows:

chmod g+rw file

This command would make file readable and writable by the
group.

The who part can be stated as one or more of the following
letters:

u user’s permissions
g group’s permissions
o others permissions

The letter a (all) is equivalent to ugo and is the default if
who is omitted.

Operator can be + to add permission to the file’s mode, — to
take away permission, or = to assign permission absolutely.
(Unlike other symbolic operations, = has an absolute effect
in that it resets all other bits.) Omitting permission is only
useful with = to take away all permissions.

(Printed Dec.1989) Page 2

148

147

CHMOD(1) (Essential Utilities) CHMOD((1)

Permission is any compatible combination of the following
letters:

reading permission

writing permission

execution permission

user or group set-ID is turned on

sticky bit is turned on

mandatory locking will occur during access

—ewm Mg "

Multiple symbolic modes separated by commas may be given,
though no spaces may intervene between these modes.
Operations are performed in the order given. Multiple sym-
bolic letters following a single operator cause the correspond-
ing operations to be performed simultaneously. The letter s
is only meaningful with u or g, and ¢ only works with u.

Mandatory file and record locking (1) refers to a file’s ability
to have its reading or writing permissions locked while a pro-
gram is accessing that file. It is not possible to permit group
execution and enable a file to be locked on execution at the
same time. In addition, it is not possible to turn on the set-
group-ID and enable a file to be locked on execution at the
same time. The following examples,

chmod g+x,+1 file
chmod g+s, +1 file

are, therefore, illegal usages and will elicit error messages.

Only the owner of a file or directory (or the super-user) may
change a file’s mode. Only the super-user may set the sticky
bit. In order to turn on a file’s set-group-ID, your own group
ID must correspond to the file’s, and group execution must be
set.

(Printed Dec.1989)

_— ——

CHMOD(1) (Essential Utilities) CHMODQ1)

EXAMPLES
chmod a—x file

chmod 444 file

The first examples deny execution permission to all. The
absolute (octal) example permits only reading permissions.

chmod go +rw file
chmod 606 file

These examples make a file readable and writable by the
group and others.

chmod +1 file
This causes a file to be locked during access.

chmod =rwx,g+s file

chmod 2777 file
These last two examples enable all to read, write, and execute
the file; and they turn on the set group-ID.

NOTES
In a Remote File Sharing environment, you may not have the
permissions that the output of the Is —1 command leads you
to believe. For more information see the "Mapping Remote

Users” section of Chapter 10 of the System Administrator’s
Guide.

SEE ALSO
1s(1), chmod(2).

(Printed Dec.1989) Page 4

2148

149

(1l S 0 ™ P o o e R % Wi e, | ==
. T= B
[/ ——

CHOWNQ) (Essential Utilities) CHOWN@Q®)
NAME

chown, chgrp — change owner or group
SYNOPSIS

chown owner file ...

chown owner directory ...

chgrp group file ...
chgrp group directory ...

DESCRIPTION
chown changes the owner of the files or directories to owner.
The owner may be either a decimal user ID or a login name
found in the password file.

chgrp changes the group ID of the files or directories to
group. The group may be either a decimal group ID or a
group name found in the group file.

If either command is invoked by other than the super-user,
the set-user-ID and set-group-ID bits of the file mode, 04000
and 02000 respectively, will be cleared.

Only the owner of a file (or the super-user) may change the
owner or group of that file.

FILES
/ete/passwd
/etc/group

NOTES
In a Remote File Sharing environment, you may not have the
permissions that the output of the Is —~1 command leads you
to believe. For more information see the "Mapping Remote

Users” section of Chapter 10 of the System Administrator’s
Guide.

SEE ALSO
chmod(1), chown(2), group(4), passwd(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

0SL

151

CHROOT(1M) (Essential Utilities) CHROOT(1M)

NAME

chroot — change root directory for a command
SYNOPSIS

/etc/chroot newroot command
DESCRIPTION

chroot causes the given command to be executed relative to
the new root. The meaning of any initial slashes (/) in the
path names is changed for the command and any of its child
processes to newroot. Furthermore, upon execution, the ini-
tial working directory is newroot.

Notice, however, that if you redirect the output of the com-
mand to a file:

chroot newroot command >x

will create the file x relative to the original root of the com-
mand, not the new one.

The new root path name is always relative to the current
root: even if a chroot is currently in effect, the newroot argu-
ment is relative to the current root of the running process.

This command can be run only by the super-user.

SEE ALSO
cd(1), chroot(2).

BUGS
One should exercise extreme caution when referencing device
files in the new root file system.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

(418

153

CHRTBL(1M) (Essential Utilities) CHRTBL(1IM)

NAME
chrtbl — generate character classification and conversion
tables

SYNOPSIS
chrtbl (file]

DESCRIPTION

The chrtbl command creates a character classification table
and an upper/lower-case conversion table. The tables are
contained in a byte-sized array encoded such that a table
lookup can be used to determine the character classification
of a character or to convert a character (see ctype(3C)). The
size of the array is 257*2 bytes: 257 bytes are required for
the 8-bit code set character classification table and 257 bytes
for the upper- to lower-case and lower- to upper-case conver-
sion table.

chrtbl reads the user-defined character classification and
conversion information from file and creates two output files
in the current directory. Ome output file, ctype.c (a C-
language source file), contains the 257*2-byte array generated
from processing the information from file. You should review
the content of ctype.c to verify that the array is set up as
you had planned. (In addition, an application program could
use ctype.c .) The first 257 bytes of the array in ctype.c are
used for character classification. The characters used for ini-
tializing these bytes of the array represent character
classifications that are defined in /fusr/include/ctype.h; for
example, _L. means a character is lower case and _S|_B
means the character is both a spacing character and a blank.
The last 257 bytes of the array are used for character conver-
sion. These bytes of the array are initialized so that charac-
ters for which you do not provide conversion information will
be converted to themselves. When you do provide conversion
information, the first value of the pair is stored where the
second one would be stored normally, and vice versa; for
example, if you provide <0x41 0x61>, then 0x61 is stored
where 0x41 would be stored normally, and 0x41 is stored
where 0x61 would be stored normally.

Page 1 (Printed Dec.1989)

CHRTBL(1M) (Essential Utilities) CHRTBL(1M)

The second output file (a data file) contains the same infor-
mation, but is structured for efficient use by the character
classification and conversion routines (see ctype(3C)). The
name of this output file is the value of the character
classification chrclass read in from file. This output file
must be installed in the /lib/chrclass directory under this
name by someone who is super-user or a member of group
bin. This file must be readable by user, group, and other; no
other permissions should be set. To use the character
classification and conversion tables on this file, set the
environmental variable CHRCLASS (see environ(5)) to the
name of this file and export the variable; for example, if the
name of this file (and character class) is xyz, you should issue
the commands: CHRCLASS =xyz ; export CHRCLASS .

If no input file is given, or if the argument — is encountered,
chrtbl reads from the standard input file.

The syntax of file allows the user to define the name of the
data file created by chrtbl, the assignment of characters to
character classifications and the relationship between upper-
and lower-case letters. The character classifications recog-
nized by chritbl are:

chrclass name of the data file to be created by
chribl.

isupper character codes to be classified as upper-
case letters.

islower character codes to be classified as lower-
case letters.

isdigit character codes to be classified as
numeric.

isspace character codes to be classified as a spac-

ing (delimiter) character.

ispunct character codes to be classified as a punc-
tuation character.

(Printed Dec.1989) Page 2

vSi

165

CHRTBL(1M) (Essential Utilities) CHRTBL(1M)
iscntrl character codes to be classified as a con-
trol character.
isblank character code for the space character.
isxdigit character codes to be classified as hexa-
decimal digits.
ul relationship between upper- and lower-

- case characters.

Any lines with the number sign (#) in the first column are
treated as comments and are ignored. Blank lines are also
ignored.

A character can be represented as a hexadecimal or octal con-
stant (for example, the letter a can be represented as 0x61 in
hexadecimal or 0141 in octal). Hexadecimal and octal con-
stants may be separated by one or more space and tab charac-
ters.

The dash character (—) may be used to indicate a range of
consecutive numbers. Zero or more space characters may be
used for separating the dash character from the numbers.

The backslash character (\) is used for line continuation.
Only a carriage return is permitted after the backslash char-
acter.

The relationship between upper- and lower-case letters (ul) is
expressed as ordered pairs of octal or hexadecimal constants:
<upper-case_character lower-case character>. These two
constants may be separated by one or more space characters.
Zero or more space characters may be used for separating the
angle brackets (< >) from the numbers.

(Printed Dec.1989)

i
-

. =1 V.a i Y .

CHRTBL(1M)

EXAMPLE

(Essential Utilities) CHRTBL(1M)

The following is an example of an input file used to create the
ASCII code set definition table on a file named ascii.

chrclass
isupper
islower
isdigit
isspace
ispunct
iscntrl
isblank
isxdigit

ul

FILES
/lib/chrclass/ *

ascii

0x41 - Ox5a
0x61 - Ox7a
0x30 - 0x39

0x20 0x9 - Oxd

0x21 - 0x2f Ox3a - 0x40 \
0x5b - 0x60 0x7b - Ox7e

0x0 - Ox1f Ox7f

0x20
0x30 - 0x39 0x61 - 0x66 \
0x41 - 0x46

<0x41 0x61> <0x42 0x62> <0x43 0x63>
<0x44 0x64> <0x45 0x65> <0x46 0x66>
<0x47 0x67> <0x48 0x68> <0x49 0x69>
<0x4a Ox6a> <0x4b Ox6b> <Oxdc Ox6c>
<0x4d 0x6d> <Oxde Ox6e> <0x4f Ox6f>
<0x50 0x70> <0x51 0x71> <0x52 0x72>
<0x53 0x73> <0x54 0x74> <0x55 0x75>
<0x56 0x76> <0x57 0x77> <0x58 0x78>
<0x59 0x79> <0x5a 0x7a>

T T T T

data file containing character classification
and conversion tables created by chrtbl

/usr/include/ctype.h

(Printed Dec.1989)

header file containing information used by
character classification and conversion rou-
tines.

Page 4

961

157

=3

CHRTBL(1M) (Essential Utilities) CHRTBL(1M)

SEE ALSO
ctype(3C), environ(5).
DIAGNOSTICS

The error messages produced by chrtbl are intended to be
self-explanatory. They indicate errors in the command line or
syntactic errors encountered within the input file.

Page 5 (Printed Dec.1989)

This page is intentionally left blank

8S|

159

DESCRIPTION

NOTE

Page 1

[= = SO e NP _ SOl = m
CHSTACK((1) (Essential Utilities) CHSTACK(1)
NAME

chstack — set load module stack size

SYNOPSIS
chstack [option] file

chstack is used to inspect or change the size of the stack allo-
cated for a load module. The load module file name is
specified by the file parameter.

The options are:

—s stacksize the new stack size is specified by the —s

—C

parameter. The stack size is a number indi-
cating the number of bytes in the stack. This
number must be even. If the first two charac-
ters of the stack size are 0Ox the number is
hexadecimal, otherwise if the first character is
0 the number is octal, otherwise the number is
decimal.

the stacksize is displayed. —v is default.

a command line for setting the stack to the
actual value is generated.

The default stack size for a program is 6K.

It is only necessary to use the chstack program on programs
that are to be run on Supermax Computers without
automatic stack growth. Further, chstack need not be run on
programs that require less than 6K stack.

(Printed Dec.1989)

This page is intentionally left blank

091

161

CKBUPSCD(1M) (Essential Utilities) CKBUPSCD(1M)

NAME

ckbupsed — check file system backup schedule

SYNOPSIS

/etc/ckbupsed [—m |

DESCRIPTION

Page 1

ckbupscd consults the file /etc/bupsched and prints the file
system lists from lines with date and time specifications
matching the current time. If the —m flag is present an
introductory message in the output is suppressed so that only
the file system lists are printed. Entries in the
/etc/bupsched file are printed under the control of cron.

The System Administration commands bupsched /schedcheck
are provided to review and edit the /etc/bupsched file.

The file /etc/bupsched should contain lines of 4 or more
fields, separated by spaces or tabs. The first 3 fields (the
schedule fields) specify a range of dates and times. The rest
of the fields constitute a list of names of file systems to be
printed if ckbupscd is run at some time within the range
given by the schedule fields. The general format is:

time[,time] day[,day] month[,month] fsyslist
where:

time Specifies an hour of the day (0 through 23), match-
ing any time within that hour, or an exact time of
day (0:00 through 23:59).

day Specifies a day of the week (sun through sat) or
day of the month (I through 31).

month Specifies the month in which the time and day
fields are valid. Legal values are the month
numbers (I through 12).

fsyslist The rest of the line is taken to be a file system list
to print.

(Printed Dec.1989)

[
|

=T

CKBUPSCD(1M) (Essential Utilities) CKBUPSCD(1M)

Multiple time, day, and month specifications may be separ-
ated by commas, in which case they are evaluated left to
right.

An asterisk (*) always matches the current value for that
field.

A line beginning with a sharp sign (#) is interpreted as a
comment and ignored.

The longest line allowed (including continuations) is 1024
characters.
EXAMPLES

The following are examples of lines which could appear in the
/ete/bupsched file.

06:00-09:00 fri 1,2,3,4,5,6,7,8,9,10,11 /applic
Prints the file system name /applic if ckbupscd is
run between 6:00am and 9:00am any Friday during
any month except December.

00:00-06:00,16:00-23:59 1,2,34,56,7 1.8 /
Prints a reminder to backup the root (/) file system
if ckbupscd is run between the times of 4:00pm and
6:00am during the first week of August or January.
FILES
/etc/bupsched specification file containing times and file sys-
tem to back up
SEE ALSO
cron(1M), echo(1), sh(1), sysadm(1).
BUGS

ckbupscd will report file systems due for backup if invoked
any time in the window. It does not know that backups may
have just been taken.

(Printed Dec.1989) Page 2

29t

163

CLRI(1M) (Essential Utilities) CLRI(1M)

NAME

clri — clear i-node

SYNOPSIS

/ete/elri special i-number ...

DESCRIPTION

clri writes nulls on the 64 bytes at offset i-number from the
start of the i-node list. This effectively eliminates the i-node
at that address. Special is the device name on which a file
system has been defined. After clri is executed, any blocks in
the affected file will show up as ‘“‘not accounted for’”’ when
fsck(IM) is run against the file-system. The i-node may be
allocated to a new file.

Read and write permission is required on the specified special
device.

This command is used to remove a file which appears in no
directory; that is, to get rid of a file which cannot be removed
with the rm command.

SEE ALSO

fsck(1M), fsdb(1M), ncheck(1M), rm(1), fs(4).

WARNINGS

Page 1

If the file is open for writing, clri will not work. The file sys-
tem containing the file should be NOT mounted.

If clri is used on the i-node number of a file that does appear
in a directory, it is imperative to remove the entry in the
directory at once, since the i-node may be allocated to a new
file. The old directory entry, if not removed, continues to
point to the same file. This sounds like a link, but does not
work like one. Removing the old entry destroys the new file.

(Printed Dec.1989)

This page is intentionally left blank

ol

CLRSCR (1) (Essential Utilities) CLRSCR (1)

NAME
clrser — clear screen

SYNOPSIS
Jusr/ucb/clrscr

DESCRIPTION
clrscr clears the screen.

Issued May 1991 Vers.3.10 Page 1

e) e

CLRSCR (1) (Essential Utilities) CLRSCR (1)

This page is intentionally left blank

Page 2 Vers.3.10 Issued May 1991

165

CMPQ1) (Essential Utilities) CMP@Q)
NAME
cmp — compare two files
SYNOPSIS
cmp [-1][—s] filel file2
DESCRIPTION

The two files are compared. (If filel is —, the standard input
is used.) During default options, cmp makes no comment if
the files are the same; if they differ, it announces the byte
and line number at which the difference occurred. If one file
is an initial subsequence of the other, that fact is noted.

Options:

—1 Print the byte number (decimal) and the differing
bytes (octal) for each difference.
—s Print nothing for differing files; return codes only.
SEE ALSO
comm(l), diff(1).

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files,
and 2 for an inaccessible or missing argument.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

991

167

[S — e e e W I, s —— e —— |

T

=

COL®)

NAME

(Essential Utilities) COL®1)

col — filter reverse line-feeds

SYNOPSIS

col [—b] [—-f] [-x] [—p]

DESCRIPTION

Page 1

col reads from the standard input and writes onto the stan-
dard output. It performs the line overlays implied by reverse
line feeds (ASCII code ESC-7), and by forward and reverse
half-line-feeds (ESC-9 and ESC-8). col is particularly useful
for filtering multicolumn output made with the .rt command
of nroff and output resulting from use of the tbl(1) preproces-
sor.

If the —b option is given, col assumes that the output device
in use is not capable of backspacing. In this case, if two or
more characters are to appear in the same place, only the last
one read will be output.

Although col accepts half-line motions in its input, it nor-
mally does not emit them on output. Instead, text that would
appear between lines is moved to the next lower full-line
boundary. This treatment can be suppressed by the —f (fine)
option; in this case, the output from col may contain forward
half-line-feeds (ESC-9), but will still never contain either kind
of reverse line motion.

Unless the —x option is given, col will convert white space to
tabs on output wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are
assumed by col to start and end text in an alternate character
set. The character set to which each input character belongs
is remembered, and on output SI and SO characters are gen-
erated as appropriate to ensure that each character is printed
in the correct character set.

On input, the only control characters accepted are space,
backspace, tab, return, new-line, SI, SO, VT (\013), and ESC
followed by 7, 8, or 9.

(Printed Dec.1989)

COL()

(Essential Utilities) COL(1)

The VT character is an alternate form of full reverse line-
feed, included for compatibility with some earlier programs of
this type. All other non-printing characters are ignored.

Normally, col will ignore any escape sequences unknown to it
that are found in its input; the —p option may be used to
cause col to output these sequences as regular characters,
subject to overprinting from reverse line motions. The use of
this option is highly discouraged unless the user is fully
aware of the textual position of the escape sequences.

SEE ALSO

NOTES

BUGS

nroff(1), tbl(1) in the DOCUMENTER’s WORKBENCH Software
Release 2.0 Technical Discussion and Reference Manual .

The input format accepted by col matches the output pro-
duced by nroff with either the —'T37 or —Tlp options. Use
—T37 (and the —f option of col) if the ultimate disposition
of the output of col will be a device that can interpret half-
line motions, and — Tlp otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a
line.

Local vertical motions that would result in backing up over
the first line of the document are ignored. As a result, the
first line must not have any superscripts.

(Printed Dec.1989) Page 2

891

169

(E=mrm—==iE

COMM(1) (Essential Utilities) COMMQ)
NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

comm reads filel and file2, which should be ordered in ASCII
collating sequence (see sort(1)), and produces a three-column
output: lines only in filel; lines only in file2; and lines in both
files. The file name — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding
column. Thus comm =12 prints only the lines common to

the two files; comm —23 prints only lines in the first file but
not in the second; comm -123 prints nothing.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

0l1

171

o e T BT | e] N ===
S o] —
: ==y]

CONFIG(1M)

NAME

(Essential Utilities) CONFIG(1M)

config — print system configuration

SYNOPSIS

config [options]

DESCRIPTION

config writes to the standard output device a description of
the configuration of the running system as set by the
chhw (1M) program and defined by the hardware.

The options are:

a List all parameters. Default.

c List the information about the enabled channels on
the ciocs.

d List the information about the enabled channels on
the diocs.

g List the global parameters.

h Make output as input to chhw (1IM)

m List the information about the mcus.

s List the information about the enabled channels on
the siocs.

v Print the version of the config program.

EXAMPLES

To print the configuration of the disks on the Supermax:

Dioc #13:

Channel 3:

Dioc2 #14:
Channel 1:
Channel 7:
Channel 8:

Page 1

config d

First 560 KB 5%" floppy.

First 1 MB 8" floppy.

Streamer tape length: 19,00 MB
First hard disk on first controller,
length: 63,25 MB

(Printed Dec.1989)

=[]

—

CONFIG(1M) (Essential Utilities) CONFIG(1M)

SEE ALSO
chhw(1M).

(Printed Dec.1989) Page 2

cll

—=

CP(1) (Essential Utilities) CP(1)
NAME

¢cp, In, mv — copy, link or move files
SYNOPSIS

cp filel [file2 ...] target
In [—fs] filel [file2 ...] target
mv [—f] filel [file2 ...] target

DESCRIPTION
filel is copied (linked, moved) to target. Under no cir-
cumstance can filel and target be the same (take care when
using sh (1) metacharacters). If target is a directory, then one
or more files are copied (linked, moved) to that directory. If
target is a file, its contents are destroyed.

If mv or In determines that the mode of target forbids writing,
it will print the mode (see chmod(2)), ask for a response, and
read the standard input for one line; if the line begins with y,
the mv or In occurs, if permissable; if not, the command exits.
When the —f option is used or if the standard input is not a
terminal, no questions are asked and the mv or In is done.

The —s option causes In to create symbolic links. A symbolic |
link contains the name of the file to which it is linked. Sym- |
bolic links may span file systems and may refer to directories. |

Only mv will allow filel to be a directory, in which case the
directory rename will occur only if the two directories have the
same parent; filel is renamed target. If filel is a file and target
is a link to another file with links, the other links remain and
target becomes a new file.

When using cp, if target is not a file, a new file is created which
has the same mode as filel except that the sticky bit is not set
unless you are super-user; the owner and group of target are
those of the user. If target is a file, copying a file into target
does not change its mode, owner, nor group. The last
modification time of target (and last access time, if target did
not exist) and the last access time of filel are set to the time
the copy was made. If target is a link to a file, all links remain
and the file is changed.

Rev.May 1991 Vers.3.10 Page 1

CP(1) (Essential Utilities) CP (1)
SEE ALSO

chmod(1), cpio(1), rm(1).
WARNINGS

In will not link across file systems. This restriction is neces-
sary because file systems can be added and removed.

BUGS
If filel and target lie on different file systems, mv must copy

the file and delete the original. In this case any linking rela-
tionship with other files is lost.

Page 2 Vers.3.10 Rev.May 1991

e — | —

CPIO (1) (Essential Utilities) CPIO (1)
NAME

cpio — copy file archives in and out
SYNOPSIS

cpio —o[acBvVHL] [—C bufsize] [-O file] |

cpio —i[BedmrtuvVfsSb6kHL] [-C bufsize] [-1 file] |
[pattern ...]

cpio —p[adlmuvVHL] directory |

DESCRIPTION
cpio —o (copy out) reads the standard input to obtain a list of
path names and copies those files onto the standard output
together with path name and status information. Output is
padded to a 512-byte boundary by default.

cpio —i (copy in) extracts files from the standard input, which
is assumed to be the product of a previous epio —o. Only files
with names that match patterns are selected. patterns are reg-
ular expressions given in the filename-generating notation of
sh (). In patterns, meta-characters ?, *, and [...] match the
slash (/) character, and backslash (\) is an escape character. A
! meta-character means not. (For example, the !abc* pattern
would exclude all files that begin with abe.) Multiple patterns
may be specified and if no patterns are specified, the default for
patterns is * (ie., select all files). Each pattern must be
enclosed in double quotes otherwise the name of a file in the
current directory is used. Extracted files are conditionally
created and copied into the current directory tree based upon
the options described below. The permissions of the files will
be those of the previous cpio —o. The owner and group of the
files will be that of the current user unless the user is super-
user, which causes cpio to retain the owner and group of the
files of the previous cpio —o.

NOTE: If cpio —i tries to create a file that already exists and
the existing file is the same age or newer, cpio will output a
warning message and not replace the file. (The —u option can
be used to unconditionally overwrite the existing file.)

Rev.May 1991 Vers.3.10 Page 1

[

= (e ‘

CPIO (1)

(Essential Utilities) CPIO (1)

cpio —p (pass) reads the standard input to obtain a list of
path names of files that are conditionally created and copied
into the destination directory tree based upon the options
described below.

The meanings of the available options are

—a

-b

—C bufsize

Page 2

Reset access times of input files after they have
been copied. Access times are not reset for linked
files when cpio —pla is specified.

Reverse the order of the bytes within each word.
Use only with the —i option.

Input/output is to be blocked 5,120 bytes to the
record. The default buffer size is 512 bytes when
this and the C options are not used. —B does not
apply to the pass option.

Write header information in ASCII character form
for portability. Always use this option when ori-
gin and destination machines are different types.
Input/output is to be blocked bufsize bytes to the
record, where bufsize is replaced by a positive
integer. The default buffer size is 512 bytes when
this and B options are not used. —C does not
apply to the pass option.

Directories are to be created as needed.

Copy in all files except those in patterns. (See the
paragraph on cpio —i for a description of pai-
terns.)

Read the contents of file as input. Use only with
the —1i option.

Attempt to skip corrupted file headers and I/0
errors that may be encountered. If you want to
copy files from a medium that is corrupted or out
of sequence, this option lets you read only those
files with good headers. (For cpio archives that
contain other cpio archives, if an error is encoun-
tered cpio may terminate prematurely. cpio will
find the next good header, which may be one for a
smaller archive, and terminate when the smaller

Vers.3.10 Rev.May 1991

_:

CPIO (1) (Essential Utilities) CPIO (1)

archive’s trailer is encountered.) Used only with
the —1i option.

-1 Whenever possible, link files rather than copying
them. Usable only with the —p option.

-m Retain previous file modification time. This
option is ineffective on directories that are being
copied.

-0 file Direct the output of cpio to file. Use only with the
— o0 option.

-r Interactively rename files. If the user types a null

line, the file is skipped. If the user types a ”.” the
original pathname will be copied. (Not available
with cpio —p.)

-s swap bytes within each half word. Use only with
the —i option.

-S Swap halfwords within each word. Use only with
the —1i option.

-t Print a table of contents of the input. No files are
created.

-u Copy unconditionally (normally, an older file will
not replace a newer file with the same name).

-v verbose: causes a list of file names to be printed.

When used with the —t option, the table of con-
tents looks like the output of an Is —1 command
(see 1s(1)).

-V SpecialVerbose: print a dot for each file seen.
Useful to assure the user that cpio is working
without printing out all file names.

-6 Process an old (i.e. UNIX System Sixth Edition
format) file. Use only with the —1i option.
-H Do not follow symbolic links (default). Symbolic |

link records are saved in the archive to be |
extracted on the other side. This is not portable to |
all system types.

-L Follow symbolic links, placing in archive records |
for the files they point to.

Rev.May 1991 Vers.3.10 Page 3

CPIO (1) (Essential Utilities) CPIO (1)

NOTE: cpio assumes four-byte words.
cpio will only read or write until it reaches end of medium.

¢pio should not be used when accessing character special files.
Instead use bcpio which gives data buffering optimal for the
physical device in question, and handles media shift.

EXAMPLES

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio —o, it
groups the files so they can be directed (>) to a single file
(.. /mewfile). The c option insures that the file will be port-
able to other machines. Instead of Is(1), you could use find (1),
echo(1), cat(1), etc. to pipe a list of names to cpio. You could
direct the output to a device instead of a file.

Is | cpio —oc >../newfile

cpio —i uses the output file of ¢pio —o (directed through a
pipe with cat in the example), extracts those files that match
the patterns (memo/al, memo/b *), creates directories below
the current directory as needed (—d option), and places the
files in the appropriate directories. The c option is used when
the file is created with a portable header. If no patterns were
given, all files from newfile would be placed in the directory.

cat newfile | cpio -icd “memo/al” "memo/b * 7

cpio —p takes the file names piped to it and copies or links
(-1 option) those files to another directory on your machine
(newdir in the example). The —d options says to create direc-
tories as needed. The —m option says retain the modification
time. (It is important to use the —depth option of find(1) to
generate path names for cpio. This eliminates problems cpio
could have trying to create files under read-only directories.)

find . —depth —print | cpio —pdlmv newdir

SEE ALSO

ar(1), bepio(1), cat(1), echo(1), find(1), 1s(1), tar(1), cpio(4).

Page 4 Vers.3.10 Rev.May 1991

—=

CPIO (1) (Essential Utilities) CPIO (1)

NOTES

1) Path names are restricted to 256 characters.

2) Only the super-user can copy special files.

3) Blocks are reported in 512-byte quantities.

4) If a file has 000 permissions, contains more than 0
characters of data, and the user is not root, the file
will not be saved or restored.

5) Will only read or write until end of media.

6) Never use cpio to acces streamer tapes.

7) SVID option "M” is not supported (see bepio(1)).

Rev.May 1991 Vers.3.10 Page 5

=== [-

CPIO (1) (Essential Utilities) CPIO (1)

This page is intentionally left blank

Page 6 Vers.3.10 Rev.May 1991

181

(I AT W ——— (]
[

—_

CRASH(1M) (Essential Utilities) CRASH(1M)
NAME
crash — provoke system crash
SYNOPSIS
crash
DESCRIPTION

crash causes the operating system to crash with the number
75 in the MCU display. crash will twice ask the user for
confirmation before crashing.

The program can only be run by the super-user.

SEE ALSO
smsys(2).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

28l

183

e _=_

CRON(1M) (Essential Utilities) CRON(IM)
NAME
cron — clock daemon
SYNOPSIS
/etc/cron
DESCRIPTION

cron executes commands at specified dates and times. Regu-
larly scheduled commands can be specified according to
instructions found in crontab files in the directory
Jusr/spool/cron/crontabs. Users can submit their own
crontab file via the crontab(l) command. Commands which
are to be executed only once may be submitted via the az(1)
command.

cron only examines crontab files and at command files during
process initialization and when a file changes. This reduces
the overhead of checking for new or changed files at regularly
scheduled intervals.

Since cron never exits, it should be executed only once. This
is done through /etc/rc.d/cron at system boot time.
Jusr/lib/cron/FIFO is used as a lock file to prevent the exe-
cution of more than one cron

FILES
/Jusr/lib/cron main cron directory

Jusr/lib/cron/FIFO used as a lock file

Jusr/lib/cron/log accounting information

/usr/spool/cron spool area
SEE ALSO
at(1), crontab(1), sh(l), ctime(3C).
DIAGNOSTICS
A history of all actions taken by cron are recorded in
Jusr/lib/cron/log.

Page 1 (Printed Dec.1989)

CRON(IM) (Essential Utilities) CRON(1M)

BUGS
Due to an error in function ctime(3C), the change between
summertime and wintertime takes place at l:am localtime,
(and not at 2:am as expected).

(Printed Dec.1989) Page 2

8l

185

4

CRONTAB() (Essential Utilities) CRONTAB(1)

NAME

crontab — user crontab file

SYNOPSIS

crontab [file]
crontab —r
crontab -1

DESCRIPTION

Page 1

crontab copies the specified file, or standard input if no file is
specified, into a directory that holds all users’ crontabs. The
—r option removes a user’s crontab from the crontab direc-
tory. crontab —1 will list the crontab file for the invoking
user.

NOTE: A user will have no more than one crontab file. A
second call will overwrite any previous crontab file.

Users are permitted to use crontab if their names appear in
the file /usr/lib/cron/cron.allow. If that file does not exist,
the file /usr/lib/cron/cron.deny is checked to determine if
the user should be denied access to crontab. If neither file
exists, only root is allowed to submit a job. If cron.allow
does not exist and cron.deny exists but is empty, global
usage is permitted. The allow/deny files consist of one user
name per line,

A crontab file consists of lines of six fields each. The fields
are separated by spaces or tabs. The first five are integer pat-
terns that specify the following:

minute (0 —59),

hour (0-23),

day of the month (1-31),

month of the year (1-12),

day of the week (0 — 6 with 0 =Sunday).

Each of these patterns may be either an asterisk (meaning
all legal values) or a list of elements separated by commas.
An element is either a number or two numbers separated by
a minus sign (meaning an inclusive range). Note that the

(Printed Dec.1989)

CRONTABQ) (Essential Utilities) CRONTAB()

specification of days may be made by two fields (day of the
month and day of the week). If both are specified as a list of
elements, both are adhered to. For example, 0 0 1,15 = 1
would run a command on the first and fifteenth of each
month, as well as on every Monday. To specify days by only
one field, the other field should be set to * (for example, 0 0
* * 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is
executed by the shell at the specified times. A percent char-
acter in this field (unless escaped by \) is translated to a
new-line character. Only the first line (up to a % or end of
line) of the command field is executed by the shell. The other
lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an
arg0 of sh. Users who desire to have their .profile executed
must explicitly do so in the crontab file.

cron supplies a default environment for every shell, defining
HOME, LOGNAME, SHELL(= /bin/sh) and
PATH(=:/bin:/usr/bin:/usr/lbin)

If you do not redirect the standard output and standard error
of your commands, any generated output or errors will be
mailed to you.

FILES
Jusr/lib/cron main cron directory
/usr/spool/cron/crontabs spool area
Jusr/lib/cron/log accounting information
/usr/lib/cron/cron.allow list of allowed users
/usr/lib/eron/cron.deny list of denied users

SEE ALSO

cron(1M), sh(l).

WARNINGS

If you inadvertently enter the crontab command with no
argument(s), do not attempt to get out with a CTRL-d. This
will cause all entries in your crontab file to be removed.
Instead, exit with a DEL.

(Printed Dec.1989) Page 2

981

187

CSH(1) (Essential Utilities) CSH(1)
NAME

csh — a shell (command interpreter) with C-like syntax
SYNOPSIS

csh [—cefinstvVxX | [arg ... |
DESCRIPTION

csh is a command language interpreter incorporating a his-
tory mechanism (see History Substitutions) and a C-like
syntax.

An instance of csh begins by executing commands from the
file ’.cshrc’ in the home directory of the invoker. If this is a
login shell then it also executes commands from the file
"login’ there. It is typical for users on crt’s to put the com-
mand ’stty crt’ in their .login file, and to also invoke tset(1)
there.

In the normal case, the shell will then begin reading com-
mands from the terminal, prompting with '%’. Processing of
arguments and the use of the shell to process files containing
command scripts will be described later.

The shell then repeatedly performs the following actions: a
line of command input is read and broken into words. This
sequence of words is placed on the command history list and
then parsed. Finally each command in the current line is
executed.

When a login shell terminates, it executes commands from
the file ’.logout’ in the user’s home directory.

LEXICAL STRUCTURE
The shell splits input lines into words at blanks and tabs with
the following exceptions. The characters ‘&’ |’’’ <’ ’>" °(
')’ form separate words. If doubled in '&&’, ’||’, < <’ or
’> >’ these pairs form single words. These parser metachar-
acters may be made part of other words, or their special
meaning may be prevented, by preceding them with a
backslash, ’\’. A newline preceded by a ’\’ is equivalent to a
blank. It is usually necessary to use the backslash to ’escape’
the parser metacharacters when you want to use them

Page 1) (Printed Dec.1989)

CSH(1) (Essential Utilities) CSH(1)

literally rather than as metacharacters.

Strings enclosed in matched pairs of quotation marks, either
single or double quotation marks, ’*’, >*’ or ’”’, form parts of
a word. Metacharacters in these strings, including blanks and
tabs, do not form separate words. Such quotations have

semantics to be described subsequently.

Within pairs of single or double quotation marks a newline
(carriage return) preceded by a ’\’ gives a true newline char-
acter. This is used to set up a file of strings separated by
newlines, as for fgrep(1).

When the shell’s input is not a terminal, the character *#’
introduces a comment which continues to the end of the
input line. It is prevented from having this special meaning
when preceded by ’\’ or if bracketed by a pair of single or
double quotation marks.

COMMANDS
A simple command is a sequence of words, the first of which
specifies the command to be executed.

A simple command or a sequence of simple commands
separated by ’|’ characters forms a pipeline. The output of
each command in a pipeline is connected to the input of the
next.

Sequences of pipelines may be separated by ’;’, and are then
executed sequentially. A sequence of pipelines may be exe-
cuted without immediately waiting for it to terminate by fol-
lowing it with an ’&’, which means ’run it in background’.

Parentheses ’(’ and ’)’ around a pipeline or sequence of pipe-
lines cause the whole scrice to be trcated as o simple com-
mand, which may in turn be a component of a pipeline, etc.
It is also possible to separate pipelines with ’| |’ or ’&&’ indi-
cating, as in the C language, that the second is to be executed
only if the first fails or succeeds respectively. (See Expres-
sions.)

(Printed Dec.1989) Page 2

88l

189

CSH() (Essential Utilities) CSH(D

PROCESS 1.D. NUMBERS
When a process is run in background with ’&’, the shell
prints a line which looks like:

1234

indicating that the process which was started asynchronously
was number 1234.

STATUS REPORTING
This shell learns immediately whenever a process changes
state. It normally informs you whenever a job becomes
blocked so that no further progress is possible, but only just
before it prints a prompt. This is done so that it does not
otherwise disturb your work.

To check on the status of a process, use the ps (process
status) command.

SUBSTITUTIONS
We now describe the various transformations the shell per-
forms on the input in the order in which they occur.

History substitutions

History substitutions place words from previous command
input as portions of new commands, making it easy to repeat
commands, repeat arguments of a previous command in the
current command, or fix spelling mistakes in the previous
command with little typing and a high degree of confidence.

’

History substitutions begin with the character ’!’ and may
begin anywhere in the input stream (with the proviso that
they do not nest.)

This ’!" may be preceded by an ’\’ to turn off its special mean-
ing; for convenience, a ’!’ is also passed unchanged when it is
followed by a blank, tab, newline, =’ or ’(’.

Therefore, do not put a space after the '’ and the command
reference when you are invoking the shell’s history mechan-
ism. (History substitutions also occur when an input line

Page 3 (Printed Dec.1989)

CSH() (Essential Utilities) CSH(1)

begins with **’. This special abbreviation will be described
later.)

An input line which invokes history substitution is echoed on
the terminal before it is executed, as it would look if typed
out in full.

The shell’s history list, which may be seen by typing the ’his-
tory’ command, contains all commands input from the termi-
nal which consist of one or more words. History substitu-
tions reintroduce sequences of words from these saved com-
mands into the input stream. The history variable controls
the size of the input stream. The previous command is
always retained, regardless of its value. Commands are num-
bered sequentially from 1.

Consider the following output from the history command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff = write.c

The commands are shown with their event numbers. It is
not usually necessary to use event numbers, but the current
event number can be made part of the prompt by placing an
P in the prompt string. This is done by SETting Prompt = !
and the prompt character of your choice.

For example, if the current event is number 13, we can call
up the command recorded as event 11 in several ways: as !-2
[i.e., 13-2];

by the first letter of one of its command words, such as !c
referring to the ’c’ in cat;

or !wri for event 9, or by a string contained in a word in the
command as in ’!?mic?’ also referring to event 9.

These forms, without further modification, simply reintroduce
the words of the specified events, each separated by a single
blank. As a special case !V’ refers to the previous command;
thus ’!I’ alone is essentially a redo.

(Printed Dec.1989) Page 4

06}

191

CSH(1)

Page 5

(Essential Utilities) CSH(1)

Words are selected from a command event and acted upon
according to the following formula:

event:position:action

The ’event’ is the command you wish to retrieve. As men-
tioned above, it may be summoned up by event number and
in several other ways. All that the ’event’ notation does is to
tell the shell which command you have in mind.

"Position’ picks out the words from the command event on
which you want the ’action’ to take place. The ’position’
notation can do anything from altering the command com-
pletely to making some very minor substitution, depending on
which words from the command event you specify with the
’position’ notation.

To select words from a command event, follow the event

specification with a ’:” and a designator (by position) for the
desired words.

The words of a command event are picked out by their posi-
tion in the input line. Positions are numbered from 0, the
first word (usually command) being position 0, the second
word having position 1, and so forth. If you designate a word
from the command event by stating its position, that means
you want to include it in your revised command. All the
words that you want to include in a revised command must
be designated by position notation in order to be included.

The basic position designators are:

0 first (command) word

n n’th argument

) first argument, i.e.’l’

$ last argument

% matches the word of an ?s? search which

immediately precedes it; used to strip one
word out of a command event for use in
another command.

Example: !?four?:%:p prints ’four’.

(Printed Dec.1989)

CSHQ) (Essential Utilities) CSH()

x —y range of words (e.g. 1-3 means ’from position
1 to position 3°).
-y abbreviates '0—y’

* stands for ’* —§’, or indicates position 1 if only
one word in event.

x * abbreviates ’x —$’ where x is a position number.

x— like ’x *’ but omitting last word ’$’

The ’:’ separating the event specification from the word desig-
nator can be omitted if the argument selector begins with a
”‘,’ 7$7’ ,*’ ’_7 OI‘ ’%,.

Modifiers, each preceded by a ’:’, may be used to act on the

designated words in the specified command event. The fol-
lowing modifiers are defined:

h Remove a trailing pathname component, leaving
the head.

r Remove a trailing ’.xxx’ component, leaving the
root name.

e Remove all but the extension ’.xxx’ part.

sold/new Substitute new for old

t Remove all leading pathname components, leaving
the tail.

& Repeat the previous substitution.

g Apply the change globally, prefixing the above, e.g.
g&’.

Print the new command but do not execute it.

Quote the substituted words, preventing further
substitutions.

X Like q, but break into words at blanks, tabs and
newlines.

Unless preceded by a ’g’ the modification is applied only to
the first modifiable word. With substitutions, it is an error
for no word to be applicable.

(Printed Dec.1989) Page 6

261

193

CSH(1)

Page 7

(Essential Utilities) CSH(1)

The left hand side of substitutions are not regular expres-
sions in the sense of the editors, but rather strings. Any
character may be used as the delimiter in place of ’/’; a ’\’
quotes the delimiter into the !/ and r strings. The character
&’ in the right hand side is replaced by the text from the
left. A ’\’ quotes ’&’ also. A null [uses the previous string
either from a [or from a contextual scan string s in 1757’
The trailing delimiter in the substitution may be omitted if
(but only if) a newline follows immediately as may the trail-
ing ’?’ in a contextual scan.

A history reference may be given without an event
specification, e.g. ’!$’. In this case the reference is to the pre-
vious command. If a previous history reference occurred on
the same line, this form repeats the previous reference. Thus
1?fo0?" 1§’ gives the first and last arguments from the com-
mand matching *?foo?’.

You can quickly make substitutions to the previous command
line by using the ’*’ character as the first non-blank character
of an input line. This is equivalent to ’l:s”’ providing a con-
venient shorthand for substitutions on the text of the previ-
ous line. Thus ""1b"lib’ fixes the spelling of ’lib’ in the previ-
ous command. Finally, a history substitution may be sur-
rounded with ’{’ and ’}’ if necessary to insulate it from the
characters which follow. Thus, after 'lIs —1d “paul’ we might
do ’!{1}a’ to do ’lIs —1d “paula’, while ’!la’ would look for a
command starting ’la’.

Quotations with ~ and ”

The quotation of strings by ’~’ and ’”’ can be used to prevent
all or some of the remaining substitutions which would other-
wise take place if these characters were interpreted as 'meta-
characters’ or ’wild card matching characters’. Strings
enclosed in single quotes, ’*’ are prevented any further
interpretation or expansion. Strings enclosed in ’”’ may still
be variable and command expanded as described below.

In both cases the resulting text becomes (all or part of) a sin-
gle word; only in one special case (see Command Substitution

(Printed Dec.1989)

E—

CSH(1)

(Essential Utilities) CSH®1)

2

below) does a quoted string yield parts of more than one
word; *~’ quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established,
displayed and modified by the alias and unalias commands.
After a command line is scanned, it is parsed into distinct
commands and the first word of each command, left-to-right,
is checked to see if it has an alias. If it does, then the text
which is the alias for that command is reread with the history
mechanism available as though that command were the previ-
ous input line. The resulting words replace the command and
argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for ’ls’ is ’ls —1’ the command ’ls /usr’
would map to 'lIs —1 /usr’, the argument list here being
undisturbed. Similarly if the alias for ’lookup’ was ’grep !
/etc/passwd’ then ’lookup bill’ would map to ’grep bill
/ete/passwd’.

If an alias is found, the word transformation of the input text
is performed and the aliasing process begins again on the
reformed input line. Looping is prevented if the first word of
the new text is the same as the old by flagging it to prevent
further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser
metasyntax. Thus we can ’alias print “pr \! * | lpr”’ to make
a command which pr’s its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as
value a list of zero or more words. Some of these variables
are set by the shell or referred to by it. For instance, the
argu variable is an image of the shell’s argument list, and
words of this variable’s value are referred to in special ways.

The values of variables may be displayed and changed by
using the set and unset commands. Of the variables referred

(Printed Dec.1989) Page 8

61

195

CSH()

(Essential Utilities) CSH(1)

to by the shell a number are toggles; the shell does not care
what their value is, only whether they are set or not. For
instance, the verbose variable is a toggle which causes com-
mand input to be echoed. The setting of this variable results
from the —v command line option. Other operations treat
variables numerically. The '@’ command permits numeric
calculations to be performed and the result assigned to a vari-
able. Variable values are, however, always represented as
(zero or more) strings. For the purposes of numeric opera-
tions, the null string is considered to be zero, and the second
and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each
command is executed, variable substitution is performed
keyed by ’$’ characters. This expansion can be prevented by
preceding the ’'$’ with a ’\’ except within ’*’s where it
always occurs, and within ’“’s where it never occurs.
Strings quoted by *°’ are interpreted later (see Command sub-
stitution below) so ’$’ substitution does not occur there until
later, if at all. A ’$’ is passed unchanged if followed by a
blank, tab, or end-of-line.

Input/output redirections are recognized before variable
expansion, and are variable expanded separately. Otherwise,
the command name and entire argument list are expanded
together. It is thus possible for the first (command) word to
this point to generate more than one word, the first of which
becomes the command name, and the rest of which become
arguments.

29

Unless enclosed in *”’ or given the ":q’ modifier the results of
variable substitution may eventually be command and
filename substituted. Within *”’ a variable whose value con-
sists of multiple words expands to a (portion of) a single
word, with the words of the variables value separated by
blanks. When the ’:q’ modifier is applied to a substitution
the variable will expand to multiple words with each word
separated by a blank and quoted to prevent later command or
filename substitution.

Page 9 (Printed Dec.1989)

de

CSH(1)

(Essential Utilities) CSHQ1)

Metasequences for variable substitution

The following metasequences are provided for introducing
variable values into the shell input. Except as noted, it is an
error to reference a variable which is not set.

$name
${name}

Are replaced by the words of the value of variable name,
each separated by a blank. Braces insulate name from
following characters which would otherwise be part of it.
Shell variables have names consisting of up to 20 letters
and digits starting with a letter. The underscore char-
acter is considered a letter.

If name is not a shell variable, but is set in the environ-
ment, then that value is returned (but : modifiers and
the other forms given below are not available in this
case).

$name[selector]
${name[selector]}

May be used to select only some of the words from the
value of name. The selector is subjected to ’$’ substitu-
tion and may consist of a single number or two numbers
separated by a ’—’. The first word of a variables value
is numbered ’1’. If the first number of a range is omit-
ted it defaults to ’1’. If the last member of a range is
omitted it defaults to ’$#name’. The selector ’=*’
selects all words. It is not an error for a range to be

empty if the second argument is omitted or in range.

$#name
${#name}

$0

Gives the number of words in the variable. This is use-
ful for later use in a ’[selector]’.

Substitutes the name of the file from which command
input is being read. An error occurs if the name is not
known.

(Printed Dec.1989) Page 10

96l

197

CSH(1) (Essential Utilities)

3

CSHQ1)

$number
${number}
Equivalent to ’$argvinumber]’.

$ *
Equivalent to ’$argv[= .

The modifiers ":h’, ":t’, ":r’, :q’ and ’:x’ may be applied to the
substitutions above as may ’:gh’, :gt’ and ":gr’. If braces ’'{’
'}’ appear in the command form then the modifiers must
appear within the braces. The current implementation
allows only one ’;’ modifier on each ’$’ expansion.

The following substitutions may not be modified with ’:’
modifiers.

$?name
${?name}
Substitutes the string '1’ if name is set, ’0’ if it is not.

$70
Substitutes '1’ if the current input filename is know, ’0’
if it is not.

$$
Substitute the (decimal) process number of the (parent)

shell.
Command and filename substitution

The remaining substitutions, command and filename substitu-
tion, are applied selectively to the arguments of builtin com-
mands. This means that portions of expressions which are
not evaluated are not subjected to these expansions. For
commands which are not internal to the shell, the command
name is substituted separately from the argument list. This
occurs very late, after input-output redirection is performed,
and in a child of the main shell.

Page 11 (Printed Dec.1989)

CSH(D)

(Essential Utilities) CSH(1)

Command substitution

Command substitution is indicated by a command enclosed in
. The output from such a command is normally broken into
separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original string.
Within ’”’s, only newlines force new words; blanks and tabs
are preserved.

In any case, the single final newline does not force a new
word. Note that it is thus possible for a command substitu-
tion to yield only part of a word, even if the command out-
puts a complete line.

Filename substitution

’

If a word contains any of the characters **’,’?’, ’[’ or ’{’ or
begins with the character *~’, then that word is a candidate
for filename substitution, also known as ’globbing’. This
word is then regarded as a pattern, and replaced with an
alphabetically sorted list of file names which match the pat-
tern. In a list of words specifying filename substitution it is
an error for no pattern to match an existing file name, but it
is not required for each pattern to match. Only the meta-
characters ’ *’, ’?” and ’[’ imply pattern matching, the charac-
ters °~’ and ’{’ being more akin to abbreviations.

In matching filenames, the character ’.” at the beginning of a
filename or immediately following a ’/’, as well as the charac-
ter ’/’ must be matched explicitly. The character =’
matches any string of characters, including the null string.
The character ’?” matches any single character. The sequence
’[...F matches any one of the characters enclosed. Within
’[...]’, a pair of characters separated by ’—’ matches any char-
acter lexically between the two.

I~

The character at the beginning of a filename is used to
refer to home directories. Standing alone, i.e. *~’ it expands
to the invokers home directory as reflected in the value of the
variable home. When followed by a name consisting of letters,
digits and ’—’ characters the shell searches for a user with

(Printed Dec.1989) Page 12

961

199

CSH(®)

(Essential Utilities) CSH(1)

that name and substitutes their home directory; thus ’"ken’
might expand to ’/usr/ken’ and ’“ken/chmach’ to
’/usr/ken/chmach’. If the character ’~’ is followed by a char-
acter other than a letter or ’/’ or appears not at the begin-
ning of a word, it is left undisturbed.

The metanotation ’a{b,c,d}e’ is a shorthand for ’abe ace ade’.
Left to right order is preserved, with results of matches being
sorted separately at a low level to preserve this order. This
construct may be nested. Thus ’“source/sl/{oldls,ls}.c’
expands to ’/usr/source/sl/oldls.c /usr/source/sl/ls.c’
whether or not these files exist without any chance of error if
the home directory for ’source’ is ’/usr/source’. Similarly
’../{memo, * box}’ might expand to ’../memo ../box ../mbox’.
(Note that ‘'memo’ was not sorted with the results of match-
ing ’*box’.) As a special case ’{’, ’}’ and ’{}’ are passed
undisturbed.

Input/output

The standard input and standard output of a command may
be redirected with the following syntax:

< name
Open file name (which is first variable, command and
filename expanded) as the standard input.

< < word

Read the shell input up to a line which is identical to
word. Word is not subjected to variable, filename or
command substitution, and each input line is compared
to word before any substitutions are done on this input
line. Unless a quoting ’\’, ’’, "’ or **’ appears in word
variable and command substitution is performed on the
intervening lines, allowing ’\’ to quote ’$’, '\’ and *’.
Commands which are substituted have all blanks, tabs,
and newlines preserved, except for the final newline
which is dropped. The resultant text is placed in an
anonymous temporary file which is given to the com-
mand as standard input.)

Page 13 (Printed Dec.1989)

CSH(1)

(Essential Utilities) CSH(1)

> name

>! name

> & name

> &! name
The file name is used as standard output. If the file
does not exist then it is created; if the file exists, it.is
truncated, its previous contents being lost.
If the variable noclobber is set, then the file must not
exist or be a character special file (e.g. a terminal or
’/dev/null’) or an error results. This helps prevent
accidental destruction of files. In this case the ’I’ forms
can be used and suppress this check.
The forms involving ’&’ route the diagnostic output into
the specified file as well as the standard output. Name
is expanded in the same way as ’<’ input filenames are.

> > name

> > & name

> >! name

> > &! name
Uses file name as standard output like >’ but places
output at the end of the file. If the variable noclobber is
set, then it is an error for the file not to exist unless one
of the ’!I’ forms is given. Otherwise similar to > .

A command receives the environment in which the shell was
invoked as modified by the input-output parameters and the
presence of the command in a pipeline. Thus, unlike some
previous shells, ccmmands run from a file of shell commands
have no access to i he text of the commands by default; rather
they receive the original standard input of the shell. The
’< <’ mechanism should be used to present inline data. This
permits shell command scripts to function as components of
pipelines and allows the shell to block read its input.

Diagnostic output may be directed through a pipe with the
standard output. Simply use the form ’| &’ rather than just

’l’

(Printed Dec.1989) Page 14

00C

201

CSH(1)

(Essential Utilities) CSH(1)

Expressions

A number of the builtin commands (to be described subse-
quently) take expressions, in which the operators are similar
to those of C, with the same precedence. These expressions
appear in the @, exit, if, and while commands. The following
operators are available:

[&& | " & == 1= ="1I" <= >= < >
<< >> 4+ — %= [%7 ()

LTI N B

Here the precedence increases to the right, '= =
and ’!"’ ,<=’ ’>=’ ’<7 and ’>’, ’< <, and ’> >” ,+’ and
’—7, 7%’/ and %’ being, in groups, at the same level. The
==""1=""="" and ’!”’ operators compare their arguments
as strings; all others operate on numbers. The operators
=" 17’ are like ’!=’ and = =’ except that the right

2

="" and
hand side is a pattern (containing, e.g. ’ *’s, ’?’s and instances
of ’[...]") against which the left hand operand is matched.
This reduces the need for use of the switch statement in shell
scripts when all that is really needed is pattern matching.

Strings which begin with ’0’ are considered octal numbers.
Null or missing arguments are considered ’0’. The result of
all expressions are strings, which represent decimal numbers.
It is important to note that no two components of an expres-
sion can appear in the same word; except when adjacent to
components of expressions which are syntactically significant
to the parser (& ’|” <’ ’>’ ’(’ ’)’) they should be sur-
rounded by spaces.

Also available in expressions as primitive operands are com-
mand executions enclosed in '{’ and ’}’ and file enquiries of
the form ’—! name’ where [is one of:

read access
write access
execute access
existence
ownership
Zero size

N O ® X g "

Page 15 (Printed Dec.1989)

(Essential Utilities) CSH(1)
f plain file
d directory

The specified name is command and filename expanded and
then tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible, then all
enquiries return false, i.e. ’0’. Command executions succeed,
returning true, i.e. '’, if the command exits with status 0,
otherwise they fail, returning false, i.e. ’0’. If more detailed
status information is required then the command should be
executed outside of an expression and the variable status
examined.

CONTROL FLOW

The shell contains a number of commands which can be used
to regulate the flow of control in command files (shell scripts)
and (in limited but useful ways) from terminal input. These
commands all operate by forcing the shell to reread or skip in
its input and, due to the implementation, restrict the place-
ment of some of the commands.

The foreach, switch, and while statements, as well as the
if —then —else form of the if statement require that the major
keywords appear in a single simple command on an input line
as shown below.

If the shell’s input is not seekable, the shell buffers up input
whenever a loop is being read and performs seeks in this
internal buffer to accomplish the rereading implied by the
loop. (To the extent that this allows, backward goto’s will
succeed on non-seekable inputs.)

BUILTIN COMMANDS

Builtin commands are executed within the shell. If a builtin
command occurs as any component of a pipeline except the
last then it is executed in a subshell.

alias
alias name
alias name wordlist
The first form prints all aliases. The second form prints

(Printed Dec.1989) Page 16

c0e

203

CSH(D

(Essential Utilities) CSH(1)

the alias for name. The final form assigns the specified
wordlist as the alias of name; wordlist is command and
filename substituted. Name is not allowed to be alias or
unalias.

break
Causes execution to resume after the end of the nearest
enclosing foreach or while. The remaining commands on
the current line are executed. Multi-level breaks are
thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd name

chdir

chdir name
Change the shells working directory to directory name.
If no argument is given then change to the home direc-
tory of the user.
If name is not found as a subdirectory of the current
directory (and does not begin with ’/’, ./’ or ’../’), then
each component of the variable cdpath is checked to see
if it has a subdirectory name. Finally, if all else fails but
name is a shell variable whose value begins with ’/’,
then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or
foreach. The rest of the commands on the current line
are executed.

default:
Labels the default case in a switch statement. The
default should come after all case labels.

echo wordlist

Page 17 (Printed Dec.1989)

-3

CSH(1) (Essential Utilities) CSH(1)

echo —n wordlist
The specified words are written to the shells standard
output, separated by spaces, and terminated with a new-
line unless the —n option is specified.

else

end

endif

endsw
See the description of the foreach, if, switch, and while
statements below.

exec command
The specified command is executed in place of the
current shell.

exit

exit(expr)
The shell exits either with the value of the status vari-
able (first form) or with the value of the specified expr
(second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this
command and the matching end are executed. (Both
foreach and end must appear alone on separate lines.)

The builtin command continue may be used to continue
the loop prematurely and the builtin command break to
terminate it prematurely. When this command is read
from the terminal, the loop is read up once prompting
with ’?’ hefore any statements in the loop are executed.
If you make a mistake typing in a loop at the terminal
you can rub it out.

glob wordlist
Like echo but no ’\’ escapes are recognized and words
are delimited by null characters in the output. Useful

(Printed Dec.1989) Page 18

0c

205

CSH(1)

Page 19

(Essential Utilities) CSHQ)

for programs which wish to use the shell to filename
expand a list of words.

goto word

The specified word is filename and command expanded
to yield a string of the form ’label’. The shell rewinds
its input as much as possible and searches for a line of
the form ’label:” possibly preceded by blanks or tabs.
Execution continues after the specified line.

history

Displays the history event list.

if (expr) command

If the specified expression evaluates true, then the sin-
gle command with arguments is executed. Variable sub-
stitution on command happens early, at the same time
it does for the rest of the if command. Command must
be a simple command, not a pipeline, a command list, or
a parenthesized command list. Input/output redirection
occurs even if expr is false, when command is not exe-
cuted (this is a bug).

if (expr) then

else if (expr2) then

endif

If the specified expr is true then the commands to the
first else are executed; else if expr2 is true then the com-
mands to the second else are executed, etc. Any number
of else-if pairs are possible; only one endif is needed.
The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if
must appear alone on its input line or after an else.)

kill pid
kill —sig pid ...

Sends either the TERM (terminate) signal or the
(Printed Dec.1989)

A=

CSH(1) (Essential Utilities) CSH(1)

specified signal to the specified processes. Signals are
either given by number or by names (as given in
[usr/include/signal.h, stripped of the prefix ’SIG’).
There is no default, saying just ’kill’ does not send a sig-
nal to the current process. If the signal being sent is
TERM (terminate) or HUP (hangup), then the job or
process will be sent a CONT (continue) signal as well.
login

Terminate a login shell, replacing it with an instance of
/bin/login. This is one way to log off, included for com-
patibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeof is
set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The
second form sets the nice to the given number. The
final two forms run command at priority 4 and number
respectively. The super-user may specify negative nice-
ness by using 'nice —number ..". Command is always
executed in a sub-shell, and the restrictions place on
commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause
hangups to be ignored for the remainder of the script.
The second form causes the specified command to be
run with hangups ignored. All processes detached with
‘&’ are effectively nohup’ed.

onintr
onintr —
onintr label
Control the action of the shell on interrupts. The first

(Printed Dec.1989) Page 20

90¢

207

CSH()

(Essential Utilities) CSH(D)

form restores the default action of the shell on inter-
rupts which is to terminate shell scripts or to return to
the terminal command input level. The second form
’onintr —’ causes all interrupts to be ignored. The final
form causes the shell to execute a ’goto label’ when an
interrupt is received or a child process terminates
because it was interrupted.

In any case, if the shell is running detached and inter-
rupts are being ignored, all forms of onintr have no
meaning and interrupts continue to be ignored by the
shell and all invoked commands.

rehash

Causes the internal hash table of the contents of the
directories in the path variable to be recomputed. This
is needed if new commands are added to directories in
the path while you are logged in. This should only be
necessary if you add commands to one of your own
directories, or if a systems programmer changes the con-
tents of one of the system directories.

repeat count command

set

The specified command which is subject to the same res-
trictions as the command in the one line if statement
above, is executed count times. I/O redirections occur
exactly once, even if count is 0.

set name

set name = word

set name[index] = word
set name = (wordlist)

Page 21

The first form of the command shows the value of all
shell variables. Variables which have other than a sin-
gle word as value print as a parenthesized word list.
The second form sets name to the null string. The third
form sets name to the single word. The fourth form sets
the index’th component of name to word; this com-
ponent must already exist. The final form sets name to

(Printed Dec.1989)

—Jdel———

CSH() (Essential Utilities) CSH(1)

the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values
in a single set command. Note however, that variable
expansion happens for all arguments before any setting
occurs.

setenv name value
Sets the value of environment variable name to be
value, a single string. The variable PATH is automati-
cally imported to and exported from the csh variable
path; there is no need to use setenv for these.

shift

shift variable
The members of argv are shifted to the left, discarding
argu(l]. It is an error for argv not to be set or to have
less than one word as value. The second form performs
the same function on the specified variable.

source name
The shell reads commands from name. Source com-
mands may be nested; if they are nested too deeply the
shell may run out of file descriptors. An error in a
source at any level terminates all nested source com-
mands. Input during source commands is never placed
on the history list.

switch (string)
case strl:

breaksw
default;
br;aaksw
endsw
Each case label is successively matched against the

specified string which is first command and filename
expanded. The file metacharacters ’+’, ’?’ and ’[..]°

(Printed Dec.1989) Page 22

80¢

209

CSH(1)

(Essential Utilities) CSHQ1)

may be used in the case labels, which are variable
expanded. If none of the labels match before a ’default’
label is found, then the execution begins after the
default label. Each case label and the default label must
appear at the beginning of a line. The command
breaksw causes execution to continue after the endsw.
Otherwise control may fall through case labels and
default labels as in C. If no label matches and there is
no default, execution continues after the endsw.

time

time command
With no argument, a summary of time used by this shell
and its children is printed. If arguments are given the
specified simple command is timed and a time summary
as described under the time variable is printed. If
necessary, an extra shell is created to print the time
statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to
the specified value (second form). The mask is given in
octal. Common values for the mask are 002 giving all
access to the group and read and execute access to oth-
ers or 022 giving all access except no write access for
users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are
discarded. Thus all aliases are removed by ’unalias *’.
It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of exe-
cuted programs is disabled.

unset pattern
All variables whose names match the specified pattern
are removed. Thus all variables are removed by ’unset
*’; this has noticeably distasteful side-effects. It is not

Page 23 (Printed Dec.1989)

=3

CSH®) (Essential Utilities) CSH(1)

an error for nothing to be unset.

wait
All background jobs are waited for. If the shell is
interactive, then an interrupt can disrupt the wait, at
which time the shell prints names and job numbers of
all jobs known to be outstanding.

while (expr)

end

While the specified expression evaluates non-zero, the
commands between the while and the matching end are
evaluated. Break and continue may be used to ter-
minate or continue the loop prematurely. (The while
and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop
as for the foreach statement if the input is a terminal.

@

@ name = expr

@ namelindex] = expr
The first form prints the values of all the shell variables.
The second form sets the specified name to the value of
expr. If the expression contains '<’, >’ ’&’ or ’|’ then
at least this part of the expression must be placed
within (" ’)’. The third form assigns the value of expr
to the index’th argument of name. Both name and its
index’th component must already exist.

The operators ’* =’, ’+ =’ etc are available as in C.
The space separating the name from the assignment
operator is optional. Spaces are, however, mandatory in
separating components of expr which would otherwise
be single words.

Special postfix ’+ +’ and ’— —’ operators increment and
decrement name respectively, i.e. '@ i+ +°.

(Printed Dec.1989) Page 24

ole

21

CSH(1)

(Essential Utilities) CSH(1)

PRE-DEFINED AND ENVIRONMENT VARIABLES

The following variables have special meaning to the shell. Of
these, argv, home, path, prompt, shell and status are always
set by the shell. Except for status this setting occurs only at
initialization; these variables will not then be modified unless
this is done explicitly by the user.

This shell copies the environment variable USER into the
variable user, TERM into term, and HOME into home, and
copies these back into the environment whenever the normal
shell variables are reset. The environment variable PATH is
likewise handled; it is not necessary to worry about its setting
other than in the file .cshrc as inferior csh processes will
import the definition of path from the environment, and re-
export it if you then change it.

argv Set to the arguments to the shell, it is from
this variable that positional parameters are
substituted, i.e. ’$1’ is replaced by ’$argv[1]’,
etc.

cdpath Gives a list of alternate directories searched
to find subdirectories in chdir commands.

echo Set when the —x command line option is
given. Causes each command and its argu-
ments to be echoed just before it is executed.
For non-builtin commands all expansions
occur before echoing. Builtin commands are
echoed before command and filename substi-
tution, since these substitutions are then
done selectively.

history Can be given a numeric value to control the
size of the history list. Any command which
has been referenced in this many events will
not be discarded. Too large values of history
may run the shell out of memory. The last
executed command is always saved on the
history list.

Page 25 (Printed Dec.1989)

£

CSH(1)

home

ignoreeof

mail

noclobber

noglob

nonomatch

(Printed Dec.1989)

(Essential Utilities) CSH(Q1)

The home directory of the invoker, initialized
from the environment. The filename expan-
sion of ’~’ refers to this variable.

If set the shell ignores end-of-file from input
devices which are terminals. This prevents
shells from accidentally being killed by
control-D’s.

The files where the shell checks for mail.
This is done after each command completion
which will result in a prompt, if a specified
interval has elapsed. The shell says ’You
have new mail.’” if the file exists with an
access time not greater than its modify time.

If the first word of the value of mail is
numeric it specifies a different mail checking
interval, in seconds, than the default, which
is 10 minutes.

If multiple mail files are specified, then the
shell says 'New mail in name’ when there is
mail in the file name.

As described in the section on Input/output,
restrictions are placed on output redirection
to insure that files are not accidentally des-
troyed, and that ’> >’ redirections refer to
existing files.

If set, filename expansion is inhibited. This
is most useful in shell scripts which are not
dealing with filenames, or after a list of
filenames has been obtained and further
expansions are not desirable.

If set, it is not an error for a filename expan-
sion to not match any existing files; rather
the primitive pattern is returned. It is still
an error for the primitive pattern to be

Page 26

t4%4

213

CSH()

path

prompt

shell

status

Page 27

(Essential Utilities) CSH(1)

malformed, i.e. ’echo [’ still gives an error.

Each word of the path variable specifies a
directory in which commands are to be
sought for execution. A null word specifies
the current directory. If there is no path
variable then only full path names will exe-
cute. The usual search path is ’.”, ’/bin’ and
’/usr/bin’, but this may vary from system to
system. For the super-user the default
search path is ’/etc’, ’/bin’ and ’/usr/bin’. A
shell which is given neither the —¢ nor the
—t option will normally hash the contents of
the directories in the path variable after read-
ing .cshrc, and each time the path variable is
reset. If new commands are added to these
directories while the shell is active, it may be
necessary to give the rehash or the com-
mands may not be found.

The string which is printed before each com-
mand is read from an interactive terminal
input. If a ’’ appears in the string it will be
replaced by the current event number unless
a preceding ’\’ is given. Default is % ’, or ’#
* for the super-user. *

The file in which the shell resides. This is
used in forking shells to interpret files which
have execute bits set, but which are not exe-
cutable by the system. (See the description
of Non-builtin Command Execution below.)
Initialized to the (system-dependent) home of
the shell.

The status returned by the last command. If
it terminated abnormally, then 0200 is added
to the status. Builtin commands which fail
return exit status ’1’, all other builtin com-
mands set status ’0’.

(Printed Dec.1989)

CSH(1) (Essential Utilities) CSH(1)

time Controls automatic timing of commands. If
set, then any command which takes more
than this many cpu seconds will cause a line
giving user, system, and real times and a util-
ization percentage which is the ratio of user
plus system times to real time to be printed
when it terminates.

verbose Set by the —v command line option, causes
the words of each command to be printed
after history substitution.

NON-BUILTIN COMMAND EXECUTION

When a command to be executed is found not to be a builtin
command the shell attempts to execute the command via
exec(2). Each word in the variable path names a directory
from which the shell will attempt to execute the command. If
it is given neither a —e¢ nor a —t option, the shell will hash
the names in these directories into an internal table so that it
will only try an exec in a directory if there is a possibility that
the command resides there. This greatly speeds command
location when a large number of directories are present in the
search path. If this mechanism has been turned off (via
unhash), or if the shell was given a —¢ or —t argument, and
in any case for each directory component of path which does
not begin with a ’/’, the shell concatenates with the given
command name to form a path name of a file which it then
attempts to execute.

Parenthesized commands are always executed in a subshell.
Thus ’(cd ; pwd) ; pwd’ prints the home directory; leaving you
where you were (printing this after the home directory),
while ’cd ; pwd’ leaves you in the home directory.
Parenthesized comunands are most oflen used (v prevent
chdir from affecting the current shell.

If the file has execute permissions but is not an executable
binary to the system, then it is assumed to be a file contain-
ing shell commands an a new shell is spawned to read it.

(Printed Dec.1989) Page 28

144

215

e e = — i am s i =ope— = Tl pp e
_ =S|

CSH(1) (Essential Utilities) CSH(1)

If there is an alias for shell then the words of the alias will
be prepended to the argument list to form the shell com-
mand. The first word of the alias should be the full path
name of the shell (e.g. ’$shell’). Note that this is a special,
late occurring, case of alias substitution, and only allows
words to be prepended to the argument list without
modification.

ARGUMENT LIST PROCESSING
If argument 0 to the shell is *—’ then this is a login shell.
The flag arguments are interpreted as follows:

K

—c¢ Commands are read from the (single) following argu-
ment which must be present. Any remaining arguments
are placed in argv.

—e The shell exits if any invoked command terminates
abnormally or yields a non-zero exit status.

—f The shell will start faster, because it will neither search
for nor execute commands from the file ’.cshre’ in the
invokers home directory.

—i The shell is interactive and prompts for its top-level
input, even if it appears to not be a terminal. Shells are
interactive without this option if their inputs and out-
puts are terminals.

—n Commands are parsed, but not executed. This may aid
in syntactic checking of shell scripts.

—s Command input is taken from the standard input.

—t A single line of input is read and executed. A ’\’ may be
used to escape the newline at the end of this line and
continue onto another line.

—v Causes the verbose variable to be set, with the effect
that command input is echoed after history substitution.

—X Causes the echo variable to be set, so that commands
are echoed immediately before execution.

Page 29 (Printed Dec.1989)

ey
==}
]

CSH(®1)

(Essential Utilities) CSH(1)

—V Causes the verbose variable to be set even before ’.cshrec’
is executed.

—X Isto —xas —Visto —v.

After processing of flag arguments, if arguments remain but
none of the —e, —i, —s, or —t options was given, the first
argument is taken as the name of a file of commands to be
executed. The shell opens this file, and saves its name for
possible resubstitution by ’$0’. Remaining arguments initial-
ize the variable arguv.

SIGNAL HANDLING

The shell normally ignores quit signals. Processes running in
background (by ’&’) are immune to signals generated from
the keyboard, including hangups. Other signals have the
values which the shell inherited from its parent. The shells
handling of interrupts and terminate signals in shell scripts
can be controlled by onintr. Login shells catch the terminate
signal; otherwise this signal is passed on to children from the
state in the shell’s parent. In no case are interrupts allowed
when a login shell is reading the file ’.logout’.

EXAMPLE

Typing in:
csh

creates a new shell which will accept shell commands with
Berkeley extensions.

AUTHOR
William Joy.
FILES
" /.cshre Read at beginning of execution by each shell.
~/.login Read by login shell, after ’.cshre’ at login.
"/ logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not starting

with a "#’.

(Printed Dec.1989) Page 30

9ie

217

CSH(1)

(Essential Utilities) CSH(1)

/tmp/sh # Temporary file for < <.

/etc/passwd Source of home directories for *“name’.

LIMITATIONS

Words can be no longer than 1024 characters. The system
limits argument lists to 5120 characters. The number of
arguments to a command which involves filename expansion
is limited to 1/6’th the number of characters allowed in an
argument list. Command substitutions may substitute no
more characters than are allowed in an argument list. To
detect looping, the shell restricts the number of alias substi-
tutions on a single line to 20.

SEE ALSO

BUGS

dsh(1), sh(l), access(2), exec(2), fork(2), pipe(2), signal(2),
umask(2), wait(2), environ(5), tty(7).

It suffices to place the sequence of commands in ()’s to force
it to a subshell, ie. (a;b;c).

Alias substitution is most often used to clumsily simulate
shell procedures; shell procedures should be provided rather
than aliases.

ki

Commands within loops, prompted for by ’?’, are not placed
in the history list. Control structure should be parsed rather
than being recognized as built-in commands. This would
allow control commands to be placed anywhere, to be com-
bined with ’|’, and to be used with ’&’ and ’;’ metasyntax.

It should be possible to use the ’:” modifiers on the output of
command substitutions. All and more than one ’:" modifier

should be allowed on ’$’ substitutions.

Page 31 (Printed Dec.1989)

This page is intentionally left blank

8le

219

CSPLIT(1) (Essential Utilities) CSPLIT(1)
NAME
csplit — context split
SYNOPSIS
csplit [—s] [—k] [—f prefix] file argl [... argn]
DESCRIPTION
csplit reads file and separates it into n+1 sections, defined by
the arguments argl... argn. By default the sections are
placed in xx00 ... xxn (n may not be greater than 99).

These sections get the following pieces of file:

00: From the start of file up to (but not including)
the line referenced by argl.

01: From the line referenced by argl up to the line
referenced by arg2.

n+1: From the line referenced by argn to the end of
file.

If the file argument is a — then standard input is used.
The options to csplit are:

-s csplit normally prints the character counts
for each file created. If the —s option is
present, csplit suppresses the printing of all
character counts.

-k csplit normally removes created files if an
error occurs. If the ~k option is present,
csplit leaves previously created files intact.

—f prefix If the —f option is used, the created files
are named prefix00 . . . prefixn. The default
is xx00 ... xxn.

The arguments (argl ... argn) to csplit can be a combina-
tion of the following:

Page 1 (Printed Dec.1989)

=3

CSPLIT(1)

[rexp/

Yorexp %
Inno

{num}

(Essential Utilities) CSPLIT(1)

A file is to be created for the section from
the current line up to (but not including)
the line containing the regular expression
rexp. The current line becomes the line
containing rexp. This argument may be
followed by an optional + or — some
number of lines (e.g., /Page/—5).

This argument is the same as /rexp/,
except that no file is created for the sec-
tion.

A file is to be created from the current
line up to (but not including) Inno. The
current line becomes Inno.

Repeat argument. This argument may
follow any of the above arguments. If it
follows a rexp type argument, that argu-
ment is applied num more times. If it fol-
lows Inno, the file will be split every lnno
lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other
characters meaningful to the shell in the appropriate quotes.
Regular expressions may not contain embedded new-lines.
csplit does not affect the original file; it is the users responsi-
bility to remove it.

EXAMPLES

csplit —f cobol file ' /procedure division/’ /par5./ /parl6./

This example creates four files, cobol00 ... cobol03. After
editing the “split” files, they can be recombined as follows:

cat cobol0[0—3] > file

Note that this example overwrites the original file.

csplit —k file 100 {99}

(Printed Dec.1989)

Page 2

0ce

221

CSPLIT(1) (Essential Utilities) CSPLIT(Q1)

This example would split the file at every 100 lines, up to
10,000 lines. The —k option causes the created files to be
retained if there are less than 10,000 lines; however, an error
message would still be printed.

csplit —k prog.c '%main(%’ '/"}/+1" {20}

Assuming that prog.c follows the normal C coding conven-
tion of ending routines with a } at the beginning of the line,
this example will create a file containing each separate C rou-
tine (up to 21) in prog.c.

SEE ALSO
ed(1), sh(1), regexp(5).

DIAGNOSTICS
Self-explanatory except for:

arg — out of range

which means that the given argument did not reference a line
between the current position and the end of the file.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

2ce

223

CUT@® (Essential Utilities) CUT@)
NAME

cut — cut out selected fields of each line of a file

SYNOPSIS

cut —clist [file ...]
cut —flist [—dchar] [—s] [file ...]

DESCRIPTION

Page 1

Use cut to cut out columns from a table or fields from each
line of a file; in data base parlance, it implements the projec-
tion of a relation. The fields as specified by list can be fixed
length, i.e., character positions as on a punched card (—e¢
option) or the length can vary from line to line and be
marked with a field delimiter character like tab (—f option).
cut can be used as a filter; if no files are given, the standard

input is used. In addition, a file name of “—" explicitly

refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in
increasing order), with optional — to indicate

ranges le.g., 14,7, 1-3,8, —-5,10 (short for
1-5,10); or 3— (short for third through last field)].

—clist The list following —c¢ (no space) specifies character
positions (e.g., —el—72 would pass the first 72
characters of each line).

—flist The list following —f is a list of fields assumed to
be separated in the file by a delimiter character (see
—d); e.g.,, —fL,7 copies the first and seventh field
only. Lines with no field delimiters will be passed
through intact (useful for table subheadings), unless
—s is specified.

—dchar The character following —d is the field delimiter
(—f option only). Default is tab. Space or other
characters with special meaning to the shell must
be quoted.

(Printed Dec.1989)

CUTD (Essential Utilities) CUTQ)

-8 Suppresses lines with no delimiter characters in
case of —f option. Unless specified, lines with no
delimiters will be passed through untouched.

Either the —¢ or —f option must be specified.

Use grep (1) to make horizontal “cuts” (by context) through a
file, or paste(1) to put files together column-wise (i.e., horizon-
tally). To reorder columns in a table, use cut and paste.

EXAMPLES
cut —d: —f1,5 /etc/passwd mapping of user IDs to
names

name="who ami | cut —fl —4” "
to set name to current
login name.

DIAGNOSTICS
ERROR: line too long
A line can have no more than 1023 char-
acters or fields, or there is no new-line
character.

ERROR: bad list for c / f option
Missing —¢ or —f option or incorrectly

specified list. No error occurs if a line
has fewer fields than the list calls for.

ERROR: no fields The list is empty.
ERROR: no delimeter
Missing char on —d option.

ERROR: cannot handle multiple adjacent backspaces
Adjacent backspaces cannot be processed
correctly.

WARNING: cannot open < filename >
Either filename cannot be read or does
not exist. If multiple filenames are
present, precessing continues.

(Printed Dec.1989) Page 2

vee

225

CUTQ@) (Essential Utilities)

SEE ALSO
grep(1), paste(1).

k3

CUT()

Page 3 (Printed Dec.1989)

This page is intentionally left blank

9c¢e’

227

e ==y

| T = — e

—

DATE() (Essential Utilities)
NAME

date — print and set the date
SYNOPSIS

de —

DATE(1)

Page 1

date [+ format]
date [mmddhhmm{[yy] | [ccyy]]]

DESCRIPTION

If no argument is given, or if the argument begins with +,
the current date and time are printed. Otherwise, the
current date is set (only by super-user). The first mm is the
month number; dd is the day number in the month; hh is
the hour number (24 hour system); the second mm is the
minute number; cc is the century minus one and is optional,;
yy is the last 2 digits of the year number and is optional. For
example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the
default if no year is mentioned. The system operates in GMT.
date takes care of the conversion to and from local standard
and daylight time. Only the super-user may change the date.

If the argument begins with +, the output of date is under
the control of the user. All output fields are of fixed size
(zero padded if necessary). Each Field Descriptor is preceded
by % and will be replaced in the output by its corresponding
value. A single % is encoded by %%. All other characters are
copied to the output without change. The string is always
terminated with a new-line character. If the argument con-
tains embedded blanks it must be quoted (see the EXAMPLE
section).

Specifications of native language translations of month and
weekday names are supported. The language used depends
on the value of the environment variable LANGUAGE (see
environ(5)). The month and weekday names used for a
language are taken from strings in the file for that language
in the /lib/cftime directory (see cftime(4)).

(Printed Dec.1989)

DATEQ@)

(Essential Utilities) DATEQ)

After successfully setting the date and time, date will display
the new date according to the format defined in the environ-
ment variable CFTIME (see environ (5)).

Field Descriptors (must be preceded by a %):

coAmT B

cH-wm " "WEEE-~mE

€3

< A

(Printed Dec.1989)

abbreviated weekday name

full weekday name

abbreviated month name

full month name

day of month — 01 to 31

date as mm/dd/yy

day of month — 1 to 31 (single digits are pre-
ceded by a blank)

abbreviated month name (alias for %b)

hour — 00 to 23

hour — 01 to 12

day of year — 001 to 366

month of year — 01 to 12

minute — 00 to 59

insert a new-line character

string containing ante-meridiem or post-
meridiem indicator (by default, AM or PM)

time as hh:mm:ss pp where pp is the ante-
meridiem or post-meridiem indicator (by default,
AM or PM)

time as hh:mm

second — 00 to 59

insert a tab character

time as hh:mm.ss

week number of year (Sunday as the first day of
the week) — 01 to 52

day of week — Sunday = 0

week number of year (Monday as the first day of
the week) — 01 to 52

Country-specific date format

Country-specific time format

year within century — 00 to 99

Page 2

8ce

229

—] S ey s 1L [==
—
=

DATE(Q) (Essential Utilities) DATE()

Y year as ccyy (4 digits)
Z timezone name

EXAMPLE
date ’+DATE: %m/%d/%y%nTIME: %H:%M:%S’

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission if you are not the super-user and you
try to change the date
bad conversion if the date set is syntactically incorrect
FILES
/dev/kmem
WARNING

Should you need to change the date while the system is run-
ning multi-user, use sysadm (1) datetime.

NOTE

Administrators should note the following: if you attempt to
set the current date to one of the dates that the standard and
alternate time zones change (for example, the date that day-
light time is starting or ending), and you attempt to set the
time to a time in the interval between the end of standard
time and the beginning of the alternate time (or the end of
the alternate time and the beginning of standard time), the
results are unpredictable.

SEE ALSO
sysadm(1), cftime(4), environ(5).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

oee

231

1
L

DC(Q) (Essential Utilities) DC®@)
NAME
dc — desk calculator
SYNOPSIS
de [file]
DESCRIPTION

Page 1

dc is an arbitrary precision arithmetic package. Ordinarily it
operates on decimal integers, but one may specify an input
base, output base, and a number of fractional digits to be
maintained. (See bc(l), a preprocessor for dc that provides
infix notation and a C-like syntax that implements functions.
bc also provides reasonable control structures for programs.)
The overall structure of dc is a stacking (reverse Polish) cal-
culator. If an argument is given, input is taken from that file
until its end, then from the standard input. The following
constructions are recognized:

number The value of the number is pushed on the stack. A
number is an unbroken string of the digits 0—9. It
may be preceded by an underscore () to input a
negative number. Numbers may contain decimal
points.

+ -/ %"
The top two values on the stack are added (+), sub-
tracted (—), multiplied (*), divided (/), remaindered
(%), or exponentiated (). The two entries are
popped off the stack; the result is pushed on the
stack in their place. Any fractional part of an
exponent is ignored.

sx The top of the stack is popped and stored into a
register named x, where x may be any character. If
the s is capitalized, x is treated as a stack and the
value is pushed on it.

Lx The value in register x is pushed on the stack. The

register x is not altered. All registers start with zero
value. If the 1is capitalized, register x is treated as a
stack and its top value is popped onto the main

(Printed Dec.1989)

<x

[

(Essential Utilities) DCQ)

stack.
The top value on the stack is duplicated.

The top value on the stack is printed. The top value
remains unchanged.

Interprets the top of the stack as an ASCII string,
removes it, and prints it.

All values on the stack are printed.

Exits the program. If executing a string, the recur-
sion level is popped by two.

Exits the program. The top value on the stack is
popped and the string execution level is popped by
that value.

Treats the top element of the stack as a character
string and executes it as a string of dc commands.

Replaces the number on the top of the stack with its
scale factor.

Puts the bracketed ASCII string onto the top of the
stack.

>x =x

The top two elements of the stack are popped and
compared. Register x is evaluated if they obey the
stated relation.

Replaces the top element on the stack by its square
root. Any existing fractional part of the argument is
taken into account, but otherwise the scale factor is
ignored.

Interprets the rest of the line as a UNIX system com-
mand.

All values on the stack are popped.

The top value on the stack is popped and used as the
number radix for further input. I Pushes the input
base on the top of the stack.

(Printed Dec.1989) Page 2

[4>4

233

DC) (Essential Utilities) DCQ)
o The top value on the stack is popped and used as the
number radix for further output.
o Pushes the output base on the top of the stack.
k The top of the stack is popped, and that value is used

as a non-negative scale factor: the appropriate
number of places are printed on output, and main-
tained during multiplication, division, and exponen-
tiation. The interaction of scale factor, input base,
and output base will be reasonable if all are changed

together.
z The stack level is pushed onto the stack.
Z Replaces the number on the top of the stack with its
length.
? A line of input is taken from the input source (usu-
ally the terminal) and executed.
e are used by bc(1) for array operations.
EXAMPLE
This example prints the first ten values of n!:
[lal +dsa * plal0 >ylsy
Osal
lyx
SEE ALSO
be(1).
DIAGNOSTICS

x is unimplemented
where x is an octal number.

stack empty
for not enough elements on the stack to do what was
asked.

Out of space
when the free list is exhausted (too many digits).

Page 3 (Printed Dec.1989)

Il

de

DC() (Essential Utilities) DC®@)

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

(Printed Dec.1989) Page 4

vEe

235

DCOPY(1M) (Essential Utilities) DCOPY(1IM)
NAME

dcopy — copy file systems for optimal access time
SYNOPSIS

/etc/dcopy [—=sX] [—an] [-d] [-v] [—ffsizel:isize]]
inputfs outputfs

DESCRIPTION

dcopy copies file system inputfs to outputfs. Inputfs is the
device file for the existing file system; outpuifs is the device
file to hold the reorganized result. For the most effective
optimization inputfs should be the raw device and outpuifs
should be the block device. Both inputfs and outputfs should
be unmounted file systems (in the case of the root file system,
the copy must be to a new pack).

With no options, dcopy copies files from inputfs compressing
directories by removing vacant entries, and spacing consecu-
tive blocks in a file by the optimal rotational gap. The possi-
ble options are

—-sX supply device information for creating an optimal
organization of blocks in a file. The forms of X are
the same as the —s option of fsck (1IM).

—an place the files not accessed in n days after the free
blocks of the destination file system (default for n
is 7). If no n is specified then no movement

occurs.

-d leave order of directory entries as is (default is to
move sub-directories to the beginning of direc-
tories).

-v currently reports how many files were processed,
and how big the source and destination freelists
are.

~ffsizel:isize]

specify the outputfs file system and inode list sizes
(in blocks). If the option (or :size) is not given,
the values from the inpuifs are used.

Page 1 (Printed Dec.1989)

k3

DCOPY(1M) (Essential Utilities) DCOPY(1M)

dcopy catches interrupts and quits, and reports on its pro-
gress. To terminate dcopy send a quit signal, followed by an
interrupt or quit.

SEE ALSO
fsck(1IM), mkfs(1M), ps(1).

(Printed Dec.1989) Page 2

gee

237

DD@AM) (Essential Utilities) DD(1M)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
dd copies the specified input file to the specified output with
possible conversions. The standard input and output are
used by default. The input and output block size may be
specified to take advantage of raw physical 1/0.

option values

if=file input file name; standard input is default
of=file output file name; standard output is default
ibs=n input block size n bytes (default 512)
obs=n output block size (default 512)

bs=n set both input and output block size,

superseding ibs and obs; also, if no conver-
sion is specified, it is particularly efficient
since no in-core copy need be done

cbhs=n conversion buffer size

skip=n skip n input blocks before starting copy

seek=n seek n blocks from beginning of output file
before copying

count=n copy only n input blocks

conv = ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input block to ibs
«esy s+ several comma-separated conversions
extab =file convert using external user constructed
table file. The convert table must be placed
from address 0x100 to Ox1ff in the table file.
This means that the 0x0 character becomes
the value of address 0x100 and the Oxff

Page 1 (Printed Dec.1989)

e

DD(M)

(Essential Utilities) DD(1M)

character is converted to the value of
address Ox1fT.

Where sizes are specified, a number of bytes is expected. A
number may end with k, b, or w to specify multiplication by
1024, 512, or 2, respectively; a pair of numbers may be
separated by x to indicate multiplication.

cbs is used only if conv=ascii or conv=ebcdic is specified. In
the former case, cbs characters are placed into the conversion
buffer (converted to ASCII). Trailing blanks are trimmed and
a new-line added before sending the line to the output. In
the latter case, ASCII characters are read into the conversion
buffer (converted to EBCDIC). Blanks are added to make up
an output block of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

DIAGNOSTICS

f+p blocks in(out) numbers of full and partial blocks
read(written)

(Printed Dec.1989) Page 2

8€C

239

DEROFF(1) (Essential Utilities) DEROFF(1)

NAME

deroff — remove nroff/troff, tbl, and eqn constructs

SYNOPSIS

deroff [-mx] [—w] [files]

DESCRIPTION

deroff reads each of the files in sequence and removes all
troff(1) requests, macro calls, backslash constructs, eqn(1)
constructs (between .EQ and .EN lines, and between delim-
iters), and tbl(1) descriptions, perhaps replacing them with
white space (blanks and blank lines), and writes the
remainder of the file on the standard output. deroff follows
chains of included files (.so and .nx troff commands); if a file
has already been included, a .so naming that file is ignored
and a .nx naming that file terminates execution. If no input
file is given, deroff reads the standard input.

The —m option may be followed by an m, s, or . The —mm
option causes the macros to be interpreted so that only run-
ning text is output (i.e., no text from macro lines.) The —ml
option forces the —mm option and also causes deletion of
lists associated with the mm macros.

If the —w option is given, the output is a word list, one
“word” per line, with all other characters deleted. Other-
wise, the output follows the original, with the deletions men-
tioned above. In text, a ‘“word” is any string that contains at
least two letters and is composed of letters, digits, amper-
sands (&), and apostrophes ('); in a macro call, however, a
“word” is a string that begins with at least two letters and
contains a total of at least three letters. Delimiters are any
characters other than letters, digits, apostrophes, and amper-
sands. Trailing apostrophes and ampersands are removed
from “words.”

SEE ALSO

Page 1

eqn(l), nroff(1), tbl(1), troff(1) in the DOCUMENTER’S
WORKBENCH Software Release 2.0 Technical Discussion
and Reference Manual.

(Printed Dec.1989)

k3

DEROFF(1) (Essential Utilities) DEROFF(1)

BUGS

deroff is not a complete froff interpreter, so it can be confused
by subtle constructs. Most such errors result in too much
rather than too little output.

The —ml option does not handle nested lists correctly.

(Printed Dec.1989) Page 2

ove

241

— jde —

DEVNM@1M) (Essential Utilities) DEVNM@{1M)
NAME
devnm — device name
SYNOPSIS
/etc/devnm [names]
DESCRIPTION

devnm identifies the special file associated with the mounted
file system where the argument name resides.

This command is most commonly used by /etc/bre (see
bre(1M)) to construct a mount table entry for the root device.

EXAMPLE
The command:
/etc/devnm /usr
produces
/dev/dsk/uldc8sl /usr
if /usr is mounted on /dev/dsk/ul4c8sl

FILES
/dev/dsk/
/etc/mnttab

SEE ALSO
bre(1M).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

cve

243

DF(1M)

NAME

(Essential Utilities) DF(1M)

df — report number of free disk blocks and i-nodes

SYNOPSIS

df [-1t] [-f] [file-system | directory | mounted-resource]

DESCRIPTION

NOTE

Page 1

The df command prints out the number of free blocks and
free i-nodes in mounted file systems, directories, or mounted
resources by examining the counts kept in the super-blocks.

file-system may be specified either by device name (e.g.,
/dev/dsk/c1d0s2) or by mount point directory name (e.g.,
jusr).

directory can be a directory name. The report presents infor-
mation for the device that contains the directory.

mounted-resource can be a remote resource name. The report
presents information for the remote device that contains the
resource.

If no arguments are used, the free space on all locally and
remotely mounted file systems is printed.

The df command uses the following options:
-1 only reports on local file systems.

-t causes the figures for total allocated blocks and i-
nodes to be reported as well as the free blocks and i-
nodes.

-f an actual count of the blocks in the free list is made,
rather than taking the figure from the super-block
(free i-nodes are not reported). This option will not
print any information about mounted remote
resources.

If multiple remote resources are listed that reside on the
same file system on a remote machine, each listing after the
first one will be marked with an asterisk.

(Printed Dec.1989)

DF(1M) (Essential Utilities) DF(1M)

FILES
/dev/dsk/ =
/etc/mnttab
SEE ALSO
mount(1M).
fs(4), mnttab(4).

(Printed Dec.1989) Page 2

e

245

DIFF(1) (Essential Utilities) DIFF(1)
NAME
diff — differential file comparator
SYNOPSIS
diff [—efbh] filel file2
DESCRIPTION

diff tells what lines must be changed in two files to bring
them into agreement. If filel (file2) is —, the standard input
is used. If filel (file2) is a directory, then a file in that direc-
tory with the name file2 (filel) is used. The normal output
contains lines of these forms:

nl an3,n4
nln2 d n3
nl,n2 ¢ n3,n4

These lines resemble ed commands to convert filel into file2.
The numbers after the letters pertain to file2. In fact, by
exchanging a for d and reading backward one may ascertain
equally how to convert file2 into filel. As in ed, identical
pairs, where nl = n2 or n3 = n4, are abbreviated as a single
number.

Following each of these lines come all the lines that are
affected in the first file flagged by <, then all the lines that
are affected in the second file flagged by >.

The —b option causes trailing blanks (spaces and tabs) to be
ignored and other strings of blanks to compare equal.

The —e option produces a script of a, ¢, and d commands for
the editor ed, which will recreate file2 from filel. The —f
option produces a similar script, not useful with ed, in the
opposite order. In connection with —e, the following shell
program may help maintain multiple versions of a file. Only
an ancestral file ($1) and a chain of version-to-version ed
scripts ($2,$3,...) made by diff need be on hand. A “latest
version’’ appears on the standard output.

(shift; cat § * ; echo '1,$p’) | ed — $1

(Printed Dec.1989)

DIFF(1) (Essential Utilities) DIFF(1)

Except in rare circumstances, diff finds a smallest sufficient
set of file differences.

Option —h does a fast, half-hearted job. It works only when
changed stretches are short and well separated, but does
work on files of unlimited length. Options —e and —f are
unavailable with —h.

FILES

/usr/lib/difth for —h
SEE ALSO
bdiff(1), cmp(1), comm(1), ed(1).
DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for
trouble.
BUGS
Editing scripts produced under the —e or —f option are
naive about creating lines consisting of a single period (.).
WARNINGS
Missing newline at end of file X
indicates that the last line of file X did not have a new-line.

If the lines are different, they will be flagged and output;
although the output will seem to indicate they are the same.

(Printed Dec.1989) Page 2

9ve

247

DIFF3(1) (Essential Utilities) DIFF3(1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Page 1

diff3 compares three versions of a file, and publishes disagree-
ing ranges of text flagged with these codes:

all three files differ
1 filel is different
2 file2 is different
3 file3 is different

The type of change suffered in converting a given range of a
given file to some other is indicated in one of these ways:

f:nla Text is to be appended after line
number nl in file f, where f = 1, 2,
or 3.

finl,n2c Text is to be changed in the range
line nl1 to line n2. If n1 = n2, the
range may be abbreviated to nl.

The original contents of the range follows immediately after a
¢ indication. When the contents of two files are identical, the
contents of the lower-numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor
ed that will incorporate into filel all changes between file2
and file3, i.e., the changes that normally would be flagged
==== and ====8. Option —x (—3) produces a script
to incorporate only changes flagged ==== (====3).
The following command will apply the resulting script to filel.

(cat script; echo '1,$p’) | ed — filel

/tmp/d3 =
Jusr/lib/diff3prog

(Printed Dec.1989)

ey

DIFF3(1) (Essential Utilities) DIFF3(1)

SEE ALSO
diff(1).

BUGS
Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes will not work.

(Printed Dec.1989) Page 2

8ve

249

k3

DIRCMP(1) (Essential Utilities) DIRCMP(1)

NAME

dircmp — directory comparison
SYNOPSIS

dirvemp [—d | [—s] [—wn] dirl dir2
DESCRIPTION

dircmp examines dirl and dir2 and generates various tabu-
lated information about the contents of the directories. List-
ings of files that are unique to each directory are generated
for all the options. If no option is entered, a list is output
indicating whether the file names common to both directories
have the same contents.

-d Compare the contents of files with the same name in
both directories and output a list telling what must be
changed in the two files to bring them into agree-
ment. The list format is described in diff (1).

- Suppress messages about identical files.

—wn Change the width of the output line to n characters.
The default width is 72.

SEE ALSO
cmp(1), diff(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

0se

| e || e

DISK_SETUP (1M) (Essential Utilities) DISK_SETUP (1M)
NAME
disk_setup — set up your machine for the sysadm 4.0 backup
system
SYNOPSIS
disk_setup [—v] [—s]
DESCRIPTION

Can only be run by the superuser.

disk_setup is a utility program giving the user the opportunity
to setup the machine for the Sysadm 4.0 Backup System.

disk_setup scans the directories /dev/dsk, /dev, /dev/rdsk,
/dev/SAdsk, the file /etc/fstab, and the hardware configur-
ation to obtain information about disks in the system.

Each subdisk is treated as a disk and the user is able to see the
obtained information for each disk.

When going through the disks, in ’unit/channel/subdisk’ order,
the user will be prompted for one of the following questions
depending of the mode in which disk_setup is run.

1) disk_setup could not find all links for a given disk and
ask for a new directory to scan.

2) The disk contains a file system and has no label. The
user OUGHT to enter a label, but may escape the ques-
tion if not required.

The label is used for a unique identification of a disk in
the backup system.

3) If the disk contains a file system and the lost +found
directory is not present, disk_setup gives the user the
possibility to create the directory.

4) If the disk is not contained in a dataset, the user has to
decide if the disk should be included in the backup sys-
tem, and if so, a name for the dataset must be given.

Issued May 1991 Verslon 3.10 Page 1

—1db : 45]

DISK_SETUP (1M) (Essential Utilities) DISK_SETUP (1M)

disk_setup is able to run in the following three modes:
SCAN (use option —s)

Could be run in runlevel 1 and 2. Prompts 2, 3
and 4 will not appear.

UPDATE Can only run in runlevel 1. All prompts can
appear.

VERBOSE (use option —v)

Identical to mode UPDATE except that the user
will see the special shell commandsm, as for
instance mount instead of a user message,
explaining in plain English what the program is
doing.

NOTES
Before using disk _setup please carefully read through the
chapters ”"Backup Management” and ”"Backup Administration”
in the ”"System Administrator’s Guide, System V Release 3.1” to
fully understand the term ”dataset”, and how to configure the
dataset.

If the disk is present in one or more datasets, disk_setup could
not change this. Use the Sysadm 4.0 Backup System to perform
any changes.

disk_setup is able to show a maximum of 4 links to a disk and
handle a maximum of 150 disks.

If a label is placed on a disk, the packname (volume name) is
set to date of labelling.

Page 2 Version 3.10 Issued May 1991

251

—
— m
=T
DISKFORMAT(1M) (Essential Utilities) DISKFORMAT(1IM)
NAME
diskformat — format disk
SYNOPSIS
diskformat specialfile
DESCRIPTION

diskformat puts information on a floppy disk.

Formatting (diskformat(1)) a disk makes it possible for the
hardware to perform 1/0 operations to a disk.

All floppy disks distributed from Dansk Data Elektronik
a/s are formatted. No later formatting is therefore ever
required for these.

Initializing a disk (mkfs(1M)) puts data on the disk so it is
possible to look at the disk as a file system.

When diskformat is invoked with the —s option it works
silent and the user will not be asked to confirm the format-
ting. The exit code indicate if the formatting is succeeded.

SEE ALSO
mkfs(1)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

2se

253

DS

NAME

(Essential Utilities) DSQ1)

ds, ts, gs — dual, tri, quad session manager

SYNOPSIS

ds [—b] [program [prog params]]
ts [—b] [program [prog params]]
gs [—b] [program [prog params]]

DESCRIPTION

Page 1

ds (ts, gs) allows user to interact with two (three, four) pro-
grams from a single terminal. program is invoked with the
prog params parameter string. By default, the content of the
user enviroment SHELL is invoked. If there exists no such
environment, bin/sh is invoked. The user controls the two
(three, four) programs known as layser, using the methods
described below.

The current layer is the layer which can receive input from
the keyboard. If other layers attempt to read from the key-
board, they are blocked. Output from the layers is multi-
plexed onto the terminal. When the —b option is used, out-
put to layers that do not receive input is blocked.

The stty(1) character switch (set to Control-Z if NULL) is
used to switch control from one layer to the next in a cyclic
manner.

A layer is a program which has been bound to a window on a
terminal. Each layer has its own process group id.

The terminal must be configured (using chhw(1M)) as a win-
dow terminal with a least 2 (3, 4) windows. When the —b
options is used, the number of windows must be 3 (4, 5) to
allow proper operation. The names of the special files that
identify the windows must satisfy the requirements:

Window number 1
(the terminal proper) must have the name:
/dev/tty##, where ## is some number.
This is the name by which the terminal is
identified to getty(1IM) in /etc/inittab.

(Printed Dec.1989)

=3

DS(1) (Essential Utilities) DS(1)

Window number 2
(3,4,5) must have the name /dev/tty##B,
(/dev/tty##C, /dev/tty##D, /dev/tty##E),
where ## is the same number as above.

(Printed Dec.1989) Page 2

14°14

255

S —| | —

DSH(@1) (Essential Utilities) DSHQ1)

NAME
dsh — shell with history facility

SYNOPSIS
dsh [-acefhiknrstuvx] [args |

DESCRIPTION

dsh is an alternative to the standard shell, sh(1). dsh per-
forms exactly the same tasks as sh(l), and the reader is
referred to the manual pages about sh(1) for a description of
that program. However, dsh can remember the last 22 com-
mands issued by the user, and the program gives the user the
possibility to re-issue these commands, possibly with some
modifications.

On top of the commands known to sk(1) dsh has the following
commands (which must all start in the first character position
of the command):

?2? Give a list of the last 22 commands. Each command
is identified by two numbers:

A relative number that identifies the command with
respect to the most recently issued command. This
number is zero or negative.

An absolute number that identifies the command with
respect to the first command issued. This number is

positive.
1? This command is identical to ??.
! This command requests dsh to re-issue the most

recent command. The command will be displayed and
then executed.

? This command requests dsh to display the most
recent command, whereupon the user may edit the
command and issue it by pressing the return key.

Inn where nn is a number (positive, zero, or negative).
This command requests dsh to re-issue command
number nn. The command will be displayed and then
executed. The number nn may be either of the two

Page 1 (Printed Dec.1989)

de

DSH() (Essential Utilities) DSH(1)

Il

numbers displayed for each command with the ??
command.

mn where nn is a number (positive, zero, or negative).
This command requests dsh to display command
number nn, whereupon the user may edit the com-
mand and issue it by pressing the return key. The
number nn may be either of the two numbers
displayed for each command with the ?? command.

Istring This command requests dsh to re-issue the most
recent command whose first characters were siring
(leading spaces must be included). The command will
be displayed and then executed. The command must
be one of the 22 least recently issued commands.

?string This command requests dsh to display the most
recent command whose first characters were string
(leading spaces must be included). The user may then
edit the command and issue it by pressing the return
key. The command must be one of the 22 least
recently issued commands.

In the above description the term ’command’ is used about a
command line given to the shell, regardless of whether that
line is really a command or just part of one.

NOTE
In order to make full use of the edit facilities of dsh, the ter-
minal should be operating in line discipline 1 (see st¢y(1) and

termio(7)) because this line discipline gives the user a full set
of line editing functions.

(Printed Dec.1989) Page 2

9%¢

257

e
_ m
==
DSIZE(Q1) (Essential Utilities) DSIZE(1)
NAME
dsize — display disk size
SYNOPSIS
dsize specialfiles
DESCRIPTION
dsize displays the sizes of the logical disks specified by the
specialfiles.
SEE ALSO

chlds(1M), 1_disk(2).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

86¢c

259

DSKBACK(1M) (Essential Utilities) DSKBACK(IM)
NAME

dskback — backup and restore disks
SYNOPSIS

/ete/dskback

[—feet length] [—reel number] [-b] [-log
logfile] [—e] [—-o0] [—r] [—v] [—comment string]
source destination

/etc/dskback
—B [-feet length] [—reel number] [—-b] [—log
logfile] [—e¢] [—r] [—Vv] [—comment string]
source [source . . .] destination

/etc/dskback
—T [—b] [-log logfile] [—comment] [—v] source

/etce/dskback
—R [-Db] [-log logfile] [—¢] [—vVI
source entry:destination [entry:destination . . .]

DESCRIPTION
The dskback utility is used for making backups of raw disks
or copy one raw disk to another raw disk. The source and the
destination parameters must be the names of special files
identifying the source and destination medium.

When dskback is used for backups, the backup medium has to
be a removable medium. dskback supports floppies, mag-
tapes, video tapes and streamer tape as removable medium.
The removable media will always be labeled by dskback, with
informations about the size of the original source. If the
removable medium is less than the source dskback will
prompt for the next medium when the previous is full.

If one of the leading control options =B, =T or —R are set,
dskback expect to operate on a videotape or a 120Mbyte strea-
mer. If no control option is specified dskback operate as older
versions.

Page 1 (Printed Dec.1989)

E—

DSKBACK(1M) (Essential Utilities) DSKBACK(1M)

Leading control options:

-B Backup one or more hard disks to video
tape or 120Mbyte streamer specified in
the last argument. If an error occur
when reading from hard disk, dskback
switch to read in small blocks, to save
most possible data. The block unable to
read will be substituted by the text
"dskback hard err” if hard error
occur. Other read errors will produce
the text “dskback xxx err ”, where
xxx’ is the SMOS error number.
dskback will make a list of the first 40
areas of read errors.

-T Table of contents displays files in the
directory from the first header block on
tape. If an hard error occurs on tape the
backup entry is lost, the other disks
entries on the tape are still accessible.

-R Restore one or more hard disks from
videotape or 120Mbyte streamer speci-
fied in the first argument after options.
The usage when restoring is
entry:disk or entry:RESTORE,
where entry is the number of the disk
on the backup medium. The entry and
contents is visualized by using option
—T. If RESTORE is specified, the spe-
cial file used during backup becomes the
destination disk.

No option If no leading option is specified, the
dskback will be equal to older versions
of dskback.

(Printed Dec.1989) Page 2

092

261

DSKBACK(1M) (Essential Utilities) DSKBACK(1M)

General options known by dskback are:

—feet length specify the length of a magtape. If the
backup medium is a magtape and the
size is not specified by using this option,
dskback will use the size specified in the
operating system.

—reel number tell dskback to start restoring from a
particular reel given by the parameter
number.

-b operate without operator, like backup

run by cron during night hours. Run-
ning without operator limits the pro-
cessing to situations when one reel is
able to contain the entire source
medium. Operating in this mode
dskback uses the prespecified answers
placed and maintained in the program
code.

—log logfile redirect stdout and stderr to a specified
logfile. Be careful not to place the logfile
on the disk being restored or backup
copied. Set option —b.

-c verify the backup after each reel is writ-
ten. When detecting 40 error dskback
skip printing the addresses of difference.

-0 read a backup copy made by the first
version of dskback February 1987.

-r perform a retension of the tape before
writing, to make more reliable copies. It
is to be recommended always to use this
option. This operation does only exist
in new system releases. On previous
operating systems retension results in
an error which terminates dskback.

Page 3 (Printed Dec.1989)

e ——

DSKBACK(1M) (Essential Utilities) DSKBACK(1M)

—comment string

EXAMPLES

Old syntax of backup:

used for informations during operation,
otherwise dskback will remain silent if
the operations are correctly performed.
Used together with option —T this
option displays more information.

will place the string in the label on the
removable medium. Except from this
operation this string will be ignored by
dskback. The string is placed at the
address 0x200 in the label on the
removable medium. If only this option
and option —T are specified, dskback
returns the comment placed in the label
if the —comment option was used
when the backup was created.

/etc/dskback —log /etc/backuplog —c —r —v
—comment “special backup database b”
/dev/dsk/uldc8s4 /dev/stream

Old syntax of restore:

/etc/dskback —log /etc/backuplog —c —v

/dev/stream

/dev/dsk/uldc8s4

Backup of one or more disks:

/etc/dskback —B —Log /etc/backuplog —c —v
/dev/dsk/ul2c8s1
- /dev/dsk/ul2cl2sl
/dev/dsk/ul2cl2s2
/dev/dsk/uldc8s0
/dev/dsk/uldc8sl

/dev/video
(Printed Dec.1989)

Page 4

2c9¢c

263

DSKBACK(1M) (Essential Utilities) DSKBACK(1M)

Table of contents:

/etc/dskback —T —v /dev/video

Get user comnment:

/etc/dskback —T —comment /dev/stream

Restore one or more disks:
/etc/dskback —R —Log /etc/backuplog —c —v\
/dev/video 2:RESTORE 4:/dev/dsk/ul4c8s4d

SEE ALSO
ddQ@), ff(1M), frec(1M), volcopy(1M).

BUGS
Option —B, —T and —R, in version 3.0 of dskback dated
December 1988, cannot handle backup series larger than one
streamer tape or video tape. Language system is not imple-
mented. Using —B when backing up, needs —R to restore.
Making backup using no control option cannot be restored by
using - R.

NOTE
If the size of the video tape is different to the configuration

parameter the size can be adjusted by the —feet option.
dskback converts one feet to 39000 byte.

53770 feet = 2000Mbyte
26885 feet = 1000Mbyte
13442 feet = 500Mbyte

Page 5 (Printed Dec.1989)

This page is intentionally left blank

92

—=

DU (1M) (Essential Utilities) DU (1M)

NAME
du — summarize disk usage

SYNOPSIS
du [—Lsar] [names] |

DESCRIPTION
du reports the number of blocks contained in all files and
(recursively) directories within each directory and file specified
by the names argument. The block count includes the indirect
blocks of the file. If names is missing, the current directory is
used.

The optional arguments are as follows:

—s causes only the grand total (for each of the specified
names) to be given.

—a causes an output line to be generated for each file.

If neither —s or —a is specified, an output line is generated for
each directory only.

—r will cause du to generate messages about directories that
cannot be be read, files that cannot be opened, etc.,
rather than being silent (the default).

—L causes du to follow symbolic links. Note that this can |
result in looping if the symbolic link points to a parent |
of the directory containing the link. |

A file with two or more links is only counted once.

BUGS
If the —a option is not used, non-directories given as argu-
ments are not listed. Files with holes in them will get an
incorrect block count.

Rev.May 1991 Vers.3.10 Page 1

—Jdp———————

DU (1M) (Essential Utilities) DU (1M)

This page is intentionally left blank

Page 2 Vers.3.10 Rev.May 1991

267

——— =

ECHO() (Essential Utilities) ECHO(1)
NAME
echo — echo arguments
SYNOPSIS
echo [arg | ...
DESCRIPTION

echo writes its arguments separated by blanks and ter-
minated by a new-line on the standard output. It also under-
stands C-like escape conventions; beware of conflicts with the

shell’s use of \:
\b backspace
\¢c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\v vertical tab

\\ backslash

\On where n is the 8-bit character whose ASCII
code is the 1-, 2- or 3-digit octal number
representing that character.

echo is useful for producing diagnostics in command files and
for sending known data into a pipe.

SEE ALSO
sh(1).

CAVEATS
When representing an 8-bit character by using the escape
convention \0n, the n must always be preceded by the digit
zero (0).

For example, typing: echo "WARNING:\07 will print the
phrase WARNING: and sound the ‘“bell” on your terminal.
The use of single (or double) quotes (or two backslashes) is
required to protect the ‘“\”’ that precedes the “07”.

For the octal equivalents of each character, see ascii(5)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

89¢

269

ED(1)

NAME

(Essential Utilities) EDQ@)

ed, red — text editor

SYNOPSIS

ed [—s] [—p string] [—x] [—C] [file]
red [—s] [—p string] [—x] [—C] [file]

DESCRIPTION

ed is the standard text editor. If the file argument is given,
ed simulates an e command (see below) on the named file;
that is to say, the file is read into ed’s buffer so that it can be

edited.

Suppresses the printing of character counts by e, r,
and w commands, of diagnostics from e and g com-
mands, and of the ! prompt after a Ishell command.

Allows the user to specify a prompt string.

Encryption option; when used, ed simulates an X
command and prompts the user for a key. This key is
used to encrypt and decrypt text using the algorithm
of crypt(1). The X command makes an educated guess
to determine whether text read in is encrypted or not.
The temporary buffer file is encrypted also, using a
transformed version of the key typed in for the —x
option. See crypt(l). Also, see the WARNINGS sec-
tion at the end of this manual page.

Encryption option; the same as the —x option, except
that ed simulates a C command. The C command is
like the X command, except that all text read in is
assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to
the copy have no effect on the file until a w (write) command
is given. The copy of the text being edited resides in a tem-
porary file called the buffer. There is only one buffer.

red is a restricted version of ed. It will only allow editing of
files in the current directory. It prohibits executing shell
commands via lshell command. Attempts to bypass these

Page 1

(Printed Dec.1989)

(Essential Utilities) EDQ)

restrictions result in an error message (restricted shell).

Both ed and red support the fspec(4) formatting capability.
After including a format specification as the first line of file
and invoking ed with your terminal in stty —tabs or
stty tab3 mode (see stty(1)), the specified tab stops will
automatically be used when scanning file. For example, if the
first line of a file contained:
<:t5,10,15 s72: >

tab stops would be set at columns 5, 10, and 15, and a max-
imum line length of 72 would be imposed. NOTE: when you
are entering text into the file, this format is not in effect;
instead, because of being in stty —tabs or stty tab3 mode,
tabs are expanded to every eighth column.

Commands to ed have a simple and regular structure: zero,
one, or two addresses followed by a single-character com-
mand, possibly followed by parameters to that command.
These addresses specify one or more lines in the buffer.
Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain
commands allow the input of text. This text is placed in the
appropriate place in the buffer. While ed is accepting text, it
is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Leave input mode
by typing a period (.) at the beginning of a line, followed
immediately by a carriage return.

ed supports a limited form of regular expression notation;
regular expressions are used in addresses to specify lines and
in some commands (e.g., s) to specify portions of a line that
are to be substituted. A regular expression (RE) specifies a
set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are
constructed as follows:

The following one-character REs match a single character:

(Printed Dec.1989) Page 2

0Ze

27

ED(1)

Page 3

(Essential Utilities) ED()

An ordinary character (not one of those discussed in 1.2
below) is a one-character RE that matches itself.

A backslash (\) followed by any special character is a
one-character RE that matches the special character
itself. The special characters are:

a. ., *,[, and \ (period, asterisk, left square bracket,
and backslash, respectively), which are always spe-
cial, except when they appear within square brack-
ets ([1; see 1.4 below).

b. ~ (caret or circumflex), which is special at the
beginning of an entire RE (see 3.1 and 3.2 below), or
when it immediately follows the left of a pair of
square brackets ([1) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an
entire RE (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire
RE, which is special for that RE (for example, see
how slash (/) is used in the g command, below.)

A period (.) is a one-character RE that matches any
character except new-line.

A non-empty string of characters enclosed in square
brackets ([1) is a one-character RE that matches any
one character in that string. If, however, the first char-
acter of the string is a circumflex (~), the one-character
RE matches any character except new-line and the
remaining characters in the string. The ~ has this spe-
cial meaning only if it occurs first in the string. The
minus (—) may be used to indicate a range of consecu-
tive ASCII characters; for example, [0-9] is equivalent
to [0123456789]. The — loses this special meaning if it
occurs first (after an initial ~, if any) or last in the
string. The right square bracket (1) does not terminate
such a string when it is the first character within it
(after an initial ~, if any); e.g., []Ja—f] matches either a
right square bracket (]) or one of the letters a through f

(Printed Dec.1989)

(Essential Utilities) ED(1)

inclusive. The four characters listed in 1.2.a above stand
for themselves within such a string of characters.

The following rules may be used to construct REs from one-
character REs:

21

2.2

2.3

24

2.5

2.6

A one-character RE is a RE that matches whatever the
one-character RE matches.

A one-character RE followed by an asterisk (*) is a RE
that matches zero or more occurrences of the one-
character RE. If there is any choice, the longest leftmost
string that permits a match is chosen.

A one-character RE followed by \{m\}, \{m,\}, or
\{m,n\} is a RE that matches a range of occurrences of
the one-character RE. The values of m and n must be
non-negative integers less than 256; \{m\} matches
exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of
occurrences between m and n inclusive. Whenever a
choice exists, the RE matches as many occurrences as
possible.

The concatenation of REs is a RE that matches the con-
catenation of the strings matched by each component of
the RE.

A RE enclosed between the character sequences \(and
\) is a RE that matches whatever the unadorned RE
matches,

The expression \n matches the same string of charac-
ters as was matched by an expression enclosed between
\(and \) earlier in the same RE. Here n is a digit; the
sub-expression specified is that beginning with the n-th
occurrence of \(counting from the left. For example,
the expression ~\(. * \)\1$ matches a line consisting of
two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an
initial segment or final segment of a line (or both).

(Printed Dec.1989) Page 4

cle

273

Page 5

3.1 A circumflex (~) at the beginning of an entire RE con-
strains that RE to match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire RE constrains
that RE to match a final segment of a line.

The construction ~entire RE$ constrains the entire RE to
match the entire line.

The null RE (e.g., //) is equivalent to the last RE encoun-
tered. See also the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that
at any time there is a current line. Generally speaking, the
current line is the last line affected by a command; the exact
effect on the current line is discussed under the description of
each command. Addresses are constructed as follows:

1. The character . addresses the current line.
2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the
buffer.

4. 'x addresses the line marked with the mark name char-
acter x, which must be an ASCII lower-case letter (a-z).
Lines are marked with the £ command described below.

5. A RE enclosed by slashes (/) addresses the first line
found by searching forward from the line following the
current line toward the end of the buffer and stopping
at the first line containing a string matching the RE. If
necessary, the search wraps around to the beginning of
the buffer and continues up to and including the current
line, so that the entire buffer is searched. See also the
last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first
line found by searching backward from the line preced-
ing the current line toward the beginning of the buffer
and stopping at the first line containing a string match-
ing the RE. If necessary, the search wraps around to
the end of the buffer and continues up to and including

(Printed Dec.1989)

=

|=———3= —_— = — — = - = —
_ ==
ED() (Essential Utilities) ED(1)

(Essential Utilities) ED(1)

the current line. See also the last paragraph before
FILES below.

7. An address followed by a plus sign (+) or a minus sign
(—) followed by a decimal number specifies that address
plus (respectively minus) the indicated number of lines.
The plus sign may be omitted.

8. If an address begins with + or —, the addition or sub-
traction is taken with respect to the current line; e.g,
—5 is understood to mean .- 5.

9. If an address ends with + or —, then 1 is added to or
subtracted from the address, respectively. As a conse-
quence of this rule and of Rule 8, immediately above,
the address — refers to the line preceding the current
line. (To maintain compatibility with earlier versions of
the editor, the character ~ in addresses is entirely
equivalent to —.) Moreover, trailing + and — charac-
ters have a cumulative effect, so — — refers to the
current line less 2.

10. For convenience, a comma (,) stands for the address
pair 1,$, while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Com-
mands that require no addresses regard the presence of an
address as an error. Commands that accept one or two
addresses assume default addresses when an insufficient
number of addresses is given; if more addresses are given
than such a command requires, the last one(s) are used.

Typically, addresses are separated from each other by a
comma (,). They may also be separated by a semicolon (;).
In the latter case, the current line (.) is set to the first
address, and only then is the second address calculated. This
feature can be used to determine the starting line for forward
and backward searches (see Rules 5 and 6, above). The
second address of any two-address sequence must correspond
to a line that follows, in the buffer, the line corresponding to
the first address.

(Printed Dec.1989) Page 6

vie

275

ED(1)

Page 7

(Essential Utilities) ED(@)

In the following list of ed commands, the default addresses
are shown in parentheses. The parentheses are not part of
the address; they show that the given addresses are the
default.

It is generally illegal for more than one command to appear
on a line. However, any command (except e, f, r, or w) may
be suffixed by 1, n, or p in which case the current line is
either listed, numbered or printed, respectively, as discussed
below under the /, n, and p commands.

(.)a

<text>

The append command reads the given text and
appends it after the addressed line; . is left at the last
inserted line, or, if there were none, at the addressed
line. Address 0 is legal for this command: it causes
the “appended’ text to be placed at the beginning of
the buffer. The maximum number of characters that
may be entered from a terminal is 256 per line
(including the new-line character).

(.)e

<text>

The change command deletes the addressed lines,
then accepts input text that replaces these lines; . is
left at the last line input, or, if there were none, at
the first line that was not deleted.

Same as the X command, except that ed assumes all
text read in for the e and r commands is encrypted
unless a null key is typed in.

(.,.d
The delete command deletes the addressed lines from
the buffer. The line after the last line deleted
becomes the current line; if the lines deleted were ori-
ginally at the end of the buffer, the new last line

(Printed Dec.1989)

e file

E file

f file

(Essential Utilities) ED®)

becomes the current line.

The edit command causes the entire contents of the
buffer to be deleted, and then the named file to be
read in; . is set to the last line of the buffer. If no file
name is given, the currently remembered file name, if
any, is used (see the f command). The number of
characters read is typed; file is remembered for possi-
ble use as a default file name in subsequent e, r, and
w commands. If file is replaced by !, the rest of the
line is taken to be a shell (sk (1)) command whose out-
put is to be read. Such a shell command is not
remembered as the current file name. See also DIAG-
NOSTICS below.

The Edit command is like e, except that the editor
does not check to see if any changes have been made
to the buffer since the last w command.

If file is given, the file-name command changes the
currently remembered file name to file; otherwise, it
prints the currently remembered file name.

(1,$)g/RE [command list

In the global command, the first step is to mark every
line that matches the given RE. Then, for every such
line, the given command list is executed with . ini-
tially set to that line. A single command or the first
of a list of commands appears on the same line as the
global command. All lines of a multi-line list except
the last line must be ended with a \; a, i, and ¢ com-
mands and associated input are permitted. The . ter-
minating input mode may be omitted if it would be
the last line of the command list. An empty com-
mand list is equivalent to the p command. The g, G,
v, and V commands are not permitted in the com-
mand list. See also BUGS and the last paragraph

(Printed Dec.1989) Page 8

9/2

277

ED()

Page 9

(Essential Utilities) ED(1)

before FILES below.

(1,$)G/RE/

()i

<text>

In the interactive Global command, the first step is to
mark every line that matches the given RE. Then, for
every such line, that line is printed, . is changed to
that line, and any one command (other than one of
the a, ¢, i, g, G, v, and V commands) may be input
and is executed. After the execution of that com-
mand, the next marked line is printed, and so on; a
new-line acts as a null command; an & causes the re-
execution of the most recent command executed
within the current invocation of G. Note that the
commands input as part of the execution of the G
command may address and affect any lines in the
buffer. The G command can be terminated by an
interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that
explains the reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in
which error messages are printed for all subsequent ?
diagnostics. It will also explain the previous ? if there
was one. The H command alternately turns this
mode on and off; it is initially off.

The insert command inserts the given text before the
addressed line; . is left at the last inserted line, or, if
there were none, at the addressed line. This com-
mand differs from the a command only in the place-
ment of the input text. Address 0 is not legal for this
command. The maximum number of characters that
may be entered from a terminal is 256 per line
(including the new-line character).

(Printed Dec.1989)

(Essential Utilities) ED(1)

(.,.+1)j

.,.)1

The join command joins contiguous lines by removing
the appropriate new-line characters. If exactly one
address is given, this command does nothing.

The mark command marks the addressed line with
name x, which must be an ASCII lower-case letter (a-
z). The address 'x then addresses this line; . is
unchanged.

The list command prints the addressed lines in an
unambiguous way: a few non-printing characters
(e.g., tab, backspace) are represented by visually
mnemonic overstrikes. All other non-printing charac-
ters are printed in octal, and long lines are folded. An
! command may be appended to any other command
other thane, f, r, or w.

(.,.)ma

(.y.)n

(.,.)p

The move command repositions the addressed line(s)
after the line addressed by a. Address 0 is legal for a
and causes the addressed line(s) to be moved to the
beginning of the file. It is an error if address a falls
within the range of moved lines; . is left at the last
line moved.

The number command prints the addressed lines,
preceding each line by its line number and a tab char-
acter; . is left at the last line printed. The n com-
mand may be appended to any other command other
thane, f, r, or w.

The print command prints the addressed lines; . is
left at the last line printed. The p command may be
appended to any other command other than e, f, r, or
w. For example, dp deletes the current line and
prints the new current line.

(Printed Dec.1989) Page 10

8¢

279

ED®)

Q

(Essential Utilities) ED(1)

The editor will prompt with a = for all subsequent
commands. The P command alternately turns this
mode on and off; it is initially off.

The quit command causes ed to exit. No automatic
write of a file is done; however, see DIAGNOSTICS,
below.

The editor exits without checking if changes have
been made in the buffer since the last w command.

($)r file

The read command reads in the given file after the
addressed line. If no file name is given, the currently
remembered file name, if any, is used (see e and f
commands). The currently remembered file name is
not changed unless file is the very first file name
mentioned since ed was invoked. Address 0 is legal
for r and causes the file to be read at the beginning of
the buffer. If the read is successful, the number of
characters read is typed; . is set to the last line read
in. If file is replaced by !, the rest of the line is taken
to be a shell (s2(1)) command whose output is to be
read. For example, "$r !Is” appends current directory
to the end of the file being edited. Such a shell com-
mand is not remembered as the current file name.

(.,.)s/RE [replacement [or
(.,.)s/RE [replacement /g or
(.,.)s/RE [replacement /n n = 1-512

Page 11

The substitute command searches each addressed line
for an occurrence of the specified RE. In each line in
which a match is found, all (non-overlapped) matched
strings are replaced by the replacement if the global
replacement indicator g appears after the command.
If the global indicator does not appear, only the first
occurrence of the matched string is replaced. If a

(Printed Dec.1989)

(.y.)ta

s T il g 1 ¥ s O [T a A e e el | o g Wt M)

(Essential Utilities) EDQ1)

number n appears after the command, only the n th
occurrence of the matched string on each addressed
line is replaced. It is an error for the substitution to
fail on all addressed lines. Any character other than
space or new-line may be used instead of / to delimit
the RE and the replacement; . is left at the last line on
which a substitution occurred. See also the last para-
graph before FILES below.

An ampersand (&) appearing in the replacement is
replaced by the string matching the RE on the current
line. The special meaning of & in this context may be
suppressed by preceding it by \. As a more general
feature, the characters \n, where n is a digit, are
replaced by the text matched by the n-th regular
subexpression of the specified RE enclosed between \(
and \). When nested parenthesized subexpressions
are present, n is determined by counting occurrences
of \(starting from the left. When the character % is
the only character in the replacement, the replace-
ment used in the most recent substitute command is
used as the replacement in the current substitute
command. The % loses its special meaning when it is
in a replacement string of more than one character or
is preceded by a \.

A line may be split by substituting a new-line charac-
ter into it. The new-line in the replacement must be
escaped by preceding it by \. Such substitution can-
not be done as part of a g or v command list.

This command acts just like the m command, except
that a copy of the addressed lines is placed after
address a (which may be 0); . is left at the last line of
the copy.

The undo command nullifies the effect of the most
recent command that modified anything in the buffer,

(Printed Dec.1989) Page 12

08¢

281

_—— . | pE—
|=——
[—

EDQ@1) (Essential Utilities) ED(1)

namely the most recent a, ¢, d, g,i,j, m, r, s, t, v,
G, or V command.

(1,$)v/RE /command list
This command is the same as the global command g
except that the command list is executed with . ini-
tially set to every line that does not match the RE.

(1,$)V/RE/
This command is the same as the interactive global
command G except that the lines that are marked
during the first step are those that do not match the
RE.

(1,$)w file
The write command writes the addressed lines into
the named file. If the file does not exist, it is created
with mode 666 (readable and writable by everyone),
unless your umask setting (see umask(l)) dictates
otherwise. The currently remembered file name is
not changed unless file is the very first file name
mentioned since ed was invoked. If no file name is
given, the currently remembered file name, if any, is
used (see e and f commands); . is unchanged. If the
command is successful, the number of characters
written is typed. If file is replaced by !, the rest of
the line is taken to be a shell (sh(1)) command whose
standard input is the addressed lines. Such a shell
command is not remembered as the current file name.

A key is prompted for, and it is used in subsequent e,
r, and w commands to decrypt and encrypt text using
the crypt(1) algorithm. An educated guess is made to
determine whether text read in for the e and r com-
mands is encrypted. A null key turns off encryption.
Subsequent e, r, and w commands will use this key to
encrypt or decrypt the text (see crypt(1l)). An expli-
citly empty key turns off encryption. Also, see the
—x option of ed.

Page 13 (Printed Dec.1989)

ED()

(Essential Utilities) EDQ@)

($)=
The line number of the addressed line is typed; . is
unchanged by this command.

Ishell command

The remainder of the line after the ! is sent to the
UNIX system shell (sh(1)) to be interpreted as a com-
mand. Within the text of that command, the unes-
caped character % 1is replaced with the remembered
file name; if a ! appears as the first character of the
shell command, it is replaced with the text of the pre-
vious shell command. Thus, !! will repeat the last
shell command. If any expansion is performed, the
expanded line is echoed; . is unchanged.

(.+1)<new-line >
An address alone on a line causes the addressed line
to be printed. A new-line alone is equivalent to .+ 1p;
it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints
a ? and returns to its command level.

Some size limitations: 512 characters in a line, 256 charac-
ters in a global command list, and 64 characters in the path-
name of a file (counting slashes). The limit on the number of
lines depends on the amount of user memory: each line takes
1 word.

When reading a file, ed discards ASCII NUL characters.

If a file is not terminated by a new-line character, ed adds
one and puts out a message explaining what it did.

If the closing delimiter of a RE or of a replacement string
(e.g., /) would be the last character before a new-line, that
delimiter may be omitted, in which case the addressed line is
printed. The following pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p

g/sl g/sl/p

?sl ?s1?

(Printed Dec.1989) Page 14

[4:14

283

ED@1) (Essential Utilities) ED®@)

FILES

$TMPDIR if this environmental variable is not null, its
value is used in place of /usr/tmp as the direc-
tory name for the temporary work file.

Jusr/tmp if /usr/tmp exists, it is used as the directory
name for the temporary work file.

/tmp if the environmetal variable TMPDIR does not
exist or is null, and if /usr/tmp does not exist,
then /tmp is used as the directory name for the
temporary work file.

ed.hup work is saved here if the terminal is hung up.

NOTES
The — option, although it continues to be supported, has
been replaced in the documentation by the —s option that
follows the Command Syntax Standard (see intro(1)).

SEE ALSO
edit(l), ex(1), grep(1), sed(1), sh(l), stty(1), umask(l), vi(l),
fspec(4), regexp(5).

DIAGNOSTICS
? for command errors.
?file for an inaccessible file.
(use the help and Help commands for detailed
explanations).

If changes have been made in the buffer since the last w com-
mand that wrote the entire buffer, ed warns the user if an
attempt is made to destroy ed’s buffer via the e or ¢ com-
mands. It prints ? and allows one to continue editing. A
second e or ¢ command at this point will take effect. The —s
command-line option inhibits this feature.

WARNINGS
' The encryption options and commands are provided with the
Security Administration Utilities package, which is available
only in the United States.

Page 15 (Printed Dec.1989)

EDQ) (Essential Utilities) ED(1)

BUGS
A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w com-
mands cannot be used if the editor is invoked from a res-
tricted shell (see sh(1)).

The sequence \n in a RE does not match a new-line charac-
ter.

If the editor input is coming from a command file (e.g., ed file
< ed-cmd-file), the editor will exit at the first failure.

(Printed Dec.1989) Page 16

82

285

NAME

(Editing Utilities) EDIT(1)

edit — text editor (variant of ex for casual users)

SYNOPSIS

edit [-r] [—x] [—C] name...

DESCRIPTION

Page 1

edit is a variant of the text editor ex recommended for new or
casual users who wish to use a command-oriented editor. It
operates precisely as ex(1) with the following options
automatically set:

novice ON
report ON
showmode ON
magic OFF

These options can be turned on or off via the set command in
ex ().

-r Recover file after an editor or system crash.

-x Encryption option; when used the file will be
encrypted as it is being written and will require an
encryption key to be read. edit makes an educated
guess to determine if a file is encrypted or not. See
crypt(1). Also, see the WARNING section at the end
of this manual page.

—C Encryption option; the same as —x except that edit
assumes files are encrypted.

The following brief introduction should help you get started
with edit. If you are using a CRT terminal you may want to
learn about the display editor vi.

To edit the contents of an existing file you begin with the
command edit name to the shell. edit makes a copy of the
file that you can then edit, and tells you how many lines and
characters are in the file. To create a new file, you also begin
with the command edit with a filename: edit name; the edi-
tor will tell you it is a [New File].

(Printed Dec.1989)

EDIT(1)

(Editing Utilities) EDIT(1)

The edit command prompt is the colon (:), which you should
see after starting the editor. If you are editing an existing
file, then you will have some lines in edit’s buffer (its name
for the copy of the file you are editing). When you start edit-
ing, edit makes the last line of the file the current line. Most
commands to edit use the current line if you do not tell them
which line to use. Thus if you say print (which can be
abbreviated p) and type carriage return (as you should after
all edit commands), the current line will be printed. If you
delete (d) the current line, edit will print the new current
line, which is usually the next line in the file. If you delete
the last line, then the new last line becomes the current one.

If you start with an empty file or wish to add some new lines,
then the append (a) command can be used. After you exe-
cute this command (typing a carriage return after the word
append), edit will read lines from your terminal until you
type a line consisting of just a dot (.); it places these lines
after the current line. The last line you type then becomes
the current line. The command insert (i) is like append,
but places the lines you type before, rather than after, the
current line.

edit numbers the lines in the buffer, with the first line having
number 1. If you execute the command 1, then edit will type
the first line of the buffer. If you then execute the command
d, edit will delete the first line, line 2 will become line 1, and
edit will print the current line (the new line 1) so you can see
where you are. In general, the current line will always be the
last line affected by a command.

You can make a change to some text within the current line
by using the substitute (s) command: s/old /new/ where old
is the string of characters you want to replace and new is the
string of characters you want to replace old with.

The command file (f) will tell you how many lines there are
in the buffer you are editing and will say [Modified] if you
have changed the buffer. After modifying a file, you can save
the contents of the file by executing a write (w) command.

(Printed Dec.1989) Page 2

98¢

287

EDIT(1)

|
E
Il

(Editing Utilities) EDIT(1)

You can leave the editor by issuing a quit (q) command. If
you run edit on a file, but do not change it, it is not necessary
(but does no harm) to write the file back. If you try to quit
from edit after modifying the buffer without writing it out,
you will receive the message No write since last
change (:quit! overrides), and edit will wait for
another command. If you do not want to write the buffer
out, issue the quit command followed by an exclamation
point (q!). The buffer is then irretrievably discarded and you
return to the shell.

By using the d and a commands and giving line numbers to
see lines in the file, you can make any changes you want.
You should learn at least a few more things, however, if you
will use edit more than a few times.

The change (¢) command changes the current line to a
sequence of lines you supply (as in append, you type lines up
to a line consisting of only a dot (,). You can tell change to
change more than one line by giving the line numbers of the
lines you want to change, i.e., 3,5¢. You can print lines this
way too: 1,23p prints the first 23 lines of the file.

The undo () command reverses the effect of the last com-
mand you executed that changed the buffer. Thus if you exe-
cute a substitute command that does not do what you want,
type u and the old contents of the line will be restored. You
can also undo an undo command. edit will give you a warn-
ing message when a command affects more than one line of
the buffer. Note that commands such as write and quit can-
not be undone.

To look at the next line in the buffer, type carriage return.
To look at a number of lines, type "D (while holding down
the control key, press d) rather than carriage return. This
will show you a half-screen of lines on a CRT or 12 lines on a
hardcopy terminal. You can look at nearby text by executing
the z command. The current line will appear in the middle of
the text displayed, and the last line displayed will become the
current line; you can get back to the line where you were

Page 3 (Printed Dec.1989)

EDIT(1)

(Editing Utilities) EDIT()

before you executed the z command by typing “*. The z com-
mand has other options: z— prints a screen of text (or 24
lines) ending where you are; z+ prints the next screenful. If
you want less than a screenful of lines, type z.11 to display
five lines before and five lines after the current line. (Typing
z.n, when n is an odd number, displays a total of n lines, cen-
tered about the current line; when n is an even number, it
displays n—1 lines, so that the lines displayed are centered
around the current line.) You can give counts after other
commands; for example, you can delete 5 lines starting with
the current line with the command d5 .

To find things in the file, you can use line numbers if you
happen to know them; since the line numbers change when
you insert and delete lines this is somewhat unreliable. You
can search backwards and forwards in the file for strings by
giving commands of the form /text/ to search forward for text
or ?text? to search backward for text . If a search reaches the
end of the file without finding text, it wraps around and con-
tinues to search back to the line where you are. A useful
feature here is a search of the form /“text/ which searches for
text at the beginning of a line. Similarly /text$/ searches for
text at the end of a line. You can leave off the trailing / or ?
in these commands.

The current line has the symbolic name dot (.); this is most
useful in a range of lines as in .,$p which prints the current
line plus the rest of the lines in the file. To move to the last
line in the file, you can refer to it by its symbolic name $.
Thus the command $d deletes the last line in the file, no
matter what the current line is. Arithmetic with line refer-
ences is also possible. Thus the line $—5 is the fifth before
the last and .+ 20 is 20 lines after the current line.

You can find out the current line by typing .= . This is use-
ful if you wish to move or copy a section of text within a file
or between files. Find the first and last line numbers you
wish to copy or move. To move lines 10 through 20, type
10,20d a to delete these lines from the file and place them in
a buffer named a. edit has 26 such buffers named a through

(Printed Dec.1989) Page 4

88¢

—————— ==

EDIT(1)

(Editing Utilities) EDIT(®)

z. To put the contents of buffer a after the current line, type
put a. If you want to move or copy these lines to another
file, execute an edit (e) command after copying the lines; fol-
lowing the e command with the name of the other file you
wish to edit, i.e., edit chapter2. To copy lines without delet-
ing them, use yank (y) in place of d. If the text you wish to
move or copy is all within one file, it is not necessary to use
named buffers. For example, to move lines 10 through 20 to
the end of the file, type 10,20m $.

SEE ALSO

ed(l), ex(1), vi(1).

WARNING

289

Page b

The encryption options are provided with the Security
Administration Utilities package, which is available only in
the United States.

(Printed Dec.1989)

This page is intentionally left blank

062

291

r— =

EDITOR(1) (Essential Utilities) EDITOR(1)

NAME
editor — edit text files

SYNOPSIS
editor [—S] [file]
editor r

DESCRIPTION
The editor is used to create and modify text files. It is a
screen oriented editor and will work properly only when the
terminal type has been properly specified through the termi-
nology (1) program.

Starting the editor
editor can write it’s messages to the user in either English or
Danish. Default language is English. This can be changed
through the environment LANGUAGE:

$ LANGUAGE =dk
$ export LANGUAGE

causes editor to use Danish messages.

editor uses a default value of the environment NLSPATH, if
this is not set. If however NLSPATH is set for use by other
applications, the path needed by editor must be appended to
the NLSPATH environment:

$ NLSPATH = $NLSPATH: /nlslib/%N /%L
Case 1: You want to modify an existing file, called myfile.
Give the command
editor myfile

This will load the editor, and after a while the con-
tents of myfile will be presented on the terminal
screen.

Alternatively, give the command
editor
This will load the editor, and it will prompt you for
Page 1 (Printed Dec.1989)

L o
|| S ——
Vi

EDITOR(1) (Essential Utilities) EDITOR(1)

the file name. Type "myfile” and press the RETURN
key. After a while the contents of myfile will be
presented on the terminal screen.

If anything goes wrong during the loading of the file
(if, for example, the file does not exist), editor will
present the error on the screen and give the operator
the following three options:

'E’ — Edit a new file

'C’ — Continue editing

U’ — exit to Supermax Operating System
The operator must now enter one of the letters E, C, or U.
Entering E will cause editor to prompt for a new file name,

entering C will cause editor to proceed as if no file name had
been entered (see case 2 below), entering U will stop editor.

Case 2: You want to create a new file.
Give the command

editor

This will load the editor, and it will prompt you for a
file name. Press the RETURN key. The screen will
now be cleared and you may start entering the con-
tents of the new file.

Entering text

Pressing one of the 'normal’ keys will cause the correspond-
ing character to appear at the cursor position, possibly replac-
ing any character that was already there. In this context a
‘normal’ key is any key corresponding to a printable charac-
ter, for example, ’A’, ’6’, or space.

Moving around the text

The four arrow keys will move the cursor one column or line
in the specified direction. If the cursor is at the bottom line
and ’down arrow’ is pressed, the text on the screen will scroll
upwards, unless end-of-file is at the top of the screen. If the
cursor is at the top line and "up arrow’ is pressed, the text on
the screen will scroll downwards, unless beginning-of-file is at

(Printed Dec.1989) Page 2

262

293

EDITOR(1) (Essential Utilities) EDITOR(1)

the top of the screen.

The function key 'E.O.L.’ (End of line, or double right arrow)
will move the cursor to the position after the last character
on the current line.

The function key ’S.0.L.” (Start of line, or double left arrow)
will move the cursor to the leftmost column.

The HOME key will move the cursor to the upper left corner
of the screen. Pressing the HOME key again will move the
cursor back to where it came from.

Pressing the ’Special’ key and the function keys ’First page’
and ’Last page’ will display the first or last screenful of text,
respectively.

The function keys 'Next page’ and 'Prev page’ will display the
next or previous screenful of text, respectively.

To go to a specific line number, press the ’Status’ function
key (see below), enter the desired line number, and press
RETURN.

The TAB key (not to be confused with the *Tab’ function key)
will move the cursor to the next tab stop. Note: The TAB
key does not insert a tab character into the text, it is merely a
cursor moving key.

The RETURN key will move the cursor to the next line. The
cursor position on the new line is determined as follows:

L If the new line contains text, the cursor will be placed
on the first non-blank character in that line.

® If the new line is blank and the previous line contains
text, the cursor will be placed under the first non-
blank character in the previous line.

° If both the new line and the previous line are blank,
the cursor will be placed at the leftmost column.

° If the left margin (see below) is set to a position to
the right of the column, which the cursor would
choose according to the preceding rules, the cursor

Page 3 (Printed Dec.1989)

I

m B ==

EDITOR(®1) (Essential Utilities) EDITOR(1)

will be set at the left margin rather than according to
the above-mentioned rules.

Function keys

editor makes use of the socalled hard and soft function keys
where the function keys f1 to f8 and F1 to F8 have the same
meaning in different applications. The socalled soft function
keys f9 to f16 and F9 to F16 contain the rest functions. The
meaning of these can be read by pressing the 'Help’ function
key whereafter a helpline explaining the use of the soft keys
will appear. The helpline can be removed by pressing "Help’
again. Some functions require pressing two function keys:
"Special’ can be combined with some of the rest function keys.
If the helpline is present on the terminal screen pressing
"Special’ will give a new helpline explaining which function
keys can be used.

Inserting and deleting

The function key ’Insert character’ will insert a space in the
current line at the cursor position.

The function key ’Delete character’ will delete the character
at the cursor position.

The function key ’Insert line’ will insert a blank line before
the line containing the cursor.

The function key ’Delete line’ will delete the line containing
the cursor.

If by mistake you have deleted a line which you wish to
retain, pressing the ’Special’ function key and thereupon the
"Insert line’ function key will restore the deleted line.

The DEL (or RUB OUT) key moves the cursor one position to
the left and deletes the character in this position.

Searching and replacing

If you want to find, say, the characters ’alpha’ in the text,
press the 'Find’ function key. The editor will then prompt
you for a search sting; type alpha and press RETURN. The
cursor will now be moved to the first occurrence of ’alpha’
following the current position.

(Printed Dec.1989) Page 4

62

295

—=

EDITOR(1) (Essential Utilities) EDITOR()

If you want to find the next occurrence of ’alpha’, press the
"Find again’ function key. This will move the cursor to the
next occurrence of the string.

If you wish to find the text ’alpha’ and replace it with ’beta’,
press the 'Replace’ function key. You will now be prompted
for the search string (type: alpha) and the replacement
string (type: beta). Finally, you will be asked if you want to
confirm the replacement. If you answer No (or rather, N) to
this question, the editor will merely replace the first
occurrence of ’alpha’ after the current position with ’beta’. If
you answer Yes (Y) to the question, the editor will move the
cursor to ’alpha’, the terminal will beep and you must press
the RETURN key if you want the replacement to be carried
out; pressing any other key will cause the editor to leave the
text unchanged.

The ’Replace again’ function key will repeat the last replace-
ment command.

If your search string or replacement string contains trailing
blanks, it must be enclosed in apostrophes.

Moving and Copying
A portion of the text may be moved or copied to another place
in the text. The text to be moved or copied must be com-
pletely visible on the screen before the following operations
are carried out.

The operation consists of two steps:

1) Copy the text into a save buffer. The text may be
removed or retained in its original position.

2) Move to the place where the content of the save buffer is
to be inserted, and insert it there. The text may be
inserted at several different places.

Step 1: Version A: Copying lines into the save buffer.
Place the cursor on the first (or last) line to be
moved and press the 'Mark’ function key. Use the
up-arrow key, the down-arrow key, or the HOME
key to move the cursor to the last (or first) line to be

Page 5 (Printed Dec.1989)

Fr=—= = —— & ——— =1
ﬁ —
]

EDITOR(®) (Essential Utilities) EDITOR(1)

moved and press the 'Mark’ function key again. The
two lines delimiting the text to be moved will now
stand out on the screen. Press the ’Save’ (or ’Store’)
function key; this will copy the marked text into the
save buffer, from where it may later be retrieved. If
the ’Save and delete’ function key is used instead of
the 'Save’ function key, the text will be copied into
the save buffer and deleted from its original position.

Version B: Copying columns of text into the save buffer.

Place the cursor on the first (or last) line of the
columns to be moved and press the 'Mark’ function
key. Use the up-arrow key, the down-arrow key, or
the HOME key to move the cursor to the last (or
first) line of the columns to be moved and press the
'Mark’ function key again. The two lines delimiting
the text to be moved will now stand out on the
screen. Use the left-arrow key and the right-arrow
key to move the cursor to the leftmost column delim-
iting the columns to be moved and press the 'Mark’
function key. Use the left-arrow and the right-arrow
key to moved the cursor to the rightmost column del-
imiting the columns to be moved and press the
"Mark’ function key again. The columns to be moved
will now stand out on the screen. Press the 'Save’
(or ’Store’) function key; this will copy the marked
text into the save buffer, from where it may later be
retrieved. If the 'Save and delete’ function key is
used instead of the ’Save’ function key, the text will
be copied into the save buffer and deleted from its
original position.

Now move to the position in the text where the content of
the save buffer is to be inserted.

Step 2: Version A: Inserting lines from the save buffer.
Pressing the 'Restore’ function key will cause the text
in the save buffer to be inserted before the current
line. The editor will use insert-line operations to
make room for the text.

(Printed Dec.1989) Page 6

96¢

297

————— ==

EDITOR(1) (Essential Utilities) EDITOR(1)

Version B: Inserting columns of text from the save buffer.
Pressing the ’Special’ function key and then the ’Spe-
cial recall’ function key will cause the text in the save
buffer to be inserted into the current and following
lines at the column indicated by the cursor. The edi-
tor will use insert-character operations to make room
for the text.

Reading from and Writing to Other Files

Page 7

If you wish to save some lines of the text in another file,
press the 'Write to file’ function key. The editor will prompt
you for the filename and the first and last line to be writlen.

If you wish to read lines from another file into the text you
are editing, press the 'Read from file’ function key. The edi-
tor will prompt you for the filename and ask if you want
"Line or Key reading’. You must enter L or K to choose the
option and proceed as follows:

Line reading:
The editor will ask you for the line number of the
first and last line to be read. If you want to read the
entire file, type, for example, 1 and 9999. The lines
will be inserted before the current line. If the file
contains too few lines, you will be told so, and you
must press the RETURN key to proceed.

Key reading.
The editor will ask you for a search string found in
the first line you wish to read. The file will he read
until the string is found, and the editor will ask you if
the line found is indeed the line you want. If not,
searching will continue. When the first line has been
found, the editor will ask you for a scarch string
found in the last line you wish to read. Lines from
the file will now be copied into the text belore the
current line until the final search string 18 (ound.
The editor will again ask you if the line found is
indeed the line you want. If not, searching will con-
tinue.

(Printed Dec.1989)

i

1 EE === = S ey
I —
EDITOR(1) (Essential Utilities) EDITORQ)
Status

The ’Status’ function key will present on the screen informa-
tion about the current cursor position, the name of the file
being edited, etc.

You may revert to editing be pressing the RETURN key. If a
number is typed before pressing the RETURN key, the edit-
ing will continue at that line number.

If for some reason the contents of the screen has been cor-
rupted, pressing 'Status’ and then RETURN is an easy way to
redraw the screen.

Open line

Pressing the 'Special’ key and then the ’Open line’ function
key will split the current line in two at the cursor position.

The ’Tab’ function key may be used to set the left margin
and tab stops. Pressing the *Tab’ function key will display a
ruler containing the letter L at the left margin position and
the letter T at each tab stop position. This ruler may now be
edited, placing the L and T’s in different positions. Any other
character will be treated as a dummy. When the ruler looks
as it should, press the RETURN key, this will display the new
ruler as the editor sees it (dummy characters removed).
Pressing the RETURN key again takes you back to editing.

Repeat

Most commands may have a repeat factor. Press the 'Repeat’
function key and enter a number. This number will appear
in the upper right corner. The DEL (or RUB OUT) key will
zero the number. After entering the number you may issue a
command. This command will then be executed as many
times as the number indicates.

A few examples:

'Repeat’ 10 a
will enter ten a’s into the text.

(Printed Dec.1989) Page 8

862

299

B e ———

EDITOR() (Essential Utilities) EDITOR)

’Repeat’ 20 ’Insert line’
will insert twenty blank lines into the text.
’Repeat’ 3 'Find’
will find the third occurrence of the search
string following the current position.

’Repeat’ 4 'Replace’
will replace the first four occurrences of one
string with another, asking for confirmation
each time, if requested.

'Repeat’ 2 'Restore’
will twice copy the contents of the save buffer
into the text.

Starting other programs
You can start programs while you are editing a text. When
the ’Special’ function key is pressed followed by the 'Termi-
nate’ function key, the program specified in the user’s
SHELL environment is started. If this environment is not set,
the program /bin/dsh will be started. When the program is
terminated the user will return to editor.

If editor was started
editor —§S [file]
it is not possible to start other programs inside editor.

Aborting commands
Where applicable, commands may be aborted by pressing the
"Cancel’ function key. The ’Attention’ key (ctrl 6) can be used
to abort an ongoing 'Find’, ’Replace’, First page’ or ’Last
page’.

Finishing
When you have finished editing, press the ’Finish’ (or "Ter-
minate’) function key. The editor will now require you to
make two decisions:

1) What should be done with the edited text?
a) You may save it in the file from which it was
originally read or in another file.

Page 9 (Printed Dec.1989)

EDITOR(D) (Essential Utilities) EDITOR()

b) You may choose not to save the changed text.
In this case the original file contents will be
retained.

2) What do you want to do now?
a) You may continue editing the same text.
b) You may edit a new file.
¢) You may terminate the editor.

You make your choice by entering a command of up to two
letters. One letter indicates your answer to question 1,
another letter indicates your answer to question 2:

The letter S indicates that you have chosen option 1la.
The absence of the letter S indicates that you have
chosen option 1b.

The letter E indicates that you have chosen option 2b.
The letter U indicates that you have chosen option 2c.
The absence of the letters E and U indicates that you
have chosen option 2a.

Thus merely pressing the RETURN key chooses options 1b
and 2a, taking you back to editing the text without saving
anything.

If you choose option la, the editor will prompt you for the
name of the file in which to save the text. It will suggest the
file, if any, from which the text was originally read; you may
change the file name if you want to, and then press the
RETURN key. If you choose option 1b, and 2b or 2¢, the edi-
tor will require you to enter return for not saving or enter
attention. By pressing the attention key you get the possibil-
ity to store the file.

Auxiliary files

During the editing the editor creates two files for intermedi-
ate storage. These files are called, for example,
/tmp [e1090201dde and /tmp/e2090201dde. The numbers in
these file names are derived from the terminal device number
and the name of the user. The username is taken from the

(Printed Dec.1989) Page 10

00€

301

EDITOR() (Essential Utilities) EDITOR®1)

BUGS

environment LOGNAME. If this environment is not set, the
username NN will be used. When the editing is finished the
editor deletes these files.

If for some reason the editor or the whole system crashes
during an edit operation, the edited text is not completely
lost. By starting the editor with the shell command

editor r
the text to be edited will be read from the auxiliary files
rather than a file called 'r’. This will probably not bring back
the whole edited text, but still, it is better than nothing.

editor cannot handle files containing non-printable characters,
excluding TABs. A TAB character is treated as a blank char-
acter.

editor truncates long lines to a length of 78 characters.

Page 11 (Printed Dec.1989)

This page is intentionally left blank

20e

303

_

EGREPQ1) (Essential Utilities)

NAME

dk —

EGREP(1)

egrep — search a file for a pattern using full regular expres-
sions

SYNOPSIS

egrep [options] full regular expression [file ...]

DESCRIPTION

egrep (expression grep) searches files for a pattern of charac-
ters and prints all lines that contain that pattern. egrep uses
full regular expressions (expressions that have string values
that use the full set of alphanumeric and special characters)
to match the patterns. It uses a fast deterministic algorithm
that sometimes needs exponential space.

egrep accepts full regular expressions as in ed (1), except for \(
and \), with the addition of:

1. A full regular expression followed by + that matches
one or more occurrences of the full regular expression.

2. A full regular expression followed by ? that matches 0
or 1 occurrences of the full regular expression.

3. Full regular expressions separated by | or by a new-
line that match strings that are matched by any of the
expressions.

4, A full regular expression that may be enclosed in

parentheses () for grouping.

Be careful using the characters §, *, [, *, |, (,), and \ in full
regular expression, because they are also meaningful to the
shell. It is safest to enclose the entire full regular expression
in single quotes "...".

The order of precedence of operators is [], then * ? 4+, then
concatenation, then | and new-line.

If no files are specified, egrep assumes standard input. Nor-
mally, each line found is copied to the standard output. The
file name is printed before each line found if there is more
than one input file.

(Printed Dec.1989)

—|dl———

EGREP(1) (Essential Utilities) EGREP(1)

Command line options are:

—b Precede each line by the block number on which it was
found. This can be useful in locating block numbers by
context (first block is 0).

~—c¢ Print only a count of the lines that contain the pattern.

—i Ignore upper/lower case distinction during comparis-
ons.

—1 Print the names of files with matching lines once,
separated by new-lines. Does not repeat the names of
files when the pattern is found more than once.

—n Precede each line by its line number in the file (first
line is 1).

—v Print all lines except those that contain the pattern.

— e special_expression
Search for a special expression (full regular expression
that begins with a —).

—f file
Take the list of full regular expressions from file.

SEE ALSO

ed(1), fgrep(1), grep(1), sed(1), sh(1).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syn-
tax errors or inaccessible files (even if matches were found).

Ideally there should be only one grep command, but there is
not a single algorithm that spans a wide enough range of
space-time tradeoffs. Lines are limited to BUFSIZ characters;
longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h.

(Printed Dec.1989) Page 2

o€

305

— e ———— —

~—————— | d:F—

ENABLE(1) (Essential Utilities) ENABLE(1)

NAME

enable, disable — enable/disable LP printers

SYNOPSIS

enable printers
disable [—c]| [—r[reason || printers

DESCRIPTION

FILES

enable activates the named printers, enabling them to print
requests taken by Ip(1). Use [pstat(1) to find the status of
printers.

disable deactivates the named printers, disabling them from
printing requests taken by Ip(1). By default, any requests
that are currently printing on the designated printers will be
reprinted in their entirety either on the same printer or on
another member of the same class. Use Ipstat(1) to find the
status of printers. Options useful with disable are:

-c Cancel any requests that are currently printing
on any of the designated printers.

—r[reason] Associates a reason with the deactivation of
the printers. This reason applies to all
printers mentioned up to the next —r option.
If the —r option is not present or the —r
option is given without a reason, then a default
reason will be used. reason is reported by
Ipstat(1).

Jusr/spool/lp/ *

SEE ALSO

Page 1

Ip(1), 1pstat(1).

(Printed Dec.1989)

This page is intentionally left blank

90€

307

o PR S—————— S S T——] =

ENV(1) (Essential Utilities) ENVQ)
NAME

env — set environment for command execution
SYNOPSIS

env [—] [name=value] ... [command args]
DESCRIPTION

env obtains the current environment, modifies it according to
its arguments, then executes the command with the modified
environment. Arguments of the form name=value are
merged into the inherited environment before the command
is executed. The — flag causes the inherited environment to
be ignored completely, so that the command is executed with
exactly the environment specified by the arguments.

If no command is specified, the resulting environment is
printed, one name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(4), environ(5).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

80€

309

e — |

ERRLOG(1M) (Essential Utilities) ERRLOG(1M)
NAME
errlog — log system errors
SYNOPSIS
errlog [—o file]
DESCRIPTION

errlog starts a daemon process that reads system error
records from the special file /dev/error and writes the format-
ted records to the logfile /usr/lib/errlog/log. If a file is
specified using the —o option, records will be written to that
file as well. All messages should be self-explanatory.

EXAMPLE
errlog —o /dev/console

will start errlog so that all messages will be sent to the sys-
tem console.

FILES
/usr/lib/errlog/log logfile for resulting error records.

SEE ALSO
error(4)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

oLe

3n

EX(1) (Essential Utilities) EX(D)

NAME
ex — text editor

SYNOPSIS
ex [—s] [—v] [-t tag] [—r file] [-L] [-R] [-x] [-C]
[-¢ command] file ...

DESCRIPTION
ex is the root of a family of editors: ex and vi. ex is a super-
set of ed, with the most notable extension being a display
editing facility. Display based editing is the focus of vi.
If you have a CRT terminal, you may wish to use a display
based editor; in this case see vi (1), which is a command which
focuses on the display-editing portion of ex.

For ed Users

Page 1

If you have used ed(1) you will find that, in addition to having
all of the ed(1) commands available, ex has a number of addi-
tional features useful on CRT terminals. Intelligent termi-
nals and high speed terminals are very pleasant to use with
vi. Generally, the ex editor uses far more of the capabilities of
terminals than ed(1) does, and uses the terminal capability
data base (see terminfo(4)) and the type of the terminal you
are using from the environmental variable TERM to deter-
mine how to drive your terminal efficiently. The editor
makes use of features such as insert and delete character and
line in its visual command (which can be abbreviated vi) and
which is the central mode of editing when using vi (1).

ex contains a number of features for easily viewing the text of
the file. The z command gives easy access to windows of text.
Typing "D (control-d) causes the editor to scroll a half-
window of text and is more useful for quickly stepping
through a file than just typing return. Of course, the screen-
oriented visual mode gives constant access to editing context.

ex gives you help when you make mistakes. The undo (u)
command allows you to reverse any single change which goes
astray. ex gives you a lot of feedback, normally printing
changed lines, and indicates when more than a few lines are

(Printed Dec.1989)

-3

EX(1)

(Essential Utilities) EX(1)

affected by a command so that it is easy to detect when a
command has affected more lines than it should have.

The editor also normally prevents overwriting existing files,
unless you edited them, so that you do not accidentally
overwrite a file other than the one you are editing. If the sys-
tem (or editor) crashes, or you accidentally hang up the tele-
phone, you can use the editor recover command (or —r file
option) to retrieve your work. This will get you back to
within a few lines of where you left off.

ex has several features for dealing with more than one file at
a time. You can give it a list of files on the command line and
use the next (n) command to deal with each in turn. The
next command can also be given a list of file names, or a pat-
tern as used by the shell to specify a new set of files to be
dealt with. In general, file names in the editor may be
formed with full shell metasyntax. The metacharacter ‘%’ is
also available in forming file names and is replaced by the
name of the current file.

The editor has a group of buffers whose names are the ASCII
lower-case letters (a-z). You can place text in these named
buffers where it is available to be inserted elsewhere in the
file. The contents of these buffers remain available when you
begin editing a new file using the edit (¢) command.

There is a command & in ex which repeats the last substi-
tute command. In addition, there is a confirmed substitute
command. You give a range of substitutions to be done and
the editor interactively asks whether each substitution is
desired.

It is possible to ignore the case of letters in searches and sub-
stitutions. ex also allows regular expressions which match
words to be constructed. This is convenient, for example, in
searching for the word ‘“‘edit” if your document also contains
the word “editor.”

ex has a set of options which you can set to tailor it to your
liking. One option which is very useful is the autoindent

(Printed Dec.1989) Page 2

2le

313

 CAIR

EX(1)

(Essential Utilities) EX@1)

option that allows the editor to supply leading white space to
align text automatically. You can then use "D as a backtab
and space or tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join (j)
command that supplies white space between joined lines
automatically, commands ” <” and ” >” which shift groups of
lines, and the ability to filter portions of the buffer through
commands such as sor¢(1).

Invocation Options

Page 3

The following invocation options are interpreted by ex (previ-
ously documented options are discussed in the NOTES section
at the end of this manual page):

-s Suppress all interactive-user feedback. This
is useful in processing editor scripts.

-v Invoke vi

-t tag Edit the file containing the tag and position
the editor at its definition.

—r file Edit file after an editor or system crash.

(Recovers the version of file that was in the
buffer when the crash occurred.)

-L List the names of all files saved as the result
of an editor or system crash.
-R Readonly mode; the readonly flag is set,

preventing accidental overwriting of the file.

-x Encryption option; when used, ex simulates
an X command and prompts the user for a
key. This key is used to encrypt and decrypt
text using the algorithm of crypt(1). The X
command makes an educated guess to deter-
mine whether text read in is encrypted or
not. The temporary buffer file is encrypted
also, using a transformed version of the key
typed in for the —x option. See crypt(1).
Also, see the WARNINGS section at the end

(Printed Dec.1989)

BN o R 0 . gy P = N ——y Yoy | [=———y|
_ #

EX(1)

—c¢ command

(Essential Utilities) EX(1)

of this manual page.

Encryption option; the same as the -x
option, except that ex simulates a C com-
mand. The C command is like the X com-
mand, except that all text read in is assumed
to have been encrypted.

Begin editing by executing the specified edi-
tor command (usually a search or positioning
command).

The file argument indicates one or more files to be edited.

ex States
Command

Insert

Visual

Normal and initial state. Input prompted for
by :. Your line kill character cancels a partial
command.

Entered by a, i, or ¢. Arbitrary text may be
entered. Insert state normally is terminated

by a line having only ”.” on it, or, abnor-
mally, with an interrupt.

Entered by typing vi; terminated by typing Q
or "\ (control-\).

ex Command Names and Abbreviations

abbrev
append
args
change
copy
delete
edit
file
global
insert
join
list

(Printed Dec.1989)

ab map set se

a mark ma shell sh
ar move m source so

c next n substitute s

co number nu unabbrev unab
d preserve pre undo u

e print P unmap unm
f put pu version ve

g quit q visual vi

i read r write w

j recover rec xit x

1 rewind rew yank ya

Page 4

vie

315

| BN | ———_ s S e e e e = B |

—=

EX()

ex Commands

shell escape

(Essential Utilities) EX(1)

!

next with pat
previous with pat
n before x

x through y
marked with x
previous context

place set’s here in environment variable
editor initialization file

editor initialization file

enable option x

disable option x

give value val to option x

show changed options

show all options

show value of option x

supply indent

write before changing files

pathname of directory for temporary
work files
ignore case of letters in scanning

forced encryption C
heuristic encryption X
Ishift <
print next CR
resubst &
rshift >
scroll ‘D
window z

ex Command Addresses
n line n /pat
. current ?pat
$ last x-n
+ next Xy
- previous ‘x
+n n forward o
% L$

Initializing options
EXINIT
$HOME/.exrc
.J.exre
set x
set nox
set x=val
set
set all
set x?

Most useful options and their abbreviations
autoindent ai
autowrite aw
directory
ignorecase ic
list

Page 5

print "I for tab, $ at end

(Printed Dec.1989)

EX(1)

Scanning pattern formation

magic
modelines

number
paragraphs
redraw
report

scroll
sections
shiftwidth
showmatch
showmode
slowopen
term

window
wrapmargin
wrapscan

$

\<
\>
[str]
["str]
[x—y]
%

(Printed Dec.1989)

(Essential Utilities)

nu
para

win
wSs

EX(1)

treat . [* special in patterns

first five lines and last five lines executed
as vi/ex commands if they are of the form
ex:command: or vizcommand:

number lines

macro names that start paragraphs
simulate smart terminal

informs you if the number of lines
modified by the last command is greater
than the value of the report variable
command mode lines

macro names that start sections

for < >, and input "D

to) and } as typed

show insert mode in vi

stop updates during insert

specifies to vi the type of terminal

being used (the default is the value

of the environmental variable TERM)
visual mode lines

automatic line splitting

search around end (or beginning) of buffer

beginning of line

end of line

any character

beginning of word

end of word

any character in str

any character not in str

any character between x and y

any number of preceding characters

Page 6

9le

317

EX(1) (Essential Utilities) EX(®1)

AUTHOR
vi and ex are based on software developed by The University
of California, Berkeley California, Computer Science Division,
Department of Electrical Engineering and Computer Science.

FILES
/usr/lib/exstrings error messages
/usr/lib/exrecover recover command
/usr/lib/expreserve preserve command
/usr/lib/terminfo/ * describes capabilities of terminals
$HOME/ .exrc editor startup file
./ .exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
Jusr/preserve/login preservation directory
(where login is the user’s login)
NOTES

Several options, although they continue to be supported, have
been replaced in the documentation by options that follow the
Command Syntax Standard (see intro(1)). The — option has
been replaced by —s, a —r option that is not followed with
an option-argument has been replaced by —L, and +com-
mand has been replaced by —c command.

SEE ALSO

crypt(1), ed(D), edit(1), grep(l), sed(1), sort(1), vi(1), curses(3X),

term(4), terminfo(4).

User’s Guide.

Editing Guide.

curses/terminfo chapter of the Programmer’s Guide.
WARNINGS

The encryption options and commands are provided with the

Security Administration Utilities package, which is available
only in the United States.

BUGS
The z command prints the number of logical rather than
physical lines. More than a screen full of output may result if
long lines are present.

Page 7 (Printed Dec.1989)

=3

EX(®@) (Essential Utilities) EX()

File input/output errors do not print a name if the command
line —s option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers
and not used before exiting the editor.

Null characters are dlscarded in input files and cannot appear
in resultant files.

(Printed Dec.1989) Page 8

81e

319

EXPR() (Essential Utilities) EXPR(1)

NAME

expr — evaluate arguments as an expression

SYNOPSIS

expr arguments

DESCRIPTION

Page 1

The arguments are taken as an expression. After evaluation,
the result is written on the standard output. Terms of the
expression must be separated by blanks. Characters special
to the shell must be escaped. Note that 0 is returned to indi-
cate a zero value, rather than the null string. Strings con-
taining blanks or other special characters should be quoted.
Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 32-bit, 2s comple-
ment numbers.

The operators and keywords are listed below. Characters
that need to be escaped are preceded by \. The list is in
order of increasing precedence, with equal precedence opera-
tors grouped within {} symbols.

expr \ | expr
returns the first expr if it is neither null nor 0, other-
wise returns the second expr.

expr \& expr
returns the first expr if neither expr is null or 0, oth-
erwise returns 0.

expr { =, \>’ \> =, \<, \< ™ 1= } expr
returns the result of an integer comparison if both
arguments are integers, otherwise returns the result
of a lexical comparison.

expr { +, = } expr
addition or subtraction of integer-valued arguments.

expr {\ *, /, % } expr
multiplication, division, or remainder of the integer-
valued arguments.

(Printed Dec.1989)

E—

EXPR(1)

(Essential Utilities) EXPR(1)

expr : expr

EXAMPLES
1.

SEE ALSO

The matching operator : compares the first argument
with the second argument which must be a regular
expression. Regular expression syntax is the same as
that of ed(1), except that all patterns are “anchored”
(i.e., begin with ") and, therefore, * is not a special
character, in that context. Normally, the matching
operator returns the number of characters matched
(0 on failure). Alternatively, the \(...\) pattern sym-
bols can be used to return a portion of the first argu-
ment.

a=>expr $a + 1~
adds 1 to the shell variable a.
‘For $a equal to either ”/usr/abec/file” or just
file” -
expr $a : .+ /\(.x\)” \| $a
returns the last segment of a path name (i.e,,
file). Watch out for / alone as an argument:

expr will take it as the division operator (see
BUGS below).

A Dbetter representation of example 2.
expr //$a : ‘.x /\(*x\)”

The addition of the // characters eliminates
any ambiguity about the division operator and
simplifies the whole expression.

expr $VAR : ~.* -

returns the number of characters in $VAR.

ed(1), sh(1).

(Printed Dec.1989) Page 2

0ce

321

EXPR(1) (Essential Utilities) EXPR(1)

DIAGNOSTICS
As a side effect of expression evaluation, expr returns the fol-
lowing exit values:

0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such
a string

BUGS
After argument processing by the shell, expr cannot tell the
difference between an operator and an operand except by the
value. If $a is an =, the command:

expr $a = - =~
looks like:
expr = = =

as the arguments are passed to expr (and they will all be
taken as the = operator). The following works:

expr X$a = X=

Page 3 (Printed Dec.1989)

This page is intentionally left blank

Zce

323

=

~————Jdb}—

FACTOR(1) (Essential Utilities) FACTOR(®1)
NAME
factor — obtain the prime factors of a number
SYNOPSIS
factor [integer]
DESCRIPTION

When you use factor without an argument, it waits for you to
give it an integer. After you give it a positive integer less
than or equal to 1077, it factors the integer, prints its prime
factors the proper number of times, and then waits for
another integer. factor exits if it encounters a zero or any
non-numeric character.

If you invoke factor with an argument, it factors the integer
as described above, and then it exits.

The maximum time to factor an integer is proportional to
Vn. factor will take this time when n is prime or the square
of a prime.

DIAGNOSTICS
factor prints the error message, "Ouch,” for input out of
range or for garbage input.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

vece

325

FEDIT(Q1) (Essential Utilities) FEDIT(1)
NAME

fedit, flook — inspect and edit data file or named partition
SYNOPSIS

fedit pathname
fedit —p partition-name
flook pathname
flook —p partition-name

DESCRIPTION
flook may be used to display the contents of a file or a named
partition in hexadecimal and ASCII form. fedit further gives
the possibility of editing the contents of the file or disk or
partition.

The pathname specified in the command line is the name of
the file to be inspected. The partition-name is the name of
the partition to be inspected. The rest of this description will
refer only to files, but partitions are handled in an analogous
manner.

When the command has been issued, the first 256 bytes of the
file will be displayed in hexadecimal and character form,
whereupon the user may issue commands.

The character display displays printable characters directly,
non-printable characters are displayed as an alternative-
intensity period.

flook and fedit allow the following commands:

A hexadecimal number
The contents of 256 bytes starting at the specified
location in the file will be displayed.

Function key F1 (key value 0x01 0x40) or end ~ of —file key
The program terminates.

Function key F10 (key value 0x01 0x49)
The program will prompt the user for a search string.
It will then search forward in the file for this string
and display the data where the string is found.

Page 1 (Printed Dec.1989)

FEDIT(1) (Essential Utilities) FEDIT(1)

Function key SHIFT/F10 (key value 0x01 0x69)
The program will repeat the search for the last
entered string.

Function key F11 (key value 0x01 0x4a)
fedit only. Enter update mode (see below).

Function key F13 (key value 0x01 0x4c)
The contents of the next 256 bytes will be displayed.

Function key SHIFT/F13 (key value 0x01 0x6c)
The contents of the previous 256 bytes will be
displayed.

Function key F15 (key value 0x01 0x4e)
The contents of the first 256 bytes of the file will be
displayed.

Function key F16 (key value 0x01 0x4f)
The contents of the last 256 bytes of the file will be
displayed. The starting address of the displayed data
will be at a 256-byte boundary.

Line feed or down — arrow (key value 0x0a)
The data displayed will be scrolled up 16 bytes.

Up — arrow (key value 0x0c)
The data displayed will be scrolled down 16 bytes.

In fedit function key F11 puts the program in update mode,
where the user may change the contents of the buffer
displayed on the screen. (Actually flook may also be put in
update mode, but can never write the changed buffer back
onto the file.) When the program has been put in update
mode, two cursors appear on the screen, one in the hexade-
cimal display and one at corresponding location in the charac-
ter display. At the top of the screen, the user may see if data
is currently being entered data in HEX mode or ASCII (char-
acter) mode.

The basic command in update mode is merely to type a char-
acter which is then inserted at the position indicated by the
cursors. When input is done in ASCII mode, any printable

(Printed Dec.1989) Page 2

9ce

327

FEDIT(1) (Essential Utilities) FEDIT(1)

character (and most non-printable ones) may be typed. When
input is done in HEX mode, hexadecimal digits may be typed.
Note that both the character and the hexadecimal part of the
screen is updated as characters are typed. If characters are
typed at a location after end-of-file, the file is extended to
include this new location.

In addition the following commands are allowed in update
mode:

The arrow keys
These keys move the cursors around the buffer.

The home key (key value 0xle)
Move the cursors to the first byte on the screen.

Function key F1 (key value 0x01 0x40)
Exit update mode. The program will ask whether the
updated buffer is to be saved in the file or not.

Function key F9 (key value 0x01 0x48)
Go to HEX input mode.

Function key SHIFT/F9 (key value 0x01 0x68)
Go to ASCII input mode.

Function key F11 (key value 0x01 0x4a)

Set end-of-file before the position pointed to by the
cursors. This is only allowed if the current end-of-file
is on the screen or immediately following the last byte
on the screen, a situation which is indicated at the
upper right corner on the screen. This command is
also illegal if the current cursor position is after the
current end-of-file. Thus fedit can be used to move
end-of-file backwards through a file, but only at a rate
of 256 bytes a time.

Moving end-of-file of course does not work when the file
inspected is a disk or if a partition is being inspected.

When inspecting directories, fedit cannot be used because it
opens the file in update mode.

Page 3 (Printed Dec.1989)

=3

FEDIT(1) (Essential Utilities) FEDIT(1)

fedit and flook are just two links to the same file.

SEE ALSO
od(1).

(Printed Dec.1989) Page 4

82¢

329

S e e e ——— ey

FF(1M)

NAME

(Essential Utilities) FF(1M)

ff — list file names and statistics for a file system

SYNOPSIS

/ete/fE [options] special

DESCRIPTION

Page 1

fF reads the i-list and directories of the special file, assuming
it is a file system. I-node data is saved for files which match
the selection criteria. Output consists of the path name for
each saved i-node, plus other file information requested using
the print options below. Output fields are positional. The
output is produced in i-node order; fields are separated by
tabs. The default line produced by ff is:

path-name i-number
With all options enabled, output fields would be:
path-name i-number size uid

The argument n in the option descriptions that follow is used
as a decimal integer (optionally signed), where +n means
more than n, —n means less than n, and n means exactly n.
A day is defined as a 24 hour period.

-I Do not print the i-node number after each path
name.,
-1 Generate a supplementary list of all path names

for multiply-linked files.

—p prefix The specified prefix will be added to each gen-
erated path name. The default is . (dot).

-s Print the file size, in bytes, after each path
name.

-u Print the owner’s login name after each path
name.

—an Select if the i-node has been accessed in n days.

-mn Select if the i-node has been modified in n days.

(Printed Dec.1989)

FF(1M) (Essential Utilities) FF(M)
—-cn Select if the i-node has been changed in n days.
—-n file Select if the i-node has been modified more

recently than the argument file.

~—1 i-node-list
Generate names for only those i-nodes specified
in i-node-list.

SEE ALSO
find(1), ncheck(1M).

BUGS
If the —1 option is not specified, only a single path name out
of all possible ones is generated for a multiply-linked i-node.
If —1 is specified, all possible names for every linked file on
the file system are included in the output. However, no selec-
tion criteria apply to the names generated.

The number of links ff is able to handle is limited to max-
imum 20% of the i—nodes on the disk. This limitation
depends also on the available memory.

(Printed Dec.1989) Page 2

oee

331

Ee————[3

FGREP(1) (Essential Utilities) FGREP(1)

NAME

fgrep — search a file for a character string

SYNOPSIS

fgrep loptions] string [file ...]

DESCRIPTION

Page 1

ferep (fast grep) seaches files for a character string and
prints all lines that contain that string. fgrep is different
from grep(l) and egrep(l) because it searches for a string,
instead of searching for a pattern that matches an expression.
It uses a fast and compact algorithm.

The characters $, *, [, °, |, (,), and \ are interpreted literally
by fgrep, that is, fgrep does not recognize full regular expres-
sions as does egrep. Since these characters have special
meaning to the shell, it is safest to enclose the entire string
in single quotes ’...".

If no files are specified, fgrep assumes standard input. Nor-
mally, each line found is copied to the standard output. The
file name is printed before each line found if there is more
than one input file.

Command line options are:

-b Precede each line by the block number on which it
was found. This can be useful in locating block
numbers by context (first block is 0).

—-c Print only a count of the lines that contain the
pattern.

—-i Ignore upper/lower case distinction during com-
parisons.

-1 Print the names of files with matching lines once,

separated by new-lines. Does not repeat the
names of files when the pattern is found more

than once.

-n Precede each line by its line number in the file
(first line is 1).

-V Print all lines except those that contain the pat-
tern.

(Printed Dec.1989)

FGREP(1) (Essential Utilities) FGREP(1)

-x Print only lines matched entirely.
—e special_string
Search for a special string (string begins with a

-).

—f file Take the list of strings from file.
SEE ALSO

ed(1), egrep(1), grep(1), sed(1), sh(1).
DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, 2 for syn-

tax errors or inaccessible files (even if matches were found).
BUGS

Ideally there should be only one grep command, but there is

not a single algorithm that spans a wide enough range of

space-time tradeoffs. Lines are limited to BUFSIZ characters;

longer lines are truncated. BUFSIZ is defined in
/usr/include/stdio.h.

(Printed Dec.1989) Page 2

2ee

333

| ——

FILE(D) (Essential Utilities) FILE(1)

NAME

file — determine file type

SYNOPSIS

file [—c | [—f file] [~m mfile] arg ...

DESCRIPTION

FILES

file performs a series of tests on each argument in an attempt
to classify it. If an argument appears to be ASCII, file exam-
ines the first 512 bytes and tries to guess its language. If an
argument is an executable a.out, file will print the version
stamp, provided it is greater than 0.

-c The —ec option causes file to check the magic file for
format errors. This validation is not normally carried
out for reasons of efficiency. No file typing is done
under —c.

—f If the —f option is given, the next argument is taken
to be a file containing the names of the files to be
examined.

—m The —m option instructs file to use an alternate
magic file.

file uses the file /etc/magic to identify files that have some
sort of magic number, that is, any file containing a numeric
or string constant that indicates its type. Commentary at the
beginning of /etc/magic explains its format.

/etc/magic

SEE ALSO

Page 1

filehdr(4).

(Printed Dec.1989)

This page is intentionally left blank

vee

335

FINC(1M) (Essential Utilities) FINC(1M)

NAME

finc — fast incremental backup

SYNOPSIS

/ete/finc [selection-criteria] file-system raw-tape

DESCRIPTION

Page 1

finc selectively copies the input file-system to the output raw-
tape . The cautious will want to mount the input file-system
read-only to insure an accurate backup, although acceptable
results can be obtained in read-write mode. The tape must
be previously labelled by labelit. The selection is controlled
by the selection-criteria, accepting only those inodes/files for
whom the conditions are true.

It is recommended that production of a finc tape be preceded
by the ff command, and the output of ff be saved as an index
of the tape’s contents. Files on a finc tape may be recovered
with the frec command.

The argument n in the selection-criteria which follow is used
as a decimal integer (optionally signed), where +n means
more than n, —n means less than n, and n means exactly n.
A day is defined as a 24 hours.

—an True if the file has been accessed in n days.

-mn True if the file has been modified in r days.

-cn True if the i-node has been changed in n
days.

—n file True for any file which has been modified

more recently than the argument file.

EXAMPLES

To write a tape consisting of all files from file-system /usr
modified in the last 48 hours:

fine —m —2 /dev/rdsk/cld0s2 /dev/rSA/ctapel

SEE ALSO

cpio(1), ff(1M), frec(1M), labelit(1M).

(Printed Dec.1989)

This page is intentionally left blank

9ee

e ||

FIND (1) (Essential Utilities) FIND (1)
NAME
find — find files
SYNOPSIS
find path-name-list expression
DESCRIPTION

find recursively descends the directory hierarchy for each path
name in the path-name-list (that is, one or more path names)
seeking files that match a boolean expression written in the
primaries given below. In the descriptions, the argument n is
used as a decimal integer where +n means more than n, —n
means less than n and n means exactly n. Valid expressions
are:

—name file True if file matches the current file name.
Normal shell argument syntax may be used if
escaped (watch out for [, ? and =*).

[—perm] —onum
True if the file permission flags exactly match
the octal number onum (see chmod(1)). If
onum is prefixed by a minus sign, only the
bits that are set in onum are compared with
the file permission flags, and the expression
evaluates true if they match.

—type ¢ True if the type of the file is ¢, where ¢ is b,
¢, d, p, 1, or f for block special file, character
special file, directory, fifo (a.k.a named pipe),
symbolic link, or plain file respectively.

—links n True if the file has n links.

—user uname True if the file belongs to the user uname. If
uname is numeric and does not appear as a
login name in the /etc/passwd file, it is
taken as a user ID.

— group gname
True if the file belongs to the group gname.
If gname is numeric and does not appear in
the /etc/group file, it is taken as a group ID.

Rev.May 1991 Vers.3.10 Page 1

=—

FIND (1) (Essential Utilities) FIND (1)

—size n[c] True if the file is n blocks long (5612 bytes per
block). If n is followed by a ¢, the size is in
characters.

—atime n True if the file has been accessed in n days.
The access time of directories in path-name-
list is changed by find itself.

—mtime n True if the file has been modified in » days.
—ctime n True if the file has been changed in n days.
—exec cmd True if the executed cmd returns a zero value

as exit status. The end of cmd must be punc-
tuated by an escaped semicolon. A command
argument {} is replaced by the current path
name.

—ok cmd Like —exec except that the generated com-
mand line is printed with a question mark
first, and is executed only if the user responds
by typing y.

—print Always true; causes the current path name to
be printed.

—cpio device Always true; write the current file on device
in ¢pio (1) format (56120-byte records).

—newer file True if the current file has been modified
more recently than the argument file.

—depth Always true; causes. descent of the directory
hierarchy to be done so that all entries in a
directory are acted on before the directory
itself. This can be useful when find is used
with ¢pio(1) to transfer files that are con-
tained in directories without write permission.

—mount Always true; restricts the search to the file
system containing the directory specified, or if
no directory was specified, the current direc-

tory.

Page 2 Vers.3.10 Rev.May 1991

—=

FIND (1) (Essential Utilities) FIND (1)
—local True if the file physically resides on the local
system.

(expression) True if the parenthesized expression is true
(parentheses are special to the shell and must
be escaped).

The primaries may be combined using the following operators
(in order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied
by the juxtaposition of two primaries).

3) Alternation of primaries (—o is the or operator).

EXAMPLE
To remove all files named a.out or *.0 that have not been

accessed for a week:

find / \(—name aout —o —name ’'*.0’ \) —atime +7
—execrm {}\;

FILES
/etc/passwd, /etc/group

SEE ALSO
chmod(1), cpio(1), sh(1), test(1), stat(2), umask(2), fs(4).

Rev.May 1991 Vers.3.10 Page 3

FIND (1) (Essential Utilities) FIND (1)

This page is intentionally left blank

Page 4 Vers.3.10 Rev.May 1991

341

lepenemrpme o (RN Oy s S W W N =l

T i 1
Y= B
— e

FREC(1M) (Essential Utilities) FREC(1M)
NAME

frec — recover files from a backup tape
SYNOPSIS

/etc/frec [—p path] [—f reqfile]
raw_tape i number:name ...

DESCRIPTION
frec recovers files from the specified raw tape backup tape
written by volcopy(IM) or finc(1M), given their i numbers.
The data for each recovery request will be written into the
file given by name .

The —p option allows you to specify a default prefixing path
different from your current working directory. This will be
prefixed to any names that are not fully qualified, i.e. that do
not begin with / or ./. If any directories are missing in the
paths of recovery names they will be created.

—p path Specifies a prefixing path to be used to fully
qualify any names that do not start with /
or./.

—f regfile Specifies a file which contains recovery

requests. The format is i_number:newname,
one per line.

EXAMPLES
To recover a file, i-number 1216 when backed-up, into a file
named junk in your current working directory:

frec /dev/rSA/ctapel 1216:junk

To recover files with i numbers 14156, 1232, and 3141 into
files /usr/src/emd/a, fusr/src/cmd/b and /usr/joe/a.c:

frec —p /usr/src/cmd /dev/rSA/ctapel 14156:a
1232:b
3141: /usr/joe/a.c

Page 1 (Printed Dec.1989)

—_— e

FREC(1M) (Essential Utilities) FREC(1M)

SEE ALSO
cpio(1), ff(IM), finc(1M), labelit(1M).

BUGS
While paving a path (i.e. creating the intermediate directories
contained in a pathname) frec can only recover inode fields

for those directories contained on the tape and requested for
recovery.

(Printed Dec.1989) Page 2

2ve

| e || s

FSCK (1M) (Essential Utilities) FSCK (1M)
NAME

fsck, dfsck — check and repair file systems
SYNOPSIS

Jete/fsck [—y] [—n] [—sX] [—SX] [—t file] [—q] [~D]
[—=f] [—Db] [file-systems]

/etc/dfsck [optionsl | filsysl ... — [options2] filsys2 ...

DESCRIPTION
fsck

fsck audits and interactively repairs inconsistent conditions for
file systemer. If the file system is found to be consistent, the
number of files, blocks used, and blocks free are reported. If
the file system is inconsistent the user is prompted for con-
currence before each correction is attempted. It should be
noted that most corrective actions will result in some loss of
data. The amount and severity of data loss may be determined
from the diagnostic output. The default action for each correc-
tion is to wait for the user to respond yes or no. If the user
does not have write permission fsck defaults to a —n action.

The following options are accepted by fsck.
-y Assume a yes response to all questions asked by fsck.

—n Assume a no response to all questions asked by fsck; do
not open the file system for writing.

—sX Ignore the actual free list and (unconditionally) recon-
struct a new one by rewriting the super-block of the file
system. The file system should be unmounted while this
is done; if this is not possible, care should be taken that
the system is quiescent and that it is rebooted immedi-
ately afterwards. This precaution is necessary so that
the old, bad, in-core copy of the superblock will not con-
tinue to be used, or written on the file system.

The —sX option allows for creating an optimal free-list
organization.

Rev.May 1991 Version 3.10 Page 1

I e .

FSCK (1M)

-SX
* Conditionally reconstruct the free list. This option is like

(Essential Utilities) FSCK (1M)

If X is not given, the values used when the file system
was created are used. The format of X is cylinder
size:gap size.

—sX above, except that the free list is rebuilt only if
there were no discrepancies discovered in the file system.
Using —S forces a no response to all questions asked by
fsck. This option is useful for forcing free list reorgani-
zation on uncontaminated file systems.

If fsck cannot obtain enough memory to keep its tables,
it uses a scratch file. If the —t option is specified, the file
named in the next argument is used as the scratch file, if
needed. Without the —t flag, fsck will prompts the user
for the name of the scratch file. The file chosen should
not be on the file system being checked, and if it is not a
special file or did not already exist, it is removed when
fsck completes.

Quiet fsck. Do not print size-check messages. Unrefer-
enced fifos are silently removed. If fsck requires it,
counts in the superblock will be automatically fixed and
the free list salvaged.

Directories are checked for bad blocks. Useful after sys-
tem crashes.

Fast check. Check block and sizes and check the free
list. The free list is reconstructed if it is necessary.

Reboot. If the file system being checked is the root file
system and modifications have been made, then either
remount the root file system or reboot the system. A
remount is done if there was minor damage.

If no file-systems are specified, fsck will read a list of default
file systems from the file /ete/checklist.

Page 2

Version 3.10 Rev.May 1991

S

FSCK (1M) (Essential Utilities) FSCK (1M)

Inconsistencies checked are as follows:

1. Blocks claimed by more than one i-node or the
free list.

2. Blocks claimed by an i-node or the free list outside
the range of the file system.

3. Incorrect link counts.

4, Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.
Bad i-node format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated i-node.
I-node number out of range.
8. Super Block checks:
More than 65536 i-nodes.
More blocks for i-nodes than there are in
the file system.
9. Bad free block list format.
10. Total free block and/or free i-node count
incorrect.

Noo

Orphaned files and directories (allocated but unreferenced) are,
with the user’s concurrence, reconnected by placing them in
the lost + found directory, if the files are nonempty. The user
will be notified if the file or directory is empty or not. Empty
files or directories are removed, as long as the —n is not
specified. fsck will force the reconnection of nonempty direc-
tories. The name assigned is the i-node number. The only res-
triction is that the directory lost +found must preexist in the
root of the file system being checked and must have empty
slots in which entries can be made. This is accomplished by
making lost +found, copying a number of files to the direc-
tory, and then removing them (before fsck is executed).

Checking the raw device is almost always faster and should be
used with everything but the root file system.

Rev.May 1991 Version 3.10 Page 3

FSCK (1M) (Essential Utilities) FSCK (1M)

dfsck
dfsck allows two file system checks on two different drives
simultaneously. Optionsl and options2 are used to pass options
to fsck for the two sets of file systems. A — is the separator
between the file system groups.

The dfsck program permits an operator to interact with two
fsck (1M) programs at once. To aid in this, dfsck will print the
file system name for each message to the user. When answer-
ing a question from dfsck, the user must prefix the response
with a 1 or a 2 (indicating that the answer refers to the first or
second file system group).

FILES
/etc/checklist contains default list of file systems to
check.
SEE ALSO
checkfsys(IM), crash(IM), mkfs(IM), ncheck(1M), uadmin(2),
checklist(4), fs(4).
BUGS

I-node numbers for . and .. in each directory are not checked
for for validity.

Page 4 Version 3.10 Rev.May 1991

347

FSDB(1M) (Essential Utilities) FSDB(1M)

NAME

fsdb — file system debugger

SYNOPSIS

/etc/fsdb special [—]

DESCRIPTION

Page 1

fsdb can be used to patch up a damaged file system after a
crash. It has conversions to translate block and i-numbers
into their corresponding disk addresses. Also included are
mnemonic offsets to access different parts of an i-node. These
greatly simplify the process of correcting control block entries
or descending the file system tree.

fsdb contains several error-checking routines to verify i-node
and block addresses. These can be disabled if necessary by
invoking fsdb with the optional — argument or by the use of
the O symbol. (fsdb reads the i-size and f-size entries from
the superblock of the file system as the basis for these
checks.)

Numbers are considered decimal by default. Octal numbers
must be prefixed with a zero. During any assignment opera-
tion, numbers are checked for a possible truncation error due
to a size mismatch between source and destination.

fsdb reads a block at a time and will therefore work with raw
as well as block I/0. A buffer management routine is used to
retain commonly used blocks of data in order to reduce the
number of read system calls. All assignment operations
result in an immediate write-through of the corresponding
block.

The symbols recognized by fsdb are:
absolute address

i convert from i-number to i-node address
b convert to block address
d directory slot offset
+,— address arithmetic
q quit
(Printed Dec.1989)

de

FSDB(1M) (Essential Utilities) FSDB(1M)

A

save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities
file print facility

byte mode

word mode

double word mode
escape to shell

I+

N
-

~OgEE®T O N nnyv

The print facilities generate a formatted output in various
styles. The current address is normalized to an appropriate
boundary before printing begins. It advances with the print-
ing and is left at the address of the last item printed. The
output can be terminated at any time by typing the delete
character. If a number follows the p symbol, that many
entries are printed. A check is made to detect block boun-
dary overflows since logically sequential blocks are generally
not physically sequential. If a count of zero is used, all
entries to the end of the current block are printed. The print
options available are:

i print as i-nodes

d print as directories

o print as octal words

e print as decimal words
c print as characters

b print as octal bytes

The f symbol is used to print data blocks associated with the
current i-node. If followed by a number, that block of the file
is printed. (Blocks are numbered from zero.) The desired
print option letter follows the block number, if present, or the
f symbol. This print facility works for small as well as large
files. It checks for special devices and that the block pointers
used to find the data are not zero.

(Printed Dec.1989) Page 2

8veE

349

FSDB(IM) (Essential Utilities) FSDB(1M)

Dots, tabs, and spaces may be used as function delimiters but
are not necessary. A line with just a new-line character will
increment the current address by the size of the data type
last printed. That is, the address is set to the next byte,
word, double word, directory entry or i-node, allowing the
user to step through a region of a file system. Information is
printed in a format appropriate to the data type. Bytes,
words and double words are displayed with the octal address
followed by the value in octal and decimal. A .B or .D is
appended to the address for byte and double word values,
respectively. Directories are printed as a directory slot offset
followed by the decimal i-number and the character represen-
tation of the entry name. I-nodes are printed with labeled
fields describing each element.

The following mnemonics are used for i-node examination
and refer to the current working i-node:

md mode
In link count
uid user ID number
gid group ID number
Sz file size
a# data block numbers (0 — 12)
at access time
mt modification time
maj major device number
min minor device number
EXAMPLES
386i prints i-number 386 in an i-node format.
This now becomes the current working i-
node.
In=4 changes the link count for the working i-
node to 4.
In=+1 increments the link count by 1.
fc prints, in ASCII, block zero of the file associ-

ated with the working i-node.

Page 3 (Printed Dec.1989)

k3

FSDB(1M)

2i.fd

dsi.fe

512B.p0o

2i.a0b.d7=3
d7.nm="name”

a2b.p0d

SEE ALSO

(Essential Utilities) FSDB(1M)

prints the first 32 directory entries for the
root i-node of this file system.

changes the current i-node to that associ-
ated with the 5th directory entry (numbered
from zero) found from the above command.
The first logical block of the file is then
printed in ASCIIL.

prints the superblock of this file system in
octal.

changes the i-number for the seventh direc-
tory slot in the root directory to 3. This
example also shows how several operations
can be combined on one command line.

changes the name field in the directory slot
to the given string. Quotes are optional
when used with nm if the first character is
alphabetic.

prints the third block of the current i-node
as directory entries.

fsck(1M), dir(4), fs(4).

(Printed Dec.1989)

Page 4

0s€

351

FSSTAT(1M) (Essential Utilities) FSSTAT(1M)

NAME
fsstat — report file system status

SYNOPSIS
/etc/fsstat special file

DESCRIPTION
fsstat reports on the status of the file system on special file.
During startup, this command is used to determine if the file
system needs checking before it is mounted. fsstat succeeds if
the file system is unmounted and appears okay. For the root

file system, it succeeds if the file system is active and not
marked bad.

SEE ALSO
fs(4).

DIAGNOSTICS
The command has the following exit codes:

0: the file system is not mounted and appears okay,
(except for root where 0 means mounted and okay).

1: the file system is not mounted and needs to be
checked.

2: the file system is mounted.
3: the command failed.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

2se

353

FUSER(1M) (Essential Utilities) FUSER(1M)

NAME

fuser — identify processes using a file or file structure

SYNOPSIS

/etc/fuser [—ku] files | resources [—1 [[—ku] files |
resources]

DESCRIPTION

Page 1

fuser outputs the process IDs of the processes that are using
the files or remote resources specified as arguments. Each
process ID is followed by a letter code, interpreted as follows:
if the process is using the file as 1) its current directory, the
code is ¢, 2) the parent of its current directory (only when the
file is being used by the system), the code is p, or 3) its root
directory, the code is r. For block special devices with
mounted file systems, all processes using any file on that dev-
ice are listed. For remote resource names, all processes using
any file associated with that remote resource (Remote File
Sharing) are reported. (fuser cannot use the mount point of
the remote resource; it must use the resource name.) For all
other types of files (text files, executables, directories, devices,
etc.) only the processes using that file are reported.

The following options may be used with fuser:

-u the user login name, in parentheses, also follows the
process ID.

-k the SIGKILL signal is sent to each process. Since
this option spawns kills for each process, the kill mes-
sages may not show up immediately [see kill(2)].

If more than one group of files are specified, the options may
be respecified for each additional group of files. A lone dash
cancels the options currently in force; then, the new set of
options applies to the next group of files.

The process IDs are printed as a single line on the standard
output, separated by spaces and terminated with a single new
line. All other output is written on standard error.

(Printed Dec.1989)

— e e
—
=

FUSER(1M) (Essential Utilities) FUSER(1M)

You cannot list processes using a particular file from a remote
resource mounted on your machine. You can only use the
resource name as an argument.

Any wuser with permission to read /dev/kmem and
/dev/mem can use fuser. Only the super-user can ter-
minate another user’s process

FILES
/dev/kmem for system image
/dev/mem also for system image

SEE ALSO
mount(1M), ps(1), kill(2), signal(2).

(Printed Dec.1989) Page 2

vse

355

GENDEV(1M) (Essential Utilities) GENDEV(1IM)

NAME

gendev — generate device numbers.

SYNOPSIS

/etc/gendev [parameter list]

DESCRIPTION

gendev is used to generate the major/minor device number
pair for mknod (1M). It can operate interactive by calling
gendev without any parameter. When operating interactive
gendev asks the user questions about device type (terminal,
printer, disk or kmem), CPU number, channel number or
what ever information is needed. Finally, gendev outputs the
device number in hexadecimal form, plus the major and
minor device numbers in decimal form. By adding a parame-
ter list to the command call gendev will not asks any ques-
tions. gendev can be used to translate major/minor numbers
or devices to text explanations.

EXAMPLE

Page 1

Example of interactive operating :

$ /etc/gendev
Select: 1:term 2:print 3:disk 4:kmem 5:maj/min to meaning 6:dev to meaning

Select: 3

Dioc no: 14

Channel no: 8

Subdiskno (0 for none): 0

Device: 0x3880 major =56 minor=128
$

Example of operating on parameter list:
$ /etc/gendev 314 8 0

3880 56 128
$

(Printed Dec.1989)

GENDEV(1M) (Essential Utilities) GENDEV(1M)

Example of explaining major/minor number:

$ /etc/gendev
Select: 1:term 2:print 3:disk 4:kmem 5:maj/min to meaning 6:dev to meaning

Select: 3

major: 56

minor: 128

Disk on dioc no 14 disk no 8 Subdisk no 0 first hard disk on controller 1
$

BUGS

None of the input parameters to gendev is tested for valid
value.

(Printed Dec.1989) Page 2

9s¢g

357

GETOPT(1) (Essential Utilities) GETOPT@)
NAME
getopt — parse command options
SYNOPSIS
set — — getopt optstring $ =
DESCRIPTION

WARNING: Start using the new command getopts (1) in place
of getopt (1). getopt (1) will not be supported in the next major
release. For more information, see the WARNINGS section,
below.

getopt is used to break up options in command lines for easy
parsing by shell procedures and to check for legal options.
optstring is a string of recognized option letters (see
getopt(3C)); if a letter is followed by a colon, the option is
expected to have an argument which may or may not be
separated from it by white space. The special option — ~ is
used to delimit the end of the options. If it is used explicitly,
getopt will recognize it; otherwise, getopt will generate it; in
either case, gefopt will place it at the end of the options. The
positional parameters ($1 $2 ...) of the shell are reset so that
each option is preceded by a — and is in its own positional
parameter; each option argument is also parsed into its own
positional parameter.

EXAMPLE

The following code fragment shows how one might process
the arguments for a command that can take the options a or
b, as well as the option o, which requires an argument:

set -- getopt abo: $=*
if [$?2 1= 0]
then
echo S$USAGE
exit 2
fi
for i in $=*
do)

case $i in
-a | -b) FLAG=$i; shift;;

Page 1 (Printed Dec.1989)

GETOPTQ) (Essential Utilities) GETOPT(1)
-0) OARG =$2; shift 2;;
-=) shift; break;;
esac
done

This code will accept any of the following as equivalent:
cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file

cmd -a -oarg -- file file
SEE ALSO
getopts(1), sh(1), getopt(3C).
DIAGNOSTICS

gelopt prints an error message on the standard error when it
encounters an option letter not included in optstring.

WARNINGS
getopt (1) does not support the part of Rule 8 of the command
syntax standard that permits groups of option-arguments fol-
lowing an option to be separated by white space and quoted.
For example,

cmd -a -b -o "xxx z yy” file

is not handled correctly). To correct this deficiency, use the
new command getopts (1) in place of getopt (1).

getopt (1) will not be supported in the next major release. For
this release a conversion tool has been provided, getoptcut.
For more information about getopts and getoptcut, see the
getopts (1) manual page.

If an option that takes an option-argument is followed by a
value that is the same as one of the options listed in optstring
(referring to the earlier EXAMPLE section, but using the fol-
lowing command line: cmd -o -a file), getopt will always
treat —a as an option-argument to —o; it will never recog-
nize —a as an option. For this case, the for loop in the
example will shift past the file argument.

(Printed Dec.1989) Page 2

86¢e

359

GETOPTS(1) (Essential Utilities) GETOPTS(1)

NAME

getopts, getoptevt — parse command options

SYNOPSIS

getopts optstring name [arg ...]
/usr/lib/getoptevt [—b] file

DESCRIPTION

Page 1

getopts is used by shell procedures to parse positional parame-
ters and to check for legal options. It supports all applicable
rules of the command syntax standard Rules 3-10. It should
be used in place of the getopt(1l) command. (See the WARN-
ING, below.)

optstring must contain the option letters the command using
getopts will recognize; if a letter is followed by a colon, the
option is expected to have an argument, or group of argu-
ments, which must be separated from it by white space.

Each time it is invoked, getopts will place the next option in
the shell variable name and the index of the next argument
to be processed in the shell variable OPTIND. Whenever the
shell or a shell procedure is invoked, OPTIND is initialized to
1.

When an option requires an option-argument, gefopts places it
in the shell variable OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a
non-zero exit status. The special option “— —”’ may be used
to delimit the end of the options.

By default, getopts parses the positional parameters. If extra
arguments (arg ...) are given on the gefopts command line,
getopts will parse them instead.

Jusr/lib/getoptcut reads the shell script in file, converts it to

use getopts (1) instead of getopt (1), and writes the results on
the standard output.

(Printed Dec.1989)

=] e — ey | S R S e A T S ——y Y P W [L], |
I s

GETOPTS(®1) (Essential Utilities) GETOPTS(1)

—b the results of running /usr/lib/getoptcvt will be port-
able to earlier releases of the UNIX system.
Jusr/lib/getoptcut modifies the shell script in file so
that when the resulting shell script is executed, it
determines at run time whether to invoke getopts(1)
or getopt(1).

So all new commands will adhere to the command syntax
standard, they should use getopts (1) or getopt(3C) to parse
positional parameters and check for options that are legal for
that command (see WARNINGS, below).

EXAMPLE
The following fragment of a shell program shows how one
might process the arguments for a command that can take
the options a or b, as well as the option o, which requires an
option-argument:

while getopts abo: c

do
case $c in
a | b) FLAG=$C; ;
o) OARG=$OPTARG; ;
\?) echo S$SUSAGE
exit 2;;
esac
done
shift expr $OPTIND - 1

This code will accept any of the following as equivalent:

cmd -a -b -o "xxx z yy” file
cmd -a -b -o "xxx z yy” -- file
cmd -ab -o xxx,z,yy file

cmd -ab -o "xxx 2z yy” file

cmd -0 xxx,z,yy -b -a file

(Printed Dec.1989) Page 2

09e

361

GETOPTS(1) (Essential Utilities) GETOPTS(1)

SEE ALSO
intro(1), sh(1), getopts(3C).

SUPERMAX System V Release Notes, Essential Utilities

WARNING
Although the following command syntax rule relaxations are
permitted under the current implementation, they should not
be used because they may not be supported in future releases
of the system. As in the EXAMPLE section above, a and b
are options, and the option o requires an option-argument:

cmd -aboxxx file

(Rule 5 violation:

options with option-arguments must not be grouped
with other options)

cmd -ab -oxxx file

(Rule 6 violation:

there must be white space after an option that
takes an option-argument)

Changing the value of the shell variable OPTIND or parsing
different sets of arguments may lead to unexpected results.

DIAGNOSTICS
getopts prints an error message on the standard error when it
encounters an option letter not included in optstring.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

29¢€

363

GETTY(1M) (Essential Utilities) GETTY(IM)

NAME

getty — set terminal type, modes, speed, and line discipline

SYNOPSIS

/etc/getty [—u] [—i] [T terminologytable] [—v] [—n]
[—b] [—r [delaytime]]
[—t timeout] line [speed [type [linedisc]]]

uugetty [~T terminology] [—v] [—h] [—b]
[—r [delaytime]]
[—t timeout] line [speed [type [linedisc]]]

/ete/getty —c file

DESCRIPTION

Page 1

getty is a program that is invoked by init(1M). It is the
second process in the series, (init-getty-login-shell) that ulti-
mately connects a user with the UNIX system. It can only be
executed by the super-user; that is, a process with the user-
ID of root. Initially getty runs the terminology to initialize
the VTI (Virtuel Terminal Interface), and prints the login
message field for the entry it is using from /etc/gettydefs.
getty reads the user’s login name and invokes the login(1)
command with the user’s name as argument. While reading
the name, getfy attempts to adapt the system to the speed
and type of terminal being used.

It does this by using the options and arguments specified.

-u Act like uugetty. If this option is set,
getty makes a lock file like uugetty
does (see uugetty). This feature is
very useful when a modem is con-
nected to the line. The lock file makes
it possible for several programs to
operate on the same modem (see TTY
and uucp).

(Printed Dec.1989)

GETTY(1M) (Essential Utilities) GETTY(1M)

—T terminologytable

—r [delaytime]

—t timeout

(Printed Dec.1989)

No issue picture. If this option is set
getty will not print out the issue file
/ete/issue to the standard output.

Run terminology table. By setting —T
getty will run the terminology table
/ete/types/terminologytable.

The directory name /etc/types is added
by getty. This option overrun the —v
option.

No terminology run. By setting —v
getty will not run the terminology
table specified in the NTC. (Network
Terminal Controller) if any is con-
nected to the line.

No hangup. Unless gefty is invoked
with the —h flag, gefty will force a
hangup on the line by setting the
speed to zero before setting the speed
to the default or specified speed.

Ignore <break> character. Option
—Db disables the break function which
make getty try next entry given in the
current selected /etc/gettydefs entry.

Read wait. Option —r will make getty
wait for a character before writing the
login message placed in the
Jetc/gettydefs file. If a delaytime is
added, getty will wait for the specified
delaytime (in seconds) after first char-
acter has been detected, before writ-
ing the login message.

Set timeout. The -t flag plus
timeout (in seconds), specifies that
getty should exit if the open on the
line succeeds and no one types

Page 2

v9€

365

GETTY(1M) (Essential Utilities) GETTY(IM)

anything in the specified number of
seconds.

If the options —T and —v are not specified, getty examine the
NTC (Network Terminal Controller), if any. The TYPE field
in the NTC is used as an ID to select the terminology table,
required by the terminal connected to the NTC terminal
interface. getty will first check the map file
/etc/termtype.map. An entry to this map file may look
somewhat like,

jr int/dded50.t

If no matching to the ID is found in the map file, getty will
continue to scan the two directories, /etc/types/ntc and
/etc/types. The /etc/types/ntc directory is useful for plac-
ing personal and general links to the terminology tables espe-
cially relayed to run terminology from getty. The directory
scanning takes place in the order of which the entries appears
as shown by the following command,

$ 1s —f /etc/types/ntc /etc/types

The matching routine looks for the first short match. If the
/etc/types/ntc looks like,

jr.i

3r400.t

jr400.i

jr.t

jr
the matching routine will select the entry jr400.t to be the
first short matching to jr.. Notice that entries having a suffix
like ”.?”, where ”?” means any character, are ignored, except
the suffix ”.t”. To select jr.t change jr to jr.t in the NTC
TYPE field, or switch jr400.t and jr.t in the /etc/types/ntc
directory. If still no match getty will expand all ”. to ”/dde
except the two last positions of the NTC TYPE name.

Page 3 (Printed Dec.1989)

— |

GETTY(1M) (Essential Utilities) GETTY(1M)

The expansion of uk.500.t becomes uk.dde500.t making
getty perform an extra scanning in the /etc/types/uk direc-
tory to match dde500.t.

The first argument, line, is the name of a tty-line in /dev to
which getty is to attach itself. getty uses this string as the
name of a file in the /dev directory to open for reading and
writing.

speed, the optional second argument, is a label to a speed and
tty definition in the file /etc/gettydefs. This definition tells
getty at what speed to initially run; what the login message
should look like; what the initial tty settings are and what
speed to try next. The user should indicate if the speed is
inappropriate (by typing a <break > character). The default
speed is 300 baud.

Type, the optional third argument, is a character string
describing to getty what type of terminal is connected to the
line in question. getty recognizes the following types:

none default

ds40-1 Dataspeed40/1
tektronix,tek Tektronix

vt6l DEC vt61

vt100 DEC vt100

hp45 Hewlett-Packard 45
cl00 Concept 100

The default terminal is none; i.e., any crt or normal terminal
unknown to the system. Also, for terminal type to have any
meaning, the virtual terminal handlers must be compiled into
the operating system. They are available, but not compiled in
the default condition.

linedisc, the optional fourth argument, is a character string
describing which line discipline to use in communicating with
the terminal. The line disciplines available in the operating
system is LDISCO and LDISCI1. The default line discipline is
LDISCO, (see User’s Guide 2-6).

(Printed Dec.1989) Page 4

99¢

367

GETTY(1M) (Essential Utilities) GETTY(1M)

When given no optional arguments, getty sets the speed of the
interface to 300 baud, specifies that raw mode is to be used
(awaken on every character); that echo is to be suppressed,
either parity allowed; new-line characters will be converted to
carriage return-line feed and tab expansion performed on the
standard output. It types the login message before reading
the user’s name one character at a time. If a null character
(or framing error) is received, it is assumed to be the result of
the user activating the ‘“‘break’ key. This will cause getty to
attempt the next speed in the series. The series that getty
tries is determined by what it finds in /etc/gettydefs.

After the user’s name has been typed in, it is terminated by a
new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately
(see ioctl(2)).

The user’s name is scanned to see if it contains any lower-
case alphabetic characters; if not, and if the name is non-
empty, the system is told to map any future upper-case char-
acters into the corresponding lower-case characters.

Finally, login is exec’d with the user’s name as an argument.
Additional arguments may be typed after the login name.
These are passed to login, which will place them in the
environment (see login (1)).

If getty is activated by the link name uugetty the the options
—u and —i will be set, which make getty able to behave like
the uugetty supplied by the uucp package.

A check option is provided. When getty is invoked with the
—c¢ option and file, it scans the file as if it were scanning
/etc/gettydefs and prints out the results to the standard
output. If there are any unrecognized modes or improperly
constructed entries, it reports these. If the entries are
correct, it prints out the values of the various flags. See
ioctl(2) to interpret the values. Note that some values are
added to the flags automatically.

Page 5 (Printed Dec.1989)

— —

GETTY(1M) (Essential Utilities) GETTY(1M)
FILES
Jete/gettydefs line setup file
/etc/termtype.map terminology map file
/etc/types/nte terminology file links directory
/etc/issue issue picture file
SEE ALSO

ct(1C), init(1M), login(1), ioctl(2), gettydefs(4), inittab(4),
termtype.map(4), issue(4), tty(7).

BUGS

While getty understands simple, single character quoting con-
ventions, it is not possible to quote certain special control
characters used by getty. Thus, you cannot login via getty
and type a #, @, /, !, _, backspace, "U, "D, or & as part of
your login name or arguments. getfy uses them to determine
when the end of the line has been reached, which protocol is
being used, and what the erase character is. They will always
be interpreted as having their special meaning.

(Printed Dec.1989) Page 6

89¢

369

GREP() (Essential Utilities) GREP(1)

NAME

grep — search a file for a pattern

SYNOPSIS

grep [options] limited regular expression [file ...]

DESCRIPTION

Page 1

grep searches files for a pattern and prints all lines that con-
tain that pattern. grep uses limited regular expressions
(expressions that have string values that use a subset of the
possible alphanumeric and special characters) like those used
with ed (1) to match the patterns. It uses a compact non-
deterministic algorithm.

Be careful using the characters $, *, [, ", |, (,), and \ in the
limited regular expression because they are also meaningful
to the shell. It is safest to enclose the entire limited regular
expression in single quotes ’...".

If no files are specified, grep assumes standard input. Nor-
mally, each line found is copied to standard output. The file
name is printed before each line found if there is more than
one input file.

Command line options are:

—b Precede each line by the block number on which it was
found. This can be useful in locating block numbers by
context (first block is 0).

—c Print only a count of the lines that contain the pattern.

-1 Ignore upper/lower case distinction during comparis-
ons.

—1 Print the names of files with matching lines once,
separated by new-lines. Does not repeat the names of
files when the pattern is found more than once.

—n Precede each line by its line number in the file (first
line is 1).

—s Suppress error messages about nonexistent or unread-
able files

—v Print all lines except those that contain the pattern.

(Printed Dec.1989)

e e

e ———————_

GREP(1) (Essential Utilities) GREP(1)
SEE ALSO

ed(1), egrep(1), fgrep(1), sed(1), sh(1).
DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, 2 for syn-

tax errors or inaccessible files (even if matches were found).
BUGS

Lines are limited to BUFSIZ characters; longer lines are trun-

cated. BUFSIZ is defined in /usr/include/stdio.h.

If there is a line with embedded nulls, grep will only match

up to the first null; if it matches, it will print the entire line.

(Printed Dec.1989) Page 2

0.€

371

g == = = — _——| m [——
HWDATE(1M) (Essential Utilities) HWDATE(1M)
NAME

hwdate — set or get the date from an external clock device.

SYNOPSIS

hwdate [mmddhhmmyyss]

DESCRIPTION

If no argument is given, the current date and time from an
external clock device are printed. Otherwise, the clock device
will be initalized with the date from the argument. The first
mm is the month number; dd is the day number in the
month; hh is the hour number (24 hour system); the second
mm is the minute number; yy is the last 2 digits of the year
number; ss is the seconds. For example:

hwdate 100800458517

sets the date to Oct 8, 12:45:17 AM, 1985. The system
operates in GMT. hwdate takes care of the conversion to and
from local standard and daylight time.

EXAMPLE

Page 1

hwdate is useful for setting the current date and time when
booting the system. The following example shows a shell
script, that should be called by init during boot.

='hwdate 2>/dev/null’ # call hwdate and save date

if [$2 1= 0] # if no clock device available
then

/etc/settime # then get date from console

while [$? 1= 0] # continue until valid date

do

/etc/settime

done

else

echo Current date is: ‘date $d4°
if clock device, set date
fi

(Printed Dec.1989)

=3

HWDATE(M) (Essential Utilities) HWDATE(1M)
DIAGNOSTICS
No permission if your are not the super-user and you

try to change the date.

bad conversion if the date set is syntactically incorrect.

(Printed Dec.1989) Page 2

cle

373

e ===

HWSTATUS(1M) (Essential Utilities) HWSTATUS(1M)
NAME
hwstatus — decode status from Non-Operator Diagnostic Pro-
grams
SYNOPSIS
/etc/hwstatus [—h hex hex hex hex] [-d special file]
DESCRIPTION

hwstatus decodes status information on the winchester disk
written by the Diagnostic Programs.

hwstatus will by default use the special file /dev/boot.0, a
reference to the physical disk on which winchester boot is
installed.

—h hex hex hex hex
causes hwstatus to translate the 4 32-bit hexadecimal
values into status information.

~d <special file >
causes hwstatus to use <special file> instead of
/dev/boot.0 as a reference to the physical disk on
which winchester boot is installed.

The termination code from hwstatus

0 No errors found
1 Illegal parameters or error in opening /dev/boot.0 or
<special file>
2 Error during one or more of the tests
SEE ALSO

boot(1M), mkwboot(1M).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

V€

375

ID(1M) (Essential Utilities) ID(1M)
NAME
id — print user and group IDs and names
SYNOPSIS
id
DESCRIPTION

id outputs the user and group IDs and the corresponding
names of the invoking process. If the effective and real IDs
are different, both are printed.

SEE ALSO
logname(1), getuid(2).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

9.8

INFOCMP(1M) (Essential Utilities) INFOCMP(1M)
NAME

infocmp — compare or print out terminfo descriptions

SYNOPSIS

infocmp [-d] [-c] [-n] [-I} [-L] [-C] [-r] [—u]
[-s d]i|l|e] [=v] [-V] [-1] [-w width] [—B directory]
[termname ...]

DESCRIPTION

infocmp can be used to compare a binary terminfo(4) entry

~with other terminfo entries, rewrite a terminfo(4) description

to take advantage of the use= terminfo field, or print out a
terminfo(4) description from the binary file (term(4)) in a
variety of formats. In all cases, the boolean fields will be
printed first, followed by the numeric fields, followed by the
string fields.

Default Options

377

If no options are specified and zero or one termnames are
specified, the —1I option will be assumed. If more than one
termname is specified, the —d option will be assumed.

Comparison Options [—d] [—c] [—n]

Page 1

infocmp compares the terminfo(4) description of the first ter-
minal termname with each of the descriptions given by the
entries for the other terminal’s termnames. If a capability is
defined for only one of the terminals, the value returned will
depend on the type of the capability: F for boolean variables,
—1 for integer variables, and NULL for string variables.

-d produce a list of each capability that is different. In
this manner, if one has two entries for the same ter-
minal or similar terminals, using infocmp will show
what is different between the two entries. This is
sometimes necessary when more than one person
produces an entry for the same terminal and one
wants to see what is different between the two.

-c produce a list of each capability that is common
between the two entries. Capabilities that are not

(Printed Dec.1989)

INFOCMP(1M) (Essential Utilities) INFOCMP(1M)

set are ignored. This option can be used as a quick
check to see if the —u option is worth using.

-n produce a list of each capability that is in neither
entry. If no termnames are given, the environment
variable TERM will be used for both of the term-
names. This can be used as a quick check to see if
anything was left out of the description.

Source Listing Options [—I] [-L} [-C] [—r]

The —I, —L, and —C options will produce a source listing
for each terminal named.

o | use the terminfo(4) names

-L use the long C variable name listed in <term.h>

-C use the termcap names

-r when using —C, put out all capabilities in termcap
form

If no termnames are given, the environment variable TERM
will be used for the terminal name.

The source produced by the —C option may be used directly
as a termcap entry, but not all of the parameterized strings
may be changed to the termcap format. infocmp will attempt
to convert most of the parameterized information, but that
which it doesn’t will be plainly marked in the output and
commented out. These should be edited by hand.

All padding information for strings will be collected together
and placed at the beginning of the string where termcap
expects it. Mandatory padding (padding information with a
trailing ’/’) will become optional.

All termcap variables no longer supported by terminfo(4), but
which are derivable from other terminfo(4) variables, will be
output. Not all terminfo(4) capabilities will be translated;
only those variables which were part of termcap will normally
be output. Specifying the —r option will take off this restric-
tion, allowing all capabilities to be output in termcap form.

(Printed Dec.1989) Page 2

8¢

379

e e = A == =] ?

INFOCMP(1M) (Essential Utilities) INFOCMP(1M)

Note that because padding is collected to the beginning of the
capability, not all capabilities are output, mandatory padding
is not supported, and termcap strings were not as flexible, it
is not always possible to convert a terminfo(4) string capabil-
ity into an equivalent termcap format. Not all of these
strings will be able to be converted. A subsequent conversion
of the termcap file back into terminfo(4) format will not
necessarily reproduce the original terminfo(4) source.

Some common terminfo parameter sequences, their termcap
equivalents, and some terminal types which commonly have
such sequences, are:

Terminfo Termcap Representative
Terminals

%pl%c %. adm

%pl%d %d hp, ANSI standard,
vt100

%pl%’x’ % + %c % +x concept

i Pl ANSI standard,
vt100

%pl%?% %’ % > Yt %pl%’y’ % + %; % >xy concept

%p2 is printed before %pl Yor hp

Use= Option [—ul]

-u produce a terminfo(4) source description of the first
terminal termname which is relative to the sum of
the descriptions given by the entries for the other
terminals termnames. It does this by analyzing the
differences between the first termname and the other
termnames and producing a description with use=
fields for the other terminals. In this manner, it is
possible to retrofit generic terminfo entries into a
terminal’s description. Or, if two similar terminals
exist, but were coded at different times or by
different people so that each description is a full
description, using infocmp will show what can be

Page 3 (Printed Dec.1989)

INFOCMP(1M) (Essential Utilities) INFOCMP(1M)

done to change one description to be relative to the
other.

A capability will get printed with an at-sign (@) if it no
longer exists in the first termname, but one of the other term-
name entries contains a value for it. A capability’s value gets
printed if the value in the first termname is not found in any
of the other termname entries, or if the first of the other
termname entries that has this capability gives a different
value for the capability than that in the first termname.

The order of the other termname entries is significant. Since
the terminfo compiler tic(IM) does a left-to-right scan of the
capabilities, specifying two wuse= entries that contain
differing entries for the same capabilities will produce
different results depending on the order that the entries are
given in. infocmp will flag any such inconsistencies between
the other termname entries as they are found.

Alternatively, specifying a capability after a use= entry that
contains that capability will cause the second specification to
be ignored. Using infocmp to recreate a description can be a
useful check to make sure that everything was specified
correctly in the original source description.

Another error that does not cause incorrect compiled files,
but will slow down the compilation time, is specifying extra
use= fields that are superfluous. infocmp will flag any other
termname use = fields that were not needed.

Other Options [—s d]i|l|c] [-v] [-V] [-1] [—w width]

-s sort the fields within each type according to the
argument below:

d leave fields in the order that they are stored in
the terminfo database.

i sort by terminfo name.
1 sort by the long C variable name.

c sort by the termcap name.

(Printed Dec.1989) Page 4

08¢

381

INFOCMP(1M) (Essential Utilities) INFOCMP(1M)

If no —s option is given, the fields printed out will
be sorted alphabetically by the ferminfo name within
each type, except in the case of the —C or the —L
options, which cause the sorting to be done by the
termcap name or the long C variable name, respec-
tively.)

-v print out tracing information on standard error as
the program runs.

-V print out the version of the program in use on stan-
dard error and exit.

-1 cause the fields to printed out one to a line. Other-
wise, the fields will be printed several to a line to a
maximum width of 60 characters.

-w change the output to width characters.

Changing Databases [— A directory] [— B directory]

FILES

The location of the compiled terminfo(4) database is taken
from the environment variable TERMINFO. If the variable is
not defined, or the terminal is not found in that location, the
system terminfo(4) database, usually in /usr/lib/terminfo, will
be used. The options —A and —B may be used to override
this location. The —A option will set TERMINFO for the
first termname and the —B option will set TERMINFO for
the other termnames. With this, it is possible to compare
descriptions for a terminal with the same name located in two
different databases. This is useful for comparing descriptions
for the same terminal created by different people. Otherwise
the terminals would have to be named differently in the ter-
minfo(4) database for a comparison to be made.

/usr/lib/terminfo/?/* compiled terminal description database

Page & (Printed Dec.1989)

INFOCMP(1M) (Essential Utilities) INFOCMP(1M)

DIAGNOSTICS
malloc is out of space!
There was not enough memory available to
process all the terminal descriptions
requested. Run infocmp several times, each
time including a subset of the desired term-
names.

use = order dependency found:
A value specified in one relative terminal
specification was different from that in
another relative terminal specification.

‘use=term’ did not add anything to the description.
A relative terminal name did not contribute
anything to the final description.

must have at least two terminal names for a comparison to be done.

The —u, —d and —c options require at least
two terminal names.

SEE ALSO
captoinfo(1M), tic(1M), curses(3X), term(4), terminfo(4).

Chapter 10 of the Programmer’s Guide.

NOTE
The termcap database (from earlier releases of UNIX System
V) may not be supplied in future releases.

(Printed Dec.1989) Page 6

8¢

383

INIT(1M) (Essential Utilities) INIT(1M)

NAME

init, telinit — process control initialization

SYNOPSIS

/ete/init [0123456SsQqabc]
/etc/telinit [0123456SsQqabc]

DESCRIPTION

Init

Page 1

init is a general process spawner. Its primary role is to create
processes from information stored in the file /etc/inittab
(see inittab(4)).

At any given time, the system is in one of eight possible run
levels. A run level is a software configuration of the system
under which only a selected group of processes exist. The
processes spawned by init for each of these run levels is
defined in /etc/inittab. init can be in one of eight run lev-
els, 0—6 and S or s (run levels S and s are identical). The
run level changes when a privileged user runs /etc/init.
This user-spawned init sends appropriate signals to the origi-
nal init spawned by the operating system when the system
was booted, telling it which run level to change to.

The following are the arguments to init.

0 shut the machine down so it is safe to remove
the power. Have the machine remove power if
it can.

1 put the system in single-user mode. Unmount

all file systems except root. All user processes
are killed except those connected to the con-
sole.

2 put the system in multi-user mode. All multi-
user environment terminal processes and dae-
mons are spawned. This state is commonly
referred to as the multi-user state.

3 start the remote file sharing processes and
daemons. Mount and advertise remote

(Printed Dec.1989)

E—

INIT(1M) (Essential Utilities) INIT(1M)

resources. Run level 3 extends multi-user
mode and is known as the remote-file-sharing
state.

4 is available to be defined as an alternative
multi-user environment configuration. It is
not necessary for system operation and is usu-
ally not used.

5 Stop the UNIX system and go to the firmware
monitor.

6 Stop the UNIX system and reboot to the state
defined by the initdefault entry in
/ete/inittab.

ab,c process only those /etc/inittab entries hav-
ing the a, b or ¢ run level set. These are
pseudo-states, which may be defined to run
certain commands, but which do not cause the
current run level to change.

Q,q re-examine /etc/inittab.

S;s enter single-user mode. When this occurs, the
terminal which executed this command
becomes the system console. This is the only
run level that doesn’t require the existence of
a properly formatted /etc/inittab file. If this
file does not exist, then by default the only
legal run level that init can enter is the
single-user mode. When the system enters S
or s, all mounted file systems remain mounted
and only processes spawned by init are killed.

When a UNIX system is booted, init is invoked and the follow-
ing occurs. First, init looks in /etc/inittab for the initde-
fault entry (see inittab(4)). If there is one, init uses the
run level specified in that entry as the initial run level to
enter. If there is no initdefault entry in /etc/inittab,
init requests that the user enter a run level from the virtual
system console. If an S or s is entered, init goes to the

(Printed Dec.1989) Page 2

8¢

385

e e m =

INIT(1M) (Essential Utilities) INIT(1M)

single-user state. In the single-user state the virtual console
terminal is assigned to the user’s terminal and is opened for
reading and writing. The command /bin/su is invoked and a
message is generated on the physical console saying where
the virtual console has been relocated. Use either init or tel-
init, to signal init to change the run level of the system. Note
that if the shell is terminated (via an end-of-file), init will
only re-initialize to the single-user state if the /etc/inittab
file does not exist.

If a O through 6 is entered, init enters the corresponding run
level. Note that, on the Supermax Computer, the run levels
0, 1, 5, and 6 are reserved states for shutting the system
down: the run levels 2, 3, and 4 are available as normal
operating states.

If this is the first time since power up that init has entered a
run level other than single-user state, inif first scans
/ete/inittab for boot and bootwait entries (see init-
tab(4)). These entries are performed before any other pro-
cessing of /etc/inittab takes place, providing that the run
level entered matches that of the entry. In this way any spe-
cial initialization of the operating system, such as mounting
file systems, can take place before users are allowed onto the
system. init then scans /ete/inittab and executes all other
entries that are to be processed for that run level.

In a multi-user environment, /etc/inittab is set up so that
init will create a getty process for each terminal that the
administrator sets up to respawn.

To spawn each process in /etc/inittab, init reads each entry
and for each entry that should be respawned, it forks a child
process. After it has spawned all of the processes specified by
/ete/inittab, init waits for one of its descendant processes to
die, a powerfail signal, or a signal from another init or telinit
process to change the system’s run level. When one of these
conditions occurs, init re-examines /etc/inittab. New
entries can be added to /etc/inittab at any time; however,
init still waits for one of the above three conditions to occur

Page 3 (Printed Dec.1989)

L=l N R B | SR Nt ——]
tV—== —.".

INIT(1M) (Essential Utilities) INIT(1M)

before re-examining /ete/inittab. To get around this, init
Q or init q command wakes init to re-examine /etc/inittab
immediately.

When init comes up at boot time and whenever the system
changes from the single-user state to another run state, init
sets the ioctl(2) states of the virtual console to those modes
saved in the file /etc/ioctl.syscon. This file is written by
init whenever the single-user state is entered.

When a run level change request is made init sends the warn-
ing signal (SIGTERM) to all processes that are undefined in
the target run level. init waits 5 seconds before forcibly ter-
minating these processes via the kill signal (SIGKILL).

The shell running on each terminal will terminate when the
user types an end-of-file or hangs up. When init receives a
signal telling it that a process it spawned has died, it records
the fact and the reason it died in /etc/utmp and /etc/wtmp
if it exists (see who(1)). A history of the processes spawned is
kept in /etc/wimp.

If init receives a powerfail signal (SIGPWR) it scans
/etc/inittab for special entries of the type powerfail and
powerwait. These entries are invoked (if the run levels per-
mit) before any further processing takes place. In this way
init can perform various cleanup and recording functions dur-
ing the powerdown of the operating system. Note that in the
single-user states, S and s, only powerfail and powerwait
entries are executed.

telinit
telinit, which is linked to /etc/imit, is used to direct the

actions of init. It takes a one-character argument and signals
init to take the appropriate action.

(Printed Dec.1989) Page 4

98¢

387

[g 3 e in . i | —

I

INIT(1M) (Essential Utilities) INIT(IM)
FILES

/etc/inittab script file for ’init’

/etc/utmp accounting

/ete/wtmp accounting

/etc/ioctl.syscon terminal set up file

/dev/console real system console

/dev/syscon virtual system console

/dev/systty physical system console
SEE ALSO

getty(IM), login(1), sh(1), shutdown(iM), stty(1), who(1),
kill(2), gettydefs(4), inittab(4), utmp(4), termio(7).

DIAGNOSTICS

If init finds that it is respawning an entry from /etc/inittab
more than 10 times in 2 minutes, it will assume that there is
an error in the command string in the entry, and generate an
error message on the system console. It will then refuse to
respawn this entry until either 5 minutes has elapsed or it
receives a signal from a user-spawned init (telinit). This
prevents init from eating up system resources when someone
makes a typographical error in the inittab file or a program is
removed that is referenced in /etc/inittab.

When attempting to boot the system, failure of init to prompt
for a new run level may be becaue the virtual system console
is linked to a device other than the physical system console.

WARNINGS
init and telinit can be run only by someone who is super-user.

The S or s state must not be used indiscriminately in the
/etc/inittab file. A good rule to follow when modifying this
file is to avoid adding this state to any line other than the
initdefault.

The change to /etc/gettydefs described in the WARNINGS
section of the gettydefs(4) manual page will permit terminals
to pass 8 bits to the system as long as the system is in multi-

Page 5 (Printed Dec.1989)

_— ——

INITQM) (Essential Utilities) INIT(1M)

user state (run level greater than 1). When the system
changes to single-user state, the getty is killed and the termi-
nal attributes are lost. To permit a terminal to pass 8 bits to
the system in single-user state, after you are in single-user
state, type:

stty —istrip cs8

(Printed Dec.1989) Page 6

88¢

—————— | =

INS_XOS (1M) (Essential Utilities) INS_XOS (1M)
NAME
ins xos — install an Operating System Extension
SYNOPSIS
ins_xos XOS-file
DESCRIPTION

ins_xos is used to load an operating system extension (a so-
called XOS) module that has been generated using the
makexos(1M) program.

An XOS module is a collection of operating system services that
supplement the services found in the operating system that is
loaded as part of the bootstrap process. Typical elements in the
XOS module are the STREAMS mechanism and communica-
tion modules, such as TCP/IP.

ins_xos is typically executed as part of the commands found in
the /etc/rc.d directory.

The argument to ins_xos is a file containing an XOS module.
Typically, such a file has the name:

X—str#####A##H

where ######## is a hexadecimal number identifying the
operating system version. ins_xos may be invoked either with
the complete XOS module file name or simply with the abbrevi-
ated name:

X —str.

In the latter case ins_xos will itself calculate the version of the
operating system and append it to the abbreviated name.

Once an XOS module has been loaded into a system, ins_xos
will refuse to load another XOS module. If, therefore, one
wants to make changes to the XOS module, one must bootstrap
the computer before the changes will take effect.

SEE ALSO
makexos(1IM).

Issued May 1991 Version 3.10 Page 1

—— s

INS_XOS (1M) (Essential Utilities) INS_XOS (1M)

This page is intentionally left blank

Page 2 Version 3.10 Issued May 1991

389

-

_

INSTALL(1M) (Essential Utilities) INSTALL(1M)

NAME

install — install commands

SYNOPSIS

/etc/install [—c dira] [=f dirb] [—i] [—n dirc]
[—m mode] [—u user] [—g group] [—o] [-s] file
[dirx ...]

DESCRIPTION

Page 1

The install command is most commonly used in ‘“makefiles”
[See make(1)] to install a file (updated target file) in a specific
place within a file system. Each file is installed by copying it
into the appropriate directory, thereby retaining the mode
and owner of the original command. The program prints
messages telling the user exactly what files it is replacing or
creating and where they are going.

If no options or directories (dirx ...) are given, install will
search a set of default directories (/bin, /usr/bin, /ete, /lib,
and /usr/lib, in that order) for a file with the same name as
file. When the first occurrence is found, install issues a mes-
sage saying that it is overwriting that file with file, and
proceeds to do so. If the file is not found, the program states
this and exits without further action.

If one or more directories (dirx ...) are specified after file,
those directories will be searched before the directories
specified in the default list.

The meanings of the options are:

—c¢ dira Installs a new command (file) in the directory
specified by dira, only if it is not found. If it
is found, install issues a message saying that
the file already exists, and exits without
overwriting it. May be used alone or with
the —s option.

—f dirb Forces file to be installed in given directory,
+ whether or not one already exists. If the file

being installed does not already exist, the

mode and owner of the new file will be set to

(Printed Dec.1989)

L I

INSTALL(1M)
-i
-n dirc
—m mode
—u user
—g group
-0
-s

SEE ALSO

make(1).
(Printed Dec.1989)

(Essential Utilities) INSTALLIM)

755 and bin, respectively. If the file already
exists, the mode and owner will be that of the
already existing file. May be used alone or
with the —o or —s options.

Ignores default directory list, searching only
through the given directories (dirx ...). May
be used alone or with any other options
except —c and —f.

If file is not found in any of the searched
directories, it is put in the directory specified
in dirc. The mode and owner of the new file
will be set to 755 and bin, respectively. May
be used alone or with any other options
except —c and —f.

The mode of the new file is set to mode.
Only available to the superuser.

The owner of the new file is set to user.
Only available to the superuser.

The group id of the new file is set to group.
Only available to the superuser.

If file is found, this option saves the ‘“‘found”
file by copying it to OLDfile in the directory
in which it was found. This option is useful
when installing a frequently used file such as
/bin/sh or /etc/getty, where the existing file
cannot be removed. May be used alone or
with any other options except —ec.

Suppresses printing of messages other than
error messages. May be used alone or with
any other options.

Page 2

06¢

391

IPCRM(1) (Essential Utilities) IPCRM(1)

NAME
ipcrm — remove a message queue, semaphore set or shared
memory id

SYNOPSIS
ipcrm [options |

DESCRIPTION
iperm will remove one or more specified messages, semaphore
or shared memory identifiers. The identifiers are specified by
the following options:

—q msqid removes the message queue identifier msqid
from the system and destroys the message
queue and data structure associated with it.

—m shmid removes the shared memory identifier shmid
from the system. The shared memory seg-
ment and data structure associated with it are
destroyed after the last detach.

—s semid removes the semaphore identifier semid from
the system and destroys the set of semaphores
and data structure associated with it.

—Q msgkey removes the message queue identifier, created
with key msgkey, from the system and destroys
the message queue and data structure associated
with it.

—M shmkey
removes the shared memory identifier, created
with key shmkey, from the system. The shared
memory segment and data structure associated
with it are destroyed after the last detach.

— 8 semkey removes the semaphore identifier, created with
key semkey, from the system and destroys the
set of semaphores and data structure associated
with it.

The details of the removes are described in msgctl(2),

shmctl(2), and semctl(2). The identifiers and keys may be

Page 1 (Printed Dec.1989)

IPCRM(1) (Essential Utilities) IPCRM(1)
found by using ipcs(1).
SEE ALSO

ipes(l), msgetl(2), msgget(2), msgop(2), semctl(2), semget(2),
semop(2), shmctl(2), shmget(2), shmop(2).

(Printed Dec.1989) Page 2

26

393

IPCS(1)

NAME

(Essential Utilities) IPCSQ)

ipcs — report inter-process communication facilities status

SYNOPSIS

ipes [options]

DESCRIPTION

Page 1

ipcs prints certain information about active inter-process
communication facilities. Without options, information is
printed in short format for message queues, shared memory,
and semaphores that are currently active in the system. Oth-
erwise, the information that is displayed is controlled by the
following options:

-q Print information about active message queues.

-m Print information about active shared memory seg-
ments.

-8 Print information about active semaphores.

If any of the options —q, —m, or —s are specified, informa-
tion about only those indicated will be printed. If none of
these three are specified, information about all three will be
printed subject to these options:

-b Print biggest allowable size information. (Maximum
number of bytes in messages on queue for message
queues, size of segments for shared memory, and
number of semaphores in each set for semaphores.)
See below for meaning of columns in a listing,

-c Print creator’s login name and group name. See
below.

-0 Print information on outstanding usage. (Number of
messages on queue and total number of bytes in mes-
sages on queue for message queues and number of
processes attached to shared memory segments.)

-p Print process number information. (Process ID of last
process to send a message and process ID of last

(Printed Dec.1989)

= | e— a

IPCS(1)

(Essential Utilities) IPCS(1)

process to receive a message on message queues and
process ID of creating process and process ID of last
process to attach or detach on shared memory seg-
ments) See below.

-t Print time information. (Time of the last control
operation that changed the access permissions for all
facilities. Time of last msgsnd and last msgrcv on
message queues, last shmat and last shmdt on shared
memory, last semop(2) on semaphores.) See below.

—a Use all print options. (This is a shorthand notation
for =b, —¢, —0, —p, and —-t.)

—C corefile
Use the file corefile in place of /dev/kmem.

—N namelist
The argument will be taken as the name of a namel-
ist
The column headings and the meaning of the columns in an
ipcs listing are given below; the letters in parentheses indi-
cate the options that cause the corresponding heading to
appear; all means that the heading always appears. Note
that these options only determine what information is pro-
vided for each facility; they do not determine which facilities
will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.
ID (all) The identifier for the facility entry.
KEY (all) The key used as an argument to msgget,

semget, or shmget to create the facility
entry. (Note: The key of a shared memory
segment is changed to IPC_PRIVATE when
the segment has been removed until all
processes attached to the segment detach
it.)

(Printed Dec.1989) Page 2

76€

395

IPCS(1)

Page 3

MODE

OWNER

(all)

(all)

(Essential Utilities) IPCS(1)

The facility access modes and flags: The
mode consists of 11 characters that are
interpreted as follows:

The first two characters are:

R if a process is waiting on a
msgrev;

S if a process is waiting on a
msgsnd;

D if the associated shared memory
segment has been removed. It
will disappear when the last pro-
cess attached to the segment
detaches it;

C if the associated shared memory
segment is to be cleared when
the first attach is executed;

— if the corresponding special flag
is not set.

The next 9 characters are interpreted as
three sets of three bits each. The first set
refers to the owner’s permissions; the next
to permissions of others in the user-group of
the facility entry; and the last to all others.
Within each set, the first character indicates
permission to read, the second character
indicates permission to write or alter the
facility entry, and the last character is
currently unused.

The permissions are indicated as follows:

if read permission is granted;

if write permission is granted;

if alter permission is granted;

if the indicated permission is not
granted.

The login name of the owner of the facility
entry.

| B gR

(Printed Dec.1989)

IPCS(1)

GROUP

(Essential Utilities) IPCS(1)

(all) The group name of the group of the owner
of the facility entry.

CREATOR (a,c) The login name of the creator of the facility

CGROUP

CBYTES

QNUM

QBYTES

LSPID
LRPID
STIME
RTIME
CTIME
NATTCH
SEGSZ
CPID
LPID
ATIME
DTIME

NSEMS

entry.

(a,c) The group name of the group of the creator
of the facility entry. '

(a,0) The number of bytes in messages currently
outstanding on the associated message
queue.

(a,0) The number of messages currently outstand-
ing on the associated message queue.

(a,b) The maximum number of bytes allowed in
messages outstanding on the associated mes-
sage queue.

(a,p) The process ID of the last process to send a
message to the associated queue.

(a,p) The process ID of the last process to receive
a message from the associated queue.

(a,t) The time the last message was sent to the
associated queue.

(a,t) The time the last message was received from
the associated queue.

(a,t) The time when the associated entry was
created or changed.

(a,0) The number of processes attached to the
associated shared memory segment.

(a,b) The size of the associated shared memory
segment.

(a,p) The process ID of the creator of the shared
memory entry.

(a,p) The process ID of the last process to attach
or detach the shared memory segment.

(a,t) The time the last attach was completed to
the associated shared memory segment.

(a,t) The time the last detach was completed on
the associated shared memory segment.

(a,b) The number of semaphores in the set associ-
ated with the semaphore entry.

(Printed Dec.1989) Page 4

96€

397

—— — —

IPCS() (Essential Utilities) IPCS(D)

OTIME (a,t) The time the last semaphore operation was
completed on the set associated with the
semaphore entry.

FILES
/dev/kmem memory
/etc/passwd user names
/etc/group group names

SEE ALSO
msgop(2), semop(2), shmop(2).

BUGS
Things can change while ipcs is running; the picture it gives
is only a close approximation to reality.

Page 5 (Printed Dec.1989)

B]

This page is intentionally left blank

86¢

EEee———— e

IS_68000 (1) (Essential Utilities) IS_68000 (1)

NAME
is_68000, is_68020, is_68030, is_R3000, is_heterogen — identify
mcu type

SYNOPSIS
is_68000
is_68020
is_68030
is_R3000
is_heterogen

DESCRIPTION
is_68000 (is_68020, is 68030) returns an exit code 0 when
invoked on MCU68000 (MCU68020, MCU68030).

is R3000 returns an exit code 0 when invoked on an R3000
cpu.

is_heterogen returns an exit code 0 when invoked on a Super-
max, which contains both MCU68030 and R3000.

Issued May 1991 Version 3.10 Page 1

— ———e s

IS_68000 (1) (Essential Utllities) IS_68000 (1)

This page is intentionally left blank

Page 2 Version 3.10 Issued May 1991

399

JOIN(D) (Essential Utilities) JOIN(1)

NAME

join — relational database operator

SYNOPSIS

join [options] filel file2

DESCRIPTION

Page 1

Join forms, on the standard output, a join of the two relations
specified by the lines of filel and file2. If filel is —, the stan-
dard input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, nor-
mally the first in each line [see sort(1)].

There is one line in the output for each pair of lines in filel
and file2 that have identical join fields. The output line nor-
mally consists of the common field, then the rest of the line
from filel, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line.
In this case, multiple separators count as one field separator,
and leading separators are ignored. The default output field
separator is a blank.

Some of the below options use the argument n. This argu-
ment should be a 1 or a 2 referring to either filel or file2,
respectively. The following options are recognized:

—an In addition to the normal output, produce a line for
each unpairable line in file n, where n is 1 or 2.

—es Replace empty output fields by string s.

—jn m Join on the mth field of file n. If n is missing, use
the mth field in each file. Fields are numbered start-
ing with 1.

—o list Each output line comprises the fields specified in lisz,
each element of which has the form n.m, where n is
a file number and m is a field number. The common
field is not printed unless specifically requested.

(Printed Dec.1989)

k3

JOIN(1) (Essential Utilities) JOIN(1)
—tc Use character ¢ as a separator (tab character).
Every appearance of ¢ in a line is significant. The
character ¢ is used as the field separator for both
input and output.
EXAMPLE

The following command line will join the password file and
the group file, matching on the numeric group ID, and out-
putting the login name, the group name and the login direc-
tory. It is assumed that the files have been sorted in ASCII
collating sequence on the group ID fields.

join -j1 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd
/etc/group

SEE ALSO

BUGS

awk(1), comm(1), sort(1), uniq(1).

With default field separation, the collating sequence is that of
sort —b; with —t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk(l) are
wildly incongruous.

Filenames that are numeric may cause conflict when the -o
option is used right before listing filenames.

(Printed Dec.1989) Page 2

0oy

401

-' . L=

KILL(1) (Essential Utilities) KILL(1)

NAME
kill — terminate a process

SYNOPSIS
kill [—signo] PID ...

DESCRIPTION

kill sends signal 15 (terminate) to the specified processes.
This will normally kill processes that do not catch or ignore
the signal. The process number of each asynchronous process
started with & is reported by the shell (unless more than one
process is started in a pipeline, in which case the number of
the last process in the pipeline is reported). Process numbers
can also be found by using ps(1).

The details of the kill are described in kill(2). For example, if
process number 0 is specified, all processes in the process
group are signaled.

The killed process must belong to the current user unless he
is the super-user.

If a signal number preceded by — is given as first argument,
that signal is sent instead of terminate (see signal(2)). In
particular “kill —9 ...” is a sure kill.

SEE ALSO
ps(1), sh(1).
kill(2), signal(2).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

20y

403

KILLALL(1M) (Essential Utilities) KILLALL(1M)

NAME
killall — kill all active processes

SYNOPSIS
Jete/killall [signal]

DESCRIPTION
killall is used by /etc/shutdown to kill all active processes
not directly related to the shutdown procedure.

killall terminates all processes with open files so that the
mounted file systems will be unbusied and can be unmounted.

killall sends signal (see kill[1]) to all processes not belonging
to the above group of exclusions. If no signal is specified, a
default of 9 is used.

FILES
/ete/shutdown

SEE ALSO
fuser(1M), shutdown(1M), signal(2).

WARNINGS
The killall command can be run only by the super-user.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

ot

405

= — — —— — _ = = =

LABELIT(1M) (Essential Utilities) LABELIT(1M)
NAME

labelit — provide labels for file systems
SYNOPSIS

/etc/labelit special [fsname volume [—n]]
DESCRIPTION

labelit can be used to provide labels for unmounted disk file
systems or file systems being copied to tape. The —n option
provides for initial labeling only (this destroys previous con-
tents).

With the optional arguments omitted, labelit prints current
label values.

The special name should be the physical disk section (e.g.,
/dev/dsk/c0d0s6),

or the cartridge tape (e.g., /dev/SA/ctapel). The device
may not be on a remote machine.

The fsname argument represents the mounted name (e.g.,
root, ul, etc.) of the file system.

Volume may be used to equate an internal name to a volume
name applied externally to the disk pack, diskette or tape.

For file systems on disk, fsname and volume are recorded in
the superblock.

SEE ALSO
makefsys(1IM), sh(1), fs(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

90

407

LED(M) (Essential Utilities) LED(1M)
NAME
led — flash hyphens in MCU displays
SYNOPSIS
Jetc/led [-f1[—o]
DESCRIPTION

led is used to make the hyphens in the MCU displays flash
The main purpose is to signal particular phases of the boot
procedure. The options are as follows:

-f sets the hyphens to a flashing state via the smsys(2)

system call.
-0 sets the hyphens to a constant state via the smsys(2)
system call.
SEE ALSO
smsys(2).
WARNINGS

This command can be run only by the super-user.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

80v

409

e —b___ Jm=

LINEQ1) (Essential Utilities) LINE@)
NAME
line — read one line
SYNOPSIS
line
DESCRIPTION

line copies one line (up to a new-line) from the standard
input and writes it on the standard output. It returns an exit
code of 1 on EOF and always prints at least a new-line. It is
often used within shell files to read from the user’s terminal.

SEE ALSO
sh(l), read(2).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

olv

=== = — Ea = :
— =
LINK(IM) (Essential Utilities) LINK(1M)
NAME
link, unlink — link and unlink files and directories
SYNOPSIS

/etc/link filel file2
/etc/unlink file

DESCRIPTION
The link command is used to create a file name that points to
another file. Linked files and directories can be removed by
the unlink command; however, it is strongly recommended
that the rm (1) and rmdir(1) commands be used instead of the
unlink command.

The only difference between In (1) and link/unlink is that the
latter do exactly what they are told to do, abandoning all
error checking. This is because they directly invoke the
link(2) and unlink(2) system calls.

SEE ALSO
rm(1), link(2), unlink(2).

WARNINGS
These commands can be run only by the super-user.

41

Page 1 (Printed Dec.1989)

This page is intentionally left blank

cly

413

LOGIN(D) (Essential Utilities) LOGIN()

NAME

login — sign on
SYNOPSIS

login [name [env-var ...]]
DESCRIPTION

Page 1

The login command is used at the beginning of each terminal
session and allows you to identify yourself to the system. It
may be invoked as a command or by the system when a con-
nection is first established. Also, it is invoked by the system
when a previous user has terminated the initial shell by typ-
ing a cntri-d to indicate an ‘‘end-of-file.” (See User’s Guide
for instructions on how to establish contact with the UNIX
system).

If login is invoked as a command it must replace the initial
command interpreter. This is accomplished by typing:

exec login
from the initial shell.

login asks for your user name (if not supplied as an argu-
ment), and, if appropriate, your password. Echoing is turned
off (where possible) during the typing of your password, so it
will not appear on the written record of the session.

At some installations, an option may be invoked that will
require you to enter a second “dialup”’ password. This will
occur only for dial-up connections, and will be prompted by
the message ‘‘dialup password:”. Both passwords are
required for a successful login.

The optional “dialup” password is activated on the dial-up
connections by creating the file /etc/d_passwd. (See
d_passwd(4)). A tty-line gets the status of dial-up connection
if it is specified in the /etc/dialups file. (See dialups(4)).

If you do not complete the login successfully within a certain
period of time (e.g., one minute), you are likely to be silently
disconnected. .

(Printed Dec.1989)

=3

LOGIN(@) (Essential Utilities) LOGIN(1)

After a successful login, accounting files are updated, the pro-
cedure /etc/profile is performed, the message-of-the-day, if
any, is printed, the user-ID, the group-ID, the working direc-
tory, and the command interpreter (usually sk (1)) is initial-
ized, and the file .profile in the working directory is exe-
cuted, if it exists. These specifications are found in the
/ete/passwd file entry for the user. The name of the com-
mand interpreter is — followed by the last component of the
interpreter’s path name (i.e.,, —sh). If this field in the pass-
word file is empty, then the default command interpreter,
/bin/sh is used. If this field is ‘“**”’, then the named direc-
tory becomes the root directory, the starting point for path
searches for path names beginning with a /. At that point
login is re-executed at the new level which must have its own
root structure, including /etc/login and /etc/passwd.

The basic environment is initialized to:

HOME =your-login-directory

PATH =:/bin: /usr/bin

SHELL = [ast-field-of-passwd-entry
MAIL = /usr/mail /your-login-name
TZ = timezone-specification

The environment may be expanded or modified by supplying
additional arguments to login, either at execution time or
when login requests your login name. The arguments may
take either the form xxx or xxx=yyy. Arguments without an
equal sign are placed in the environment as
Ln=xxx

where 7 is a number starting at 0 and is incremented each
time a new variable name is required. Variables containing
an = are placed into the environment without modification.
If they already appear in the environment, then they replace
the older value. There are two exceptions. The variables
PATH and SHELL cannot be changed. This prevents people,
logging into restricted shell environments, from spawning
secondary shells which are not restricted. Both login and
getty understand simple single-character quoting conventions.

(Printed Dec.1989) Page 2

1444

LOGIN(1) (Essential Utilities) LOGIN(1)

Typing a backslash in front of a character quotes it and
allows the inclusion of such things as spaces and tabs.

FILES
/ete/passwd password file
/etc/dialups file of dial-up connections
(an option)
/usr/d_passwd “shell” dial-up password file
(an option)
/etc/utmp accounting
/etc/wtmp accounting
/ete/profile system profile
/ete/motd message-of-the-day
Just/mail/your-name mailbox for user your-name
.profile user’s login profile
SEE ALSO

mail(1), newgrp(1), sh(1), su(1IM).

2 passwd(4), d_passwd(4), dialups(4), profile(4), environ(5).
DIAGNOSTICS
login incorrect if the user name or the password cannot be
matched.

login incorrect also on dial-up connections if the initial shell
or the dial-up password cannot be matched (d_passwd(4)).

No shell, cannot open password file, or no directory: consult a
UNIX system programming counselor.

No utmp entry. You must exec “login” from the lowest level
“sh” if you attempted to execute login as a command without
using the shell’s exec internal command or from other than
the initial shell.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

2184

417

LOGNAME(1) (Essential Utilities) LOGNAME®@1)
NAME
logname — get login name
SYNOPSIS
logname
DESCRIPTION

logname returns the contents of the environment variable
$LOGNAME, which is set when a user logs into the system.
FILES
/ete/profile
SEE ALSO
env(1l), login(1), logname(3X), environ(5).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

]84

419

LP(1) (Essential Utilities)
NAME
Ip, cancel — send/cancel requests to an LP line printer
SYNOPSIS
Ip [—¢] [—ddest] [-m] [—nnumber] [—ooption] [-s]
[—ttitle] [—w] files
cancel [ids] [printers]
DESCRIPTION

Page 1

Ip arranges for the named files and associated information
(collectively called a request) to be printed by a line printer.
If no file names are mentioned, the standard input is
assumed. The file name — stands for the standard input and
may be supplied on the command line in conjunction with
named files. The order in which files appear is the same
order in which they will be printed.

Ip associates a unique id with each request and prints it on
the standard output. This id can be used later to cancel (see
cancel) or find the status (see [pstat (1)) of the request.

The following options to /p may appear in any order and may
be intermixed with file names:

—-c Make copies of the files to be printed immedi-
ately when Ip is invoked. Normally, files will not
be copied, but will be linked whenever possible.
If the —c option is not given, then the user
should be careful not to remove any of the files
before the request has been printed in its
entirety. It should also be noted that in the
absence of the —¢ option, any changes made to
the named files after the request is made but
before it is printed will be reflected in the
printed output.

—ddest Choose dest as the printer or class of printers
that is to do the printing. If dest is a printer,
then the request will be printed only on that
specific printer. If dest is a class of printers,
then the request will be printed on the first

(Printed Dec.1989)

—nnumber

—ooption

—ttitle

-Ww

(Essential Utilities) LP(1)

available printer that is a member of the class.
Under certain conditions (printer unavailability,
file space limitation, etc.), requests for specific
destinations may not be accepted (see accept(1M)
and Ipstat(1)). By default, dest is taken from the
environment variable LPDEST (if it is set). Oth-
erwise, a default destination (if one exists) for
the computer system is used. Destination names
vary between systems (see Ipstat(1)).

Send mail (see mail(1}) after the files have been
printed. By default, no mail is sent upon normal
completion of the print request.

Print number copies (default of 1) of the output.

Specify printer-dependent or class-dependent
options. Several such options may be collected
by specifying the —o keyletter more than once.
For more information about what is valid for
options, see Models in lpadmin (1M).

Suppress messages from Ip(1) such as "request
id is ...”.
Print title on the banner page of the output.

Write a message on the user’s terminal after the
files have been printed. If the user is not logged
in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the
Ip(1) command. The command line arguments may be either
request ids (as returned by Ip(1)) or printer names (for a com-
plete list, use /pstat(1)). Specifying a request id cancels the
associated request even if it is currently printing. Specifying
a printer cancels the request which is currently printing on
that printer. In either case, the cancellation of a request that
is currently printing frees the printer to print its next avail-

able request.

(Printed Dec.1989) Page 2

oy

421

LP(1) (Essential Utilities) LP(1)
FILES
Jusr/spool/lp/ *
SEE ALSO
enable(1), lpstat(l), mail(1), accept(IM), lpadmin(1M),
Ipsched(1M).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

ey

423

LPADMIN(1M) (Essential Utilities) LPADMIN(1M)

NAME

lpadmin — configure the LP spooling system

SYNOPSIS

Jusr/lib/lpadmin —pprinter [options]
Jusr/lib/lpadmin —xdest
Jusr/lib/lpadmin -—d[dest]

DESCRIPTION

Page 1

Ipadmin configures line printer (LP) spooling systems to
describe printers, classes and devices. It is used to add and
remove destinations, change membership in classes, change
devices for printers, change printer interface programs and to
change the system default destination. Ipadmin may not be
used when the LP scheduler, [psched (1M), is running, except
where noted below.

Exactly one of the —p, —d or —x options must be present
for every legal invocation of lpadmin.

—pprinter names a printer to which all of the options
below refer. If printer does not exist then it
will be created.

—Xdest removes destination dest from the LP system.
If dest is a printer and is the only member of a
class, then the class will be deleted, too. No
other options are allowed with —x.

—dldest] makes dest, an existing destination, the new
system default destination. If dest is not sup-
plied, then there is no system default destina-
tion. This option may be used when
Ipsched (1IM) is running. No other options are
allowed with —d.

The following options are only useful with —p and may
appear in any order. For ease of discussion, the printer will
be referred to as P below.

—cclass inserts printer P into the specified class. class
will be created if it does not already exist.

(Printed Dec.1989)

—jdefb————————————————

LPADMIN(1M) (Essential Utilities) LPADMIN(1M)

—eprinter copies an existing printer’s interface program
to be the new interface program for P.

-h indicates that the device associated with P is
hardwired. This option is assumed when
adding a new printer unless the —1 option is
supplied.

—iinterface establishes a new interface program for P.
interface is the path name of the new program.

|
(=

indicates that the device associated with P is a
login terminal. The LP scheduler, lpsched, dis-
ables all login terminals automatically each
time it is started. Before re-enabling P, its
current device should be established using
Ipadmin.

—mmodel selects a model interface program for P. model
is one of the model interface names supplied
with the LP Spooling Utilities (see Models
below).

—rclass removes printer P from the specified class. If
P is the last member of the class, then the
class will be removed.

—vdevice associates a new device with printer P. device
is the pathname of a file that is writable by Ip.
Note that the same device can be associated
with more than one printer. If only the —p
and —v options are supplied, then lpadmin
may be used while the scheduler is running.

Restrictions.

When creating a new printer, the —v option and one of the
—e, —i or —m options must be supplied. Only one of the
—e, —i or —m options may be supplied. The —h and -1
keyletters are mutually exclusive. Printer and class names
may be no longer than 14 characters and must consist
entirely of the characters A-Z, a—z, 0—9 and _ (under-
score).

(Printed Dec.1989) Page 2

ver

425

W £ = = mﬁﬂ

LPADMIN(1M) (Essential Utilities) LPADMIN(1M)

Models.

Model printer interface programs are supplied with the LP
Spooling Utilities. They are shell procedures which interface
between Ipsched and devices. All models reside in the direc-
tory /usr/spool/lp/model and may be used as is with Ipad-
min —m. Copies of model interface programs may also be
modified and then associated with printers using lpadmin —i.
The following describes the models which may be given on
the Ip command line using the —o keyletter:

LQP—-40 Letter quality printer using XON/XOFF protocol at
9600 baud.

DQP —10 Dot matrix draft quality printer using XON/XOFF
protocol at 9600 baud.

EXAMPLES
1. For a DQP-10 printer named cI8, it will use the DQP-10
model interface after the command:

Jusr/lib/lpadmin —pcI8 —mdqpl0
2. A LQP-40 printer called prl can be added to the lp
configuration with the command:
Jusr/lib/lpadmin —pprl —v/dev/contty —mlqp40
FILES
Jusr/spool/lp/ #
SEE ALSO
accept(1M), enable(1), Ip(1), Ipsched(1M), lpstat(1).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

9cv

427

LPSCHED(1M) (Essential Utilities) LPSCHED(1M)
NAME

Ipsched, lpshut, Ipmove — start/stop the LP scheduler and
move requests

SYNOPSIS

Jusr/lib/lpsched
Jusr/lib/lpshut
Jusr/lib/lpmove requests dest
Jusr/lib/lpmove destl dest2

DESCRIPTION

FILES

Ipsched schedules requests taken by Ip(1) for printing on line
printers (LP’s).

ipshut shuts down the line printer scheduler. All printers
that are printing at the time Ipshut is invoked will stop print-
ing. Requests that were printing at the time a printer was
shut down will be reprinted in their entirety after Ipsched is
started again.

Ipmove moves requests that were queued by Ip(1) between LP
destinations. This command may be used only when Ilpsched
is not running.

The first form of the command moves the named requests to
the LP destination, dest. Requests are request ids as returned
by Ip(1). The second form moves all requests for destination
destl to destination dest2. As a side effect, Ip (1) will reject
requests for destl.

Note that Ipmove never checks the acceptance status (see
accept(1M)) for the new destination when moving requests.

/usr/spool/lp/ *

SEE ALSO

Page 1

accept(1M), enable(1), Ip(1), lpadmin(1M), lpstat(1).

(Printed Dec.1989)

=y e

This page is intentionally left blank

:r44

429

f———c

N —————

LPSTAT®) (Essential Utilities) LPSTATQ)

NAME

Ipstat — print LP status information

SYNOPSIS

Ipstat [options]

DESCRIPTION

Page 1

Ipstat prints information about the current status of the LP
spooling system.

If no options are given, then Ipstat prints the status of all
requests made to /p(1) by the user. Any arguments that are
not options are assumed to be request ids (as returned by Ip).
Ipstat prints the status of such requests. options may appear
in any order and may be repeated and intermixed with other
arguments. Some of the keyletters below may be followed by
an optional /ist that can be in one of two forms: a list of
items separated from one another by a comma, or a list of
items enclosed in double quotes and separated from one
another by a comma and/or one or more spaces. For exam-
ple:

—u”userl, user2, user3”

The omission of a list following such keyletters causes all
information relevant to the keyletter to be printed, for exam-
ple:

Ipstat —o
prints the status of all output requests.

—allist] Print acceptance status (with respect to lp) of des-
tinations for requests. list is a list of intermixed
printer names and class names.

—c[list] Print class names and their members. list is a list
of class names.

-d Print the system default destination for Ip.

—ol[list] Print the status of output requests. list is a list of
intermixed printer names, class names, and
request ids.

(Printed Dec.1989)

LPSTAT()

—pllist]

-t
—ullist]

—vllist]

FILES

(Essential Utilities) LPSTAT(1)

Print the status of printers. list is a list of printer
names.

Print the status of the LP request scheduler

Print a status summary, including the system
default destination, a list of class names and their
members, and a list of printers and their associ-
ated devices.

Print all status information.

Print status of output requests for users. list is a
list of login names.

Print the names of printers and the path names of
the devices associated with them. list is a list of
printer names.

/usr/spool/lp/ *

SEE ALSO

enable(1), 1p(1).

(Printed Dec.1989) Page 2

oey

e — ||| m—

LS (1) (Essential Utilities) LS (1)

NAME
Is — list contents of directory

SYNOPSIS
1s [- RadCLHxmlnogrtucpFbgqisf] [names] |

DESCRIPTION

For each directory argument, Is lists the contents of the direc-
tory; for each file argument, /s repeats its name and any other
information requested. The output is sorted alphabetically by
default. When no argument is given, the current directory is
listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments appear before
directories and their contents.

There are three major listing formats. The default format is to
list one entry per line, the —C and —x options enable multi-
column formats, and the —m option enables stream output for-
mat. In order to determine output formats for the —C, —x,
and —m options, /s uses an environment variable, COLUMNS,
to determine the number of character positions available on
one output line. If this variable is not set, the terminfo(4)
database is used to determine the number of columns, based on
the environment variable TERM. If this information cannot be
obtained, 80 columns are assumed.

The Is command has the following options:
—R Recursively list subdirectories encountered.

—L If argument is a symbolic link, list the file or directory |
the link references rather than the link itself.

—H If the file is a symbolic link, list the file itself. |

—a List all entries, including those that begin with a dot (.),
which are normally not listed.

—d If an argument is a directory, list only its name (not its
contents); often used with —1 to get the status of a
directory.

Rev.May 1991 Vers.3.10 Page 1

Page 2

-0
-g

-r

(Essential Utilities) Ls(1)

Multi-column output with entries sorted down the
columns.

Multi-column output with entries sorted across rather
than down the page.

Stream output format; files are listed across the page,
separated by commas.

List in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for
each file (see below). If the file is a special file, the size
field will instcad contain the major and minor device
numbers rather than a size.

The same as —1, except that the owner’s UID and
group’s GID numbers are printed, rather than the asso-
ciated character strings.

The same as —1, except that the group is not printed.
The same as —1, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate.

Sort by time stamp (latest first) instead of by name. The
default is the last modification time. (See —n and —c¢.)

Use time of last access instead of last modification for
sorting (with the —t option) or printing (with the —1
option).

Use time of last modification of the i-node (file created,
mode changed, etc.) for sorting (—t) or printing (—1).
Put a slash (/) after each filename if that file is a direc-
tory.

Put a slash (/) after each filename if that file is a direc-
tory and put an asterisk (*) after each filename if that

file is executable. If the file is a symbolic link put an
commercial at (@) after the filename.

Vers.3.10 Rev.May 1991

_=

LS (1) (Essential Utilities) LS (1)

—b Force printing of non-printable characters to be in the
octal \ddd notation.

—q Force printing of non-printable characters in file names
as the character question mark (?).

—i For each file, print the i-number in the first column of
the report.

—s Give size in blocks, including indirect blocks, for each
entry.

—f Force each argument to be interpreted as a directory and
list the name found in each slot. This option turns off
-1, —t, —s, and —r, and turns on — a; the order is the
order in which entries appear in the directory.

The mode printed under the —1 option consists of ten charac-
ters. The first character may be one of the following:

d the entry is a directory;

b the entry is a block special file;

¢ the entry is a character special file;

p the entry is a fifo (a.k.a. "named pipe”) special file;
— the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to the owner’s permissions; the
next to permissions of others in the user-group of the file; and
the last to all others. Within each set, the three characters
indicate permission to read, to write, and to execute the file as
a program, respectively. For a directory, "execute” permission
is interpreted to mean permission to search the directory for a
specified file.

1s —1 (the long list) prints its output as follows:

—rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2
This horizontal configuration provides a good deal of informa-
tion. Reading from right to left, you see that the current direc-

tory holds one file, named ”part2.” Next, the last time that
file’s contents were modified was 9:42 A M. on May 16. The file

Rev.May 1991 Vers.3.10 Page 3

(Essential Utilities) LS (1)

is moderately sized, containing 10,876 characters, or bytes.
The owner of the file, or the user, belongs to the group "dev”
(perhaps indicating “development”), and his or her login name
is ”smith.” The number, in this case ”1,” indicates the number
of links to file "part2.” Finally, the row of dash and letters tell
you that user, group, and others have permissions to read,
write, execute "part2.”

The execute (x) symbol here occupies the third position of the
three-character sequence. A — in the third position would
have indicated a denial of execution permissions.

The permissions are indicated as follows:

the file is readable

the file is writable

the file is executable

the indicated permission is not granted

mandatory locking will occur during access (the set-

group-ID bit is on and the group execution bit is off)

s the set-user-ID or set-group-ID bit is on, and the
corresponding user or group execution bit is also on

S undefined bit-state (the set-user-ID bit is on and the
user execution bit is off)

t the 1000 (octal) bit, or sticky bit, is on (see
chmod(1)), and execution is on

T the 1000 bit is turned on, and execution is off

(undefined bit-state)

For user and group permissions, the third position is some-
times occupied by a character other than x or —. s also may
occupy this position, referring to the state of the set-ID bit,
whether it be the user’s or the group’s. The ability to assume
the same ID as the user during execution is, for example, used
during login when you begin as root but need to assume the
identity of the user stated at ”login.”

= mMg"

In the case of the sequence of group permissions, 1 may occupy
the third position. 1 refers to mandatory file and record lock-
ing. This permission describes a file’s ability to allow other
files to lock its reading or writing permissions during access.

Page 4 Vers.3.10 Rev.May 1991

| — || —

LS (1) (Essential Utilities) LS (1)

For others permissions, the third position may be occupied by t
or T. These refer to the state of the sticky bit and execution
permissions.

EXAMPLES

An example of a file’s permissions is:

—TWXr— —r— —
This describes a file that is readable, writable, and executable
by the user and readable by the group and others.
Another example of a file’s permissions is:

—I'WSr —Xr—Xx
This describes a file that is readable, writable, and executable
by the user, readable and executable by the group and others,
and allows its user-ID to be assumed, during execution, by the
user presently executing it.
Another example of a file’s permissions is:

—rw—rwl— — —
This describes a file that is readable and writable only by the
user and the group and can be locked during access.
An example of a command line:

Is —a
This command will print the names of all files in the current
directory, including those that begin with a dot (.), which nor-
mally do not print.
Another example of a command line:

Is —aisn
This command will provide you with quite a bit of information
including all files, including non-printing ones (a), the i-
number —the memory address of the i-node associated with the
file—printed in the left-hand column (i); the size (in blocks) of
the files, printed in the column to the right of the i-numbers

(s); finally, the report is displayed in the numeric version of the
long list, printing the UID (instead of user name) and GID

Rev.May 1991 Vers.3.10 Page 5

ts{) (Essential Utilities) LS (1)

(instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total
count of blocks, including indirect blocks, is printed.

FiLES
/ete/passwd user IDs for Is —1and Is —o
/ete/group group IDs forIs —land1ls — g
/usr/lib/terminfo/?/ * terminal information database
3EE ALSO
chmod(1), find(1).
3UGS

Unprintable characters in file names may confuse the columnar
output options.

ge 6 Vers.3.10 Rev.May 1991

437

MACHID(1) (Essential Utilities) MACHID()

NAME
machid: m68k, pdpll, u3b, udb2, u3b5, vax — get processor
type truth value

SYNOPSIS
m68k

pdpll
udb
u3b2
u3b5
vax

DESCRIPTION
The following commands will return a true value (exit code of
0) if you are on a processor that the command name indi-
cates.

m68k True if you are on an M68000 or M68020 pro-
Cessor.

pdpll True if you are on a PDP-11/45 or PDP-11/70.
u3b True if you are on a 3B20 computer.

u3b2 True if you are on a 3B2 computer.

u3b8 True if you are on a 3B5 computer.

vax True if you are on a VAX-11/750 or VAX-
11/780.

The commands that do not apply will return a false (non-
zero) value. These commands are often used within makefiles
(see make(1)) and shell procedures (see sk (1)) to increase por-
tability.

SEE ALSO
make(1), sh(l), test(1), true(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

21924

_=

MAIL (1) (Essential Utilities) MAIL (1)

NAME
mail, rmail — send mail to users or read mail

SYNOPSIS
mail [—bepq] [—f file]

mail persons
rmail persons

DESCRIPTION ,
mail without arguments prints a user’s mail, message-by-
message, in last-in, first-out order. For each message, the user
is prompted with a ?, and a line is read from the standard

input to determine the disposition of the message:

<new-line > Go on to next message.

+ Same as <new-line>.

n Same as <new-line>.

d Delete message and go on to next
message.

P Print message again.

— Go back to previous message.

s [files] Save message in the name files
(mbox is default).

y Same as save.

w [files] Save message, without its top-most
header, in the named files (mbox is
default).

m [persons] Mail the message to the named per-

sons (yourself is default).

q Put undeleted mail back in the
mailfile and stop.

Rev.May 1991 Version 3.10 Page 1

MAIL (1) (Essential Utilities) MAIL (1)

EOT (control-d) Same as q.

x Put all mail back in the mailfile
unchanged and stop.

lcommand Escape to the shell to do command.
? Print a command summary.
The optinal arguments alter the printing of the mail:

—e causes the mail not to be printed. An exit value of
zero (0) is returned if the user has mail; otherwise,
an exit value of 1 is returned.

-p causes all mail to be printed without prompting for
disposition.
—-q causes mail to terminate after interrupts. Normally

an interrupt only causes the termination of the mes-
sage being printed.

-b causes message to be printed in first-in, first-out
order.

—ffile causes mail to use file (e.gmbox) instead of the
default mailfile.

When persons are named, mail takes the standard input up to
an end-of-file (or up to aline consisting of just a .) and adds it
to each person’s mailfile. The message is preceded by the
sender’s name and a postmark. Lines that look like postmarks
in the message, (i.e. "From ...”) are preceded with a >. A per-
son is usually a user name recognized by login(1). If a person
being send is not recognized, or if mail is interrupted during
input, the file dead.letter will be saved to allow editing and
resending. Note that this is regarded as a temporary file in that
it is recreated every time needed, erasing the previous contents
of dead.letter.

The mailfile may be manipulated in two ways to alter the func-
tion of mail. The other permissions of the file may be read-
write, read-only, or neither read nor write to allow different
levels of privacy. If changed to other than the default, the file

Page 2 Version 3.10 Rev.May 1991

e ————

MAIL (1) (Essential Utilities) MAIL (1)

FILES

will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be
forwarded to person. This is especially useful to forward all of a
person’s mail to one machine in a multiple machine environ-
ment. In order for forwarding to work properly the mailfile
should have “mail” as group ID, and the group permission
should be read-write.

rmail only permits the sending of mail; uucp(l) uses rmail as a
security precaution.

When a user logs in, the presence of mail, if any, is indicated.
Also, notification is made if new mail arrives while using mail.

Mail may be sent to a recipient on a remote system if you have
the Basic Networking Utilities or SupermaxTCP installed.

The addressing of remote users using domain addressing is
described in the mailaddr(5) manual page. This is recom-
mended although the old address format is still supported to
some extent.

Domain addresses cannot be used as a forward address, use
instead sendmail’s forward mechanism.

/ete/passwd to identify sender and locate persons
Jusr/mail/user incoming mail for user; i.e., the mailfile
$HOME /mbox saved mail

$MAIL variable containing path name of mailfile
/tmp/ma* temporary file

/usr/mail/*lock lock for mail directory

dead.letter unmailable text

Rev.May 1991 Version 3.10 Page 3

Il

MAIL (1) (Essential Utilities) MAIL (1)
SEE ALSO

login(1), mailx(1), sendmail(1), write(1), mailaddr(5).
WARNING

The ”Forward to person” feature may result in a loop, if
syslluserb forwards to sys2/userb and sys2!userb forwards to

syslluserb.
The symptom is a message saying “unbounded...saved mail in

dead.letter.”

BUGS
Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; print-
ing may be forced by typing a p.

Page 4 Version 3.10 Rev.May 1991

443

MAILX(1) (Essential Utilities) MAILX(1)
NAME
mailx — interactive message processing system
SYNOPSIS
mailx [options] [name...]
DESCRIPTION

The command mailx provides a comfortable, flexible environ-
ment for sending and receiving messages electronically.
When reading mail, mailx provides commands to facilitate
saving, deleting, and responding to messages. When sending
mail, mailx allows editing, reviewing and other modification
of the message as it is entered.

Many of the remote features of mailx will only work if the
Basic Networking Utilities are installed on your system.

Incoming mail is stored in a standard file for each user, called
the mailbox for that user. When mailx is called to read mes-
sages, the mailbox is the default place to find them. As mes-
sages are read, they are marked to be moved to a secondary
file for storage, unless specific action is taken, so that the
messages need not be seen again. This secondary file is called
the mbox and is normally located in the user’s HOME direc-
tory (see "MBOX” (ENVIRONMENT VARIABLES) for a descrip-
tion of this file). Messages can be saved in other secondary
files named by the user. Messages remain in a secondary file
until forcibly removed.

The user can access a secondary file by using the —f option
of the mailx command. Messages in the secondary file can
then be read or otherwise processed using the same COM-
MANDS as in the primary mailbox. This gives rise within
these pages to the notion of a current mailbox.

On the command line, options start with a dash (—) and any
other arguments are taken to be destinations (recipients). If
no recipients are specified, mailx will attempt to read mes-
sages from the mailbox. Command line options are:

Page 1 (Printed Dec.1989)

3

MAILX(1) (Essential Utilities) MAILX(1)

—f [filename]

-F

~h number

-N
—r address

— 8 subject
—-u user

-U

Test for presence of mail. mailx prints
nothing and exits with a successful
return code if there is mail to read.
Read messages from filename instead
of mailbox. If no filename is specified,
the mbox is used. .
Record the message in a file named
after the first recipient. Overrides the
“record” variable, if set (see ENVIRON-
MENT VARIABLES).
The number of network “hops” made
so far. This is provided for network
software to avoid infinite delivery
loops. (See addsopt under ENVIRON-
MENT VARIABLES)
Print header summary only.
Ignore interrupts. See also “ignore”
(ENVIRONMENT VARIABLES).
Do not initialize from the system
default mailx.rc file.
Do not print initial header summary.
Pass address to network delivery
software. All tilde commands are dis-
abled. (See addsopt under ENVIRON-
MENT VARIABLES)
Set the Subject header field to subject.
Read user’s mailbox. This is only
effective if user’s mailbox is not read
protected.
Convert uucp style addresses to inter-
net standards. Overrides the “conv”
environment variable. (See addsopt
under ENVIRONMENT VARIABLES)

When reading mail, mailx is in command mode. A header
summary of the first several messages is displayed, followed
by a prompt indicating mailx can accept regular commands

(Printed Dec.1989)

Page 2

(244

445

MAILX(1) (Essential Utilities) MAILX(1)

(see COMMANDS below). When sending mail, mailx is in
input mode. If no subject is specified on the command line, a
prompt for the subject is printed. (A ”subject” longer than
1024 characters will cause mailx to dump core) As the mes-
sage is typed, mailx will read the message and store it in a
temporary file. Commands may be entered by beginning a
line with the tilde (7) escape character followed by a single
command letter and optional arguments. See TILDE
ESCAPES for a summary of these commands.

At any time, the behavior of mailx is governed by a set of
environment variables. These are flags and valued parame-
ters which are set and cleared via the set and umset com-
mands. See ENVIRONMENT VARIABLES below for a sum-
mary of these parameters.

Recipients listed on the command line may be of three types:
login names, shell commands, or alias groups. Login names
may be any network address, including mixed network
addressing. If mail is found to to undeliverable, an attempt is
made to return it to the sender’s mailbox. If the recipient
name begins with a pipe symbol (|), the rest of the name is
taken to be a shell command to pipe the message through.
This provides an automatic interface with any program that
reads the standard input, such as Ip(1) for recording outgoing
mail on paper. Alias groups are set by the alias command
(see COMMANDS below) and are lists of recipients of any type.

Regular commands are of the form
[command | [msglist | [arguments |

If no command is specified in command mode, print is
assumed. In input mode, commands are recognized by the
escape character, and lines not treated as commands are
taken as input for the message.

Each message is assigned a sequential number, and there is
at any time the notion of a current message, marked by a
right angle bracket (>) in the header summary. Many

Page 3 (Printed Dec.1989)

MAILX(1) (Essential Utilities) MAILX(1)

commands take an optional list of messages (msglist) to
operate on. The default for msglist is the current message. A
msglist is a list of message identifiers separated by spaces,
which may include:

n Message number n.

The current message.

The first undeleted message.

$ The last message.

* All messages.

n—m An inclusive range of message numbers.

user All messages from user.

/string All messages with string in the subject line
(case ignored).

~

i All messages of type ¢, where ¢ is one of:
d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command deter-
mines whether this type of message
specification makes sense.

Other arguments are usually arbitrary strings whose usage
depends on the command involved. File names, where
expected, are expanded via the normal shell conventions (see
sh(1)). Special characters are recognized by certain com-
mands and are documented with the commands below.

At start-up time, mailx tries to execute commands from the
optional system-wide file (/usr/lib/mailx/mailx.re) to ini-
tialize certain parameters, then from a private start-up file
($HOME/.mailrc) for personalized variables. With the
exceptions noted below, regular commands are legal inside
start-up files. The use of a start-up file is to set up initial
display options and alias lists. The following commands are
not legal in the start-up file: !, Copy, edit, followup, Fol-
lowup, hold, mail, preserve, reply, Reply, shell, and visual.
An error in the start-up file causes the remaining lines in the

(Printed Dec.1989) Page 4

124

447

MAILX(1) (Essential Utilities) MAILX(1)

file to be ignored. The .mailre file is optional, and must be
constructed locally.

COMMANDS
The following is a complete list of mailx commands:

Ishell-command
Escape to the shell. See "SHELL” (ENVIRONMENT
VARIABLES).

comment
Null command (comment). This may be useful in
.mailrc files.

Print the current message number.

Prints a summary of commands.

alias alias name ...

group alias name ...
Declare an alias for the given names. The names will
be substituted when alias is used as a recipient. Use-
ful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login.
When responding to a message, these names are
removed from the list of recipients for the response.
With no arguments, alternates prints the current list
of alternate names. See also “allnet” (ENVIRON-
MENT VARIABLES).

cd [directory]

chdir [directory]
Change directory. If directory is not specified, $HOME
is used.

Page 5 (Printed Dec.1989)

MAILX(1) (Essential Utilities) MAILX(1)

copy [filename]

copy [msglist] filename
Copy messages to the file without marking the mes-
sages as saved. Otherwise equivalent to the save
command.

Copy [msglist]
Save the specified messages in a file whose name is
derived from the author of the message to be saved,
without marking the messages as saved. Otherwise
equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If “autoprint” is
set, the next message after the last one deleted is
printed (see ENVIRONMENT VARIABLES).

discard [header-field ...]

ignore [header-field ...]
Suppresses printing of the specified header fields
when displaying messages on the screen. Examples of
header fields to ignore are “status” and ”cc.” The
fields are included when the message is saved. The
Print and Type commands override this command.

dp [msglist]

dt [msglist]
Delete the specified messages from the mailbox and
print the next message after the last one deleted.
Roughly equivalent to a delete command followed by
a print command.

echo string ...
Echo the given strings (like echo(1)).

(Printed Dec.1989) Page 6

2144

449

MAILX(1) (Essential Utilities) MAILX(1)

edit [msglist]
Edit the given messages. The messages are placed in
a temporary file and the "EDITOR” variable is used
to get the name of the editor (see ENVIRONMENT
VARIABLES). Default editor is ed(1).

exit

xit
Exit from mailx, without changing the mailbox. No
messages are saved in the mbox (see also quit).

file [filename]
folder [filename]
Quit from the current file of messages and read in the
specified file. Several special characters are recog-
nized when used as file names, with the following sub-
stitutions:
% the current mailbox.
%user
the mailbox for user.
the previous file.
& the current mbox.
Default file is the current mailbox.

folders
Print the names of the files in the directory set by the
“folder” variable (see ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file
whose name is derived from the author of the mes-
sage. Overrides the "record” variable, if set. See also
the Followup, Save, and Copy commands and ”out-
folder” (ENVIRONMENT VARIABLES).

Page 7 (Printed Dec.1989)

MAILX(®) (Essential Utilities) MAILX(1)

Followup [msglist]

Respond to the first message in the msglist, sending
the message to the author of each message in the
msglist. The subject line is taken from the first mes-
sage and the response is recorded in a file whose
name is derived from the author of the first message.
See also the followup, Save, and Copy commands and
"outfolder” (ENVIRONMENT VARIABLES).

from [msglist]
Prints the header summary for the specified mes-
sages.

group alias name ...

alias alias name ...
Declare an alias for the given names. The names will
be substituted when alias is used as a recipient. Use-
ful in the .mailrc file.

headers [messagel
Prints the page of headers which includes the mes-
sage specified. The ”screen” variable sets the number
of headers per page (see ENVIRONMENT VARIABLES).
See also the z command.

help
Prints a summary of commands.

hold [msglist]
preserve [msglist]
Holds the specified messages in the mailbox.

ifs|r
mail-commands
else
mail-commands

(Printed Dec.1989) Page 8

oSy

451

—=

MAILX() (Essential Utilities) MAILX(1)

endif
Conditional execution, where s will execute following
mail-commands, up to an else or endif, if the pro-
gram is in send mode, and r causes the mail-
commands to be executed only in receive mode. Use-
ful in the .matilre file.

ignore header-field....

discard header-field ...
Suppresses printing of the specified header fields
when displaying messages on the screen. Examples of
header fields to ignore are “status” and ”cc.” All
fields are included when the message is saved. The
Print and Type commands override this command.

list
Prints all commands available. No explanation is
given.

mail name ...
Mail a message to the specified users.

Mail name

Mail a message to the specified user and record a copy
of it in a file named after that user.

mbox [msglist]
Arrange for the given messages to end up in the stan-
dard mbox save file when mailx terminates normally.
See "MBOX” (ENVIRONMENT VARIABLES) for a
description of this file. See also the exit and quit
commands.

next [messagel
Go to next message matching message. A msglist
may be specified, but in this case the first valid mes-
sage in the list is the only one used. This is useful for
jumping to the next message from a specific user,

Page 9 (Printed Dec.1989)

ey ||
— R (TE ‘
==

MAILX(1) (Essential Utilities) MAILX@1)

since the name would be taken as a command in the
absence of a real command. See the discussion of
msglists above for a description of possible message
specifications.

pipe [msglist] [shell-command]

| [msglist] [shell-command]
Pipe the message through the given shell-command.
The message is treated as if it were read. If no argu-
ments are given, the current message is piped
through the command specified by the value of the
“emd” variable. If the ”page” variable is set, a form
feed character is inserted after each message (see
ENVIRONMENT VARIABLES).

preserve [msglist]
hold [msglist]
Preserve the specified messages in the mailbox.

Print [msglist]

Type [msglist]
Print the specified messages on the screen, including
all header fields. Overrides suppression of fields by
the ignore command.

print [msglist]

type [msglist]
Print the specified messages. If "crt” is set, the mes-
sages longer than the number of lines specified by the
“crt” variable are paged through the command
specified by the "PAGER” variable. The default com-
mand is pg(1) (see ENVIRONMENT VARIABLES).

quit
Exit from mailx, storing messages that were read in
mbox and unread messages in the mailbox. Messages
that have been explicitly saved in a file are deleted.

(Printed Dec.1989) Page 10

(4414

453

(R === - . — I |

MAILX@) (Essential Utilities)

A=

MAILX(1)

Reply [msglist]

Respond [msglist]
Send a response to the author of each message in the
msglist. The subject line is taken from the first mes-
sage. If "record” is set to a file name, the response is
saved at the end of that file (see ENVIRONMENT
VARIABLES).

reply [message]

respond [message]
Reply to the specified message, including all other
recipients of the message. If “record” is set to a file
name, the response is saved at the end of that file (see
ENVIRONMENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is
derived from the author of the first message. The
name of the file is taken to be the author’s name with
all network addressing stripped off. See also the
Copy, followup, and Followup commands and “out-
folder” (ENVIRONMENT VARIABLES).

save [filename]

save [msglist] filename
Save the specified messages in the given file. The file
is created if it does not exist. The message is deleted
from the mailbox when mailx terminates unless
“keepsave” is set (see also ENVIRONMENT VARI-
ABLES and the exit and quit commands).

set

set name

set name =string

set name =number
Define a variable called name. The variable may be
given a null, string, or numeric value. Set by itself
prints all defined variables and their values. See

(Printed Dec.1989)

W —— = = > = = = 5 = A5e :
20 .
MAILX(1) (Essential Utilities) MAILX(1)

ENVIRONMENT VARIABLES for detailed descrip-
tions of the mailx variables.

shell
Invoke an interactive shell (see also ”SHELL”
(ENVIRONMENT VARIABLES)).

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to
command mode.

top [msglist]
Print the top few lines of the specified messages. If
the ”toplines” variable is set, it is taken as the
number of lines to print (see ENVIRONMENT VARI-
ABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in
msglist is not specifically saved in a file, it will be
placed in the mbox, or the file specified in the MBOX
environment variable, upon normal termination. See
exit and quit.

Type [msglist]

Print {msglist]
Print the specified messages on the screen, including
all header fields. Overrides suppression of fields by
the ignore command.

type [msglist]

print [msglist]
Print the specified messages. If ”ert” is set, the mes-
sages longer than the number of lines specified by the
“crt” wvariable are paged through the command

(Printed Dec.1989) Page 12

1214

455

MAILX(1) (Essential Utilities) MAILX(1)

specified by the "PAGER” variable. The default com-
mand is pg(1) (see ENVIRONMENT VARIABLES).

undelete [msglist]
Restore the specified deleted messages. Will only
restore messages deleted in the current mail session.
If ”autoprint” is set, the last message of those
restored is printed (see ENVIRONMENT VARIABLES).

unset name ...
Causes the specified variables to be erased. If the
variable was imported from the execution environ-
ment (i.e., a shell variable) then it cannot be erased.

version
Prints the current version and release date.

visual [msglist]
Edit the given messages with a screen editor. The
messages are placed in a temporary file and the
"VISUAL” variable is used to get the name of the edi-
tor (see ENVIRONMENT VARIABLES).

write [msglist] filename
Write the given messages on the specified file, minus
the header and trailing blank line. Otherwise
equivalent to the save command.

xit

exit
Exit from mailx, without changing the mailbox. No
messages are saved in the mbox (see also quit).

z[+ | -1

Scroll the header display forward or backward one
screen — full. The number of headers displayed is set
by the ”screen” variable (see ENVIRONMENT VARI-
ABLES).

Page 13 (Printed Dec.1989)

MAILX(®) (Essential Utilities) MAILX(1)

TILDE ESCAPES
The following commands may be entered only from input
mode, by beginning a line with the tilde escape character (7).
See “escape” (ENVIRONMENT VARIABLES) for changing this
special character.

"1 shell-command
Escape to the shell.

Simulate end of file (terminate message input).

“: mail-command

" _ mail-command
Perform the command-level request. Valid only when
sending a message while reading mail.

Print a summary of tilde escapes.

"A
Insert the autograph string ”Sign” into the message
(see ENVIRONMENT VARIABLES).

"a
Insert the autograph string ”sign” into the message
(see ENVIRONMENT VARIABLES).

“b name ...
Add the names to the blind carbon copy (Bee) list.

‘¢ name ...
Add the names to the carbon copy (Cc) list.

“d

Read in the dead.letter file. See "DEAD” (ENVIRON-
MENT VARIABLES) for a description of this file.

(Printed Dec.1989) Page 14

9cY

457

MAILX(1) (Essential Utilities) MAILX(1)

Invoke the editor on the partial message. See also
"EDITOR” (ENVIRONMENT VARIABLES).

“f [msglist]
Forward the specified messages. The messages are
inserted into the message without alteration.

“h
Prompt for Subject line and To, Cec, and Bcce lists. If
the field is displayed with an initial value, it may be
edited as if you had just typed it.

"1 string

Insert the value of the named variable into the text of
the message. For example, “A is equivalent to
’“i Sign.” Environment variables set and exported in
the shell are also accessible by ~i.

“m [msglist]
Insert the specified messages into the letter, shifting
the new text to the right one tab stop. Valid only
when sending a message while reading mail.

p

Print the message being entered.

‘q
Quit from input mode by simulating an interrupt. If
the body of the message is not null, the partial mes-
sage is saved in dead.letter. See "DEAD” (ENVIRON-
MENT VARIABLES) for a description of this file.

“r filename

"< filename

“ "< lshell-command
Read in the specified file. If the argument begins
with an exclamation point (!), the rest of the string is

Page 15 (Printed Dec.1989)

—_ —

MAILX() (Essential Utilities) MAILX(1)

taken as an arbitrary shell command and is executed,
with the standard output inserted into the message.

s string ...
Set the subject line to string.

“t name ...
Add the given names to the To list.

v
Invoke a preferred screen editor on the partial mes-
sage. See also ”VISUAL” (ENVIRONMENT VARI-
ABLES).

“w filename
Write the partial message onto the given file, without
the header.

=X

Exit as with “q except the message is not saved in
dead.letter.

" | shell-command
Pipe the body of the message through the given
shell-command. If the shell-command returns a suc-
cessful exit status, the output of the command
replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the exe-
cution environment and are not alterable within mailx.

HOME =directory
The user’s base of operations.

(Printed Dec.1989) Page 16

fis14

459

MAILX(1) (Essential Utilities) MAILX(1)

MAILRC = filename
The name of the start-up file. Default is
$HOME/ .mailre.

The following variables are internal mailx variables. They
may be imported from the execution environment or set via
the set command at any time. The unset command may be
used to erase variables.

addsopt
Enabled by default. If /bin/mail is not being used as
the deliverer, noaddsopt should be specified. (See
WARNINGS below)

allnet
All network names whose last component (login
name) match are treated as identical. This causes the
msglist message specifications to behave similarly.
Default is noallnet. See also the alternates com-
mand and the "metoo” variable.

append
Upon termination, append messages to the end of the
mbox file instead of prepending them. Default is
noappend.

askee
Prompt for the Cc list after message is entered.
Default is noaskce.

asksub
Prompt for subject if it is not specified on the com-
mand line with the —s option. Enabled by default.

autoprint

Enable automatic printing of messages after delete
and undelete commands. Default is noautoprint.

Page 17 (Printed Dec.1989)

MAILX() (Essential Utilities) MAILX(1)

bang
Enable the special-casing of exclamation points (!) in

shell escape command lines as in vi(1). Default is
nobang.

cmd = shell-command

Set the default command for the pipe command. No
default value.

conv =conversion
Convert uucp addresses to the specified address style.
The only valid conversion now is internet, which
requires a mail delivery program conforming to the
RFC822 standard for electronic mail addressing.
Conversion is disabled by default. See also ”send-
mail” and the — U command line option.

crt =number

Pipe messages having more than number lines
through the command specified by the value of the

"PAGER” variable (pg(1) by default). Disabled by
default.

DEAD =filename
The name of the file in which to save partial letters in

case of untimely interrupt. Default is
$HOME/dead.letter.

debug

Enable verbose diagnostics for debugging. Messages
are not delivered. Default is nodebug.

dot

Take a period on a line by itself during input from a
terminal as end-of-file. Default is nodot.

(Printed Dec.1989) Page 18

0y

461

MAILX(1) (Essential Utilities) MAITLX(1)

EDITOR =shell-command
The command to run when the edit or "e command is
used. Default is ed (1).

escape=c
Substitute ¢ for the ~ escape character. Takes effect
with next message sent.

folder =directory

The directory for saving standard mail files. User-
specified file names beginning with a plus (+) are
expanded by preceding the file name with this direc-
tory name to obtain the real file name. If directory
does not start with a slash (/), $HOME is prepended
to it. In order to use the plus (+) construct on a
mailx command line, “folder” must be an exported sh
environment variable. There is no default for the
”folder” variable. See also ”outfolder” below.

header
Enable printing of the header summary when enter-
ing mailx. Enabled by default.

hold
Preserve all messages that are read in the mailbox
instead of putting them in the standard mbox save
file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for
noisy dial-up lines. Default is noignore.

ignoreeof

Ignore end-of-file during message input. Input must
be terminated by a period (.) on a line by itself or by
the ~."command. Default is noignoreeof. See also
"dot” above.

Page 19 (Printed Dec.1989)

MAILX(1) (Essential Utilities) MAILX(1)

keep
When the mailbox is empty, truncate it to zero length
instead of removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in
the mailbox instead of deleting them. Default is
nokeepsave. '

MROX =filename
The name of the file to save messages which have
been read. The xit command overrides this function,

as does saving the message explicitly in another file.
Default is $HOME /mbox.

metoo
If your login appears as a recipient, do not delete it
from the list. Default is nometoo.

LISTER =shell-command
The command (and options) to use when listing the

contents of the ”folder” directory. The default is
Is(1).

onehop

When responding to a message that was originally
sent to several recipients, the other recipient
addresses are normally forced to be relative to the ori-
ginating author’s machine for the response. This flag
disables alteration of the recipients’ addresses,
improving efficiency in a network where all machines
can send directly to all other machines (i.e., one hop
away).

outfolder
Causes the files used to record outgoing messages to
be located in the directory specified by the ”folder”
variable unless the path name is absolute. Default is

(Printed Dec.1989) Page 20

414

463

MAILX(1) (Essential Utilities)

nooutfolder. See ”folder” above and the Save,
Copy, followup, and Followup commands.

page
Used with the pipe command to insert a form feed
after each message sent through the pipe. Default is
nopage.

PAGER = shell-command
The command to use as a filter for paginating output.
This can also be used to specify the options to be
used. Default is pg(1).

prompt =string
Set the command mode prompt to string. Default is

”? ”»

quiet
Refrain from printing the opening message and ver-
sion when entering mailx. Default is noquiet.

record =filename
Record all outgoing mail in filename. Disabled by
default. See also ”outfolder” above.

save
Enable saving of messages in dead.letter on interrupt
or delivery error. See "DEAD” for a description of
this file. Enabled by default.

screen = number
Sets the number of lines in a screen —full of headers
for the headers command.

sendmail = shell-command

Alternate command for delivering messages. Default
is /bin/rmail (1).

Page 21 (Printed Dec.1989)

—_— —

MAILX(1) (Essential Utilities) MAILX(1)

FILES

sendwait
Wait for background mailer to finish before returning.
Default is nosendwait.

SHELL =shell-command
The name of a preferred command interpreter.
Default is sh(1).

showto
When displaying the header summary and the mes-
sage is from you, print the recipient’s name instead of
the author’s name.

sign=string
The variable inserted into the text of a message when
the “a (autograph) command is given. No default (see
also "i (TILDE ESCAPES)).

Sign=string
The variable inserted into the text of a message when
the "A command is given. No default (see also ~i
(TILDE ESCAPES)).

toplines =number
The number of lines of header to print with the top
command. Default is 5.

VISUAL =shell-command
The name of a preferred screen editor. Default is

vi(l).
$HOME/ .mailrc personal start-up file
$HOME/mbox secondary storage file
/usr/mail /* post office directory

/usr/lib/mailx/mailx.help* help message files
/usr/lib/mailx/mailx.rc optional global start-up file
/tmp/R[emqgsx]* temporary files

(Printed Dec.1989) Page 22

vor

465

- = & =y | @ =

MAILX(1) (Essential Utilities) MAILX(@®)

SEE ALSO
1s(1), mail(1), pg(D).

WARNINGS
The —h, —r and —U options can be used only if mailx is
built with a delivery program other than /bin/mail.

BUGS
Where shell-command is shown as valid, arguments are not
always allowed. Experimentation is recommended.

Internal variables imported from the execution environment
cannot be unset.

The full internet addressing is not fully supported by mailx.
The new standards need some time to settle down.

Attempts to send a message having a line consisting only of a
“” are treated as the end of the message by mail(1) (the
standard mail delivery program).

Page 23 (Printed Dec.1989)

This page is intentionally left blank

99t

i o or o= | P N | =k S ——a—mmi | [[=—=="=m|
- @
8 =

MAKEFSYS(1M) (Essential Utilities) MAKEFSYS(1M)
NAME
makefsys — create a file system on a diskette
SYNOPSIS
makefsys
DESCRIPTION

This command allows the user to create a file system on a
diskette. It also writes an internal label in the file system
super-block.

The user is asked some questions before the file system is
created. Once created, the diskette is self-identifying.

The identical function is available under the sysadm menu:
sysadm makefsys

The command may be assigned a password. See sysadm(1),
the admpasswd sub-command.

SEE ALSO
checkfsys(1IM), labelit(IM), mkfs(1IM), mountfsys(1M),
sysadm(1).

467

Page 1 (Printed Dec.1989)

This page is intentionally left blank

89

469

L [- C I=

MAKEOS(1M) (Essential Utilities) MAKEOS(1M)
NAME
makeos — generate a bootable operating system
SYNOPSIS
/etc/boot.d/makeos
DESCRIPTION

makeos asks the user a number of questions about the operat-
ing system to be generated. Each question is answered by
either y or n.

Based on the answers given by the user, makeos creates a
bootable module called /etc/boot.d/0s00 for an MC68000
based MCU and /etc/boot.d/0s20 for an MC68020 based
MCU. The file created can later be placed on the boot device
by the bootgen (1IM) command.

Note: The generation of an operating system using makeos
must not be confused with the configuration of an already
generated operating system with the chhw (1IM) command.

SEE ALSO

Page 1

bootgen(1M).

(Printed Dec.1989)

This page is intentionally left blank

0%

_=

MAKEXOS (1M) (Essential Utilities) MAKEXOS (1M)
NAME

makexos — generate an Operating System Extension
SYNOPSIS

makexos [system-file]
DESCRIPTION

makexos is used to generate a loadable operating system exten-
sion (a so-called XOS) module that may be loaded using the
ins_xos(1M) program.

An XOS module is a collection of operating system services that
supplement the services found in the operating system and
loaded as part of the bootstrap process. Typical elements in the
XOS module are the STREAMS mechanism and communica-
tion modules, such as TCP/IP.

When makexos is invoked, a number of files must be present in
the current directory, (which will typically be /etc/boot.d).
These files include:

0820 or 0830, XOS.o, oslib.a, NIOC.o, SP.o,
TIMOD.o, TIRDWR.0, and others.

The 0s20 or 0s30 module must be the one that has been put
onto the boot disk using bootgen(1IM).

When invoked without argument, makexos will ask the user a
number of questions about the XOS that will be generated. The
questions relate to the modules that the user wants to include
in the XOS. When all the questions have been answered, an
XO0S module is generated. It will have the name:

X—str.#####H###

where ######## is a hexadecimal number identifying the
operating system version. After the system has been
bootstrapped, this XOS module may be loaded using the
ins_xos(1IM) command.

makexos will also generate a tect file called system. This file
may be used as an argument to makexos, when an XOS module
is to be generated for another version of the operating system.

Issued May 1991 Version 3.10 Page 1

MAKEXOS (1M) (Essential Utilities) MAKEXOS (1M)

When makexos is invoked with such an argument, it will not

ask the user any questions; instead it will generate an XOS
module with the same components as the last time.

SEE ALSO
bootgen(1m), ins_xos(1M).

Page 2 Version 3.10 Issued May 1991

MAN (1) (Essential Utilities) MAN (1)
NAME
man — display reference manual pages; find reference pages by
keyword
SYNOPSIS

/usr/bin/man [— 1 [—M path] [[section] title ...] title ...
Jusr/bin/man [—M path | —k keyword ...
Jusr/bin/man [—M path] —f filename ...

DESCRIPTION
The man command displays information from the reference
manuals. It can display complete manual pages that you select
by title, or one-line summaries selected either by keyword(—k),
or by the name of an associated file (—f).

A section, when given, applies to the titles that follow it on the
command line (up to the next section, if any). man looks in the
indicated section of the manual for those titles. section is either
a digit (perhaps followed by a single letter indicating the type
of manual page), or one of the words new, local, old, or pub-
lic. If section is omitted, man searches all reference sections
(giving preference to commands over functions) and prints the
first manual page it finds. If no manual page is located, man
prints an error message.

The reference page sources are typically located in the
Jusr/man/man? directories. Since these directories are
optionally installed, they may not reside on your host. If there
are preformatted, up-to-date versions in corresponding
Jusr/man/cat? directories, man simply displays or prints
those versions.

If the standard output is not a terminal, or if the — flag is
given, man pipes its output through cat. Otherwise, man
pipes its output through more to handle paging and underlin-
ing on the screen.

Issued May 1991 Version 3.10 Page 1

= o:: .

MAN (1) (Essential Utilities) MAN (1)

The following options are available:

—M path
Change the search path for manual pages. path is a
colon-separated list of directories that contain manual
page directory subtrees. When used with the —k or —f
options, the —M option must appear first. Each direc-
tory in the path is assumed to contain subdirectories of
the form man(1-81-p] or caz[1-81-p].

—k keyword ...
man prints out one-line summaries from the whatis
database (table of contents) that contain any of the given
keywords.

—f filename ...
man attempts to locate manual pages related to any of
the given filenames. It strips the leading pathname com-
ponents from each filename, and then prints one-line
summaries containing the resulting basename or names.

JANUAL PAGES
Manual pages are installed preformatted.

NVIRONMENT
MANPATH If set, its value overrides fusr/man as
the default search path. The —M flag, in
turn, overrides this value.
PAGER A program to use for interactively deliver-
ing man’s output to the screen.
If not set, ‘more —s’ (see more(1)) is used.
‘LES
Jusr/man root of the standard manual page direc-

tory subtree.
Jusr/man/cat?/* manual entries preformatted.
Jjusr/man/whatis table of contents and keyword database.

ZE ALSO
apropos(1), cat(1), whatis(1), and more(1) in the System V Refer-
ence Manual.

ge 2 Version 3.10 Issued May 1991

e : : : . m
— j——— =]
MAN (1) (Essential Utilities) MAN (1)

NOTES

The manual is supposed to be reproducible either on a photo-
typesetter or on an ASCII terminal. However, on a terminal
some information (indicated by font changes, for instance) is
necessarily lost.

Issued May 1991 Version 3.10 Page 3

e e

MAN (1) (Essential Utilities) MAN (1)

This page is intentionally left blank

Page 4 Version 3.10 Issued May 1991

471

F— s — J b lim—

MCUMASK(1) (Essential Utilities) MCUMASK(1)

NAME

mcumask — set MCU mask

SYNOPSIS

mecumask [000]

DESCRIPTION

The mcumask determines which MCUs (Main Computing
Unit) a process is allowed to spawn new processes on in a
Supermax multi cpu environment. The argument will be
interpreted as an octal number and each bit in this number
refers to an MCU. If a bit is set, access is allowed to that
MCU. When a user logs in, his mcumask is set to allow
access to all configured MCUs. If the argument is omitted, the
current value of the mask is printed.

Only the superuser is allowed to extend his mcumask to
include new MCUs.

mcumask is recognized and executed by the shell.

EXAMPLE

mcumask 11
will allow access to MCU number 0 and 3.

SEE ALSO

Page 1

mcumask(2).

(Printed Dec.1989)

This page is intentionally left blank

(A4

473

MESG(1) (Essential Utilities) MESG(1)
NAME
mesg — permit or deny messages
SYNOPSIS
mesg [—n][—-y]
DESCRIPTION

mesg with argument n forbids messages via write(l) by
revoking non-user write permission on the user’s terminal.
mesg with argument y reinstates permission. All by itself,
mesg reports the current state without changing it.

FILES
/dev/tty *

SEE ALSO
write(1).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

viv

475

MKDIR(1) (Essential Utilities) MKDIR(1)
NAME
mkdir — make directories
SYNOPSIS
mkdir [—m mode] [~p] dirname ...
DESCRIPTION

mkdir creates the named directories in mode 777 (possibly
altered by umask (1)).

Standard entries in a directory (e.g., the files ., for the direc-
tory itself, and .., for its parent) are made automatically.
mkdir cannot create these entries by name. Creation of a
directory requires write permission in the parent directory.

The owner ID and group ID of the new directories are set to
the process’s real user ID and group ID, respectively.

Two options apply to mkdir:

—m This option allows users to specify the mode to be used
for new directories. Choices for modes can be found in
chmod (1).

—p With this option, mkdir creates dirname by creating all
the non-existing parent directories first.

EXAMPLE
To create the subdirectory structure ltr/jd/jan, type:

mkdir -p ltr/jd/jan

SEE ALSO
rm(1), sh(1), umask(l), intro(2&3), mkdir(2).

DIAGNOSTICS
mkdir returns exit code 0 if all directories given in the com-
mand line were made successfully. Otherwise, it prints a
diagnostic and returns non-zero. An error code is stored in
errno.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

9.y

477

L“:‘ — | — m_

MKFS(1M) (Essential Utilities) MKFS(1M)
NAME

mkfs, mkfs512 — construct a file system
SYNOPSIS

Jete/mkfs special blocks[:inodes] [gap blocks/cyl]
Jete/mkfs special proto [gap blocks/cyll
/etc/mkfs512 special blocks[:inodes] [gap blocks/cyl]
Jete/mkfs512 special proto [gap blocks/cyl]

DESCRIPTION
mkfs constructs a file system by writing on the special file
according to the directions found in the remainder of the
command line.

The command waits 10 seconds before starting to construct
the file system. During this 10-second pause the command can
be aborted by entering a delete (DEL).

If the second argument is a string of digits, the size of the file
system is the value of blocks interpreted as a decimal number.
This is the number of 512 byte disk blocks the file system will
occupy. If the number of i-nodes is not given, the default is
the number of logical blocks divided by 4, (minimum 32).
mkfs builds a file system with a single empty directory on it.
The boot. program block (block zero) is left uninitialized.

If the second argument is %, mkfs will automatically calculate
the correct number of logical blocks and i-nodes, based upon
the size of the logical disk.

If the second argument is the name of a file that can be
opened, mkfs assumes it to be a prototype file proto, and will
take its directions from that file. The prototype file contains
tokens separated by spaces or new-lines. A sample prototype
specification follows (line numbers have been added to aid in
the explanation):

Page 1 (Printed Dec.1989)

e e

MKFS(1M) (Essential Utilities) MKFS(1M)
1 /stand/diskboot
2. 4872 110
3. d— 77731
4. usr d- -77731
5. sh — — —75531 /bin/sh
6. ken d— —-75561
7. $
8. b0 ~b— —-6443100
9. c0 c— —6443100
10. $
11. $

Line 1 in the example is the name of a file to be copied onto
block zero as the bootstrap program. (Under SMOS V this
block is not used, so specify /dev/null).

Line 2 specifies the number of 512 byte blocks the file system
is to occupy and the number of i-nodes in the file system.
The maximum number of i-nodes configurable is 65500.
(Under SMOS V this number can be replaced by a % sign,
and the number of blocks and i-nodes will be calculated by
mkfs, based upon the size of the logical disk).

Lines 3-9 tells mkfs about files and directories to be
included in this file system.

Line 3 specifies the root directory.
Lines 4 — 6 and 8 — 9 specifies other directories and files.

The $ on line 7 tells mkfs to end the branch of the file system
it is on, and to continue from the next higher directory. The
$ on lines 10 and 11 ends the process, since no additional
specifications follow.

File specifications gives the mode, the user ID, the group
ID, and the initial contents of the file. Valid syntax for
the contents field depends on the first character of the
mode.

The mode for a file is specified by a 6-character string. The
first character specifies the type of the file. The character

(Printed Dec.1989) Page 2

8.y

479

MKFS(1M) (Essential Utilities) MKFS(1M)

range is —bed to specify regular, block special, character spe-
cial and directory files, respectively. The second character of
the mode is either u or — to specify set —user—id mode or
not. The third character is g or — for the set—group—id
mode. The rest of the mode is a 3 digit octal number giving
the owner, group, and other read, write, execute permissions,
(see chmod(1)).

Two decimal number tokens come after the mode; they
specify the user and group ID’s of the owner of the file.

If the file is a regular file, the next token of the specification
may be a pathname whence the contents and size are copied.
If the file is a block or character special file, two decimal
numbers follow, which give the major and minor device
numbers. If the file is a directory, mkfs makes the entries .
and .. , and then reads a list of names and (recursively) file
specifications for the entries in the directory. As noted above,
the scan is terminated with the token $.

The final argument in both forms of the command specifies
the rotational gap and the number of blocks/cyl.

mkfs512

mkfs512 is the same as mkfs, except mkfs512 is used for file
systems with a 512 byte block size.

SEE ALSO

chmod(1), dir(4), fs(4).

With a prototype file, it is not possible to copy in a file larger
than 64K bytes, nor is there a way to specify links. The max-
imum number of i-nodes configurable is 65500.

(Printed Dec.1989)

|
| —
i

This page is intentl:onally left blank

(01314

481

MKNOD(1M) (Essential Utilities) MKNOD(IM)

NAME

mknod — build special file

SYNOPSIS

/etc/mknod name b | ¢ major minor
/ete/mknod name p

DESCRIPTION

mknod makes a directory entry and corresponding i-node for
a special file.

The first argument is the name of the entry. The UNIX Sys-
tem convention is to keep such files in the /dev directory.

In the first case, the second argument is b if the special file is
block-type (disks, tape) or ¢ if it is character-type (other dev-
ices). The last two arguments are numbers specifying the
major device type and the minor device (e.g., unit, drive, or
line number). They may be either decimal or octal. The
assignment of major device numbers is specific to each sys-
tem. The information is contained in the system source file
conf.c. You must be the super-user to use this form of the
command.

The second case is the form of the mknod that is used to
create FIFO’s (a.k.a named pipes).

SEE ALSO

Page 1

mknod(2).

(Printed Dec.1989)

This page is intentionally left blank

[4:14

483

MKWBOOT(1M) (Essential Utilities) MKWBOOT(1M)
NAME

mkwboot — specify a subdisk as winchester boot disk
SYNOPSIS

/etc/mkwboot [—d
Jete/mkwboot [—b x] [—a] [—s disk |
/etc/mkwboot [—bx][—a][—c]

DESCRIPTION ,
The mkwboot program is used to specify a subdisk as a win-
chester boot disk.

The Supermax supports up to 4 different winchester boot-
disks numbered from 0 to 3.

The options are:
—-d Display boot disks.

—bx The following action is for boot entry ’x’. The ’x’
must be from 0 to 3.

—a Activate disk. This means that a boot command
will cause the system to boot from boot entry ’x’.

—c Clear boot entry 'x’.
—sdisk Set boot entry ’x’ to boot disk on disk.

The parameter disk is the specialfile connected
to the subdisk that should be used as boot disk.
A boot disk must be located on the same physi-
cal disk as other boot disks.

SEE ALSO
boot(1IM).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

414

e e———— . ==

MORE (1) (Essential Utilities) MORE (1)

NAME :
more — file persual filter for CRT’s

SYNOPSIS
Jusr/bin/more [files]

DESCRIPTION
The more command is actually just a System III more simula-

tor. It just execute pg with option —p, —n and —s.

SEE ALSO
pe(D).

Issued May 1991 Version 3.10 Page 1

MORE (1) (Essential Utilities) MORE (1)

This page is intentionally left blank

Page 2 Version 3.10 issued May 1991

—
MOUNT (1M) (Essential Utilities) MOUNT (1M)

NAME

mount, umount — mount and unmount file system

SYNOPSIS

/etc/mount [[—r] [—f fstyp] [—o options] fsname directory]
/etc/umount mountpoint
/etc/umount —a

DESCRIPTION

File systems other than root (/) are considered removable in
the sense that they can be either available to users or unavail-
able. mount announces to the system that a removable file sys-
tem fsname is present, and is available to users. The directory
must exist already; it becomes the name of the root of the
newly mounted file system. fsname specifies the file system by
the the special file for local file systems, and at the form
host:path for remote (NFS) file systems.

umount announces to the system that the file system previ-
ously mounted at mountpoint should be removed. mountpoint is
either the fsname or the directory used in the corresponding
mount command. umount called with option —a tries to
umount all file systems currently mounted.

mount, when entered with arguments, adds an entry to the
table of mounted devices, /etc/mnttab. umount removes the
entry. If invoked with no arguments, mount prints the entire
mount table.

The following options are available:

-r Indicate that the file system is to be mounted read-
only. mount will mount a file system on physically
write protected media only if the commands includes
the —r flag.

—f Indicates the file system type. The accepted types are:
s5 (local UNIX SYS-V file system), and nfs (remote
NFS file system). Default is that if fsname includes a
colon ”:”, the type is set to nfs; otherwise the file sys-
tem type is set to sb.

Rev.May 1991 Version 3.10 Page 1

Page 2

!
|
|

(Essential Utilities)

,_

MOUNT (1M)

MOUNT (1M)

Specifies options for nfs type file systems. The NFS

options are:
bg

fg
retry=n
rsize=n
wsize=n
timeo=n

retrans=n

port=n

soft

hard

suid

nosuid

ac_timeo=n

dc_timeo=n

Retry the mount in background if the
first attempt fails.

Retry mount in foreground.

Set number of failed mount retries to
n.

Set read buffer size to n bytes.
Set write buffer to n byte.

Set retransmission timeout to n
tenth of a second.

Set number of retransmissions to n.

Call servers nfs service at IP port
number n.

IO requests fails if server does not
respond.

IO requests are transmitted until
server responds.

Set-uid file mode permitted.
Set-uid file mode ignored.

Set attribute cache timeout to n
tenth of a second.

Set data cache timeout to n tenth of
a second.

The default settings are as follows:

— orsize =4096,wsize = 4096,timeo = 30,retrans =10,
ac_timeo=30,dc_timeo = 30,hard, suid,retry =10000,

port =2049 fg

Version 3.10

Rev.May 1991

e

MOUNT (1M) (Essential Utilities) MOUNT (1M)

EXAMPLES
mount /dev/dsk/ul4c8sl /usr

Mount the file system from the local disk /dev/dsk/uldc8sl at

the directory /usr.

mount srv:/public/usr/src /usr/src

Mount the file system /public/usr/src on NFS server "srv” at

the directory /usr/src.

mount — orsize=2048,wsize = 2048,bg\
srv:/public/usr/src /usr/src

Same as above but with other NFS options.

FILES

/ete/mnttab mount table
SEE ALSO

fuser(IM), setmnt(IM), mount(2), umount(2), mnttab(4).
DIAGNOSTICS

If the mount system call fails, mount prints an appropriate
diagnostic. mount issues a warning if the file system to be
mounted is currently mounted under another name.

umount fails if the special file is not mounted or if it is busy.
The file system is busy if it contains an open file or some user’s
working directory. In such a case, fuser(1IM) can be of help.

WARNINGS
Physically removing a mounted file system diskette from the
diskette drive before issuing the umount command damages the
file system.

Rev.May 1991 Version 3.10 Page 3

—Jdbjl——————————————

MOUNT (1M) (Essential Utilities) MOUNT (1M)

This page is intentionally left blank

age 4 Version 3.10 Rev.May 1991

MOUNTALL (1M) (Essential Utilities) MOUNTALL (1M)

NAME
mountall, umountall — mount, unmount multiple file systems

SYNOPSIS
/ete/mountall [—] [file — system — table] . . .
/etc/umountall [—k]

DESCRIPTION
These commands may be executed only by the super-user.

mountall is used to mount file systems according to one or
more file-system-tables. [etc/fstab is the normal file system
table. The special file name ” —” reads from the standard input.

Before each file system is mounted, it is checked using
fsstat(IM) to see if it appears mountable. If the file system
does not appear mountable, it is checked, using fsck(1M), before
the mount is attempted.

umountall causes all mounted file systems except root to be
unmounted. The —k option sends a SIGKILL signal, via
fuser(1M), to processes that have files open.

FILES
File-system-table format:
column 1 file system specification (mount(1M) syntax)
column 2 mount-point directory

column 3+ mount(1M) options
White-space separates columns. Lines beginning with ”#” are
comments. Empty lines are ignored.
A typical file-system-table might read:
/dev/dsk/uldc8sl /usr -r
srv:/public/usr/srv /usr/srv -obg

SEE ALSO
fsck(1M), fsstat(1M), fuser(1IM), mount(1M), sysadm(l), sig-
nal(2), fstab(4).

Rev.May 1991 Version 3.10 Page 1

i e ——— e
—Jdef—————————————
)
MOUNTALL (1M) (Essential Utilities) MOUNTALL (1M)
DIAGNOSTICS
No messages are printed if the file systems are mountable and
clean.

Error and warning messages come from fsck(IM), fsstat(1M),
and mount(1M).

Page 2 Version 3.10 Rev.May 1991

489

MOUNTFSYS(1M) (Essential Utilities) MOUNTFSYS(1M)
NAME
mountfsys, umountfsys — mount, unmount a diskette file sys-
tem
SYNOPSIS

mountfsys [—y 1 [—r]
umountfsys [—y]
DESCRIPTION
The mountfsys command mounts a file system that is on a

removable disk so that users can read and write on it. The
options provide the following:

-r the file system is mounted read-only.

-y suppresses any questions asked during mounting or
unmounting.

The umounitfsys command unmounts the file system.

By default, the name of the file system is displayed and the
user is asked if it should be mounted. The optional —y argu-
ment suppresses questions and mounts or unmounts the file
system immediately.

The identical functions are available under the sysadm menu:

sysadm mountfsys
sysadm umountfsys

The commands may be assigned passwords. See sysadm(l),
the admpasswd sub-command.

SEE ALSO
checkfsys(1M), makefsys(1IM), mount(1M), sysadm(1).

Page 1 (Printed Dec.1989)

e | . 7

MOUNTFSYS(1M) (Essential Utilities) MOUNTFSYS(1M)

WARNING
ONCE THE DISK IS MOUNTED IT MUST NOT BE
REMOVED FROM THE DISK DRIVE UNTIL IT HAS BEEN
UNMOUNTED!

Removing the disk while it is still mounted can cause severe
damage to the data on the disk.

BUGS
A file system that has no label cannot be mounted with the
mountfsys command.

(Printed Dec.1989) Page 2

11514

491

MVDIR(1M) (Essential Utilities) MVDIR(1M)
NAME
mvdir — move a directory
SYNOPSIS
/ete/mvdir dirname name
DESCRIPTION

mudir moves directories within a file system. dirname must
be a directory. If name does not exist, it will be created as a
directory. If name does exist, dirname will be created as
name/dirname. dirname and name may not be on the same
path; that is, one may not be subordinate to the other. For
example:

mvdir x/y x/z
is legal, but

mvdir x/y x/y/z
is not.

SEE ALSO
mkdir(1), mv(1).

WARNINGS
Only the super-user can use muvdir.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

(514

493

NCHECK(1M) (Essential Utilities) NCHECK(1M)
NAME

ncheck — generate path names from i-numbers
SYNOPSIS

/ete/ncheck [—i inumbers 1 [—al[—s]
[file-system]

DESCRIPTION
ncheck with no arguments generates a path-name vs. i-
number list of all files on a set of default file systems (see
/etc/checklist). Names of directory files are followed by /..

The options are as follows:

—i limits the report to only those files whose i-numbers
follow.

-a allows printing of the names . and .., which are ordi-
narily suppressed.

-8 limits the report to special files and files with set-
user-ID mode. This option may be used to detect vio-
lations of security policy.

file system must be specified by the file system’s special file.
The report should be sorted so that it is more useful.

SEE ALSO
fsck(1M), sort(1).

DIAGNOSTICS
If the file system structure is not consistent, ?? denotes the
‘“parent” of a parentless file and a path-name beginning with
... denotes a loop.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

14514

495

NEWFORM(1) (Essential Utilities) NEWFORM(1)

NAME

newform — change the format of a text file

SYNOPSIS

newform [-s] [—itabspec] [—otabspec] [—~bn] [—en]
[—pn] [—an] [=f] [—ecchar] [—1n] [files]

DESCRIPTION

Page 1

newform reads lines from the named files, or the standard
input if no input file is named, and reproduces the lines on
the standard output. Lines are reformatted in accordance
with command line options in effect.

Except for —s, command line options may appear in any
order, may be repeated, and may be intermingled with the
optional files. Command line options are processed in the
order specified. This means that option sequences like ” —el5
—160” will yield results different from ”-160 -—el5”.
Options are applied to all files on the command line.

-8 Shears off leading characters on each line up to
the first tab and places up to 8 of the sheared
characters at the end of the line. If more than 8
characters (not counting the first tab) are
sheared, the eighth character is replaced by a *
and any characters to the right of it are dis-
carded. The first tab is always discarded.

An error message and program exit will occur if
this option is used on a file without a tab on
each line. The characters sheared off are saved
internally until all other options specified are
applied to that line. The characters are then
added at the end of the processed line.

For example, to convert a file with leading digits,
one or more tabs, and text on each line, to a file
beginning with the text, all tabs after the first
expanded to spaces, padded with spaces out to
column 72 (or truncated to column 72), and the
leading digits placed starting at column 73, the

(Printed Dec.1989)

NEWFORM@)

—itabspec

—otabspec

(Essential Utilities) NEWFORMQ)

command would be:
newform -s -i -1 -a -e file-name

Input tab specification: expands tabs to spaces,
according to the tab specifications given.
Tabspec recognizes all tab specification forms
described in tabs(1). In addition, tabspec may be
— —, in which newform assumes that the tab
specification is to be found in the first line read
from the standard input (see fspec(4)). If no
tabspec is given, tabspec defaults to —8. A
tabspec of —0 expects no tabs; if any are found,
they are treated as —1.

Output tab specification: replaces spaces by
tabs, according to the tab specifications given.
The tab specifications are the same as for
—itabspec. If no tabspec is given, tabspec
defaults to —8. A tabspec of —0 means that no
spaces will be converted to tabs on output.

Truncate n characters from the beginning of the
line when the line length is greater than the
effective line length (see —1n). Default is to
truncate the number of characters necessary to
obtain the effective line length. The default
value is used when —b with no n is used. This
option can be used to delete the sequence
numbers from a COBOL program as follows:

newform -11 -b7 file-name

—en Same as —bn except that characters are truncated
from the end of the line.

—pn Prefix n characters (see —ck) to the beginning of a
line when the line length is less than the effective
line length. Default is to prefix the number of char-
acters necessary to obtain the effective line length.

(Printed Dec.1989) Page 2

96v

497

-" oo m—

NEWFORM((1) (Essential Utilities) NEWFORM()

—an Same as —pn except characters are appended to the
end of a line.

—f Write the tab specification format line on the stan-
dard output before any other lines are output. The
tab specification format line which is printed will
correspond to the format specified in the last —o
option. If no —o option is specified, the line which is
printed will contain the default specification of —8.

—ck Change the prefix/append character to k. Default
character for £ is a space.

-1In Set the effective line length to n characters. If n is
not entered, —1 defaults to 72. The default line
length without the —1 option is 80 characters. Note
that tabs and backspaces are considered to be one
character (use —1i to expand tabs to spaces).

The —11 must be used to set the effective line length shorter
than any existing line in the file so that the —b option is
activated.

DIAGNOSTICS

Page 3

All diagnostics are fatal.

usage: ... newform was called with a bad
option.

not —s format There was no tab on one line.

can’t open file Self-explanatory.

internal line too long A line exceeds 512 characters after

being expanded in the internal
work buffer.

tabspec in error A tab specification is incorrectly
formatted, or specified tab stops
are not ascending.

tabspec indirection illegal A tabspec read from a file (or stan-
dard input) may not contain a
tabspec referencing another file (or
standard input).

(Printed Dec.1989)

I | (. >
==]
E=S

NEWFORM(1) (Essential Utilities) NEWFORM()

0 — normal execution
1 — for any error

SEE ALSO
csplit(1), tabs(1), fspec(4).

BUGS
newform normally only keeps track of physical characters;
however, for the —i and — o options, newform will keep track
of backspaces in order to line up tabs in the appropriate logi-
cal columns.

newform will not prompt the user if a tabspec is to be read
from the standard input (by use of —i—— or —0o— —).

If the —f option is used, and the last —o option specified was
—o0— —, and was preceded by either a —0—— ora —i——,
the tab specification format line will be incorrect.

(Printed Dec.1989) Page 4

86

499

W

= r 00-) mmm—

NEWGRP(1M) (Essential Utilities) NEWGRP(1M)
NAME
newgrp — log in to a new group
SYNOPSIS
newgrp [—] [group |
DESCRIPTION

newgrp changes a user’s group identification. The user
remains logged in and the current directory is unchanged, but
calculations of access permissions to files are performed with
respect to the new real and effective group IDs. The user is
always given a new shell, replacing the current shell, by
newgrp, regardless of whether it terminated successfully or
due to an error condition (i.e., unknown group).

Exported variables retain their values after invoking newgrp;
however, all unexported variables are either reset to their
default value or set to null. System variables (such as PSl,
PS2, PATH, MAIL, and HOME), unless exported by the sys-
tem or explicitly exported by the user, are reset to default
values. For example, a user has a primary prompt string
(PS1) other than $ (default) and has not exported PS1. After
an invocation of newgrp , successful or not, their PS1 will
now be set to the default prompt string $. Note that the
shell command export (see sh(1)) is the method to export vari-
ables so that they retain their assigned value when invoking
new shells.

With no arguments, newgrp changes the group identification
back to the group specified in the user’s password file entry.
This is a way to exit the effect of an earlier newgrp command.

If the first argument to newgrp is a —, the environment is
changed to what would be expected if the user actually logged
in again as a member of the new group.

A password is demanded if the group has a password and the
user does not, or if the group has a password and the user is
not listed in /etc/group as being a member of that group.

Page 1 (Printed Dec.1989)

=)
EB —
=
NEWGRP(1M) (Essential Utilities) NEWGRP(1M)
FILES
/ete/group system’s group file
/ete/passwd system’s password file
SEE ALSO

login(1), sh(1), group(4), passwd(4), environ(5).

BUGS
There is no convenient way to enter a password into
/etc/group. Use of group passwords is not encouraged,
because, by their very nature, they encourage poor security
practices. Group passwords may disappear in the future.

(Printed Dec.1989) Page 2

00S

501

NEWPKGQ) (Essential Utilities) NEWPKG(1)
NAME
newpkg — installation of new software package
SYNOPSIS
newpkg [device]
DESCRIPTION

newpkg(l) installs a software package from the specified dev-
ice. If no device is specified /dev/flop is assumed. The dev-
ice may either be a floppy or a streamer. newpkg writes a
completion message when the installation is completed.

SEE ALSO
rmpkg(1)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

20S

503

NEWS(@1) (Essential Utilities) NEWS(()
NAME
news — print news items
SYNOPSIS
news [—a][—n][—-s][items]
DESCRIPTION

news is used to keep the user informed of current events. By
convention, these events are described by files in the direc-

tory /usr/news.

When invoked without arguments, news prints the contents
of all current files in /usr/news, most recent first, with each
preceded by an appropriate header. news stores the
“currency” time as the modification date of a file named
.news_time in the user’s home directory (the identity of this
directory is determined by the environment variable $HOME);
only files more recent than this currency time are considered

“current.”

—a option causes news to print all items, regardless of
currency. In this case, the stored time is not

changed.

—n option causes news to report the names of the current
items without printing their contents, and without

changing the stored time.

—s option causes news to report how many current items
exist, without printing their names or contents, and
without changing the stored time. It is useful to
include such an invocation of news in one’s .profile

file, or in the system’s /etc/profile.

All other arguments are assumed to be specific news items

that are to be printed.

If a delete is typed during the printing of a news item, print-
ing stops and the next item is started. Another delete within

one second of the first causes the program to terminate.

Page 1 (Printed Dec.1989)

k3

NEWS1) (Essential Utilities)

FILES
/ete/profile
Jusr/news/ *
$HOME/.news_time
SEE ALSO
profile(4), environ(5).

(Printed Dec.1989)

NEWS®1)

Page 2

Y0S

505

NICE() (Essential Utilities) NICE(1)
NAME

nice — run a command at low priority
SYNOPSIS

nice [—increment] command [arguments |
DESCRIPTION

nice executes command with a lower CPU scheduling priority.
If the increment argument (in the range 1—-19) is given, it is
used; if not, an increment of 10 is assumed.

The super-user may run commands with priority higher than
normal by using a negative increment, e.g., — —10.

SEE ALSO
nohup(l), nice(2).

DIAGNOSTICS
nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

90S

507

NIOCCTL(1M)

NAME

(Essential Utilities) NIOCCTL(1M)

niocctl — control command for NIOC device

SYNOPSIS

/etc/niocctl device option [parameter]

DESCRIPTION

niocctl requests a NIOC to connect or disconnect a specified
NIOC device or to give the status of a NIOC device.

The device keyword must be the name of a speciai file identi-
fying the NIOC device in question.

The following options with associated parameters are avail-

able:

— C name

requests the local NIOC to make a connection to
a remote device on the net, which accepts a call
with the specified name. A remote device will
only accept the call if its channel is configured
with a name-accept that matches the name
parameter, and an id-accept that matches the id
configured for the calling channel associated
with the specified channel.

requests the NIOC to disconnect the connection
on the specified device. It is not possible with
this command to disconnect a permanent con-
nection, a data controlled connection, or a PC
connection.

requests the NIOC to return the status for the
specified device. The status shows how the chan-
nel associated with the specified device is
configured, (id, type, connection quality, etc.),
and gives information whether the channel is
connected, and in this case to whom.

—p networknumber hostnumber socketnumber

Page 1

request the local NIOC to make a PC connection
to a remote device on a net. This type of

(Printed Dec.1989)

NIOCCTL(1M)

-q

EXAMPLES

(Essential Utilities) NIOCCTL(1M)

connection does not use the name strategy
described in the Supermax LAN manual. The
parameters to the command must be the com-
plete address, in hexadecimal form, of the device
to which the connection is to be established.

The networknumber identifies the local area net-
work when more nets are interconnected. It
should be zero to indicate the local net, since
internetting has not yet been implemented.

The hostnumber is the unique 12-digit hexade-
cimal number with which any system element
connected to a network is supplied. Each NTC,
NIOC, and PC network adapter board is sup-
plied with such a unique number.

The socketnumber is a 4-digit hexadecimal
number uniquely identified within a host. The
socket is an object to which data can be
delivered, and from which data can be transmit-
ted.

This command should be used to connect Super-
max PC disk and printer server to a PC. If this
type of connection breaks down, (e.g. if the PC is
switched off), the NIOC will keep trying to
reconnect.

requests the NIOC to remove the PC connection.

niocctl /dev/ttyl5 -c gandalf

will request the NIOC associated with the device /dev/ttyl5
to make a connection from that device on the local area net
which accepts the name gandalf.

(Printed Dec.1989) Page 2

80S

509

—=

NIOCCTL(M) (Essential Utilities) NIOCCTL(IM)

Page 3

The following example:

niocctl /dev/tty24 -p 00000000 080075010006
0550

will request the NIOC associated with the device /dev/tty24
to make a PC connection from that device on the local area
net 0x00000000 with the host number 0x080075010006, and
the specific socket with the socket number 0x0550.

(Printed Dec.1989)

This page is intentionally left blank

[o]Re)

511

NL(1) (Essential Utilities)
NAME

nl — line numbering filter
SYNOPSIS

nl [—htype] [—btype] [—ftype] [—vstart#] [—iincr] [—p]
[~Inum] [—ssep] [—-wwidth] [—nformat] [—ddelim] file

DESCRIPTION
nl reads lines from the named file or the standard input if no
file is named and reproduces the lines on the standard out-
put. Lines are numbered on the left in accordance with the
command options in effect.

nl views the text it reads in terms of logical pages. Line
numbering is reset at the start of each logical page. A logical
page consists of a header, a body, and a footer section.
Empty sections are valid. Different line numbering options
are independently available for header, body, and footer (e.g.,
no numbering of header and footer lines while numbering
blank lines only in the body).

The start of logical page sections are signaled by input lines
containing nothing but the following delimiter character(s):

Line contents Start of

i\ header
NENE body
\: footer

Unless optioned otherwise, nl assumes the text being read is
in a single logical page body.

Command options may appear in any order and may be inter-
mingled with an optional file name. Only one file may be
named. The options are:

—btype Specifies which logical page body lines are to be
numbered. Recognized fypes and their meaning
are:

Page 1 (Printed Dec.1989)

—htype

—~ftype

—vstart#

~iincr

-PpP

—lnum

—Sssep

- wuwidth

—nformat

(Essential Utilities) NL(1)

Same as —btype except for header. Default type
for logical page header is n (no lines numbered).

a number all lines
t number lines with printable text only
n no line numbering

psiring number only lines that contain the
regular expression specified in string.

Default type for logical page body is t (text lines
numbered).

Same as —biype except for footer. Default for
logical page footer is n (no lines numbered).

start# is the initial value used to number logical
page lines. Default is 1.

incr is the increment value used to number logi-
cal page lines. Default is 1.

Do not restart numbering at logical page delim-
iters.

num is the number of blank lines to be con-
sidered as one. For example, —12 results in only
the second adjacent blank being numbered (if
the appropriate —ha, —ba, and/or —fa option
is set). Default is 1.

sep is the character(s) used in separating the
line number and the corresponding text line.
Default sep is a tab.

width is the number of characters to be used for
the line number. Default width is 6.

format is the line numbering format. Recog-
nized values are: In, left justified, leading zeroes
suppressed; rn, right justified, leading zeroes
supressed; rz, right justified, leading zeroes kept.
Default format is rn (right justified).

(Printed Dec.1989) Page 2

cls

513

NL() (Essential Utilities) NL(1)

—dxx The delimiter characters specifying the start of a
logical page section may be changed from the
default characters (\:) to two user-specified char-
acters. If only one character is entered, the
second character remains the default character
(:). No space should appear between the —d
and the delimiter characters. To enter a
backslash, use two backslashes.

EXAMPLE
The command:

nl -v10 -il0 -d!+ filel

will number filel starting at line number 10 with an incre-
ment of ten. The logical page delimiters are !+.

SEE ALSO
pr(1).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

i4%]

515

NOHUP() (Essential Utilities) NOHUP(1)

NAME
nohup — run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
nohup executes command with hangups and quits ignored. If
output is not re-directed by the user, both standard output
and standard error are sent to nohup.out. If nohup.out is
not writable in the current directory, output is redirected to
$HOME /nohup.out.

EXAMPLE

It is frequently desirable to apply nohup to pipelines or lists
of commands. This can be done only by placing pipelines and
command lists in a single file, called a shell procedure. One
can then issue:

nohup sh file
and the nohup applies to everything in file. If the shell pro-
cedure file is to be executed often, then the need to type sk
can be eliminated by giving file execute permission. Add an
ampersand and the contents of file are run in the background
with interrupts also ignored (see sh(1)):

nohup file &
An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO

Page 1

chmod(1), nice(1), sh(1), signal(2).

(Printed Dec.1989)

— —

NOHUPQ@1) (Essential Utilities) NOHUP(1)

WARNINGS
In the case of the following command:

nohup commandl; command?2
nohup applies only to commandl. The command:
nohup (commandl; command?2)

is syntactically incorrect.

(Printed Dec.1989) Page 2

et

517

. 80 =

OAWK(1) (Essential Utilities) OAWK(1)
NAME

oawk — pattern scanning and processing language
SYNOPSIS

oawk [—Fc] [prog] [parameters] [files |
DESCRIPTION

oawk is a previous version of the awk command provided for
backwards compatibility with older awk scripts.

oawk scans each input file for lines that match any of a set of
patterns specified in prog. With each pattern in prog there
can be an associated action that will be performed when a
line of a file matches the pattern. The set of patterns may
appear literally as prog, or in a file specified as —f file. The
prog string should be enclosed in single quotes (') to protect
it from the shell.

parameters, in the form x=... y=... etc., may be passed to
oawk.

Files are read in order; if there are no files, the standard
input is read. The file name — means the standard input.
Each line is matched against the pattern portion of every
pattern-action statement; the associated action is performed
for each matched pattern.

An input line is made up of fields separated by white space.
(This default can be changed by using FS; see below). The
fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern
always matches. An action is a sequence of statements. A
statement can be one of the following:

if (conditional) statement [else statement |

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

Page 1 (Printed Dec.1989)

el t — e naEesy
=

OAWK(1) (Essential Utilities) OAWK(1)

{ [statement] ... }

variable = expression

print [expression-list] [> expression]

printf format [, expression-list] [> expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right
braces. An empty expression-list stands for the whole line.
Expressions take on string or numeric values as appropriate,

and are built using the operators +, —, *, /, %, and concate-
nation (indicated by a blank). The C operators ++, — —,
+=, —=, *=, /=, and %= are also available in expres-

sions. Variables may be scalars, array elements (denoted x[i])
or fields. Variables are initialized to the null string. Array
subscripts may be any string, not necessarily numeric; this
allows for a form of associative memory. String constants are
quoted (7).

The print statement prints its arguments on the standard
output (or on a file if >expr is present), separated by the
current output field separator, and terminated by the output
record separator. The printf statement formats its expression
list according to the format (see printf(3S)).

The built-in function length returns the length of its argu-
ment taken as a string, or of the whole line if no argument.
There are also built-in functions exp, log, sqrt, and int. The
last truncates its argument to an integer; substr(s, m,n)
returns the n-character substring of s that begins at position
m. The function sprintf(fmt, expr,expr,...) formats the
expressions according to the printf(8S) format given by fmt
and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, | |, &&, and
parentheses) of regular expressions and relational expres-
sions. Regular expressions must be surrounded by slashes
and are as in egrep (see grep(1)). Isolated regular expressions
in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions. A pattern may

(Printed Dec.1989) Page 2

816

519

S

OAWK(1) (Essential Utilities) OAWK()

consist of two patterns separated by a comma; in this case,
the action is performed for all lines between an occurrence of
the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a
matchop is either ~ (for contains) or !” (for does not contain).
A conditional is an arithmetic expression, a relational expres-
sion, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture
control before the first input line is read and after the last.
BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by
starting the program with:

BEGIN {FS = ¢ }
or by using the —Fc option.
Other variable names with special meanings include NF, the
number of fields in the current record; NR, the ordinal
number of the current record; FILENAME, the name of the
current input file; OFS, the output field separator (default

blank); ORS, the output record separator (default new-line);
and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s+=8$1}

END { print "sum is”, s,

»

average is”, s/NR }

Page 3 (Printed Dec.1989)

m— | —

OAWK(1) (Essential Utilities) OAWK(1)

Print fields in reverse order:
{for i = NF; i > 0; ——1) print $i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n+ +; }
{ print }
command line: oawk —f program n=>5 input

SEE ALSO

BUGS

awk(1), grep(1), lex(1), sed(1), printf(3S).

Input white space is not preserved on output if fields are
involved.

There are no explicit conversions between numbers and
strings. To force an expression to be treated as a number add
0 to it; to force it to be treated as a string concatenate the
null string (””) to it. '

(Printed Dec.1989) Page 4

02s

521

e B

OoD(®)

NAME

(Essential Utilities) oD®@)

od — octal dump

SYNOPSIS

od[—bedosx 1 [file] [[+ Joffset[. [b 1]

DESCRIPTION
od dumps file in one or more formats as selected by the first
argument. If the first argument is missing, —o is default.
The meanings of the format options are:

-b

—C

Interpret bytes in octal.

Interpret bytes in ASCII. Certain non-graphic charac-
ters appear as C escapes: null=\0, backspace=\b,
form-feed =\f, new-line=\n, return=\r, tab=\t; oth-
ers appear as 3-digit octal numbers.

Interpret words in unsigned decimal.
Interpret words in octal.
Interpret 16-bit words in signed decimal.

Interpret words in hex.

The file argument specifies which file is to be dumped. If no
file argument is specified, the standard input is used.

The offset argument specifies the offset in the file where
dumping is to commence. This argument is normally inter-
preted as octal bytes. If . is appended, the offset is inter-
preted in decimal. If b is appended, the offset is interpreted
in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.

Dumping continues until end-of-file.

Page 1

(Printed Dec.1989)

This page is intentionally left blank

(44

523

—=

OPENDIR(1M) (Essential Utilities) OPENDIR(1M)

NAME

opendir — preopen files and directories for faster access.

SYNOPSIS

/etc/opendir files ...

DESCRIPTION

NOTE

Page 1

opendir is used to preopen directories or files for faster access
by other programs. During boot files and directories can be
opened, saving time for other processes, that want to access
that file. Potential directories to be opened by opendir are
/tmp, /bin, /usr/tmp and /usr/bin.

All files and directories are opened with a filebuffer equal to
their sizes, thus consuming space from the operating systems
dynamic data area (items area).

(Printed Dec.1989)

This page is intentionally left blank

ves

— m
OPENPART (1M) (Essential Utilities) OPENPART (1M)
NAME

openpart — maintain language in memory partition

SYNOPSIS

/etc/openpart languagefile language

DESCRIPTION

openpart is used to load language file into a named memory
partition. This speeds up execution of programs using the
language system, since the language file will not have to be
loaded every time such a program is called. Time is only
gained by openpart if the program called uses the language sys-
tem and the required language file is loaded.

Memory partition can be loaded during boot by adding a script
to the /etc/rec.d directory.

A potential language file to be loaded by openpart is the
language file sysadm used by sysadm(1).

The language file is held in memory as long as any program or
the openpart daemon is using the named language partition.
The memory partition is released simply by killing the daemon
and waiting for all other programs using the memory partition
to terminate.

EXAMPLE

NOTE

openpart calls to load sysadm language file into memory:
openpart sysadm uk

Some basic utilities uses the sysadm language file. The basic
utilities present using the sysadm language file are the follow-
ing:

diskformat,

dskback,

passwd,

streamdrv (bcpio, btar)

Issued May 1991 Vers.3.10 Page 1

OPENPART (1M) (Essential Utilities) OPENPART (1M)

This page is intentionally left blank

Page 2 Vers.3.10 Issued May 1991

525

PACK(1) (Essential Utilities) PACKQ)
NAME

pack, pcat, unpack — compress and expand files
SYNOPSIS

pack [— | [—f] name ...
pcat name ...
unpack name ...

DESCRIPTION

pack attempts to store the specified files in a compressed
form. Wherever possible (and useful), each input file name is
replaced by a packed file name.z with the same access modes,
access and modified dates, and owner as those of name. The
-f option will force packing of name. This is useful for caus-
ing an entire directory to be packed even if some of the files
will not benefit. If pack is successful, name will be removed.
Packed files can be restored to their original form using
unpack or pcat.

pack uses Huffman (minimum redundancy) codes on a byte-
by-byte basis. If the — argument is used, an internal flag is
set that causes the number of times each byte is used, its
relative frequency, and the code for the byte to be printed on
the standard output. Additional occurrences of — in place of
name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of
the input file and the character frequency distribution.
Because a decoding tree forms the first part of each .z file, it
is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very
skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original
size. Load modules, which use a larger character set and
have a more uniform distribution of characters, show little
compression, the packed versions being about 90% of the ori-
ginal size.

Page 1 (Printed Dec.1989)

PACKQ) (Essential Utilities) PACK(1)

pack returns a value that is the number of files that it failed
to compress.

No packing will occur if:

the file appears to be already packed;

the file name has more than 12 characters;

the file has links;

the file is a directory; .

the file cannot be opened;

no disk storage blocks will be saved by packing;
a file called name.z already exists;

the .z file cannot be created;

an I/O error occurred during processing.

The last segment of the file name must contain no more than
12 characters to allow space for the appended .z extension.
Directories cannot be compressed.

Pcat does for packed files what cat(1) does for ordinary files,
except that pcat cannot be used as a filter. The specified files
are unpacked and written to the standard output. Thus to
view a packed file named name.z use:

pcat name.z
or just:
pcat name

To make an unpacked copy, say nnn, of a packed file named
name.z (without destroying name.z) use the command:

pcat name >nnn

Peat returns the number of files it was unable to unpack.
Failure may occur if:

the file name (exclusive of the .z) has more than 12
characters;

the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name
specified in the command, a search is made for a file called
name.z (or just name, if name ends in .z). If this file appears

(Printed Dec.1989) Page 2

928

527

PACK(Q1) (Essential Utilities) PACKQ1)

to be a packed file, it is replaced by its expanded version. The
new file has the .z suffix stripped from its name, and has the
same access modes, access and modification dates, and owner
as those of the packed file.

Unpack returns a value that is the number of files it was
unable to unpack. Failure may occur for the same reasons
that it may in pcat, as well as for the following:

a file with the ‘“‘unpacked” name already exists;
if the unpacked file cannot be created.

SEE ALSO
cat(1).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

8cS

R

PASSMGMT (1M) (Essential Utilities) PASSMGMT (1M)
NAME

passmgmt — password files management
SYNOPSIS

passmgmt — a options name
passmgmt —m options name
passmgmt —d name

DESCRIPTION
The passmgmt command updates information in the password
files. This command works with both /etc/passwd and
/etc/shadow. If there is no /etc/shadow, the changes done
by passmgmt will only go to /etc/passwd.

passmgmt —a adds an entry for user name to the password
files. This command does not create any directory for the new
user and the new login remains locked (with the string *LK in
the password field) until the passwd(1) command is executed to
set the password.

passmgmt —m modifies the entry for user name in the pass-
word files. The name field in the /etc/shadow entry and all
the fields (except the password field) in the /etc/passwd entry
can be modified by this command. Only fields entered on the
command line will be modified.

passmgmt —d deletes the entry for user name from the pass-
word files. It will not remove any files that the user owns on
the system; they must be removed manually.

The following options are available:

—c comment A short description of the login. It is limited to
a maximum of 128 characters and defaults to an
empty field.

—h homedir Home directory of name. It is limited to a max-
imum of 256 characters and defaults to
Jusr/name.

Issued May 1991 Version 3.10 Page 1

PASSMGMT (1M)

—u uid

-0

~ggid

—8 shell

—1logname

> —

(Essential Utilities) PASSMGMT (1M)

UID of the name. This number must range
from 0 to the maximum non-negative value for
the system. It defaults to the next available
UID greater than 99. Without the — o option, it
enforces the uniqueness of a UID.

This option allows a UID to be non-unique. It is
used only with the —~wu option.

GID of the name. This number must range
from 0 to the maximum non-negative value for
the system. The default is 1.

Login shell for name. It should be the full path-
name of the program that will be executed
when the user logs in. The maximum size of
shell is 256 characters. The default is for this
field to be empty and to be interpreted as
/bin/sh.

This option changes the name to logname. It is
used only with the —m option.

The total size of each login entry is limited to a maximum of
511 bytes in each of the password files.

FILES

/etc/passwd
/etc/shadow
/ete/opasswd
/etc/oshadow

SEE ALSO

passwd(l), passwd(4).

Page 2

Verslon 3.10 Issued May 1991

—:

PASSMGMT (1M) (Essential Utilities) PASSMGMT (1M)
DIAGNOSTICS
The passmgmt command exits with one of the following
values:
0 SUCCESS.

1 Permission denied.

9 Invalid command syntax. Usage message of the passmgmt
command will be displayed.

3 Invalid argument provided to option.
4 UID in use.

Inconsistent password files (e.g, name is in the
/etc/passwd file and not in the /etc/shadow file, or vice
versa).

o

Unexpected failure. Password files unchanged.
Unexpected failure. Password file(s) missing.

Password file(s) busy. Try again later.

© 00 3 O

name does not exist (if —m or —d is specified), already
exists (if —a is specified), or logname already exists (if
-m
NOTE
You cannot use a colon or <cr> as part of an argument
because it will be interpreted as a field separator in the pass-
word file.

Issued May 1991 Version 3.10 Page 3

PASSMGMT (1M) (Essential Utilities) PASSMGMT (1M)

This poge is intentionally left blank

age 4 Version 3.10 Issued May 1991

529

PASSWD() (Essential Utilities) PASSWD(1)

NAME

passwd — change login password

SYNOPSIS

passwd [name]

DESCRIPTION

Page 1

This command changes or installs a password associated with
the login name.

Ordinary users may change only the password which
corresponds to their login name.

passwd prompts ordinary users for their old password, if any.
It then prompts for the new password twice. The first time
the new password is entered passwd checks to see if the old
password has ‘“aged” sufficiently. Password ”aging” is the
amount of time (usually a certain number of days) that must
elapse between password changes. If ‘“aging” is insufficient
the new password is rejected and passwd terminates; see
passwd (4).

Assuming “‘aging” is sufficient, a check is made to insure that
the new password meets construction requirements. When
the new password is entered a second time, the two copies of
the new password are compared. If the two copies are not
identical the cycle of prompting for the new password is
repeated for at most two more times.

Passwords must be constructed to meet the following require-
ments:

Each password must have at least six characters.
Only the first eight characters are significant.

Each password must contain at least two alphabetic
characters and at least one numeric or special charac-
ter. In this case, “alphabetic” means upper and
lower case letters.

Each password must differ from the user’s login name
and any reverse or circular shift of that login name.
For comparison purposes, an upper case letter and its

(Printed Dec.1989)

E====
=

-II T2 3 il O il 0 T el i) (il W o2 ey Tl

PASSWDQ) (Essential Utilities) PASSWD(1)

corresponding lower case letter are equivalent.

New passwords must differ from the old by at least
three characters. For comparison purposes, an upper
case letter and its corresponding lower case letter are
equivalent.

One whose effective user ID is zero is called a super-user; see
id(1), and su(l). Super-users may change any password;
hence, passwd does not prompt super-users for the old pass-
word. Super-users are not forced to comply with password
aging and password construction requirements. A super-user
can create a null password by entering a carriage return in
response to the prompt for a new password.

FILES
/etc/passwd

SEE ALSO
id(1), login(1), su(l), crypt(3C), passwd(4).

(Printed Dec.1989) Page 2

0ES

531

PASTE(1) (Essential Utilities) PASTEQ)
NAME
paste — merge same lines of several files or subsequent lines
of one file
SYNOPSIS

paste filel file2 ...
paste —dlist filel file2 ...
paste —s [—dlist] filel file2 ...

DESCRIPTION
In the first two forms, paste concatenates corresponding lines
of the given input files filel, file2, etc. It treats each file as a
column or columns of a table and pastes them together hor-
izontally (parallel merging). If you will, it is the counterpart
of cat(1) which concatenates vertically, i.e., one file after the
other.

In the last form above, paste replaces the function of an older
command with the same name by combining subsequent lines
of the input file (serial merging). In all cases, lines are glued
together with the tab character, or with characters from an
optionally specified list.

Output is to the standard output, so it can be used as the
start of a pipe, or as a filter, if — is used in place of a file
name.

The meanings of the options are:

-d Without this option, the new-line characters of each
but the last file (or last line in case of the —s option)
are replaced by a tab character. This option allows
replacing the tab character by one or more alternate
characters (see below).

list One or more characters immediately following —d
replace the default tab as the line concatenation char-
acter. The list is used circularly, i.e., when exhausted,
it is reused. In parallel merging (i.e., no —s option),
the lines from the last file are always terminated with
a new-line character, not from the list. The list may
contain the special escape sequences: \n (new-line),

Page 1 (Printed Dec.1989)

]| [E——

=—

PASTEQ) (Essential Utilities) PASTE(1)
\t (tab), \\ (backslash), and \0 (empty string, not a
null character). Quoting may be necessary, if charac-
ters have special meaning to the shell (e.g., to get one
backslash, use —d ”\\\\”).

-8 Merge subsequent lines rather than one from each
input file. Use tab for concatenation, unless a list is
specified with —d option. Regardless of the list, the
very last character of the file is forced to be a new-
line.

= May be used in place of any file name, to read a line
from the standard input. (There is no prompting).

EXAMPLES

Is | paste —d”” — list directory in one column

Is | paste - - — — list directory in four columns

paste —s —d”\t\n” file combine pairs of lines into

lines

SEE ALSO

cut(l), grep(1), pr(1).

DIAGNOSTICS

line too long Output lines are restricted to 511

characters.

too many files Except for —s option, no more than

12 input files may be specified.

(Printed Dec.1989) Page 2

2Ees

533

PERMS(1) (Essential Utilities) PERMS(1)

NAME

perms — check or set file permissions

SYNOPSIS

perms [options]

DESCRIPTION

Page 1

perms is used for ownership and mode control of files. It
operates in three different modes. In ”set” mode, perms sets
the owner, group owner, and access modes for a list of files.
In "check” mode, perms checks the owner, group owner, and
access modes against a master list of files, flagging any
discrepancies. Finally, in "make” mode, perms creates output
for a specified list of files in a format suitable for subsequent
runs of perms in “check” or ”set” modes.

The following options may be selected:

-c (check mode) Check the owner, group owner, and
access mode against list of files in /Jetc/permlist.
Discrepancies are written to standard output.

—m (make mode) For each file listed on standard input,
write a line to standard output specifying the current
owner, group owner, and access mode. This output is
in a format suitable for later runs of perms with the
—s and c options.

-s (set mode) Set the owner, group owner, and access
mode for files specified in /etc/permlist.

—f file Use file instead of /etc/permlist for —c¢ and —s
options, and instead of standard input for —m option.

For —c and —s modes, each line of input takes the following
form:
owner group-owner octal-mode file(s)

Fields may be separated by one or more tab characters. Lines
that begin with # are ignored by perms. File name substitu-
tion can be used. A default set of permissions can be given for
the files in a directory dir by first listing the permissions for
dir/* followed by the individual exceptions.

(Printed Dec.1989)

— e |

PERMS(1) (Essential Utilities) PERMS(1)

EXAMPLES
Set permissions of files as listed in filelist:
perms -s -f filelist
Generate permissions for /bin and /bin/* and write to
/ete/permlist:
perms -m > /etc/permlist
/bin '
/bin/*
Ctrl-d
Check permissions of files specified in /etc/permlist:

perms -c
BUGS

Specifying too many files on a single line in the input file can
generate an “arg list too long” error message after file name
substitution has been done by the shell. In that case, try
splitting the offending specification into multiple lines.
FILES
/etc/permlist

(Printed Dec.1989) Page 2

veS

535

PG(1) (Essential Utilities) PGQ)
NAME
pg — file perusal filter for CRTs
SYNOPSIS
pg [—number]l [—p stringl [—cefns] [+linenumber]
[+ /pattern /1 [files...]
DESCRIPTION

Page 1

The pg command is a filter which allows the examination of
files one screenful at a time on a CRT. (The file name —
and/or NULL arguments indicate that pg should read from
the standard input.) Each screenful is followed by a prompt.
If the user types a carriage return, another page is displayed;
other possibilities are enumerated below.

This command is different from previous paginators in that it
allows you to back up and review something that has already
passed. The method for doing this is explained below.

In order to determine terminal attributes, pg scans the ter-
minfo(4) data base for the terminal type specified by the
environment variable TERM. If TERM is not defined, the ter-
minal type dumb is assumed.

The command line options are:

—number An integer specifying the size (in lines) of the
window that pg is to use instead of the default.
(On a terminal containing 24 lines, the default
window size is 23).

—p string Causes pg to use string as the prompt. If the
prompt string contains a “%d”’, the first
occurrence of “%d” in the prompt will be
replaced by the current page number when the
prompt is issued. The default prompt string is

66,99
N

-c Home the cursor and clear the screen before
displaying each page. This option is ignored if
clear_screen is not defined for this terminal
type in the terminfo(4) data base.

(Printed Dec.1989)

|
Fe—1
=

.

PG(D)

S R S ¢ e e T ————

(Essential Utilities) PG(D)
—-e Causes pg not to pause at the end of each file.
~f Normally, pg splits lines longer than the screen

width, but some sequences of characters in the
text being displayed (e.g., escape sequences for
underlining) generate undesirable results. The
—f option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a
<newline > character. This option causes an
automatic end of command as soon as a com-
mand letter is entered.

-8 Causes pg to print all messages and prompts in
standout mode (usually inverse video).

+linenumber
Start up at linenumber.

+ /pattern/ Start up at the first line containing the regular
expression pattern.

The responses that may be typed when pg pauses can be
divided into three categories: those causing further perusal,
those that search, and those that modify the perusal environ-
ment.

Commands which cause further perusal normally take a

preceding address, an optionally signed number indicating -

the point from which further text should be displayed. This
address is interpreted in either pages or lines depending on
the command. A signed address specifies a point relative to
the current page or line, and an unsigned address specifies an
address relative to the beginning of the file. Each command
has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+1)<newline> This causes one page to be displayed. The
address is specified in pages.

(+11 With a relative address this causes pg to
simulate scrolling the screen, forward or
backward, the number of lines specified.

(Printed Dec.1989) Page 2

9€S

537

PG(1)

Page 3

(Essential Utilities)

With an absolute address this command
prints a screenful beginning at the
specified line.

(+1)dor "D Simulates scrolling half a screen forward
or backward.
(+1 f Skip page.

The following perusal commands take no address.

.or 'L Typing a single period causes the current
page of text to be redisplayed.

$ Displays the last windowful in the file.
Use with caution when the input is a pipe.

The following commands are available for searching for text
patterns in the text. The regular expressions described in
ed(1) are available. They must always be terminated by a
<newline >, even if the —n option is specified.

i /pattern / Search forward for the ith (default i =1)
occurrence of pattern. Searching begins
immediately after the current page and
continues to the end of the current file,
without wrap-around.

i pattern”

i ?pattern? Search backwards for the ith (default
i=1) occurrence of pattern. Searching
begins immediately before the current
page and continues to the beginning of the
current file, without wrap-around. The ~
notation is useful for Adds 100 terminals
which will not properly handle the ?.

After searching, pg will normally display the line found at the
top of the screen. This can be modified by appending m or b
to the search command to leave the line found in the middle
or at the bottom of the window from now on. The suffix t
can be used to restore the original situation.

(Printed Dec.1989)

IENE=ST T T T e v
—1de
R

PG(1)

(Essential Utilities) PG@Q)

The user of pg can modify the environment of perusal with
the following commands:

in

ip

W

s filename

h

qorQ
lcommand

Begin perusing the ith next file in the
command line. The i is an unsigned
number, default value is 1.

Begin perusing the ith previous file in the
command line. i is an unsigned number,
default is 1.

Display another window of text. If i is
present, set the window size to i.

Save the input in the named file. Only
the current file being perused is saved.
The white space between the s and
filename is optional. This command must
always be terminated by a <newline>,
even if the —n option is specified.

Help by displaying an abbreviated sum-
mary of available commands.

Quit pg.

Command is passed to the shell, whose
name is taken from the SHELL environ-
ment variable. If this is not available, the
default shell is used. This command must
always be terminated by a <newline >,
even if the —n option is specified.

At any time when output is being sent to the terminal, the
user can hit the quit key (normally control-\) or the interrupt
(break) key. This causes pg to stop sending output, and
display the prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some
output is lost when this is done, due to the fact that any
characters waiting in the terminal’s output queue are flushed
when the quit signal occurs.

(Printed Dec.1989)

Page 4

8€S

539

PG (Essential Utilities) PG()

If the standard output is not a terminal, then pg acts just like
cat (1), except that a header is printed before each file (if there
is more than one).

EXAMPLE
A sample usage of pg in reading system news would be

news | pg -p ”(Page %¥d):”

NOTES ’

While waiting for terminal input, pg responds to BREAK,
DEL, and " by terminating execution. Between prompts,
however, these signals interrupt pg’s current task and place
the user in prompt mode. These should be used with caution
when input is being read from a pipe, since an interrupt is
likely to terminate the other commands in the pipeline.

Users of Berkeley’s more will find that the z and f commands
are available, and that the terminal /, °, or ? may be omitted
from the searching commands.

FILES
/usr/lib/terminfo/?/ * terminal information database
/tmp/pg* temporary file when input is from
a pipe
SEE ALSO

ed(1), grep(1), terminfo(4).

BUGS
If terminal tabs are not set every eight positions, undesirable
results may occur.

When using pg as a filter with another command that
changes the terminal I/O options terminal settings may not
be restored correctly.

Page 5 (Printed Dec.1989)

This page is intentionally left blank

[02°]

541

POWERDOWN(1M) (Essential Utilities) POWERDOWN(M)
NAME

powerdown — stop all processes and turn off the power
SYNOPSIS

powerdown [-y | =Y]
DESCRIPTION

This command brings the system to a state where nothing is
running and then turns off the power.

By default, the user is asked questions that control how much
warning the other users are given. The options:

-y prevents the questions from being asked and just
gives the warning messages. There is a 60 second
pause between the warning messages. Note that
pressing the standby button on the side of the cabinet
will accomplish the same thing.

—Y is the same as —y except it has no pause between
messages. It is the fastest way to bring the system
down.

The identical function is also available under the sysadm
command:
sysadm powerdown

Password control can be instituted on this command. See
sysadm (1), admpasswd sub-command.

EXAMPLES
some-long-running-command; powerdown —y

The first command is run to completion and then the
machine turns off. This is useful for, say, formatting a docu-
ment to the printer at the end of a day.

FILES
/etc/shutdown — invoked by powerdown

SEE ALSO
shutdown(1M), sysadm(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

4451

543

PR() (Essential Utilities)

NAME
pr — print files

SYNOPSIS
pr [[—column] [—wwidth] [—al] [—eck] [—ick] [—drtfp]
[+page]l [—nck] [—ooffset] [—llength] [—sseparator]
[—hheader] [file ...]
pr [[-m] [—-wwidth]] [—eck] [—ick] [—drtfp] [+ pagel
[—nck] [—ooffset] [—1llength] [-—sseparator] [—hheader]
filel file2 ...

DESCRIPTION

Page 1

pr is used to format and print the contents of a file. If file is
—, or if no files are specified, pr assumes standard input. pr
prints the named files on standard output.

By default, the listing is separated into pages, each headed by
the page number, the date and time that the file was last
modified, and the name of the file. Page length is 66 lines
which includes 10 lines of header and trailer output. The
header is composed of 2 blank lines, 1 line of text (can be
altered with —h), and 2 blank lines; the trailer is 5 blank
lines. For single column output, line width may not be set
and is unlimited. For multicolumn output, line width may be
set and the default is 72 columns. Diagnostic reports (failed
options) are reported at the end of standard output associated
with a terminal, rather than interspersed in the output.
Pages are separated by series of line feeds rather than form
feed characters.

By default, columns are of equal width, separated by at least
one space; lines which do not fit are truncated. If the —s
option is used, lines are not truncated and columns are
separated by the separator character.

Either —column or —m should be used to produce multi-
column output. —a should only be used with —column and
not —m.

(Printed Dec.1989)

=[]

PR(1)

(Essential Utilities) PR(1)

Command line options are

+page

—column

—eck

—ick

(Printed Dec.1989)

Begin printing with page numbered page
(default is 1).

Print column columns of output (default is 1).
Output appears as if —e and —1i are turned on
for multi-column output. May not use with
~m.

Print multi-column output across the page one
line per column. columns must be greater than
one. If a line is too long to fit in a column, it is
truncated.

Merge and print all files simultaneously, one
per column. The maximum number of files
that may be specified is eight. If a line is too
long to fit in a column, it is truncated. May not
use with —column.

Double-space the output. Blank lines that
result from double-spacing are dropped when
they occur at the top of a page.

Expand input tabs to character positions k +1,
2+k+1, 3*k+1, etc. If £ is 0 or is omitted,
default tab settings at every eighth position are
assumed. Tab characters in the input are
expanded into the appropriate number of
spaces. If ¢ (any non-digit character) is given,
it is treated as the input tab character (default
for ¢ is the tab character).

In output, replace white space wherever possi-
ble by inserting tabs to character positions
k+1,2+k+1,3+xk+1 ete. If k is 0 or is omit-
ted, default tab settings at every eighth position
are assumed. If ¢ (any non-digit character) is
given, it is treated as the output tab character
(default for ¢ is the tab character).

Page 2

(2]

545

PR@1) (Essential Utilities) PR()

-nck Provide k-digit line numbering (default for % is
5). The number occupies the first 2 +1 charac-
ter positions of each column of single column
output or each line of —m output. If ¢ (any
non-digit character) is given, it is appended to
the line number to separate it from whatever
follows (default for ¢ is a tab).

—wuwidth Set the width of a line to width character posi-
tions (default is 72). This is effective only for
multi-column output (-column and —m). There
is no line limit for single column output.

—ooffset Offset each line by offset character positions
(default is 0). The number of character posi-
tions per line is the sum of the width and
offset.

—llength Set the length of a page to length lines (default
is 66). —10 is reset to —166. When the value
of length is 10 or less, —t appears to be in
effect since headers and trailers are suppressed.
By default, output contains 5 lines of header
and 5 lines of trailer leaving 56 lines for user-
supplied text. When =llength is used and
length exceeds 10, then length-10 lines are left
per page for user supplied text. When length is
10 or less, header and trailer output is omitted
to make room for user supplied text.

—h header Use header as the text line of the header to be
printed instead of the file name. —h is ignored
when —t is specified or —1llength is specified
and the value of length is 10 or less. (—h is
the only pr option requiring space between the
option and argument.)

-p Pause before beginning each page if the output
is directed to a terminal (pr will ring the bell at
the terminal and wait for a carriage return).

Page 3 (Printed Dec.1989)

—sseparator

EXAMPLES

(Essential Utilities) PRQ)

Use single form-feed character for new pages
(default is to use a sequence of line-feeds).
Pause before beginning the first page if the
standard output is associated with a terminal.

Print no diagnostic reports on files that will not
open.

Print neither the five-line identifying header
nor the five-line trailer normally supplied for
each page. Quit printing after the last line of
each file without spacing to the end of the page.
Use of —t overrides the —h option.

Separate columns by the single character
separator instead of by the appropriate number
of spaces (default for separator is a tab).
Prevents truncation of lines on multicolumn
output unless —w is specified.

Print filel and file2 as a double-spaced, three-column listing
headed by ‘‘file list’’:

pr —3dh file list” filel file2
Copy filel to file2, expanding tabs to columns 10, 19, 28, 37,

etc.:

pr —e9 —t <filel > file2

Print filel and file2 simultaneously in a two-column listing
with no header or trailer where both columns have line

numbers:

pr —t —n filel | pr -t —-m -n file2 -

FILES
/dev/tty *

(Printed Dec.1989)

If standard output is directed to one of the spe-
cial files /dev/tty *, then other output directed
to this terminal is delayed until standard out-
put is completed. This prevents error messages
from being interspersed throughout the output.

Page 4

[£14°]

547

SEE ALSO
cat(1), pg(1).

Page 5

(Essential Utilities)

[
|
.
;
I

PR(1)

(Printed Dec.1989)

This page is intentionally left blank

8vs

549

e ——— =

PRGNOTE() (Essential Utilities) PRGNOTEQ)
NAME
prgnote — print DDE special program usage note
SYNOPSIS
prgnote files
DESCRIPTION

prgnote(l) prints DDE special information appended to a load-
module or to an interpreted pascal program.

prgnote(1) prints the usage note for the specifed files.

If only one filename (not containing a ’/’) is specified as argu-
ment to prgnote(1) the environment variable PATH is used by
prgnote(1) to locate the file.

SEE ALSO
prgvers(1)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

0SS

551

PRGVERS(1) (Essential Utilities) PRGVERS(1)
NAME
prgvers — print DDE special program information
SYNOPSIS
prgvers files
DESCRIPTION

prguers(1) prints DDE special information appended to a load-
module or to an interpreted pascal program.

prguvers(l) prints programversion, date and department
identification for the specifed files.

If only one filename (not containing a ’/’) is specified as argu-
ment to prgvers(l) the environment variable PATH is used by
prguers(1) to locate the file.

SEE ALSO
prgnote(1)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

2ss

553

PROD(1) (Essential Utilities) PROD()
NAME

prod — start a command as a new process group.
SYNOPSIS

prod command [arguments]
DESCRIPTION

prod executes command as a new process group leader.
EXAMPLE

It is frequently desirable to apply prod to servers and other
programs that should be run in the background. These can be
started during boot using the prod command. The command
will no longer be associated to the terminal from which it was
started, thus been immune to interupts and quits from that
terminal.

NOTE
Unlike nohup(l) prod does not automatically redirect output.

SEE ALSO
nohup(1)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

¥SG

555

PS() (Essential Utilities) PS(1)
NAME
ps — report process status
SYNOPSIS
ps [options]
DESCRIPTION

Page 1

ps prints certain information about active processes. Without
options, information is printed about processes associated
with the controlling terminal. The output consists of a short
listing containing only the process ID, terminal identifier,
cumulative execution time, and the command name. Other-
wise, the information that is displayed is controlled by the
selection of options.

options accept names or lists as arguments. Arguments can
be either separated from one another by commas or enclosed
in double quotes and separated from one another by commas
or spaces. Values for proclist and grplist must be numeric.

The options are given in descending order according to
volume and range of information provided:

—e Print information about every process now run-
ning.

—-d Print information about all processes except pro-
cess group leaders.

—a Print information about all processes most fre-

quently requested: all those except process
group leaders and processes not associated with

a terminal.

—f Generate a full listing. (See below for
significance of columns in a full listing.)

-1 Generate a long listing. (See below.)

—t termlist List only process data associated with the termi-
nal given in termlist. Terminal identifiers may
be specified in one of two forms: the device’s file
name (e.g., tty04) or, if the device’s file name
starts with tty, just the digit identifier (e.g., 04).

—p proclist List only process data whose process ID numbers
are given in proclist.

(Printed Dec.1989)

e g e
=)
IE_ L] ol

PS(1)

(Essential Utilities) PS@)

—u uidlist List only process data whose user ID number or
login name is given in uidlist. In the listing, the
numerical user ID will be printed unless you give
the —f option, which prints the login name.

—ggrplist List only process data whose process group
leader’s ID number(s) appears in grplist. (A
group leader is a process whose process ID
number is identical to its process group ID
number. A login shell is a common example of a
process group leader.)

The column headings and the meaning of the columns in a ps
listing are given below; the letters f and 1 indicate the option
(full or long, respectively) that causes the corresponding
heading to appear; all means that the heading always
appears. Note that these two options determine only what
information is provided for a process; they do not determine
which processes will be listed.

F) Flags (hexadecimal and additive) associated
with the process:

02 Active

04 Running

08 Externally suspended
10 Internally suspended
40 Being aborted

80 A signal is waiting

S)] The state of the process:
A Active
R Running

S Externally suspended
I Internally suspended

UID (f,) The user ID number of the process owner
(the login name is printed under the —f
option).

(Printed Dec.1989) Page 2

9gS

557

PS(D (Essential Utilities) PS(1)

PID (all) The process ID of the process (this datum
is necessary in order to kill a process).

PPID (a) The process ID of the parent process.

C (£, Processor utilization for scheduling.
(Always 0 on a Supermax Computer.)
PRI) The priority of the process (higher

numbers mean lower priority).
NI) Nice value, used in priority computation.

ADDR) The Address Space Number followed by 3
zeroes followed by the MCU number for
the process.

SZ o)) The size (in 2048-byte pages) of the
process’s image in main memory.

WCHAN (1) The address of a global event for which the
process is sleeping (if blank, the process is
running).

STIME (O The starting time of the process, given in
hours, minutes, and seconds. (A process
begun more than twenty-four hours before
the ps inquiry is executed is given in
months and days.)

TTY (all) The controlling terminal for the process

(the message, ?, is printed when there is no
controlling terminal).

TIME (all) The cumulative execution time for the pro-
cess.

COMMAND(all) The command name (the full command
name and its arguments are printed under
the —f option).

A process that has exited and has a parent, but has not yet
been waited for by the parent, is marked <defunct>.

Page 3 (Printed Dec.1989)

PSQ1) (Essential Utilities) PS(1)

FILES
/dev terminal (“tty”) names searcher files
/dev/kmem* kernel memory
/etc/passwd UID information supplier
/etc/ps_data internal data structure

/bin/ps20 started by ps when running on an MC68020
processor.
SEE ALSO
getty(1M), kill(1), nice(1).
WARNING

Things can change while ps is running; the snap-shot it gives
is only true for a split-second, and it may not be accurate by
the time you see it. Some data printed for defunct processes
is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks
stdin, stdout, and stderr in that order, looking for the control-
ling terminal and will attempt to report on processes associ-
ated with the controlling terminal. In this situation, if stdin,
stdout, and stderr are all redirected, ps will not find a control-
ling terminal, so there will be no report.

(Printed Dec.1989) Page 4

8GS

559

PWCK(M) (Essential Utilities) PWCK(1M)
NAME

pwck, grpck — password/group file checkers
SYNOPSIS

[ete/pwck [file]
/etc/grpek [file]

DESCRIPTION
pwck scans the password file and notes any inconsistencies.
The checks include validation of the number of fields, login
name, user ID, group ID, and whether the login directory and
the program-to-use-as-Shell exist. The default password file
is /etc/passwd.

grock verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group
ID, and whether all login names appear in the password file.
The default group file is /etc/group.

FILES
/ete/group
/etc/passwd

SEE ALSO
group(4), passwd(4).

DIAGNOSTICS
Group entries in /etc/group with no login names are
flagged.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

09S

561

_=

PWDQ@1) (Essential Utilities) PWDQ)

NAME
pwd — working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the path name of the working (current) directory.

SEE ALSO
cd(D).

DIAGNOSTICS
“Cannot open ..”” and ‘“Read error in ..”” indicate possible file
system trouble and should be referred to a UNIX system
administrator.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

c9s

563

—=

RCO(1IM) (Essential Utilities) RCO(1IM)
NAME

rc0 — run commands performed to stop the operating system
SYNOPSIS

/ete/re0
DESCRIPTION

Page 1

This file is executed at each system state change that needs to
have the system in an inactive state. It is responsible for
those actions that bring the system to a quiescent state, tradi-
tionally called ‘‘shutdown’.

There are three system states that require this procedure.
They are state 0 (the system halt state), state 5 (the firmware
state), and state 6 (the reboot state). Whenever a change to
one of these states occurs, the /etc/rcO procedure is run. The
entry in /ete/inittab might read:

s0:056:wait:/etc/rc0 >/dev/console 2>&l
</dev/console

Some of the actions performed by /etc/rcO are carried out by
files in the directory /etc/shutdown.d. and files beginning
with K in /etc/rc0.d. These files are executed in ascii order
(see FILES below for more information), terminating some
system service. The combination of commands in /etc/rcO
and files in /etc/shutdown.d and /etc/rc0.d determines
how the system is shut down.

The recommended sequence for /etc/rc0 is:
Stop System Services and Daemons.

Various system services (such as 3BBNET Local Area Net-
work or LP Spooler) are gracefully terminated.

When new services are added that should be terminated
when the system is shut down, the appropriate files are
installed in /etc/shutdown.d and /etc/rc0.d.

(Printed Dec.1989)

RCO(1M) (Essential Utilities) RCO(1M)

FILES

Terminate Processes

SIGTERM signals are sent to all running processes by
killall(1M). Processes stop themselves cleanly if sent
SIGTERM.

Kill Processes

SIGKILL signals are sent to all remaining processes; no
process can resist SIGKILL.

At this point the only processes left are those associated
with /etc/rcO and processes 0 and 1, which are special to
the operating system.

Unmount All File Systems

Only the root file system (/) remains mounted.

Depending on which system state the systems end up in (0, 5,
or 6), the entries in /etc/inittab will direct what happens
next. If the /etc/inittab has not defined any other actions
to be performed as in the case of system state 0, then the
operating system will have nothing to do. It should not be
possible to get the system’s attention. The only thing that
can be done is to turn off the power or possibly get the atten-
tion of a firmware monitor. The command can be used only
by the super-user.

The execution by /bin/sh of any files in /etc/shutdown.d
occurs in ascii sort-sequence order. See rc2(1M) for more
information.

SEE ALSO

killall(1M), rc2(1M), shutdown(1M).

(Printed Dec.1989) Page 2

¥9S

565

RC2(1M) (Essential Utilities) RC2(1IM)

NAME

rc¢2 — run commands performed for multi-user environment

SYNOPSIS

/ete/rc2

DESCRIPTION

This file is executed via an entry in /etc/inittab and is
responsible for those initializations that bring the system to a
ready-to-use state, traditionally state 2, called the “multi-
user” state.

The actions performed by /etc/rc2 are found in files in the
directory /ete/rc.d. These files are executed by /bin/sh in
ascii sort —sequence order (see FILES for more information).
When functions are added that need to be initialized when
the system goes multi-user, an appropriate file should be
added in /etc/re.d.

The functions done by /ete/rc2 command and associated
/ete/red files include:

Setting and exporting the TIMEZONE variable.
Setting-up and mounting the user (/usr) file system.

Cleaning up (remaking) the /tmp and /usr/tmp direc-
tories.

Loading the network interface and ports cards with pro-
gram data and starting the associated processes.

Starting the cron daemon by executing /etc/cron.

Cleaning up (deleting) uucp locks status, and temporary
files in the /usr/spool/uucp directory.

Other functions can be added, as required, to support the
addition of hardware and software features.

EXAMPLES

Page 1

The following are prototypical files found in /etc/re.d.

(Printed Dec.1989)

—
RC2(1M) (Essential Utilities) RC2(1M)
MOUNTFILESYS
Set up and mount file systems
cd /
/etc/mountall /etc/fstab
RMTMPFILES
clean up /tmp
rm —rf /tmp
mkdir /tmp
chmod 777 /tmp
chgrp sys /tmp
chown sys /tmp
uucp
clean-up uucp locks, status, and temporary files
rm —rf /usr/spool/locks/*
The file /etc/TIMEZONE is included early in /etc/rc2, thus
establishing the default time zone for all commands that fol-
low.
FILES

Here are some hints about files in /ete/re.d:

The order in which files are executed is important. Since
they are executed in ascii sort—sequence order, using the
first character of the file name as a sequence indicator will
help keep the proper order. Thus, files starting with the fol-
lowing characters would be:

[0-9] very early

[A-Z] early
[a—n] later
[o—z] last
Files in /ete/re.d might be named:
3.mountfs
B.uucp
c.cron
r.lpr

(Printed Dec.1989) Page 2

99¢%

567

——————— ==

RC2(1M) (Essential Utilities) RC2(1M)

Files in /etc/rc.d that begin with a dot (.) will not be exe-
cuted. This feature can be used to hide files that are not to
be executed for the time being without removing them.

SEE ALSO
shutdown(1M).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

899

[—— —

RM (1) (Essential Utilities) RM (1)
NAME

rm, rmdir — remove files or directories
SYNOPSIS

rm [—fi] file ... I

rm —r [—fi]l dir .. [file ...] |
rmdir [—p] [—s] dir ... |

DESCRIPTION
rm removes the entries for one or more files from a directory.
If an entry was the last link to the file, the file is destroyed.
Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a
terminal, the full set of permissions (in octal) for the file are
printed followed by a question mark. This is a prompt for
confirmation. If the answer begins with y (for yes), the file is
deleted, otherwise the file remains.

Note that if the standard input is not a terminal, the command
will operate as if the —f option is in effect.

rmdir removes the named directories, which must be empty.
Three options apply to rm. |

—f This option causes the removal of all files (whether
write-protected or not) in a directory without prompting
the user. In a write-protected directory, however, files
are never removed (whatever their permissions are), but
no messages are displayed.

If the removal of a write-protected directory was
attempted, this option cannot suppress an error message.

—r This option causes the recursive removal of any direc-
tories and subdirectories in the argument list. The
directory will be emptied of files and removed. Note that
the user is normally prompted for removal of any write-
protected files which the directory contains. The write-
protected files are removed without prompting, however,

Rev.May 1991 Vers.3.10 Page 1

—

(Essential Utilities) RM (1)

if the —f option is used, or if the standard input is not a
terminal and the —1i option is not used.

If the removal of a non-empty, write-protected directory
was attempted, the command will always fail (even if the
—f option is used), resulting in an error message.

With this option in effect, rm asks if each file should be
deleted and, with the —r option if each directory should
be examined.

Two options apply to rmdir:

-p

This option allows users to remove the directory dir-
name and its parent directories which become empty. A
message is printed on standard output as to whether the
whole path is removed or part of the path remains for
some reason.

This option is used to suppress the message printed on
standard error when —p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory. Note that it is for-
bidden to remove the files ”.” and ”..” to avoid the conse-
quences of inadvertently doing something like:

*

rm —r)
SEE ALSO
unlink(2).
Page 2 Vers.3.10 Rev.May 1991

571

RMPKG(Q1) (Essential Utilities) RMPKG(1)
NAME
rmpkg — remove a software package
SYNOPSIS
rmpkg [device]
DESCRIPTION

rmpkg(1) removes a software package earlier installed on the
system with the newpkg(l) utility. As for newpkg the device
may either be a floppy or a streamer. If no device is specified
/dev/flop is assumed.

SEE ALSO
newpkg(1)

Page 1 (Printed Dec.1989)

This page is intentionally left blank

(2]

573

S

RSETSIOC(1) (Essential Utilities) RSETSIOC(1)

NAME

rsetsioc — initialize terminal or printer

SYNOPSIS

rsetsioc [specialfiles]

DESCRIPTION

BUGS

Page 1

rsetsioc sends an initialization sequence to a printer or a ter-
minal. More specifically, it outputs the control sequence to
the SIOC, which (assuming a proper configuration table in
the SIOC) will result in an initialization sequence being sent
to the terminal or printer. Some, but not all, terminals or
printers require such a sequence to be sent to them before
they will operate properly. Furthermore all attribute values,
such as inverse video, underlining etc. will be turned off, so
the rsetsioc program can be used for resetting terminals that
have accidently been set to improper attribute values.

If no specialfile is given as argument to rsetsioc the current
output device is reset.

The rsetsioc program may occasionally hang when trying to
reset a terminal that has an outstanding read.

(Printed Dec.1989)

This page is intentionally left blank

L ZA%

