

 LS

Dansk Data Elektronik A/S

SUPERMAX

BASIC UTILITIES

System V Reference Manual

Section 4 — 9

Release 3.1, Version 1.0

©Copyright 1990 by
Dansk Data Elektronik A/S and AT&T

©1986 AT&T, USA
©1990 Dansk Data Elektronik A/S, Denmark
All Rights Reserved
Printed in Denmark

Stock no.: 94300131

Issued March 1990

NOTICE

The information in this document is subject to change without notice.
AT&T or Dansk Data Elektronik A/S, Denmark assumes no responsi-
bility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T in the USA and other coun-

tries.

SUPERMAX is a registered trademark of Dansk Data Elektronik
A/S, Denmark.

INTRO(4) (File Formats) INTRO(4)

NAME

intro — introduction to file formats

DESCRIPTION

Page 1

This section outlines the formats of various files. The C
structure declarations for the file formats are given where
applicable. Usually, the header files containing these struc-
ture declarations can be found in the _ directories
/usr/include or /usr/include/sys. For inclusion in C
language programs, however, the syntax #include
<filename.h> or #include <sys/filename.h> should be
used.

(Printed Dec.1989)

This page is intentionally left blank

A.OUT(4) (File Formats) A.OUT(4)

NAME

a.out — common assembler and link editor output

SYNOPSIS

#include <a.out.h>

DESCRIPTION

The file name a.out is the default output file name from the
link editor /d(1). The link editor will make a.out executable if
there were no errors in linking. The output file of the assem-
bler as(1), also follows the common object file format of the
a.out file although the default file name is different.

A common object file consists of a file header, an (optional)
UNIX system header (if the file is link editor output), a table
of section headers, relocation information, (optional) line
numbers, a symbol table, and a string table. The order is

given below.

File header.
UNIX system header (optional).
Section 1 header.

Section n header.

Section 1 data.

Section n data.

Section 1 relocation.

Section n relocation.

Section 1 line numbers.

Section n line numbers.

Symbol table.
String table.

The last three parts of an object. file (line numbers, symbol
table and string table) may be missing if the program was
linked with the —s option of /d(1) or if they were removed by
strip(1). Also note that the relocation information will be

(Printed Dec.1989)

A.OUT(4) (File Formats) A.OUT(4)

absent after linking unless the —r option of /d(1) was used.

The string table exists only if the symbol table contains sym-
bols with names longer than eight characters.

The sizes of each section (contained in the header, discussed

below) are in bytes.

When an a.out file is loaded into memory for execution, three

logical segments are set up: the text segment, the data seg-

ment (initialized data followed by uninitialized, the latter

actually being initialized to all 0’s), and a stack. On the

Supermax computer the text segment starts at location

0x200000.

The data segment starts at the next megabyte boundary past

the last text address.

On a Supermax computer equipped with MC68020 CPU’s or

with MC68000 CPU’s with automatic stack growth the stack

begins at location Oxe00000 and grows toward lower
addresses. The stack is automatically extended as required.

On a Supermax computer equipped with MC68000 CPU’s
without automatic stack growth the stack begins at location
0xd00000 + stacksize and grows toward lower addresses. The

stack is never extended.

The data segment is extended only as requested by the brk(2)

system call.

For relocatable files the value of a word in the text or data
portions that is not a reference to an undefined external sym-
bol is exactly the value that will appear in memory when the

file is executed. If a word in the text involves a reference to

an undefined external symbol, there will be a relocation entry
for the word, the storage class of the symbol-table entry for
the symbol will be marked as an “external symbol’, and the
value and section number of the symbol-table entry will be

undefined.

When the file is processed by the link editor and the external

symbol becomes defined, the value of the symbol will be

added to the word in the file.

(Printed Dec.1989) Page 2

A.OUT(4)

File Header

(File Formats) A.OUT(4)

The format of the filehdr header is

struct filehdr

{
ushort f_magic; /*
ushort f_nscns; / *
long f _timdat; /*
long f_symptr; /*
long f_nsyms; /*
ushort f opthdr; /*
ushort f_flags; /*

};

UNIX System Header

magic number * /
number of sections * /
time and date stamp * /
file ptr to symtab * /
symtab entries + /
sizeof(opt hdr) « /
flags « /

The format of the UNIX system header is

typedef struct aouthdr

{
short magic; /*
short vstamp; /*
long tsize; /*
long dsize; /*
long bsize; /*
long entry; /*
long text_start; /*
long data start; /*

} AOUTHDR;

Page 3

magic number * /
version stamp * /
text size in bytes, padded + /
initialized data (.data) * /
uninitialized data (.bss) * /
entry point * /
base of text used for this file * /
base of data used for this file « /

(Printed Dec.1989)

A.OUT(4) (File Formats) A.OUT(4)

Section Header

The format of the section header is

struct scnhdr

{
char s name[SYMNMLEN];/* section name +* /
long s_paddr; /* physical address + /
long s_vaddr; /* virtual address + /
long s._size; /* section size +* /
long s_scnptr; /* file ptr to raw data + /
long s_relptr; /* file ptr to relocation + /
long _s Innoptr; /* file ptr to line numbers + /
ushort s_nreloc; /* # reloc entries * /
ushort s nlnno; /* # line number entries + /
longs flags; /* flags « /

};

Relocation
Object files have one relocation entry for each relocatable
reference in the text or data. If relocation information is
present, it will be in the following format:

struct reloc

{
long r_vaddr; /* (virtual) address of reference * /
long r_symndx; /* index into symbol table + /
ushort r_type; /* relocation type * /

iF
The start of the relocation iaformation is s_relptr from the
section header. If there is no relocation information, s_relptr
is 0.

(Printed Dec.1989) Page 4

A.OUT(4) (File Formats) A.OUT(4)

Symbol Table
The format of each symbol in the symbol table is

#define SYMNMLEN 8

#define FILNMLEN 14

#define DIMNUM 4

struct syment

ql
union /* all ways to get a symbol name * /

{
char _n name[SYMNMLEN]; /* name of symbol + /
struct

a
long n zeroes; /* == OLifin string table * /
long _n offset; / * location in string table * /

} _n_n,;
char * n_nptr[2]; / * allows overlaying * /

} _n;
long n_value; / * value of symbol +* /
short n_scnum; / * section number * /
ushort n_type; / * type and derived type * /
char n_sclass; / * storage class * /
char n_numaux; /* number of aux entries * /

ks

#define n_name _n. n_name
#define n_zeroes _n. nn. n zeroes
#define n_offset _n. n_n. n offset
#define n_nptr _n._n_nptr[1]

Some symbols require more information than a single entry;
they are followed by auxiliary entries that are the same size
as a symbol entry. The format follows.

Page 5 (Printed Dec.1989)

A.OUT(4) (File Formats) A.OUT(4)

union auxent {
struct {

long x_tagndx;
union {

struct {
unsigned short x Inno;
unsigned short x_size;

} x_Insz;
long x_fsize;

} x_misc;
union {

struct {
long x_lnnoptr;
long x_endndx;

} x_fen;
struct {

unsigned short x_dimen[DIMNUM];

} x_ary;
} x _fenary;
unsigned short x_tvndx;

} x_sym;

struct {
char x_fname[FILNMLEN];

\ x _file;

struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x sen;

struct {
long x_tvfill;
unsigned short x _tvlen;
unsigned short x_tvran[2];

\ x tv;

iF
(Printed Dec.1989) Page 6

OL

11

A.OUT(4) (File Formats) A.OUT(4)

Indexes of symbol table entries begin at zero. The start of
the symbol table is f symptr (from the file header) bytes from
the beginning of the file. If the symbol table is stripped,
f.symptr is 0. The string table (if one exists) begins at
f_symptr + (f_nsyms * SYMESZ) bytes from the beginning of
the file.

SEE ALSO

as(1), ce(1), Id(1), -brk(2), filehdr(4), Idfen(4), linenum(4),

reloc(4), senhdr(4), syms(4).

Page 7 (Printed Dec.1989)

This page is intentionally left blank

a
b

13

ACCT(4) (File Formats) ACCT(4)

NAME

acct — per-process accounting file format

SYNOPSIS

#include <sys/acct.h>

DESCRIPTION

Files produced as a result of calling acct(2) have records in
the form defined by <sys/acct.h >, whose contents are:

typedef ushort comp t; /* "floating point” * /

/ * 18-bit fraction, 3-bit exponent + /

struct acct

{
char ac_flag; / * Accounting flag * /

char ac_stat; /* Exit status * /

ushort ac_uid; /* Accounting user ID « /

ushort ac_gid; / * Accounting group ID + /

dev_t ac_tty; /* control typewriter + /

time_t ac_btime; /* Beginning time « /

comp _t ac_utime; / * acctng user time in clock ticks + /

comp t ac_stime; / * acctng system time in clock ticks * /

comp t ac_etime; / * acctng elapsed time in clock ticks * /

comp t ac_mem; / * memory usage in clicks « /

comp _t ac_io; /* chars trnsfrd by read/write * /

comp _t ac_rw; / * number of block reads/writes « /

char ac_comm|[8]; /* command name +* /

}s

extern struct acctacctbuf;

extern struct inode acctp; /* inode of accounting file * /

#define AFORK 01/* has executed fork, but no exec * /

#define ASU 02/* used super-user privileges * /

#define ACCTF 0300/* record type: 00 = acct * /

In ac_flag, the AFORK flag is turned on by each fork(2) and
turned off by an exec(2). The ac_comm field is inherited from
the parent process and is reset by any exec. Each time the
system charges the process with a clock tick, it also adds to

Page 1 (Printed Dec.1989)

ACCT(4) (File Formats) ACCT(4)

ac_mem the current process size, computed as follows:

(data size) + (text size) / (number of in-core
processes using text)

The value of ac_mem /(ac_stime + ac_utime) can be viewed as
an approximation to the mean process size.

The structure acct, which resides with the source files of the
accounting commands, represents the total accounting format
used by the various accounting commands:

/*

* total accounting (for acct period), also for day

*/

struct tacct {

uid_t ta_uid; /* userid + /

char ta_name[8]; /* login name * /

float ta_cpu{2]; /* cum. cpu time, p/np (mins) * /

float ta_kcore[2]; /* cum kcore-minutes, p/np * /

float ta_con[2]; * cum. connect time, p/np, mins * /

float ta_du; * cum. disk usage * /

/
/
/

long ta_pe; /* count of processes * /

unsigned short ta_sc; / * count of login sessions + /

unsigned short ta_de; /* count of disk samples * /

unsigned short ta_fee; / * fee for special services + /

hs

SEE ALSO

acct(1M), acctcom(1M), acct(2), exec(2), fork(2).

BUGS

The ac_mem value for a short-lived command gives little
information about the actual size of the command, because

ac_mem may be incremented while a different command (e.g.,
the shell) is being executed by the process.

(Printed Dec.1989) Page 2

15

ALPHABET(4) (File Formats) ALPHABET(4)

NAME

alphabet — alternative collation sequence files

DESCRIPTION

Page 1

Files in /usr/lib/alphabet define alternative collation
sequences used by the straorder(8C) function. The environ-

ment variable ALPHABET is the name of the file. Using an
alternative collation sequence file makes it possible to sort
files with strings in the ISO/DIS 8859/1 character set, in
which the ordinal value of the character cannot be used as
sorting criteria.

If the environment variable ALPHABET is not set, the ordi-

nal value of the characters is used as sorting criteria as done
in strcmp.

The format of the /usr/lib/alphabet/$ALPHABET in
extended BNF syntax is as follows:

<alphabet > ::
<ignore section>]

= /
[

/
{[<doubles section>]

/
[<collation section>]

/
[<comments section>]

<ignore section> ::= <symbol> ; { <symbol> }

<doubles section> ::= <dbl def> ; { <dbl def> }

<dbl def> ::= <symbol> <symbol>

<collating section> ::= <plevel list> ; { <plevel list> }

<plevel list> ::= <slevel list> { <space> <slevel list> }

<slevel list> ::= <space list> | <equal list>

<space list> ::= <l2symbol> { <space> <l2symbol> }

<equal list> ::= <I2symbol> { = <l2symbol> }

(Printed Dec.1989)

 SS |
ALPHABET(4) (File Formats) ALPHABET(4)

<l2symbol> ::= <symbol> | <symbol> <symbol>

<symbol> ::= <abs value> | <character>

<abs value> ::= <decimal integer> |
Od <decimal integer> |
Ox <hexidecimal integer > |
Oo <octal integer> |
Ob <binary integer >

<space> ::= —-— space character — —

Ignore section

Characters listed in this section are ignored when two strings
are compared. Normally characters 0x00-0x1f and 0x80-0x9f
should be ignored.

Doubles section

This section lists characters that in a comparison should be
processed as two adjacent characters. An example from the
german alphabet would be:

B=ss

meaning that whenever a character string contains the char-
acter sorted as the character string where ’8’ was replaced by
3 >
ss.

Collation sequence

This section defines the collation sequence and is a list of pri-
mary level definitions. For example:

we

we

we

(Printed Dec.1989) Page 2

ol

17

ALPHABET(4) (File Formats) ALPHABET(4)

means that the character ’a’ precedes character ’b’, and ’b’
precedes ’c’ (’precedes’ is an associative relation) in the colla-
tion sequence.

Within each primary level a secondary level order may be
defined. Single characters and two character strings may be
ordered or given the same secondary ordinal value:

/
/
foo
O=0 O=6 O=5;

/

means that O, 0, O, 6, O and 6 alle have the same primary

ordinal value, that O and o have the same secondary ordinal,

but precedes O and 6, and so on.

The secondary ordinals are used only if two strings are found
to be identical using the primary values.

Strings with identical primary and secondary values appear in
arbitrary order on the sorted output.

The two character strings in the second level lists open for

combinations like:

/
/

AAA;
aaa;

/
used when sorting the Danish alphabet.

FILES

/usr/lib/alphabet -— directory that contains the collating
sequence files

SEE ALSO

sort(1), straorder(3C).

Page 3 (Printed Dec.1989)

ALPHABET(4) (File Formats) ALPHABET(4)

CAVEATS

The collation sequence has to be defined completely. Every
character in the alphabet must either be ignored or placed in
the collation sequence.

(Printed Dec.1989) Page 4

el

19

SS eS Se ie et

SS | coe | Saal

AR(4) (File Formats) AR(4)

NAME

ar — common archive file format

SYNOPSIS

#include <ar.h>

DESCRIPTION

The archive command ar(1) is used to combine several files
into one. Archives are used mainly as libraries to be searched
by the link editor /d(1).

Each archive begins with the archive magic string.

#define ARMAG ”!<arch>\n”/* magic string « /
#define SARMAG 8 / * length of magic string * /

Each archive which contains common object files [see
a.out(4)] includes an archive symbol table. This symbol table
is used by the link editor /d(1) to determine which archive
members must be loaded during the link edit process. The
archive symbol table (if it exists) is always the first file in the
archive (but is never listed) and is automatically created
and/or updated by ar.

Following the archive magic string are the archive file
members. Each file member is preceded by a file member
header which is of the following format:

#define ARFMAG ”*\n” /* header trailer string * /

struct ar_hdr / * file member header « /

tl
char ar_name[16]; /+* ’/’ terminated file member name + /
char ar _date[12]; /* file member date « /
char ar_uid[6]; / * file member user identification * /
char ar_gid[6]; / * file member group identification » /
char ar_mode[8]; /* file member mode (octal) » /
char ar_size[10]; /* file member size * /
char ar_fmag[2]; /* header trailer string * /

Page 1 (Printed Dec.1989)

(File Formats) AR(4)

All information in the file member headers is in printable
ASCII. The numeric information contained in the headers is
stored as decimal numbers (except for ar_mode which is in
octal). Thus, if the archive contains printable files, the

archive itself is printable.

The ar_name field is blank-padded and slash (/) terminated.
The ar_date field is the modification date of the file at the
time of its insertion into the archive. Common format
archives can be moved from system to system as long as the
portable archive command ar(1) is used. Conversion tools
such as convert(1) exist to aid in the transportation of non-
common format archives to this format.

Each archive file member begins on an even byte boundary; a
newline is inserted between files if necessary. Nevertheless
the size given reflects the actual size of the file exclusive of

padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive
has a zero length name (i.e., ar_ name[0] == ’/’). The con-

tents of this file are as follows:

© The number of symbols. Length: 4 bytes.

e The array of offsets into the archive file. Length: 4
bytes * “the number of symbols’’.

e The name string table. Length: ar_size — (4 bytes
* (“the number of symbols” + 1)).

The number of symbols and the array of offsets are managed
with sgetl and sputl. The string table contains exactly as
many null terminated strings as there are elements in the
offsets array. Each offset from the array is associated with
the corresponding name from the string table (in order). The
names in the string table are all the defined global symbols
found in the common object files in the archive. Each offset
is the location of the archive header for the associated sym-

bol.

(Printed Dec.1989) Page 2

0
c

21

 ——— SSS es
AR(4) (File Formats) AR(4)

SEE ALSO

ar(1), Id(1), strip(1), sputl(3X), a.out(4).

WARNINGS

strip(1) will remove all archive symbol entries from the
header. The archive symbol entries must be restored via the
ts option of the ar(1) command before the archive can be
used with the link editor Jd (1).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

a
e

23

CFTIME(4) (File Formats) CFTIME(4)

NAME

cftime — language specific strings

DESCRIPTION

The programmer can create one printable file per language.
These files must be kept in a special directory /lib/cftime. If
this directory does not exist, the programmer should create it.
The contents of these files are:

@ abbreviated month names (in order)

® month names (in order)

© abbreviated weekday names (in order)

® weekday names (in order)

e default strings that specify formats for local time (%x) and
local date (%X).

® default format for cftime, if the argument for cftime is zero
or null.

e AM (ante meridian) string

e PM (post meridian) string

Each string is on a line by itself. All white space is significant.

The order of the strings in the above list is the same order in
which the strings appear in the file shown below.

EXAMPLE

/lib/cftime/usa_english

Jan

Feb

January

February

Sun

Mon

Page 1 (Printed Dec.1989)

CFTIME(4) (File Formats) CFTIME(4)

Sunday
Monday

%H:%M:%S

%m/%d /%y
%a Sb Yoda %T ML GY
AM
PM

FILES

/lib/eftime — directory that contains the language specific
printable files (create it if it does not exist)

SEE ALSO

ctime(3C).

(Printed Dec.1989) Page 2

v
e

25

CHECKLIST(4) (File Formats) CHECKLIST(4)

NAME

checklist — list of file systems processed by fsck and ncheck

DESCRIPTION

checklist resides in directory /ete and contains a list of, at
most, 15 special file names. Each special file name is con-
tained on a separate line and corresponds to a file system.
Each file system will then be automatically processed by the
fsck (1M) command.

FILES

/ete/checklist

SEE ALSO

fsck(1M), ncheck(1M).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

92

27

CORE(4) (File Formats) CORE(4)

NAME

core — format of core image file

SYNOPSIS

#include <sys/core.h>

DESCRIPTION

The Supermax Operating System writes out a core image of a
terminated process when any of various errors occur. See
signal(2) for the list of reasons; the most common are
memory violations, illegal instructions, bus errors, and user-

generated quit signals. The core image is called core and is
written in the process’s working directory (provided it can be;
normal access controls apply). A process with an effective
user ID different from the real user ID will not produce a core
image.

The core file consists of four sections.

The first section is a copy of the local process control block,
defined in <sys/pl.h>.

The second section is a copy of the text descriptor block,
defined in <sys/td.h>.

The third section is an array of 12 memory allocation descrip-
tors. They are either partition descriptors (described in
<sys/pd.h>) or shared memory identifier descriptors
(described in <sys/SHM.h>). The 12 descriptors describe
memory segments 2 through 14, inclusive.

The fourth section is a copy of the process’s data and stack
segments.

SEE ALSO

sdb(1), signal(2).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

82

29

CPIO(4) (File Formats) CPIO(4)

NAME

cpio — format of cpio archive

DESCRIPTION

The header structure, when the —e option of cpio(1) is not
used, is:

struct {
short h_magic,

ushort h_ino,

h_gid;
short h_nlink,

h_rdev,
h_ mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];
\ Har;

When the -c option is used, the header information is
described by:

sscanf(Chdr,”%60%60%60%60%60%60%60%60%11lo%60%11lo%s”,

&Hdr.h_ magic, &Hdr.h_dev, &Hdr.h ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h gid, &Hdr.h_nlink, &Hdr.h_rdev,

&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and
Hdr.h_filesize, respectively. The contents of each file are

recorded in an element of the array of varying length struc-
tures, archive, together with other items describing the file.

Every instance of h_magic contains the constant 070707
(octal). The items h_dev through h_mtime have meanings
explained in stat(2). The length of the null-terminated path
name h_name, including the null byte, is given by
h_namesize.

Page 1 (Printed Dec.1989)

CPIO(4) (File Formats) CPIO(4)

The last record of the archive always contains the name
TRAILER!!. Special files, directories, and the trailer are

recorded with h_filesize equal to zero.

SEE ALSO

cpio(1), find(1), stat(2).

(Printed Dec.1989) Page 2

o
e

Si)

 —————_
D_PASSWD(4) (File Formats) D_PASSWD(4)

NAME

d_passwd — dial-up password file

DESCRIPTION

d_passwd contains for each program to use as shell the fol-
lowing information:

name of program to use as shell

encrypted password

This is an ASCII file. Each field within each program’s entry
is separated from the next by colon, the encrypted password
further needs to be followed by a colon. Each program’s entry
is separated from the next by a new-line. If the password field
is null, no password is required. Generation of encrypted
password is done by the normal procedure (see passwd(1)).
After generating the encrypted password in /etc/passwd is
copied using a text editor.

This file resides in directory /etc. Because of the encrypted
passwords it can have a general read permission.

FILES

/etc/d_passwd

SEE ALSO

login(1), passwd(1), dialups(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

o
e

33

DIALUPS(4) (File Formats) DIALUPS(4)

NAME

dialups ~— dial-up connections

DESCRIPTION

dialups contains for each connections the following informa-
tion:

name of connection

This is an ASCII file using tabs or spaces as field separator.
Each connection’s entry is separated from the next by a new-
line. The connection name is the full path name of the first
pointer placed in the directory /dev to the dial-up connec-
tion.

This file resides in directory /ete.

FILES

/etc/dialups

SEE ALSO

login(1), d_passwd(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

v
e

35

DIR(4) (File Formats) DIR(4)

NAME

dir — format of directories

SYNOPSIS

#include <sys/dir.h>

DESCRIPTION

A directory behaves exactly like an ordinary file, save that no
user may write into a directory. The fact that a file is a
directory is indicated by a bit in the flag word of its i-node
entry [see fs(4)]. The structure of a directory entry as given
in the include file is:

#ifndef DIRSIZ

#define DIRSIZ 14

#endif

struct direct

{
ushort d_ino;

char d_name[DIRSIZ];

};
By convention, the first two entries in each directory are for .
and ... The first is an entry for the directory itself. The

second is for the parent directory. The meaning of .. is

modified for the root directory of the master file system;
there is no parent, so .. has the same meaning as ..

SEE ALSO

fs(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

9E

37

DIRENT(4) (File Formats) DIRENT(4)

NAME

dirent — file system independent directory entry

SYNOPSIS

#include <dirent.h>

#include <types.h>

DESCRIPTION

FILES

Different file system types may have different directory
entries. The dirent structure defines a file system indepen-
dent directory entry, which contains information common to

directory entries in different file system types. A set of these

structures is returned by the gefdents(2) system call.

The dirent structure is defined below.

struct dirent {
long d_ino;
off t d_ off;
unsigned short _d_reclen;
char d_name[1];

3
The d_ino is a number which is unique for each file in the file
system. The field d_off is the offset of that directory entry in
the actual file system directory. The field d name is the
beginning of the character array giving the name of the direc-
tory entry. This name is null terminated and may have at
most MAXNAMLEN characters. This results in file system

independent directory entries being variable length entities.
The value of d_reclen is the record length of this entry. This
length is defined to be the number of bytes between the
current entry and the next one, so that it will always result
in the next entry being on a long boundary.

/usr/include/dirent.h

SEE ALSO

Page 1

getdents(2).

(Printed Dec.1989)

This page is intentionally left blank

s
e

39

FILEHDR(4) (File Formats) FILEHDR(4)

NAME

filehdr — file header for common object files

SYNOPSIS

#include <filehdr.h>

DESCRIPTION

Page 1

Every common object file begins with a 20-byte header. The
following C struct declaration is used:

struct filehdr

i
unsigned short f_magic; /* magic number * /
unsigned short f_nsens; /* number of sections * /
long f timdat ; /* time & date stamp * /
long f symptr ; /* file ptr to symtab * /
long f nsyms; /* # symtab entries + /
unsigned short f_opthdr ; /* sizeof(opt hdr) * /
unsigned short f flags; /* flags */

};
f_sympir is the byte offset into the file at which the symbol
table can be found. Its value can be used as the offset in
fseek(3S) to position an I/O stream to the symbol table. The
UNIX system optional header is 28 bytes long. The valid
magic numbers are given below:

#define MC68MAGIC 0520 ~—/* MC68000/MC68020 */
#define MC68020MAGIC 0526 /* MC68020 only */

The value in f timdat is obtained from the time(2) system
call. Flag bits currently defined are:

#define F_RELFLG 0000001 /* relocation entries stripped * /

#define F_EXEC 0000002 / * file is executable + /

#define F_LNNO 0000004 /* line numbers stripped * /

#define F_LSYMS 0000010 / * local symbols stripped * /

#define F MINMAL 0000020 /* minimal object file * /

#define F_UPDATE 0000040 /* update file, ogen produced + /

#define F SWABD 0000100 /* file is ”pre-swabbed” + /

(Printed Dec.1989)

FILEHDR(4) (File Formats) FILEHDR(4)

#define F_ARIGWR 0000200 / «

#define F_AR32WR 0000400 /*

#define F_AR32W 0001000 /

#define F PATCH 0002000 /«

#define F_BM32ID 0160000 / «

#define F_BM32B 0020000 /*

#define F_BM382MAU 0040000 / *

#define F_BM82RST 0010000 / «

SEE ALSO

time(2), fseek(3S), a.out(4).

(Printed Dec.1989)

16-bit DEC host * /

32-bit DEC host * /

non-DEC host + /

*patch” list in opt hdr « /

WE32000 family ID field + /

file contains WE 32100 code « /

file reqs MAU to execute * /

this object file contains restore

work around [3B5/3B2 only] » /

Page 2

O
v

rs

FS(4)

NAME

(File Formats) FS(4)

fs: file system — format of system volume

SYNOPSIS

#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs/s5filsys.h >

DESCRIPTION

Every file system storage volume has a common format for
certain vital information. Every such volume is divided into a
certain number of 512-byte long sectors. Sector 0 is unused
and is available to contain a bootstrap program or other
information.

Sector 1 is the super-block. The format of a super-block is:

struct _filsys

{
ushort s_isize;

daddr t s_fsize;

short _s_nfree;

daddr_t s_free[NICFREE];

short s_ninode;

ushort s_inode[NICINOD];

char s_flock;

char s_ilock;

char s_fmod;

char s_ronly;

time_t s_time;

short _s_dinfo[4);

daddr_t s_tfree;

ushort s_tinode;

char s_fname[6];

char s_fpack[6];

long s_fill[12];

long s_state;

Page 1

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

size in blocks of i-list * /

size in blocks of entire volume + /

number of addresses in s free + /

free block list + /

number of i-nodes in s_inode + /

free i-node list + /

lock during free list manipulation * /

lock during i-list manipulation * /

super block modified flag * /

mounted read-only flag « /

last super block update * /

device information + /

total free blocks * /

total free i-nodes * /

file system name + /

file system pack name * /

ADJUST to make sizeof filsys

be 512 « /

file system state * /

(Printed Dec.1989)

FS(4) (File Formats) FS(4)

long s_magic; / * magic number to denote new

file system « /

longs _ type; / * type of new file system * /

}

#define FsMAGIC Oxfd187e20 /* s_magic number * /

#define Fslb 1 / * 512-byte block « /

#define Fs2b 2 / * 1024-byte block « /

#define Fs4b 3 / * 2048-byte block « /

#define FsOKAY 0x7c269d38 /* s state: clean » /

#define FsACTIVE 0Ox5e72d81la /* s_state: active + /

#define FsBAD OxcbO96f43 /»* s state: bad root « /

#define FsBADBLK Oxbadbcl4b /* s_state: bad block corrupted it + /

s type indicates the file system type. Currently, two types of
file systems are normally used in Supermax systems: The ori-
ginal 512-byte logical block and the improved 2048-byte logi-
cal block. s_magic is used to distinguish the original 512-byte
oriented file systems from the newer file systems. If this field
is not equal to the magic number, FsMAGIC, the type is
assumed to be Fs1b, otherwise the s_type field is used. In the
following description, a block is then determined by the type.
For the original 512-byte oriented file system, a block is 512-
bytes. For the 2048-byte oriented file system, a block is
2048-bytes or four sectors. The operating system takes care
of all conversions from logical block numbers to physical sec-
tor numbers.

s_ state indicates the state of the file system. A cleanly
unmounted, not damaged file system is indicated by the
FsOKAY state. After a file system has been mounted for
update, the state changes to FsACTIVE. A special case is used
for the root file system. If the root file system appears dam-
aged at boot time, it is mounted but marked FsBAD. Lastly,

after a file system has been unmounted, the state reverts to
FsOKAY. :

(Printed Dec.1989) Page 2

o
v

43

FS(4)

Page 3

(File Formats) FS(4)

s_isize is the address of the first data block after the i-list;
the i-list starts just after the super-block, namely in block 2;

thus the i-list is s_isize—2 blocks long. s fsize is the first
block not potentially available for allocation to a file. These
numbers are used by the system to check for bad block
numbers; if an “impossible”? block number is allocated from

the free list or is freed, a diagnostic is written on the on-line
console. Moreover, the free array is cleared, so as to prevent
further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The
s_ free array contains, in s_free|1],..., s_freels_nfree —1], up to
49 numbers of free blocks. s_free[0] is the block number of
the head of a chain of blocks constituting the free list. The
first long in each free-chain block is the number (up to 50) of
free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next
member of the chain. To allocate a block: decrement s_nfree,
and the new block is s free[s nfree]. If the new block
number is 0, there are no blocks left, so give an error. If

s_nfree became 0, read in the block named by the new block
number, replace s_nfree by its first word, and copy the block

numbers in the next 50 longs into the s_ free array. To free a
block, check if s_nfree is 50; if so, copy s_nfree and the s_free

array into it, write it out, and set s nfree to 0. In any event

set s_free|s_nfree] to the freed block’s number and increment
s_nfree.

s_tfree is the total free blocks available in the file system.

s_ninode is the number of free i-numbers in the s inode
array. To allocate an i-node: if s ninode is greater than 0,
decrement it and return s_inode|s_ninode]. If it was 0, read
the i-list and place the numbers of all free i-nodes (up to 100)
into the s inode array, then try again. To free an i-node, pro-
vided s ninode is less than 100, place its number into
s_inode[s_ninode| and increment s_ninode. If s_ninode is
already 100, do not bother to enter the freed i-node into any

table. This list of i-nodes is only to speed up the allocation
process; the information as to whether the i-node is really

(Printed Dec.1989)

(File Formats) FS(4)

free or not is maintained in the i-node itself.

s_tinode is the total free i-nodes available in the file system.

s flock and s_ilock are flags maintained in the core copy of
the file system while it is mounted and their values on disk
are immaterial. The value of s fmod on disk is likewise
immaterial; it is used as a flag to indicate that the super-
block has changed and should be copied to the disk during
the next periodic update of file system information.

s_ronly is a read-only flag to indicate write-protection.

s_time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed
since 00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time

of the super-block for the root file system is used to set the
system’s idea of the time.

s fname is the name of the file system and s fpack is the
name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins in

block 2. Also, i-nodes are 64 bytes long. I-node 1 is reserved
for future use. I-node 2 is reserved for the root directory of

the file system, but no other i-number has a built-in meaning.

Each i-node represents one file. For the format of an i-node

and its flags, see inode(4).

SEE ALSO

fsck(1M), fsdb(iM), mkfs(1M), mount(2), inode(4).

(Printed Dec.1989) Page 4

b
r

45

FSPEC(4) (File Formats) FSPEC(4)

NAME

fspec — format specification in text files

DESCRIPTION

Page 1

It is sometimes convenient to maintain text files on the UNIX

system with non-standard tabs, (i.e., tabs which are not set at
every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the
appropriate number of spaces, before they can be processed
by UNIX system commands.

A format specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder of the
file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and
:>. Each parameter consists of a keyletter, possibly followed

immediately by a value. The following parameters are recopg-
nized:

ttabs The t parameter specifies the tab settings for the
file. The value of tabs must. be one of the follow-
ing:

1. a list of column numbers separated by
commas, indicating tabs set at the
specified columns;

2. a — followed immediately by an integer
n, indicating tabs at intervals of n
columns;

3. a — followed by the name of a “‘canned”
tab specification.

Standard tabs are specified by t-8, or
equivalently, t1,9,17,25,etc. The canned tabs

which are recognized are defined by the
tabs (1) command.

ssize The s parameter specifies a maximum line
size. The value of size must be an integer.

(Printed Dec.1989)

FSPEC(4)

mmargin

(File Formats) FSPEC(4)

Size checking is performed after tabs have
been expanded, but before the margin is

prepended.

The m parameter specifies a number of spaces
to be prepended to each line. The value of
margin must be an integer.

The d parameter takes no value. Its presence
indicates that the line containing the format
specification is to be deleted from the con-
verted file.

The e parameter takes no value. Its presence
indicates that the current format is to prevail
only until another format specification is
encountered in the file.

Default values, which are assumed for parameters not sup-
plied, are t-8 and m0. If the s parameter is not
specified, no size checking is performed. If the first line of

a file does not contain a format specification, the above
defaults are assumed for the entire file. The following is

an example

x <

If a format

of a line containing a format specification:

:t5,10,15 s72:> x

specification can be disguised as a comment, it
is not necessary to code the d parameter.

SEE ALSO

ed(1), newform(1), tabs(1).

(Printed Dec.1989) Page 2

o
v

47

 ——_——_—_—_—_—_—S _—- =
FSTAB(4) (File Formats) FSTAB(4)

NAME

fstab — file-system-table

DESCRIPTION

The /etc/fstab file contains information about file systems
for use by mount (1M) and mountall(1M). Each entry in
/etc/fstab has the following format:

column 1 ___ block special file name of file system or adver-
tised remote resource

column 2 mount-point directory
”? column 3 —r” if to be mounted read-only; ”—d{r]” if
remote

column 4 = (optional) file system type string

column 5+ ignored

White-space separates columns. Lines beginning with ”# ”
are comments. Empty lines are ignored.

A file-system-table might read:

/dev/dsk/c1d0s2 /usr S51K
/dev/dsk/cld1s2 /usr/sre —r
adv_resource /mnt —d

FILES

/etc/fstab

SEE ALSO

mount(1M), mountall(1M), rmountall(1M).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

8
Y

49

GETTYDEFS(4) (File Formats) GETTYDEFS(4)

NAME

gettydefs — speed and terminal settings used by getty

DESCRIPTION

Page 1

The /etc/gettydefs file contains information used by
getty(1M) to set up the speed and terminal settings for a line.

It supplies information on what the login(1) prompt should

look like. It also supplies the speed to try next if the user
indicates the current speed is not correct by typing a

<break > character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can
contain quoted characters of the form \b, \n, \e, etc., as well
as \nnn, where nnn is the octal value of the desired charac-
ter. The various fields are:

label This is the string against which getty(1M) tries

to match its second argument. It is often the

speed, such as 1200, at which the terminal is

supposed to run, but it need not be (see
below).

initial-flags These flags are the initial zoctl(2) settings to

which the terminal is to be set if a terminal
type is not specified to getty(IM). The flags

that getty(1M) understands are the same as
the ones listed in /usr/include/sys/termio.h
[see termio(7)]. Normally only the speed flag

is required in the initial-flags. getty(1M)

automatically sets the terminal to raw input

mode and takes care of most of the other flags.

The initial-flag settings remain in effect until

getty(1M) executes /ogin (1).

final-flags These flags take the same values as the
initial-flags and are set just before getty(1M)

executes login(1). The speed flag is again

required. The composite flag SANE takes care

(Printed Dec.1989)

GETTYDEFS(4) (File Formats) GETTYDEFS(4)

of most of the other flags that need to be set
so that the processor and terminal are com-
municating in a rational fashion. SANE8 can
be used instead of SANE to specify 8-bit opera-
tion. DDE_CTL can be used to specify the
commonly used DDE control characters. Other
commonly specified final-flags are TAB3, so
that tabs are sent to the terminal as spaces,
and HUPCL, so that the line is hung up on the
final close.

login-prompt This entire field is printed as the login-prompt.
Unlike the above fields where white space is
ignored (a space, tab or new-line), they are
included in the login-prompt field.

next-label If this entry does not specify the desired speed,
indicated by the user typing a <break> char-
acter, then getty(1M) will search for the entry
with next-label as its label field and set up the
terminal for those settings. Usually, a series
of speeds are linked together in this fashion,
into a closed set; for instance, 2400 linked to

1200, which in turn is linked to 300, which

finally is linked to 2400.

If getty(1M) is called without a second argument, then the
first entry of /etc/gettydefs is used, thus making the first
entry of /ete/gettydefs the default entry. It is also used if
geity(1M) can not find the specified label. If /etc/gettydefs
itself is missing, there is one entry built into getty(1M) which
will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying
/ete/gettydefs, it be run through getty(1M) with the check
option to be sure there are no errors.

(Printed Dec.1989) Page 2

o
s

51

——————————

GETTYDEFS(4) (File Formats) GETTYDEFS(4)

FILES

/ete/gettydefs

SEE ALSO

getty(1M), login(1), stty(1), ioctl(2), termio(7).

BUGS

8-bit with parity mode is not supported.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

45
]

GROUP(4) (File Formats) GROUP(4)

NAME

group — group file

DESCRIPTION

group contains for each group the following information:

group hame
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a new-line. If the pass-
word field is null, no password is demanded.

This file resides in directory /ete. Because of the encrypted
passwords, it can and does have general read permission and
can be used, for example, to map numerical group ID’s to
names.

FILES

/etce/group

SEE ALSO

newegrp(1M), passwd(1), passwd(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

v
s

SS

INITTAB(4) (File Formats) INITTAB(4)

NAME

inittab — script for the init process

DESCRIPTION

The inittab file supplies the script to init’s role as a general
process dispatcher. The process that constitutes the majority

of init’s process dispatching activities is the line process
/etc/getty that initiates individual terminal lines. Other
processes typically dispatched by init are daemons and the
shell.

The inittab file is composed of entries that are position depen-
dent and have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash

(\) preceding a newline indicates a continuation of the entry.
Up to 512 characters per entry are permitted. Comments
may be inserted in the process field using the sh(1) conven-
tion for comments. Comments for lines that spawn gettys are

displayed by the who(1) command. It is expected that they
will contain some information about the line such as the loca-
tion. There are no limits (other than maximum entry size)

imposed on the number of entries within the inittab file. The
entry fields are:

id This is one or two characters used to uniquely iden-

tify an entry.

rstate This defines the run-level in which this entry is to

be processed. run-levels effectively correspond to a

configuration of processes in the system. That is,

each process spawned by init is assigned a run-level
or run-levels in which it is allowed to exist. The

run-levels are represented by a number ranging
from 0 through 6. As an example, if the system is
in run-level 1, only those entries having a 1 in the

rstate field will be processed. When init is requested
to change run-levels, all processes which do not have
an entry in the rstate field for the target run-level

Page 1 (Printed Dec.1989)

 SS ——_—_—_—_——
INITTAB(4)

action

(File Formats) INITTAB(4)

will be sent the warning signal (SIGTERM) and
allowed a 20-second grace period before being forci-
bly terminated by a kill signal (SIGKILL). The

rstate field can define multiple run-levels for a pro-
cess by selecting more than one run-level in any
combination from 0-6. If no run-level is specified,
then the process is assumed to be valid at all run-
levels O—6. There are three other values, a, b and

c, which can appear in the rstate field, even though
they are not true run-levels. Entries which have
these characters in the rstate field are processed
only when the telinit [see init(1M)] process requests
them to be run (regardless of the current run-level
of the system). They differ from run-levels in that
init can never enter run-level a, b or c. Also, a

request for the execution of any of these processes
does not change the current run-level. Further-
more, a process started by an a, b or ¢ command is

not killed when init changes levels. They are only
killed if their line in /ete/inittab is marked off in
the action field, their line is deleted entirely from
/etc/inittab, or init goes into the SINGLE USER
state.

Key words in this field tell init how to treat the pro-
cess specified in the process field. The actions recog-
nized by init are as follows:

respawn If the process does not exist then start
the process, do not wait for its termi-
nation (continue scanning the inittab
file), and when it dies restart the pro-
cess. If the process currently exists
then do nothing and continue scan-

ning the inittad file.

wait Upon init’s entering the run-level that
matches the entry’s rstate, start the
process and wait for its termination.

All subsequent reads of the inittab file

(Printed Dec.1989) Page 2

9
S

57

— ——————

INITTAB(4) (File Formats) INITTAB(4)

once

boot

bootwait

powerfail

powerwait

Page 3

while init is in the same run-level will

cause init to ignore this entry.

Upon init’s entering a run-level that.
matches the entry’s rstate, start the
process, do not wait for its termina-
tion. When it dies, do not restart the

process. If upon entering a new run-
level, where the process is still run-
ning from a previous run-level change,
the program will not be restarted.

The entry is to be processed only at
init’s boot-time read of the inittab file.
init is to start the process, not wait

for its termination; and when it dies,

not restart the process. In order for

this instruction to be meaningful, the

rstate should be the default or it must
match init’s run-level at boot time.

This action is useful for an initializa-
tion function following a hardware
reboot of the system.

The entry is to be processed the first
time init goes from single-user to

multi-user state after the system is
booted. (If initdefault is set to 2,
the process will run right after the
boot.) Init starts the process, waits
for its termination and, when it dies,

does not restart the process.

Execute the process associated with
this entry only when init receives a
power fail signal [SIGPWR see sig-
nal(2)].

Execute the process associated with
this entry only when init receives a

power fail signal (SIGPWR) and wait

(Printed Dec.1989)

| coe

 aaa nLite
INITTAB(4) (File Formats) INITTAB(4)

off

ondemand

initdefault

sysinit

(Printed Dec.1989)

until it terminates before continuing
any processing of inittab.

If the process associated with this
entry is currently running, send the

warning signal (SIGTERM) and wait
20 seconds before forcibly terminating
the process via the kill signal (SIG-
KILL). If the process is nonexistent,

ignore the entry.

This instruction is really a synonym

for the respawn action. It is func-
tionally identical to respawn but is
given a different keyword in order to
divorce its association with run-levels.
This is used only with the a, b or c
values described in the rstate field.

An entry with this action is only
scanned when init initially invoked.
Init uses this entry, if it exists, to

determine which run-level to enter
initially. It does this by taking the
highest run-level specified in the
rstate field and using that as its ini-
tial state. If the rstate field is empty,
this is interpreted as 0123456 and so
init will enter run-level 6. Addition-
ally, if init does not find an initde-
fault entry in /etc/inittab, then it
will request an initial run-level from
the user at reboot time.

Entries of this type are executed
before init tries to access the console
(ie., before the Console Login:
prompt). It is expected that this
entry will be only used to initialize
devices on which init might try to ask

Page 4

e
s

59

 —_—_—_—___—_ ==
INITTAB(4) (File Formats) INITTAB(4)

the run-level question. These entries
are executed and waited for before
continuing.

process This is a sh command to be executed. The entire
process field is prefixed with exec and passed to a
forked sh as sh —c ’exec command’. For this rea-
son, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; #com-

ment syntax.

FILES

/etc/inittab

SEE ALSO

getty(1M), init(1M), sh(1), who(1), exec(2), open(2), signal(2).

Page 5 (Printed Dec.1989)

This page is intentionally left blank

0
9

61

INODE(4) (File Formats) INODE(4)

NAME

inode — format of an i-node

SYNOPSIS

#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION

An i-node for a plain file or directory in a file system has the
following structure defined by <sys/ino.h>.

/ * Inode structure as it appears on a disk block. « /
struct dinode

{
ushort di_mode; /* mode and type of file « /
short di_nlink; /* number of links to file * /
ushort di_uid; /* owner’s user id « /
ushort di_gid; /* owner’s group id * /
off t di_size; /* number of bytes in file « /
char di_addr[40]; /* disk block addresses » /
time_t di_atime; /* time last accessed « /
time_t di_mtime; /+* time last modified + /
time_t di_ctime; /* time of last file status change * /

3
/*

* the 40 address bytes:
* 39 used; 13 addresses

* of 3 bytes each.

+ /
For the meaning of the defined types off ¢ and time_t see
types (5).

SEE ALSO

stat(2), fs(4), types(5).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

AS
]

63

ISSUE(4) (File Formats) ISSUE(4)

NAME

issue — issue identification file

DESCRIPTION

The file /etc/issue contains the issue or project identification
to be printed as a login prompt. This is an ASCII file which is
read by program getty and then written to any terminal

spawned or respawned from the lines file.

FILES

/etc/issue

SEE ALSO

login(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

v
9

65

LDFCN(4) (File Formats) LDFCN(4)

NAME

Idfen — common object file access routines

SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <Idfcen.h>

DESCRIPTION

Page 1

The common object file access routines are a collection of
functions for reading common object files and archives con-
taining common object files. Although the calling program
must know the detailed structure of the parts of the object
file that it processes, the routines effectively insulate the cal-
ling program from knowledge of the overall structure of the

object file.

The interface between the calling program and the object file

access routines is based on the defined type LDFILE, defined

as struct Idfile, declared in the header file Idfen.h. The pri-
mary purpose of this structure is to provide uniform access to

both simple object files and to object files that are members of

an archive file.

The function /dopen (8X) allocates and initializes the LDFILE

structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be

accessed individually through macros defined in Idfen.h and

contain the following information:

LDFILE * Idptr;

TYPE(ldptr) The file magic number used to distinguish
between archive members and simple object
files.

IOPTR(dptr) The file pointer returned by fopen and used
by the standard input/output functions.

OFFSET(Idptr) The file address of the beginning of the object
file; the offset is non-zero if the object file is a
member of an archive file.

(Printed Dec.1989)

LDFCN(4) (File Formats) LDFCN(4)

HEADER(ldptr) The file header structure of the object file.

The object file access functions themselves may be divided
into four categories:

(1) functions that open or close an object file

ldopen(3X) and Idaopen [see ldopen (3X)]
open a common object file

ldclose(8X) and Idaclose[see Idclose(3X)]
close a common object file

(2) functions that read header or symbol table infor-
mation

ldahread (3X)

read the archive header of a member of an

archive file

ldfhread (3X)
read the file header of a common object file

ldshread (3X) and Idnshread

[see Idshread(3X)]

read a section header of a common object
file

ldtbread (3X)
read a symbol table entry of a common
object file

idgetname (3X)
retrieve a symbol name from a symbol
table entry or from the string table

(3) functions that position an object file at (seek to)
the start of the section, relocation, or line number
information for a particular section.

ldohseek (3X)
seek to the optional file header of a com-
mon object file

(Printed Dec.1989) Page 2

9
9

67

LDFCN(4) (File Formats) LDFCN(4)

Page 3

ldsseek (3X) and ldnsseek [see Idsseek (3X)|

seek to a section of a common object file

ldrseek (8X) and Idnrseek|see Idrseek (3X)|

seek to the relocation information for a

section of a common object file

ldlseek (3X) and Idnilseek [see Idlseek (3X)]

seek to the line number information for a

section of a common object file

ldtbseek (3X)

seek to the symbol table of a common
object file

(4) the function /dtbindex(3X) which returns the

index of a particular common object file symbol table
entry.

These functions are described in detail on their respective

manual pages.

All the functions except IJdopen(8X), Idgetname(8X),
ldtbindex(3X) return either SUCCESS or FAILURE, both
constants defined in Idfen.h. Idopen(3X) and Idaopen|[(see
idopen (3X)| both return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of
macros defined in Idfen.h. These macros parallel the stan-
dard input/output file reading and manipulating functions,
translating a reference of the LDFILE structure into a refer-

ence to its file descriptor field.

The following macros are provided:

GETC(Idptr)
FGETC(dptr)
GETW (dptr)

UNGETC(e, Idptr)
FGETS(s, n, idptr)
FREAD((char *) ptr, sizeof (* ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(dptr)

(Printed Dec.1989)

LDFCN(4) (File Formats) LDFCN(4)

REWIND(ldpir)
FEOF (dptr)
FERROR(dptr)
FILENO(dptr)
SETBUF(Idptr, buf)
STROFFSET (idptr)

The STROFFSET macro calculates the address of the string
table. See the manual entries for the corresponding standard
input/output library functions for details on the use of the
rest of the macros.

The program must be loaded with the object file access rou-
tine library libld.a.

SEE ALSO

fseek(3S), ldahread(8X), Idclose(3X), Idgetname(3X),
Idfhread(3X), Idlread(3X), Idlseek(3X), Idohseek(3X),

Idopen(3X), Idrseek(3X), ldlseek(3X), Idshread(3X),

ldtbindex(3X), ldtbread(8X), ldtbseek(3X), stdio(3S), intro(5).

WARNING

The macro FSEEK defined in the header file Idfen.h
translates into a call to the standard input/output function
fseek(8S). FSEEK should not be used to seek from the end of

an archive file since the end of an archive file may not be the
same as the end of one of its object file members!

(Printed Dec.1989) Page 4

89

69

LIMITS(4) (File Formats) LIMITS(4)

NAME

limits — file header for implementation-specific constants

SYNOPSIS

#include <limits.h>

DESCRIPTION

The header file <limits.h> is a list of magnitude limitations

imposed by a specific implementation of the operating system.
All values are specified in decimal.

#define ARG MAX 5120 /* max length of arguments to exec * /

#define CHAR_BIT 8 /* # of bits in a “char” */

#define CHAR_MAX 127 /* max integer value of a "char" + /

#define CHAR_MIN -128 /* min integer value of a “char” */

#define CHILD MAX 1024 /* max # of processes per user id */

#define CLK_TCK 50 /* # of clock ticks per second */

#define DBL DIG 15 /* digits of precision of a “double” + /

#define DBL_MAX 1.79769313486231470e+308

/*max decimal value of a "double” « /

#define DBL_MIN 4.94065645841246544e-324

/*min decimal value of a “double” * /

#define FCHR_MAX 1048576

/*max size of a file in bytes */

#define FLT DIG 7 /*digits of precision of a “float” « /

#define FLT MAX 3.40282346638528860e+38

/*max decimal value of a "float” */

#define FLT MIN 1.40129846432481707e-45

/*min decimal value of a "float” «/

#define HUGE VAL 3.40282346638528860e+38

/*error value returned by Math lib* /

#define INT_MAX 2147483647

/*max decimal value of an “int” #/

#define INT_MIN -2147483648

/*min decimal value of an “int” */

#define LINK_MAX 1000 /*max # of links to a single file «/

#define LONG MAX 2147483647

/*max decimal value of a “long” */

Page 1 (Printed Dec.1989)

Hl G
(File Formats)

LIMITS(4)

decimal value of a "long” */

of characters in a file name */

files a process can have open +*/

of characters in

of characters in

a password */

a path name */

value for a process ID +*/

bytes atomic in write to a pipe */

bytes written to

decimal value of a

decimal value of a

2048 /* # bytes in a physical

a pipe in a write */

"short" +*/

"short" */

I/O block */

9 /* # of chars in uname-returned strings * /

60000 /*max value for a user or group ID */

/*max decimal value of an “unsigned” + /

32 /* # of bits in a “word” or "int" */

LIMITS(4)

#define LONG MIN -2147483648

/*min

#define NAME MAX 14 / *max

#define OPEN MAX 32 / * max

#define PASS _MAX 8 / *max

#define PATH MAX 512 /+#*max

#define PID_MAX 32767 / *max

#define PIPE_BUF 5120 /*max

#define PIPE MAX 5120 /*max

#define SHRT MAX 32767. / *max

#define SHRT MIN -32768
/*min

#define STD_BLK

#define SYS _NMLN

#define UID_MAX

#define USI_MAX 4294967295

#define WORD BIT

(Printed Dec.1989) Page 2

O
z

71

LINENUM(4) (File Formats) LINENUM(4)

NAME

linenum — line number entries in a common object file

SYNOPSIS

#include <linenum.h>

DESCRIPTION

Page 1

The ce command generates an entry in the object file for each
C source line on which a breakpoint is possible [when invoked
with the —g option; see cc(1)]. Users can then reference line
numbers when using the appropriate software test system
[see sdb(1)]. The structure of these line number entries
appears below.

struct lineno

{ .

union

i
long 1 symndkx ;
long 1_paddr ;

} 1 addr ;
unsigned short 1 Inno ;

}5
Numbering starts with one for each function. The initial line

number entry for a function has / inno equal to zero, and the
symbol table index of the function’s entry is in / symndx.

Otherwise, / Inno is non-zero, and / paddr is the physical
address of the code for the referenced line. Thus the overall
structure is the following:

l addr l Inno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

(Printed Dec.1989)

LINENUM(4) (File Formats) LINENUM(4)

SEE ALSO

cec(1), sdb(1), a.out(4).

(Printed Dec.1989) Page 2

e
Z

73

MNTTAB(4) (File Formats) MNTTAB(4)

NAME

mnttab — mounted file system table

SYNOPSIS

#include <mnttab.h>

DESCRIPTION

mnitab resides in directory /ete and contains a table of dev-
ices, mounted by the mount(1M) command, in the following
structure as defined by <mnttab.h>:

struct mnttab {
char mt_dev[32];
char mt_filsys[32];
short mt_ro_fig;
time_t mt_time;

i

Each entry is 70 bytes in length; the first 32 bytes are the
null-padded name of the place where the special file is
mounted; the next 32 bytes represent the null-padded root
name of the mounted special file; the remaining 6 bytes con-
tain the mounted special file’s read/write permissions and
the date on which it was mounted.

SEE ALSO

mount(1M), setmnt(1M).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

bv
.

75

PASSWD(4) (File Formats) PASSWD(4)

NAME

passwd — password file

DESCRIPTION

Page 1

passwd contains for each user the following information:

login name

encrypted password
numerical user ID

numerical group ID
GCOS job number, box number, optional GCOS user ID

initial working directory
program to use as shell

This is an ASCII file. Each field within each user’s entry is
separated from the next by a colon. The GCOS field is used
only when communicating with that system, and in other ins-
tallations can contain any desired information. Each user is
separated from the next by a new-line. If the password field
is null, no password is demanded; if the shell field is null, the
shell itself is used.

This file resides in directory /etc. Because of the encrypted
passwords, it can and does have general read permission and

can be used, for example, to map numerical user IDs to

names.

The encrypted password consists of 13 characters chosen from

a 64-character alphabet (., /, 0-9, A-Z, a—z), except when

the password is null, in which case the encrypted password is
also null. Password aging is effected for a particular user if
his encrypted password in the password file is followed by a
comma and a non-null string of characters from the above
alphabet. (Such a string must be introduced in the first
instance by the super-user.)

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his password has expired will be forced
to supply a new one. The next character, m say, denotes the

minimum period in weeks which must expire before the

(Printed Dec.1989)

Il 8
PASSWD(4) (File Formats) PASSWD(4)

FILES

password may be changed. The remaining characters define
the week (counted from the beginning of 1970) when the
password was last changed. (A null string is equivalent to
zero.) M and m have numerical values in the range 0—63
that correspond to the 64-character alphabet shown above
(i.e, / = 1 week; z = 63 weeks). If m = M = 0 (derived

from the string . or ..) the user will be forced to change his
password the next time he logs in (and the ‘‘age’”’ will disap-
pear from his entry in the password file). If m > M
(signified, e.g., by the string ./) only the super-user will be
able to change the password.

The recommended use of the GCOS is:

user name, options

The user name will be used by some utilities in the future.

The options do not need to be specified. The options known
and used by login(1) is as follows:

pri= < number > (see nice(1))

ulimit = < number > (see ulimit(1))

mcumask = < number > (see mcumask(1))

The options pri= and ulimit= reads <number> using
decimal notation, and mcumask= reads the <number> in

octal notation.

/etc/passwd

SEE ALSO

login(1), passwd(1), a641(3C), getpwent(3C), group(4).

(Printed Dec.1989) Page 2

9
2

77

PROFILE(4) (File Formats) PROFILE(4)

NAME

profile — setting up an environment at login time

SYNOPSIS

/etc/profile
$HOME/.profile

DESCRIPTION

All users who have the shell, sh(1), as their login command

have the commands in these files executed as part of their
login sequence.

/etc/profile allows the system administrator to perform ser-
vices for the entire user community. Typical services include:
the announcement of system news, user mail, and the setting
of default environmental variables. It is not unusual for
/etc/profile to execute special actions for the root login or the
su(1) command. Computers running outside the Eastern time
zone should have the line

. /etc/TIMEZONE

included early in /etc/profile (see timezone(4)).

The file $HOME/.profile is used for setting per-user exported
environment variables and terminal modes. The following
example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM

Set file creation mask
umask 027
Tell me when new mail comes in
MAIL = /usr/mail/$LOGNAME
Add my /bin directory to the shell search sequence
PATH = $PATH:$HOME/bin

Set terminal type
while :
do echo ”terminal: \c”

read TERM

if [—f ${TERMINFO: — /usr/lib/terminfo} /?/$TERM]

(Printed Dec.1989)

PROFILE(4) (File Formats) PROFILE(4)

then break

elif [—f /usr/lib/terminfo/?/$TERM |

then break
else echo "invalid term $TERM” 1> &2

fi

done

Initialize the terminal and set tabs

The environmental variable TERM must have been

exported before the ’tput init” command is executed.

tput init

Set the erase character to backspace
stty erase ’*H’ echoe

FILES

/ete/TIMEZONE timezone environment
$HOME/.profile user — specific environment
/etc/profile system — wide environment

SEE ALSO

env(1), login(1), mail(1), sh(1), stty(1), su(1M), terminfo(4),

timezone(4), environ(5), term(5).

User’s Guide.

Chapter 10 in the Programmer’s Guide.

NOTES

Care must be taken in providing system-wide services in

/etc/profile. Personal .profile files are better for serving all

but the most global needs.

(Printed Dec.1989) Page 2

B
Z

79

PROTO(4) (File Formats) PROTO(4)

NAME

proto — prototype job file for at

SYNOPSIS

/usr/lib/cron/.proto

/usr/lib/.proto.queue

DESCRIPTION

When a job is submitted to at(1) or batch(1), the job is con-

structed as a shell script. First, a prologue is constructed,
consisting of:

e A header whether the job is an at job or a batch job (actu-
ally, at jobs submitted to all queues other than queue a, not
just the batch queue b, are listed as batch jobs); the header
will be:

: at job

for an at job, and

: batch job

for a batch job.

e A set of Bourne shell commands to make the environment

(see environ(5)) for the at job the same as the current
environment.

e A command to run the user’s shell (as specified by the
environment variable) with the rest of the job file as input.

at then reads a prototype file, and constructs the rest of the
job file from it.

Text from the prototype file is copied to the job file, except
for special variables that are replaced by other text:

$d_ is replaced by the current working directory.

$1 is replaced by the current file size limit (see
ulimit(2)).

$m _ is replaced by the current umask (see umask(2)).

Page 1 (Printed Dec.1989)

PROTO(4) (File Formats) PROTO(4)

$t is replaced by the time at which the job should be
run, expressed as seconds since January l,

1970, 00:00 Greenwich Mean Time, preceded by a

colon.

$< is replaced by text read by at from the standard
input (that is, the commands provided to at to be
run in the job).

If the job is submitted in queue queue, at uses the file
/usr/lib/cron/.proto.queue as the prototype file if it exists,
otherwise it will use the file /usr/lib/cron/.proto.

EXAMPLE

The standard .proto file supplied is:

#ident”@(#)adm:proto 1.2”

ed $d

ulimit $1

umask $m

$<

which causes commands to change the current directory in
the job to the current directory at the time at was run, to
change the file size limit in the job to the file size limit at the
time af was run, and to change the umask in the job to the
umask at the time at was run, to be inserted before the com-

mands in the job.

FILES

/usr/lib/cron/proto

/usr/lib/cron/.proto.queue

SEE ALSO

at(1), ulimit(2), umask(2), environ(5).

(Printed Dec.1989) Page 2

oe

81

QUEUEDEFS(4) (File Formats) QUEUEDEFS(4)

NAME

queuedefs — at/batch/cron queue description file

SYNOPSIS

/usr/lib/cron/queuedefs

DESCRIPTION

The queuedefs file describes the characteristics of the queues
managed by cron(1). Each non-comment line in this file

describes one queue. The format of the lines are as follows:

q- [njobj][nicen][nwaitw]

The fields in this line are:

q The name of the queue. a is the default queue

for jobs started by at(1); b is the default queue
for jobs started by batch(1); ¢ is the default
queue for jobs run from a crontab file.

njob The maximum number of jobs that can be run

simultaneously in that queue; if more than njob
jobs are ready to run, only the first njob jobs will
run, and the others will be run, as jobs — that
are currently running — terminate. The default

value is 100.

nice The nice(1) value to give all jobs in that queue
that are not run with a user ID of super-user.

The default value is 2.

nwait The number of seconds to wait before reschedul-
ing a job that was deferred because more than
njob jobs were running in that job’s queue, or

because more than 25 jobs were running in all
the queues. The default value is 60.

Lines beginning with # are comments, and are ignored.

Page 1 (Printed Dec.1989)

QUEUEDEFS(4) (File Formats) QUEUEDEFS(4)

EXAMPLE

FILES

a.4jln

b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to
4 jobs running simultaneously; those jobs will be run with a
nice value of 1. As no nwait value was given, if a job cannot
be run because too many other jobs are running, cron will
wait 60 seconds before trying again to run it. The b queue,
for batch jobs, can have up to 2 jobs running simultaneously;
those jobs will be run with a nice value of 2. If a job cannot
be run because too many other jobs are running, cron will
wait 90 seconds before trying again to run it. All other
queues can have up to 100 jobs running simultaneously; they
will be run with a nice value of 2, and if a job cannot be run
because too many other jobs are running, cron will wait 60
seconds before trying again to run it.

/usr/lib/cron/queuedefs

SEE ALSO

cron(1).

(Printed Dec.1989) Page 2

c
e

83

RELOC(4) (File Formats) RELOC(4)

NAME

reloc — relocation information for a common object file

SYNOPSIS

#include <reloc.h>

DESCRIPTION

Object files have one relocation entry for each relocatable

reference in the text or data. If relocation information is
present, it will be in the following format.

struct reloc

{
long r_vaddr; /-* (virtual) address of reference * /
long r_symndx; /* index into symbol table * /
ushort r_type ; / * relocation type * /

};

#define R_ABS 0
#define R_DIR82 06
#define R_DIR32S 012

As the link editor reads each input section and performs relo-
cation, the relocation entries are read. They direct how refer-
ences found within the input section are treated.

R_ABS The reference is absolute and no relocation is

necessary. The entry will be ignored.

R_DIR32 A direct 32-bit reference to the symbol’s vir-
tual address.

R_DIR32S A direct 32-bit reference to the symbol’s vir-

tual address, with the 32-bit value stored in

the reverse order in the object file.

More relocation types exist for other processors. Equivalent

relocation types on different processors have equal values and
meanings. New relocation types will be defined (with new
values) as they are needed.

Relocation entries are generated automatically by the assem-
bler and automatically used by the link editor. Link editor

Page 1 (Printed Dec.1989)

RELOC(4) (File Formats) RELOC(4)

options exist for both preserving and removing the relocation
entries from object files.

SEE ALSO

as(1), ld(1), a.out(4), syms(4).

(Printed Dec.1989) Page 2

v
3

tot
e)

 SEF:
SCCSFILE(4) (File Formats) SCCSFILE(4)

NAME

scesfile — format of SCCS file

DESCRIPTION

Page 1

An SCCS (Source Code Control System) file is an ASCII file. It
consists of six logical parts: the checksum, the delta table
(contains information about each delta), user names (con-

tains login names and/or numerical group IDs of users who
may add deltas), flags (contains definitions of internal key-
words), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines
intermixed with control lines).

Throughout an SCCS file there are lines which begin with the
ASCII SOH (start of heading) character (octal 001). This
character is hereafter referred to as the control character and
will be represented graphically as @. Any line described
below which is not depicted as beginning with the control
character is prevented from beginning with the control char-

acter.

Entries of the form DDDDD represent a five-digit string (a
number between 00000 and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum

The checksum is the first line of an SCCS file. The form of

the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @h provides a magic number of
(octal) 064001.

Delta table

The delta table consists of a variable number of entries of the

form:

(Printed Dec.1989)

SCCSFILE(4) (File Formats) SCCSFILE(4)

@s DDDDD/DDDDD/DDDDD

@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgrm> DDDDD DDDDD

@i DDDDD

@x DDDDD ...

@g DDDDD ...

@m <MR number >

@c <comments> ...

@e

The first line (@s) contains the number of lines

inserted/deleted/unchanged, respectively. The second line
(@d) contains the type of the delta (currently, normal: D, and
removed: R), the SCCS ID of the delta, the date and time of
creation of the delta, the login name corresponding to the real
user ID at the time the delta was created, and the serial

numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of del-

tas included, excluded, and ignored, respectively. These lines

are optional.

The @m lines (optional) each contain one MR number associ-
ated with the delta; the @c lines contain comments associ-
ated with the delta.

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of
users who may add deltas to the file, separated by
new-lines. The lines containing these login names
and/or numerical group IDs are surrounded by the

(Printed Dec.1989) Page 2

87

SCCSFILE(4)

Page 3

Flags

(File Formats) SCCSFILE(4)

bracketing lines @u and @U. An empty list allows
anyone to make a delta. Any line starting with a !
prohibits the succeeding group or user from making
deltas.

Keywords used internally. [See admin(1) for more
information on their use.] Each flag line takes the
form:

@f <flag> <optional text >

The following flags are defined:

@f t<type of program >
@f v< program name>
@f i<keyword string>
@f b

@f m< module name>

@f f<floor>

@f c<ceiling>

@f d< default-sid >

@fn

@fj
@f 1<lock-releases >

@f q<user defined >

(@f z<reserved for use in interfaces >

The t flag defines the replacement for the %Y%
identification keyword. The v flag controls prompting
for MR numbers in addition to comments; if the

optional text is present it defines an MR number vali-
dity checking program. The i flag controls the
warning/error aspect of the ‘‘No id keywords” mes-
sage. When the i flag is not present, this message is

only a warning; when the i flag is present, this mes-

sage will cause a “‘fatal’’ error (the file will not be got-
ten, or the delta will not be made). When the b flag

is present the —b keyletter may be used on the get

(Printed Dec.1989)

SCCSFILE(4)

Body

SEE ALSO

(File Formats) SCCSFILE(4)

command to cause a branch in the delta tree. The m
flag defines the first choice for the replacement text of
the %M% identification keyword. The f flag defines
the ‘‘floor’’ release; the release below which no deltas

may be added. The e flag defines the ‘‘ceiling”’
release; the release above which no deltas may be
added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag
causes delta to insert a ‘‘null” delta (a delta that
applies no changes) in those releases that are skipped
when a delta is made in a new release (e.g., when
delta 5.1 is made after delta 2.7, releases 3 and 4 are

skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get
to allow concurrent edits of the same base SID. The 1
flag defines a list of releases that are locked against

editing [get(1) with the -e keyletter]. The q flag
defines the replacement for the %Q% identification
keyword. The z flag is used in certain specialized
interface programs. Comments Arbitrary text is sur-
rounded by the bracketing lines @t and @T. The
comments section typically will contain a description
of the file’s purpose.

The body consists of text lines and control lines. Text

lines do not begin with the control character, control
lines do. There are three kinds of control lines:
insert, delete, and end, represented by:

@I DDDDD

@D DDDDD

@E DDDDD

respectively. The digit string is the serial number
corresponding to the delta for the control line.

admin(1), delta(1), get(1), prs(1).

(Printed Dec.1989) Page 4

8
8

89

SCNHDR(4) (File Formats) SCNHDR(4)

NAME

senhdr — section header for a common object file

SYNOPSIS

#include <scnhdr.h>

DESCRIPTION

Every common object file has a table of section headers to
specify the layout of the data within the file. Each section
within an object file has its own header. The C structure
appears below.

struct scnhdr

{
char s_name[SYMNMLEN]; / * section name * /
long s_paddr; / * physical address * /
long s_vaddr; / * virtual address * /
long s size; /* section size * /
long s_scnptr; / * file ptr to raw data * /
long s _relptr; /* file ptr to relocation * /
long s_Innoptr; /* file ptr to line numbers + /
unsigned short s nreloc; /* # reloc entries * /
unsigned short s nlnno; /* # line number entries * /
long s flags; /* flags */

}5
File pointers are byte offsets into the file; they can be used as
the offset in a call to FSEEK [see /dfen(4)]. If a section is ini-

tialized, the file contains the actual bytes. An uninitialized
section is somewhat different. It has a size, symbols defined

in it, and symbols that refer to it. But it can have no reloca-
tion entries, line numbers, or data. Consequently, an unini-

tialized section has no raw data in the object file, and the

values for s_senptr, s_relptr, s_Innoptr, s_nreloc, and s_ninno
are zero.

SEE ALSO
Id(1), fseek(8S), a.out(4), Idfen(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

06

91

SCR_DUMP(4) (File Formats) SCR_DUMP(4)

NAME

scr_dump — format of curses screen image file.

SYNOPSIS

scr_dump(file)

DESCRIPTION

The curses(3X) function scr_dump() will copy the contents of
the screen into a file. The format of the screen image is as
described below.

The name of the tty is 20 characters long and the

modification time (the mtime of the tty that this is an image
of) is of the type time_t. All other numbers and characters
are stored as chtype (see <curses.h>). No newlines are

stored between fields.

<magic number: octal 0433 >
<name of tty >

<mod time of tty>
<columns> <lines>
<line length> <chars in line> for each line on the screen
<line length> <chars in line>

<labels?> 1, if soft screen labels are present
<cursor row> <cursor column>

Only as many characters as are in a line will be listed. For
example, if the <line length> is 0, there will be no charac-

ters following <line length>. If <labels?> is TRUE, follow-
ing it will be

<number of labels >

<label width >

<chars in label 1>

<chars in label 2>

Page 1 (Printed Dec.1989)

SCR_DUMP(4) (File Formats) SCR_DUMP(4)

SEE ALSO

curses(3X).

(Printed Dec.1989) Page 2

As
)

93

SYMS(4) (File Formats) SYMS(4)

NAME

syms — common object file symbol table format

SYNOPSIS

#include <syms.h>

DESCRIPTION

Common object files contain information to support symbolic
software testing [see sdb(1)]. Line number entries, line-
num (4), and extensive symbolic information permit testing at
the C source level. Every object file’s symbol table is organ-
ized as shown below.

File name 1.

Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.

Function 1.
Local symbols for function 1.

Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The
members of the ‘structure hold the name (null padded), its
value, and other information. The C structure is given below.

#define SYMNMLEN 8

#define FILNMLEN 14

#define DIMNUM 4

Page 1 (Printed Dec.1989)

 Sanit aol
(File Formats) SYMS(4) SYMS(4)

struct syment

{
union

{

char

struct

{

long

long

} _nuin;

char

} _n;

long

short

/* all ways to get symbol name + /

_n_name[SYMNMLEN]; /* symbol name + /

_n_zeroes; /* == OL when in string table »* /

n offset; /* location of name in table * f/f

* n_nptr[2]; /* allows overlaying * /

n_value;

n_scnum;

unsigned short

char

char

ye

#define

#define

#define

#define

n_sclass;

n numaux;

n_name

n_zeroes

n_offset

n_nptr

/* value of symbol */

/* section number + /

n_type;/ * type and derived type */

/* storage class */

/* number of aux entries +*/

_n._n_name

n. nin. n zeroes

nh. nn. _n offset

_n._n nptr[1]

Meaningful values and explanations for them are given in
both syms.h and Common Object File Format. Anyone who
needs to interpret the entries should seek more information
in these sources. Some symbols require more information
than a single entry; they are followed by auxiliary entries
that are the same size as a symbol entry. The format follows.

(Printed Dec.1989) Page 2

v
6

95

—————————

SYMS(4)

Page 3

(File Formats)

union auxent

SYMS(4)

x_tagndx;

x_lnno;

x_size;

x_lnnoptr;

x_endndx;

x_dimen[DIMNUM];

x_tvndx;

{

struct

{

long

union

{

struct

{

unsigned short

unsigned short

} x_lnsz;

long x_fsize;

} x_misc;

union

{

struct

{

long

long

} x_fcen;

struct

{

unsigned short

} x_ary;

} x_fcenary;

unsigned short

} x*_Sym;

struct

{

char x_fname[FILNMLEN];

} x_file;

struct

{

long x_scnlen;

unsigned short

unsigned short

} x_scn;

x_nreloc;

x nlinno;

(Printed Dec.1989)

SYMS(4) (File Formats) SYMS(4)

struct

{

long x_tvfill;

unsigned short x_tvlen;

unsigned short x_tvran[2];

} x_tv;

‘i

Indexes of symbol table entries begin at zero.

SEE ALSO

sdb(1), a.out(4), linenum(4).

*Common Object File Format” in the Programming Guide.

WARNINGS

On machines on which ints are equivalent to longs, all longs
have their type changed to int. Thus the information about
which symbols are declared as longs and which, as ints, does
not show up in the symbol table.

(Printed Dec.1989) Page 4

9
6

97

TERM(4) (File Formats) TERM(4)

NAME

term — format of compiled term file.

SYNOPSIS

/usr/lib/terminfo/?/ *

DESCRIPTION

Page 1

Compiled terminfo(4) descriptions are placed under the direc-
tory /usr/lib/terminfo. In order to avoid a linear search of a
huge UNIX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the ter-
minal, and c is the first character of name. Thus, att4425
can be found in the file /usr/lib/terminfo/a/att4425.
Synonyms for the same terminal are implemented by multiple
links to the same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8-bit byte is assumed, but no assumptions

about byte ordering or sign extension are made. Thus, these

binary terminfo(4) files can be transported to other hardware

with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte
contains the least significant 8 bits of the value, and the

second byte contains the most significant 8 bits. (Thus, the
value represented is 256 second+first.) The value —1 is
represented by 0377,0377, and the value —2 is represented

by 0376,0377; other negative values are illegal. Computers

where this does not correspond to the hardware read the
integers as two bytes and compute the result, making the
compiled entries portable between machine types. The —1
generally means that a capability is missing from this termi-
nal. The —2 means that the capability has been cancelled in
the terminfo(4) source and also is to be considered missing.

The compiled file is created from the source file descriptions
of the terminals (see the —I option of infocmp(1M)) by using

the terminfo(4) compiler, tic(1M), and read by the routine

setupterm(). (See curses(3X).) The file is divided into six
parts: the header, terminal names, boolean flags, numbers,

strings, and string table.

(Printed Dec.1989)

TERM(4) (File Formats) TERM(4)

The header section begins the file. This section contains six

short integers in the format described below. These integers
are (1) the magic number (octal 0432); (2) the size, in bytes,

of the names section; (3) the number of bytes in the boolean
section; (4) the number of short integers in the numbers sec-
tion; (5) the number of offsets (short integers) in the strings
section; (6) the size, in bytes, of the string table.

The terminal names section comes next. It contains the first

line of the terminfo(4) description, listing the various names
for the terminal, separated by the bar (|) character (see

term(5)). The section is terminated with an ASCII NUL char-

acter.

The boolean flags have one byte for each flag. This byte is
either 0 or 1 as the flag is present or absent. The value of 2
means that the flag has been cancelled. The capabilities are
in the same order as the file <term.h>.

Between the boolean section and the number section, a null

byte will be inserted, if necessary, to ensure that the number
section begins on an even byte. All short integers are aligned
on a short word boundary.

The numbers section is similar to the boolean flags section.
Each capability takes up two bytes, and is stored as a short
integer. If the value represented is —1 or —2, the capability
is taken to be missing.

The strings section is also similar. Each capability is stored

as a short integer, in the format above. A value of —lor —2
means the capability is missing. Otherwise, the value is
taken as an offset from the beginning of the string table.
Special characters in *“X or \c notation are stored in their
interpreted form, not the printing representation. Padding
information (§<nn>) and parameter information (%x) are

stored intact in uninterpreted form.

The final section is the string table. It contains all the values
of string capabilities referenced in the string section. Each
string is null terminated.

(Printed Dec.1989) Page 2

8
6

99

TERM(4) (File Formats) TERM(4)

Page 3

Note that it is possible for setupterm() to expect a different
set of capabilities than are actually present in the file. Either
the database may have been updated since setupterm() has
been recompiled (resulting in extra unrecognized entries in
the file) or the program may have been recompiled more

recently than the database was updated (resulting in missing
entries). The routine setupterm() must be prepared for
both possibilities — this is why the numbers and sizes are
included. Also, new capabilities must always be added at the
end of the lists of boolean, number, and string capabilities.
As an example, an octal dump of the description for the AT&T
Model 37 KSR is included:

37|tty37|AT&T model 37 teletype,
hc, os, xon,

bel=*G, cr=\r, cubl=\b, cudl=\n, cuul=\E7, hd=\E9,
hu=\E8, ind=\n,

0000000 032 001 \o 032 \0 013 \oo21001 3 \0 3 7 | t
00020 t y 3 7 | AT ET model
0000040 3 «7 t e let y p e\o \o \o0 \o \0
000060 \0 \o \o 01 \o \o \o \o \o \o \oom \o \o \o \o
0000100 001 \O \o \O \O \0 377 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 «~«& «\O

0000140 \0 377 377 377 377 377 377 377 377 377 377 377 377 377 377

0000160 377 377. +” \O 377 377377377 =(\0 377 377 377 377 377 377

0000200 377 377. 0 \0 377 377 377 377 377 377 377 377_— - ~\0 377 377

0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

0000520 377 377 377 377 377 377 377 377 377 377 377 377 377 377_:~«S «~«(\O

0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377,—=—* ~\O

0000560 377 377 377 377 377 37] 377 377 377 377 377 377 377 37) 377 377
*

0001160 377 377 377 377 377 377 377 377 37] 377 377 377 37/7 377 3) O77

000200 | t t y 3 7 | ATE T mode
0001220 1 3 7 t e let y p e\0 \r \0
0001240 \n \o \n \0007 \o \b \0033 8 \0033 9 \00%3 7
0001260 \o \0
0001261

(Printed Dec.1989)

 PY
TERM(4) (File Formats) TERM(4)

Some limitations: total compiled entries cannot exceed 4096
bytes; all entries in the name field cannot exceed 128 bytes.

FILES

/usr/lib/terminfo/?/ * compiled terminal description
database

/usr/include/term.h ferminfo(4) header file

SEE ALSO

infocmp(1M), curses(3X), terminfo(4), term(5).

Chapter 10 of the Programmer’s Guide.

(Printed Dec.1989) Page 4

o
o
l

W
i

TERMINFO(4) (File Formats) TERMINFO(4)

NAME

terminfo — terminal capability data base

SYNOPSIS

/usr/lib/terminfo/?/ «

DESCRIPTION

terminfo is a compiled database (see fic(1M)) describing the
capabilities of terminals. Terminals are described in terminfo
source descriptions by giving a set of capabilities which they
have, by describing how operations ‘are performed, by describ-
ing padding requirements, and by specifying initialization
sequences. This database is used by applications programs,

such as vi(1) and curses(3X), so they can work with a variety
of terminals without changes to the programs. To obtain the
source description for a terminal, use the —I option of
infocmp (1M).

Entries in terminfo source files consist of a number of
comma-separated fields. White space after each comma is
ignored. The first line of each terminal description in the ter-
minfo database gives the name by which terminfo knows the
terminal, separated by bar (|) characters. The first name
given is the most common abbreviation for the terminal (this

is the one to use to set the environment variable TERM in
$HOME/. profile; see profile(4)), the last name given should be
a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names
but the last should contain no blanks and must be unique in
the first 14 characters; the last name may contain blanks for
readability.

Terminal names (except for the last, verbose entry) should be
chosen using the following conventions. The particular piece
of hardware making up the terminal should have a root name
chosen, for example, for the AT&T 4425 terminal, att4425.

Modes that the hardware can be in, or user preferences,

should be indicated by appending a hyphen and an indicator
of the mode. See ¢erm(5) for examples and more information
on choosing names and synonyms.

(Printed Dec.1989)

TERMINFO(4)

CAPABILITIES

(File Formats) TERMINFO(4)

In the table below, the Variable is the name by which the C
programmer (at the terminfo level) accesses the capability.
The Capname is the short name for this variable used in the
text of the database. It is used by a person updating the
database and by the ¢puf(1) command when asking what the
value of the capability is for a particular terminal. The
Termcap Code is a two-letter code that corresponds to the
old termcap capability name.

Capability names have no hard length limit, but an informal
limit of 5 characters has been adopted to keep them short.
Whenever possible, names are chosen to be the same as or
similar to the ANSI X3.64-1979 standard. Semantics are also
intended to match those of the specification.

All string capabilities listed below may have padding specified,
with the exception of those used for input. Input capabilities,
listed under the Strings section in the table below, have
names beginning with key_. The following indicators may
appear at the end of the Description for a variable.

(G) indicates that the string is passed through tparm()
with parameters (parms) as given (#,).

(*) indicates that padding may be based on the number of
lines affected.

(#.) indicates the th parameter.

Variable Cap- Termcap Description

name Code

Booleans:

auto_left_margin bw bw cubl1 wraps from column 0 to last column

auto_right_margin am am Terminal has automatic margins

no_esc_ctle xsb xb Beehive (f1= escape, f2=ctrl C)

ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)

eat_newline_glitch

(Printed Dec.1989)

xenl Newline ignored after 80 cols (Concept)

c
o
l

10
3

TERMINFO(4)

erase_overstrike

generic_type

hard_copy

hard_cursor

has_meta_key

has_status_line

insert_null_glitch

memory_above

memory_below

move_insert_mode

move_standout_mode

needs_xon_xoff

non_rev_rmcup

no_pad_char

over_strike

prtr_silent

status_line_esc_ok

dest_tabs_magic_smso

tilde_glitch

transparent_underline

xon_xoff

Numbers:

columns

init_tabs

label_height

label_width

lines

lines_of_memory

magic_cookie_glitch

num_labels

padding _baud_rate

virtual_terminal

width_status_line

Page 3

(File Formats)

TERMINFO(4)

Can erase overstrikes with a blank

Generic line type (e.g. dialup, switch).

Hardcopy terminal

Cursor is hard to see.

Has a meta key (shift, sets parity bit)

Has extra "status line”

Insert mode distinguishes nulls

Display may be retained above the screen

Display may be retained below the screen

Safe to move while in insert mode

Safe to move in standout modes

Padding won’t work, xon/xoff required

smcup does not reverse rmcup

Pad character doesn’t exist

Terminal overstrikes on hard-copy terminal

Printer won’t echo on screen.

Escape can be used on the status line

Destructive tabs, magic smso char (t1061)

Hazeltine; can’t print tildes(~)

Underline character overstrikes

Terminal uses xon/xoff handshaking

Number of columns in a line

Tabs initially every # spaces.

Number of rows in each label

Number of cols in each label

Number of lines on screen or page

Lines of memory if > lines; 0 means varies

Number blank chars left by smso or rmso

Number of labels on screen (start at 1)

Lowest baud rate where padding needed

Virtual terminal number (UNIX system)

Number of columns in status line

(Printed Dec.1989)

TERMINFO(4)

Strings:

acs_chars

back_tab

bell

carriage_return

change_scroll_region

char_padding

clear_all_tabs

clear_margins

clear_screen

clr_bol

clr_eol

clr_eos

column_address

command_character

cursor_address

cursor_down

cursor_home

cursor_invisible

cursor_left

cursor_mem_address

cursor_normal

cursor_right

cursor_to_ll

cursor_up

cursor_visible

delete_character

delete_line

dis_status_line

down_half_line

ena_acs

enter_alt_charset_mode

enter_am_mode

enter_blink_mode

enter_bold_mode

enter_ca_mode

(Printed Dec.1989)

emdch

cup

cudl

home

civis

cubl

mreup

cnorm

cufl

enacs

smacs

smam

blink

bold

smcup

(File Formats)

TERMINFO(4)

Graphic charset pairs aAbBcC - def=vti00 +

Back tab

Audible signal (bell)

Carriage return (*)

Change to lines #1 thru #2 (vt100) (G)

Like ip but when in replace mode

Clear all tab stops

Clear left and right soft margins

Clear screen and home cursor (*)

Clear to beginning of line, inclusive

Clear to end of line

Clear to end of display («)

Horizontal position absolute (G)

Term. settable cmd char in prototype

Cursor motion to row #1 col #2 (G)

Down one line

Home cursor (if no eup)

Make cursor invisible

Move cursor left one space.

Memory relative cursor addressing (G)

Make cursor appear normal (undo vs/vi)

Non-destructive space (cursor right)

Last line, first column (if no cup)

Upline (cursor up)

Make cursor very visible

Delete character (*)

Delete line (*)

Disable status line

Half-line down (forward 1/2 linefeed)

Enable alternate char set

Start alternate character set

Turn on automatic margins

Turn on blinking

Turn on bold (extra bright) mode

String to begin programs that use cup

v
o
l

10
5

TERMINFO(4)

enter_delete_mode

enter_dim_mode

enter_insert_mode

enter_protected_mode

enter_reverse_mode

enter_secure_mode

enter_standout_mode

enter_underline_mode

enter_xon_mode

erase_chars

exit_alt_charset_mode

exit_am_mode

exit_attribute_mode

exit_ca_mode

exit_delete_mode

exit_insert_mode

exit_standout_mode

exit_underline_mode

exit_xon_mode

flash_screen

form_feed

from_status_line

init_lstring

init_2string

init_3string

init_file

init_prog

insert_character

insert_line

insert_padding

key al

key_a3

key_b2

key_backspace

key_beg

key_btab

Page 5

sgr0

rmcup

rmdc

rmir

rmso

rmul

Tmxon

(File Formats) TERMINFO(4)

Delete mode (enter)

Turn on half-bright mode

Insert mode (enter);

Turn on protected mode

Turn on reverse video mode

Turn on blank mode (chars invisible)

Begin standout mode

Start underscore mode

Turn on xon/xoff handshaking

Erase #1 characters (G)

End alternate character set

Turn off automatic margins

Turn off all attributes

String to end programs that use cup

End delete mode

End insert mode;

End standout mode

End underscore mode

Turn off xon/xoff handshaking

Visible bell (may not move cursor)

Hardcopy terminal page eject (*)

Return from status line

Terminal initialization string

Terminal initialization string

Terminal initialization string

Name of initialization file containing is

Path name of program for init.

Insert character

Add new blank line (*)

Insert pad after character inserted (*)

KEY_A1, 0534, Upper left of keypad

KEY_A3, 0535, Upper right of keypad

KEY_B2, 0536, Center of keypad

KEY BACKSPACE, 0407, Sent by backspace key

KEY _BEG, 0542, Sent by beg(inning) key

KEY_BTAB, 0541, Sent by back-tab key

(Printed Dec.1989)

TERMINFO(4)

key_cl

key_c3

key_cancel

key_catab

key_clear

key_close

key_command

key_copy

key_create

key_ctab

key_de

key_dl

key_down

key_eic

key_end

key_enter

key_eol

key_eos

key_exit

key f0

key_fl

key_f2

key_f8

key_f4

key [5

key f6

key_f7

key_f8

key_f9

key_f10

key fll

key_f12

key_f13

key_fl4

key_f15

key_f16

(Printed Dec.1989)

(File Formats) TERMINFO(4)

KEY _ (C1, 0537, Lower left of keypad

KEY_C3, 0540, Lower right of keypad

KEY CANCEL, 0543, Sent by cancel key

KEY_CATAB, 0526, Sent by clear-all-tabs key

KEY_CLEAR, 0515, Sent by clear-screen or erase key

KEY_CLOSE, 0544, Sent by close key

KEY COMMAND, 0545, Sent by emd (command) key

KEY_COPY, 0546, Sent by copy key

KEY_CREATE, 0547, Sent by create key

KEY_CTAB, 0525, Sent by clear-tab key

KEY_DC, 0512, Sent by delete-character key

KEY_DL, 0510, Sent by delete-line key

KEY_DOWN, 0402, Sent by terminal down-arrow key

KEY_EIC, 0514, Sent by rmir or smir in insert mode

KEY_END, 0550, Sent by end key

KEY_ENTER, 0527, Sent by enter/send key

KEY_EOL, 0517, Sent by clear-to-end-of-line key

KEY_EOS, 0516, Sent by clear-to-end-of-screen key

KEY_EXIT, 0551, Sent by exit key

KEY_F(0), 0410, Sent by function key f0

KEY_F(1), 0411, Sent by function key fl

KEY_F(2), 0412, Sent by function key f2

KEY_F(3), 0413, Sent by function key £8

KEY_F(4), 0414, Sent by function key £4

KEY_F(5), 0415, Sent by function key (5

KEY_F(6), 0416, Sent by function key f6

KEY_F(7), 0417, Sent by function key {7

KEY_F(8), 0420, Sent by function key [8

KEY_F(9), 0421, Sent by function key f9

KEY_F(10), 0422, Sent by function key f10

KEY_F(11), 0423, Sent by function key fll

KEY _F(12), 0424, Sent by function key f12

KEY _F(13), 0425, Sent by function key f13

KEY_F(14), 0426, Sent by function key f14

KEY_F(15), 0427, Sent by function key f15

KEY_F(16), 0430, Sent by function key f16

Page 6

9
0
1

10
7

TERMINFO(4)

key_f17

key_f18

key_f19

key_f20

key_f21

key_f22

key_f23

key_f24

key_f25

key_f26

key_f27

key_f28

key_f29

key_f30

key_f31

key_f32

key_f33

key_f34

key_f35

key_f86

key {37

key_£38

key_f39

key_f40

key _f41

key _f42

key_f43

key _f44

key_f45

key_f46

key_f47

key_f48

key f49

key_f50

key_f51

key_f52

Page 7

(File Formats) TERMINFO(4)

KEY_F(17), 0431, Sent by function key f17

KEY_F(18), 0482, Sent by function key f18

KEY_F(19), 0433, Sent by function key f19

KEY_F(20), 0434, Sent by function key f20

KEY_F(21), 0435, Sent by function key f21

KEY_F(22), 0436, Sent by function key {22

KEY_F(23), 0437, Sent by function key f23

KEY_F(24), 0440, Sent by function key f24

KEY_F(25), 0441, Sent by function key f25

KEY_F(26), 0442, Sent by function key f26

KEY_F(27), 04438, Sent by function key (27

KEY_F(28), 0444, Sent by function key £28

KEY_F(29), 0445, Sent by function key f29

KEY_F(30), 0446, Sent by function key f30

KEY_F(31), 0447, Sent by function key f31

KEY_F(32), 0450, Sent by function key f32

KEY_F(13), 0451, Sent by function key f13

KEY_F(34), 0452, Sent by function key f34

KEY_F(35), 0458, Sent by function key £35

KEY_F(86), 0454, Sent by function key {36

KEY_F(87), 0455, Sent by function key [37

KEY_F(38), 0456, Sent by function key [38

KEY_F(89), 0457, Sent by function key [39

KEY_F(40), 0460, Sent by function key f40

KEY_F(41), 0461, Sent by function key f41

KEY_F(42), 0462, Sent by function key f42

KEY_F(43), 0463, Sent by function key f43

KEY_F(44), 0464, Sent by function key f44

KEY_F(45), 0465, Sent by function key £45

KEY_F(46), 0466, Sent by function key £46

KEY_F(47), 0467, Sent by function key [47

KEY_F(48), 0470, Sent by function key £48

KEY_F(49), 0471, Sent by function key f49

KEY_F(50), 0472, Sent by function key f50

KEY_F(51), 0473, Sent by function key fo1

KEY_F(52), 0474, Sent by function key [52

(Printed Dec.1989)

TERMINFO(4)

key_f53

key_f54

key_f55

key_f56

key_f57

key_f58

key_f59

key_f60

key_f61

key_f62

key_f63

key_find

key_help

key_home

key_ic

key_il

key_left

key_ll

key_mark

key_message

key_move

key_next

key_npage

key_open

key_options

key_ppage

key_previous

key_print

key_redo

key_reference

key_refresh

key replace

key_restart

key_resume

key_right

key_save

(Printed Dec.1989)

kfind

khlip

khome

kich1

kill

keubl

kil

kmrk

kmsg

kmov

knxt

knp

kopn

kopt

kpp

kprv

kprt

krdo

kref

krfr

krpl

krst

kres

keufl

ksav

(File Formats) TERMINFO(4)

KEY_F(53), 0475, Sent by function key [53

KEY_F(54), 0476, Sent by function key [54

KEY_F(55), 0477, Sent by function key [55

KEY_F(56), 0500, Sent by function key f56

KEY_F(57), 0501, Sent by function key f57

KEY_F(58), 0502, Sent by function key £68

KEY F(59), 0503, Sent by function key (59

KEY_F(60), 0504, Sent by function key f60

KEY_F(61), 0505, Sent by function key f61

KEY_F(62), 0506, Sent by function key [62

KEY_F(63), 0507, Sent by function key f63

KEY FIND, 0552, Sent by find key

KEY_HELP, 0553, Sent by help key

KEY HOME, 0406, Sent by home key

KEY_IC, 0513, Sent by ins-char/enter ins-mode key

KEY_IL, 0511, Sent by insert-line key

KEY_LEFT, 0404, Sent by terminal left-arrow key

KEY_LL, 0533, Sent by home-down key

KEY_ MARK, 0554, Sent by mark key

KEY_ MESSAGE, 0555, Sent by message key

KEY_MOVE, 0556, Sent by move key

KEY _ NEXT, 0557, Sent by next-object key

KEY_NPAGE, 0522, Sent by next-page key

KEY_OPEN, 0560, Sent by open key

KEY_OPTIONS, 0561, Sent by options key

KEY_PPAGE, 0523, Sent by previous-page key

KEY PREVIOUS, 0562, Sent by previous-object key

KEY PRINT, 0532, Sent by print or copy key

KEY_REDO, 0563, Sent by redo key

KEY_REFERENCE, 0564, Sent by ref(erence) key

KEY_REFRESH, 0565, Sent by refresh key

KEY REPLACE, 0566, Sent by replace key

KEY_RESTART, 0567, Sent by restart key

KEY_ RESUME, 0570, Sent by resume key

KEY_RIGHT, 0405, Sent by terminal right-arrow key

KEY_SAVE, 0571, Sent by save key

Page 8

8
0
L

u
y

TERMINFO(4)

key_sbeg

key_scancel

key_scommand

key_scopy

key_screate

key_sde

key_sdl

key_select

key_send

key_seol

key_sexit

key_sf

key_sfind

key_shelp

key_shome

key_sic

key_sleft

key_smessage

key_smove

key_snext

key_soptions

key_sprevious

key_sprint

key_sr

key_sredo

key_sreplace

key_sright

key_srsume

key_ssave

key_ssuspend

key_stab

key_sundo

key_suspend

key_undo

key_up

keypad_local

Page 9

(File Formats) TERMINFO(4)

KEY_SBEG, 0572, Sent by shifted beginning key

KEY_SCANCEL, 0573, Sent by shifted cancel key

KEY SCOMMAND, 0574, Sent by shifted command key

KEY_SCOPY, 0575, Sent by shifted copy key

KEY SCREATE, 0576, Sent by shifted create key

KEY_SDC, 0577, Sent by shifted delete-char key

KEY_SDL, 0600, Sent by shifted delete-line key

KEY SELECT, 0601, Sent by select key

KEY_ SEND, 0602, Sent by shifted end key

KEY _SEOL, 0603, Sent by shifted clear-line key

KEY_SEXIT, 0604, Sent by shifted exit key

KEY_SF, 0520, Sent by scroll-forward/down key

KEY_SFIND, 0605, Sent by shifted find key

KEY _SHELP, 0606, Sent by shifted help key

KEY_SHOME, 0607, Sent by shifted home key

KEY SIC, 0610, Sent by shifted input key

KEY_SLEFT, 0611, Sent by shifted left-arrow key

KEY SMESSAGE, 0612, Sent by shifted message key

KEY_SMOVE, 0613, Sent by shifted move key

KEY _SNEXT, 0614, Sent by shifted next key

KEY_SOPTIONS, 0615, Sent by shifted options key

KEY SPREVIOUS, 0616, Sent by shifted prev key

KEY_SPRINT, 0617, Sent by shifted print key

KEY_SR, 0521, Sent by scroll-backward/up key

KEY SREDO, 0620, Sent by shifted redo key

KEY_SREPLACE, 0621, Sent by shifted replace key

KEY_SRIGHT, 0622, Sent by shifted right-arrow key

KEY _SRSUME, 0623, Sent by shifted resume key

KEY_SSAVE, 0624, Sent by shifted save key

KEY_SSUSPEND, 0625, Sent by shifted suspend key

KEY_STAB, 0524, Sent by set-tab key

KEY SUNDO, 0626, Sent by shifted undo key

KEY_ SUSPEND, 0627, Sent by suspend key

KEY_UNDO, 0630, Sent by undo key

KEY_UP, 0403, Sent by terminal up-arrow key

Out of “keypad-transmit’’ mode

(Printed Dec.1989)

——f ct |
TERMINFO(4)

keypad_xmit

lab_f0

lab_fl

lab_f2

lab_f3

lab_f4

lab_f5

lab_f6

lab_f7

lab_f8

lab_f9

lab_f10

label_off

label_on

meta_off

meta_on

newline

pad_char

parm_dch

parm_delete_line

parm_down_cursor

parm_ich

parm_index

parm_insert_line

parm_left_cursor

parm_right_cursor

parm_rindex

parm_up_cursor

pkey_key

pkey_local

pkey_xmit

plab_norm

print_screen

prtr_non

prtr_off

prtr_on

(Printed Dec.1989)

(File Formats)

|

TERMINFO(4)

Put terminal in “‘keypad-transmit’’ mode

Labels on function key f0 if not f0

Labels on function key fl if not fl

Labels on function key f2 if not f2

Labels on function key f3 if not £8

Labels on function key f4 if not f4

Labels on function key f5 if not f5

Labels on function key f6 if not f6

Labels on function key f7 if not f7

Labels on function key f8 if not [8

Labels on function key f9 if not f9

Labels on function key f10 if not f10

Turn off soft labels

Turn on soft labels

Turn off ’meta mode”

Turn on "meta mode” (8th bit)

Newline (behaves like er followed by If)

Pad character (rather than null)

Delete #1 chars (G +)

Delete #1 lines (G *)

Move cursor down #1 lines. (G *)

Insert #1 blank chars (G *)

Scroll forward #1 lines. (G)

Add #1 new blank lines (G *)

Move cursor left #1 spaces (G)

Move cursor right #1 spaces. (G *)

Scroll backward #1 lines. (G)

Move cursor up #1 lines. (G *)

Prog funct key #1 to type string #2

Prog funct key #1 to execute string #2

Prog funct key #1 to xmit string #2

Prog label #1 to show string #2

Print contents of the screen

Turn on the printer for #1 bytes

Turn off the printer

Turn on the printer

Page 10

O
l

11

TERMINFO(4)

repeat_char

req_for_input

reset_Istring

reset_2string

reset_3string

reset_file

restore_cursor

row_address

save_cursor

scroll_forward

scroll_reverse

set_attributes

set_left_margin

set_right_margin

set_tab

set_window

tab

to_status_line

underline_char

up_half line

xoff_character

xon_character

SAMPLE ENTRY

(File Formats)

TERMINFO(4)

Repeat char #1 #2 times (G *)

Send next input char (for ptys)

Reset terminal completely to sane modes

Reset terminal completely to sane modes

Reset terminal completely to sane modes

Name of file containing reset string

Restore cursor to position of last sc

Vertical position absolute (G)

Save cursor position.

Scroll text up

Scroll text down

Define the video attributes #1-#9 (G)

Set soft left margin

Set soft right margin

Set. a tab in all rows, current column.

Current window is lines #1-#2 cols #3-#4 (G)

Tab to next 8 space hardware tab stop.

Go to status line, col #1 (G)

Underscore one char and move past it

Half-line up (reverse 1/2 linefeed)

X-off character

X-on character

The following entry, which describes the Concept —100 termi-
nal, is among the more complex entries in the terminfo file as
of this writing.

Page 11 (Printed Dec.1989)

TERMINFO(4) (File Formats) TERMINFO(4)

concept100 | c100| concept | c104 | c100-4p| concept 100,
am, db, eo, in, mir, ul, xenl,

cols#80, lines#24, pb#9600, vt#8,

bel="G, blank=\EH, blink=\EC, clear="L$<2%*>,

cnorm=\Ew, cr=“M$<9>, cubl=*H, cudl="J,

cufl=\E=, cup=\Ea%p1%' '%+%c%p2%' ‘'%+%c,
cuul=\E;, cvvis=\EW, dch1=\E°AS<16*>, dim=\EE,
dl1=\E°BS<3*>, ed=\E°C$<16*>, el=\E°US<16>,
flash=\Ek$<20>\EK, ht=\t$<8>, ill1=\E°R$<3*#>,
ind="J, .ind="J$<9>, ip=$<16*«>,

is2=\EU\Ef\E7\E5\E8\E1\ENH\EK\E\0\Eo&\0\Eo\47\E,
kbs=*h, kcub1=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;,
k£1=\E5, k£2=\E6, k£3=\E7, khome=\E?,
prot=\EI, rep=\Er%pl%c%p2%’ '%+%c$<.2 «>,
rev=\ED, rmcup=\Ev\s\s\s\s$<6>\Ep\r\n,
rmir=\E\0, rmkx=\Ex, rmso=\Ed\Ee, rmul=\Eg,
rmul=\Eg, sgr0=\EN\0, smcup=\EU\Ev\s\s8p\Ep\r,
smir=\E°P, smkx=\EX, smso=\EE\ED, smul=\EG,

Entries may continue onto multiple lines by placing white

space at the beginning of each line except the first. Lines
beginning with ‘‘#” are taken as comment lines. Capabilities
in terminfo are of three types: boolean capabilities which
indicate that the terminal has some particular feature,

numeric capabilities giving the size of the terminal or particu-
lar features, and string capabilities, which give a sequence
which can be used to perform particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the
Concept has automatic margins (i.e., an automatic return and
linefeed when the end of a line is reached) is indicated by the

capability am. Hence the description of the Concept includes
am. Numeric capabilities are followed by the character ‘#’
and then the value. Thus cols, which indicates the number
of columns the terminal has, gives the value 80 for the Con-
cept. The value may be specified in decimal, octal or hexade-
cimal using normal C conventions.

(Printed Dec.1989) Page 12

ra
ga

11
3

TERMINFO(4) (File Formats) TERMINFO(4)

Finally, string-valued capabilities, such as el (clear to end of
line sequence) are given by the two- to five-character cap-
name, an ‘=’, and then a string ending at the next following
comma. A delay in milliseconds may appear anywhere in
such a capability, enclosed in $<..> brackets, as in
el=\EK$<3>, and padding characters are supplied by
tputs() (see curses(3X)) to provide this delay. The delay can
be either a number, e.g., 20, or a number followed by an ‘ *’

(ie., 3#), a ‘/’ e., 5/), or both (.e., 10 * /). A ‘*’ indicates
that the padding required is proportional to the number of
lines affected by the operation, and the amount given is the
per-affected-unit padding required. (In the case of insert
character, the factor is still the number of lines affected.

This is always one unless the terminal has im and the
software uses it.) When a ‘*’ is specified, it is sometimes
useful to give a delay of the form 3.5 to specify a delay per
unit to tenths of milliseconds. (Only one decimal place is
allowed.) A ‘/’ indicates that the padding is mandatory. Oth-
erwise, if the terminal has xon defined, the padding informa-
tion is advisory and will only be used for cost estimates or
when the terminal is in raw mode. Mandatory padding will
be transmitted regardless of the setting of xon.

A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \E and \e map to an ESCAPE character, “x maps to a
control—«x for any appropriate x, and the sequences \n, \I, \r,
\t, \b, \f, and \s give a newline, linefeed, return, tab, back-
space, formfeed, and space, respectively. Other escapes
include: * for caret (*); \\ for backslash (\); \, for comma (,);
\: for colon (:); and \O for null. (\O will actually produce
\200, which does not terminate a string but behaves as a null
character on most terminals.) Finally, characters may be
given as three octal digits after a backslash (e.g., \123).

Sometimes individual capabilities must be commented out.
To do this, put a period before the capability name. For
example, see the second ind in the example above. Note that
capabilities are defined in a left-to-right order and, therefore,

Page 13 (Printed Dec.1989)

TERMINFO(4) (File Formats) TERMINFO(4)

a prior definition will override a later definition.

Preparing Descriptions
The most effective way to prepare a terminal description is by

imitating the description of a similar terminal in terminfo and

to build up a description gradually, using partial descriptions

with vi(1) to check that they are correct. Be aware that a

very unusual terminal may expose deficiencies in the ability

of the terminfo file to describe it or the inability of vi(1) to

work with that terminal. To test a new terminal description,

set the environment variable TERMINFO to a pathname of a

directory containing the compiled description you are working

on and programs will look there rather than in

/usr/lib/terminfo. To get the padding for insert-line correct

Gf the terminal manufacturer did not document it) a severe

test is to comment out xon, edit a large file at 9600 baud

with vi(1), delete 16 or so lines from the middle of the screen,

then hit the u key several times quickly. If the display is cor-

rupted, more padding is usually needed. A similar test can be

used for insert-character.

Basic Capabilities
The number of columns on each line for the terminal is given

by the cols numeric capability. If the terminal has a screen,

then the number of lines on the screen is given by the lines

capability. If the terminal wraps around to the beginning of

the next line when it reaches the right margin, then it should

have the am capability. If the terminal can clear its screen,

leaving the cursor in the home position, then this is given by

the clear string capability. If the terminal overstrikes

(rather than clearing a position when a character is struck

over) then it should have the os capability. If the terminal is

a printing terminal, with no soft copy unit, give it both he

and os. (os applies to storage scope terminals, such as Tek-

tronix 4010 series, as well as hard-copy and APL terminals.)

If there is a code to move the cursor to the left edge of the

current row, give this as er. (Normally this will be carriage

return, control M.) If there is a code to produce an audible

signal (bell, beep, etc) give this as bel. If the terminal uses

(Printed Dec.1989) Page 14

PL
L

11
5

TERMINFO(4) (File Formats) TERMINFO(4)

the xon-xoff flow-control protocol, like most terminals, specify
xon.

If there is a code to move the cursor one position to the left
(such as backspace) that capability should be given as cubl.
Similarly, codes to move to the right, up, and down should be
given as cufl, cuul, and cudl. These local cursor motions

should not alter the text they pass over; for example, you
would not normally: use “‘cufl=\s” because the space would
erase the character moved over.

A very important point here is that the local cursor motions
encoded in ferminfo are undefined at the left and top edges of
a screen terminal. Programs should never attempi to back-
space around the left edge, unless bw is given, and should
never attempt to go up locally off the top. In order to scroll
text up, a program will go to the bottom left corner of the
screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of
the screen and sends the ri (reverse index) string. The
strings ind and ri are undefined when not on their respective
corners of the screen.

Parameterized versions of the scrolling sequences are indn
and rin which have the same semantics as ind and ri except
that they take one parameter, and scroll that many lines.
They are also undefined except at the appropriate edge of the
screen.

The am capability tells whether the cursor sticks at the right
edge of the screen when text is output, but this does not
necessarily apply to a cufl from the last column. The only
local motion which is defined from the left edge is if bw is
given, then a cubl from the left edge will move to the right
edge of the previous row. If bw is not given, the effect is
undefined. This is useful for drawing a box around the edge
of the screen, for example. If the terminal has switch select-
able automatic margins, the terminfo file usually assumes
that this is on; ie., am. If the terminal has a command
which moves to the first column of the next line, that

Page 15 (Printed Dec.1989)

 ne
TERMINFO(4) (File Formats) TERMINFO(4)

command can be given as nel (newline). It does not matter if
the command clears the remainder of the current line, so if

the terminal has no er and If it may still be possible to craft
a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen ter-
minals. Thus the model 33 teletype is described as

33 | tty33 | tty | model 33 teletype,

bel="G, cols#72, cr="M, cudl="J, he, ind="J, os,

while the Lear Siegler ADM —3 is described as

adm3 | 3 | 1si adm3,
am, bel=*G, clear="Z, cols#80, cr="M, cubl="H,

cudl=*J, ind="J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in
the terminal are described by a parameterized string capabil-
ity, with printf(8S)-like escapes (%x) in it. For example, to
address the cursor, the cup capability is given, using two

parameters: the row and column to address to. (Rows and

columns are numbered from zero and refer to the physical
screen visible to the user, not to any unseen memory.) If the

terminal has memory relative cursor addressing, that can be

indicated by mrcup.

The parameter mechanism uses a stack and special % codes

to manipulate it in the manner of a Reverse Polish Notation

(postfix) calculator. Typically a sequence will push one of the

parameters onto the stack and then print it in some format.

Often more complex operations are necessary. Binary opera-

tions are in postfix form with the operands in the usual order.
That is, to get x—5 one would use %gx%{5}% —.

The % encodings have the following meanings:

%% outputs ‘%’

%IL:]flags l[widthL precision]|]{doxXs]
as in printf, flags are [— +#] and space

(Printed Dec.1989) Page 16

Ol
t

i
e

TERMINFO(4) (File Formats) TERMINFO(4)

%e print pop() gives %c

%pl1—9] push jth parm

%Pla—z] set variable [a—z] to pop()

%gla—z] get variable [a—z] and push it

q'e’ push char constant c

%{nn} push decimal constant nn

%l push strlen(pop())

%+ %— %* %/ %m
arithmetic (%m is mod): push(pop() op pop())

%& %| %* bit operations: push(pop() op pop())

%= %> %<\logical operations: push(pop() op pop()

%A%O logical operations: and, or

Jo! Yo" unary operations: push(op pop())

%i (for ANSI terminals)
add 1 to first parm, if one parm present,
or first two parms, if more than one parm present

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional;

else-if’s are possible ala Algol 68:
%? c, Mtb, Mec %t by %e Cy %t by we c, Zot b,
%eb,%;
c; are conditions, b; are bodies.

If the ““—” flag is used with ‘‘%[doxXs]’’, then a colon (:)
must be placed between the ““%’’ and the ‘‘—” to differentiate
the flag from the binary ‘““%—”’ operator, .e.g ‘“%:—16.16s”’.

Consider the Hewlett-Packard 2645, which, to get to row 3

and column 12, needs to be sent \E&al2c03Y padded for 6
milliseconds. Note that the order of the rows and columns is
inverted here, and that the row and column are zero-padded
as two digits. Thus its cup capability is
“cup = \E&a%p2%2.2dce%p1%2.2dY$ <6>”’.

Page 17 (Printed Dec.1989)

 —j ke ss
TERMINFO(4) (File Formats) TERMINFO(4)

The Micro-Term ACT-IV needs the current row and column

sent preceded by a “T, with the row and column simply

encoded in binary, “cup="*T%p1%c%p2%c”. Terminals

which use “‘%c’? need to be able to backspace the cursor

(cub1), and to move the cursor up one line on the screen

(euul). This is necessary because it is not always safe to

transmit \n, “D, and \r, as the system may change or discard

them. (The library routines dealing with terminfo set tty

modes so that tabs are never expanded, so \t is safe to send.

This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and

column offset by a blank character, thus

“cup =\E = %p1%’\s'% + Yoc%p2h'\s'%+ he”. After sending

‘“\E=”, this pushes the first parameter, pushes the ASCII

value for a space (32), adds them (pushing the sum on the

stack in place of the two previous values), and outputs that

value as a character. Then the same is done for the second

parameter. More complex arithmetic is possible using the

stack.

Cursor Motions
If the terminal has a fast way to home the cursor (to very

upper left corner of screen) then this can be given as home,

similarly a fast way of getting to the lower left-hand corner

can be given as Il; this may involve going up with cuul from

the home position, but a program should never do this itself

(unless Il does) because it can make no assumption about the

effect of moving up from the home position. Note that the

home position is the same as addressing to (0,0): to the top

left corner of the screen, not of memory. (Thus, the \EH

sequence on Hewlett-Packard terminals cannot be used for

home without losing some of the other features on the termi-

nal.)

If the terminal has row or column absolute-cursor addressing,

these can be given as single parameter capabilities hpa (hor-

izontal position absolute) and vpa (vertical position absolute).

Sometimes these are shorter than the more general two-

parameter sequence (as with the Hewlett-Packard 2645) and

(Printed Dec.1989) Page 18

Si
t

11
9

TERMINFO(4) (File Formats) TERMINFO(4)

can be used in preference to cup. If there are parameterized
local motions (e.g., move n spaces to the right) these can be
given as cud, cub, cuf, and cuu with a single parameter

indicating how many spaces to move. These are primarily
useful if the terminal does not have cup, such as the Tek-
tronix 4025.

Area Clears
If the terminal can clear from the current position to the end
of the line, leaving the cursor where it is, this should be given
as el. If the terminal can clear from the beginning of the line
to the current position inclusive, leaving the cursor where it
is, this should be given as ell. If the terminal can clear from
the current position to the end of the display, then this
should be given as ed. ed is only defined from the first
column of a line. (Thus, it can be simulated by a request to
delete a large number of lines, if a true ed is not available.)

Insert/delete line
If the terminal can open a new blank line before the line
where the cursor is, this should be given as ill; this is done

only from the first position of a line. The cursor must then
appear on the newly blank line. If the terminal can delete
the line which the cursor is on, then this should be given as
dll; this is done only from the first position on the line to be
deleted. Versions of ill and dll which take a single parame-
ter and insert or delete that many lines can be given as il and

dl.

If the terminal has a settable destructive scrolling region (like
the VT100) the command to set this can be described with the
esr capability, which takes two parameters: the top and bot-
tom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the
effect of insert or delete line using this command -- the sc
and re (save and restore cursor) commands are also useful.
Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true
insert/delete line, and is often faster even on terminals with
those features.

Page 19 (Printed Dec.1989)

 SS ee
TERMINFO(4) (File Formats) TERMINFO(4)

To determine whether a terminal has destructive scrolling
regions or non-destructive scrolling regions, create a scrolling
region in the middle of the screen, place data on the bottom
line of the scrolling region, move the cursor to the top line of

the scrolling region, and do a reverse index (ri) followed by a
delete line (dl) or index (ind). If the data that was origi-
nally on the bottom line of the scrolling region was restored
into the scrolling region by the dll or ind, then the terminal
has non-destructive scrolling regions. Otherwise, it has des-
tructive scrolling regions. Do not specify esr if the terminal
has non-destructive scrolling regions, unless ind, ri, indn,

rin, dl, and dll all simulate destructive scrolling.

If the terminal has the ability to define a window as part of
memory, which all commands affect, it should be given as the
parameterized string wind. The four parameters are the
starting and ending lines in memory and the starting and
ending columns in memory, in that order.

If the terminal can retain display memory above, then the da
capability should be given; if display memory can be retained
below, then db should be given. These indicate that deleting
a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down

non-blank lines.

Insert /Delete Character
There are two basic kinds of intelligent terminals with
respect to insert/delete character operations which can be
described using terminfo. The most common insert/delete
character operations affect only the characters on the current
line and shift characters off the end of the line rigidly. Other
terminals, such as the Concept 100 and the Perkin Elmer
Owl, make a distinction between typed and untyped blanks
on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or
expanded to two untyped blanks. You can determine the kind
of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type “abe def’’ using
local cursor motions (not spaces) between the abe and the

(Printed Dec.1989) Page 20

O
2
L

12
1

TERMINFO(4) (File Formats) TERMINFO(4)

def. Then position the cursor before the abe and put the
terminal in insert mode. If typing characters causes the rest
of the line to shift rigidly and characters to fall off the end,
then your terminal does not distinguish between blanks and
untyped positions. If the abe shifts over to the def which
then move together around the end of the current line and
onto the next as you insert, you have the second type of ter-
minal, and should give the capability in, which stands for
‘Gnsert null’. While these are two logically separate attri-
butes (one line versus multiline insert mode, and special
treatment of untyped spaces) we have seen no terminals
whose insert mode cannot be described with the single attri-
bute.

terminfo can describe both terminals which have an insert
mode and terminals which send a simple sequence to open a
blank position on the current line. Give as smir the
sequence to get into insert mode. Give as rmir the sequence
to leave insert mode. Now give as ichl any sequence needed
to be sent just before sending the character to be inserted.
Most terminals with a true insert mode will not give ich1;
terminals which send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is
usually preferable to ich1. Do not give both unless the termi-
nal actually requires both to be used in combination.) If
post-insert padding is needed, give this as a number of mil-
liseconds padding in ip (a string option). Any other sequence
which may need to be sent after an insert of a single charac-
ter may also be given in ip. If your terminal needs both to be
placed into an ‘insert mode’ and a special code to precede
each inserted character, then both smir/rmir and ich] can
be given, and both will be used. The ich capability, with one
parameter, n, will repeat the effects of ich1 n times.

If padding is necessary between characters typed while not in
insert mode, give this as a number of milliseconds padding in
rmp.

Page 21 (Printed Dec.1989)

 Se |
TERMINFO(4) (File Formats) TERMINFO(4)

It is occasionally necessary to move around while in insert
mode to delete characters on the same line (e.g., if there is a
tab after the insertion position). If your terminal allows
motion while in insert mode you can give the capability mir
to speed up inserting in this case. Omitting mir will affect
only speed. Some terminals (notably Datamedia’s) must not
have mir because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch
with one parameter, 7, to delete n characters, and delete

mode by giving smde and rmdc to enter and exit delete
mode (any mode the terminal needs to be placed in for dch1
to work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as ech with
one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes,
these can be represented in a number of different ways. You
should choose one display form as standout mode (see
curses(3X)), representing a good, high contrast, easy-on-the-

eyes, format for highlighting error messages and other atten-
tion getters. (If you have a choice, reverse-video plus half-
bright is good, or reverse-video alone; however, different
users have different preferences on different terminals.) The
sequences to enter and exit standout mode are given as smso
and rmso, respectively. If the code to change into or out of
standout mode leaves one or even two blank spaces on the
screen, as the TVI 912 and Teleray 1061 do, then xme should
be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given
as smul and rmul respectively. If the terminal has a code to
underline the current character and move the cursor one
space to the right, such as the Micro-Term MIME, this can be

given as uc.

Other capabilities to enter various highlighting modes include
blink (blinking), bold (bold or extra-bright), dim (dim or

(Printed Dec.1989) Page 22

ed
t

12
3

TERMINFO(4) (File Formats) TERMINFO(4)

half-bright), invis (blanking or invisible text), prot (pro-
tected), rev (reverse-video), sgrO (turn off all attribute

modes), smacs (enter alternate-character-set mode), and

rmacs (exit alternate-character-set mode). Turning on any
of these modes singly may or may not turn off other modes.
If a command is necessary before alternate character set
mode is entered, give the sequence in enacs (enable
alternate-character-set mode).

If there is a sequence to set arbitrary combinations of modes,
this should be given as sgr (set attributes), taking nine
parameters. Each parameter is either 0 or non-zero, as the

corresponding attribute is on or off. The nine parameters
are, in order: standout, underline, reverse, blink, dim, bold,
blank, protect, alternate character set. Not all modes need be

supported by sgr, only those for which corresponding
separate attribute commands exist. (See the example at the
end of this section.)

Terminals with the ‘‘magic cookie’ glitch (xme) deposit spe-
cial “‘cookies’’ when they receive mode-setting sequences,
which affect the display algorithm rather than having extra
bits for each character. Some terminals, such as the

Hewlett-Packard 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed.
Programs using standout mode should exit standout mode
before moving the cursor or sending a newline, unless the
msgr capability, asserting that it is safe to move in standout
mode, is present.

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement), then this can be given as
flash; it must not move the cursor. A good flash can be done
by changing the screen into reverse video, pad for 200 ms,
then return the screen to normal video.

If the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example, a

non-blinking underline into an easier to find block or blinking
underline) give this sequence as cvvis. The boolean chts

Page 23 (Printed Dec.1989)

 Pe
TERMINFO(4) (File Formats) TERMINFO(4)

should also be given. If there is a way to make the cursor
completely invisible, give that as civis. The capability
cnorm should be given which undoes the effects of either of

these modes.

If the terminal needs to be in a special mode when running a
program that uses these capabilities, the codes to enter and
exit this mode can be given as smcup and rmcup. This
arises, for example, from terminals like the Concept with
more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative
cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.
This is also used for the Tektronix 4025, where smcup sets
the command character to be the one used by terminfo. If

the smeup sequence will not restore the screen after an
rmcup sequence is output (to the state prior to outputting
rmcup), specify nrrme.

If your terminal generates underlined characters by using the

underline character (with no special codes needed) even

though it does not otherwise overstrike characters, then you
should give the capability ul. For terminals where a charac-
ter overstriking another leaves both characters on the screen,
give the capability os. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Example of highlighting: assume that the terminal under
question needs the following escape sequences to turn on

various modes.

tparm attribute escape sequence

parameter

none \E[Om
pl standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m

(Printed Dec.1989) Page 24

v
e
l

12
5

TERMINFO(4) (File Formats) TERMINFO(4)

p4 blink \E[0;5m

pd dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
po altcharset *O (off) *N(on)

Note that each escape sequence requires a 0 to turn off other
modes before turning on its own mode. Also note that, as
suggested above, standout is set up to be the combination of
reverse and dim. Also, since this terminal has no bold mode,

bold is set up as the combination of reverse and underline. In
addition, to allow combinations, such as underline + blink, the

sequence to use would be \E[0;3;5m. The terminal doesn’t
have protect mode, either, but that cannot be simulated in

any way, so p8 is ignored. The altcharset mode is different in
that it is either “O or “N depending on whether it is off or
on. If all modes were to be turned on, the sequence would be
\E[0;3;4;5;7;8m“N.

Now look at when different sequences are output. For exam-
ple, ;3 is output when either p2 or p6 is true, that is, if
either underline or bold modes are turned on. Writing out
the above sequences, along with their dependencies, gives the
following:

sequence when to output terminfo translation

\E[O always \E[O
33 if p2 or p6 % 2? Mp2Mpb% | %t;3%;
4 if pl or p3 or p6 %?%p1%p3% | Mpb% | %t;4%;
35 if p4 1? Mps%Mt;5%;
37 if pl or pd % 2 %p1Mp5% | Mt; 7%;
38 if p7 M2? DpT%t;8%;

always m
“N or *O if p9 *N, else *O 1? MpIbt’* N%e*O%;

Page 25 (Printed Dec.1989)

 LL —_—_—_——————
TERMINFO(4) (File Formats) TERMINFO(4)

Putting this all together into the sgr sequence gives:

sgr ~\E[0%?%p2%p6% | %t;3%;%?%p1%p3% | %p6%
| %t34%;%? Mp5 %t;5%;%? Mp1 %p5%
| %t;7%;%? Mp7 %t;8%;m%? MpI*t” N %e*O%;,

Keypad
If the terminal has a keypad that transmits codes when the
keys are pressed, this information can be given. Note that it
is not possible to handle terminals where the keypad only
works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as smkx and
rmkx. Otherwise the keypad is assumed to always transmit.

The codes sent by the left arrow, right arrow, up arrow, down

arrow, and home keys can be given as keubl, keufl, kcuul,
keud1, and khome respectively. If there are function keys
such as £0, fl, ..., £63, the codes they send can be given as kf0,
kfl, ..., kf63. If the first 11 keys have labels other than the
default f0 through f10, the labels can be given as 1f0, Ifl, ...,
If10. The codes transmitted by certain other special keys can
be given: kll (home down), kbs (backspace), ktbe (clear all
tabs), ketab (clear the tab stop in this column), kelr (clear
screen or erase key), kdch1 (delete character), kdl (delete

line), krmir (exit insert mode), kel (clear to end of line), ked
(clear to end of screen), kichl (insert character or enter
insert mode), kill (insert line), knp (next page), kpp (previ-
ous page), kind (scroll forward/down), kri (scroll
backward/up), khts (set a tab stop in this column). In addi-
tion, if the keypad has a 3 by 3 array of keys including the
four arrow keys, the other five keys can be given as kal, ka3,

kb2, kel, and kce3. These keys are useful when the effects of
a 83 by 3 directional pad are needed. Further keys are defined
above in the capabilities list.

Strings to program function keys can be given as pfkey,
pfloc, and pfx. A string to program their soft-screen labels
can be given as pln. Each of these strings takes two parame-
ters: the function key number to program (from 0 to 10) and

(Printed Dec.1989) Page 26

9
1

12
7

TERMINFO(4) (File Formats) TERMINFO(4)

the string to program it with. Function key numbers out of
this range may program undefined keys in a terminal-
dependent manner. The difference between the capabilities is
that pflkey causes pressing the given key to be the same as
the user typing the given string; pfloc causes the string to be
executed by the terminal in local mode; and pfx causes the
string to be transmitted to the computer. The capabilities
nlab, lw and lh define how many soft labels there are and
their width and height. If there are commands to turn the
labels on and off, give them in smln and rmln. smln is nor-
mally output after one or more pln sequences to make sure
that the change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, the command. to advance

to the next tab stop can be given as ht (usually control I). A
“backtab’’ command which moves leftward to the next tab
stop can be given as cbt. By convention, if the teletype
modes indicate that tabs are being expanded by the computer
rather than being sent to the terminal, programs should not
use ht or cbt even if they are present, since the user may not
have the tab stops properly set. If the terminal has hardware
tabs which are initially set every n spaces when the terminal
is powered up, the numeric parameter it is given, showing
the number of spaces the tabs are set to. This is normally
used by tput init (see tput(1)) to determine whether to set
the mode for hardware tab expansion and whether to set the
tab stops. If the terminal has tab stops that can be saved in
nonvolatile memory, the terminfo description can assume that
they are properly set. If there are commands to set and clear
tab stops, they can be given as the (clear all tab stops) and
hts (set a tab stop in the current column of every row).

Other capabilities include: isl, is2, and is3, initialization

strings for the terminal; iprog, the path name of a program
to be run to initialize the terminal; and if, the name of a file
containing long initialization strings. These strings are
expected to set the terminal into modes consistent with the
rest of the terminfo description. They must be sent to the

Page 27 (Printed Dec.1989)

 cal aimae
TERMINFO(4) (File Formats) TERMINFO(4)

terminal each time the user logs in and be output in the fol-
lowing order: run the program iprog; output isl; output is2;
set the margins using mgc, smgl and smgr; set the tabs
using tbe and hts; print the file if; and finally output is3.
This is usually done using the init option of fput(1); see
profile (4).

Most initialization is done with is2. Special terminal modes
can be set up without duplicating strings by putting the com-
mon sequences in is2 and special cases in isl and is3.
Sequences that do a harder reset from a totally unknown
state can be given as rsl, rs2, rf, and rs3, analogous to isl,
is2, is8, and if. (The method using files, if and rf, is used for

a few terminals, from /usr/lib/tabset/ * ; however, the recom-
mended method is to use the initialization and reset strings.)
These strings are output by tput reset, which is used when
the terminal gets into a wedged state. Commands are nor-
mally placed in rsl, rs2, rs3, and rf only if they produce
annoying effects on the screen and are not necessary when
logging in. For example, the command to set a terminal into
80-column mode would normally be part of is2, but on some
terminals it causes an annoying glitch on the screen and is
not normally needed since the terminal is usually already in
80-column mode.

If a more complex sequence is needed to set the tabs than can
be described by using tbe and hts, the sequence can be
placed in is2 or if.

If there are commands to set and clear margins, they can be
given as mge (clear all margins), smgl (set left margin), and
smer (set right margin).

Delays
Certain capabilities control padding in the ¢ty(7) driver.
These are primarily needed by hard-copy terminals, and are
used by tput init to set tty modes appropriately. Delays
embedded in the capabilities cr, ind, cubl1, ff, and tab can be
used to set the appropriate delay bits to be set in the tty
driver. If pb (padding baud rate) is given, these values can

(Printed Dec.1989) Page 28

@
2
L

12
9

TERMINFO(4) (File Formats) TERMINFO(4)

be ignored at baud rates below the value of pb.

Status Lines
If the terminal has an extra “status line’? that is not nor-
mally used by software, this fact can be indicated. If the
status line is viewed as an extra line below the bottom line,
into which one can cursor address normally (such as the
Heathkit h19’s 25th line, or the 24th line of a VT100 which is

set to a 28-line scrolling region), the capability hs should be
given. Special strings that go to a given column of the status
line and return from the status line can be given as tsl and
fsl. (fsl must leave the cursor position in the same place it
was before tsl. If necessary, the sc and re strings can be
included in tsl and fsl to get this effect.) The capability tsl
takes one parameter, which is the column number of the
status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab,
work while in the status line, the flag eslok can be given. A
string which turns off the status line (or otherwise erases its
contents) should be given as dsl. If the terminal has com-
mands to save and restore the position of the cursor, give
them as sec and re. The status line is normally assumed to be
the same width as the rest of the screen, e.g., cols. If the

status line is a different width (possibly because the terminal
does not allow an entire line to be loaded) the width, in

columns, can be indicated with the numeric parameter wsl.

Line Graphics
If the terminal has a line drawing alternate character set, the
mapping of glyph to character would be given in acse. The
definition of this string is based on the alternate character set
used in the DEC VT100 terminal, extended slightly with some
characters from the AT&T 4410v1 terminal.

Page 29 (Printed Dec.1989)

 NT «|
TERMINFO(4) (File Formats) TERMINFO(4)

glyph name vt100 +
character

arrow pointing right +
arrow pointing left
arrow pointing down
solid square block
lantern symbol
arrow pointing up

diamond
checker board (stipple)
degree symbol
plus/minus
board of squares
lower right corner
upper right corner
upper left corner
lower left corner
plus
scan line 1
horizontal line
scan line 9

left tee (|—)
right tee (—|)
bottom tee (|)
top tee (])
vertical line
bullet

The best way to describe a new terminal’s line graphics set is
to add a third column to the above table with the characters
for the new terminal that produce the appropriate glyph
when the terminal is in the alternate character set mode.

For example,

«
|

=

o
O
-

x
e

S
e

G
r

n
e
o
s

F
e

wr
e

p
o

s
p

(Printed Dec.1989) Page 30

O
c
h

13
1

TERMINFO(4) (File Formats) TERMINFO(4)

glyph name vtl00+ new tty
char char

upper left corner] R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q 3

vertical line x

Now write down the characters left to right, as in
“aese = 1RmFkTjGq\,x.”.

Miscellaneous
If the terminal requires other than a null (zero) character as
a pad, then this can be given as pad. Only the first character
of the pad string is used. If the terminal does not have a pad
character, specify npc.

If the terminal can move up or down half a line, this can be
indicated with hu (half-line up) and hd (half-line down).
This is primarily useful for superscripts and subscripts on
hardcopy terminals. If a hardcopy terminal can eject to the
next page (form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given
number of times (to save time transmitting a large number of
identical characters) this can be indicated with the

parameterized string rep. The first parameter is the charac-
ter to be repeated and the second is the number of times to
repeat it. Thus, tparm(repeat_char, ’x’, 10) is the same as
XXXKKXKXXK.

If the terminal has a settable command character, such as the

Tektronix 4025, this can be indicated with emdch. A proto-
type command character is chosen which is used in all capa-
bilities. This character is given in the emdch capability to
identify it. The following convention is supported on some
UNIX systems: If the environment variable CC exists, all
occurrences of the prototype character are replaced with the
character in CC.

Page 31 (Printed Dec.1989)

 = ——— |
TERMINFO(4) (File Formats) TERMINFO(4)

Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, dialup, patch, and net-

work, should include the gn (generic) capability so that pro-
grams can complain that they do not know how to talk to the
terminal. (This capability does not apply to virtual terminal
descriptions for which the escape sequences are known.) If
the terminal is one of those supported by the UNIX system
virtual terminal protocol, the terminal number can be given
as vt. A line-turn-around sequence to be transmitted before
doing reads should be specified in rfi.

If the terminal uses xon/xoff handshaking for flow control,
give xon. Padding information should still be included so
that routines can make better decisions about costs, but

actual pad characters will not be transmitted. Sequences to
turn on and off xon/xoff handshaking may be given in smxon
and rmxon. If the characters used for handshaking are not
“S and *Q, they may be specified with xonc and xoffc.

If the terminal has a ‘“‘meta key” which acts as a shift key,
setting the 8th bit of any character transmitted, this fact can
be indicated with km. Otherwise, software will assume that
the 8th bit is parity and it will usually be cleared. If strings
exist to turn this ‘‘meta mode” on and off, they can be given
as smm and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be indi-
cated with lm. A value of lm#0 indicates that the number of
lines is not fixed, but that there is still more memory than
fits on the screen.

Media copy strings which control an auxiliary printer con-
nected to the terminal can be given as mcO: print the con-
tents of the screen, me4: turn off the printer, and mcd:

turn on the printer. When the printer is on, all text sent to
the terminal will be sent to the printer. A variation, mc5p,
takes one parameter, and leaves the printer on for as many
characters as the value of the parameter, then turns the
printer off. The parameter should not exceed 255. If the text

(Printed Dec.1989) Page 32

c
e
l

13
3

TERMINFO(4) (File Formats) TERMINFO(4)

is not displayed on the terminal screen when the printer is
on, specify mcbi (silent printer). All text, including me4, is

transparently passed to the printer while an mec5p is in
effect.

Special Cases
The working model used by terminfo fits most terminals rea-
sonably well. However, some terminals do not completely
match that model, requiring special support by terminfo.
These are not meant to be construed as deficiencies in the
terminals; they are just differences between the working
model and the actual hardware. They may be unusual dev-
ices or, for some reason, do not have all the features of the
terminfo model implemented.

Terminals which can not display tilde (~) characters, such as
certain Hazeltine terminals, should indicate hz.

Terminals which ignore a linefeed immediately after an am
wrap, such as the Concept 100, should indicate xenl. Those
terminals whose cursor remains on the right-most column
until another character has been received, rather than wrap-
ping immediately upon receiving the right-most character,
such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing nor-
mal text on top of it), xhp should be given.

Those Teleray terminals whose tabs turn all characters
moved over to blanks, should indicate xt (destructive tabs).
This capability is also taken to mean that it is not possible to
position the cursor on top of a “‘magic cookie’ therefore, to
erase standout mode, it is instead necessary to use delete and
insert line.

Those Beehive Superbee terminals which do not transmit the
escape or control—C characters, should specify xsb, indicat-
ing that the fl key is to be used for escape and the f2 key for
control —C.

Page 33 (Printed Dec.1989)

 SS
TERMINFO(4) (File Formats) TERMINFO(4)

Similar Terminals
If there are two very similar terminals, one can be defined as

being just like the other with certain exceptions. The string
capability use can be given with the name of the similar ter-
minal. The capabilities given before use override those in the
terminal type invoked by use. A capability can be canceled
by placing xx@ to the left of the capability definition, where
xx is the capability. For example, the entry

att4424-2|Teletype 4424 in display function group ii,

revé, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the
rev, sgr, and smul capabilities,
and hence cannot do highlighting.
This is useful for different modes for a terminal,

or for different user preferences.
More than one use capability may be given.

FILES

/usr/lib/terminfo/?/ * compiled terminal description
database

/usr/lib/.COREterm/?/* subset of compiled terminal
description database

/usr/lib/tabset/ * tab settings for some terminals, in
a format appropriate to be output
to the terminal (escape sequences
that set margins and tabs)

SEE ALSO

captoinfo(1M), infocmp(1M), tic(1M), tput(1), curses(3X),

printf(3S), term(5), tty(7).

Chapter 10 of the Programmer’s Guide.

WARNING

As described in the ”Tabs and Initialization” section above, a

terminal’s initialization strings, isl, is2, and is3, if defined,

must be output before a curses(3X) program is run. An avail-
able mechanism for outputting such strings is tput init (see
tput(1) and profile(4)).

(Printed Dec.1989) Page 34

ve
l

13
5

TERMINFO(4) (File Formats) TERMINFO(4)

Tampering with entries in /usr/lib/.COREterm/?/+* or
/usr/lib/terminfo/?/+* (for example, changing or removing
an entry) can affect programs such as vi(1) that expect the
entry to be present and correct. In particular, removing the
description for the ”"dumb” terminal will cause unexpected
problems.

NOTE

The termcap database (from earlier releases of UNIX System
V) may not be supplied in future releases.

Page 35 (Printed Dec.1989)

This page is intentionally left blank

g
e
r

13
7

 —_—_—_—_——$—_————
TERMTYPE.MAP(4) (File Formats) TERMTYPE.MAP(4)

NAME

termtype.map — map from NTC TYPE name to terminology
file

DESCRIPTION .

termtype.map contains for each map entry the following infor-
mations:

termtype map name

filename of terminology table

This is an ASCII file using tabs or spaces as field separator.
Each termtype.map entry is separated from the next by a
new-line. The filename of the terminology table is the path
and the name as placed in the directory /etc/types as
required by the terminology program. The termtype.map file is
only used by getify on lines connected to NTC (Network Ter-
minal Controller).

This file resides in directory /etc.

FILES

/etc/termtype.map

SEE ALSO

getty(1), terminology(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

S
e
l

13
9

TIMEZONE(4)

NAME

(File Formats) TIMEZONE(4)

timezone — set default system time zone

SYNOPSIS

/etc/TIMEZONE

DESCRIPTION

This file sets and exports the time zone environmental vari-
able TZ.

This file is ”dotted” into other files that must know the time

zone.

The syntax of TZ can be described as follows:

TZ >

zone
signed_time V4

time ed

dst >

dst_date >

letter

hour

minute

second

Julian

sign

EXAMPLES

b
u
d

dd

zone

| zone signed_time
| zone signed_time zone
| zone signed_time zone dst

letter letter letter
sign time

| time
hour

| hour : minute
| hour : minute : second

signed_time
| signed_time ; dst_date , dst_date
| ; dst_date , dst_date

julian
| julian / time
alA|b|Bl|..|[z2|2Z
00 | 01 |... | 23
00 | 01| ... | 59
00 | 01| ... | 59
001 | 002 | ...| 366
_ | +

The contents of /etc/TIMEZONE corresponding to the simple
example below could be:

Page 1 (Printed Dec.1989)

TIMEZONE(4) (File Formats) TIMEZONE(4)

Time Zone
TZ=EST5EDT

export TZ

A simple setting for New Jersey could be

TZ=EST5EDT

where EST is the abbreviation for the main time zone, 5 is

the difference, in hours, between GMT (Greenwich Mean
Time) and the main time zone, and EDT is the abbreviation

for the alternate time zone.

The most complex representation of the same setting, for the
year 1986, is:

TZ="EST5: 00: 00EDT4:00:00;117/2:00:00,299/2:00:00"

where EST is the abbreviation for the main time zone,

5:00:00 is the difference, in hours, minutes, and seconds

between GMT and the main time zone, EDT is the abbrevia-

tion for the alternate time zone, 4:00:00 is the difference, in

hours, minutes, and seconds between GMT and the alternate
time zone, 117 is the number of the day of the year (Julian

day) when the alternate time zone will take effect, 2:00:00 is
the number of hours, minutes, and seconds past midnight
when the alternate time zone will take effect, 299 is the

number of the day of the year when the alternate time zone
will end, and 2:00:00 is the number of hours, minutes, and
seconds past midnight when the alternate time zone will end.

A southern hemisphere setting such as the Cook Islands
could be

TZ="KDT9 : 30KST10:00;64/5:00,303/20:00”

This setting means that KDT is the abbreviation for the main
time zone, KST is the abbreviation for the alternate time
zone, KST is 9 hours and 30 minutes later than GMT, KDT is

10 hours later than GMT, the starting date of KDT is the 64th
day at 5 AM, and the ending date of KDT is the 303rd day at
8 PM.

(Printed Dec.1989) Page 2

O
v
l

14
1

TIMEZONE(4) (File Formats) TIMEZONE(4)

NOTES

Starting and ending times are relative to the alternate time
zone. If the alternate time zone start and end dates and the
time are not provided, the days for the United States that
year will be used and the time will be 2 AM. If the start and
end dates are provided but the time is not provided, the time
will be midnight.

Note that in most installations, TZ is set to the correct value
by default when the user logs on, via the local /etc/profile file
(see profile(4)).

When the longer format is used, the TZ variable must be sur-
rounded by double quotes as shown.

The system administrator must change the Julian start and
end days annually if the longer form of the TZ variable is
used.

Setting the time during the interval of change from the main
time zone to the alternate time zone or vice versa can pro-
duce unpredictable results.

SEE ALSO
rc2(1M), ctime(3C), profile(4), environ(5).

(Printed Dec.1989)

This page is intentionally left blank

o
r
l

14
3

UNISTD(4) (File Formats) UNISTD(4)

NAME

unistd — file header for symbolic constants

SYNOPSIS

#include <unistd.h>

DESCRIPTION

The header file <unistd.h> lists the symbolic constants and
structures not already defined or declared in some other
header file.

/ * Symbolic constants for the ”access” routine: * /

#define R_OK 4 /-«Test for Read permission * /

#define W_OK 2 /*Test for Write permission + /

#define X_OK 1 /** Test for eXecute permission + /

#define F_ OK 0 / Test for existence of File + /

#define F ULOCK 0 /* Unlock a previously locked region * /

#define F LOCK 1 # /* Lock a region for exclusive use * /

#define F TLOCK 2 / + Test and lock a region for exclusive use * /

#define F TEST 3 /* Test a region for other processes locks * /

/ * Symbolic constants for the ”Iseek” routine: * /

#define SEEK SET 0 / * Set file pointer to “offset” + /

#define SEEK_CUR1 / * Set, file pointer to current plus offset” * /

#define SEEK_END2 / « Set file pointer to EOF plus “offset” * /

/ * Pathnames: * /

#define GF_ PATH /etc/group /*Pathname of the group file « /

#define PF_PATH /etc/passwd / * Pathname of the passwd file * /

Page 1 (Printed Dec.1989)

This page is intentionally left blank

ve
l

14
5

UTMP(4) (File Formats)

NAME

utmp, wtmp — utmp and wtmp entry formats

SYNOPSIS

#include <sys/types.h>
#include <utmp.h>

DESCRIPTION

8 ll

UTMP(4)

These files, which hold user and accounting information for
such commands as who(1), write(1), and login(1), have the fol-
lowing structure as defined by <utmp.h>:

#define UTMP_FILE «/etc/utmp”

#tdefine WIMP FILE «/ete/wtmp”

#define ut_name ut_user

struct utmp {

af

char ut_user[8];

/* User login name * /

char ut_id[4];

/* /ete/inittab id (usually line #) */

char ut_line[12];

/* device name (console, 1nxx)

short ut_pid;

/* process id «/

short ut_type;

/* type of entry */

struct exit_status {

short e termination;

/* Process termination status * /

short e_exit;

/* Process exit status */

} ut_exit; /* The exit status of a process

* marked aS DEAD_PROCESS. * /
time_t ut_time;

/* time entry was made */

Page 1 (Printed Dec.1989)

UTMP(4) (File Formats) UTMP(4)

/* Definitions for ut_type */

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

EMPTY 0

RUN_LVL 1
BOOT_TIME 2
OLD_TIME 3
NEW_TIME 4
INIT PROCESS 5

/* Process spawned by “init” +*/

LOGIN PROCESS 6

/* A "getty” process waiting for login */

USER_PROCESS 7

/* BRuser process */

DEAD_PROCESS 8
ACCOUNTING 9
UTMAXTYPE ACCOUNTING

/* Largest legal value of ut_type */

/ * Special strings or formats used in the ”ut_line” field + /

/ * when accounting for something other than a process. + /

/ * No string for the ut_line field can be more than 11 chars * /

/* + a NULL in length + /

#define RUNLVL_MSG "run-level %c”

#define BOOT MSG “system boot”

#define OTIME MSG “old time”

#define NTIME MSG "new time”

FILES

/etc/utmp

/etc/wtmp

SEE ALSO

login(1), who(1), write(1), getut(3C).

(Printed Dec.1989) Page 2

O
r

14
7

INTRO(5) (Miscellaneous) INTRO(5)

NAME

intro — introduction to miscellany

DESCRIPTION

This section describes miscellaneous facilities such as macro
packages, character set tables, etc.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

S
t
l

14
9

 ———— SSS SS
ASCII(5) (Miscellaneous) ASCITI(5)

NAME

ascii — map of ASCII character set

DESCRIPTION

The following is a map of the ASCII character set.

The hexadecimal digits above the table give the high-order
four bits of the character value. The hexadecimal digits to
the left of the table give the low-order four bits of the charac-
ter value.

6

*
|

©)

00
}

1/

G|

Or
]

PB
]

GO
]

DO
]

|
OC
]

O9
8

FR wo
 Al
e

2 I

 U
S
-
|
—
|

SA
IN

I
[
M
1

Sa
)

d
l
e

le
at
l
a
i
a

|e

l
o
l

a

B
B
)

r
i
o

e
a
l
)

e
|
o
l
a
l
a
l
o
|
s

OO
}

2)

Bi
e)

RA
)

a)

e
o
)

O
e
)

|
Ol
a]

|
el
e/

a

 S
H
O

A
D
r
P
e
w
m
n
n
a
m
a
r
a
o
n
w
e
o

eg g
e
l
e
l
A

a f=)

a)
 a

~
~
)
 Vv

_ del

The characters are also found in the ISO 646 character set.

The following is a list of all the abbreviations used in the
table:

fo)
 si | us| /

ack Acknowledge
bel Bell
bs Backspace
can Cancel
cr Carriage Return

Page 1 (Printed Dec.1989)

ASCII(5)

SEE ALSO

iso-8859/1(5).

The Supermax Virtual Terminal Guide.

(Printed Dec.1989)

(Miscellaneous) ASCII(5)

Device Control 1 (X-ON)

Device Control 2
Device Control 3 (X-OFF)
Device Control 4
Delete

Data Link Escape
End of Medium

Enquiry
End Of Transmission
Escape
End of Transmission Block

End of Text

Form Feed

File Separator
Group Separator
Horizontal Tabulation

Negative Acknowledge
New Line (Line Feed)

Null
Record Separator
Shift-In
Shift-Out
Start Of Heading
Space
Start of Text
Substitute character
Synchronous idle
Unit Separator
Vertical Tabulation

Page 2

OS
}

15
1

ENVIRON(5) (Miscellaneous) ENVIRON(5)

NAME

environ — user environment

DESCRIPTION

Page 1

An array of strings called the ‘“‘environment”’ is made avail-
able by exec(2) when a process begins. By convention, these
strings have the form “name=value”. The following names
are used by various commands:

CFTIME The default format string to be used by the
date(1) command and the ascftime() and
cftime() routines (see ctime(3C)). If CFTIME
is not set or is null, the default format string
specified in the /lib/cftime/LANGUAGE file
(af it exists) is used in its place (see cftime(4)).

CHRCLASS A _ value that corresponds to a file in
/lib/chrelass containing character classifica-
tion and conversion information. This informa-
tion is used by commands (such as cat(1),
ed(1), sort(1), etc.) to classify characters as
alphabetic, printable, upper case, etc. and to
convert characters to upper or lower case.

When a program or command begins execu-
tion, the tables containing this information are
initialized based on the value of CHRCLASS.
If CHRCLASS is non-existent, null, set to a
value for which no file exists in /lib/chrclass,
or errors occur while reading the file, the ISO-
8859/1 character set is used.

During execution, a program or command can
change the values in these tables by calling
the setchreclass() routine. For more detail,

see ctype (3C).

These tables are created using the chrtbl(1M)
command.

(Printed Dec.1989)

 So ————S a |
ENVIRON(5)

HOME

LANGUAGE

PATH

TERM

TZ

(Printed Dec.1989)

(Miscellaneous) ENVIRON(5)

The name of the user’s login directory, set by
login(1) from the password file (see
passwd (4)).

A language for which a printable file by that
name exists in /lib/cftime. This information
is used by commands (such as date(1), /s(1),

sort(1), etc.) to print date and time informa-

tion in the language specified.

If LANGUAGE is non-existent, null, set to a
value for which no file exisls in /lib/eftime,
or errors occur while reading the file, the last
language requested will be used. (If no
language has been requested, the language
usa_english is assumed.)

For a description of the content of files in
/lib/cftime, see cftime (4).

The sequence of directory prefixes that sh (1),
time(1), nice (1), nohup (1), etc., apply in search-
ing for a file known by an incomplete path
name. The prefixes are separated by colons
(:). login(1) sets PATH=:/bin:/usr/bin.
(For more detail, see the ”Execution” section

of the sh(1) manual page.)

The kind of terminal for which output is to be
prepared. This information is used by com-
mands, such as mm(1) or vi(1), which may
exploit. special capabilities of that terminal.

Time zone information. The simplest format
is xxxnzzz where xxx is the standard local
time zone abbreviation, n is the difference in
hours from GMT (Greenwich Mean Time), and

zzz is the abbreviation for an alternate time
zone (usually the daylight-saving local time
zone), if any; for example,

Page 2

e
c
t

15
3

ENVIRON(5) (Miscellaneous) ENVIRON(5)

TZ=”EST5EDT”

The most complex format allows you to specify
the difference in hours of the alternate time
zone from GMT and the starting day and time
and ending day and time for using this alter-
nate time zone. For example, in 1985 the com-
plex format corresponding to the above simple
example is:

TZ=”"EST5:00:00EDT4:00:00;118/2:00:00,300/2:00:00”

When the above complex format is used, it
must be surrounded by double quotes. For
more details, see ctime(3C) and timezone(4).

Further names may be placed in the environment by the
export command and ‘‘name=value”’ arguments in sh(1), or
by exec(2). It is unwise to conflict with certain shell variables
that are frequently exported by .profile files: MAIL, PS1,
PS2, IFS (see profile (4)).

NOTES

References to the cftime(4), ctime(3C), and ctype(8C) manual
pages refer to programming capabilities available beginning
with Issue 3.1 of the Software Development Utilities.

Administrators should note the following: if you attempt to
set the current date to one of the dates that the standard and
alternate time zones change (for example, the date that day-
light time is starting or ending), and you attempt to set the
time to a time in the interval between the end of standard
time and the beginning of the alternate time (or the end of
the alternate time and the beginning of standard time), the
results are unpredictable.

Page 3 (Printed Dec.1989)

 ——4 ae | ———_________~7)
ENVIRON(5) (Miscellaneous) ENVIRON(5)

SEE ALSO

cat(1), chrtbl(1M), date(1), ed(1), env(1), login(1), Is(1), nice(1),

nohup(1), sh(1), sort(1), time(1), vi(l), exec(2), ctime(3C),

ctype(8C), cftime(4), passwd(4), profile(4), timezone(4).

and

mm(1) in the DOCUMENTER’S WORKBENCH Software

Release 2.0 Technical Discussion and Reference Manual.

(Printed Dec.1989) Page 4

S
l

15
5

FCNTL(5) (Miscellaneous) FCNTL(5)

NAME

fentl — file control options

SYNOPSIS

#include <fentl.h>

DESCRIPTION

Page 1

The fentl(2) function provides for control over open files.
This include file describes requests and arguments to fentl
and open (2).

/ * Flag values accessible to. open(2) and fentl(2) * /

/ * (The first three can only be set by open) + /

#define O_RDONLY 0
#define O_WRONLY 1

#define O_RDWR 2
#define O_NDELAY 04 /*Non-blocking I/o * /

#define O APPEND 010

/* append (writes guaranteed at the end) «/

#define O_SYNC 020 /*#*synchronous write option * /

/ * Flag values accessible only to open(2) * /

#define O_CREAT 00400
/*open with file create (uses third open arg) * /

#define O_TRUNC 01000 /*open with truncation +*/

#define O_EXCL 02000 /* exclusive open */

/ « fentl(2) requests * /

#define F_DUPFD 0 /*Duplicate fildes */

#define F_GETFD 1 /*Get fildes flags */

#define F_SETFD 2 /*Set fildes flags «/

#define F_GETFL 3 /*Get file flags +*/

#define F_SETFL 4 /*Set file flags */
#define F_GETLK 5 /*Get file lock */

#define F_SETLK 6 /*Set file lock +*/
#define F_SETLKW 7 /*Set file lock and wait */

#define F_CHKFL 8

/*Check legality of file flag changes */

(Printed Dec.1989)

FCNTL(5) (Miscellaneous) FCNTLG6)

/ * file segment locking control structure « /
struct flock {

short 1 type;

short 1 whence;

long 1 start;

long 1_len; /*if 0 then until EOF */

short 1_sysid; /*xveturned with F_GETLK * /

short 1 pid; /* returned with F_GETLK * /

}

/ * file segment locking types * /

#define F_RDLCK 01 / *Read lock * /

#define F_WRLCK 02 /*Write lock « /

#define F_UNLCK 03 / * Remove locks * /

SEE ALSO

fentl(2), open(2).

(Printed Dec.1989) Page 2

Q
S
L

15
7

ISO-8859/1(5) (Miscellaneous) ISO-8859/1(5)

NAME

ISO 8859/1 — map of ISO 8859/1 character set

DESCRIPTION

The character set normally used on Supermax computers is
the ISO 8859/1 international character set for Western
Europe. The following is a map of that character set.

The hexadecimal digits above the table give the high-order
four bits of the character value. The hexadecimal digits to
the left of the table give the low-order four bits of the charac-
ter value.

§6|/6,/>7/|8/)9|A/\B/C|D/|E/F

O/nul/ dle} sp | 0 | @/| P P |rfujdes|nbsp| ° | A|D| al y

1} soh| del} ! 1/A/}Q/al/qI{rfl/pu| i}+/)/A\N/) 4] a

2 | stx | de2 2|/B,|Ri bir |rfuljpo2}¢)/2:/A}O!]a4al oa

Bletx|de3) # | 3 | C |S |e} s |rfulsts| £ »1A!|O!al sé

4\eot}dea}| $ | 4 | D|T) d] t lind) cch| x Al}O|\a|6

Blenq|nak| %| 5 | E|U!e!}ujnell|mw) ¥}/p/A/O0/] 4! 6

6/ack)/syn| & | 6 | F| V| f | v |ssalspal | | q | 4) O)| we! 6

7| bet | etb 7|G\|W w |esalepa| § C/x|e¢e}+

8| bs [can] (| 8 | H| X x | hts | rfu ,|E|@lelg¢

9/ht}em}) | 9] 1) Y] ily lal} o}«|/B/tUleé | a |
A} nl | sub| * J | Z z \vts|rful a 2/E|U é a

B| vi }esc|} +} ; |K/ [| k | { |pld/esi| « Eula a!

Clrlme}, | <{/L] Qlidy jpwlss|a] 4 | 1 U | i [a |

Di cr |es|-|=!]M!/1]m]{ } | ri losclshny| & | I | ba | cal

E| so | rs > |N n | ~ |ss2/pm| @ | % Tb ile

F|/ sijus| / | ?|0 o | del | ss3 | ape | 4 i poiiy
Actually, the table below was formed by merging several char-
acter sets: Characters with values 0x00-0x7f are found in the
ASCII character set and in the ISO 646 character set.

Page I (Printed Dec.1989)

1SO-8859/1(5) (Miscellaneous) ISO-8859/1(5)

Characters with values 0x20-0x7e are common to all ISO

8859 character sets. Characters with values 0x20-0x7e and

Oxa0-Oxff are found in the ISO 8859/1 character set. The
control characters with values 0x80-0x9f are found in ANSI

standard X3.64.

The following is a list of all the abbreviations used in the
table:

ack

apc

bel

bs

can

ech

del

de2

dc3

dc4

des

del

dle

gs

ht

htj

hts

ind

Acknowledge
Application Program Command
Bell

Backspace
Cancel

Cancel Character
Carriage Return
Control Sequence Introducer
Device Control 1 (X-ON)

Device Control 2
Device Control 3 (X-OFF)

Device Control 4

Device Control String
Delete

Data Link Escape
End of Medium

Enquiry
End Of Transmission

End of Protected Area

End of Selected Area

Escape
End of Transmission Block

End of Text

Form Feed

File Separator
Group Separator
Horizontal Tabulation

Horizontal Tabulation with Justification

Horizontal Tabulation Set

Index

(Printed Dec.1989) Page 2

S
S
L

15
9

ISO-8859/1(5)

nbsp
nel

osc

us

vt

vts

SEE ALSO

ascii(5).

(Miscellaneous) ISO-8859/1(5)

Message Waiting
Negative Acknowledge
No-Break Space
Next Line

New Line (Line Feed)

Null

Operating System Command
Partial Line Down

Partial Line Up
Privacy Message
Private Use 1

Private Use 2

Reserved for Future Use

Reverse Index

Record Separator
Soft Hyphen
Shift-In
Shift-Out
Start Of Heading
Space
Start of Protected Area

Single Shift 2
Single Shift 3
Start of Selected Area

String Terminator
Set Transmit State
Start of Text
Substitute character
Synchronous idle
Unit Separator
Vertical Tabulation

Vertical Tabulation Set

The Supermax Virtual Terminal Guide.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

O
9
1

16
1

 _
MATH(5) (Miscellaneous) MATH(5)

NAME

math — math functions and constants

SYNOPSIS

#include <math.h>

DESCRIPTION

This file contains declarations of all the functions in the Math
Library (described in Section 2&3), as well as various func-
tions in the C Library (Section 2&3) that return floating-
point values.

It defines the structure and constants used by the
matherr(3M) error-handling mechanisms, including the fol-
lowing constant used as an error-return value:

HUGE The maximum value of a single-precision
floating-point number.

The following mathematical constants are defined for user
convenience:

ME The base of natural logarithms (e).

M_LOG2E The base-2 logarithm of e.

M_LOGI0E The base-10 logarithm of e.

M_LN2 The natural logarithm of 2.

M_LN10 The natural logarithm of 10.

M_PI a, the ratio of the circumference of a circle to
its diameter.

7 M PI2 a

7 M PI 4 Z

M1 PI 7
7

M 2 PI 2
Tv

Page 1 (Printed Dec.1989)

MATH(5) (Miscellaneous) MATH(5)

M_2 SQRTPI a 7 Vir
M_SQRT2 The positive square root of 2.

M_SQRT1 2 The positive square root of 1/2.

For the definitions of various machine-dependent ‘‘con-
stants,’’ see the description of the <values.h> header file.

SEE ALSO

intro(2&3), matherr(3M), values(5).

(Printed Dec.1989) Page 2

ra
s]

16
3

PROF(5) (Miscellaneous) PROF(5)

NAME

prof — profile within a function

SYNOPSIS

#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION ’

MARK will introduce a mark called name that will be treated
the same as a function entry point. Execution of the mark
will add to a counter for that mark, and program-counter
time spent will be accounted to the immediately preceding
mark or to the function if there are no preceding marks
within the active function.

Name may be any combination of numbers or underscores.
Each name in a single compilation must be unique, but may
be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined
before the header file <prof-h> is included. This may be
defined by a preprocessor directive as in the synopsis, or by a
command line argument, i.e:

cc -p —DMARK foo.c

If MARK is not defined, the MARK(name) statements may be
left in the source files containing them and will be ignored.

EXAMPLE

In this example, marks can be used to determine how much
time is spent in each loop. Unless this example is compiled
with MARK defined on the command line, the marks are

ignored.

#include <prof.h>
foo()

{
int i, 3;

Page 1 (Printed Dec.1989)

PROF(5) (Miscellaneous)

MARK(loop!) ;

for (i = 0; i

}
MARK (loop2);

for (j = 0; j
. .

SEE ALSO

prof(1), profil(2), monitor(8C).

(Printed Dec.1989)

PROF(5)

< 2000; i++) {

< 2000; j++) {

Page 2

v
o
l

16
5

 ——_—— Ss
REGEXP(5) (Miscellaneous) REGEXP(5)

NAME

regexp — regular expression compile and match routines

SYNOPSIS

#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peeke code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, « expbuf, * endbuf;

int eof;

int step (string, expbuf)
char *string, * expbuf;

extern char +*locl, *loc2, + locs;

extern int circf, sed, nbra;

DESCRIPTION

Page 1

This page describes general-purpose regular expression
matching routines in the form of ed(1), defined in
<regexp.h> . Programs such as ed(1), sed(1), grep(1), bs(1),

expr(1), etc., which perform regular expression matching use
this source file. In this way, only this file need be changed to
maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs
that include this file must have the following five macros
declared before the ‘“#include <regexp.h>” statement.
These macros are used by the compile routine.

GETC() Return the value of the next character
in the regular expression pattern. Suc-
cessive calls to GETC() should return
successive characters of the regular

expression.

(Printed Dec.1989)

 |
REGEXP(5)

PEEKC()

UNGETC(c)

RETURN(pointer)

ERROR(val)

(Printed Dec.1989)

(Miscellaneous) REGEXP(5)

Return the next character in the regu-
lar expression. Successive calls to
PEEKC() should return the same char-
acter [which should also be the next
character returned by GETC()).

Cause the argument c to be returned by
the next call to GETC() [and PEEKC()].
No more that one character of pushback
is ever needed and this character is
guaranteed to be the last character read
by GETC(). The value of the macro
UNGETC(c) is always ignored.

This macro is used on normal exit of
the compile routine. The value of the
argument pointer is a pointer to the
character after the last character of the
compiled regular expression. This is
useful to programs which have memory
allocation to manage.

This is the abnormal return from the

compile routine. The argument val is
an error number (see table below for
meanings). This call should never
return.

Page 2

9
9
1

16
7

 a
REGEXP(5) (Miscellaneous) REGEXP(5)

ERROR MEANING

11 Range endpoint too large.
16 Bad number.
25 ‘\digit”’ out of range.
36 Illegal or missing delimiter.
41 No remembered search string.

42 \C \) imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the
compile routine but is useful for programs that pass down
different pointers to input characters. It is sometimes used in
the INIT declaration (see below). Programs which call func-
tions to input characters or have characters in an external
array can pass down a value of ((char *) 0) for this parame-
ter.

The next parameter expbuf is a character pointer. It points
to the place where the compiled regular expression will be
placed.

The parameter endbuf is one more than the highest address
where the compiled regular expression may be placed. If the

compiled expression cannot fit in (endbuf—expbuf) bytes, a
call to ERROR(50) is made.

The parameter eof is the character which marks the end of
the regular expression. For example, in ed(1), this character
is usually a /.

Each program that includes this file must have a #define
statement for INIT. This definition will be placed right after

Page 3 (Printed Dec.1989)

 SE
REGEXP(5) (Miscellaneous) REGEXP(5)

the declaration for the function compile and the opening
curly brace ({). It is used for dependent declarations and ini-
tializations. Most often it is used to set a register variable to
point the beginning of the regular expression so that this
register variable can be used in the declarations for GETC(),
PEEKC() and UNGETC(). Otherwise it can be used to declare
external variables that might be used by GETC(), PEEKC()
and UNGETC(). See the example below of the declarations
taken from grep(1).

There are other functions in this file which perform actual
regular expression matching, one of which is the function
step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of charac-
ters to be checked for a match. This string should be null
terminated.

The second parameter expbuf is the compiled regular expres-
sion which was obtained by a call of the function compile.

The function step returns non-zero if the given string
matches the regular expression, and zero if the expressions do
not match. If there is a match, two external character

pointers are set as a side effect to the call to step. The vari-
able set in step is locl. This is a pointer to the first character
that matched the regular expression. The variable loc2,
which is set by the function advance, points to the character
after the last character that matches the regular expression.
Thus if the regular expression matches the entire line, locl
will point to the first character of string and loc2 will point
to the null at the end of string.

step uses the external variable circf which is set by compile if
the regular expression begins with *. If this is set then step
will try to match the regular expression to the beginning of
the string only. If more than one regular expression is to be
compiled before the first is executed the value of circf should
be saved for each compiled expression and circf should be set

(Printed Dec.1989) Page 4

g
o
l

16
9

———EyEyEEEeeEeEEEEEE——E—E—E——

REGEXP(5) (Miscellaneous) REGEXP(5)

to that saved value before each call to step.

The function advance is called from step with the same argu-
ments as step. The purpose of step is to step through the
string argument and call advance until advance returns non-
zero indicating a match or until the end of string is reached.
If one wants to constrain string to the beginning of the line
in all cases, step need not be called; simply call advance.

When advance encounters a * or \{ \} sequence in the regu-
lar expression, it will advance its pointer to the string to be
matched as far as possible and will recursively call itself try-
ing to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance will back
up along the string until it finds a match or reaches the point
in the string that initially matched the « or \{ \}. It is
sometimes desirable to stop this backing up before the initial
point in the string is reached. If the external character
pointer Jocs is equal to the point in the string at sometime
during the backing up process, advance will break out of the
loop that backs up and will return zero. This is used by ed (1)
and sed(1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions

like s/y * //g do not loop forever.

The additional external variables sed and nbra are used for

special purposes.

EXAMPLES

Page 5

The following is an example of how the regular expression
macros and calls look from grep (1):

#define INIT register char *sp = instring;

#define GETC() (* spt+)
#define PEEKC() (* Sp)
#define UNGETC(c) (--sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

(Printed Dec.1989)

coe

 SS |
REGEXP(5) (Miscellaneous) REGEXP(5)

#include <regexp.h>

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if (step(linebuf, expbuf))

succeed();

SEE ALSO

ed(1), expr(1), grep(1), sed(1).

(Printed Dec.1989) Page 6

O
Z
L

17
1

STAT(5)

NAME

(Miscellaneous) STAT(5)

stat — data returned by stat system call

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

The system calls stat and fstat return data whose structure is
defined by this include file. The encoding of the field st_mode
is defined in this file also.

Structure of the result of stat

struct

{

‘i

#define

#define

#define

#define

#define

#define

#define

#define

Page 1

stat

dev_t st_dev;

ushort st_ino;

ushort st_mode;

short st_nlink;

ushort st_uid;

ushort st_gid;

dev_t st_rdev;

off t st_size;

time_t st_atime;

time_t st_mtime;

time _t st_ctime;

S_IFMT
S_IFDIR
S_IFCHR
S_IFBLK
S_IFREG
S_IFIFO
S_ISUID

S_ISGID

0170000

0040000

0020000

0060000

0100000

0010000

04000

/*

/*

type of file */

directory */

character special */

block special */

regular «/

fifo */

/* set user id on execution * /

02000

/* set group id on execution * /

(Printed Dec.1989)

STAT(5) (Miscellaneous) STAT(5)

#define S_IREAD 00400

/* xead permission, owner */

#define S _IWRITE 00200
/* write permission, owner */

#define S_IEXEC 00100

/* execute/search permission, owner +* /

#define S_ENFMT S _ISGID
/* xvecord locking enforcement flag * /

#define S_IRWXU 00700
/* xvead,write, execute: owner +* /

#define S IRUSR 00400
/* xvead permission: owner */

#define S_IWUSR 00200
/* write permission: owner + /

#define S IXUSR 00100
/* execute permission: owner +*/

#define S IRWXG 00070

/* vead, write, execute: group *

#define S IRGRP 00040

/* read permission: group */

#define S IWGRP 00020

/* write permission: group */

#define S IXGRP 00010
/* execute permission: group +*/

#define S IRWXO 00007

/* read, write, execute: other *

#define S IROTH 00004

/* read permission: other */

#define S IWOTH 00002

/* write permission: other « /

#define S IXOTH 00001

SEE ALSO

/* execute permission: other + /

stat(2), types(5).

(Printed Dec.1989)

/

/

Page 2

Z
k

17
3

TERM(5) (Miscellaneous) TERM(5)

NAME

term — conventional names for terminals

DESCRIPTION

Page 1

These names are used by certain commands (e.g., man(1),
tabs(1), tput(1), vi(1) and curses(8X)) and are maintained as

part of the shell environment in the environment variable
TERM (see sh(1), profile (4), and environ (5)).

Entries in terminfo(4) source files consist of a number of
comma-separated fields. (To obtain the source description for
a terminal, use the —I option of infocmp(1M).) White space
after each comma is ignored. The first line of each terminal
description in the ferminfo(4) database gives the names by
which terminfo(4) knows the terminal, separated by bar (|)
characters. The first name given is the most common abbre-
viation for the terminal (this is the one to use to set the
environment variable TERMINFO in $HOME/,profile; see
profile(4)), the last name given should be a long name fully
identifying the terminal, and all others are understood as
synonyms for the terminal name. All names but the last
should contain no blanks and must be unique in the first 14
characters; the last name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be

chosen using the following conventions. The particular piece
of hardware making up the terminal should have a root name
chosen, for example, for the AT&T 4425 terminal, att4425.

This name should not contain hyphens, except that synonyms
may be chosen that do not conflict with other names. Up to 8
characters, chosen from [a—z0—9], make up a basic terminal

name. Names should generally be based on original vendors,
rather than local distributors. A terminal acquired from one
vendor should not have more than one distinct basic name.
Terminal sub-models, operational modes that the hardware
can be in, or user preferences, should be indicated by append-
ing a hyphen and an indicator of the mode. Thus, an AT&T
4425 terminal in 132 column mode would be att4425—w.
The following suffixes should be used where possible:

(Printed Dec.1989)

TERM(5) (Miscellaneous) TERM(5)

Suffix Meaning Example
—Ww Wide mode (more than 80 columns) att4425 —w

-am With auto. margins (usually default) vtl00-—am
-nam Without automatic margins vt100 — nam
—n Number of lines on the screen aaa — 60
—na No arrow keys (leave them in local) cl00-—na
—np Number of pages of memory c100 — 4p
—rv Reverse video att4415—rv

To avoid conflicts with the naming conventions used in
describing the different modes of a terminal (¢.g., —w), it is
recommended that a terminal’s root name not contain
hyphens. Further, it is good practice to make all terminal
names used in the ferminfo(4) database unique. Terminal
entries that are present only for inclusion in other entries via
the use= facilities should have a ’+’ in their name, as in

4415 +nl.

Some of the known terminal names may include the following
generic terminfo table supported by the VTI concept (for a
complete list, type: Is -C /usr/lib/terminfo/?):

T* Generic terminfo table supported
by the VTI concept.

2621, hp2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer

vd
b

2631~—c Hewlett-Packard 2631 line printer
— compressed mode

2631-e Hewlett-Packard 2631 line printer
— expanded mode

2640,hp2640 Hewlett-Packard 2640 series
2645, hp2645 Hewlett-Packard 2645 series
3270 IBM Model 3270
33,tty33 AT&T Teletype Model 33 KSR
35,tty35 AT&T Teletype Model 35 KSR
37,tty37 AT&T Teletype Model 37 KSR
4000a Trendata 4000a

(Printed Dec.1989) Page 2

eee 6992 ee

17
5

4410 — nfk,5410 — nfk

4410 —nsl,5410 —nsl
4410 — w,5410—w
4410v1,5410v1

4410v1 — w,5410v1l —w

4415,5420
4415 — nl,5420 — nl

4415 —rv,5420 —rv

4415 —rv —nl,5420—rv—nl

4415 — w,5420 —-w

4415 —w—nl,5420—-w-nl

4415 —-w—rv,5420 -—-w-rv

4415 —w—rv—nil,
5420-—w-rv-nl

4418,5418

4418 —w,5418-—w

4420

4424

4424-2

4425,5425
4425 — fk,5425 — fk

Page 3

TERM(5) (Miscellaneous) TERM(5)

4014,tek4014 TEKTRONIX 4014
40,tty40 AT&T Teletype Dataspeed 40/2
43,tty43 AT&T Teletype Model 43 KSR
4410,5410 AT&T 4410/5410 terminal in 80-

column mode — version 2
AT&T 4410/5410 without function
keys — version 1
AT&T 4410/5410 without pln defined
AT&T 4410/5410 in 132-column mode
AT&T 4410/5410 terminal in 80-
column mode — version 1
AT&T 4410/5410 terminal in 132-
column mode — version 1
AT&T 4415/5420 in 80-column mode
AT&T 4415/5420 without changing
labels
AT&T 4415/5420 80 columns in
reverse video
AT&T 4415/5420 reverse video
without changing labels
AT&T 4415/5420 in 132-column mode
AT&T 4415/5420 in 132-column mode
without changing labels
AT&T 4415/5420 132 columns in
reverse video

AT&T 4415/5420 132 columns reverse
video without changing labels
AT&T 5418 in 80-column mode
AT&T 5418 in 132-column mode
AT&T Teletype Model 4420
AT&T Teletype Model 4424
AT&T Teletype Model 4424 in display
function group ii
AT&T 4425/5425
AT&T 4425/5425 without function

(Printed Dec.1989)

TERM(5)

4425 — n1,5425 — nl

4425 — w,5425 —w
4425 — w — {k,5425 —w—fk

4425 — nl— w,5425 —nl—w

4426
450
450-12
500,att500
510,510a
513bct,att513
5320
5420 2

5420 2-w

5620,dmd
5620 — 24,dmd — 24

5620 — 34,dmd — 34

610,610bet

610 — w,610bct — w

7300,pc7300,unix_pc
735,ti
745

dumb

hp
Ip

(Printed Dec.1989)

(Miscellaneous) TERM(5)

keys

AT&T 4425/5425 without changing
labels in 80-column mode
AT&T 4425/5425 in 132-column mode
AT&T 4425/5425 without function
keys in 132-column mode
AT&T 4425/5425 without changing
labels in 132-column mode
AT&T Teletype Model 4426S
DASI 450 (same as Diablo 1620)
DASI 450 in 12-pitch mode
AT&T-IS 500 terminal
AT&T 510/510a in 80-column mode
AT&T 513 bet terminal
AT&T 5320 hardcopy terminal
AT&T 5420 model 2 in 80-column
mode
AT&T 5420 model 2 in 132-column
mode
AT&T 5620 terminal 88 columns
AT&T Teletype Model DMD 5620
in a 24x80 layer
AT&T Teletype Model DMD 5620
in a 34x80 layer
AT&T 610 bet terminal in 80-

column mode
AT&T 610 bet terminal in 132-
column mode
AT&T UNIX PC Model 7300
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack
reverse line-feed and other special
escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer

Page 4

9
2
1

17
7

TERM(5) (Miscellaneous) TERM(5)

pt505 AT&T Personal Terminal 505
(22 lines)

pt505 — 24 AT&T Personal Terminal 505
(24-line mode)

sync generic name for synchronous
Teletype Model 4540-compatible
terminals.

Commands whose behavior depends on the type of terminal
should accept arguments of the form —Tterm where term is
one of the names given above; if no such argument is present,
such commands should obtain the terminal type from the
environment variable TERM, which, in turn, should contain

term.

FILES

/usr/lib/terminfo/?/ * compiled terminal description data-
base

SEE ALSO

infocmp(1M), man(1), sh(1), stty(1), tabs(1), tplot(1G), tput(1),

vi(1), curses(3X), profile(4), terminfo(4), environ(5).

Chapter 10 of the Programmer’s Guide.

NOTES

Not all programs follow the above naming conventions.

Page 5 (Printed Dec.1989)

This page is intentionally left blank

S
Z
L

17
9

—————

TYPES(5)

NAME

(Miscellaneous)

types — primitive system data types

SYNOPSIS

#include <sys/types.h>

DESCRIPTION

TYPES(5)

The data types defined in the include file are used in UNIX
system code; some data are accessible to user code:

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

struct { int r[l]; } *physadr;

long

char *

unsigned char

unsigned short

unsigned int

unsigned long

ushort

short

long

int

short

long

long

int

unsigned char

short

short

short

unsigned int

daddr_t;
caddr t;
unchar;

ushort;

uint;

ulong;

ino _t;

cnt_t;

time_t;
label_t[13];

dev_t;
off_t;

paddr_ t;
key t;
use _t;

sysid t;
index _t;
lock_t;

size t;

The form daddr ¢ is used for disk addresses except in an i-
node on disk, see fs(4). Times are encoded in seconds since
00:00:00 GMT, January 1, 1970. The major and minor parts
of a device code specify kind and unit number of a device and
are installation-dependent. Offsets are measured in bytes
from the beginning of a file. The /abel_¢ variables are used to
save the processor state while another process is running.

SEE ALSO

fs(4).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

os
l

18
1

VALUES(5) (Miscellaneous) VALUES(5)

NAME

values — machine-dependent values

SYNOPSIS

#include <values.h>

DESCRIPTION

Page 1

This file contains a set of manifest constants, conditionally
defined for particular processor architectures.

The model assumed for integers is binary representation
(one’s or two’s complement), where the sign is represented by
the value of the high-order bit.

BITS(type) The number of bits in a specified type
(e.g., int).

HIBITS The value of a short integer with only
the high-order bit set (0x8000).

HIBITL The value of a long integer with only
the high-order bit set (0x80000000).

HIBITI The value of a regular integer with only
the high-order bit set (the same as
HIBITL).

MAXSHORT The maximum value of a signed short
integer (Ox7FFF = 32767).

MAXLONG The maximum value of a signed long
integer (Ox7FFFFFFF = 2147483647).

MAXINT The maximum value of a signed regular
integer (the same as MAXLONG).

MAXFLOAT, LN _MAXFLOAT The maximum value of a
single-precision floating-point
number, and its natural loga-
rithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a
double-precision floating-
point number, and its natural
logarithm.

(Printed Dec.1989)

VALUES(5) (Miscellaneous) VALUES(5)

MINFLOAT, LN_MINFLOAT The minimum positive value
of a single-precision floating-
point number, and its natural
logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value
of a double-precision float-
ing-point number, and _ its
natural logarithm.

FSIGNIF The number of. significant bits in the
mantissa of a single-precision floating-
point number.

DSIGNIF The number of significant bits in the
mantissa of a double-precision floating-
point number.

SEE ALSO

intro(3), math(5).

(Printed Dec.1989) Page 2

ce
l

18
3

——ESEEE—————

VARARGS(5) (Miscellaneous) VARARGS(5)

NAME

varargs — handle variable argument list

SYNOPSIS

#include <varargs.h>

va_alist

va_dcl

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION

Page 1

This set of macros allows portable procedures that accept
variable argument lists to be written. Routines that have
variable argument lists [such as printf(3S)] but do not use
varargs are inherently nonportable, as different machines use
different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_del is a declaration for va_alist. No semicolon should fol-
low va_del.

va_list is a type defined for the variable used to traverse the
list.

va_start is called to initialize pvar to the beginning of the
list.

va_arg will return the next argument in the list pointed to
by pvar. Type is the type the argument is expected to be.
Different types can be mixed, but it is up to the routine to
know what type of argument is expected, as it cannot be
determined at runtime.

va_end is used to clean up.

(Printed Dec.1989)

|e FF

 |
VARARGS(5) (Miscellaneous) VARARGS(5)

Multiple traversals, each bracketed by va_start ... va_end, are
possible.

EXAMPLE

This example is a possible implementation of execl (2).

#include <varargs.h>

#define MAXARGS100

/ * execl is called by

execl(file, argl, arg2, ..., (char *)0);

+/
execl(va_alist)

va_del

{

va_list ap;

char * file;

char * args[MAXARGS];

int argno = 0;

va_start(ap);

file = va_arg(ap, char *);

while ((args[argno++] = va_arg(ap, char *)) I= (char +*)0)

va_end(ap);

return execv(file, args);

}

SEE ALSO

exec(2), printf(3S), vprintf(8S).

NOTES

It is up to the calling routine to specify how many arguments
there are, since it is not always possible to determine this
from the stack frame.

For example, execl is passed a zero pointer to signal the end
of the list. Printf can tell how many arguments are there by
the format.

(Printed Dec.1989) Page 2

y
s
l

18
5

VARARGS(5) (Miscellaneous) VARARGS(5)

It is non-portable to specify a second argument of char, short,
or float to va_arg, since arguments seen by the called func-
tion are not char, short, or float. C converts char and short

arguments to int and converts float arguments to double
before passing them to a function.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

9
8
1

18
7

INTRO(6) (Games) INTRO(6)

NAME

intro — Introduction to games.

DESCRIPTION

This section describes the recreational and educational pro-
grams found in the directory /usr/games.

The use of these programs may be rejected during business
hours by using the cron(1M) if so decided by the system
administrator.

BUGS :

Many of these programs contains bugs, but little or no
attempt will be made to correct these bugs.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

9
8
h

18
9

ALIENS(6) (Games) ALIENS(6)

NAME

aliens — the alien invaders attack the earth.

SYNOPSIS

usr/games/aliens
usr/games/alienslog

DESCRIPTION

aliens is a Supermax version of Space Invaders. The program
is almost self-explanatory.

alienslog displays the high-score list.

FILES

/usr/games/lib/alienslog Score file.

BUGS

The program may not run correctly on terminals running
slower than 9600 baud.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

O
6
1

19
1

ARITHMETIC(6) (Games) ARITHMETIC(6)

NAME

arithmetic — provides drill in number facts

SYNOPSIS

/usr/games/arithmetic [+] [range]

DESCRIPTION

Page 1

arithmetic types out simple arithmetic problems and waits for
an answer to be typed in. If the answer is correct you will
receive the word Right and be given a new problem. If the
answer is wrong you will receive the word What, and the pro-
gram will wait for another answer. After every twentieth
question statistics on correctness and respond time used will
be shown on the screen.

Type an interrupt (CTRL/C) to quit the program.

The first optional determines the kind of program to be gen-
erated. +, —, x and /, respectively will cause addition, sub-
traction, multiplication and division questions to be gen-
erated. One or more characters can be given. If more than
one character is given, the different types of questions will be
mixed in random order. Default is +

range is a decimal number. All addends, subtrahends,

differences, multiplicands, divisors and quotients will be less

than or equal to the value of range. Default range is 10.

At start all numbers less than or equal to range are equally
likely to appear. If the respondent makes a mistake, the
numbers in a missed question becomes more likely to reap-
pear.

As a matter of educational philosophy the program will not
submit correct answers, since the trainee in principle should
be able to figure out the correct answers. The program is
intended to provide drill for someone beyond the first school-
days and not to teach number fact. de novo. For almost all
users the relevant statistics should be consumed time per
question, and not the correct percentage.

(Printed Dec.1989)

This page is intentionally left blank

o
6
L

19
3

BACK(6) (Games) BACK(6)

NAME

back — The game of backgammon

SYNOPSIS

/usr/games/back

DESCRIPTION

back is a program which provides a partner for the game of
backgammon. It is designed to be played at three different
levels of skill, one of which you must select. In addition to
selecting the opponent’s level you may also indicate, that you
want to throw your own dice during your turns, (for the
supersticious players!). You will also be given the opportunity
to make the first move. The practice if each player throwing
one dice for the first move is not incorporated.

The points are numbered 1—24 with 1 being ’white’s extreme
inner table; 24 being ’brown’s inner table; 0 (zero) being the
bar for removed ’white’ pieces, and 25 the bar for brown’.

For details on how moves are expressed, type y when back at

the beginning of the game asks if you want Instructions?.

When back first asks Move? you may type ? to get a list of
the possible move options other than entering your numerical
move.

BUGS

You should always use the ’move’s in the order indicated by
the display of the dice. If your dice shows the figures of 4 and
2, use the number 4 first.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

v
6
L

19
5

BJ(6) (Games) BJ(6)

NAME

bj — The game of Black Jack

SYNOPSIS

/usr/games/bj

DESCRIPTION

bj is a serious attempt of simulating the dealer in the game of
Black Jack (or Twenty—One) as might be found in Reno in
Las Vegas. The following rules apply:

The bet is $2 on every hand:

A player ’natural” (Black Jack) pays $3. A dealer
natural” looses $2. Both dealer and player naturals
are a push” (no money exchange).

If the dealer has an ace up the player is allowed to
make an “insurance” bet against the chance of a
dealer natural. If the bet is not taken the play will
resume as normal. If the bet is taken, it is considered

as a ’side bet’, where the player wins $2 if the dealer
has a natural, or, if the dealer does not have any

natural, the players loss will be $1.

If the player receives two cards showing the same
value, he is allowed to ”double”. This means the

player will be allowed to play two hands, each with
one of these cards. (The bet is also doubled with $2

on each hand).

If a dealt hand has a total of 10 or 11 the player is
allowed to “double down”. The bet may be doubled
from $2 to $4, and the player will receive exactly one
more card on that hand.

During normal play the player may “hit” (draw a

card), as long as the total do not go beyond ’twenty—
one’. If the player ”busts” (exceeds ’twenty—one’),
then the dealer wins the bet.

When the player ”’stands” (decides not to ”hit”), the
dealer hits until he attains a total of 17 or more. If
the dealer ”busts” the player wins the bet.

Page 1 (Printed Dec.1989)

(Games) BJ(6)

If both player and dealer stands, then the one with
the highest total winds. A tie is a push.

The machine deals and keeps score. The following questions
will be asked at appropriate times. Each question is answered
by either a y followed by <Return> for ’yes’, or just by
<Return> indicating ’no’.

2 (meaning:”Do you want a hit?"”)

Insurance?

Double down?

Every time the deck is shuffled, the dealer states and the
“action” (total bet) and “standing” (total won or lost) is
printed.

To quit the program and exit, type an interrupt (CTRL/C)
and the action and standing will be printed.

(Printed Dec.1989) Page 2

9
6
L

19
7

 —[—_—_
CRAPS(6) (Games) CRAPS(6)

NAME

craps — The game of craps

SYNOPSIS

/usr/games/craps

DESCRIPTION

craps is a form of the Game of Craps as played in Las Vegas.
The program simulates the roller, while the user (the player)
places the bets. The player may at any time choose to bet
with the roller, or the House. A bet of a negative amount is
taken as the bet with the House. Any other bet is a bet with
the roller.

The player begins with a ”bankroll” of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player’s bankroll. Any bet
over the total bankroll is rejected and the program prompts
with ”bet?” until a proper bet is made.

Once the bet is accepted the roller throws the dice. The fol-
lowing rules apply, (the player wins or loses depending on
whether the bet is placed with the roller or with the House.
The odds are even). The first roll is the roll immediately fol-
lowing a bet.

1. On the first roll:

7 or 11 wins for the roller,

2, 3 or 12 wins for the House,

any other number is the point, roll again
(Rule 2 applies).

2. On subsequent rolls:

point roller wins,

7 House wins,

any other number roll again.

Page 1 (Printed Dec.1989)

 = ESS =a
CRAPS(6) (Games) CRAPS(6)

If a player loses the entire bankroll, the House will offer to

lend the player an additional $2,000. The program will

prompt:

marker?

A ”yes” (or ”y”) consummates the loan. Any other reply ter-

minates the game.

If a player owes the House money, the House will before a bet

is placed, remind the player how many markers are outstand-

ing.

If at any time the bankroll of a player with outstanding

markers, exceeds $2,000 the House asks:

Repay marker?

A reply of ”yes” (or ”y”) indicates the player’s willingness to
repay the loan. If only one marker is outstanding, it is

immediately repaid. If, however, more than one marker are
outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number

is entered (or just a <RETURN>), an appropriate message

is printed and the program will prompt with "How many?”

until a valid number is entered.

If a player accumulates 10 markers, (a total of $20,000 bor-

rowed from the House), the program informs the player of

the situation and exits.

Should the bankroll of a player, who has outstanding mark-

ers, exceed $50,000, the total amount of money borrowed will

automatically be repaid to the House.

Any player who accumulates $100,000 or more breaks the

bank. The program then prompts:

New game?

to give the House a chance to win its money back.

(Printed Dec.1989) Page 2

8
6
1

19
9

 0 eS
CRAPS(6) (Games) CRAPS(6)

Any reply other than ”yes” is considered as ”no”, (except in
the case of ”bet?” or ”How many?”).

To exit the program use an interrupt (CTRL/C) or CTRL/D.
The program will indicate whether the player won, lost or
broke even.

MISCELLANEOUS

Page 3

The random number generator for the dice numbers uses the
seconds from the time of the day. Depending of system usage
these numbers may sometimes seem strange, but occurences
of this type in a real dice situation are not uncommon.

(Printed Dec.1989)

This page is intentionally left blank

0
0
2

20
1

FISH(6) (Games) FISH(6)

NAME

fish — play the game of ”Go Fish”

SYNOPSIS

/usr/games/fish

DESCRIPTION

fish plays the game of ”Go Fish”, a children’s card game. The
object is to accumulate ’books’ of 4 cards with the same face

value. The players alternate turns. Each turn begins with one
player selecting a card from his hand, and asking the other
player for all cards of that face value. If the other player has
one or more cards of that face value on his hand, he gives
them to the first player and the first player makes another
request.

Eventually, the first player asks for a card which is not in the
second player’s hand. The second player then replies ”*Go
Fish”! The first player then draws a card from the ’pool’ of
undealt vards. If this is the card requested by the first player,
he draws again.

When a book is made, either through drawing or through
requesting, the cards are laid down and no further action
takes place with that face value.

To play the computer simply make guesses by typing: a, 2, 3,
4, 5, 6, 7, 8, 9, 10, j, q, or k, when asked. By hitting

<Return> you may obtain information about the size of the
hand; the pool and about achieved books.

Typing a ”p” as the first guess puts you into a ’pro’ level; the
default is pretty dumb.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

2
0
a

20
3

————

HACK(6) (Games) HACK(6)

NAME

hack — exploring The Dungeons of Doom

SYNOPSIS

/usr/games/hack [| —TSKFCW] [—u playername |

/usr/games/hack —s [—TSKFCW |]

/usr/games/hack —s [playernames |

DESCRIPTION

Page 1

hack is a display oriented Dungeons and Dragons-like game.

To get started you really need two commands. The command
? will give you a list of all available commands, and the com-
mand / will identify what you see on the screen.

To win the game, (as opposed to merely playing to bet other
peoples high scores), you must locate the Amulet of Yendor,
which is somewhere below the 20th level of the Dungeon and
get it out. Nobody has achieved this yet, and if somebody does
he will probably go down in history as a hero among heros.

When the game ends, either by your ‘death’; if you quit, or if
you escape from the caves, hack will show you (a fragment) of
the list of top scores.

The scoring is based on many aspects of your behaviour, but
a rough estimate is obtained by taking the amount of gold
you have found in the cave, plus four times your (real) experi-
ence,

Precious stones may be worth a lot of gold when brought to
the exit. There is a 10% penalty fee for getting yourself killed.

The —u playername option supplies the answer to the ques-
tion ”Who are you?

The options —T, —S, —K, —F, —C, —W may be used to

supply the answer to the question ”What kind of character
wad”

The —s option will print out a list of your scores. It may be
followed by an option —T, —S, —K, —F, —C, —W to print

the scores of Tourists, Speleologists, Knights, Fighters,

(Printed Dec.1989)

cde

HACK(6) (Games) HACK(6)

Cavemen, and Wizards, respectively. It may alternatively be
followed by one or more players names to print the scores of
the players mentioned.

AUTHORS

Jay Fenlason (+ Kenny Woodland, Mike Thome and John
Payne), wrote the original ’hack’, very much like rogue, (but
not full of bugs).

Andries Brouwer continously deformed their sources into the
current. version — in fact an entirely different game.

FILES

In the directory /usr/games/lib/hackdir you will find all
files used by hack located. The file /usr/games/hack itself
is a shell script; it can be edited to move the files used by
hack. The files in /usr/games/lib/hackdir includes:

hack The hack program.

data, rumors Data files used by hack.

help, hh Help data files.

record The list of top scores.

save A subdirectory containing the saved games.

bones_dd Descriptions of the ghost and belongings of
a deceased adventurer.

xlock.dd Description of a Dungeon level.

safelock Lock file for xlock.

record_lock Lock file for record.

ENVIRONMENT

USER or LOGNAME Your login name.

HOME Your home directory.

SHELL Your shell.

TERM The type of your terminal.

(Printed Dec.1989) Page 2

0
2

20
5

HACK(6) (Games) HACK(6)

HACKPAGER, PAGER Pager used instead of default
pager.

MAIL Mailbox file.

MAILREADER Reader used instead of default
(probably /bin/mail or
/usr/ucb/mail).

HACKDIR Playground.

HACKOPTIONS String predefining several hack
options (see help file).

BUGS

Probably infinite.

Page 3 (Printed Dec.1989)

This page is intentionally left blank

9
0
¢

20
7

LIFE(6) (Games) LIFE(6)

NAME

life — play the Game of Life

SYNOPSIS

/usr/games/life [—r]

DESCRIPTION

life is a pattern generating game set up for interactive use on

a video terminal. The way it operates is: You use a series of
commands to set up a pattern on the screen and let it gen-
erate further patterns from that pattern.

The algorithm used is: For each square in the matrix, look at
it and its eight adjacent neighbours. If the present square is

not occupied and exactly three of its neighbour squares are
occupied, then that square will be occupied in the next pat-
tern. If the present is occupied and two or three of its neigh-

bour squares are occupied, then that square will be occupied

in its next pattern.

The edges of the screen are normally treated as an unoccu-
pied void. If you specify the —r option on the command line,
the screen is treated as a sphere; that is, the top and bottom
lines are considered adjacent and, the left and right columns
are considered adjacent.

The pattern generation number and the number of occupied
squares are displayed in the lower left corner.

Below is a list of commands available to the user. An #
stands for any number. An ~* followed by a capital letter
represents a control character.

#,#a Add a block of elements. The first number specifies
the horizontal width. The second number specifies
the vertical width. If a number is not specified, the
default is 1.

#e Step through the # patterns. If no number is
specified, step forever. The operation can be aborted
by typing ’rubout’ (delete).

Page 1 (Printed Dec.1989)

LIFE(6)

#,#d

#,#2

#,#y

(Games) LIFE(6)

Delete a block of elements. The first number specifies
the horizontal width. The second number specifies
the vertical width. If a number is not specified, the °
default is 1.

Generate a small flyer at the present location. The
number (modulo 8) determines the direction.

Move to absolite screen location. The first number
specifies the horizontal location. The second number
specifies the vertical location. If a number is not
specified, the default is 0 (zero).

Move left # steps. If no number is specified, the
default is 1.

Move down # steps. The default is 1.

Move up # steps. The default is 1.

Move right # steps. The default is 1.

Step through the next # patterns. If no number is
specified, generate the next pattern. The operation
can be aborted by typing ’rubout’ (delete).

Put the last yanked or deleted block at the present
location.

Quit.

Yank a block of elements. The first number specifies
the horizontal width. The second number specifies
the vertical width. If a number is not specified, the
default is 1.

Clear the pattern.

Generate a big flyer at the present location. The
number (modulo 8) determines the location.

Move to the left margin.

Move to the bottom margin.

Move to the top margin.

(Printed Dec.1989) Page 2

8
0
¢

LIFE(6)

AUTHOR

(Games) LIFE(6)

Move to the right margin.

Move left # steps. If no number is specified, the
default is 1.

Move down # steps. The default is 1.

Move up # steps. The default is 1.

Move right #steps. The default is 1.

Redraw the screen. This is used for occations where

the terminal screws up.

Repeat the last add (a) or delete (d) operation.

Repeat the last move, (h, j, k, 1) operation.

Asa Romberger.

BUGS

20
9

The following features are planned, but not implemented:

#,#8 Save the selected area in a file.

R

m

!

Page 3

Restore from a file.

Generate a macro command.

Shell escape.

Edit a file.

Input commands from a file.

(Printed Dec.1989)

This page is intentionally left blank

O
l
e

21
1

ROBOTS(6) (Games) ROBOTS(6)

NAME

robots — escape from the robots

SYNOPSIS

/usr/games/robots

DESCRIPTION

The object of the game robots is to move around inside a box
on the screen without getting eaten by the robots chasing
you, and without bumping or running into anything.

If a robot runs into another robot while chasing you, they
crash and leave a junk heap.

You start out with 10 robots each worth 10 points. If you
defeat all of them, you get 20 robots each worth 20 points.
The 30 robots each worth 30 points, etc., until you get eaten!!

The game keeps track of the top ten scores and prints these
top ten scores at the end of the game.

The valid commands are described on the screen.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

ol
e

21
3

TTT(6) (Games) TTT(6)

NAME

ttt — the game of Tic— Tac— Toe

SYNOPSIS

/usr/games/ttt [—ie]

DESCRIPTION

The tét is the © and X game, really popular in the first grade.
The ttt is an educational program never making the same
mistake twice.

Although it learns — it learns slowly. The program must
loose nearly 80 games to know the entire game completely.
Specifying the —e option will cause the program to learn
somewhat faster.

The —i option will cause the ¢éf to print out instructions.

Terminate the program by pressing the interrupt key
(CTRL/C).

tit reads the file /usr/games/ttt.a for knowledge about the
game. It creates in the current directory a new file ttt.a con-
taining its previous knowledge plus some added knowledge.
Copying ttt.a into the /usr/games/ttt.a makes fit smarter
when played the next time.

FILES

/usr/games/ttt.a, ttt.a

Page 1 (Printed Dec.1989)

This page is intentionally left blank

b
l
e

21
5

INTRO(7) (Special Files) INTRO(7)

NAME

intro — introduction to special files

DESCRIPTION

Page 1

This section describes various special files that refer to
specific hardware peripherals, and operating system device
drivers. STREAMS [see intro(2)] software drivers, modules

and the STREAMS-generic set of ioctl(2) system calls are also
described.

For hardware related files, the names of the entries are gen-
erally derived from names for the hardware, as opposed to
the names of the special files themselves. Characteristics of
both the hardware device and the corresponding operating
system device driver are discussed where applicable.

Where file names are given as, for example,

/dev/dsk/u#c#s#, the number signs (#) should be replaced
by decimal numbers.

Many entries specify the device number of each device. The
device number is a 2-byte entity whose value is derived from
the numbers that replace the number signs in the device
names. The most significant byte of the device number is
called the major device number. The least significant byte is
called the minor device number.

(Printed Dec.1989)

This page is intentionally left blank

91
2

21
7

CIOC(7) (Special Files) CIOC(7)

NAME

cioc — the CIOC devices

SYNOPSIS

/dev/cioc/u#c#s#
/dev/ciocctl/u#

DESCRIPTION

A device with the name /dev/cioc/uNcCsS, where N is a
number from 0 to 15, C is a number from 0 to 1, and S isa
number from 0 to 31, is a character-special file with device
number 0x8005 + (VN <<10)+(C<<9)+(S<<4) (major device
number 128+N*«4+C+#2+S/16, minor device number
(S%16) *16+5). This device is slot number S of the cioc-
data-device located on CIOC number N channel number C.

A device with the name /dev/ciocctl/uN, where N is a
number from 0 to 15 is a character-special file with device
number 0x8014+(N<<10) (major device number 128+ WN * 4,
minor device number 20). This device is the cioc-control-
device located on CIOC number N.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

g
l
e

21
9

CLONE(7) (Special Files) CLONE(7)

NAME

clone — open any minor device on a STREAMS driver

DESCRIPTION

clone is a STREAMS software driver that finds and opens an
unused minor device on another STREAMS driver. The minor
device passed to clone during the open is interpreted as the
major device number of another STREAMS driver for which
an unused minor device is to be obtained. Each such open
results in a separate stream to a previously unused minor
device.

The clone driver consists solely of an open function. This
open function performs all of the necessary work so that sub-
sequent system calls (including close(2)) require no further
involvement of clone.

clone will generate an ENXIO error, without opening the dev-
ice, if the minor device number provided does not correspond
to a valid major device, or if the driver indicated is not a
STREAMS driver.

CAVEATS

Multiple opens of the same minor device cannot be done
through the clone interface. Executing stat(2) on the file sys-
tem node for a cloned device yields a different result from
executing fstat(2) using a file descriptor obtained from open-
ing the node.

SEE ALSO

Page 1

log(7).
STREAMS Programmer’s Guide.

(Printed Dec.1989)

This page is intentionally left blank

0
c
e

22
1

DISK(7) (Special Files) DISK(7)

NAME

disk — disks and tapes

SYNOPSIS

/dev/dsk/u#c#s#
/dev/dsk/u#c#

/dev/flop
/dev/miniflop
/dev/stream

etc.

DESCRIPTION

Connected to the Supermax computer are a number of disks.
Typically, such disks are either floppy disks, magnetic tapes,
or hard disks (Winchester disks). Hard disks are normally
partitioned into smaller so-called sub-disks [see chlds(1M) and
Ll _disk(2)].

The user sees only so-called logical disks. A logical disk is
either a removable disk (floppy disk, streamer tape) or a sub-
disk on a hard disk.

A device with the name /dev/dsk/uNcCsS, where N is a
number from 0 to 15, C is a number from 0 to 63, and S isa
number from 0 to 16, is a block-special file with device
number 0x0000+(N<<10)+(C<<4)+S (major device
number N*4+(C/16, minor device number (C%16)*16+S).
This device is sub-disk number S of the disk connected to
CPU number N (typically, a DIOC) channel number C.

The device name /dev/dsk/uNcC is used instead of
/dev/dsk/uNcCsS, for disks that are not partitioned into
sub-disks.

It is customary to create links with mnemonic names such as,

for example, /dev/flop and /dev/stream to the relevant
disks.

The channel numbers are likely to change in future releases
of the Supermax Operating System, but at present they are:

Page 1 (Printed Dec.1989)

DISK(7)

be
h

be
d

et

=

A
A
R

S
S
E

S
w
m
I
y
s
A
h
H
O
N
E

17:

(Special Files) DISK(7)

First IMB 8" floppy
Second 1MB 8” floppy
First 560KB 5%" floppy
Second 560KB 5%” floppy
First IBM compatible 8” floppy
Second IBM compatible 8” floppy
Streamer tape
First hard disk on first controller

Second hard disk on first controller

First hard disk on second controller

Second hard disk on second controller

First hard disk on third controller

First hard disk on fourth controller

First hard disk on fifth controller

First hard disk on sixth controller

Magtape (low density)
Magtape (high density)

The following ioctl(2) requests can be used with disks. The
symbolic names for the requests can be found in the
<sys/diskio.h> and <sys/ioctl.h> header files.

W_CHECK

D_CACHE

(Printed Dec.1989)

This request turns read-after-write check off
and on. The argument arg is either 0, 1 or
2. If arg is 0, read-after-write check is
turned off (the default setting). If arg is 1,
read-after-write check is turned on. If arg is
2, read-after-write check is left unchanged.
The izoctl(2) function will in all cases return
the old value of the read-after-write check
bit. The calling process must be super-user
in order to perform this system call.

This request turns the disk cache off and on.
The argument arg is either 0, 1 or 2. If arg
is 0, the disk cache is turned off (the default

setting for swap disks). If arg is 1, the disk
cache is turned on (the default setting for
disks that are not swap disks). If arg is 2,
the disk cache is left unchanged. The

Page 2

a
o
e

22
3

DISK(7)

Page 3

DISK_FORMAT

DYN STAT

TAPE EOF

TAPE_RWIND

(Special Files) DISK(7)

ioctl(2) function will in all cases return the
old value of the the disk cache bit. The cal-
ling process must be super-user in order to
perform this system call.

This request causes the disk to be format-
ted. The argument arg is ignored. Only
floppy disks can be formatted in this way.
The calling process must be super-user in
order to perform this system call.

This request returns the value of the deleted
data mark on IBM-compatible floppy disks.
The argument arg is ignored. If the disk is
an IBM-compatible floppy disk and the last
read-command read a sector with a deleted
data mark, the ioctl(2) function will return
1, otherwise it will return 0.

This request. causes an end-of-file mark to
be written to a tape.

This request causes a tape to be rewound.

TAPE RETENSION

This request causes a retension operation on
a streamer tape.

(Printed Dec.1989)

This page is intentionally left blank

v
e
c

22
5

ERROR(7) (Special Files) ERROR(7)

NAME

error — the Operating System error device

SYNOPSIS

#include <sys/errorio.h>

/dev/error

DESCRIPTION

The device with the name /dev/error is a character-special
file with device number 0x8004 (major device number 128,
minor device number 4).

This is a read-only device, from which records of a fixed
length can be read. These records give information about
events that occur in the operating system and which the sys-
tem administrator should know about.

The records read have the structure errrec defined in the

<sys/errorio.h> header file. Read requests for fewer bytes
than the length of such a record are illegal. A read request
will never return more than one record at a time.

Reading is destructive, once a record has been read, it cannot

be read again; and positioning within /dev/error is meaning-
less.

If the operating system has no error information available
when the read command is issued, the read will pause until
information becomes available, unless the O_NDELAY [see
open(2) and fenil(2)] flag is specified.

SEE ALSO

Page 1

errlog(1M).

(Printed Dec.1989)

This page is intentionally left blank

9
2
2

22
7

——

KMEM(7) (Special Files) KMEM(7)

kmem — the kernel memory devices

SYNOPSIS

/dev/kmem

/dev/kmem0, /dev/kmem1, /dev/kmem2, ...,
/dev/kmem14, /dev/kmem15

DESCRIPTION

The device with the name /dev/kmem is a character-special
file with device number 0x8012 (major device number 128,
minor device number 18).

From position 0 and up this device refers to the kernel
memory of the MCU on which the calling process is executing.
From position 0xe00000 and up this device refers to kernel
memory that is common to all MCUs. The structure compart,
defined in the <sys/compart.h> header file, describes the
data located from position 0xe00000 and up.

Data cannot be written to /dev/kmem.

A device with the name /dev/kmemN, where N is a number
from 0 to 15 is a character special file with device number
0x8002+(N<<10) (major device number 128+N*4, minor
device number 2).

From position 0 and up this device refers to the kernel
memory of CPU number N.

Data can generally not be written to /dev/kmemN,

SEE ALSO

smos_var(2).

(Printed Dec.1989)

This page is intentionally left blank

8
c
2

22
9

NULL(7) (Special Files) NULL(7)

NAME

null — the null device

SYNOPSIS

/dev/null

DESCRIPTION

The null device has the name /dev/null.

The null device is a character special file with device number
0x8001 (major device number 128, minor device number 1).

Data written to the null device is discarded.

Read operations from the null device always return 0 bytes.

Page 1 (Printed Dec.1989)

This page is intentionally left blank

0
&
?

23
1

PRINT(7) (Special Files) PRINT(7)

NAME

print — printers

SYNOPSIS

/dev/prt/u#c#
/dev/prt/u#c#a

/dev/print#
/dev/lp

DESCRIPTION

A device with the name /dev/prt/uNecC, where N is a
number from 0 to 15 and C is a number from 0 to 63, is a

character-special file with device number

0x8000 + (VN <<10)+(C<<4)

(major device number 128+ N*4+C/16), minor device number
(C%16)*16). This device is the printer connected to CPU
number N (typically, a SIOC) channel number C.

A device with the name /dev/prt/uNcCa, where N is a
number from 0 to 15 and C is a number from 0 to 63, is a

character-special file with device number

0x8006 + (N <<10)+(C<<4)

(major device number 128 + N*4+C/16), minor device number
(C%16)*16+6). This device is the printer associated with the
terminal connected to CPU number N (typically, a SIOC)
channel number C.

It is customary to create links with the names /dev/Ip and
/dev/print#, where # is some number, to the printers.

Printers differ from terminals in that a printer cannot be
opened if another process already has it open.

The ioctl(2) commands described in termio(7) can be used

with printers.

SEE ALSO

Page 1

term(7), termio(7).

(Printed Dec.1989)

This page is intentionally left blank

t4
2r
4

23
3

SA(7) (Special Files) SA(7)

NAME

SA — devices administered by System Administration

DESCRIPTION

The files in the directories /dev/SA (for block devices) and
the /dev/rSA (for raw devices) are used by System Adminis-
tration to access the devices on which it operates. For dev-
ices that support more than one partition (like disks) the
/dev/(r)SA entry is linked to the partition that spans the
entire device. Not all /dev/(r)SA entries are used by all Sys-
tem Administration commands.

FILES

/dev/SA
/dev/rSA

SEE ALSO

sysadm(1).

Page 1 (Printed Dec.1989)

This page is intentionally left blank

ve
z?

23
5

SP(7) (Special Files) SP(7)

NAME

sp — STREAMS pipe

SYNOPSIS

/dev/sp

DESCRIPTION

sp is a STREAMS pipe. It can be used to provide a bi-
directional pipe between two processes. The pipe is imple-
mented used the STREAMS mechanism.

/dev/sp is a clone device with device number Oxc0cl (major
device number 192, minor device number 193). This clone

device selects the first unopen streams pipe device.

In order to create a pipe between two file descriptors, a pro-
cess must open /dev/sp twice (yielding file descriptors fdl
and fd2) and then execute the following code:

#include <sys/types.h>
#include <stropts.h>

struct strfdinsert fdi;

long dummy;

fdi.databuf.maxlen = fdi.databuf.len = -1;

fdi.databuf.buf = 0;

fdi.ctlbuf.maxlen = fdi.ctlbuf.len = 4;

fdi.ctlbuf.buf = (caddr_t)&dummy;

fdi.offset = 0;

fdi.fildes = fd2;

fdi.flags 0;

ioctl (fdl, I_FDINSERT, &fdi);

After this, fd1 and fd2 will be the two ends of a bi-directional
Pipe.

Page 1 (Printed Dec.1989)

 ES —_—_—
SP(7) (Special Files) SP(7)

SEE ALSO

STREAMS Primer

pipe(2), streamio(7).

(Printed Dec.1989) Page 2

9€
e

23
7

 i: eee
STREAMIO(7) (Special Files) STREAMIO(7)

NAME

streamio — STREAMS ioctl commands

SYNOPSIS

#include <stropts.h>
int ioctl (fildes, command, arg)

int fildes, command;

DESCRIPTION

STREAMS [see intro(2)] ioctl commands are a subset of
toctl(2) system calls which perform a variety of control func-
tions on streams. The arguments command and arg are
passed to the file designated by fildes and are interpreted by
the stream head. Certain combinations of these arguments
may be passed to a module or driver in the stream.

fildes is an open file descriptor that refers to a stream. com-
mand determines the control function to be performed as
described below. arg represents additional information that
is needed by this command. The type of arg depends upon
the command, but it is generally an integer or a pointer to a
command-specific data structure.

Since these STREAMS commands are a subset of ioctl, they
are subject to the errors described there. In addition to those
errors, the call will fail with errno set to EINVAL, without
processing a control function, if the stream referenced by
fildes is linked below a multiplexor, or if command is not a
valid value for a stream.

Also, as described in ioctl, STREAMS modules and drivers can

detect errors. In this case, the module or driver sends an

error message to the stream head containing an error value.
This causes subsequent system calls to fail with errno set to
this value.

COMMAND FUNCTIONS

The following ioctl commands, with error values indicated,
are applicable to all STREAMS files:

I PUSH Pushes the module whose name is pointed to by
arg onto the top of the current stream, just

Page 1 (Printed Dec.1989)

 ee
STREAMIO(7)

1 POP

I LOOK

1 FLUSH

(Printed Dec.1989)

(Special Files) STREAMIO(7)

below the stream head. It then calls the open
routine of the newly-pushed module. On
failure, errno is set to one of the following
values:

[EINVAL] Invalid module name.

[EFAULT] arg points outside the allocated
address space.

[ENXIO] Open routine of new module
failed.

[ENXIO] Hangup received on fildes.

Removes the module just below the stream
head of the stream pointed to by fildes. arg
should be 0 in an I_POP request. On failure,
errno is set to one of the following values:

[EINVAL] No module present in the stream.

[ENXIO] Hangup received on fildes.

Retrieves the name of the module just below
the stream head of the stream pointed to by
fildes, and places it in a null terminated charac-
ter string pointed at by arg. The buffer pointed
to by arg should be at least FMNAMESZ+1
bytes long. An [#include <sys/conf.h>]
declaration is required. On failure, errno is set
to one of the following values:

(EFAULT] arg points outside the allocated
address space.

[EINVAL] No module present in stream.

This request flushes all input and/or output
queues, depending on the value of arg. Legal
arg values are:

Page 2

tt
ar

d

23
9

————— ——————————

STREAMIO(7)

Page 3

| SETSIG

(Special Files) STREAMIO(7)

FLUSHR Flush read queues.

FLUSHW Flush write queues.

FLUSHRW _ Flush read and write queues.

On failure, errno is set to one of the following
values:

[ENOSR] Unable to allocate buffers for
flush message due to insufficient
STREAMS memory resources.

[EINVAL] Invalid arg value.

[ENXIO] Hangup received on fildes.

Informs the stream head that the user wishes
the kernel to issue the SIGPOLL signal [see sig-
nai(2) and sigset(2)] when a particular event
has occurred on the stream associated with
fildes. 1 SETSIG supports an asynchronous pro-
cessing capability in STREAMS. The value of
arg is a bitmask that specifies the events for
which the user should be signaled. It is the
bitwise-OR of any combination of the following
constants:

S INPUT A non-priority message has
arrived on a stream head read
queue, and no other messages

existed on that queue before this
message was placed there. This
is set even if the message is of
zero length.

S_HIPRI A priority message is present on

the stream head read queue.
This is set even if the message is
of zero length.

S OUTPUT The write queue just below the
stream head is no longer full.
This notifies the user that there

(Printed Dec.1989)

c=

 seer eens el
STREAMIO(7)

1 GETSIG

(Printed Dec.1989)

(Special Files) STREAMIO(7)

is room on the queue for sending
(or writing) data downstream.

S MSG A STREAMS signal message that
contains the SIGPOLL signal has
reached the front of the stream
head read queue.

A user process may choose to be signaled only
of priority messages by setting the arg bitmask
to the value S_HIPRI.

Processes that wish to receive SIGPOLL signals

must explicitly register to receive them using
ISETSIG. If several processes register to

receive this signal for the same event on the
same Stream, each process will be signaled
when the event occurs.

If the value of arg is zero, the calling process
will be unregistered and will not receive further
SIGPOLL signals. On failure, errno is set to one
of the following values: :

[EINVAL] arg value is invalid or arg is zero
and process is not registered to
receive the SIGPOLL signal.

{[EAGAIN]} Allocation of a data structure to

store the signal request failed.

Returns the events for which the calling pro-
cess is currently registered to be sent a SIG-
POLL signal. The events are returned as a bit-
mask pointed to by arg, where the events are
those specified in the description of ISETSIG
above. On failure, errno is set to one of the fol-

lowing values:

[EINVAL] Process not registered to receive

the SIGPOLL signal.

Page 4

O
v
e

24
1

—_——————————

STREAMIO(7)

Page 5

L FIND

I PEEK

(Special Files) STREAMIO(7)

(EFAULT] arg points outside the allocated
address space.

Compares the names of all modules currently
present in the stream to the name pointed to by
arg, and returns 1 if the named module is
present in the stream. It returns 0 if the
named module is not present. On failure, errno
is set to one of the following values:

[EFAULT] arg points outside the allocated
address space.

[EINVAL] arg does not contain a_ valid
module name.

Allows a user to retrieve the information in the
first message on the stream head read queue
without taking the message off the queue. arg
points to a strpeek structure which contains the
following members:

struct strbuf ctlbuf;

struct strbuf databuf;

long flags;

The maxlen field in the ctlbuf and databuf
strbuf structures [see getmsg(2)] must be set to
the number of bytes of control information
and/or data information, respectively, to
retrieve. If the user sets flags to RS _HIPRI,
I PEEK will only look for a priority message on
the stream head read queue.

I PEEK returns 1 if a message was retrieved,
and returns 0 if no message was found on the
stream head read queue, or if the RS_HIPRI flag
was set in flags and a priority message was not

present on the stream head read queue. It does
not wait for a message to arrive. On return,
ctlbuf specifies information in the control
buffer, databuf specifies information in the data

(Printed Dec.1989)

| coe

 Se
STREAMIO(7) (Special Files) STREAMIO(7)

buffer, and flags contains the value 0 or
RS_HIPRI. On failure, errno is set to the follow-
ing value:

[EFAULT] arg points, or the buffer area
specified in ctlbuf or databuf is,
outside the allocated address
space.

[EBADMSG] Queued message to be read is not
valid for | PEEK

ISRDOPT _ Sets the read mode using the value of the argu-
ment arg. Legal arg values are:

RNORM _sByte-stream mode, the default.

RMSGD Message-discard mode.

RMSGN — Message-nondiscard mode.

Read modes are described in read(2). On
failure, errno is set to the following value:

[EINVAL] arg is not one of the above legal
values.

IGRDOPT Returns the current read mode setting in an int
pointed to by the argument arg. Read modes
are described in read(2). On failure, errno is

set to the following value:

[EFAULT] arg points outside the allocated
address space.

I_NREAD Counts the number of data bytes in data blocks
in the first message on the stream head read
queue, and places this value in the location
pointed to by arg. The return value for the
command is the number of messages on the
stream head read queue. For example, if zero
is returned in arg, but the iocél return value is
greater than zero, this indicates that a zero-
length message is next on the queue. On

(Printed Dec.1989) Page 6

o
v
e

24
3

——————————————

STREAMIO(7)

Page 7

I_FDINSERT

(Special Files) STREAMIO(7)

failure, errno is set. to the following value:

[EFAULT] arg points outside the allocated
address space.

Creates a message from user specified buffer(s),
adds information about another stream and
sends the message downstream. The message

contains a control part and an optional data
part. The data and control parts to be sent are
distinguished by placement in separate buffers,
as described below.

arg points to a strfdinsert structure which con-
tains the following members:

struct strbuf ctlbuf;

struct strbuf databuf;

long flags;

int fildes;

int offset;

The len field in the ctlbuf strbuf structure [see
putmsg(2)] must be set to the size of a pointer
plus the number of bytes of control information
to be sent with the message. fildes in the
strfdinsert structure specifies the file descriptor
of the other stream. offset, which must be
word-aligned, specifies the number of bytes
beyond the beginning of the control buffer
where I_FDINSERT will store a pointer. This
pointer will be the address of the read queue
structure of the driver for the stream
corresponding to fildes in the strfdinsert struc-
ture. The len field in the databuf sirbuf struc-
ture must be set to the number of bytes of data

information to be sent with the message or zero
if no data part is to be sent.

flags specifies the type of message to be created.
A non-priority message is created if flags is set

(Printed Dec.1989)

c=

——{ che |
STREAMIO(7)

(Printed Dec.1989)

(Special Files) STREAMIO(7)

to 0, and a priority message is created if flags is
set to RS_HIPRI. For non-priority messages,
I FDINSERT will block if the stream write
queue is full due to internal flow control condi-
tions. For priority messages, I FDINSERT does
not block on this condition. For non-priority
messages, I FDINSERT does not block when the
write queue is full and O_NDELAY is set.
Instead, it fails and sets errno to EAGAIN.

I_FDINSERT also blocks, unless prevented by
lack of internal resources, waiting for the avai-
lability of message blocks in the stream, regard-
less of priority or whether O NDELAY has been
specified. No partial message is sent. On
failure, errno is set to one of the following
values:

[EAGAIN] A non-priority message was
specified, the O_NDELAY flag is
set, and the stream write queue
is full due to internal flow control
conditions.

[ENOSR] Buffers could not be allocated for

the message that was to be
created due to _ insufficient

STREAMS memory resources.

[EFAULT] arg points, or the buffer area
specified in ctlbuf or databuf is,
outside the allocated address
space.

[EINVAL] One of the following: fildes in
the sirfdinsert structure is not a
valid, open stream file descriptor;
the size of a pointer plus offset is
greater than the /en field for the
buffer specified through célptr;
offset does not specify a properly-

Page 8

b
r
e

24
5

 <<
STREAMIO(7) (Special Files) STREAMIO(7)

aligned location in the data
buffer; an undefined value is

stored in flags.

(ENXIO] Hangup received on fildes of the
ioctl call or fildes in the sérfdin-
sert structure.

[ERANGE] The len field for the buffer
specified through databuf does
not fall within the range specified
by the maximum and minimum
packet sizes of the topmost
stream module, or the len field for

the buffer specified through data-
buf is larger than the maximum
configured size of the data part of
a message, or the /en field for the
buffer specified through célbuf is
larger than the maximum
configured size of the control part
of a message.

I_FDINSERT can also fail if an error message
was received by the stream head of the stream
corresponding to fildes in the sétrfdinsert struc-
ture. In this case, errno will be set to the value

in the message.

LSTR Constructs an internal STREAMS ioctl message
from the data pointed to by arg, and sends that
message downstream.

This mechanism is provided to send user ioc#l
requests to downstream modules and drivers.
It allows information to be sent with the ioctl,

and will return to the user any information
sent upstream by the downstream recipient.
I STR blocks until the system responds with
either a positive or negative acknowledgement
message, or until the request ”times out” after

Page 9 (Printed Dec.1989)

 alll Tel
STREAMIO(7) (Special Files) STREAMIO(7)

some period of time. If the request times out,
it fails with errno set to ETIME.

At most, one I. STR can be active on a stream.
Further ISTR calls will block until the active
I STR completes at the stream head. The
default timeout interval for these requests is 15
seconds. The O NDELAY [see open(2)] flag has
no effect on this call.

To send requests downstream, arg must point

to a striocil structure which contains the follow-
ing members:

int ic_cmd; /* downstream command */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data arg */
char *ic_dp; /* ptr to data arg */

ic_cmd is the internal ioctl command intended
for a downstream module or driver and
ic_timout is the number of seconds (-1 =
infinite, 0 = use default, >0 = as specified) an
I STR request will wait for acknowledgement
before timing out. ic_len is the number of
bytes in the data argument and ic_dp is a
pointer to the data argument. The ic_len field
has two uses: on input, it contains the length
of the data argument passed in, and on return
from the command, it contains the number of
bytes being returned to the user (the buffer
pointed to by ic_dp should be large enough to
contain the maximum amount of data that any
module or the driver in the stream can return).

The stream head will convert the information
pointed to by the strioctl structure to an inter-
nal ioctl command message and send it down-
stream. On failure, errno is set to one of the
following values:

(Printed Dec.1989) Page 10

9
b
e

24
7

——————

STREAMIO(7)

I SENDFD

Page 11

(Special Files) STREAMIO(7)

(ENOSR] Unable to allocate buffers for the
ioct! message due to insufficient
STREAMS memory resources.

[EFAULT] arg points, or the buffer area
specified by ic_dp and ic_len
(separately for data sent and data
returned) is, outside the allocated

address space.

[EINVAL] ic_len is less than 0 or ic_len is
larger than the maximum
configured size of the data part of
a message or ic_timout is less
than —1.

[ENXIO] Hangup received on fildes.

[ETIME] A downstream ioctl timed out
before acknowledgement was
received.

An L_STR can also fail while waiting for an ack-
nowledgement if a message indicating an error
or a hangup is received at the stream head. In
addition, an error code can be returned in the

positive or negative acknowledgement message,

in the event the ioctl command sent down-
stream fails. For these cases, I STR will fail
with errno set to the value in the message.

Requests the stream associated with fildes to
send a message, containing a file pointer, to the
stream head at the other end of a stream pipe.
The file pointer corresponds to arg, which must
be an integer file descriptor.

I_SENDFD converts arg into the corresponding
system file pointer. It allocates a message block
and inserts the file pointer in the block. The
user id and group id associated with the send-
ing process are also inserted. This message is

(Printed Dec.1989)

coe FF

 |
STREAMIO(7)

I_RECVFD

(Printed Dec.1989)

(Special Files) STREAMIO(7)

placed directly on the read queue [see intro(2)]
of the stream head at the other end of the

stream pipe to which it is connected. On
failure, errno is set to one of the following

values:

[EAGAIN] The sending stream is unable to
allocate a message block to con-
tain the file pointer.

[EAGAIN] The read queue of the receiving
stream head is full and cannot
accept the message sent by

I SENDFD.

[EBADF] arg is not a valid, open file
descriptor.

[EINVAL] fildes is not connected to a stream
pipe.

[ENXIO] Hangup received on fildes.

Retrieves the file descriptor associated with the
message sent by an ISENDFD ioctl over a

stream pipe. arg is a pointer to a data buffer
large enough to hold an strrecufd data structure
containing the following members:

int fd;

unsigned short uid;

unsigned short gid;

char £111[8];

fd is an integer file descriptor. uid and gid are
the user id and group id, respectively, of the
sending stream.

If O_NDELAY is not set [see open(2)], I RECVFD
will block until a message is present at the
stream head. If O NDELAY is set, I RECVFD
will fail with errno set to EAGAIN if no message
is present at the stream head.

Page 12

B
r

24
9

__

STREAMIO(7) (Special Files) STREAMIO(7)

If the message at the stream head is a message

sent by an I SENDFD, a new user file descriptor
is allocated for the file pointer contained in the
message. The new file descriptor is placed in
the fd field of the strrecufd structure. The
structure is copied into the user data buffer
pointed to by arg. On failure, errno is set to
one of the following values:

[EAGAIN] A message was not present at the

stream head read queue, and the
O_NDELAY flag is set.

[EBADMSG] The message at the stream head
read queue was not a message
containing a passed file descrip-
tor.

[EFAULT] arg points outside the allocated
address space.

[EMFILE] NOFILES file descriptors are
currently open.

[ENXIO] Hangup received on fildes.

The following two commands are used for connecting and
disconnecting multiplexed STREAMS configurations.

I_LINK

Page 13

Connects two streams, where fildes is the file
descriptor of the stream connected to the multi-
plexing driver, and arg is the file descriptor of
the stream connected to another driver. The
stream designated by arg gets connected below
the multiplexing driver. I_LINK requires the
multiplexing driver to send an acknowledge-
ment message to the stream head regarding the
linking operation. This call returns a multi-
plexor ID number (an identifier used to discon-
nect the multiplexor, see I UNLINK) on success,
and a —1 on failure. On failure, errno is set to
one of the following values:

(Printed Dec.1989)

ce

 SS —_—_——
STREAMIO(7)

I UNLINK

(Printed Dec.1989)

(Special Files) STREAMIO(7)

[ENXIO] Hangup received on fildes.

[ETIME] Time out before acknowledge-
ment message was received at

stream head.

[EAGAIN] Temporarily unable to allocate
storage to perform the I_LINK.

[ENOSR] Unable to allocate storage to per-
form the ILLINK due _ to
insufficient STREAMS memory
resources.

([EBADF] arg is not a valid, open file
descriptor.

[EINVAL] fildes stream does not support

multiplexing.

[EINVAL] arg is not a stream, or is already
linked under a multiplexor.

[EINVAL] The specified link operation
would cause a "cycle” in the
resulting configuration; that is, if

a given stream head is linked into
a multiplexing configuration in
more than one place.

An I_LINK can also fail while waiting for the
multiplexing driver to acknowledge the link
request, if a message indicating an error or a
hangup is received at the stream head of fildes.
In addition, an error code can be returned in

the positive or negative acknowledgement mes-
sage. For these cases, I LINK will fail with
errno set to the value in the message.

Disconnects the two streams specified by fildes
and arg. fildes is the file descriptor of the
stream connected to the multiplexing driver.
fildes must correspond to the stream on which

Page 14

o
s
e

25
1

eee

STREAMIO(7)

SEE ALSO

(Special Files) STREAMIO(7)

the ioctl I LINK command was issued to link
the stream below the multiplexing driver. arg
is the multiplexor ID number that was returned
by the I LINK. If arg is -1, then all Streams
which were linked to fildes are disconnected.
As in I_LINK, this command requires the multi-
plexing driver to acknowledge the unlink. On
failure, errno is set to one of the following
values:

(ENXIO] ‘Hangup received on fildes.

[ETIME] Time out before acknowledge-
ment message was received at
stream head.

[ENOSR] Unable to allocate storage to per-
form the IUNLINK due to
insufficient STREAMS memory
resources.

[EINVAL] arg is an invalid multiplexor ID
number or fildes is not the
stream on which the I_LINK that
returned arg was performed.

An I_UNLINK can also fail while waiting for the
multiplexing driver to acknowledge the link
request, if a message indicating an error or a

hangup is received at the stream head of fildes.
In addition, an error code can be returned in

the positive or negative acknowledgement mes-
sage. For these cases, I UNLINK will fail with
errno set to the value in the message.

close(2), fentl(2), getmsg(2), intro(2&3), ioctl(2), open(2),

poll(2), putmsg(2), read(2), signal(2), sigset(2), write(2).

STREAMS Programmer’s Guide.

STREAMS Primer.

Page 15 (Printed Dec.1989)

ce

 cS

STREAMIO(7) (Special Files) STREAMIO(7)

DIAGNOSTICS

Unless specified otherwise above, the return value from ioctl
is 0 upon success and —1 upon failure with errno set as indi-
cated.

(Printed Dec.1989) Page 16

o
s
e

25
3

TERM(7) (Special Files) TERM(7)

NAME

term — terminals

SYNOPSIS

/dev/term/u##c#w#
/dev/term/u#c#

/dev/tty#
/dev/console

DESCRIPTION

A device with the name /dev/term/uNcCwW, where N is a
number from 0 to 15, C is a number from 0 to 63, and W is a

number from 1 to 6, is a character-special file with device
number

0x4000 + (VN <<10)+(C<<4)+W

(major device number 64+N*4+(C/16, minor device number
(C%16)*16+W). This device is window number W of the ter-
minal connected to CPU number N (typically, a SIOC) channel
number C.

A device with the name /dev/term/uNecC, where N is a
number from 0 to 15 and C is a number from 0 to 68, is

linked to the file /dev/term/uNcCwl.

It is customary to create links with the names /dev/console
and /dev/tty#, where # is some number, to the terminals.

The ioctl(2) commands described in termio(7) can be used

with terminals.

SEE ALSO

Page 1

print(7), termio(7), tty(7).

(Printed Dec.1989)

This page is intentionally left blank

p
s
2

25
5

TERMIO(7) (Special Files) TERMIO(7)

NAME

termio — general terminal interface

DESCRIPTION

All of the terminal arid printer ports use the same general
interface, no matter what hardware is involved. The

remainder of this section discusses the common features of
this interface. The term terminal will be used as a generic

term for terminals, printers or whatever else is connected to

the ports. The discussion below deals mainly with the serial
ports located on the SIOC modules of the Supermax Com-
puter; but most of what is said also applies to other terminal
and printer ports on the computer.

When a terminal file is opened, it normally causes the process

to wait until a connection is established. In practice, users’
programs seldom open terminal files; they are opened by
getty(IM) and become a user’s standard input, output, and
error files. The very first opening by the process group leader
of a terminal file not already associated with a process group
becomes the control terminal for that process group. The
control terminal plays a special role in handling quit, inter-
rupt, and hangup signals, as discussed below. The control
terminal is inherited by a child process during a fork(2). A
process can break this association by changing its process

group using setpgrp(2).

A terminal associated with one of these files ordinarily
operates in full-duplex mode. Terminals may operate in one
of a number of line disciplines. Line disciplines 0 and 1 are
the most commonly used ones. What is said below applies to
both line disciplines, except where the opposite is explicitly
stated.

Character input — line discipline 0

Page 1

Characters may be typed at any time, even while output is

occurring, and are only lost when the system’s character
input buffers become completely full, which is rare, or when

the user has accumulated the maximum allowed number of
input characters that have not yet been read by some

(Printed Dec.1989)

 Saat Te
TERMIO(7) (Special Files) TERMIO(7)

program. Currently, this limit is 256 characters. When the
input limit is reached, the following characters are ignored.

Normally, terminal input is processed in units of lines. A line
is delimited by a New-line (ASCII LF) character, an End-of-file
(ASCII EOT) character, or an End-of-line character. This
means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one
line will be returned. It is not, however, necessary to read a
whole line at once; any number of characters may be
requested in a read, even one, without losing information.

During input, erase and kill processing is normally done. By
default, the character # erases the last character typed,

except that it will not erase beyond the beginning of the line.
By default, the character @ kills (deletes) the entire input

line, and optionally outputs a New-line character. Both these
characters operate on a key-stroke basis, independently of
any backspacing or tabbing that may have been done. Both
the erase and kill characters may be entered literally by
preceding them with the escape character (\). In this case
the escape character is not read. The erase and kill charac-
ters may be changed.

Certain characters have special functions on input. These
functions and their default character values are summarized
as follows:

Interrupt (Control-C or ASCII ETX) generates an interrupt
signal which is sent to all processes with the
associated control terminal. Normally, each
such process is forced to terminate, but arrange-
ments may be made either to ignore the signal
or to receive a trap to an agreed-upon location;
see signal(2). Occasionally the rubout-character
(ASCII DEL) is used instead of control-C.

Quit (Control-| or ASCII FS) generates a quit signal.
Its treatment is identical to the interrupt signal
except that, unless a receiving process has made

(Printed Dec.1989) Page 2

9
c
¢

25
7

ee

TERMIO(7)

Page 3

Attention

Switch

Erase

Kill

End-of-file

New-line

End-of-line

Stop

(Special Files) TERMIO(7)

other arrangements, it will not only be ter-

minated but a core image file (called core) will
be created in the current working directory.

(Control-B or ASCII STX) generates an attention
signal which is sent to processes that have the
terminal as their standard input device. See
signal(2).

(Control-Z or ASCII SUB) is used by the job con-
trol facility, shi(1), to change the current layer
to the control layer.

(#) erases the preceding character. It will not
erase beyond the start of a line, as delimited by
a New-line, End-of-file, or End-of-line character.

(@) deletes the entire line, as delimited by a
New-line, End-of-file, or End-of-line character.

(Control-D or ASCII EOT) may be used to gen-
erate an end-of-file from a terminal. When
received, all the characters waiting to be read
are immediately passed to the program, without
waiting for a New-line, and the End-of-file is
discarded. Thus, if there are no characters

waiting, which is to say the End-of-file occurred
at the beginning of a line, zero characters will

be passed back, which is the standard end-of-file
indication.

(ASCII LF) is the normal line delimiter. It can
not be changed or escaped.

(ASCII NUL) is an additional line delimiter, like

New-line. It is not normally used.

(Control-S or ASCII DC3) can be used to tem-
porarily suspend output. It is useful with CRT
terminals to prevent output from disappearing
before it can be read. While output is
suspended, Stop characters are ignored and not
read.

(Printed Dec.1989)

| che F—

 SS
TERMIO(7) (Special Files) TERMIO(7)

Start (Control-Q or ASCII DC1) is used to resume out-

put which has been suspended by a Stop charac-
ter. While output is not suspended, Start char-
acters are ignored and not read. The Start/Stop
characters can not be changed or escaped.

The character values for Interrupt, Quit, Attention, Switch,

Erase, Kill, End-of-file, and End-of-line may be changed to
suit individual tastes. The Erase, Kill, and End-of-file charac-
ters may be escaped by a preceding \ character, in which case
no special function is done.

Character input — line discipline 1
When the terminal is doing so-called canonical input, charac-
ters typed when a read-command is not in effect are normally
lost. The only exception is the type-ahead facility of the
edit(2) system call.

Normally, terminal input is processed in units of lines. A line
is delimited by a New-line (ASCII LF) character, an End-of-file

(ASCII EOT), a Carriage-return (ASCII CR), or a non-editing

function key. This means that a program attempting to read
will be suspended until an entire line has been typed. Also,
no matter how many characters are requested in the read
call, at most one line will be returned. It is not, however,
necessary to read a whole line at once; any number of charac-
ters may be requested in a read, even one, without losing
information.

During input, line editing is normally done as specified below.

Certain characters have special functions on input. These
functions and their default character values are summarized

as follows:

Interrupt (Control-C or ASCII ETX) generates an interrupt

signal which is sent to all processes with the
associated control terminal. Normally, each
such process is forced to terminate, but arrange-
ments may be made either to ignore the signal
or to receive a trap to an agreed-upon location;

(Printed Dec.1989) Page 4

8S
2

25
9

TERMIO(7) (Special Files) TERMIO(7)

Page 5

see signal(2). Occasionally the rubout-character
(ASCII DEL) is used instead of control-C.

Quit (Control-| or ASCII FS) generates a quit signal.
Its treatment is identical to the interrupt signal
except that, unless a receiving process has made
other arrangements, it will not only be ter-
minated but a core image file (called core) will
be created in the current working directory.

Attention (Control-B or ASCII STX) generates an attention
signal which is sent to processes that have the
terminal as their standard input device. See
signal(2).

Switch (Control-Z or ASCII SUB) is used by job control
facilities, such as shl(1) and ds(1), to change the

current layer to the control layer.

Insert-character
(Function key F6, value 0x01 0x45) inserts a

space at the cursor position.

Delete-character

(Function key SHIFT/F6, value 0x01 0x65)
deletes the character at the cursor position.

Go-to-end-of-line
(Function key F7, value 0x01 0x46) moves the

cursor to the end of the typed line.

Go-to-beginning-of-line
(Function key SHIFT/F7, value 0x01 0x66)
moves the cursor to the beginning of the line.

Erase-to-end-of-line
(Function key F8, value 0x01 0x47) erases the
line from the cursor position to the end of the
line.

Kill (Function key SHIFT/F8, value 0x01 0x67)
erases the entire line.

(Printed Dec.1989)

 SS
TERMIOQ(7) (Special Files) TERMIO(7)

Toggle-insert-mode

Right-arrow

Left-arrow

Erase

End-of-file

New-line

Return

Stop

(Printed Dec.1989)

(Key sequence Control-A I I, function key value
0x01 0x39) toggles insert mode.

(Control-L or ASCII FF) moves the cursor one

position right.

(Control-H or ASCII BS) moves the cursor one

position left.

(Rubout or ASCII DEL) erases the character
preceding the cursor. When line editing is in
insert mode the erasure is done as “‘Backspace,
Delete character’. When line editing is not in
insert mode the erasure is done as ‘‘Backspace,
Space, Backspace’.

(Control-D or ASCII EOT) may be used to gen-
erate an end-of-file from a terminal. When
received, all the characters waiting to be read
are immediately passed to the program, without
waiting for a New-line, and the End-of-file is
discarded. Thus, if there are no characters

waiting, which is to say the End-of-file occurred
at the beginning of a line, zero characters will
be passed back, which is the standard end-of-file
indication.

(ASCII LF) is the normal line delimiter. It can

not be changed or escaped.

(ASCII CR) is an alternative line delimiter. It

can not be changed or escaped.

(Control-S or ASCII DC3) can be used to tem-
porarily suspend output. It is useful with CRT
terminals to prevent output from disappearing

before it can be read. While output is
suspended, Stop characters are ignored and not
read.

Page 6

09
2

26
1

 a
TERMIO(7) (Special Files) TERMIO(7)

Start (Control-Q or ASCII DC1) is used to resume out-
put which has been suspended by a Stop charac-
ter. While output is not suspended, Start char-
acters are ignored and not read. The Start/Stop
characters can not be changed or escaped.

The character values for Interrupt, Quit, Attention, and

Switch may be changed to suit individual tastes.

Both line disciplines
When the carrier signal from the data-set drops, a hang-up
signal is sent to all processes that have this terminal as the
control terminal. Unless other arrangements have been
made, this signal causes the processes to terminate. If the
hang-up signal is ignored, any subsequent read returns with
an end-of-file indication. Thus, programs that read a termi-
nal and test for end-of-file can terminate appropriately when
hung up on.

When one or more characters are written, they are transmit-
ted to the terminal as soon as previously-written characters
have finished typing. Input characters are echoed by putting
them in the output queue as they arrive. If a process pro-
duces characters more rapidly than they can be typed, it will
be suspended when its output queue exceeds some limit.
When the queue has drained down to some threshold, the
program is resumed.

Several ioctl(2) system calls apply to terminal files. The pri-
mary calls use the following structure, defined in
<termio.h>:

Page 7 (Printed Dec.1989)

 ey
TERMIO(7) (Special Files) TERMIO(7)

#define NCC 16

struct termio {

unsigned short c_iflag; /* input modes */

unsigned short c_oflag; /* output modes +*/

unsigned short c_cflag; /* control modes */

unsigned short c_lflag; /* local modes + /

char c_line; ° /* line discipline */

unsigned char c_cec{ncc]; /* control chars +*/

7

The special control characters are defined by the array c_cc.
The symbolic names and offsets in c_cce for each function are
as follows:

Interrupt VINTR 0

Quit VQUIT 1
Erase VERASE 2

Kill VKILL 3

End-of-file |VEOF 4
End-of-line VEOL 5
Switch VSWTCH 7

Attention VATT 9

VT bit VTBIT 10

The Erase, Kill, End-of-file, and End-of-line characters

specified in the c_cc array apply only to line discipline 0.
They cannot be changed in line discipline 1.

The “VT bit” character is really not a character. Only the
least significant two bits are relevant. They control whether
the Virtual Terminal Interface is enabled or not (see the
Supermax Virtual Terminal Guide). If the least significant
bit (value 1) of this field is 1, Virtual Terminal translation on
input is enabled. If the second least significant bit (value 2)
of this field is 1, Virtual Terminal translation on output is
enabled.

The c_iflag field describes the basic terminal input control:

(Printed Dec.1989) Page 8

2
9
%

26
3

TERMIO(7) (Special Files) TERMIO(7)

IGNBRK -— 0000001 Ignore break condition.

BRKINT + 0000002 Signal interrupt on break.

IGNPAR -— 0000004 Ignore characters with parity errors.

PARMRK * 0000010 Mark parity errors.

INPCK -— 0000020 Enable input parity check.

ISTRIP * 0000040 Strip character.

INLCR * 0000100 Map New-line to Carriage-return on input.

IGNCR « 0000200 Ignore Carriage-return.

ICRNL * 0000400 Map Carriage-return to New-line on input.

IUCLC x 0001000 Map upper-case to lower-case on input.

IXON + 0002000 Enable start/stop output control.

IXANY + 0004000 Enable any character to restart output.

IXOFF + 0010000 Enable start/stop input control.

The flags marked with a minus (—) have no effect in the
Supermax Operating System, but are included for reasons of
compatibility. The flags marked with an asterisk (+) have no
effect in line discipline 1. The flags marked with a dagger (T)
have no effect on a NIOC (Network Input/Output Controller).

The break condition is not put in the input queue and is
therefore not read by any process. If BRKINT is set, the
break condition will generate an interrupt signal and flush
both the input and output queues.

If PARMRK is set and ISTRIP is not set, a valid character of

0377 is read as 0377, 0377.

Input parity checking is always disabled. Characters with
parity errors are never ignored. Characters with framing
errors are always ignored.

If ISTRIP is set, valid input characters are first stripped to 7-
bits, otherwise all 8-bits are processed.

If INLCR is set, a received New-line character is translated

into a Carriage-return character. If IGNCR is set, a received
Carriage-return character is ignored (not read). Otherwise if
ICRNL is set, a received Carriage-return character is
translated into a New-line character.

(Printed Dec.1989)

TERMIO(7) (Special Files) TERMIO(7)

If IUCLC is set, a received upper-case alphabetic character is
translated into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A
received Stop character will suspend output and a received
Start character will restart output. All Start/Stop characters
are ignored and not read. If IXANY is set, any input charac-

ter, will restart output which has been suspended.

If IXOFF is set, the system will transmit Start/Stop charac-

ters when the input queue is nearly empty/full. Otherwise,
hardware handshake is enabled.

The initial input control value is that IXON, and IXOFF are
sel, und all others are clear.

The c_oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.

OLCUC -— 0000002 Map lower case to upper on output.

ONLCR 0000004 Map New-line to Carriage-return —New-line

on output.

OCRNL 0000010 Map Carriage-return to New-line on output.

ONOCR 0000020 No Carriage-return output at column 0.

ONLRET 0000040 New-line performs Carriage-return function.

OFILL — 0000100 Use fill characters for delay.

OFDEL -— 0000200 Fill is DEL, else NUL.

NLDLY — 0000400 Select New-line delays:

NLO - 0

NL1 — 0000400

CRDLY -—- 0003000 Select Carriage-return delays:

CRO - 0

CR1 — 0001000

CR2 — 0002000

CR3 — 0003000

TABDLY — 0014000 Select horizontal-tab delays:

TABO -— 0

TABI — 0004000

TAB2 — 0010000

(Printed Dec.1989) Page 10

p
9
2

26
5

TERMIO(7) (Special Files) TERMIO(7)

TAB3 0014000 Expand tabs to spaces.

BSDLY -— 0020000 Select backspace delays:

BSO - 0

BS1 — 0020000

VTDLY -— 0040000 Select vertical-tab delays:

VTO - 0

VT1 — 0040000

FFDLY -— 0100000 Select form-feed delays:

FFO —- 0

FF1 — 0100000

The flags marked with a minus (—) have no effect in the
Supermax Operating System, but are included for reasons of
compatibility. Fill characters for delay purposes may, how-
ever, be sent by the Virtual Terminal Interface.

If OPOST is set, output characters are post-processed as indi-

cated by the remaining flags, otherwise characters are
transmitted without change.

If ONLCR is set, the New-line character is transmitted as the

Carriage-return —New-line character pair. If OCRNL is set,
the Carriage-return character is transmitted as the New-line
character. If ONOCR is set, no Carriage-return character is
transmitted when at column 0 (first position). If ONLRET is
set, the New-line character is assumed to do the Carriage-
return function; the column pointer will be set to 0 and the
delays specified for Carriage-return will be used. Otherwise
the New-line character is assumed to do just the line-feed
function; the column pointer will remain unchanged. The
column pointer is also set to 0 if the Carriage-return charac-
ter is actually transmitted.

If TAB3 is set, tab characters are expanded to spaces, other-
wise, tab characters are output directly.

The initial output control value is that OPOST, ONLCR, and

TABS are set, and all others are clear.

The c_cflag field describes the hardware control of the termi-
nal:

Page 11 (Printed Dec.1989)

TERMIO(7)

CBAUD

Bo

B50

B75

B110

B134

B150

B200

B300

B600

B1200

B1800

B2400

B4800

B9600

B19200

B38400

CSIZE

CS5

CS6

CS7

CS8

CSTOPB

CREAD

PARENB

PARODD

HUPCL

CLOCAL

(Special Files) TERMIO(7)

0000017 Baud rate:
0 Hang up

0000001 50 baud
0000002 75 baud
0000003 110 baud
0000004 134 baud
0000005 150 baud
0000006 200 baud
0000007 300 baud
0000010 600 baud
0000011 1200 baud
0000012 1800 baud
0000013 2400 baud
0000014 4800 baud
0000015 9600 baud
0000016 19200 baud
0000017 38400 baud
0000060 Character size:

0 5 bits
0000020 6 bits
0000040 7 bits
0000060 8 bits
0000100 Send two stop bits, else one.
0000200 Enable receiver.
0000400 Parity enable.
0001000 Odd parity, else even.
0002000 Hang up on last close.
0004000 Local line, else dial-up.

The flag marked with a minus (—) has no effect in the Super-
max Operating System, but are included for reasons of com-
patibility. The flags marked with a dagger (+) have no effect
on a NIOC (Network Input/Output Controller).

The CBAUD bits specify the baud rate. The zero baud rate,
BO, is used to hang up the connection. If BO is specified, the
data-terminal-ready signal will not be asserted. Normally,
this will disconnect the line. For any particular hardware,

impossible speed changes are ignored.

(Printed Dec.1989) Page 12

9
9
2

26
7

- | che

TERMIO(7) (Special Files) TERMIO(7)

The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include the
parity bit, if any. If CSTOPB is set, two stop bits are used,
otherwise one stop bit. For example, at 110 baud, two stops
bits are required.

If PARENB is set, parity generation and detection is enabled
and a parity bit is added to each character. If parity is
enabled, the PARODD flag specifies odd parity if set, otherwise
even parity is used.

If HUPCL is set, the line will be disconnected when the last
process with the line open closes it or terminates. That is,
the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct con-

nection with no modem control. Otherwise modem control is

assumed.

The initial hardware control value is specified by the
chhw(1M) program.

The c_/flag field of the argument structure is used by the line
discipline to control terminal functions:

ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (line editing).
XCASE -— 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as backspace-

space-backspace.
ECHOK + 0000040 Echo New-line after kill character.
ECHONL 0000100 Echo New-line.
NOFLSH 0000200 Disable flush after interrupt or quit.

The flag marked with a minus (—) has no effect in the Super-
max Operating System, but is included for reasons of compa-
tibility. The flag marked with an asterisk (*) has no effect
in line discipline 1.

If ISIG is set, each input character is checked against the spe-
cial control characters Interrupt, Quit, Attention, and Switch.
If an input character matches one of these control characters,

Page 138 (Printed Dec.1989)

_—— =
ha

 ——_—_————— |
TERMIO(7) (Special Files) TERMIO(7)

the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set. These functions may
be disabled individually by changing the value of the control
character to an unlikely or impossible value (for example,
ASCII NUL).

If ICANON is set, canonical processing is enabled. This
enables the line editing functions, and the assembly of input
characters into lines delimited by New-line, End-of-file, and
End-of-line. If ICANON is not set, read requests are satisfied
directly from the input queue, and characters will not be
echoed. A read will not be satisfied until at least MIN charac-
ters have been received or the timeout value TIME has
expired between characters. This allows fast bursts of input
to be read efficiently while still allowing single character
input. The MIN and TIME values are stored in the position
for the End-of-file and End-of-line characters, respectively.
For this purpose the symbolic names VMIN and VTIME are
provided as synonyms for VEOF an VEOL, respectively. The
time value represents tenths of seconds.

When ICANON is set, the following echo functions are possi-
ble. If ECHO is set, characters are echoed as received. If
ECHO and ECHOE are set, the erase character is echoed as

ASCII BS SP BS, which will clear the last character from a
CRT screen. If ECHOE is set and ECHO is not set, the erase

character is echoed as ASCII SP BS. If ECHOK is set, the

New-line character will be echoed after the kill character to
emphasize that the line will be deleted. Note that an escape
character preceding the erase or kill character removes any
special function. If ECHONL is set, the New-line character
will be echoed even if ECHO is not set. This is useful for ter-
minals set to local echo (so-called half duplex). Unless
escaped, the End-of-file character is not echoed. Because EOT
is the default End-of-file character, this prevents terminals
that respond to EOT from hanging up.

(Printed Dec.1989) Page 14

8
9
¢

26
9

—————————————— ce F
TERMIO(7) (Special Files) TERMIO(7)

In line discipline 1, End-of-file is echoed as the New-line char-

acter.

If NOFLSH is set, the normal flush of the input and output
queues associated with the quit and interrupt characters will
not be done.

The initial line-discipline control value is that ISIG, ICANON,

ECHO, ECHOE, ECHONL, and NOFLSH are set, and all others

are clear.

The ioc#l(2) system calls have the form:

ioctl (fildes, command, arg)

The legal commands are:

TCGETA With this system call, arg is of type struct ter-
mio*. The system call gets the parameters
associated with the terminal and stores them in
the structure referenced by arg.

TCSETA With this system call, arg is of type struct ter-
mio*. The system call sets the parameters
associated with the terminal from the structure
referenced by arg. The change is immediate.

TCSETAW With this system call, arg is of type struct ter-
mio*. The system call is identical to TCSETA,
except that it waits for the output to drain
before setting the new parameters. This form
should be used when changing parameters that
will affect output.

TCSETAF With this system call, arg is of type struct ter-
mio *. The system call is identical to TCSETA,
except that it waits for the output to drain, then
flushes the input queue and sets the new param-
eters.

NOTE: In standard UNIX the c_ce array of the termio struc-
ture has only 8 elements. In order to maintain compatibility
with standard UNIX, the above-mentioned ioctl calls will read

or set only the first 8 characters of the c_cc array. If all 16

Page 15 (Printed Dec.1989)

 ee
TERMIO(7) (Special Files) TERMIO(7)

characters are to be read or set, the ioctl call must be pre-
ceded by a set_parm(2) system call, whose first parameter is
different from —1.

TCSBRK

With this system call, arg is of type int. The system
call waits for the output to drain. If arg is 0, the call
then sends a break (zero bits for 0.25 seconds).

TCXONC

With this system call, arg is of type int. The system
call provides start/stop control. If arg is 0, output is
suspended; if 1, suspended output is restarted.

TCFLSH

With this system call, arg is of type int. If arg is 0,
the input queue is flushed; if 1, the output queue is
flushed; if 2, both the input and output queues are
flushed.

FIONREAD

With this system call, arg is of type int*. The sys-
tem call stores the number of characters currently in
the terminal’s input buffer into the location pointed
to by arg.

SET DI
With this system call, arg is ignored. The system call
puts the terminal in direct input mode. This is the
same as turning off the ICANON flag, with the excep-
tion that when the process terminates, the operating
system automatically removes the direct input mode.

CLEAR DI
With this system call, arg is ignored. The system call
removes the direct input mode set by the SET_DI call
above.

DYN STAT
With this system call, arg is of type struct fkey *. The
structure looks like this:

(Printed Dec.1989) Page 16

0
2
¢

27
1

TERMIO(7) (Special Files) TERMIO(7)

struct fkey {

unsigned charfk_fkeyl;

unsigned charfk_curoff;

unsigned shorfk_fkey2;

i

The system call stores in the structure pointed to by
arg various input information: The /fk_fkeyl field will
contain the value of the most recently pressed func-
tion key. The fk fkey2 field will contain the value of
the key that terminated the last input statement. If
fk_fkey2>0x100, the key is a function key. The
fk_curoff field contains the cursor offset at the end of
the last input operation.

The following toctl(2) calls apply only to terminals with more
than one window.

SXTIOCLINK

With this system call, arg is of type int. The system
call initiates windowing. The number of windows is
specified by arg.

SXTIOCSWTCH

With this system call, arg is of type int. The system
call switches input to be taken from window number
arg. This system call can only be issued from window
number 0.

SXTIOCWF

With this system call, arg is of type int. The system
call causes the calling process to wait until window
number arg becomes the controlling window. Win-
dow number 0 becomes the controlling window when
the Switch character is pressed. Other windows
become the controlling window as a result of the
SXTIOCSWTCH call above.

FILES

/dev/tty * , /dev/print « , /dev/tty.

Page 17 (Printed Dec.1989)

TERMIO(7) (Special Files) TERMIO(7)

SEE ALSO

stty(1), fork(2), ioctl(2), setpgrp(2), signal(2)

(Printed Dec.1989) Page 18

a
l
e

27
3

TIMOD(7) (Special Files) TIMOD(7)

NAME

timod — Transport Interface cooperating STREAMS module

DESCRIPTION

Page 1

timod is a STREAMS module for use with the Transport Inter-
face (TI) functions of the Network Services library. The
timod module converts a set of ioctl(2) calls into STREAMS
messages that may be consumed by a transport protocol pro-

vider which supports the Transport Interface. This allows a
user to initiate certain TI functions as atomic operations.

The timod module must be pushed (see Streams Primer) onto
only a stream terminated by a transport protocol provider
which supports the TI.

All STREAMS messages, with the exception of the message
types generated from the ioctl commands described below,
will be transparently passed to the neighboring STREAMS
module or driver. The messages generated from the following
ioctl commands are recognized and processed by the timod
module. The format of the ioctl call is:

#include <sys/stropts.h>

struct strioctl strioctl;

strioctl.ic_ cmd = cmd;
strioctl.ic_ timeout = INFTIM;
strioctl.ic_len = size;
strioctl.ic_ dp = (char *)buf

ioctl(fildes, I STR, &strioctl);

Where, on issuance, size is the size of the appropriate TI mes-
sage to be sent to the transport provider and on return size is
the size of the appropriate TI message from the transport pro-

vider in response to the issued TI message.

(Printed Dec.1989)

TIMOD(7) (Special Files) TIMOD(7)

buf is a pointer to a buffer large enough to hold the contents
of the appropriate TI messages. The TI message types are

defined in <sys/tihdr.h>. The possible values for the cmd
field are:

TI_BIND

TIUNBIND

TI_GETINFO

TLOPTMGMT

(Printed Dec.1989)

Bind an address to the underlying tran-
sport protocol provider. The message
issued to the TI_BIND iocél is equivalent to
the TI message type T_ BIND REQ and the
message returned by the successful comple-
tion of the iucél is equivalent to the TI mes-
sage type T_BIND ACK.

Unbind an address from the underlying
transport protocol provider. The message

issued to the TI_UNBIND iociél is equivalent
to the TI message type T UNBIND_REQ and
the message returned by the successful
completion of the ioctl is equivalent to the
TI message type T_OK_ACK.

Get the TI protocol specific information
from the transport protocol provider. The
message issued to the TI_GETINFO iocél is
equivalent to the TI message type
T_INFO_REQ and the message returned by
the successful completion of the ioctl is
equivalent to the TI message type
T_INFO_ACK.

Get, set or negotiate protocol specific
options with the transport protocol pro-
vider. The message issued to the
TILOPTMGMT iocél is equivalent to the TI
message type T.OPTMGMT_REQ and the
message returned by the successful comple-
tion of the ioctl is equivalent to the TI mes-
sage type T OPTMGMT_ACK.

Page 2

v
l
e

27
5

TIMOD(7) (Special Files) TIMOD(7)

FILES

<sys/timod.h>
<sys/tiuser.h >
<sys/tihdr.h >
<sys/errno.h>

SEE ALSO

tirdwr(7).

STREAMS Primer. —

STREAMS Programmer’s Guide.

Network Programmer’s Guide.

DIAGNOSTICS

If the ioctl system call returns with a value greater than 0,
the lower 8 bits of the return value will be one of the TI error
codes as defined in <sys/tiuser.h>. If the TI error is of type
TSYSERR, then the next 8 bits of the return value will con-

tain an error as defined in <sys/errno.h> (see intro(2)).

Page 3 (Printed Dec.1989)

This page is intentionally left blank

92
¢e

27
7

 —_—_—_—_—_—_—_—__—_——— ==
TIRDWR(7) (Special Files) TIRDWR(7)

NAME

tirdwr — Transport Interface read/write interface STREAMS
module

DESCRIPTION

tirdwr is a STREAMS module that provides an alternate inter-
face to a transport provider which supports the Transport
Interface (TI) functions of the Network Services library (see
Section 3N). This alternate interface allows a user to com-
municate with the transport protocol provider using the
read(2) and write(2) system calls. The putmsg(2) and
getmsg(2) system calls may also be used. However, putmsg
and getmsg can only transfer data messages between user and
stream,

The tirdwr module must only be pushed [see I_PUSH in
streamio(7)] onto a stream terminated by a transport protocol

provider which supports the TI. After the tirdwr module has
been pushed onto a stream, none of the Transport Interface
functions can be used. Subsequent calls to TI functions will
cause an error on the stream. Once the error is detected,

subsequent system calls on the stream will return an error
with errno set to EPROTO.

The following are the actions taken by the tirdwr module
when pushed on the stream, popped [see I_POP in
streamio(7)] off the stream, or when data passes through it.

push — When the module is pushed onto a stream, it will
check any existing data destined for the user to
ensure that only regular data messages are
present. It will ignore any messages on the stream
that relate to process management, such as mes-
sages that generate signals to the user processes
associated with the stream. If any other messages
are present, the I_PUSH will return an error with
errno set to EPROTO.

Page 1 (Printed Dec.1989)

 Sey |
TIRDWR(7) (Special Files) TIRDWR(7)

write — The module will take the following actions on data
that originated from a write system call:

— All messages with the exception of messages
that contain control portions (see the putmsg
and getmsg system calls) will be transparently
passed onto the module’s downstream neighbor.

— Any zero length data messages will be freed by
the module and they will not be passed onto the
module’s downstream neighbor.

— Any messages with control portions will gen-
erate an error, and any further system calls
assuciuled wilh the stream will fail with errno
set to EPROTO.

read — The module will take the following actions on data
that originated from the transport protocol pro-
vider:

— All messages with the exception of those that
contain control portions (see the puimsg and
getmsg system calls) will be transparently
passed onto the module’s upstream neighbor.

— The action taken on messages with control por-

(Printed Dec.1989)

tions will be as follows:

+ Messages that represent expedited data
will generate an error. All further system
calls associated with the stream will fail
with errno set to EPROTO.

+ Any data messages with control portions
will have the control portions removed
from the message prior to passing the
message on to the upstream neighbor.

Messages that represent an _ orderly
release indication from the transport pro-
vider will generate a zero length data mes-
sage, indicating the end of file, which will

Page 2

8
2
2

27
9

TIRDWR(7) (Special Files) TIRDWR(7)

be sent to the reader of the stream. The
orderly release message itself will be freed
by the module.

+ Messages that represent an abortive
disconnect indication from the transport
provider will cause all further write and
putmsg system calls to fail with errno set
to ENXIO. All further read and getmsg
system calls will return zero length data
(indicating end of file) once all previous
data has been read.

+ With the exception of the above rules, all
other messages with control portions will

generate an error and all further system
calls associated with the stream will fail
with errno set to EPROTO.

— Any zero length data messages will be freed by
the module and they will not be passed onto the
module’s upstream neighbor.

pop — When the module is popped off the sfream or the
stream is closed, the module will take the following
action:

— If an orderly release indication has been previ-
ously received, then an orderly release request
will be sent to the remote side of the transport
connection.

SEE ALSO

Page 3

getmsg(2), intro(2&3), putmsg(2), read(2), write(2),

streamio(7), timod(7).

STREAMS Primer.

STREAMS Programmer’s Guide.

Network Programmer’s Guide.

(Printed Dec.1989)

This page is intentionally left blank

08
2

28
1

_————————

TTY(7) (Special Files) TTY(7)

NAME

tty — controlling terminal

SYNOPSIS
/dev/tty

DESCRIPTION

The device with the name /dev/tty is a character-special file
with device number 0x8003 (major device number 128, minor
device number 3). This device is a synonym for the control
terminal, if any, associated with the calling process. It is use-
ful for programs or shell sequences that wish to be sure of
writing messages on the terminal no matter how output has
been redirected. It can also be used for programs that
demand the name of a file for output, typed output is desired,
and it is tiresome to find out what terminal is currently in
use.

The ioctl(2) commands described in termio(7) can be used

with this device.

SEE ALSO

Page 1

print(7), term(7), termio(7).

(Printed Dec.1989)

This page is intentionally left blank

2
8
2

28
3

INFO(8)

Page 1

(Local DDE Utilities) INFO(8)

This page will be replaced by the manual pages describ-
ing the programs contained in the separately supplied
Local DDE Utilities.

The programs in Local DDE Utilities are not standard
supplement, but contains special DDE developed useful
utilities.

For more detailed information about the Local DDE Util-
ities, please contact Your Supermax consultant.

Currently available are the following programs:

Stock no.:

30110991 Tar Backup System

30120991 Modem Logon System

(Printed Dec.1989)

This page is intentionally left blank

8
2

28
5

INFO()

Page 1

(Local DDE Subroutines) INFO(9)

This page will be replaced by the manual pages describ-
ing the programs contained in the separately supplied
Local DDE Subroutines.

The programs in Local DDE Subroutines are not stan-
dard supplement, but contains special DDE developed
useful subroutines intended to be linked into application
programs.

For more detailed information about the Local DDE Sub-
routines, please contact Your Supermax consultant.

Currently available is the following program:

Stock no.:

30150991 Mag Tape Utilities

(Printed Dec.1989)

This page is intentionally left blank

9
8
2

28
7

NOTATER

NOTATER

8
8
2

