
Supermax System V

Pascal C Interface

Dansk Data Elektronik A/S

23. Jun 1989

Version 1.2

Copyright 1989

Dansk Data Elektronik A/S

Supermax System V

Manual Addendum for pta Version 2.2

Dansk Data Elektronik A/S

23. June 1989

To achieve the full documentation for the Pascal-assembler

Programming Package Issue 2 Version 2, please replace the front

page in Your Pascal C Interface Manual and the pages 1.1 - 1.2

and 4.13 - 4.17 with the pages enclosed.

Table of Contents.

1. Introduction

2. Writing external Procedures and Functions

2.1 Naming External Subroutines

2.2 Parameters to External Procedures and Functions

2.3 Altering the value of IORESULT in external

subroutines

2.4 Examples of external subroutines

XOR

2.4.2 Example: DELBOX

Passing a File as Parameter

2.4.1 Example:

2.4.3 Example:

. Using external Procedures and Functions

3.1 Using External Procedures and Functions from

Compiled Pascal

3.2 Using External Procedures and Functions from

Interpreted Pascal

3.2.1 Contents of Environment File

3.2.2 Linking Environment File

Standard External Procedures and Functions

4.1 Direct input

4.1.1 SETUP

4.1.2 AVAIL

4.1.7 AVAILDI

4.1.8 GETDI

Initiate direct input

Test for availability of keyboard

input

Get next character from terminal

Get next character from terminal

Terminate direct input

Initiate direct input from another

terminal

Test for availability of input

from another terminal

Read fron another terminal in

direct input mode

4.2 FUNC and FUNCZ - Function key values

4.3 TRMNR - Get the terminal number

4.9

4.10

Pascal C Interface

Printer reservation

4.4.1 GETPR - Reserve a printer

4.4.2 FREEPR - Release a printer

File information

REDBAK - Read one record backwards

RENAMF - Rename a file

Boxes

4.8.1 Creation of box from Pascal

4.8.2 EMPTYBOX (FEMPTYBOX) - Test for readable

bytes in an (open) box

4.8.3 FULLBOX (FFULLBOX) - Test for writeable

bytes in an (open) box

4.8.4 BOXSTATUS (FBOXSTATUS) - Get information

about an (open) box

4.8.5 DELBOX - Delete a box

CLOCK - Get the system time

PROCNO - Get the process number for the current

process

GETUSER - Get the user name

SETPRIO - Set the priority of a process

PROCSTA - Get a process status

PWAIT - Wait for dead offspring process

AKEY, IKEY, QKEY ~- Exception handlers for attention,

interrupt and quit

PIPEOPEN and PIPECLOSE - Open and close pipes
e

a
A
a
n
a
a
a
a
»
a
 v
u

>
Ph

bP

P
P
h

P
P

4.12

4.12

XCHAIN and XPWAIT - Start and wait for new process 4.14

PSETPGRP - Set the process group number

Appendix A. Necessary files

4.15

a.l

Pascal C Interface 1.3

1. Introduction.

This manual describes how to write external procedures and functions

to Pascal programs. In addition it describes the standard external

procedures and functions. The same external rutines can be used both

from interpreted and compiled Pascal (Pascal to Assembler).

Dansk Data Elektronik A/S reserves the right to change the specifica-

tions in this manual without warning. Dansk Data Elektronik A/S is not

responsible for the effects of typographical errors and other inaccu-

racies in this manual, and cannot be held liable for the effect of the

implementation and use of the structures described herein.

Pascal C Interface 2.1

2. Writing External Procedures and Functions.

When writing Pascal programs it is possible to use, that is declare

and call, external subroutines written in the language C. A set of

standard external subroutines is supplied with the Pascal systems.

This chapter explains how to write and use your own external subrou-

tines written in C.

2.1 Naming external subroutines.

An external subroutine must always be declared in the Pascal program

in which it is called. This declaration is used by the Pascal compiler

to perform syntaxcheck on the call of the subroutine. The Pascal de-

claration is similar to a usual declaration of a PROCEDURE or FUNCTION

except that the body of the routine is substituted by the special

symbol EXTERNAL (analogous to a FORWARD declaration).

The name of the subroutine will be recognized by the Pascal compiler

using 14 significant characters. As C-subroutine names, when compiled

by the C-compiler, are recognized using all characters as significant

it is important that the name of the routine in the C-module does not

exceed 14 characters.

Furthermore the Pascal compiler generates the names of external sub-

routines using small letters whereas the C-compiler generates the

names using the actual characters.

Thus the name of an external subroutine used in the C-module may

consist of at most 14 small letters.

2.2 Parameters to External Procedures and Functions.

When writing external subroutines it is necessary to know how the

different types of parameters are given to the external subroutines.

The least significant bit of a word is bit 0, the most is bit 15. The

most significant byte is in the lowest address. The proper declaration

to be used in C is given.

2.2

Boolean:

Integer:

Longint:

Pascal C Interface

One word. Bit O indicates the value - false=0,true=1.
Use the type short.

One word, two's complement, capable of representing values in

the range -32768..32767. Use the type short.

Two word, two's complement, capable of representing values in

the range ~2147483648..2147483647. Use the type int.

Scalar (user-defined): One word, in range 0..32767. Use the type

Real:

Pointer:

Set:

short.

One word with the least significant byte containing the cha-

racter. Use the type short and use the least significant byte

as an unsigned char. Using the type unsigned char will cause

an error as this type only takes up one byte in C.

Four words in IEEE representation. Use the type double.

Two words containing an address. The value NIL is the address

1.

0..255 words. Sets are implemented as bit vectors, always

with a lower index of zero. A set variable declared as SET OF

M..N is allocated (N+15) DIV 16 words. If the bits and the

words are numbered starting from 0 we have: Bit B of word W

is 1 if the element W*16+B is a member of the set. Using this

information the user should be able to find an appropriate

type in C.

Records and arrays: Any number of words. Arrays are stored in row-ma-

jor order (last index varying most rapidly). Packed arrays

have an integral number of elements in each word as there is

no packing across word boundaries (it is acceptable to have

unused bits in each word). Using this information the user

should be able to find an appropriate type in C.

Pascal C Interface 2.3

Strings: 1..128 words. Strings are a flexible version of packed arrays

of characters. A STRING(n) occupies (n div 2)+1 words. Byte 0

of a string is the current length of the string, and bytes

1..length(string) contain valid characters. Use the type

unsigned char *.

Longstrings: 1..32767 bytes. A LONGSTRING(n) occupies ((n+1) div 2)4+1

words. Byte O and 1 of a longstring is the current length of

the longstring, and bytes 2..length(longstring) contain the

valid characters. Use the type unsigned char *.

Cstrings: 1..32767 bytes. A CSTRING(n) occupies (n+l) div 2 words.

Bytes O..n-1 can contain valid characters. In C the last

valid character is followed by the NULL character. Use the

type unsigned char *.

Note: to match the C way of handling parameters all short types (16

bit) parameters will be sign extended to long (32 bit) when pushed

onto the stack in the same way as C does. A formal parameter of type

set to an external subroutine must be a variable parameter (var

declared). Actual parameters of type record, array, string, longstring

or string, and actual parameters, whose corresponding formal parameter

is a variable parameter, are always passed to an external subroutine

as a pointer to the variable.

Due to the difference in the internal handling of parameters in C and

Pascal the order in which the parameters are written in the C-declara-

tion must be the opposite of the one given in the declaration in the

Pascal program.

2.3 Altering the value of IORESULT in external subroutines.

A C language subroutine can alter the value of IORESULT if the fol-

lowing declaration is included in the C-module containing the subrou-

tine:

extern short iorsit;

2.4 Pascal C Interface

iorsit is the name of the variable in the Pascal run-time system con-
taining the IORESULT value.

There exists a subroutine make_res in the library containing the stan-
dard external subroutines (/1ib/libpext.a). This subroutine can be
used to set the value of iorslt according to the result of a system
call. Make_res has two parameters:

short make_res(res, p_iorslt)

int res;

short *p_iorsl1t;

res is the result from a system call and p_iorslt is a pointer toa
short. If the system call was succesfully completed (res greater than
or equal to zero) *p_iorslt is set to EOK. If res is equal to -2,
*p_iorslt is set to -2 indicating EOF otherwise if res is equal to -1,
*p_iorslt is set to the errorcode contained in smoserr. Make_res re-
turns *p_iorslt. In order to use the memonics for the smoserr codes,
these must be included by:

#include <smoserr.h>

2.4 Examples of external subroutines.

This section gives some examples of external subroutines. Note example
2.4.3 where files of different types are passed as parameters to the
same external subroutine.

2.4.1 Example: XOR.

The procedure XOR declared

PROCEDURE XOR(VAR I: INTEGER; J: INTEGER); EXTERNAL;

may be written in the following manner:

xor(j,i)

short J;

short *i;

begin
L t= 4; / perform exclusive or */

end

Pascal C Interface 2.5

Note that the parameters i and j in the C declaration are reversed

compared with the external Pascal declaration.

2.4.2 Example: DELBOX

The standard external procedure used to delete a box, DELBOX, is de-

clared:

PROCEDURE DELBOX(BOXNAME: STRING); EXTERNAL;

and it may be written in the following manner:

#include <std.h>

extern short iorslt;

delbox(boxname)

char *boxname;

begin

register short lgth;

char name[80];

igth = boxname[0]; /* the length of the box name */

memcpy(name, &boxname[1],lgth); /* the name of the box is copied

to the variable 'name' */

name[lgth] = '\O'; /* the name-string is null-terminated */

make_res(unlink(name), &iorsl1t);

/* the box is deleted by unlink */

end;

2.4.3 Example: Passing a File as Parameter.

Consider a procedure involving a parameter:

VAR Fl: FILETYPE; (FILETYPE is a direct access file)

or

VAR F2: TEXT;

2.6 Pascal C Interface

If a file is variable declared in the declaration of an external pro-
cedure, the following structures must be declared in the C subroutine:

struct dcb begin

short ioud, /* i/o unit descriptor, -1 for not open */

recl, /* record length */

eof; /* end-of-file flag */

end;

struct txtbuf begin

struct deb txtdcb;

unsigned char term, /* TRUE for terminals and printers */

linelength,

buffer [255]:

/* buffer 0 is current position */

end;

These structures are used by the Pascal runtime system to hold infor-

mation about files.

The direct access file Fl is declared as

struct deb *fl1;

and the sequential file F2 is declared as

struct txtbuf *£2;

It is possible to write external procedures that can be called using

both kinds of files as parameters (and any type of direct access file)

by declaring the parameter UNIV in the Pascal declaration (see Super-

max Pascal User's Guide section 2.6.3).

The following example illustrates this. The function uses the i/o unit

descriptor for a box and tests whether the box is empty or not:

Pascal C Interface

[ERRRKRERRERERERR RE RERR ER EERE RERERERRREER ER REE RERREERERERERE |

/* Declaration in Pascal ;:

/* FUNCTION FEMPTYBOX(UNIV BOX: TEXT): BOOLEAN; EXTERNAL;

/* Before call:

/* BOX : TEXT or FILE OF xxx

/* After call:

/* IORESULT: The result-code from call of fstat un */
/* RETURN : TRUE if the box is empty (no readable bytes)*/

/* if IORESULT <> 0 RETURN value is FALSE */
[RRRREREEREREREREERERE ER ERERERER EERE EERE EEE EREREEREREEERERE |

#include <std.h>

#include <smoserr.h>

#include <sys/types.h>

#include <sys/stat.h>

extern short torslit;

short femptybox(fileid)

struct txtbuf *fileid;

begin

struct stat staun;

short res;

if ((make res(fstat(fileid->ioud, &staun),&iorslt)) == EOK) then

if ((staun.st_mode & S_IFMT) == S_IFIFO) then

res = (staun.st_size == 0);

return(res);

otherwise

iorslt = EILOP;

endif

end if
return(FALSE);

end

Pascal C Interface 3.1

3. Using External Procedures and Functions.

This section describes in section 3.1 how to use external procedures

and functions from Compiled Pascal (Pascal-Assembler) and in section

3.2 how to use external procedures and functions from Interpreted

Pascal.

3.1 Using External Procedures and Functions from Compiled Pascal.

The program pac (see the manual Running Pascal Assembler Compiler) is

used to compile and link Pascal programs. When using standard external

procedures and functions the program pac will look for these subrou-

tines in the archive /lib/libpext.a. User-defined external procedures

and functions must be given explicitly to the program pac.

Assume that the program tst.p declares a user-defined external proce-

dure, XOR for example. The C-code for XOR is found in the file xor.c.

First the XOR subroutine is compiled by using the pac program in the

following way:

§ pac -v -c xor.c

and hence the relocatable file xor.o exists. (The C-module could also

have been compiled using the cc program).

Now the loadmodule, tst, is created by using the pac program as fol-

lows:

S$ pac -v -o tst tst.p xor.o

As indicated by the example above relocatable files containing

user-defined external procedures or functions are simply listed fol-

lowing the Pascal source-code file, and the pac program will pass

these files to the linker when it is called.

The loadmodule tst in the preceeding example can also be created by

activating the program pac in the following way:

3.2 Pascal C Interface

$ pac -v -o tst tst.p xor.c

The user-defined relocatable files can be inserted in libraries by
using the program ar (see Supermax Operating System User's Manual
Section 1). These libraries can then be given to the program pac.

For instance the relocatable file xor.o can be inserted in
/1ib/libextern.a by:

§ ar rv /lib/libextern.a xor.o

The loadmodule tst can then be created in this way:

S pac -v -o tst tst.p -lextern

3.2 Using External Rutines from Interpreted Pascal.

In connection with the interpretation of a Pascal program an environ-
ment file may be supplied. This file is really a load module produced
from

- an assembly language code originating from the compiler (the type

j file) and possibly modified

- a set of subroutines written in C, being the external procedures

and functions of the Pascal program

The environment file is linked to segment 8 and 9.

3.2.1 Contents of Environment File.

An environment file contains the following:

load information

size of data area for variables

size of p-code area

size of heap

Pascal C Interface 3.3

debug flag

address of external procedure no. 1, zero for none

address of external procedure no. 2, zero for none

address of external procedure no. 128, zero for none

the code for the external routines, if any

The external procedures and functions are numbered in the order the

first calls of the respective routines occur in the programtext. The

Maximum number of external procedures and functions is 128 in inter-

preted Pascal. See the manual Supermax Running Interpreted Pascal for

further information about the contents of an environment file.

3.2.2 Linking Environment File.

The Pascal compiler creates an assembly language program (the type j

file), which is the source code for the environment file. If the

compiled program contains external routines, this file must be assem-

bled and linked together with the the external C routines. The resul-

ting file is the environment file (type e). This file can be created

by the program pasenvr.

How to link an environment file is shown by an example:

In the Pascal program tst.p the external procedure XOR is declared and

called. The € code for this subroutine is found in the file xor.c. The

xor subroutine is compiled by using the cc program in the following

way (see Supermax Operating System User's Manual Section 1).

$ cc -v -c xor.c

After that the relocateable file xor.o exists.

3.4 Pascal C Interface

The Pascal compiler creates the p-code and the source code for the

environment file:

$ pascal tq

Source code file: tst.p

P-code file: tst

Environment file: tst.j

List option (t/1/ /q):

Conditions:

Now the enviromnent file tst.e can be linked by using the program

pasenvr:

$ pasenvr +q

Enter source name: tst.j

Enter dest name: tst.e

Enter ofiles (separated by ;): xor.0

Enter libraries (sparated by ;):

The program pasenvr can also be executed in parameter form:

$ pasenvr -i tst.j -o tst.e -O xor.o

The option for libraries is -1.

The user-defined external rutines can be inserted in libraries by

using the program ar (see section 3.1 and Supermax Operating System

User's Manual Section 1) and these libraries can be given to the

program pasenvr. When using standard external rutines, pasenvr will

automatically look for the external rutines in the archive

/lib/libpext.a. Only userdefined external rutines must be given

explicitly to the program pasenvr.

Furthermore the program ppc can be used to execute both the compiler

and pasenvr (see the manual "Supermax Running Interpreted Pascal").

Pascal C Interface 4.1

4. Standard External Procedures and Functions.

This section describes the standard external procedures and functions.

The declarations of the standard external procedures and functions are

found in the file /pbin/extdecl.p. The relocateable code for the

subroutines is contained in the library /lib/libpext.a. Section 3

describes how to use external procedures and functions.

4.1 Direct input.

These procedures enable the programmer to override the normal Pascal

console input conversions. In the so-called direct input mode key-

strokes are stored in the direct input buffer of the terminal. The

system does not by itself output any information to the terminal

display in response to keyboard input. Thus the user is in full con-

trol of the meaning of the input keys and the resulting terminal

output. The direct input buffer is used cyclically and has a size of

123 characters.

The subroutines described in section 4.1.1 to 4.1.5 concern direct

input from the tezminal from which the Pascal program is executed.

Sections 4.1.6 to 4.1.8 describe procedures and functions which enable

the programmer to get input from another terminal.

4.1.1 SETUP - Initiate direct input.

PROCEDURE SETUP; EXTERNAL;

A call of SETUP places a terminal in direct input mode. In this mode

the program may read the keys pressed on the keyboard one by one as

they are entered. Echoing of input characters does not occur automati-

cally. When operating in direct input mode the READ, READLN, and EDIT

routines may be used. Only one process in the computer may use the

direct input mode for a given terminal at a given time. IORESULT is

affected.

4.2 Pascal C Interface

4.1.2 AVAIL - Test for availability of keybord input.

FUNCTION AVAIL: BOOLEAN; EXTERNAL;

This function tests whether the direct input buffer contains one or

more unprocessed characters. It returns TRUE if unprocessed characters

exist otherwise FALSE. IORESULT is affected.

4.1.3 NEXT - Get naxt character from terminal.

FUNCTION NEXT: INTEGER; EXTERNAL;

This function fetches the next character from the direct input buffer

and returns the ordinal value of the character.

If the next character is 0x01 the pressed key is a function key. Thus

the function next fetches the next character which is the value of the

function key. The value returned is the sum of the ordinal value of

this character and 255 (giving a value between 320 and 367).

If the input buffer is empty, the program waits until a key is

pressed. IORESULT is affected.

4.1.4 NEXT1 ~ Get next character from terminal.

FUNCTION NEXT1: CHAR; EXTERNAL;

This function fetches the next character from the direct input buffer

and returns it. If the input buffer is empty, the program waits until

a key is pressed. IORESULT is affected.

Pascal C Interface 4.3

4.1.5 FINIS - Terminate direct input.

PROCEDURE FINIS; EXTERNAL;

This procedure clears direct input mode and restores the normal input

mode. IORESULT is affected. Observe that direct input mode is autama-

tically cleared when the terminal is closed (for example, when a

process terminates).

4.1.6 SETDI - Initiate direct input from another terminal.

PROCEDURE SETDI(VAR FILEID: TEXT); EXTERNAL;

FILEID identifies an open terminal.

The procedure SETDI places the given terminal in direct input mode.

For the standard input iounit the external procedures for direct input

described in section 3 must be used. IORESULT is affected. The direct

input mode is cleared when the given terminal is closed.

4.1.7 AVAILDI - Test for availability of input from another terminal.

FUNCTION AVAILDI(VAR FILEID: TEXT): BOOLEAN; EXTERNAL;

FILEID identifies an open terminal in direct input mode.

This function returns TRUE, if there are unprocessed characters in the

direct input buffer for the other terminal, otherwise FALSE. The given

terminal must have been placed in direct input mode by a call of

SETDI. IORESULT is affected.

4.4 Pascal C Interface

4.1.8 GETDI - Read from another terminal in direct input mode.

PROCEDURE GETDI(VAR FILEID: TEXT; VAR CONTENTS: STRING;

COUNT: INTEGER); EXTERNAL;

FILEID identifies an open terminal in direct input mode.

The procedure inputs up to COUNT characters currently available in the

direct input buffer of the given terminal. If the direct input buffer

is empty GETDI waits until a character is input. The input characters

are placed in the CONTENTS parameter. The length of the string is the

number of input characters. The given terminal must have been Placed

in direct input mode by a call of SETDI. IORESULT is affected.

4.2 FUNC and FUNCZ - Function key values.

Two external functions returning the value of the last pressed func-

tion key exist, these are FUNC and FUNCZ.

FUNCTION FUNC: CHAR; EXTERNAL;

FUNCTION FUNCZ: CHAR; EXTERNAL;

Both FUNC and FUNCZ return the value of the last pressed function key.

FUNCZ in addition resets the internal variable containing the value of

the last pressed function key. Thus, when using FUNCZ a pressed func-

tion key can only be read once.

4.3 TRMNR - Get the terminal number.

PROCEDURE TRMNR(VAR UNIT, CHANNEL, WINDOW: INTEGER); EXTERNAL;

If the standard input iounit is a terminal, the unit number, channel

number, and window number of this terminal is returned, otherwise -1

is returned. IORESULT is affected.

Pascal C Interface 4.5

4.4 Printer reservation.

These procedures enable the Pascal programmer to reserve and release a

printer.

4.4.1 GETPR - Reserve a printer.

FUNCTION GETPR(PR: STRING): BOOLEAN; EXTERNAL;

PR identifies a printer.

A call of the function GETPR reserves the printer identified by PR. It

returns TRUE if the printer can be reserved otherwise FALSE. After a

successful call the error device (ERROR) is the specified printer.

4.4.2 FREEPR - Release a printer.

PROCEDURE FREEPR; EXTERNAL;

This procedure releases the printer used as the error device. After a

call of FREEPR the error device is the standard output device

(OUTPUT).

4.5 File information.

This procedure enables the Pascal programmer to get the size of a Unix

file.

PROCEDURE SFILEINF(FILENAME: STRING; VAR SM, ST, S: INTEGER);

EXTERNAL ;

FILENAME identifies a Unix file, e.g. '/usr/an/tst.p'.

This procedure places information about the size of the given file in

the parameters SM, ST og S. The size is (SM*1000+ST)*1000+S. IORESULT

is affected.

4.6 Pascal C Interface

4.6 REDBAK - Read one record backwards.

PROCEDURE REDBAK(VAR FILEID: TEXT; VAR CONTENTS: xxxx); EXTERNAL?

FILEID identifies an open sequential file, e.g. '/usr/an/tst.p'.

xxxx is a string type declared: TYPE xxxx = STRING(255);

Calling REDBAK will cause the file to be backspaced one record, that

is, the record preceding the current record becomes the new current

record. The contents of the record across which the system backspaced

are placed in the parameter CONTENTS. The length of the string used as

the CONTENTS parameter is set according to the length of the record

read. IORESULT is affected. If begin-of-file is reached IORESULT

returns 0, but the standard function EOF returns TRUE.

4.7 RENAMF - Rename a file.

PROCEDURE RENAMF(OLD, NEW: STRING); EXTERNAL;

This procedure renames the file specified in the parameter old to the

name specified in the parameter new. IORESULT is affected.

4.8 Boxes.

The following procedures and functions operate on boxes. The procedure

DELBOX can also be used to delete a closed file.

4.8.1 Creation of box from Pascal.

PROCEDURE PMAKEBOX(NAME: STRING); EXTERNAL;

This procedure creates a socalled box. Hence this box can be opened

using REWRITE.

The NAME parameter is a Supermax file name possibly followed by a

colon and one or more indicators of parameters.

Pascal C Interface

The indicators are:

followed by the size of the box in bytes. This size

will be rounded to the next higher multiple of 512. If

:s is omitted or if the size is greater than 16384 the

box will be created with size 2048.

followed by the access rights in octal notation. If :a

is omitted the box will be created with access 0764

(that is rwxrw-r--). Note that the access rights also

depend on the umask of the user calling the procedure.

4.7

IORESULT is affected by the procedure and the user should always check

the value of IORESULT following a call of PMAKEBOX.

Example:

PMAKEBOX(' abcbox:s200:a777');

will cause the creation of the box abcbox in current directory with a

size of 512

IWXIWEKIWE.

(next higher multiple of 512) bytes and access rights

4.8.2 Test for readable bytes in an (open) box.

FUNCTION EMPTYBOX(BOXNAME: STRING): BOOLEAN; EXTERNAL;

or

FUNCTION FEMPTYBOX(FILETYPE: BOOLEAN; UNIV BOX: TEXT):

BOOLEAN; EXTERNAL;

BOXNAME is the name of a box, e.g. '/dev/box/buf'.

FILETYPE must be TRUE if the next parameter is of type TEXT and FALSE

if it is of type FILE OF XXX. BOX is a variable of type TEXT or FILE

OF XXX

4.8 Pascal C Interface

Both functions return TRUE if the box is empty (no readabie bytes),
otherwise FALSE is returned. When using FEMPTYBOX the box must be

opened in advance. IORESULT is affected. If IORESULT <> O the function

returns FALSE.

4.8.3 Test for writeable bytes in an (open) box.

FUNCTION FULLBOX(BOXNAME: STRING): BOOLEAN; EXTERNAL;

or

FUNCTION FFULLBOX(FILETYPE: BOOLEAN; UNIV BOX: TEXT): BOOLEAN;

EXTERNAL;

BOXNAME is the name of a box, e.g. '/dev/box/buf'.

FILETYPE must be TRUE if the next parameter is of type TEXT and FALSE

if it is of type FILE OF Xxx. BOX is a variable of type TEXT or FILE

OF XXX

Both functions returns TRUE if the box is full (no writeable bytes),

otherwise FALSE is returned. When using FFULLBOX the box must be

opened in advance. IORESULT is affected. If IORESULT <> 0 the function

returns FALSE.

4.8.4 Get information about an (open) box.

PROCEDURE BOXSTATUS(BOXNAME: STRING; VAR RBYTES, WBYTES:

INTEGER); EXTERNAL;

or

PROCEDURE FBOXSTATUS(FILETYPE: BOOLEAN; UNIV BOX: TEXT;

VAR RBYTES, WBYTES: INTEGER); EXTERNAL;

BOXNAME is the name of a box, e.g. '/dev/box/buf';

FILETYPE must be TRUE if the next parameter is of type TEXT and FALSE

if it is of type FILE OF XXX. BOX is a variable of type TEXT or FILE

OF XXX.

Pascal C Interface 4.9

Both procedures give the number of readable and writeable bytes in a

box. After a call RBYTES/WBYTES contains the number of readable/write-

able bytes in the given box. When using FBOXSTATUS the box must be

opened in advance. IORESULT is affected.

4.8.5 DELBOX - Delete a box.

PROCEDURE DELBOX(BOXNAME: STRING); EXTERNAL;

BOXNAME is the name of a box, e.g. '/dev/box/buf';

A call of this procedure deletes a box. If some process has the box

open, deletion will be postponed until the box is closed. The box is

deleted even if it is not empty. Note that empty boxes are automati-

cally deleted when closed. IORESULT is affected.

The procedure may as well be used to delete a closed file. BOXNAME is

then a file name, e.g. '/usr/an/test.p'.

4.9 CLOCK - Get the system time.

PROCEDURE CLOCK(VAR DATE, TIME: STRING); EXTERNAL;

A call of this procedure returns the date in the form dd.mm.yyyy in

the parameter corresponding to DATE and the time in the form hh.mn.ss

in the parameter corresponding to TIME. The length of the string of

the first parameter is set to 10 and the length of the second is set

to 8.

4.10 PROCNO - Get the process number for the current process.

PROCEDURE PROCNO(VAR PRCNUM: INTEGER); EXTERNAL;

This procedure places the process number of the current process in the

parameter PRCNUM. IORESULT is affected.

4.10 Pascal C Interface

4.11 GETUSER - Get the user name.

PROCEDURE GETUSER(VAR USERNAME: STRING); EXTERNAL;

The procedure reads the name of the user who started the calling
process in the file /etc/passwd. The user name is placed in the
USERNAME parameter. The length of this string is 8. IORESULT is af-

fected. If the user name of the current process is not contained in

the file /etc/passwd, IORESULT is EILLPARM (302).

4.12 SETPRIO - Set the priority of a process.

PROCEDURE SETPRIO(PRCNO, PRIO: INTEGER); EXTERNAL;

PRCNO is a process number. NOTE: this parameter has no significance

under system V, as one can only change the priority of the calling

process. The PRCNO parameter is ignored!.

PRIO is a priority.

The procedure changes the priority of the calling process. IORESULT is

affected.

4.13 PROCSTA - Get a process status.

TYPE STATUS=

RECORD

PRCNO, (* process ID *)

PRCGRP: INTEGER;(* process group ID *)

PRCNAME: PACKED ARRAY (.1..16.) OF CHAR;

(* process name *)

PRCRGRN, (* real group ID *)

PRCRUSN, (* veal user ID *)

PRCEGRN, (* effective group ID *)

PRCEUSN, (* effective user ID *)

PRCKIND, (* process kind *)

PRCPRIO: INTEGER;(* process priority *)

Pascal C Interface 4.11

PRCUTIM, (*user mode time in ticks (clock interrupts)*)

PRCSTIM, (* supervisor mode time in ticks *)

PRCBTIM: LONGINT;(* birth time in seconds*)

PRCPPID: INTEGER;(* parent process id *)

PRCPRIV, (* process is privileged *)

PRCACT, (* process is active *)

PRCRUNN, (* process is running *)

PRCESUSP, (* process externally suspended *)

PRCISUSP, (* process internally suspended *)

PRCWAIT, (* process is waiting for box I/O *)

PRCABO: BOOLEAN; (* process is dying *)

PRCSUSR: INTEGER; (* reason for internal suspension *)

END;

PROCEDURE PROCSTA(PRCNO: INTEGER; VAR BLOCK: STATUS); EXTERNAL;

This procedure fetches information about the specified process. If

process number -1 is specified the process status of the calling

process is returned. IORESULT is affected.

The declaration of the type STATUS is contained in the file

/pbin/extdecl.p.

4.14 PWAIT - Wait for dead offspring process.

TYPE PI = “INTEGER;

PROCEDURE PWAIT(VAR PID: PI); EXTERNAL;

PID identifies a process spawned by the CHAIN procedure. The process

id is returned in the third parameter of the Pascal standard procedure

CHAIN.

4.12 Pascal C Interface

A call of PWAIT makes the calling program wait until the identified
process dies. IORESULT is the condition code from the dead process. If
the calling program has no offspring processes IORESULT is EDEADPNX
(114).

4.15 Exception handlers for attention, interrupt and quit.

PROCEDURE AKEY(ANSWER: BOOLEAN; VAR ATT: INTEGER)?

PROCEDURE IKEY({ANSWER: BOOLEAN; VAR INTR: INTEGER);

PROCEDURE QKEY(ANSWER: BOOLEAN; VAR QUIT: INTEGER);

The procedures AKEY, IKEY and QKEY are used to set up exception hand-

lers for attention, interrupt and quit, and to get the number of times

the attention, interrupt and quit keys have been pressed.

When ANSWER is FALSE in a call of one of the procedures the belonging

exception handler is set up. When ANSWER is TRUE the number of times

the belonging key was pressed since the exception handler was set up

is returned.

4.16 PIPEOPEN and PIPECLOSE - Open and close a pipe.

FUNCTION PIPEOPEN(PROGNAME: STRING; VAR Fl, F2: TEXT): INTEGER;

EXTERNAL;

FUNCTION PIPECLOSE(PID: INTEGER): INTEGER; EXTERNAL;

The function PIPEOPEN is used to create a pipe (an anonymous box)

between the process calling the function PIPEOPEN and the process

which executes the program specified in the parameter PROGNAME. The

pipe will connect the standard I/O files for the two processes in one

of the following ways:

- standard INPUT for the new process is connected to standard OUTPUT

for the calling process

Pascal C Interface 4.13

- standard INPUT for the new process is connected to standard ERROR

for the calling process

- standard OUTPUT for the new process is connected to standard INPUT

for the calling process

~- standard ERROR for the new process is connected to standard INPUT

for the calling process

The parameters Fl and F2 indicate the connection between the standard

I/O files for the two processs. The parameter Fl must be a standard

I/O file for the calling process and F2 must be a standard I/0 file

for the new process. Fl must be INPUT, OUTPUT or ERROR. F2 must be

OUTPUT or ERROR. If Fl is OUTPUT or ERROR, F2 is assumed to be INPUT.

Upan successfull completion the function PIPEOPEN returns the process

number of the new process. Otherwise, a value of -] is returned and an

errorcode is returned in IORESULT.

Example:

RESULT := PIPEOPEN('lp', ERROR, INPUT);

This call of PIPEOPEN will start the execution of the program lp. A

pipe will be created between the process which executes lp and the

calling process. When the calling process writes data to standard

ERROR the data will be stored in an anonymous box. When the new pro-

cess reads data from standard INPUT the data stored in the box by the

calling process will be read.

The function PIPECLOSE takes a process number as parameter. It discon-

nects the pipe between the calling process and the process given by

the parameter. PIPECLOSE re-etablishes standard INPUT, OUTPUT or ERROR

of the calling process. When the process with the given process number

is dead, PIPECLOSE returns the completion code of the dead process.

IORESULT is affected.

Pascal C Interface 4.14

4.17 XCHAIN and XPWAIT - Start and wait for new process.

FUNCTION XCHAIN(COMM: STRING; TYP: INTEGER): INTEGER; EXTERNAL;

COMM contains a command, which will be interpreted by shell. TYP

contains an integer, that defines what kind of process will be crea-

ted.

TYP = O will create a child process of the calling process. XCHAIN

returns immediately and the return value will be the process id of the

new process. The process id may be used as parameter to the external

procedure XPWAIT described below.

Typ = 1 will create a child of process 1 (normally init). XCHAIN

returns immediately and the return value will be the process id of the

new process.

TYP = 2 will create a sibling of the calling process. This means that

the parent process id of the new process will be the same as_ the

parent process id of the calling process. XCHAIN returns immediately

and the return value will be the process id of the new process.

TYP = 3 will not create another process. The calling process will

transform into the new process. XCHAIN will not return. The process id

of the new process is the same as the process id of the calling pro-

cess.

TYP = 4 will create a child process of the calling process. XCHAIN

will not return until after the termination of the child process. The

return value is the exit code from the child process.

If XCHAIN fails, the return value will be -1 and IORESULT will indica-

te the error.

PROCEDURE XPWAIT(VAR PID: INTEGER); EXTERNAL;

PID identifies a child process of the calling process. The process may

be started using the standard function XCHAIN. The process id is

returned by the function XCHAIN. A call of XPWAIT makes the calling

program wait until the identified process dies. IJORESULT is the condi-

tion code from the dead process. If the calling program has no offs-

pring processes IORESULT is EPROCNX (106).

4.15 Pascal C Interface

4.18 PSETPGRP - Set process group number.

PROCEDURE PSETPGRP; EXTERNAL;

A call of this procedure makes the calling process a process group

master, that is, the process group ID of the calling process is set to

the value of the process ID of the calling process.

4.16 Pascal C Interface

Examples.

TYPE NAMEREC = RECORD

FIRSTNAME: STRING(20);

SURNAME: STRING(20)

END;

VAR NAMEFILE: FILE OF NAMEREC;

Let 'namefile’ be a file containing records of type NAMEREC. The file

contains 100 records and the first 7 records are not to be sorted. The

records should be sorted after increasing SURNAME. The parameters must

then be:

FILENAME = 'namefile'

BUF SIZE >= 524

REC SIZE = 44

REC PR UNIT = 1

NOT SORT = 7

NO OF UNITS = 93

REC NO =1

KEY NO = 24

KEY SIZE = 20

Let 'namepair' be a file containing records of type NAMEREC. The file

contains 100 records which all should be sorted. A sort unit contains

two record and the sort units should be sorted after increasing

SURNAME in the second record:

FILENAME = ‘namepair'

BUF SIZE >= 824

REC SIZE ws 44

REC PR UNIT

NOT SORT = 0

NO OF UNITS = 50

REC NO

KEY NO

KEY SIZE = 20

. we

e
n
 N

Pascal C Interface 4.17

4.18 PSETPGRP - Set process group number.

PROCEDURE PSETPGRP; EXTERNAL;

A call of this procedure makes the calling process a process group

master, that is, the process group ID of the calling process is set to

the value of the process ID of the calling process.

