
Supermax System V

Running Interpreted Pascal

Dansk Data Elektronik A/S

15. Sep 1987

Version 1.1

Copyright 1987

Dansk Data Elektronik A/S

Running Supermax Interpreted Pascal

Table of Contents.

5.

6.

Introduction

The Compiler

2.1 Running the Compiler

2.2 Compile Time Options

Running the Interpreter

Environment File - External Procedures

4.1 Contents of Environment File

4.2 The Program Envredit

The program ppc

Implementation Size Limits

Appendix A. Compile Time Error Messages

Appendix B. Run Time (Interpreter) Error Messages

Appendix C. Necessary files

1.1

Page

Running Supermax Interpreted Pascal 1.2

1. Introduction.

This manual describes the use of the compiler and interpreter for

Supermax Interpreted Pascal. In addition the contents of environ-

ment files is described. An environment file may contain external

procedures and functions. See the Pascal C Interface Manual for

writing external procedures and functions and how to link

environment files.

Dansk Data Elektronik A/S reserves the right to change the

specifications in this manual without warning. Dansk Data

Elektronik A/S is not responsible for the effects of typographi-

cal errors and other inaccuracies in this manual, and cannot be

held liable for the effect of the implementation and use of the

structures described herein.

Running Supermax Interpreted Pascal 2.1

2. The Compiler.

2.1 Running the Compiler.

The compiler is located in the file /pbin/pascal. The compiler checks

if the environment TARGETMC is set to 68000 or 68020. If not pascal

terminates without compiling. Otherwise pascal uses the value of the

environment when generating code for calling the interpreter. If

TARGETMC is 68000 code for calling /etc/inter will be generated other-

wise code for calling /etc/inter20 will be generated.

The compiler may execute in either parameter mode or in dialog mode.

When +q is given as parameter the compiler asks questions (user input

shown underlined):

$ pascal +q

Source code file: tst.p

P-code file: tst

Environment file: tst.

List option (t/1/ /q): 1

List file: tst.list

Conditions: d

Source code file:

The source code file is the file containing the source code of the

Pascal program. It will normally (but not necessarily) be of type p.

P-code file:

The p-code file is the file in which the translated program should be

stored. It must be typeless.

Environment file:

The environment file is the file in which the source code for a pos-

sible environment file (see section 4) will be stored. It will normal-

ly be of type j.

If the end-of-file key is pressed in reply to this request in dialog

mode, the file will not be written, and in this case it is not allowed

to declare external procedures and functions in the Pascal program.

2.2 Running Supermax Interpreted Pascal

List option:

The listoption may be used to control the list output produced by the

compiler. The listoptions recognized by the compiler are T (t), L (1),

and Q (q). The listoption may be changed during a compilation using

the L and Q compile time options (see section 2.2).

If L, 1, T, or t is specified as the listoption, and the compiler is

executed in dialog mode the compiler will ask for the name of the file

in which to store a source listing of the compiied program.

If L (1) is specified as the listoption, ‘the compiler will produce a

source listing of the compiled program including the number of each

source line compiled, as well as the block level (the number of

RECORDS, BEGINS, REPEATs, and statement CASEs minus the number of

ENDs, UNTILS, and OTHERWISEs processed) before the line is compiled.

Error messages will appear in the listfile just after the line in

which the error was detected.

If T (t) is specified as the listoption, the compiler will produce the

same output as mentioned under L above, but after each subroutine the

compiler will output information about the size of the compiled sub-

routine (number of bytes of p-code generated), accumulated segment

size (bytes of p-code), and size (in bytes) of the temporary stack

area that will be allocated for the subroutine’s variables, local

parameters etc. Further, after each record declaration the size of the

record will be output.

The Q (q) listoption suppresses all output except error messages.

If an illegal listoption is specified or if no listoption is speci-

fied, the compiler will use the output device to keep the operator

informed about the progress of the compilation by displaying the

source line number and the name of the procedure currently being

compiled plus a dot for each line compiled. Error messages will appear

on the error device together with a printout of the line in which the

error was detected.

Conditions:

Conditions is simply a number of capital letters that control the

conditional compilation, see section 2.2. If the program contains

compiler directives such as (*SXH*).....(*SX-*), the code between the

two compiler directives will be compiled only if the letter H is among

the letters given in the conditions parameter.

Running Supermax Interpreted Pascal 2.3

The parameter mode corresponding to the dialog mode shown in the start

of the section is:

$ pascal -i tst.p -o tst -e tst.j -Ll -T tst.list -cD

The default values are:

for pcode - the name of the source code file with .p omitted

for envr - external procedures and functions not allowed

for listop - blank

for cond - no conditions

if the given listoption implies a listing the default name of the list

file is the name of the source code file with .p substituted by .list.

Compilation may be aborted at any time by entering a ctrl c at the

terminal that was used to start the compilation. Using ctrl c will not

kill other Pascal programs running in the background on the same

terminal, and no trace dump will be produced.

It should be noted that SPC/1 and Supermax p-code are not compatible.

2.2 Compile Time Options.

The compilers may be instructed to generate code according to certain

options; in particular, it may be requested to insert or omit run-time

test instructions, and it may be requested to include files. Compiler

directive are written as comments and are designated as such by a

S~character as the first character of the comment:

(*$<option sequence>*)

The option sequence is a sequence of instructions separated by commas.

Each instruction consists of a letter, designating the option, fol-

lowed either by a plus (+) if the option is to be activated or a minus

(-) if the action is to be passivated, or by a digit, or bya file-

name. Example:

(*$C+, Ideclfile*)

2.4 Running Supermax Interpreted Pascal

Illegal syntax in a compiler directive is not reported by the

compiler, but the results are unpredictable.

The following options are currently available:

B causes the compiler to generate line numbers referring to the

lines in the listing of the program produced by the compiler and

not (as default) relative to the source code file, the line

originates from. (Also see option D)

causes the compiler to generate I/O check instructions after each

statement which performs any I/O. The instruction checks to see

if the I/O operation was accomplished successfully. In the case

of an unsuccessful I/O operation the program will be terminated

with a Supermax I/0 error message. Note that no 1/0 check in-

structions are generated after RESET, REWRITE, LOCK or CHAIN

procedure calis.

When automatic I/O checking is off, the user must check the value

of the IORESULT function after each 1/0 operation.

C+ 1/0 check instructions are generated (default).

C- I/0 check instructions are not generated.

causes the compiler to generate line numbers in the p-code. If a

run time error occurs the interpreter will print the number of

the source line corresponding to the code that was executed when

the error occurred, along with the name of the file containing

the source code. Each line number generated occupies 2 or 3 bytes

of p-code. The generated line number refers to the line number in

the file (maybe an included file) the line originates from (also

see option J).

D+ line numbers are generated (default).

D- line numbers are not generated.

causes the compiler to generate the names of all declared exter-

nal subroutines in the type j file. The names are generated in

the declaration order.

Running Supermax Interpreted Pascal 2.5

determines whether Pascal GOTO statements are allowed within the

program. This option may be used to restrict novice programmers

from using the GOTO statement in situations where structured

constructs like FOR, WHILE, REPEAT, and CASE statements would be

more appropriate

G+ allows the use of the GOTO statement.

G- causes the compiler to generate a syntax error upon encoun-

tering a GOTO statement (default).

includes a source file into the compilation. The characters

between “I” and the terminating “*)° are taken as the file name

of the source file to be included. The comment must be closed at

the end of the file name, therefore no other options can follow

the file name.

Example: (*SD-, I/usr/an/tst.p*)

The compiler cannot keep track of nested inclusions, that is, an

included file may not have an include file compiler directive.

This will result in a fatal syntax error. If nested inclusions

are wanted, the Pascal pre-processor can be used. Note that files

included by SI are included during the compilation, while files

included by the pre-processor are included before compilation.

causes the compiler to generate code keeping track of which

source code file the currently executed subroutine originates

from, thus making it possible to give an exact message about the

location of a run-time error. As this information takes up much

space it is recommended that this facility is only used as long

as the program is erroneous.

J+ file names are generated (default).

J- file names are not generated.

controls whether the compiler will generate a program listing of

the following source text. This directive is analogous to the L

listoption discussed in section 2.1. The default value of this

option is set by the listoption when the compiler is started.

L+ start output of source listing on the list file.

L- stop output of source listing.

Running Supermax Interpreted Pascal

causes the compiler to output the number of bytes remaining in

the heap of the compiler. This number gives the user a hint as to

whether a compiler run time error Stack or heap overflow may be

expected if the program is expanded. The heap grows with each

declaration of an identifier.

This letter must be followed by two digits. These digits are

taken as an integer, and the number of lines per page in a pro-

gram listing is set to this number.

For example (*S$N30*)

this option controls whether or not the p-code generated should

be optimized.

O+ turns optimizing on.

O- turns optimizing off (default).

causes the compiler to skip to a new page on the printer if the

compiler is generating a source listing on the printer at the

time when the P compiler directive is encountered.

is the “quiet compiler’ option which can be used to suppress the

output to the output device of procedure names, line numbers,

and dots detailing the progress of the compilation. This compiler

directive is analogous to the Q listoption discussed in section

2.1. The default value of this option is set by the listoption

when the compiler is started.

Q+ causes the compiler to suppress output to the output device.

Q- causes the compiler to output procedure names, line numbers,

and dots to the output device.

This option controls whether or not the compiler should output

additional code to perform checking on array and string sub-

scripts and assignments to variables of subrange types.

R+ turns range checking on (default).

R- turns range checking off.

Running Supermax Interpreted Pascal 2.7

Programs compiled with the R option set will run slightly faster

and require less code; however, if an invalid index occurs or an

invalid assignment is made, the program will not be terminated

with a run time error. Until a program has been completely tested

and is known to be correct, it is usually best to compile with

the R+ option set. Note that certain string indexing errors

(index<O or >255) are detected even if range checking is dis-

abled.

This option makes it possible to use arbitrary ascii characters

in strings and as character constants. S must be followed by a

character. This character is denoted an escape character. In

strings and character constants this escape character can be

given followed by two hexadecimal digits. The two hexadecimal

digits specify an ascii character. When a character no longer

should be used as escape character the escape character can be

deleted by the compile time option S followed by -. Default

escape character is ‘-°. Example:

(*SS*)

writeln(“error\07°); (* writes error and beeps *)

(*88-*)

causes the compiler to generate line numbers in the p-code. Con-

trary to compile time option D only line numbers referring to the

first line in a block (main program or subroutine) are generated,

thus enabling a subroutine trace during execution if the debug

flag in the environment file is set. Compile time option T is

activated only if D is not used.

T- line numbers are not generated (default)

D-,T+ line numbers are generated

both options are generated by the Pascal Pre-processor making the

compiler able to print correct line numbers and filenames on

discovering syntax errors. These options should not be used by

the programmer.

2.8 Running Supermax Interpreted Pascal

specifies code which is to be compiled only under certain condi-

tions. This directive takes the form (*S$Xn*), where n is either a

capital letter or a minus sign. If nis a capital letter the

following code is compiled only if that letter was given in the

conditions parameter when the compiler was started (see section

2.1). If nis a minus sign the following code is compiled uncon-

ditionally. This conditional compilation facility is useful if

two almost identical versions of a program are desired; for

example, certain statements producing test output may be condi-

tionally compiled so that it is easy to switch from a test

version of a program to a non-toot voroion. Conditional compi-

lation can also be obtained using Pre-processor commands.

Example:

Assume that the following program resides in the file tst.p:

PROGRAM TEST;

BEGIN

WRITELN(° COMMON”);

(*SXT*) WRITELN(TIT’); (*SX~*)

WRITELN(* COMMON“);

(*$XQ*) WRITELN(“Q00°); (*SX-*)

WRITELN(* COMMON”) ;

END.

If this program is compiled in the following manner:

$ pascal -i tst.p

it will be equivalent with the following program:

PROGRAM TEST;
BEGIN

WRITELN(‘COMMON’);
WRITELN(* COMMON’);
WRITELN(* COMMON’);

END.

Running Supermax Interpreted Pascal 2.9

If the program is compiled as follows:

§ pascal -i tst.p -CO

it will be equivalent with the following program:

PROGRAM TEST;

BEGIN

WRITELN(“ COMMON’);

WRITELN(“COMMON”);

WRITELN(“QQ0*);

WRITELN(* COMMON”);

END.

If, finally, the program is compiled this way:

$ pascal -1 tst.p -COT

it will be equivalent with the following program:

PROGRAM TEST;

BEGIN

WRITELN(“ COMMON’);

WRITELN(“TTT*);

WRITELN(“COMMON”);

WRITELN(°QQ0’);

WRITELN(° COMMON’);

END.

Running Supermax Interpreted Pascal 3.1

3. Running the Interpreter.

There exist two Pascal interpreters. They are located in /etc/inter

and /etc/inter20 and are used to execute the p-code output from the

Pascal Compiler. The pascal compiler generates information in the

p-code about which interpreter should be called.

The difference between the two interpreters lies in what instructions

are used to perform operations on the type REAL. Supermax Pascal can

run on both mc68000 and mc68020 processors. /etc/inter can be used on

both processors while /etc/inter20 only can run on a mc68020 processor

as it utilizes this processors floating point co-processor.

To ensure that programs are compiled correctly for use on either a

mc68000 processor or a mc68020 processor a special environment

TARGETMC must be set. TARGETMC can have the value 68000 or 68020.

The interpreters are executed:

$ filename parameters

or

$ /etc/inter filename parameters (or /etc/inter20 filename parameters)

Filename is the name of the file containing the p-code and parameters

are the parameters passed to the Pascal program.

When a Pascal program is executed the interpreter searches for the

p-code file using the users PATH environment.

The interpreter uses segments 4, 5, 6, 7, 8, 9, and 10. Segment 5 is

Gata area for variables, segment 6 p-code area and segment 7 heap

area. Segment 4 is used in connection with writing p-code in memory.

Segment 8 is the environment file and segment 9 is data area for the

environment file. Segment 10 is reserved for the use of text libraries

(see Supermax Pascal User’s Guide section 2).

The version of the interpreter is written when a run time error oc-

curs; it is also possible to get the version of the interpreter by

executing:

$ what /etc/inter

Running Supermax Interpreted Pascal 4.1

4. Environment File - External Procedures.

In connection with the execution of a Pascal program an environment

file may be supplied. This file is really a load module produced from

- an assembly language code originating from the compiler (the type

j file) and possibly modified

- a set of subroutines written in C, being the external procedures

and functions of the Pascal program

The environment file is linked to segment 8 and 9.

4.1 Contents of Environment File.

An environment file contains the following:

load information

size of data area for variables

size of p-code area

size of heap

debug flag

address of external procedure number 1, zero for none

address of external procedure number 2, zero for none

address of external procedure number 128, zero for none

the external procedures, if any

The size of data area for variables, the size of p-code area and the

size of heap control the data area allocation performed prior to the

execution of the Pascal program. (The Pascal compiler generates the

size of P-code in the type j file).

The debug flag enables the Pascal debugger, which outputs a line num-

ber on the error device each time a new line is executed.

4.2 Running Supermax Interpreted Pascal

The external procedures and functions are numbered in the order the
first calls of the respective routines occur in the programtext. The
maximum number of external subroutines allowed is 128.

When the Pascal interpreter is executed it looks for an environment
file with the same name as the p-code file but of type e. If such a
file is found, it is loaded and its contents are used when executing
the program. Otherwise the following default environment is used: 8 K
bytes each for p-code and variables, no heap, not debug and no exter-
nal subroutines.

An environment file without external subroutines can be created by the
program /pbin/envredit. See the manual Pascal C interface how to link
an environment file with external procedures and functions.

4.2 The Program Envredit.

The program envredit creates an environment file or changes an
existing one. The information that can be set or changed by envredit
is:

~ size of data area for variables

- size of p-code area

- size of heap

- debug flag

An environment file created by envredit cannot contain external sub-
routines.

Envredit runs in dialog or parameter mode. When +q is given as para-

meter the program asks questions. Example:

$ envredit +q

Enter unit name: tst.e

Enter size of data area for variable (hex): a000

Enter size of p-code area (hex): 10000

Enter size of heap (hex): 200

Enter debug flag: 1

Running Supermax Interpreted Pascal

The corresponding parameter mode is:

$ envredit -1i tst.e -d a000 -p 10000 -h 200 -D 1

If the environment file does not exist it is created,

updated.

otherwise it is

Running Supermax Interpreted Pascal 5.1

5. The program ppc.

ppc is a program which depending on what types of files and what op-

tions are given executes one or more of the programs ppp, pascal and

pasenvr. ppc is an abbreviation of Pascal to Pcode Compiler.

ppe will check if the environment TARGETMC is set to 68000 or 68020.

If not ppc terminates without compiling. Otherwise ppc uses the value

of the environment in selecting which programs to be run and which

standard libraries to use when linking the environment file.

ppc works as follows:

a file of type p is sent through the preprocessor before output from

the preprocessor is sent on to pascal.

a file of type pp is given directly to pascal.

if a file of type p and the option -P is given to ppc the file will

be given directly to pascal.

if a file of type j is given ppc will create an envrionment file by

executing pasenvr.

The following options can be given to ppc:

-O0

-L

-T

after -o the name of the resulting file is given.

may be followed by 1, L, t, T, q or space. If a space is written

the preprocessor and the compiler will output a dot for each line.

If q is written output will be suppressed and if 1, L, t, or t is

given pascal will produce a listing of the program. If -T option

is not given the listing will be placed in <xxx>.list given the

name of the sourcefile is <xxx>.p.

must be followed by a space and the name of the file in which the

program listing should be placed if listoption t, T, l1orlL has

been given.

the letters written following C are given to pascal as conditions.

5.2 Running Supermax Interpreted Pascal

-P type p files are given directly to pascal.

-v verbose: ppc writes to standard output what fase it is currently
executing.

-O must be followed by names of type .o files separated by ;. These
files are passed to pasenvr.

-1 must be followed by names of libraries separated by ;. These

libraries are passed to pasenvr.

-e an environment file will be created.

-j] type j file will be generated.

Both the type j and e file will be generated if either -e, -O or -L is
given.

Example:

§ ppc -v -o tst tst.p -O pwait.o;xor.o -1 mylib.a -e -P -CM -Li

First ppc will send tst.p to pascal with the condition M and causing

pascal to create a type j-file and a listing of the source text in

tst.list. Next tst.j with be passed to pasenvr along with the type o

files pwait.o and xor.o and the library mylib.a. The result is ‘that

the peode file tst and the environment file tst.e are available.

6.

Running Supermax Interpreted Pascal 6.1

Implementation Size Limits.

The following is a list of limitations imposed upon the user

by the current implementation of Supermax Interpreted Pascal:

1)

2)

3)

4)

5)

6)

7)

8)

The maximum number of bytes of object code in a procedure or func-

tion is 4000. Local variables in a procedure or function can occupy

a maximum of 32766 bytes of memory.

The maximum number of characters is 255 in a string variable and

32767 in a longstring and cstring variable.

The maximum number of segment procedures and segment functions is

15.

The maximum number of procedures or functions within a segment is

255.

The maximum number of external procedures is 128

The maximum size of p-code in memory for a program is 64 K bytes.

The standard function memavail does not work when more than 65534

bytes are available in the heap.

The maximum number of bytes of global variables is 32000.

Running Supermax Interpreted Pascal

Appendix A. Compile Time Error Messages.

Errors with numbers > 400 cause the compiler to terminate.

58:

59:

error in simple type

identifier expected

“)° expected

“:° or °..° expected

symbol illegal in context (may be missing °;° on the line

or “;° in front of ELSE)

error in parameter list

“OF expected

"(° expected

error in type

“(.° expected

°.)° expected

“END” expected

“;° expected

integer expected

°=" expected

*BEGIN’ expected

error in declaration part

error in <field list>

°,° expected
oe

-” expected

error in constant

“3;=" expected

“THEN” expected

“UNTIL” expected

“DO” expected

*TO” or “DOWNTO’ expected in FOR-statement

“EXITIF” expected

“ENDLOOP’ expected

error in <factor> (bad expression)

error in variable

above

101:

102:

103:

104:

105:

106:

107:

108:

109:

110:

lili:

113:

114:

115:

116:

117:

119:

120:

121:

122:

123:

125:

126:

127:

128:

129:

130:

131:

132:

133:

134;

135:

136:

137:

138:

139:

140:

141:

142;

Running Supermax Interpreted Pascal

identifier declared twice

low bound exceeds high bound

identifier is not of the appropriate class (may be a type iden-

tifier used where a variable is required)

undeclared identifier

sign not allowed

number expected

incompatible subrange types

file not allowed here

type must not be real

slayfielid> type must be scalar or subrange

incompatible with <tagfield> part

index type must be a scalar or a subrange

base type must not be real

base type must be a scalar or a subrange

error in type of standard procedure parameter

unsatisfied forward reference

re-specified parameters not ok for a forward declared procedure

function result type must be scalar, subrange or pointer

file value parameter not allowed

a forward declared function’s result type cannot be respecified

missing result type in function declaration

error in type of standard function parameter

number of parameters does not agree with declaration

i1llegal parameter substitution

result type does not agree with declaration

type conflict of operands

expression is not of set type

tests on equality allowed only

strict inclusion not allowed

file comparison not allowed

illegal type of operand(s)

type of operand must be boolean

set element type must be scalar or subrange

set element types must be compatible

type of variable is not array

index type is not compatible with the declaration

type of variable is not record

type of variable must be file or pointer

illegal parameter solution

143:

144:

145:

146:

147:

148:

149:

150:

152:

153:

154:

155:

156:

158:

159:

160:

161:

162:

163:

165:

166:

167:

168:

169:

173:

174:

175:

176:

177:

178:

180:

181:

182:

183:

Running Supermax Interpreted Pascal A.3

illegal type of loop control variable 7

i1llegal type of expression

type conflict

assignment of files not allowed

label type incompatible with selecting expression

subrange bounds must be scalar

index type must not be integer

assignment to standard function is not allowed

no such field in this record

type error in read

actual parameter must be a variable

control variable cannot be formal or non-local

multidefined case label

no such variant in this record

real or string tagfields not allowed

previous declaration was not forward

again forward declared

parameter size must be constant

missing variant in declaration

multidefined label

multideclared label

undeciered label

undefined label

error in base set

externaloption not specified when compilation was started

parameter universal declared in non-external procedure

only files and unpacked records may be UNIV declared

parameter declared as cstring in non-external procedure

parameter of type power must be variable declared in external

procedure declaration

comparison not allowed on cstring

constant index out of bounds

overflow in constant expression

division by constant zero

case constant too large

B.4 Running Supermax Interpreted Pascal

201: error in real number - digit expected

202: string constant must not exceed source line

203: integer constant exceeds range

204: illegal hexadecimal character

250: too many scopes of nested identifiers

251: too many nested procedures or functions - or too many

procedures or functions in a segment

253: procedure too long

254: CASE statement to long

257: too many external procedures

258: location counter exceeds range

397: implementation restriction

398: implementation restriction

399: implementation restriction

400; illegal character in text

401: unexpected end of input

403: 'PROGRAM' expected

408: include control comment not allowed in inclusion file

409: error in parameters to the Pascal compiler omitted

10xxx

lloxxx

12xxx

13%xx

14xxx

1520cx

16xxx

17xxx

18xxx

error during open of inclusion file

error during open of source file

error during create/open of p-code file

error during create/open of environment file (type j)

error during output to environment file

error during output to P-code file

error during input from source file

error during seek in P-code file

error during open of list file

In the error messages with numbers >= 10000 the last three

digits represent the Supermax Operating System error code (see

Supermax System Operation Guide Appendix A).

Running Supermax Interpreted Pascal B.1

Appendix B. Run Time (Interpreter) Error Messages.

During interpretation of a Pascal program, the interpreter checks for

a number of error conditions. If an error condition is detected it is

reported in one of the following ways:

<error condition> near line nnnn

Inter version dd.mm.yyyy

or

I/O error zzz near line nnnn

Inter version dd.mm.yyyy

or

Pascal error: <error text>. Supermax errorcode zzz

where dd.mm.yyyy is the version date of the Pascal interpreter. nnnn

is the line number of the last executed Pascal statement that was

compiled with the (*SD+*) or (*ST+*) option (see section 2.2). If the

(*SD-*) and the (*ST-*) option was in effect during the compilation of

the program section executed before the error occured, nnnn will be

0000. <error condition> will be replaced by:

- Alphabet table used for string comparison erroneous

- Break by interrupt key

- Compilation of program not finished

- Division by zero

- External procedure error (probably wrong environment file, see chap-

ter 4)

- Long to short string overflow

- Long to short integer overflow

- Index error (invalid index or range of variable exceeded)

- Illegal string assignment

- Stack or heap overflow (change the size of data area or heap in

environment file see section 4.2)

- String too long or parameter error in intrinsic procedure

B.2 Running Supermax Interpreted Pascal

~ Standard procedure not implemented

- Floating point overflow

~ Floating point error (error in PWROFTEN call)

- Non-existent segment called (system error)

- More than 255 characters in record in sequential file

- Illegal p-code instruction

- Exitting procedure never called

If the Pascal compiler fails with Floating point overflow or Floating
point error the source statement just after the last one listed on the
list device probably contains a (real) constant which is not accep-
table to the compiler.

An I/O error code appears when an I/O operation fails, and I/0
checking has not been disabled through.a (*$C-*) compiler option. zzz
is the error code. The Supermax I/O error codes are explained in

Supermax System Operation Guide Appendix A.

A Pascal error: <error text> can only appear before the interpretation
of the Pascal program starts or when a segment should be read. For

instance it appears if the interpreter cannot open the p-code file or

cannot create the partitions to be used when interpreting the Pascal

program. The error is explained in <error text> and zzz is the

Supermax error code. See Supermax System Operation Guide Appendix A.

Note that when one of the error types occurs, all open files will be
closed, and if the files are sequential ones that have been opened
with a REWRITE call, end-of-file will be at the current file position.

Running Supermax Interpreted Pascal c.1

Appendix C. Necessary files.

The Interpreted Pascal System consists of the following files:

/pbin/pascal - compiler

/etc/inter - interpreter (mc68000)

/ete/inter20 - interpreter (mc68020)

/pbin/ppe - control program for compilation

/pbin/ppp - pascal pre-processor

/pbin/ptperror - error messages for pascal

/pbin/extdecl.p - declarations of external routines

/pbin/envredit - creation/change of environment file

The following files are only used when linking environment files:

/pbin/pasenvr - linking environment file (see the Pascal C

Interface Manual)

/pbin/prt0.o

/pbin/default.1d } used when linking environment file

/lib/libpext.a - library containing the standard external rou-

tines

Note: to be able to link environment files containing standard exter-

nal subroutines the library:

/lib/libc.a (mc68000)

or

/1ib20/libe.a (mc68020)

must be available.

Furthermore it is of course only possible to write and use your own

external subroutines written in C if the appropriate C-compiler system

is available.

Along with the Interpreted Pascal System the following files are

supplied:

/nlslib/pascal /uk - text file containing syntax error messages

/usr/lib/alphabet/dk - table on the Danish alphabet used for alphabe-

tic comparison on strings.

