
Supermax System V

Running Pascal Assembler Compiler

Dansk Data Elektronik A/S

15. Sep 1987

Version 1.1

Copyright 1987

Dansk Data Elektronik A/S

Running Supermax Pascal-Assembler Compiler

Table of Contents.

1. Introduction

2. The Compiler

2.1 Running the Compiler

2.2 Compile Time Options

3. The pac Program

4. Stack and Heap

4.1 How to determine stacksize

4.2 Dynamic stack allocation

4.3 The heap

5. Implementation Size Limits

Appendix A. Compile Time Error Messages

Appendix B. Run Time Error Messages

Appendix C. Necessary files

1.2 Running Supermax Pascal-Assembler Compiler

1. Introduction.

This manual describes the use of the Pascal to Assembler compiler pta

and the program pac, which creates a load module from a Pascal source

code and external procedures and functions written in Pascal or C. See

the Pascal C Interface Manual for writing external procedures and

functions in C.

Dansk Data Elektronik A/S reserves the right to change the specifica-

tions in this manual without warning. Dansk Data Elektronik A/S is not

responsible for the effects of typographical errors and other inaccu-

racies in this manual, and cannot be held iiable for the effect of the

implementation and use of the structures described herein.

Running Supermax Pascal-Assembler Compiler 2.1

2. The Compiler.

2.1 Running the Compiler.

There exist two Pascal compilers which translate from Pascal source

code to assembler source code. The compilers are located in the files

/pbin/pta and /pbin/pta20. /pbin/pta is generates code to run on a

Supermax with a mc68000 processor, (which can also run on a mc68020

processor). /pbin/pta20 generates code to run on a mc68020 processor

(which cannot run on a mc68000 processor). Both compilers check the

value of the environment TARGETMC which must be set to either 68000 or

68020. If the value of TARGETMC differs from 68000 /pbin/pta termi-

nates without compiling; if the value is different from 68020

/pbin/pta20 terminates without compiling.

Both compilers may execute in either parameter mode or in dialog mode.

When +q is given as parameter the compilers ask questions (user input

shown underlined):

$ pta +g

Source code file: tst.p

Asm-code file: tst.s

List option (t/1/ /q): i

List file: tst.list

Conditions: a

Statistics (y/n): 4

Source code file:

The source code file is the file containing the source code of the

Pascal program. It will normally (but not necessarily) be of type p.

Asm-code file:

The asm-code file is the file in which the translated program i.e. the

assembler source code should be stored. It must be of type s.

List option:

The listoption may be used to control the list output produced by the

compiler. The listoptions recognized by the compiler are T (t), L (1),

and Q (q). The listoption may be changed during a compilation using

the L and Q compile time options (see section 2.2).

202 Running Supermax Pascal-Assembler Compiler

IfL, 1, T, or t is specified as the listoption, and the compiler is
executed in dialog mode the compiler will ask for the name of the file
in which to store a source listing of the compiled program.

If L (1) 4s specified as the listoption, the compiler will produce a
source listing of the compiled program including the number of each
source line compiled, as well as the block level (the number of

RECORDS, BEGINS, REPEATs, and statement CASEs minus the number of
ENDs, UNTILs, and OTHERWISEs processed) before the line is compiled.
Error messages will appear in the list file just after the line in
which the error was detected.

If T (t) is specified as the listoption, the compiler will produce the
same output as mentioned under L above, but after each record decla-

ration the size of the record will be output.

The Q (q) listoption suppresses all output except error messages.

If an illegal listoption is specified or if no listoption is speci-
fied, the compiler will use the output device to keep the operator
informed about the progress of the compilation by displaying the
source line number and the name of the procedure currently being
compiled plus a dot for each line compiled. Error messages will appear
on the output device together with a printout of the line in which the
error was detected.

Conditions:

Conditions is simply a number of capital letters that control the
conditional compilation, see section 2.2. If the program contains
compiler directives such as (*SXH*).....(*SX-*), the code between the
two compiler directives will be compiled only if the letter H is among

the letters given in the conditions parameter.

Statistics:

If the statistics question is answered “y or “Y’ the generated code
will contain instructions that count the number of times each

procedure/function is called. The result will be placed in a file

called profile.out after normal termination of the compiled program.

Running Supermax Pascal-Assembler Compiler 2.3

The parameter mode corresponding to the dialog mode shown in the start

of the section is:

$ pta -i tst.p -o tst.s -Ll -T tst.list -Cd -py

The default values are:

for asmcode - the name of the source code file with type s instead of

for listop - blank

for cond B : P ft :

for stat t =)

Compilation may be aborted at any time by entering a ctrl c at the

terminal that was used to start the compilation. Using ctrl c will not

kill other Pascal programs running in the background on the same ter-

minal, and no trace dump will be produced.

2.2 Compile Time Options.

The compilers may be instructed to generate code according to certain

options; in particular, it may be requested to insert or omit run-time

test instructions, and it may be requested to include files. Compiler

directive are written as comments and are designated as such by a

$-character as the first character of the comment:

(*S<option sequence>*)

The option sequence is a sequence of instructions separated by commas.

Each instruction consists of a letter, designating the option, fol-

lowed either by a plus (+) if the option is to be activated or a minus

(-) if the action is to be passivated, or by a digit, or by a file-

name. Example:

(*$C+, Ideclfile*)

2.4 Running Supermax Pascal-Assembler Compiler

Illegal syntax in a compiler directive is not reported by the compi-

ler, but the results are unpredictable.

The following options are currently available:

B causes the compiler to generate line numbers referring to the

lines in the listing of the program produced by the compiler and

not (as default) relative to the source code file, the line

originates from. (Also see option D).

c causes the compiler to generate I/O check instructions after each

statement which performs any I/O. The instruction checks to see

if the I/O operation was accomplished successfully. In the case

of an unsuccessful I/O operation the program will be terminated

with a Supermax I/0 error message. Note that no I/O check in-

structions are generated after RESET, REWRITE, LOCK, or CHAIN

procedure calls.

When automatic I/O checking is off, the user must check the value

of the IORESULT function after each I/O operation.

C+ 1/0 check instructions are generated (default).

C- I/0 check instructions are not generated.

D causes the compiler to generate line numbers in the assembler

code. If a run time error occurs the program will print the num-

ber for the source line corresponding to the code that was

executed when the error occured, along with the name of the file

containing the source code. Each line number generated occupies 6

bytes in the final code.

D+ line number are generated (default).

D- line number are not generated.

F includes a file containing global declarations (to be used in

several modules of one program) into the compilation. The cha-

racters between ‘F’ and the terminating “*)” are taken as the

file name of the source file to be included. The comment must be

Running Supermax Pascal-Assembler Compiler 2.5

closed at the end of the file name, therefore no other options

can follow the file name.

Example: (*SF/usr/abc/decl . p*)

determines whether Pascal GOTO statements are allowed within the

program. This option may be used to restrict novice programmers

from using the GOTO statement in situations where structured

constructs like FOR, WHILE, REPEAT, and CASE statements would be

more appropriate

G+ allows the use of the GOTO statement.

G- causes the compiler to generate a syntax error upon encoun-

tering a GOTO statement (default).

includes a source file into the compilation. The characters be-

tween “I° and the terminating “*)” are taken as the file name of

the source file to be included. The comment must be closed at the

end of the file name, therefore no other options can follow the

file name.

Example: (*S1/usr/an/test.p*)

The compiler cannot keep track of nested inclusions, ‘that is, an

included file is not allowed to have an include file compiler

directive. This would result in a fatal syntax error. If nested

inclusions are wanted, the Pascal pre-processor can be used. Note

that files included by $I are included during the compilation,

while files included by the pre-processor are included before

compilation.

controls whether the compiler should generate a program listing

of the following source text. This directive is analogous to the

L listoption discussed in section 2.1. The default value of this

option is set by the listoption when the compiler is started.

L+ start output of source listing in the list file.

L- stop output of source listing.

2.6 Running Supermax Pascal-Assembler Compiler

This option only has meaning if the heapsize of the pta compiler
is different from zero (otherwise the heap is only limited by the
size of memory, see section 4). The option causes the compiler to
output the number of bytes remaining in the heap of the compiler.
This number gives the user a hint as to whether a compiler run
time error “Heap overflow’ may be expected if the program is
expanded. The heap grows with each declaration of an identifier.
The heap size can be changed by the program setheap (see section
4).

This letter must be followed by two digits. These digits are
taken as an integer, and the number of lines per page in a pro-
gram listing is set to this number.

For example (*SN30*)

This option controls the optimization of the final assembler

code. A variety of peephole optimization is performed including;

jump to next ins.; jump to jump; constant propagation; etc.

O+ turns optimization on (default).

O- turns optimization off.

Programs compiled with the O option set will run slightly faster

and require less code.

causes the compiler to skip to a new page on the printer if the

compiler is generating a source listing on the printer at the

time when the P compiler directive is encountered.

is the “quiet compiler’ option which can be used to suppress the

output to the output device of procedure names, line numbers,

and dots detailing the progress of the compilation. This compiler

directive is analogous to the Q listoption discussed in section

2.1. The default value of this option is set by the listoption

when the compiler is started.

Q+ causes the compiler to suppress output to the output device.

Q- causes the compiler to output procedure names, line numbers,

and dots to the console device.

Running Supermax Pascal-Assembler Compiler 2.7

This option controls whether the compiler should output additio-

nal code to perform checking on array and string subscripts and

assignments to variables of subrange types.

R+ turns range checking on (default).

R- turns range checking off.

Programs compiled with the R option set will run slightly faster

and require less code; however, if an invalid index occurs or an

invalid assignment is made, the program will not be terminated

with a run time error. Until a program has been completely tested

and jis known to be correct, it is usually best to compile with

the R+ option set. Note that certain string indexing errors

(index<O or »>255) are detected even if range checking is dis-

abled.

This option makes it possible to use arbitrary ascii characters

in strings and as character constants. S must be followed by a

character. This character is denoted an escape character. In

strings and character constants this escape character can be

given followed by two hexadecimal digits. The two hexadecimal

digits specify an ascii character. When a character no longer

should be used as escape character the escape character can be

deleted by the compile time option S followed by -. Default

escape character is “-°. Example:

(*SS*)
writeln(“error\07’); (* writes error and beeps *)

(*$S-*)

both options are generated by the Pascal Pre~processor making the

compiler able to print correct line numbers and filenames on

discovering syntax errors. These options should not be used by

the programmer.

specifies code which is to be compiled only under certain

conditions. This directive takes the form (*SXn*), where n is

either a capital letter or a minus sign. If n is a capital letter

the following code is compiled only if that letter was given in

2.8 Running Supermax Pascal-Assembler Compiler

the conditions parameter when the compiler was started (see

section 2.1). If n is a minus sign the following code is compiled

unconditionally. This conditional compilation facility is useful

if two almost identical versions of a program are desired; for

example, certain statements producing test output may be condi-

tionally compiled so that it is easy to switch from a test

version of a program to a non-test version. Conditional compila-

tion can also be obtained using Pre-processor commands.

Example:

Assume that the following program resides in the file tst.p:

PROGRAM TEST;
BEGIN

WRITELN(“ COMMON”);
(*$XT*) WRITELN(‘TTT’); (*$X-*)
WRITELN(* COMMON*);
(*SxQ*) WRITELN(°Q00°); (*SX-*)
WRITELN(* COMMON”);

END.

If this program is compiled in the following manner:

$ pta -1i tst.p

it will be equivalent with the following program:

PROGRAM TEST;

BEGIN

WRITELN(“ COMMON’);

WRITELN(“ COMMON’);

WRITELN(“COMMON”);

END.

If the program is compiled as follows:

$ pta -1 tst.p -CQ

it will be equivalent with the following program:

Running Supermax Pascal-Assembler Compiler

PROGRAM TEST;
BEGIN

WRITELN(“ COMMON’);
WRITELN(“ COMMON’);
WRITELN(“Q00°);
WRITELN(‘COMMON’);

END.

If, finally, the program is compiled this way:

S$ pta -i tst.p -COT

it will be equivalent with the following program:

PROGRAM TEST;

BEGIN

WRITELN(° COMMON”);

WRITELN(“TTT);

WRITELN(° COMMON”);

WRITELN(°QQ0°);
WRITELN(“ COMMON”);

END.

2.9

3.

Running Supermax Pascal-Assembler Compiler 3.1

The pac Program.

pac is a program which depending on what types of files and what

options are given executes on or more of the programs ppp, pta (or

pta20), as (or as20), and 1d in order to compile a pascal program. In

addition to this pac can take c-routines as input and using the appro-

priate c-compiler create a relocatable file.

pac will check if the environment TARGETMC is set to 68000 or 68020.

if

of
not pac terminates without compiling. Otherwise pac uses the value

the environment in selecting which programs to run and which = stan-

dard libraries to use in the link fase.

pac works as follows:

- a file of type p is sent through the preprocessor before output from

the preprocessor is sent on to the compiler.

- a file of type pp is given directly to the compiler.

- if a file of type p and the option -P is given to pac the file will

be given directly to the compiler.

The following: options can be given to pac:

bl 2)

-L

-T

-Cc

after -o the name of the resulting file is given.

may be followed by 1, L, t, T, q or space. If space is written the

preprocessor and the compiler will output a dot for each line. If q

is written output will be suppressed and if 1,L,T or t is given the

compiler will produce a listing of the program. If -T option is not

given the listing will be placed in <xxx>.list given the name of

the sourcefile is <xxx>.p.

must be followed by a space and the name of the file in which the

program listing should be placed, if listoption t, T, 1, or L has

been given.

the letters written following C are given to the compiler as con-

ditions.

3.2 Running Supermax Pascal-Assembler Compiler

-P type p files are given directly to the compiler

-p the compiler generates statistical code

-S pac stops after having generated the assembly language code

-c pac stops after having produced the relocatable file (type 0)

-0 the optimizer is evoked after compilation af C-modules

-v verbose: pac keeps score on standard output what fase it is cur-
rently executing.

Example:

$ pac -o tst tst.p tstl.p ext.c -CM

First pac will send tst.p and tstl.p to the preprocessor which will be

executed with listoption gq. Output from the preprocessor will be used

as input for the compiler and the modules will be compiled using con-

dition M. Then the assembler is evoked and the relocatable modules
tst.o and tstl.o are created.

Next the cc program will be evoked in order to compile ext.c and ext.o
is created.

Finally the linker will be evoked to link together the created reloca-

table files and the runtime libraries.

Note: when pac executes the linker one and only one of the relocatable

modules must contain a main program.

Running Supermax Pascal-Assembler Compiler 4.1

4. Stack and Heap.

All loadmodules contain a stacksize which can be changed by the pro-
gram chstack (see Supermax Operating System User’s Manual Section 8).
In addition a Pascal loadmodule contains a heapsize which can be
changed by the program setheap (se section 4.3).

4.1 How to determine stacksize.

Every loadmodule - be it a module originating fra a Pascal, Cc, or
other language source code - makes use of a socalled stack. The stack
is used by a running program to store values concerning the specific
subroutines currently executed, for instance parameters, local vari-
ables, the return address, and for functions also the return value.

A running process uses segment 13 as stack area. Segment 2 contains
the actual code of the program and segment 3 contains data. Data con-
sists of all globally declared variables and the static structures of
those relocatable modules that were linked together to form the load-
module. What Pascal programs are concerned segment 3 also contains the
heap area.

Every time a subroutine is invoked stack area is reserved for this
call of the routine, and when the program returns from the routine the
area is given free. If for instance a routine requires N bytes of
stack area and it is called recursively, the amount of bytes available
on the stack prior to the initial call of the routine must be at least

N times the number of levels in the recursion.

The necessary size of the stack depends on the specific program.
Pascal programs containing a call of the standard procedure CHAIN
always require a stack of at least 8 K (0x2000) bytes due to the
demands of the routine used by the pascal run time system to make a
new proces.

A review of the routines a program is built of often makes it possible
to determine a relevant stack size for the program. Consider the fol-

lowing pieces of a pascal program:

4.2 Running Supermax Pascal-Assembler Compiler

type large = array (1..10,1..1000) of integer;

var big : large;

procedure eat_stack(big: large);

begin

end;

begin (* main program *)

eat_stack(big);

end.

When eat_stack is called the program requires stack area to store the

call-by-value parameter big - this parameter alone takes up 10*1000*2

= 20000 bytes and using a stack size less than this will cause an

error during run time.

If big had been declared as a call-by-reference (var) parameter it

would have taken up only 4 bytes on the stack (being the address of

big).

The stack size of a program can be set/read/changed by the program

chstack:

§ chstack tst

outputs the current amount of bytes allocated as stack when the pro-

gram tst is called.

S$ chstack -s 0x4000 tst

sets/changes the stack size to 0x4000 bytes.

Running Supermax Pascal-Assembler Compiler 4.3

4.2 Dynamic stack allocation.

Some Supermax machines support socalled dynamic allocation of stack

space, meaning that a running program can allocate more stack space

when needed. Thus the size set by chstack is no more an ultimate upper

limit on the stack.

The routines that utilize dynamic stack allocation have been implemen-

ted in the pascal assembler system analogous to the way it works for

C programs.

The routines used depend on the environment STACKCHECK. STACKCHECK can

be set to three different values:

STACKCHECK=ON (default)

STACKCHECK=OFF

STACKCHECK=TEST (only mc68020)

If STACKCHECK=ON or the environment is not set at all or it is set to

something different than the three above mentioned values the compiler

/pbin/pta (or /pbin/pta20) will generate code, that uses the C-routine

spgrow to allocate stack space. If STACKCHECK=TEST the compiler will

generate code using a special quicker facility in the operating system

to allocate stack space (this facility is of now only implemented in

operating systems for mc68020 processors). If STACKCHECK=OFF no code

for dynamic stack space allocation will be generated.

If the machine does not support dynamic stack space allocation the

stack size of the program should be set using chstack. For further

information on stack sizes see "Supermax Operating System, System V,

Reference Manual", exec(2), bottom of page 3.

4.3 The heap.

If a Pascal program uses heap space (run time storage allocation),

that is if the program contains call(s) of the standard subroutine

NEW, it can either be allowed to allocate storage up to a limit set in

the loadmodule or unlimited (only limited by the storage available).

4.4 Running Supermax Pascal-Assembler Compiler

The limit set in the loadmodule can be 0 (zero) which is default or a
value greater than 0. The default value O causes the program to dyna-
mically allocate storage when it is needed, and the allowed amount is
unlimited. If the limit is greater than 0 the allowed amount of heap
space is allocated when the program is started. Programs with no limit
run slightly slower than programs with a limit.

The program /pbin/setheap can be used to change the limit in the load-
module. It can be run in either parameter or dialog mode. When +q is
given to the program it asks questions (user input showned under-
lined):

§ setheap +q

Enter file name: tst

Enter heap size: 0x00a000

Thereafter the heapsize in the loadmodule tst is a000 hexadecimal.

The analogous parameter mode is:

S$ setheap -i tst -h 0xa000

The heapsize can be given in octal, decimal or hexadecimal notation.
An octal number-must be preceded by “0°, and a hexadecimal by ‘Ox’ or
“Ox’.

Running Supermax Pascal~-Assembler

5. Implementation Size Limits.

The following is a list of limitations

current implementation of the Supermax

1) The maximum

2) The maximum

3) The maximum

4) The maximum

5) The maximum

number of characters in

number of characters in

number of characters in

number of procedures or

number of nested blocks

Compiler 5.1

imposed upon the user by the

Pascal Assembler Compiler:

a STRING variable is 255.

a LONGSTRING variable is 32767.

a CSTRING variable is 32767.

functions is 512.

is 13.

6) The maximum number of internal object code in a procedure or func-

tion is 16000. Approx. 50k final code.

7) Local variables in a procedure or function can occupy a maximum of

1024K.

8) A set element must be in the range from 0 to 4079.

Running Supermax Pascal-Assembler Compiler A.l

Appendix A. Compile Time Error M ges.

Errors with numbers > 400 cause the compiler to terminate.

: error in simple type

: identifier expected

4: °)° expected

: °:° or *..” expected

: symbol illegal in context (may be missing °;” on the line above

or °;° in front of ELSE)

error in parameter list

“OF” expected

“(° expected

error in type

11: “(.° expected

12: °.)° expected

13: “END” expected

14: °;° expected

15: integer expected

16: “=° expected

17: ‘BEGIN’ expected

18: error in declaration part

19: error in <field list>

20: °,° expected

21: °.° expected

50: error in constant

51: °:=" expected

52: “THEN” expected

53: “UNTIL” expected

54: “DO” expected

55: “TO” or “DOWNTO” expected in FOR-statement

56: “EXITIF’ expected

57: “ENDLOOP’ expected

58: error in <factor> (bad expression)

59: error in variable

101: identifier declared twice

102: low bound exceeds high bound

103: identifier is not of the appropriate class (may be a type iden-

tifier used where a variable is required)

A.2 Running Supermax Pascal-Assembler Compiler

104: undeclared identifier

105: sign not allowed

106: number expected

107: incompatible subrange types

108: file not allowed here

109: type must not be real

110: <tagfield> type must be scalar or subrange

111: incompatible with <tagfield> part

113: index type must be a scalar or a subrange

114: base type must not be real

115: base type must be a scalar or a subrange

116: error in type of standard procedure parameter

117; unsatisfied forward reference

119: re-specified parameters not ok for a forward or global declared

procedure

120: function result type must be scalar, subrange or pointer

121: file value parameter not allowed

122: a forward declared function’s result type cannot be respecified

123: missing result type in function declaration

125: error in type of standard function parameter

126: number of parameters does not agree with declaration

127: illegal parameter substitution

128: result type does not agree with declaration

129: type conflict of operands

130: expression is not of set type

131: tests on equality allowed only

132: strict inclusion not allowed

133: file comparison not allowed

134: illegal type of operand(s)

135: type of operand must be boolean

136: set element type must be scalar or subrange

137: set element types must be compatible

138: type of variable is not array

139: index type is not compatible with the declaration

140: type of variable is not record

141: type of variable must be file or pointer

142: illegal parameter solution

143: illegal type of loop control variable

144: illegal type of expression

145: type conflict

146;

147:

148:

149:

150:

152:

153:

154:

155:

156:

158:

159:

160:

161:

162:

163:

165:

166:

167:

168:

169:

173:

174:

175:

176:

177:

178:

180:

181:

182:

183:

190:

191:

192:

193:

194:

Running Supermax Pascal-Assembler Compiler A.3

assignment of files not allowed

label type incompatible with selecting expression

subrange bounds must be scalar

index type must not be integer

assignment to standard function is not allowed

no such field in this record

type error in read

actual parameter must be a variable

control variable cannot be formal or non-local

multidefined case label

no such variant in this record

real or string tagfields not allowed

previous declaration was not forward

procedure has allready been forward declared

parameter size must be constant

missing variant in declaration

multidefined label

multideclared label

undeclared label

undefined label

error in base set

externaloption not specified when compilation was started

parameter universal declared in non external procedure

only files and unpacked array may be universal declared:

parameter declared as cstring in non-external procedure

parameter of type power must be variable declared in external

procedure declaration

comparison not allowed on cstring

constant outside range

division by zero in constant expression

overflow in constant expression

case constant to large

inclusion of global declarations not allowed in external module

inclusion of global declarations must be before other declara-

tions

only one inclusion of global declarations allowed

only procedure/function declarations allowed in subprograms

global procedure/function declaration not allowed in external

module

A.4 Running Supermax Pascal-Assembler Compiler

195: only procedure/function declarations allowed after const, type
or var declarations in external module or only procedure/func-

tion declarations allowed in subprograms

196: external declaration of routines allowed only on level 1

201: error in real number - digit expected

202: string constant must not exceed source line

203: integer constant exceeds range

204: illegal hexadecimal character

250: too many scopes of nested identifiers

251: too many nested procedures or functions
253: procedure to long

254: CASE statement to long

258: var declaration to big

397: implementation restriction

398: implementation restriction

399: implementation restriction

400: illegal character in text

401: unexpected end of input

403: “PROGRAM’ expected

408: include control comment not allowed in inclusion file

409: error in parameters to the Pascal compiler omitted

500: too many generated identifiers (This maximum is well beyond half

a million!)

10xxx: error during open of inclusion file

llxxx: error during open of source file

l2xxx: error during create/open of assembler-code file

15xxx: error during output to assembler-code file

16xxx: error during input from source file

18xxx: error during open of list file

In the error messages with numbers >= 10000 the last three digits

represent the Supermax Operating System error code (see Supermax Sy-

stem Operation Guide Appendix A).

Running Supermax Pascal-Assembler Compiler B.1

Appendix B. Run Time Error Messages & Their Handling.

When a Pascal-Assembler program is run, run time exception may occur.

If an exception condition is detected it is reported in the following

way:

Run-time error - dump:

Exception cause <exception text>

Execution stopped at line <no> in (sub)program <name>

Call trace:

line number procedure name (sub)program name

After this heading a trace of the called procedures will occur.

<exception text> will be replaced by one of the following depending on

the detected exception:

- ILL. INS. (illegal instruction)

- FLOAT (float error)

- BUSERROR

- ADDRESS

~- ALPHABETIC COMPARISON

- ZERODIV (division by zero)

- RANGE (invalid index or range of variable exceeded)

- OVERFLOW (arithmetic overflow)

- I/0

- COPY (more than 255 characters in record in sequential file)

- CONCAT

- EXIT

- HEAP CREATION

- HEAP OVERFLOW

- HEAP ALLOCATION

- HEAP DEALLOCATION

- LONG TO SHORT STRING ERROR

- STRING LENGTH TOO LONG

- TEXT LIBRARY HAS NOT BEEN LOADED

- UNKNOWN

B.2 Running Supermax Pascal-Assembler Compiler

<no> is the source line number where the exception occurs. However if

the D option has been toggled off the line number is the line of the

routine where the exception occurs.

<name> is the name of the program, subprogram or external Pascal rou-

tine where the exception occurs.

A Supermax 1/0 error code appears when an I/O operation fails, and I/O

checking has not been disabled through a (*SC-*) compiler option.

Note that when a run time error occurs, all open files will be closed,

and if the files are sequential ones that have been opened with a

REWRITE call, end-of-file will be at the current file position.

User handling of run time errors.

The Pascal-assembler system's run time error handling is performed by

an internal subroutine, postmortem, written in C. This routine con-

sists of three calls of other subroutines:

preerr(); /* dummy routine - delivered empty */

dump(outfile); /* writes run time error dump */

posterr(); /* dummy routine - delivered empty */

preerr and posterr are dummy routines that can be rewritten by users,

who wish to handle runtime errors differently. If f.ex. the C-routine

exit is called in preerr, this will cause the programs in which this

version of preerr is linked to terminate with no dump, when a run time

error occurs.

The dump routine is called with a parameter of type FILE (a stream).

The pascal system uses stderr.

Three internal variables are available to the user:

int Pexcno =- contains the number of the axception which

caused the run-time error

struct buseinf *Pinfo - contains additional information on buserrors

and address errors

(see Supermax Operation System, section 2, signal(2))

Running Supermax Pascal-Assembler Compiler B.3

If these variables are used the c-module must contain the following

inclusion:

#include <signal.h>

The following example is taken from the run time routine for the com-

piler pta itself (the compilers are written in Pascal):

[J RRRRERRKAERREAEREREERERRRERREREREEREREERERERE RE RERERE |

/*® module: p-prepost.c */

/* written by: abe date: 01.08.1987 */

/*® copyright (c) 1987 by Dansk Data Elektronik A/S */
[ERREREREKEEREKRREREEKERERRE ER ERERRRERERERERRERERERERE |

static char *-v=" (#) p-prepost.c 01.08.1987";

#include <stdio.h>

#include <pta.h>,

#include <signal.h>

extern struct iob LIST;

extern int Pexcno;

preerr()

{
closf(3, &LIST); /*® close LIST file when exiting */

if (Pexcno == SIGINT)

{
fprintf(stderr,"\ncompilation terminated - interrupt key pressed\n");

exit(Pexcno);

}

}

posterr()

{
if (Pexcno)

fprintf(stderr,"\ncompilation terminated - completion code %d\n",Pexcno

exit(Pexcno);

}

These routines cause the compiler to skip writing a dump when it was

terminated by pressing the ctrl c keys.

B.4 Running Supermax Pascal-Assembler Compiler

When the compiler is linked the module p_prepost.o is given explicitly

to the linker causing this module to be linked to the compiler instead

of the empty preerror and posterr routines found in the library

/1ib/libpa.a (or /11b20/libpa.a).

Running Supermax Pascal-Assembler Compiler c.1

Appendix C. Necessary files.

The Pascal Assembler System consists of the following files:

/pbin/pta - Pascal to Assembler compiler (mc68000)

/pbin/pta20 - Pascal to Assembler compiler (mc68020)

/pbin/pac - control program for compilation

/pbin/ppp - pascal pre-processor

/pbin/setheap - used to change the heapsize

/1ib/libpa.a - run time routines for Pascal (mc68000)

/1ib20/libpa.a - run time routines for Pascal (mc68020)

/lib/libpext.a - library containing the external standard rou-

tines

/lib/libopen.a - routines simulating Mikfile modes on files

/1ib/liblingua.a - routines for language independence (mc68000)

/11b20/liblingua.a - routines for language independence (mc68020)

/pbin/extdecl.p - the declarations of the external standard

routines

Furthermore the following files are required:

mc68000:

/bin/as

/bin/1d

/1ib/crt0.o

/lib/libc.a

/lib/libm.a

C.2 Running Supermax Pascal-Assembler Compiler

mc68020:

/bin/as20

/bin/1d

/1ib20/crt0.0

/11b20/libc.a

/11b20/1libm.a

Besides the above mentioned files, it is of course required to have a

C-compiler system if one wants to write and use own C-routines.

Along with the Pascal-Assembler System the following files are
supplied:

/n1slib/pta/uk - text file containing the syntax error messages

/usr/lib/alphabet/dk - table on the Danish alphabet used for alphabe-

tic comparison on strings.

