

Dansk Data Elektronik A/S

SUPERMAX

User's Guide

System V Release 3.1

Version 1.0

OCopyright 1992 by
Dansk Data Elektronik A/S and AT&T

01986 AT&T, USA
Q1989 Dansk Data Elektronik A/S, Denmark

Q1991 Dansk Data Elektronik A/S, Denmark
01992 Dansk Data Elektronik A/S, Denmark
All Rights Reserved
Printed in Denmark

Reprinted September 1991

Reprinted May 1992

Stock no.: 94300121

NOTICE

The information in this document is subject to change without notice.
AT&T or Dansk Data Elektronik A/S, Denmark assumes no responsi-
bility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T in the USA and other coun-
tries.

SUPERMAX is a registered trademark of Dansk Data Elektronik
A/S, Denmark.

[

"de ES —— ===5o

Table of Contents

Page

List of Figures 2 uuniernnnsrrrrrrrrerrrrr ix

Preface….u.ssssusceeereeesseseserseereeeeenessenenenersesere renee 1

Part 1: UNIX System Overview

Chapter 1: What is the UNIX System?

What the UNIX System Does ..2scuseuseresererrrrnrnsssnrnsnesensesnee 1-1

How the UNIX System Works 0cseuueveererernrernsrsssnsnsesenee 1-3

Chapter 2: Basics for UNIX System Users

Getting Started sorger EEG ERRERS 2-1

The Terminal 13842500 2-2

Obtaining a Login Name2ccesessssrsrsssseserrteesersnen seeren 2-10

Establishing Contact with the UNIX System ce 2-11

Chapter 3: Using the File System

Introductionssscersesrrtresrrrrrtrerrnsrrenrrerre seeren 3-1

How the File System is Structured uasenerrrrre 3- 2

Your Place in the File System scenerier 3-4

Organizing a Directory uvenner 3-16

Accessing and Manipulating Filessssveeeersesesrerrers 3-32

Summary usserrrsrserstsssrseee ster rent s stresser rener ert rr ren nnee 3-78

TABLE OF CONTENTS. iii

Table of Contents

Page

Part 2: UNIX System Tutorial

Chapter 4: Overview of the Tutorials

Introduction 2.2 seere 4-1

Text.Editing, -- GER SKEER EDR SEENEDKETEN 4-2

The Shell 1.....ssnuesesssssesssssrsrereresnsenerenr ERE ERE NEDRE edese En, 4- 7

Communicating Electronicallycsssessssesestsrsessrrarrnsernnsnes 4-12

Programming in the System ..vcrserrrsserrrrrrreresererrenere 4-13

Chapter 5: Line Editor Tutorial (ed)

Introducing the Line EditorM.ssssseseersrrssssrrrerrrserrreree 5-1

Suggestions for Using this Tutorials cesser 5- 2

Getting Started 1... rer 5- 4

Exercise 1222222. EET Ededds 5-15

General Format of ed Commands suser 5-16

Line Addressingveveressssssassssssstsssssesesessessetteseereseesessevdeser 5-17

EXERCISE mn ERE Rs Konen nEnkdess 5-32

Displaying Text in a Filt usssrrrrrrerrrrrrrrrrerrrrrrneegs 5-33

Creating Text MM. ss FEET EESIEEENE 5-36

Exercise 3.....….u.ssssseeereeererererserers renterne eres r ber rer serbere rer nr renen 5-44

Deleting Text …....ssseserrssssersrsrrerersrerenes renterne rr tt rets r rn enn 5-46

Substituting Textsussserserrrerrrrsssrerererrnrrsrrrrner erne eres 5-51

Exercise 4 ASE TEE EEN ANE sk ra 5-60

Special Characters cceversrrersrrrstresersreerrersrerenrrssrnernrnere 5-62

Exercise 5... ETERN NEDEN SRE 5-74

Moving TEXT 663 MED LEES ERNIE 5-76

Exercise 6.....M..ssssccseesessererner renerne serene renere 5-87

Other Useful Commands and Information suse 5-89

Exercise 7.uueussvsrsssssesessrsesserseresssserrersr esset stenene rr nerne renerne 5-99

Answers to Exercisessssesesssesreressesssss str r eter tr bEL Er 5-101

iv: USER'S GUIDE

GER

Table of Contents

Page

Chapter 6: Screen Editor Tutorial (vi)

Introduction Mus cssseresrtstststs tsk t ELLE LEE LEES ERE EET E ELLE ELLE 6-1

Getting Startedsssvreeeeeerretstr este E LEES E ERE LELEEEEEEE LEES 6- 4

Creating a Fileusevserersrsreseresersrnnr ennen ennen 6- 8

Editing Text: the Command Mode seernes 6-11

Quitting vi... sd sssenrrtttttr ster E LENE SELE ERE E VEL E ELLE E ET EEEE 6-20

Exercise 1....ssscssesesesersstesersrsetrrreree ternene rr er serene renerne 6-23

Moving the Cursor Around the Screen .0sevensrerserrssres 6-24

Positioning the Cursor in Undisplayed Text 2 cuuerus 6-43

Exercise 2...W.u.u.sscsseseses tant t tt Ett LEE E REESE ES E LEE E KNEE E ENE ENE NERE EDEN 6-56

Creating Text ….......ussssseveseereesssessns serne seraeser retn sr nens rr terne 6-58

Exercise 3.....M..ssssessseeresests ktr kt EE REEL E ELLE SEERE REEL EET ENES E EEN EENEE 6-63

Deleting Textssssersrstrtrtttstt tt tt EE LEES SEERE EET HEER EDEEE 6-64

Exercise 4......sscssersrsrssrssssttr ternet renerne rest br E ERE HEER ERE LEDE 6-71

Modifying Textsuserersrsrrresrerreresese essensen renerne r rr nn 6-72

Cutting And Pasting Text Electronically users 6-80

Exer cis 5 rr ESKESEN 6-85

Special Commandsssssscsrsrrrtrssetretrrnr rer rr enn enes nne 6-87

Using Line Editing Commands in Vi scenerne 6-90

Quitting vi 1..sssccus cents skt sk E ELENA A REE Are raa str aner 6-97

Special Options for Vi ..cessssserrsrrsensesns serne rnstrrnsndesknrnnen 6-100

Exercise 622222 scene EDELSVEEFTSN ss 6-103

Answers To Exercises... scsssssssdssnessissssssseesesåsesåsdeersrdssesdesse 6-105

TABLE OF CONTENTS UA

Table of Contents

Page

Chapter 7: Shell Tutorial

Introductionssesersssrseseresrrresssseessers ere nnsenn ennen re nere n renerne 7-1

Shell Command Language 2cuuesrserrrsssrssrrssensserrsrsseneree 7-2

Command Language Exercisessssceserressrrrsssrrensrersrnenee 7-37

Shell Programming 20..sssscsrseessesesesenesesenenerereeerenrenerer enes 7-39

Shell Programming Constructsssscssssrreseesreeresresesseseenee 7-63

Modifying Your Login Environmentssscesrerrsrrrnsrseneee 7-98

Shell Programming Exercises nerne 7-105

Answers To Exercises sst 7-107

Chapter 8: Communication Tutorial

Introduction .srrrrstssssrrerssrsrrserrserr renere eres r Enns 8-1

Exchanging Messages users 8- 2

UDEN FENRIS KEEL LEKNES KER UFLSEREN NNE DEK SVENDE SENSE ENEMEN? 8-3

Malik cusetsrsrsrrrrsrserrsrsrrrssrrersrrrsrr eres rrr renees rennee 8-16

mailx Overviewsussscssererreessererseresrse serene serne rerrrrnrekrrer 8-17

Command Line Optionssssssssserrsrrrrsrrsrrrrerrerrserrsrrrerenneee 8-19

How to Send Messages: the Tilde Escapes successer 8-20

How to Manage Incoming Mail 1ssrrrerrseressssrsererrerserere 8-33

The .mailre Files KEE 8-43

Sending and Receiving Files 2.2sssscrersrrssssrerssssrrersesernsesnne 8-48

Networking ssssssssesissieilerisiesieekr enn ders esserne 8-69

Appendices, Glossary, Index

Appendix A: Summary of the File System ss A-1

Appendix B: Summary of UNIX System Commands …..[.[.[.]. B-1

vi USER'S GUIDE

 Bee —m——m—m—mm—m—m—m=—
Table of Contents

Page

Appendix C: Quick Reference to ed Commands... C-1

Appendix D: Quick Reference to vi Commands... D-1

Appendix E: Summary of Shell Command Language... E- 1

Appendix F: Setting Up the Terminal uses F-1

Glossary irske IEEE SEE ALENE øde G-1

Inde% sis ERNE ERE I- 1

TABLE OF CONTENTS. vii

Table of Contents

vlit USER'S GUIDE

This page is intentionally left blank

List of Figures

Figure 1- 1:

Figure 1- 2:

Figure 1- 3:

Figure 1- 4:

Figure 1- 5:

Figure 2- 1;

Figure 2- 2:

Figure 2- 3:

Figure 2- 4:

Figure 2- 5:

Figure 2- 6:

Figure 3- 1:
Figure 3- 2:
Figure 3- 3:

Figure 3- 4:

Figure 3- 5:

Figure 3- 6:

Figure 3- 7:

Figure 3- 8:
Figure 3- 9:

Figure 3-10:

Figure 3-11:
Figure 3-12:

Figure 3-13:

Figure 3-14:
Figure 3-15:

Figure 3-16:

Figure 3-17:

Figure 3-18:

Model of the UNIX System cu uaserirstrtrerree

Functional View of the Kerne... cer

The Hierarchical Structure of the File System …

Example of a File Systemsscecererereereseree
Execution of a UNIX System Command…..[.[.[.[.[.[.[.

A Video Display Terminal and
a Printing Terminal cc rrssreserserrsse

Keyboard Layout of a Teletype 5410 Terminal.

UNIX System Typing Conventions …................
The Supermax System Editing Function Keys

Examples of Modems 0sussrrrrresrtnenserrssnseene

Troubleshooting Problems When Logging In ……

A Sample File System .csscerereerrerrssereerner
Directory of Home Directories ere

Summary of the pwd Command...
Full Path Name of the /userl/jmrs Directory.
Relative Path Name of the draft Directory …..
Relative Path Name from jmrs to outline .<Å…..….

Example Path Namessssescceeeerersresrerenereee
Summary of the mkdir Command...
Description of Output Produced by
the Is —1 Command seeren
Summary of the Is Command scene
Summary of the cd Command ss:
Summary of the rmdir Command...
Basic Commands for Using Files 1...
Summary of the cat Command

Summary of Commands to Use with pg.….[.[.[.[..
Summary of the pg Command ce
Summary of the pr Command css
Examples of Line Printers .ssssusrsssrrsrss

KR ac]

LIST OF FIGURES ix

List of Figures

Figure 3-19:
Figure 3-20:

Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:

Figure 3-26:
Figure 3-27:

Figure 4- 1:

Figure 5- 1:
Figure 5- 2:

Figure 5- 3:
Figure 5- 4:

Figure 5- 5:
Figure 5- 6:

Figure 5- 7:

Figure 5- 8:
Figure 5- 9:

Figure 6- 1:

Figure 6- 2:
Figure 6- 3:

Figure 6- 4:

Figure 6- 5:

Figure 6- 6:

Figure 6- 7:

Figure 6- 8:

Summary of the Ip Command... scene
Summary of the cp Command... css

Summary of the mv Command...
Summary of the rm Command...
Summary of the we Command 1...
Summary of the Cchmod Command...
Summary of the diff Command cc
Summary of the grep Command
Summary of the sørt Command

Comparison of Line and Screen Editors

(ed or Vi) 1... RR EEN TEdEes

Summary of ed Editor Commands

Summary of Line Addressing .ssrrrrrrrrrre
Sample Addresses for Displaying Text .…….........

Summary of Commands for Displaying Text …..
Summary of Commands for Creating Text...
Summary of Commands for Deleting Text …—…..
Summary of Special Characters …(.….u..ssccsrrerree
Summary of ed Commands for Moving Text .……..
Summary of Other Useful Commands...

Displaying a File with a vi Window...

Summary of Commands for the vi Editor .…….
Summary of vi Motion Commands
(Sheet 1 of 4) 222 Kes a ranger
Summary of vi Motion Commands
(Sheet 2 of 4) GGGdu..sssscsseeeerersenseneeren ere ren renser rr ene
Summary of vi Motion Commands
(Sheet 3 of 4) sGG.u .ssssesceererrreerererererrererrrn nere enen
Summary of vi Motion Commands
(Sheet 4 of 4) stw...sssseseeeseereereeerreser renerne rr tern nrnee
Summary of Additional vi Motion Commands …
Summary of vi Commands for Creating Text .…

x. USER'S GUIDE

OL

11

Figure 6- 9:
Figure 6-10:

Figure 6-11:

Figure 6-12:

Figure 6-13:

Figure 6-14:

Figure 6-15:

Figure 6-16:

Figure 7- 1:

Figure 7- 2:

Figure 7- 3:

Figure 7- 4:
Figure 7- 5:
Figure 7- 6:

Figure 7- 7:

Figure 7- 8:
Figure 7- 9:

Figure 7-10:
Figure 7-11:
Figure 7-12:

Figure 7-13:
Figure 7-14:

Figure 7-15:
Figure 7-16:
Figure 7-17:
Figure 7-18:
Figure 7-19:

Figure 7-20:

Figure 7-21:

Figure 7-22:

Figure 7-23:

Figure 7-24:

Figure 7-25:

g ill

List of Figures

Summary of Delete Commands ure
Summary of vi Commands for Changing Text …

Summary of the Yank Command
Summary of vi Commands for

Cutting and Pasting Text cccuseresrerrrrnrerner
Summary of Special Commands...
Summary of Line Editor Commands...
Summary of the Quit Commands
Summary of Special Options for vi .…............

Characters with Special Meanings in
the Shell Language .uece verset
Summary of the echo Command
Summary of Metacharacters cc

Summary of the banner Command...
Summary of the spell Command cc
Summary of the cut Command 2
Summary of the date Command ce
Summary of the batch Command...
Summary of the at Command cer
Summary of the ps Command cesser
Summary of the kill Command ne
Summary of the nøohup Command...
Summary of the dl Shell Program …..................
Summary of the bbday Command...
Summary of the whoson Command...
Summary of the get.num Shell Program .…..[.].
Summary of the show.param Shell Program …
Summary of the mknum Shell Program...

Summary of the num.please Shell Program .…

Summary of the t Shell Program...
Summary of the log.time Shell Program .….[.[..
Format of a Here Documentssccccere

Summary of the gbday Command...
Summary of the ch.text Command......[..[.[.[.]1.1.1.
Format of the for Loop Construct .….................

Page

6-70

6-79

6-82

6-84
6-89
6-96
6-99
6-102

LIST OF FIGURES. xi

List of Figures

Figure 7-26:
Figure 7-27:

Figure 7-28:

Figure 7-29:

Figure 7-30:
Figure 7-31:
Figure 7-32:

Figure 7-33:

Figure 7-34:

Figure 8- 1:

Figure 8- 2:

Figure 8- 3:

Figure 8- 4:

Figure 8- 5:

Figure 8- 6:
Figure 8- 7:

Figure 8- 8:

Figure 8- 9:

Figure 8-10:

Figure 8-11:

Figure 8-12:

Figure 8-13:
Figure 8-14:

Figure A- 1:

Page

Summary of mv.file Shell Program... 7-76
Format of the while Loop Construct .….[.1.1.1.1.1.… 7-77
Format of the if…then Conditional Construct. 7-80
Format of the if….then…else

Conditional Construct…...u.W.u..ssencerseerersresenenesesenseee 7-82

Summary of the search Shell Program .…...[.[1.1.1.].[1]. 7-83

Summary of the mv.ex Shell Program .….[.[1.1.1[.1.1.1.1.… 7-87

The case…esac Conditional Construct….[.[.[.[.. 7-88

Summary of the set.term Shell Program .….[.[.].. 7-91

Summary of the tail Command Ge 7-100

Summary of Sending Messages with

the mail Command…..sscsserresrerererenrenesensernee 8-8

Summary of the uname Command 2... 8-11

Summary of the uuname Command ….....[.[.1.. 8-11
Summary of Reading Messages with the

mail Command sssssssssssenissrnrriseseser es snNske 8-15

Sample .mailre Filesssceeerseresterrrrserrrnnnee 8-44
Summary of the uucp Command css 8-59
Summary of the uuto Command suser 8-64
Summary of the uustat Command... 8-65
Summary of the uupick Command 8-68
Summary of the ct Command serene 8-72
Command Strings for Use with cu
(Sheet 1 of 2).….C.Xu.u..dssssseeserrrersssr senere nere rtr rn trenen 8-74
Command Strings for Use with cu
(Sheet 2 of 2) sogns ENVER SES 8-75
Summary of the cu Command ssssssessrsree 8-77
Summary of the uux Command cc: 8-79

Directory Tree from root 1... ÅA- 2

xii … USER'S GUIDE

cl

13

Preface

The material in this guide is organized into two major parts: an

overview of the UNIX operating system and a set of tutorials on the
main tools available on the UNIX system. A brief description of each
part follows. The last section of this Preface, ”Notation Conven-
tions,” describes the typographical notation with which all the
chapters of this Guide conform. You may want to refer back to this
section from time to time as you read the Guide.

System Overview

This part consists of Chapters 1—3, which introduce you to the
basic principles of the UNIX operating system. Each chapter builds
on information presented in preceding chapters, so it is important to

read them in sequence.

m Chapter 1, ”What is the UNIX System?”, provides an overview
of the operating system.

m Chapter 2, ”Basics for UNIX System Users,” discusses the gen-
eral rules and guidelines for using the UNIX system. It covers
topics related to using your terminal, obtaining a system
account, and establishing contact with the UNIX system.

m Chapter 3, ”Using the File System,” offers a working perspec-
tive of the file system. It introduces commands for building
your own directory structure, accessing and manipulating the

subdirectories and files you organize within it, and examining
the contents of other directories in the system for which you
have access permission.

PREFACE 1

Preface

UNIX System Tutorials

The second part of the Guide consists of tutorials on the follow-
ing topics: the ed text editor, the vi text editor, the shell command

language and programming language, and electronic communication
tools. For a thorough understanding of the material, we recommend
that you work through the examples and exercises as you read each
tutorial. The tutorials assume you understand the concepts intro-
duced in Chapters 1—3.

2

m Chapter 4, ”UNIX System Capabilities,” introduces the four
chapters of tutorials in the second half of the Guide. It
highlights UNIX system capabilities such as command execu-
tion, text editing, electronic communication, programming, and

aids to software development.

Chapter 5, ”Line Editor Tutorial (ed),” teaches you how to use
the ed text editor to create and modify text on a video display

terminal or paper printing terminal.

Chapter 6, ”Screen Editor Tutorial (vi),” teaches you how to
use the visual text editor, vi, to create and modify text on a

video display terminal.

vi, the visual editor, is based on software developed by The Univer-

sity of California, Berkeley, California; Computer Science Division,
Department of Electrical Engineering and Computer Science, and
such software is owned and licensed by the Regents of the Univer-
sity of California.

Chapter 7, ”Shell Tutorial,” teaches you how to use the shell,

both as a command interpreter and as a programming
language used to create shell programs.

Chapter 8, ”Communication Tutorial,” teaches you how to

send messages and files to users of both your UNIX system and
other UNIX systems.

USER'S GUIDE

vi

15

Preface

Reference Information

Six appendices and a glossary of UNIX system terms are also pro-
vided for reference.

Appendix ÅA, ”Summary of the File System,” illustrates how
information is stored in the UNIX operating system.

Appendix B, ”Summary of UNIX System Commands,”
describes, in alphabetical order, each UNIX system command
discussed in the Guide.

Appendix C, ”Quick Reference to ed Commands,” is a quick
reference for the line editor, ed. (For details, see Chapter 5,

”Line Editor Tutorial.”) The commands are organized by
topic, as they are covered in Chapter 5.

Appendix D, ”Quick Reference to vi Commands,” is a refer-

ence for the full screen editor, vi, discussed in Chapter 6,

”Screen Editor Tutorial (vi).” Commands are organized by
topic, as covered in Chapter 6.

Appendix E, ”Summary of Shell Command Language,” is a

summary of the shell command language, notation, and pro-

gramming constructs, as discussed in Chapter 7, ”Shell

Tutorial.”

Appendix F, ”Setting Up the Terminal,” explains how to
configure your terminal for use with the UNIX system, and

create multiple windows on the screens of terminals with win-

dowing capability.

The Glossary defines terms pertaining to the UNIX system

used in this book.

PREFACE 3

Notation Conventions

4

The following notation conventions are used throughout this
Guide.

bold

italic

constant width

<"char >

[]

USER'S GUIDE

User input, such as commands, options

and arguments to commands, variables,
and the names of directories and files,

appear in bold.

Names of variables to which values must

be assigned (such as password) appear in
italic.

UNIX system output, such as prompt

signs and responses to commands, appear
in constant width.

Input that does not appear on the screen
when typed, such as passwords, tabs, or

RETURN, appear between angle brackets.

Control characters are shown between
angle brackets because they do not appear
on the screen when typed. The circumflex
(”) represents the control key (usually

labeled CTRL). To type a control charac-
ter, hold down the control key while you
type the character specified by char. For
example, the notation <”d> means to

hold down the control key while pressing
the D key; the letter D will not appear on
the screen.

Command options and arguments that are
optional, such as [-msCj], are enclosed in
square brackets.

The vertical bar separates optional argu-
ments from which you may choose one.
For example, when a command line has

the following format:

94

17

Notation Conventions

command [arg] | arg2]

You may use either argl or arg2 when you

issue the command.

oa Ellipses after an argument mean that
more than one argument may be used on

a single command line.

Årrows on the screen (shown in examples

in Chapter 6) represent the cursor.

command(number) Å command name followed by a number in
parentheses refers to the UNIX System V
Reference Manual. For example, the nota-

tion cat(1) refers to the page that docu-
ments the cat command.

In sample commands the $ sign is used as the shell command
prompt. This is not true for all systems. Whichever symbol your sys-

tem uses, keep in mind that prompts are produced by the system;

although a prompt is sometimes shown at the beginning of a com-
mand line as it would appear on your screen, you are not meant to
type it. (The $ sign is also used to reference the value of positional

parameters and named variables; see Chapter 7 for details.)

In all chapters, full and partial screens are used to display exam-
ples of how your terminal screen will look when you interact with the

UNIX system. These examples show how to use the UNIX system
editors, write short programs, and execute commands. The input

(characters typed by you) and output (characters printed by the
UNIX system) are shown in these screens in accordance with the con-

ventions listed above. All examples apply regardless of the type of
terminal you use.

The commands discussed in each section of a chapter are
reviewed at the end of that section. A summary of vi commands is
found in Appendix D, where they are listed by topic. At the end of
some sections, exercises are also provided so you can experiment with
the commands. The answers to all the exercises in a chapter are at
the end of that chapter.

PREFACE 5

Notation Conventions

The text in the User's Guide was prepared with the UNIX system

NOTE text editors described in the Guide and formatted with the
DOCUMENTER'S WORKBENCH Software: troff, tbl, pic, and

| mm macros.

6 USER'S GUIDE

84

19

Chapter 1: What is the UNIX System?

Page

What the UNIX System Doesuessessssrssrssrrssssssssssssssesseneeee 1-1

How the UNIX System Works….....ssssssressessrrrnsrsrrnrrterrersenrtreree 1-3

The Kernel …....u.u..sssscceveeeet 8888 SEKS E ERE LEE ENE RER LEE E SETE EET EL DDET 1- 4

The File System …….....sssssssesersser tt skt SEERE ERE SEERE ERE RE MERE MASS 1-5

Ordinary Files... knirke tre 1-5

Directories …..........ssevereverrrssssrsrsrrrssr renser renerne nsten 1-6

Special Files EEN 1-6

The Shell pg yrrgsgsgossersseneerREEEESUEEAESRENEANEE 1- 8

Commands ccm KERN ESKESEN 1-9

What Commands Do ….W.W.G…..ssssscerrrrrrrrrrrrrtrrrrsrrererrrrssernknee 1-9

How to Execute Commands 1……...sssssssnevsssesrr ren rerrtnrrrrnnee 1-10

How Commands Are Executed 11sssrrrrrrrrrrrserrsrrnnes 1-12

TABLE OF CONTENTS i

Table of Contents

ii USER'S GUIDE

This page is intentionally left blank

o
g

21

What the UNIX System Does

The UNIX operating system is a set of programs (or software)
that controls the computer, acts as the link between you and the

computer, and provides tools to help you do your work. It is designed
to provide an uncomplicated, efficient, and flexible computing
environment. Specifically, the UNIX system offers the following
advantages:

M a general purpose system for performing a wide variety of jobs
or applications

M an interactive environment that allows you to communicate

directly with the computer and receive immediate responses to

your requests and messages

ml a multi-user environment that allows you to share the
computer's resources with other users without sacrificing pro-

ductivity

This technique is called timesharing. The UNIX system

interacts between users on a rotating basis so quickly that it

appears to be interacting with all users simultaneously.

MH a multi-tasking environment that enables you to execute more

than one program simultaneously.

The organization of the UNIX system is based on four major com-

ponents:

the kernel The kernel is a program that constitutes the
nucleus of the operating system; it coordinates
the functioning of the computer's internals
(such as allocating system resources). The

kernel works invisibly; you need never be
aware of it while doing your work.

the file system — The file system provides a method of handling
data that makes it easy to store and access
information.

WHAT IS THE UNIX SYSTEM? 1-1

ill G
What the UNIX System Does

1-2

the shell

commands

USER'S GUIDE

The shell is a program that serves as the com-
mand interpreter. It acts as a liaison between
you and the kernel, interpreting and executing
your commands. Because it reads input from
you and sends you messages, it is described as

interactive.

Commands are the names of programs that

you request the computer to execute. Pack-

ages of programs are called tools. The UNIX
system provides tools for jobs such as creating

and changing text, writing programs and
developing software tools, and exchanging
information with others via the computer.

c
e

23

How the UNIX System Works

Figure 1-1 is a model of the UNIX system. Each circle represents

one of the main components of the UNIX system: the kernel, the

shell, and user programs or commands. The arrows suggest the

shell's role as the medium through which you and the kernel com-
municate. The remainder of this chapter describes each of these

components, along with another important feature of the UNIX sys-

tem, the file system.

User Programs User Programs

 Programming

Environment

Electronic

Communication

Processing

Additional
Utility
Programs

Information

Management

 User Programs User Programs

Figure 1-1: Model of the UNIX System

WHAT IS THE UNIX SYSTEM? 1-3

How the UNIX System Works

The Kernel

The nucleus of the UNIX system is called the kernel. The kernel
controls access to the computer, manages the computer's memory,

maintains the file system, and allocates the computer's resources
among users. Figure 1-2 is a functional view of the kernel.

Kernel Kernel

Allocation

system

resources

Maintains

file system

Manages

memory

Controls

access to

computer

Kernel Kernel

Figure 1-2: Functional View of the Kernel

1-4. USER'S GUIDE

v
e

25

 G il

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX operating system.

It provides a logical method of organizing, retrieving, and managing

information. The structure of the file system is hierarchical; if you
could see it, it might look like an organization chart or an inverted
tree (Figure 1-3).

[] = Directories

O = Ordinsry Files

V = Special Files

Figure 1-3: The Hierarchical Structure of the File System

The file is the basic unit of the UNIX system and it can be any
one of three types: an ordinary file, a directory, or a special file. (See

Chapter 3, ”Using the File System.”)

Ordinary Files

An ordinary file is a collection of characters that is treated as a

unit by the system. Ordinary files are used to store any information

you want to save. They may contain text for letters or reports, code

for the programs you write, or commands to run your programs.
Once you have created a file, you can add material to it, delete
material from it, or remove it entirely when it is no longer needed.

WHAT IS THE UNIX SYSTEM? 1-5

How the UNIX System Works

Directories

A directory is a super-file that contains a group of related files.
For example, a directory called sales may hold files containing
monthly sales figures called jan, feb, mar, and so on. You can create

directories, add or remove files from them, or remove directories

themselves at any time.

All the directories that you create and own will be located in your
home directory. This is a directory assigned to you by the system
when you receive a recognized login. You have control over this direc-
tory; no one else can read or write files in it without your explicit

permission, and yvu delermine its structure.

The UNIX system also maintains several directories for its own
use. The structure of these directories is much the same on all UNIX
systems. These directories, which include several important system

directories, are located directly under the root directory in the file

hierarchy. The root directory (designated by /) is the source of the
UNIX file structure; all directories and files are arranged hierarchi-

cally under it.

Special Files

Special files constitute the most unusual feature of the file sys-

tem. ÅA special file represents a physical device such as a terminal,
disk drive, magnetic tape drive, or communication link. The system
reads and writes to special files in the same way it does to ordinary
files. However the system's read and write requests do not activate
the normal file access mechanism; instead, they activate the device
handler associated with the file.

Some operating systems require you to define the type of file you
have and to use it in a specified way. In those cases, you must con-
sider how the files are stored since they might be sequential,
random-access, or binary files. To the UNIX system, however, all
files are alike. This makes the UNIX system file structure easy to
use. For example, you need not specify memory requirements for
your files since the system automatically does this for you. Or if you
or a program you write needs to access a certain device, such as a

printer, you specify the device just as you would another one of your

1-6. USER'S GUIDE

9
g

27

How the UNIX System Works

files. In the UNIX system, there is only one interface for all input
from you and output to you; this simplifies your interaction with the
system.

Figure 1-4 shows an example of a typical file system. Notice that

the root directory contains several important system directories.

|] s Directories

O = Ordinsry Files

V = Special Files

UNIX

Figure 1-4: Example of a File System

WHAT IS THE UNIX SYSTEM? 1-7

il g

How the UNIX System Works

[bin contains many executable programs and utilities

/dev contains special files that represent peripheral devices
such as the console, the line printer, user terminals,

and disks

lete contains programs and data files for system adminis-
tration

Mlib contains libraries for programs and languages

[tmp contains temporary files that can be created by any
user

fusr contains other directories including mail, which con-
tains files for storing electronic mail, and news,

which contains files for storing newsworthy items.

In summary, the directories and files you create comprise the por-

tion of the file system that is controlled by you. Other parts of the
file system are provided and maintained by the operating system,
such as /bin, /dev, /etc, /lib, /tmp and /usr, and have much the
same structure on all UNIX systems.

You will learn more about the file system in other chapters.
Chapter 3 shows how to organize a file system directory structure,
and access and manipulate files. Chapter 4 gives an overview of
UNIX system capabilities. The effective use of these capabilities
depends on your familiarity with the file system and your ability to
access information stored within it. Chapters 5 and 6 are tutorials
designed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to
communicate with the operating system. The shell reads the com-
mands you enter and interprets them as requests to execute other
programs, access files, or provide output. The shell is also a powerful

programming language, not unlike the C programming language, that
provides conditional execution and control flow features. The model
of a UNIX system in Figure 1-1 shows the two-way flow of

1-8: USER'S GUIDE

(
7

29

How the UNIX System Works

communication between you and the computer via the shell.

Chapter 4 describes the shell's capabilities. Chapter 7 is a

tutorial that teaches you to write simple shell programs called shell

scripts and custom tailor your environment.

Commands

Å program is a set of instructions to the computer. Programs

that can be executed by the computer without need for translation

are called executable programs or commands. Ås a typical user of the

UNIX system, you have many standard programs and tools available

to you. If you use the UNIX system to write programs and develop

software, you can also draw on system calls, subroutines, and other

tools. Of course, any programs you write yourself will he at your

disposal, too.

This book introduces you to many of the UNIX system programs
and tools that you will use on a regular basis. If you need additional

information on these or other standard programs; or information un

tools and routines related to programming and software develupment,.

consult the System V Reference Manual.

The reference manuals may also be available online. "(Online

documents are stored in your computer's file system.) You can sum-

mon pages from the online manuals by executing the command man

(short for manual page). For details on how to use the man com-

mand refer to the man(1) page in the System V Reference Manual.

What Commands Do

The outer circle of the UNIX system model in Figure 1-1 organ-

izes the system programs and tools into functional categories. These

functions include:

text processing The system provides programs

such as line and screen editors for
creating and changing text, a spel-

ling checker for locating spelling
errors, and optional text for-
matters for producing high-quality

WHAT IS THE UNIX SYSTEM? 1-9

il G

i —=

How the UNIX System Works

paper copies that are suitable for

publication.

information management The system provides many pro-

grams that allow you to create,
organize, and remove files and
directories.

electronic communication Several programs, such as mail,

enable you to transmit informa-

tion to other users and to other

UNIX systems.

software development Several UNIX system programs

establish a friendly programming

environment by providing UNIX-

to-programming-language — inter-

faces and by supplying numerous
utility programs.

additional utilities The system also offers capabilities
for generating graphics and per-
forming calculations.

How to Execute Commands

To make your requests comprehensible to the UNIX system, you

must present each command in the correct format, or command line
syntax. This syntax defines the order in which you enter the com-

ponents of a command line. Just as you must put the subject of a

sentence before the verb in an English sentence, so must you put the

parts of a command line in the order required by the command line

syntax. Otherwise, the UNIX system shell will not be able to inter-

pret your request. Here is an example of the syntax of a UNIX sys-

tem command line.

command option(s) argument(s)< CR >

On every UNIX system command line you must type at least two
components: a command name and the RETURN key. (The notation

<CR> is used as an instruction to press the RETURN key
throughout this Guide.) A command line may also contain either

1-10: USER'S GUIDE

0
£

31

How the UNIX System Works

options or arguments, or both. What are commands, options, and
arguments?

M a command is the name of the program you want to run

EH an option modifies how the command runs

MH an argument specifies data on which the command is to operate

(usually the name of a directory or file)

In command lines that include options and/or arguments, the
component words are separated by at least one blank space. (You can

insert a blank by pressing the space bar.) If an argument name con-

tains a blank, enclose that name in double quotation marks. For

example, if the argument to your command is sample 1, you must

type it as follows: ”sample 1”. If you forget the double quotation

marks, the shell will interpret sample and 1 as two separate argu-

ments.

Some commands allow you to specify multiple options and/or

arguments on a command line. Consider the following command line:

command

arguments

options

|
(NC (ON
we —l —w filel file2 file3

In this example, we is the name of the command and two options,

—] and —w, have been specified. (The UNIX system usually allows
you to group options such as these to read —lw if you prefer.) In
addition, three files (filel, file2, and file3) are specified as arguments.
Although most options can be grouped together, arguments cannot.

WHAT IS THE UNIX SYSTEM? 1-11

How the UNIX System Works

The following examples show the proper sequence and spacing in

command line syntax:

Incorrect Correct

wefile wc file

we — lfile wc —1 file

we —Il w file we —lw file

or

we —Il —w file

we filelfile2 we filel file2

Remember, regardless of the number of components, you must

end every command line by pressing the RETURN key.

How Commands Åre Executed

Figure 1-5 shows the flow of control when the UNIX system exe-
cutes a command.

 EN

Figure 1-5: Execution of a UNIX System Command

1-12. USER'S GUIDE

C
E

33

How the UNIX System Works

To execute a command, enter a command line when a prompt
(such as a $ sign) appears on your screen. The shell considers your

command as input, searches through one or more directories to

retrieve the program you specified, and conveys your request, along

with the program requested, to the kernel. The kernel then follows

the instructions in the program and executes the command you

requested. After the program has finished running, the shell signals

that it is ready for your next command by printing another prompt.

This chapter has described some basic principles of the UNIX

operating system. The following chapters will help you apply these

principles according to your computing needs.

WHAT IS THE UNIX SYSTEM? 1-13

1-14 USER'S GUIDE

This page is intentionally left blank

v
E

35

Page

Getting Started sis ENE NENEEEREENERRERRRE 2-1

The: Terminal. 45550 ER EEN BEER EDEKEREERE 2-2

Required Terminal Settings users 2-2

Keyboard Characteristics …..............sssssesseresesrsersererrsnesrreeee 2-3

Typing Conventions ssssirgsssrssnrenrnner erne 2-5

The Command Prompt 2uuarsrsrsrssrseserrrsrsererse 2-8

Correcting Typing Errorssscsssersrssrstsserrsereree 2-8

Stopping a Commandcessesssrsrsttsessstrsrsssnererenee 2-8

Using Control Characters uscessrrrestsrrserrssersrrsee 2-9

Obtaining a Login Namessssccerrssrrstrrsr eter renser rer rrnrernnee 2-10

Establishing Contact with the UNIX System seere 2-11

Irogin Procedure vogne NE NET SKERENEN ERE 2-13

Password userstrrsrrssereerrrrrserererrernererereseserrrererne renere 2-13

Possible Problems when Logging In suusersrrsrresee 2-17

Simple Commands ssssirisnrinssisirsee Reseke 2-20

Logging Off…....ssnenserererererrkeerskerserese ekst r bet n sr r Et rr E nr res 2-21

TABLE OF CONTENTS i

Table of Contents

This page is intentionally left blank

li USER'S GUIDE

9
g

Getting Started

This chapter acquaints you with the general rules and guidelines

for working on the UNIX system. Specifically, it lists the required

terminal settings, and explains how to use the keyboard, obtain a

login, log on and off the system, and enter simple commands.

To establish contact with the UNIX system, you need:

E a terminal,

M a login name (a name by which the UNIX system identifies you

as one of its authorized users),

H a password that verifies your identity,

EH instructions for dialing in and accessing the UNIX system if

your terminal is not directly connected or hard-wired to the

computer.

This chapter follows the notation conventions used throughout
this Guide. For a description of them, see the Preface.

37

BASICS FOR UNIX SYSTEM USERS. 2-1

 |]

The Terminal

ÅA terminal is an input/output device: you use it to enter
requests to the UNIX system, and the system uses it to send its

responses to you, (see Figure 2-1).

Figure 2-1: A Video Display Terminal

The video display terminal shows input and output on a display
screen; the printing terminal, on continuously fed paper. In most

respects, this difference has no effect on the user's actions or the
system's responses.

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it
properly to communicate with the UNIX system. If you have not set
terminal options before, you might feel more comfortable seeking
help from someone who has.

How you configure a terminal depends on the type of terminal
you are using. Some terminals are configured with switches; others
are configured directly from the keyboard by using a set of function
keys. To determine how to configure your terminal, consult the
owner's manual provided by the manufacturer.

2-2 USER'S GUIDE

B
E

39

The Terminal

The following is a list of configuration checks you should perform
on any terminal before trying to log in on the UNIX system.

l.

2.

Turn on the power.

Set the terminal to ON-LINE or REMOTE operation. This
setting ensures the terminal is under the direct control of the
computer.

Set the terminal to FULL DUPLEX mode. This mode en-

sures two-way communication (input/output) between you
and the UNIX system.

If your terminal is not directly connected or hard-wired to the
computer, make sure the acoustic coupler or data phone set

you are using is set to the FULL DUPLEX mode.

Set character generation to LOWER CASE. If your terminal
generates only upper case letters, the UNIX system will
accommodate it by printing everything in upper case letters.

Set the baud rate. This is the speed at which the computer
communicates with the terminal, measured in characters per
second. (For example, a terminal set at a baud rate of 4800

sends and receives 480 characters per second.) Depending on

the computer and the terminal, baud rates between 300 and

19200 are available. Some computers may be capable of pro-
cessing characters at higher speeds.

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all
terminal keyboards share a standard set of 128 characters called the
ASCII character set. (ASCII is an acronym for American Standard
Code for Information Interchange.) While the keys are labeled with
characters that are meaningful to you (such as the letters of the
alphabet), each one is also associated with an ASCII code that is
meaningful to the computer.

BASICS FOR UNIX SYSTEM USERS 2-3

The Terminal

The keyboard layout on a typical ASCII terminal is basically the
same as a typewriter's, with a few additional keys for functions such
as interrupting tasks. Figure 2-2 shows an example of a keyboard on
an ASCII terminal.

(i

1 174 10 ed HØ ER 0 AN rr 480 0 Gl

BNNNNGNmMmANn Rn
irmangnammnnentiH aa MSc

SD be Hven HT: 1: TS <e-> STE EL H
[—] dd Cao

dde 4003

Figure 2-2: Keyboard Layout of dde 400a terminal keyboard with 16
function keys

The keys correspond to the following:

H the letters of the English alphabet (both upper case and lower
case)

m the numerals (0 through 9)

H a variety of symbols (including! Q4 $%7" &() —- + = —'"

TIT Vi”? < >,2/
mM specially defined words (such as RETURN and BREAK), and

abbreviations (such as DEL for delete, CTRL for control, and

ESC for escape)

2-4 USER'S GUIDE

O
v

41

The Terminal

While terminal and typewriter keyboards both have alphanumeric
keys, terminal keyboards also have keys designed for use with a com-

puter. These keys are labeled with characters or symbols that rem-

ind the user of their functions. However, their placement may vary

from terminal to terminal because there is no standard keyhoard lay-

out.

Typing Conventions

To interact effectively with the UNIX system, you should he fami-

liar with its typing conventions. The typing conventions depend on
the socalled line discipline. Terminals may operate in line discipline

O or line discipline 1. When your terminal operates in line discipline

0, the typing conventions are as defined in Standard UNIX. We

recommend, that you use this discipline which gives a møre flexible

line editing. The description below corresponds to line discipline 1.

The UNIX system requires that you enter commands in lower case

letters (unless the command includes an upper case letter). Other
conventions enable you to perform tasks, such as erasing letters or

deleting lines, simply by pressing one key or entering a specific cam-

bination of characters. Characters associated with tasks in this way

are known as special characters. Figure 2-3 lists the conventions
based on special characters. Detailed explanations of them åre pro-

vided on the next few pages.

BASICS FOR UNIX SYSTEM USERS 2-5

The Terminal

Key(s) Meaning

$ Systems command prompt (your cue to issue a command)

”C Stop execution of a program or command

 Delete previous character

<ESC> When used with another character, performs a specific

function (called an escape sequence)

When used in an editing session with the vi editor, ends
the text input mode and returns you to the command mode

<CR> Press the RETURN key. This ends a line of typing and

puts the cursor on a new line.

<"d>t Stop input to the system or log off

<"h> Backspace for terminals without a backspace key

<"i> Horizontal tab for terminals without a tab key

<"s> Temporarily stops output from printing on the screen

<"q> Makes the output resume printing on the screen after it

has been stopped by the <"s> command

Nonprinting characters are shown in angle brackets (< >).

f Characters preceded by a circumflex (”) are called control characters and

are pronounced control-/etter. To type a control character, hold down the
control key and press the specified letter.

Figure 2-3: UNIX System Typing Conventions

2-6. USER'S GUIDE

c
v

43

The Terminal

In what is called line discipline 1, normally used on the Supermax

computer, the function keys F6/f6 - F8/f8 may also be used for line
editing. Kindly observe, that these functions are not in effect when

using the vi. The keys include the following functions:

Key(s) Meaning

<shift> F6 Erase one character.

F6 Insert one character.

<shift> F7 Move cursor to beginning of line.

F7 Move cursor to end of line.

<shift> F8 Erase the current line.

F8 Erase all characters from current cursor position
to end of line.

Figure 2-4: The Supermax System Editing Function Keys

BASICS FOR UNIX SYSTEM USERS 2-7

The Terminal

The Command Prompt

The standard UNIX system command prompt is the dollar sign
($). When the prompt appears on your terminal screen, the UNIX
system is waiting for instructions from you. The appropriate
response to the prompt is to issue a command and press the
RETURN key.

The $ sign is the default value for the command prompt.
Chapter 7 explains how to change it if you would prefer another char-
acter or character string as your command prompt.

Correcting Typing Errors

When entering a command it is possible that a typing error

occour. If the error is discovered before you press the RETURN key,
you may use the line editing keys for correction as follows:

f6/F6 The insert character key (f6) make one space for
inserting a character at the cursor position.
The delete character key (F6) delete one character
at the cursor position.

f7/F7 The line end key (f7) move the cursor to the end of
the line.
The line begin key (F7) move the cursor to the
beginning of the line.

f8/F8 The erase to end of line key (f8) delete all charac-
ters from cursor position to the end of the line.
The erase line key (F8) delete the entire line and
place the cursor at the beginning of the line.

Stopping a Command

If you want to stop the execution of a command, simply press the
”C key. The UNIX system will stop the program and print a prompt
on the screen. This is its signal that it has stopped the last command
from running and is ready for your next command.

2-8 USER'S GUIDE

t
v

45

The Terminal

Using Control Characters

Locate the control key on your terminal keyboard. It may be

labeled CONTROL or CTRL and is probably to the left of the A key

or below the Z key. The control key is used in combination with
other characters to perform physical controlling actions on lines of

typing. Commands entered in this way are called control characters.

Some control characters perform mundane tasks such as backspacing

and tabbing. Others define commands that are specific to the UNIX

system. For example, one control character (control-s) temporarily

halts output that is being printed on a terminal screen.

To type a control character, hold down the control key and press
the appropriate alphabetic key. Most control characters do not

appear on the screen when typed and therefore are shown between

angle brackets (see ”Notation Conventions” in the Preface). The con-

trol key is represented by a circumflex (”) before the letter. Thus, for

example, <"s> designates the control-s character.

The two functions for which control characters are most often

used are to control the printing of output on the screen and to log off

the system. To prevent information from rolling off the screen on a
video display terminal, type <"s>; the printing will stop. When you

are ready to read more output, type <"q> and the printing will
resume,

To log off the UNIX system, type <"d>. (See ”Logging Off"

later in this chapter for a detailed description of this procedure.)

In addition, the UNIX system uses control characters to provide

capabilities that some terminals fail to make available through func-

tion specific keys. If your keyboard does not have a backspace key,

you can use the <"h> key instead. You can also set tabs without a

tab key by typing <"i> if your terminal is set properly. (Refer to
the section entitled ”Possible Problems When Logging In” for infor-

mation on how to set the tab key.)

Now that you have configured the terminal and inspected the
keyboard, one step remains before you can establish communication
with the UNIX system: you must obtain a login name.

BASICS FOR UNIX SYSTEM USERS 2-9

SES ØRN] ET

BE AA mm

Obtaining a Login Name

Å login name is the name by which the UNIX system verifies that
You are an authorized user of the system when you request access to
it. It is so called because you must enter it every time you want to
log in. (The expression logging in is derived from the fact that the
system maintains a log for each user, in which it records the type and

amount of system resources being used.)

To obtain a login name, set up a UNIX system account through
your local system administrator. There are few rules governing your
choice of a login name. Typically, it is three to eight characters long.
It can contain any combination of lower case alphanumeric charac-
ters, as long as it starts with a letter. It cannot contain any symbols.

However, your login name will probably be determined by local
practices. The users of your system may all use their initials, last

names, or nicknames as their login names. Here are a few examples

of legal login names: starship, mary2, and jmrs.

2-10 USER'S GUIDE

9
v

47

wer ave — vom my ne æn E => EN (===

(9 Se (==——5]

Establishing Contact with the UNIX Sys-
tem

Typically, you will be using either a terminal that is wired
directly to a computer or a terminal that communicates with a com-

puter over a telephone line.

This section describes a typical procedure for logging in, but may not

NOTE apply to your system, There are many ways to log in on a UNIX
system over a telephone line, Security precautions on your system

I may require that you use a special telephone number or other secu-
rity code. For instructions on logging in on your UNIX system from
outside your computer installation site, see your system administra-

tor.

Turn on your terminal. If it is directly connected, the login:

prompt will immediately appear on the screen.

If you are going to communicate with the computer over a tele-
phone line, you must now establish a connection. The following pro-

cedure is an example of a method you might use to do this. (For the

procedure required by your system, see your system administrator.)

1. Dial the telephone number that connects you to the UNIX

system. You will hear one of the following:

au Å busy signal. This means that either the circuits are
busy or the line is in use. Hang up and dial again.

on Continuous ringing and no answer. This usually means

that there is trouble with the telephone line or that the
system is inoperable because of mechanical failure or elec-

tronic problems. Hang up and dial again later.

ou AÅA high-pitched tone. This means that the system is acces-
sible.

2... When you hear the high-pitched tone, place the handset of

the phone in the acoustic coupler or momentarily press the
appropriate button on the data phone set (see the owner's
manual for the appropriate equipment). Then replace the
handset in the cradle (see Figure 2-5).

BASICS FOR UNIX SYSTEM USERS 2-11

Establishing Contact with the UNIX System

3. After a few seconds, the login: prompt will appear on the
screen.

4. Å series of meaningless characters may appear on your

screen, This means that the telephone number you called
serves more than one baud rate; the UNIX system is trying to

communicate with your terminal, but is using the wrong

speed. Press the BREAK or RETURN key; this signals the
system to try another speed. If the UNIX system does not

display the login: prompt within a few seconds, press the
BREAK or RETURN key again.

8r

Data Phone

Modem

Figure 2-5: Examples of Modems

2-12 USER'S GUIDE

49

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press

the RETURN key. For example, if your login name is starship, your
login line will look like this:

login: starship<CR>

Remember to type in lower case letters. If you use upper case from

NOTE the time you log in, the UNIX system will expect and respond in
upper case exclusively until the next time you log in. It will accept

| and run many commands typed in upper case, but will not allow you
to edit files.

Password

Next, the system prompts you for your password. Type your

password and press the RETURN key. For security reasons, the
UNIX system does not print (or echo) your password on the screen.

If both your login name and password are acceptable to the UNIX

system, the system may print the message of the day and/or current

news items and then the default command prompt ($). (The message
of the day might include a schedule for system maintenance, and
news items might include an announcement of a new system tool.)
When you have logged in, your screen will look similar to this:

BASICS FOR UNIX SYSTEM USERS 2-13

Establishing Contact with the UNIX System

login: starship<CR>

password:

UNIX system
$

K
i

If you make a typing mistake when logging in, the UNIX system
prints the message login incorrect on your screen. Then it gives
you a second chance to log in by printing another login: prompt.

login: ttarship< CR >

password:
login i

login:
N
E
E
D

The login procedure may also fail if the communication link
between your terminal and the UNIX system has been dropped. If
this happens, you must reestablish contact with the computer
(specifically, with the data switch that links your terminal to the com-
puter) before trying to log in again. Since procedures for doing this
vary from site to site, ask your system administrator to give you exact

instructions for getting a connection on the data switch.

2-14. USER'S GUIDE

O
G

51

Establishing Contact with the UNIX System

If you have never logged in on the UNIX system, your login pro-

cedure may differ from the one just described. This is because some
system administrators follow the optional security procedure of

assigning temporary passwords to new users when they set up their

accounts. If you have a temporary password the system will force
you to choose a new password before it allows you to log in.

By forcing you to choose a password for your exclusive use, this

extra step helps to ensure a system's security. Protection of system

resources and your personal files depends on your keeping your pass-

word private.

The actual procedure you follow will be determined by the admin-

istrative procedures at your computer installation site. However, it

will probably be similar to the following example of a first-time login

procedure.

1... You establish contact; the UNIX system displays the login:

prompt. Type your login name and press the RETURN key.

2... The UNIX system prints the password prompt. Type your

temporary password and press the RETURN key.

3. The system tells you your temporary password has expired

and you must select a new one.

4... The system asks you to type your old password again. Type
your temporary password.

5. The system prompts you to type your new password. Type

the password you have chosen.

Passwords must be constructed to meet the following require-

ments:

on Each password must have at least six characters. Only

the first eight characters are significant.

0 Each password must contain at least two alphabetic char-
acters and at least one numeric or special character.

Alphabetic characters can be upper case or lower case

letters.

BASICS FOR UNIX SYSTEM USERS 2-15

[I G
Establishing Contact with the UNIX System

NOTE

oa Each password must differ from your login name and any
reverse or circular shift of that login name. For com-

parison purposes, an upper case letter and its correspond-

ing lower case letter are equivalent.

o Å new password must differ from the old by at least three
characters. For comparison purposes, an upper case
letter and its corresponding lower case letter are
equivalent.

Examples of valid passwords are: mar84ch, Jonath0n, and
BRAV3S.

The UNIX system you are using may have different requirements to
consider when choosing a password. Ask your system administrator
for details.

For verification, the system asks you to reenter your new

password. Type your new password again.

If you do not reenter the new password exactly as typed the

first time, the system tells you the passwords do not match

and asks you to try the procedure again. On some systems,
however, the communication link may be dropped if you do
not reenter the password exactly as typed the first time. If
this happens, you must return to step 1 and begin the login
procedure again. When the passwords match, the system

displays the prompt.

The following screen summarizes this procedure (steps 1 through
6) for first-time UNIX system users.

2-16 USER'S GUIDE

c
s

53

Establishing Contact with the UNIX System

Your password has expired,.

New password: <CR>

FE <CR> UN

Choose a new one.

Re-enter new password: <CR>

password: <CR>

Old password: <CR>

NE

Possible Problems when Logging In

A terminal usually behaves predictably when you have configured
it properly. Sometimes, however, it may act peculiarly. For example,
the carriage return may not work properly.

Some problems can be corrected simply by logging off the system
and logging in again. If logging in a second time does not remedy the
problem, you should first check the following and try once again:

the keyboard Keys labeled CAPS, LOCAL, BLOCK, and
so on should not be enabled (put into the
locked position). You can usually disable
these keys simply by pressing them.

the data phone set If your terminal is connected to the com-
puter,

or modem via telephone lines, verify that the baud

rate and duplex settings are correctly
specified.

the switches Some terminals have several switches that
must be set to be compatible with the
UNIX system. If this is the case with the
terminal you are using, make sure they

are set properly.

BASICS FOR UNIX SYSTEM USERS 2-17

Establishing Contact with the UNIX System

Refer to the section ”Required Terminal Settings” in this chapter
if you need information to verify the terminal configuration. If you

need additional information about the keyboard, terminal, data

phone, or modem, check the owner's manuals for the appropriate
equipment.

Figure 2-6 presents a list of procedures you can follow to detect,
diagnose, and correct some problems you may experience when log-
ging in. If you need further help, contact your system administrator.

2-18. USER'S GUIDE

v
G

55

Establishing Contact with the UNIX System

Problemt Possible Cause Action/Remedy

Meaningless characters

Input/output appears
in UPPER CASE

letters

Input appears in

UPPER CASE, output

in lower case

Input is printed twice

Tab key does not work

properly

Communication link

cannot be established

although high pitched

tone is heard when

dialing in

Communication link

(terminal to UNIX sys-
tem) is repeatedly
dropped

UNIX system at wrong speed

Terminal configuration
includes UPPER CASE set-
ting

Key labeled CAPS (or CAPS

LOCK) is enabled

Terminal is set to HALF

DUPLEX mode

Tabs are not set correctly

Terminal is set to LOCAL or

OFF-LINE mode

Bad telephone line or bad
communications port

Press RETURN or BREAK key

Log off and set character gen-

eration to lower case

Press CAPS or CAPS LOCK
key to disable setting

Change setting to FULL
DUPLEX mode

Type stty —tabst

Set terminal to ON-LINE
mode try logging in again

Call system administrator

Numerous problems can occur if your terminal is not configured properly. To

eliminate these possibilities before attempting to log in, perform the
configuration checks listed under ”Required Terminal Settings.”

t Some problems may be specific to your terminal, data phone set, or modem.

Check the owner's manual for the appropriate equipment if suggested actions

dø not remedy the problem.

É Typing stty —tabs corrects the tab setting only for your current computing

session. To ensure a correct tab setting for all sessions, add the line stty

— tabs to your .profile (see Chapter 7).

Figure 2-6: Troubleshooting Problems When Logging In"

BASICS FOR UNIX SYSTEM USERS 2-19

Establishing Contact with the UNIX System

Simple Commands

When the prompt appears on your screen, the UNIX system has
recognized you as an authorized user and is waiting for you to
request a program by entering a command.

For example, try running the date command. After the prompt,
type the command and press the RETURN key. The UNIX system
accesses a program called date, executes it, and prints its results on
the screen, as shown below.

S$ date<CR>

Wed Ang 16 09:49:44 FEDT 1989

$

Ås you can see, the date command prints the date and time, using

the 24-hour clock.

Now type the who command and press the RETURN key. Your
screen will look something like this:

2-20 USER'S GUIDE

9
S

57

 ES
Establishing Contact with the UNIX System

Swho<CR>

starship tty00 Jul 12 8:53
tty02 Jul 12 8:56
tty05 Jul 12 8:54
tty06 Jul 12 8:56

The who command lists the login names of everyone currently work-
ing on your system. The tty designations refer to the special files
that correspond to each user's terminal. The date and time at which
each user logged in are also shown.

Logging Off

When you have completed a session with the UNIX system, type
<”d> after the prompt. (Remember that control characters such as
<"d> are typed by holding down the control key and pressing the
appropriate alphabetic key. Because they are nonprinting characters,
they do not appear on your screen.) After several seconds, the UNIX
system will display the login: prompt again.

$ <"d>

login:

This shows that you have logged off successfully and the system is
ready for someone else to log in.

Always log off the UNIX system by typing <"”d> before you turn off

NOTE! the terminal or hang up the telephone. If you do not, you may not
be actually logged off the system.

BASICS FOR UNIX SYSTEM USERS 2-21

Establishing Contact with the UNIX System

The exit command also allows you to log off but is not used by
most users. It may be convenient if you want to include a command
to log off within a shell program. (For details, see the sh(1) page in

the System V Reference Manual.)

2-22 USER'S GUIDE

g
s

59

Chapter 3: Using the File System

Introduction

How the File System is Structured…..sessererrrererrerenneres

Your Place in the File System …..GW.G….….sssssserreeesreesrerererer se sesreneneres

Your Home Directory 1.....…..u.ssssserrereererererrerssesssrenese serene

Your Current Directory 2sssusrserssrsrrsrrerrrerrnnserrnnnnnee

Path Names ss FEEL dk aksen

Relative Path Namessccerrerrrrrsrererreersererrenerrrrnernnee

Naming Directories and Filesussscrersrrssrrssrssenee

Organizing a Directory 1... sen ennes

Creating Directories: the mkdir Command 2...

Listing the Contents of a Directory: the Is Command …...

Frequently Used Is Options2sssssscesireserrrrsrsrerrsrsneree

Changing Your Current Directory: the cd Command …..

Removing Directories: the rmdir Command...

Accessing and Manipulating Files …....u.sssecsrserssssererreersesssseee

Basic Commands csssessaresrrssrerresikes skeer sv TEE ses Eee

Displaying a File's Contents: the cat, pg, and
pr:Commandsi orne

Requesting a Paper Copy of a File: the Ip Command.

Making a Duplicate Copy of a File: the ep Command .

Moving and Renaming a File: the mv Command .…..

Removing a File: the rm Command 2 sscrre

Counting Lines, Words, and Characters in a File:
the we Command ..0susenssrsrrsrsrerrresssssertrnrsrrnknee,

TABLE OF CONTENTS

 mn
Table of Contents

Page

Protecting Your Files:
the chmod Commandsesesseesssrsesssrrsrrsrsssrrnsenes 3-62

Advanced Commandsssssesssereesessseesessssrssrreresnennnnee 3-70

Identifying Differences Between Files:
the diff Command usus. 3-70

Searching a File for a Pattern:
the grep Command 222cuuasavastssrsnsssssssrrssneseee 3-72

Sorting and Merging Files:
the sort Commandsssssssesssesesserssssassersrnerersensneren 3-75

Summa sis ENG ELEVERNE E erne gene ere« 3-78

i USER'S GUIDE

09

61

Introduction

To use the UNIX file system effectively you must be familiar with
its structure, know something about your relationship to this struc-

ture, and understand how the relationship changes as you move

around within it. This chapter prepares you to use this file system.

The first two sections (”How the File System is Structured” and
”Your Place in the File System”) offer a working perspective of the
file system. The rest of the chapter introduces UNIX system com-

mands that allow you to build your own directory structure, access

and manipulate the subdirectories and files you organize within it,

and examine the contents of other directories in the system for which

you have access permission.

Each command is discussed in a separate subsection. Tables at
the end of these subsections summarize the features of each com-

mand so that you can later review a command's syntax and capabili-

ties quickly. Many of the commands presented in this section have

additional, sophisticated uses. These, however, are left for more

experienced users and are described in other UNIX system documen-
tation. All the commands presented here are basic to using the file
system efficiently and easily. Try using each command as you read
about it.

USING THE FILE SYSTEM 3-1

How the File System is Structured

The file system is comprised of a set of ordinary files, special files,
and directories. These components provide a way to organize,
retrieve, and manage information electronically. Chapter 1 intro-

duced the properties of directories and files; this section will review
them briefly before discussing how to use them.

ME An ordinary file is a collection of characters stored on a disk.
It may contain text for a report or code for a program.

MH Å special file represents a physical device, such as a terminal or
disk.

m Å directory is a collection of files and other directories (some-
times called subdirectories). Use directories to group files
together on the basis of any criteria you choose. For example,
you might create a directory for each product that your com-
pany sells or for each of your student's records.

The set of all the directories and files is organized into a tree
shaped structure. Figure 3-1 shows a sample file structure with a
directory called root (/) as its source. By moving down the branches
extending from root, you can reach several other major system direc-

tories. By branching down from these, you can, in turn, reach all the
directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a
directory have what is called a parent/child relationship. This type of
relationship is possible for many layers of files and directories. In
fact, there is no limit to the number of files and directories you may
create in any directory that you own. Neither is there a limit to the
number of layers of directories that you may create. Thus you have
the capability to organize your files in a variety of ways, as shown in
Figure 3-1.

3-2 USER'S GUIDE

c
9

63

How the File System is Structured

O = Directories

= Ordinary Files

V = Special Files

Figure 3-1: A Sample File System

USING THE FILE SYSTEM 3-3

 —] de F————————7

Your Place in the File System

Whenever you interact with the UNIX system, you do so from a
location in its file system structure. The UNIX system automatically
places you at a specific point in its file system every time you log in.

From that point, you can move through the hierarchy to work in any
of your directories and files and to access those belonging to others

that you have permission to use.

The following sections describe your position in the file system
structure and how this position changes as you move through the file
system.

Your Home Directory

When you successfully complete the login procedure, the UNIX

system places you at a specific point in its file system structure called
your login or home directory. The login name assigned to you when
your UNIX system account was set up is usually the name of this

home directory. Every user with an authorized login name has a
unique home directory in the file system.

The UNIX system is able to keep track of all these home direc-
tories by maintaining one or more system directories that organize

them. For example, the home directories of the login names jmrs,

mary2, and starship are contained in a system directory called

userl. Figure 3-2 shows the position of a system directory such as
userl in relation to the other important UNIX system directories dis-
cussed in Chapter 1.

3-4. USER'S GUIDE

v
9

65

 dd
Your Place in the File System

O = Directories

|] = Ordinery Files

AV = Special Files

» Branch

UNIX

OFRRORKGISISIOLOSOG
=EVvYLIN Å9

list (eat) (etter) (mm) Bbox

hut tæle kmtrs ons display! | list (ts)

Figure 3-2: Directory of Home Directories

Within your home directory, you can create files and additional

directories (sometimes called subdirectories) in which to group them.
You can move and delete your files and directories, and you can con-
trol access to them. You have full responsibility for everything you

create in your home directory because you own it. Your home

USING THE FILE SYSTEM 3-5

— de F-=
Your Place in the File System

directory is a vantage point from which to view all the files and direc-
tories it holds, and the rest of the file system, all the way up to root.

Your Current Directory

As long as you continue to work in your home directory, it is con-
sidered your current working directory. If you move to another direc-
tory, that directory becomes your new current directory.

The UNIX system command pwd (short for print working direc-
tory) prints the name of the directory in which you are now working.
For example, if your login name is jmrs and you execute the pwd
command in response to the first prompt after logging in, the UNIX
system will respond as follows:

$pwd<CR>
fuserl/jmrs

$

The system response gives you both the name of the directory in
which you are working (jmrs) and the location of that directory in
the file system. The path name /useri/jmrs tells you that the root
directory (shown by the leading / in the line) contains the directory
userl which, in turn, contains the directory jmrs. (All other slashes
in the path name other than root are used to separate the names of
directories and files, and to show the position of each directory rela-
tive to root.) A directory name that shows the directory's location in
this way is called a full or complete directory name or path name. In
the next few pages we will analyze and trace this path name so you
can start to move around in the file system.

36 USER'S GUIDE

67

frmmEan
Eem.

Your Place in the File System

Remember, you can determine your position in the file system at

any time simply by issuing a pwd command. This is especially help-
ful if you want to read or copy a file and the UNIX system tells you
the file you are trying to access does not exist. You may be surprised

to find you are in a different directory than you thought.

Figure 3-3 provides a summary of the syntax and capabilities of
the pwd command.

Command Recap

pwd — print full name of working directory

command options argumenis

pwd none none

Description: pwd prints the full path name of the directory in

which you are currently working.

Figure 3-3: Summary of the pwd Command

Path Names

Every file and directory in the UNIX system is identified by a
unique path name. The path name shows the location of the file or
directory, and provides directions for reaching it. Knowing how to
follow the directions given by a path name is your key to moving
around the file system successfully. The first step in learning about
these directions is to learn about the two types of path names: full
and relative.

USING THE FILE SYSTEM 3-7

Your Place in the File System

Full Path Names

A full path name (sometimes called an absolute path name) gives
directions that start in the root directory and lead you down through
a unique sequence of directories to a particular directory or file. You
can use a full path name to reach any file or directory in the UNIX
system in which you are working.

Because a full path name always starts at the root of the file sys-
tem, its leading character is always a / (slash). The final name in a
full path name can be either a file name or a directory name. All
other names in the path must be directories.

To understand how a full path name is constructed and how it
directs you, consider the following example. Suppose you are working
in the jmrs directory, located in /userl. You issue the pwd com-
mand and the system responds by printing the full path name of your
working directory: /userl/jmrs. Analyze the elements of this path
name using the following diagram and key.

3-8 USER'S GUIDE

8
9

69

Your Place in the File System

system

directory home
root directory

delimiter

|
"ae jmrs

/ (eading)

userl

/ (subsequent)

 jmrs

the slash that appears as the first character in the path

name is the root of the file system

= system directory one level below root in the hierarchy to
which root points or branches

the next slash separates or delimits the directory names
userl and jmrs

= current working directory

Now follow the
fuserl/jmrs.

bold lines in Figure 3-4 to trace the full path to

USING THE FILE SYSTEM 3-9

 HEE ——————— 7
Your Place in the File System

O = Director jes

[|] = Ordånery Files /

V = Special Files root)

» Branch

UNIX

bin dev user i (era) tap usr

dete | | cat e Xtyoy' Xtyn sail) (nes

jers) (sary2

list draft etters bin Bbox

fat tåle strs| isplay! | list | (tools

Figure 3-4: Full Path Name of the /userl/jmrs Directory

3-10 USER'S GUIDE

O
Z

71

Your Place in the File System

Relative Path Names

A relative path name gives directions that start in your current
working directory, and lead you up or down through a series of direc-
tories to a particular file or directory. By moving down from your
current directory, you can access files and directories you own. By

moving up from your current directory, you pass through layers of
parent directories to the grandparent of all system directories, root.

From there you can move anywhere in the file system.

A relative path name begins with one of the following: a direc-
tory or file name; a . (pronounced dot), which is a shorthand notation

for your current directory; or a .. (pronounced dot dot), which is a

shorthand notation for the directory immediately above your current
directory in the file system hierarchy. The directory represented by …

(dot dot) is called the parent directory of . (your current directory).

For example, say you are in the directory jmrs in the sample sys-
tem and jmrs contains directories named draft, letters, and bin and

a file named mbox. The relative path name to any of these is simply

its name, such as draft or mbox. Figure 3-5 traces the relative path
from jmrs to draft.

USING THE FILE SYSTEM. 3-11

Your Place in the File System

O = Directories

= (rdinary Files

list

Figure 3-5: Relative Path Name of the draft Directory

The draft directory belonging to jmrs contains the files outline
and table. The relative path name from jmrs to the file outline is
draft/outline.

Figure 3-6 traces this relative path. Notice that the slash in this
path name separates the directory named draft from the file named
outline. Here, the slash is a delimiter showing that outline is
subordinate to draft; that is, outline is a child of its parent, draft.

3-12 USER'S GUIDE

C
A

73

Your Place in the File System

O = Directories

= (rdinary Files

list sbox

Figure 3-6: Relative Path Name from jmrs to outline

So far, the discussion of relative path names has covered how to
specify names of files and directories that belong to, or are children

of, your current directory. You now know how to move down the sys-

tem hierarchy level by level until you reach your destination. You
can also, however, ascend the levels in the system structure or ascend

and subsequently descend into other files and directories.

To ascend to the parent of your current directory, you can use

the .. notation. This means that if you are in the directory named

draft in the sample file system, .. is the path name to jmrs, and ../..

is the path name to jmrs's parent directory, userl.

USING THE FILE SYSTEM 3-13

Your Place in the File System

From draft, you can also trace a path to the file sanders by

using the path name ../letters/sanders. The .…. brings you up to
jmrs. Then the names letters and sanders take you down through
the letters directory to the sanders file.

Keep in mind that you can always use a full path name in place of
a relative one.

Figure 3-7 shows some examples of full and relative path names.

Path Name Meaning

/ full path name of the root directory

[bin full path name of the bin directory
(contains most executable programs and

utilities)

fuserl/jmrs/bin/tools full path name of the tools directory
belonging to the bin directory that
belongs to the jmrs directory belonging
to userl that belongs to root

bin/tools relative path name to the file or direc-
tory tools in the directory bin

If the current directory is /, then the
UNIX system searches for /bin/tools.
However, if the current directory is
jmrs, then the system searches the full
path

fuserl/jmrs/bin/tools.

tools relative path name of a file or directory
tools in the current directory.

Figure 3-7: Example Path Names

3-14. USER'S GUIDE

U
Z

75

Your Place in the File System

You may need some practice before you can use path names such
as these to move around the file system with confidence. However,
this is to be expected when learning a new concept.

Naming Directories and Files

You can give your directories and files any names you want, as
long as you observe the following rules:

m The name of a directory (or file) can be from one to fourteen
characters long.

mM All characters other than / are legal.

mM Some characters are best avoided, such as a space, tab, back-

space, and the following:

204$ &"() D]V |;7” < >

If you use a blank or tab in a directory or file name, you must
enclose the name in quotation marks on the command line.

H Åvoid using a +, — or. as the first character in a file name.

== Upper case and lower case characters are distinct to the UNIX
system. For example, the system considers a directory (or file)
named draft to be different from one named DRAFT.

The following are examples of legal directory or file names:

memo MEMO section2 ref:list

file.d chap3+4 iteml-10 outline

The rest of this chapter introduces UNIX system commands that
enable you to examine the file system.

USING THE FILE SYSTEM 3-15

Organizing a Directory

This section introduces four UNIX system commands that enable
you to organize and use a directory structure: mkdir, Is, cd, and
rmdir.

mkdir enables you to make new directories and sub-
directories within your current directory

ls lists the names of all the subdirectories and

files in a directory

cd enables you to change your location in the file
system from one directory to another

rmdir enables you to remove an empty directory

These commands can be used with either full or relative path
names. Two of the commands, Is and cd, can also be used without a
path name. Each command is described more fully in the four sec-
tions that follow.

Creating Directories: the mkdir Command

It is recommended that you create subdirectories in your home
directory according to a logical and meaningful scheme that will facil-
itate the retrieval of information from your files. If you put all files
pertaining to one subject together in a directory, you will know where
to find them later.

To create a directory, use the command mkdir (short for make
directory). Simply enter the command name, followed by the name
you are giving your new directory or file. For example, in the sample
file system, the owner of the draft subdirectory created draft by
issuing the following command from the home directory

(/userl/jmrs):

$ mkdir draft <CR>

$

The second prompt shows that the command has succeeded; the

3-16 USER'S GUIDE

9
4

77

Organizing a Directory

subdirectory draft has been created.

Still nm the home directory, this user created other subdirectories,

such as letters and bin, in the same way.

$ mkdir letters< CR >

$ mkdir bin< CR >

$

The user could have created all three subdirectories (draft, letters,

and bin) simultaneously by listing them all on a single command line.

$ mkdir draft letters bin<CR >

$

You can also move to a subdirectory you created and build addi-
tional subdirectories within it. When you build directories or create

files, you can name them anything you want as long as you follow the
guidelines listed earlier under ”Naming Directories and Files.”

Figure 3-8 summarizes the syntax and capabilities of the mkdir

command.

Command Recap

mkdir — make a new directory

command options arguments

mkdir none directoryname(s)

Description: mkdir creates a new directory (subdirectory).

Remarks: The system returns a prompt ($ by default) if the
directory is successfully created.

Figure 3-8: Summary of the mkdir Command

USING THE FILE SYSTEM 3-17

Organizing a Directory

Listing the Contents of a Directory: thels
Command

All directories in the file system have information about the files
and directories they contain, such as name, size, and the date last
modified. You can obtain this information about the contents of your
current directory and other system directories by executing the com-
mand Is (short for list).

The Is command lists the names of all files and subdirectories in
a specified directory. If you do not specify a directory, Is lists the
names of files and directories in your current directory. To under-
stand how the Is command works, consider the sample file system
(Figure 3-2) once again.

Say you are logged in to the UNIX system and you run the pwd
command. The system responds with the path name /userl1/jmrs.
To display the names of files and directories in this current directory,
you then type Is and press the RETURN key. After this sequence,
your terminal will read:

le OM

$/user1/js

$l1s<CR>
bin

draft

letters

list

max hr

”

3-18 USER'S GUIDE

8
4

79

 B

Organizing a Directory

Ås you can see, the system responds by listing, in alphabetical

order, the names of files and directories in the current directory
jmrs. (If the first character of any of the file or directory names had
been a number or an upper case letter, it would have been printed
first.)

To print the names of files and subdirectories in a directory other

than your current directory without moving from your current direc-
tory, you must specify the name of that directory as follows:

Is pathname <CR >

The directory name can be either the full or relative path name of

the desired directory. For example, you can list the contents of draft
while you are working in jmrs by entering Is draft and pressing the

RETURN key. Your screen will look like this:

S$ Is draft<CR>

outline

table

S

Here, draft is a relative path name from a parent (jmrs) to a child
(draft) directory.

You can also use a relative path name to print the contents of a
parent directory when you are located in a child directory. The …
(dot dot) notation provides an easy way to do this. For example, the
following command line specifies the relative path name from jmrs to
userl:

USING THE FILE SYSTEM 3-19

You can get the same results by using the full path name from root to
userl. If you type Is /userl and press the RETURN key, the system
will respond by printing the same list.

Similarly, you can list the contents of any system directory that
you have permission to access by executing the ls command with a
full or relative path name.

The Is command is useful if you have a long list of files and you
are trying to determine whether one of them exists in your current
directory. For example, if you are in the directory draft and you
want to determine if the files named outline and notes are there,

use the Is command as follows:

$ Is outline notes< CR >
outline

notes not found

$

The system acknowledges the existence of outline by printing its
name, and says that the file notes is not found.

3-20 USER'S GUIDE

o
g

81

Organizing a Directory

The Is command does not print the contents of a file. If you want
to see what a file contains, use the cat, pg, or pr command. These
commands are described in ”Accessing and Manipulating Files,” later
in this chapter.

Frequently Used Is Options

The Is command also accepts options that cause specific attri-

butes of a file or subdirectory to be listed. There are more than a
dozen available options for the Is commands. Of these, the —a and

—] will probably be most valuable in your basic use of the UNIX sys-

tem. Refer to the Is(1) page in the System V Reference Manual for

details about other options.

Listing All Names in a File

Some important file names in your home directory, such as

profile (pronounced dot-profile), begin with a period. (As you can

see from this example, when a period is used as the first character of
a file name it is pronounced dot.) When a file name begins with a
dot, it is not included in the list of files reported by the Is command.

If you want the Is to include these files, use the —a option on the

command line.

For example, to list all the files in your current directory (jmrs),

including those that begin with a . (dot), type ls —a and press the
RETURN key.

USING THE FILE SYSTEM 3-21

 de
Organlzing a Directory

$ Is —-a<CR>

"profile

bin

draft

letters

list

mbax

5
B,

The —C and —F options for the Is command are frequently used.
Together, these options list a directory's subdirectories and files in
columns, and identify executable files (with an +) and directories
(with a /). Thus, you can list all files in your working directory jmrs
by executing the command line shown here:

Listing Contents in Short Format

$ Is -CF<CR>

bin/ letters/ nbox
draft/ list
$

3-22 USER'S GUIDE

c8

83

dk
Organizing a Directory

Listing Contents in Long Format

Probably the most informative Is option is —1, which displays the

contents of a directory in long format, giving mode, number of links,
owner, group, size in bytes, and time of last modification for each file.
For example, say you run the Is —1 command while in the jmrs

directory.

Fm

total 30

drwxr-—xr-x

drwxr-—xr-x

drwxr—xr-x

-—w-—

$

3 rs
2 Es
2 rs
2 js
1 jers

project 96 Jw 27 08:16 bin
project 64 Jul 1 14:19 draft
project 80 Jul 8 08:41 letters
project 12301 Jul 2 10:15 list
project 40 Jun 27 10:00 mbox

The first line of output (total 30) shows the amount of disk space
used, measured in blocks. Each of the rest of the lines comprises a
report on a directory or file in jmrs. The first character in each line

(d, -, b, or c) tells you the type of file.

d = directory

= ordinary disk file

= block special file

= character special file

Using this key to interpret the previous screen, you can see that the
jmrs directory contains three directories and two ordinary disk files.

USING THE FILE SYSTEM 3-23

Organizing a Directory

The next several characters, which are either letters or hyphens,

identify who has permission to read and use the file or directory.
(Permissions are discussed in the description of the chmod command
under ”Accessing and Manipulating Files” later in this chapter.)

The following number is the link count. For a file, this equals the
number of users linked to that file. For a directory, this number
shows the number of directories immediately under it plus two (for
the directory itself and its parent directory).

Next, the login name of the file”s owner appears (here it is jmrs),
followed by the group name of the file or directory (project).

The following number shows the length of the file or directory
entry measured in units of information (or memory) called bytes.
The month, day, and time that the file was last modified is given

next. Finally, the last column shows the name of the directory or file.

Figure 3-9 identifies each column in the rows of output from the
ls —1 command.

3-24 USER'S GUIDE

v
8

85

Organizing a Directory

number of owner

blocks used name

number group
of links name name

total 30 ' y ! !
rwxr-xr-x 3 jmrs project 96Jun 27 08:16bin

File fl trwxr-xr-x 2 jmrs project 64 Jul 22 14:19 draft

type rwxr-xr-x 2 jmrs project 80 Jul 28 08:41letters

rWX--=--- 2 jmrs project 12301 Jul 22 10:15 list
TW 1 jmrs project 40Jun 27 10:00 mbox

vel ed

time/date last
permissions modified

Figure 3-9: Description of Output Produced by the Is —1 Command

Figure 3-10 summarizes the syntax and capabilities of the ls com-
mand and two available options.

USING THE FILE SYSTEM 3-25

Organizing a Directory

Command Recap

ls — list contents of a directory

command options arguments

ls —a, —1, and others” directoryname(s)

Description:

Options:

Remarks:
ls lists the names of the files and subdirectories in

the specified directories. If no directory name is
given as an argument, the contents of your work-
ing directory are listed.

—a Lists all entries, including those begin-
ning with . (dot).

—1 Lists contents of a directory in long for-
mat furnishing mode, permissions, size in
bytes, and time of last modification.

If you want to read the contents of a file, use the cat command.

£ See the ls(1) page in the System V Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-10: Summary of the Is Command

3-26 USER'S GUIDE

98

87

Organizing a Directory

Changing Your Current Directory: the cd
Command

When you first log in on the UNIX system, you are placed in your

home directory. Ås long as you do work in it, it is also your current
working directory. However, by using the command ed (short for
change directory), you can work in other directories as well. To use
this command, enter cd, followed by a path name to the directory to
which you want to move.

cd pathname of newdirectory <CR >

Any valid path name (full or relative) can be used as an argument to
the cd command. If you do not specify a path name, the command

will move you to your home directory. Once you have moved to a

new directory, it becomes your current directory.

For example, to move from the jmrs directory to its child direc-
tory draft (in the sample file system), type cd draft and press the

RETURN key. (Here draft is the relative path name to the desired

directory.) When you get a prompt, verify your new location by typ-
ing pwd and pressing the RETURN key. Your terminal screen will

look like this:

S cd draft<CR>
$ pwd<CR>

fuser1/jmrs/draft

S

Now that you are in the draft directory you can create subdirectories

in it by using the mkdir command, and new files, by using the ed

and vi editors. (See Chapters 5 and 6 for tutorials on the ed and vi

USING THE FILE SYSTEM 3-27

Organizing a Directory

commands, respectively.)

It is not necessary to be in the draft directory to access files
within it. You can access a file in any directory by specifying a full
path name for it. For example, to cat the sanders file in the letters

directory (/userl/jmrs/letters) while you are in the draft directory
(/userl/jmrs/draft), specify the full path name of sanders on the
command line.

cat /userl/jmrs/letters/sanders <CR>

You may also use full path names with the cd command. For
example, to move to the letters directory from the draft directory,
specify /userl/jmrs/letters on the command line, as follows:

cd /userl/jmrs/letters< CR. >

Also, because letters and draft are both children of jmrs, you
can use the relative path name ../letters with the cd command. The

… notation moves you to the directory jmrs, and the rest of the
path name moves you to letters.

Figure 3-11 summarizes the syntax and capabilities of the cd com-
mand.

3-28 USER'S GUIDE

8
8

89

Organizing a Directory

Command Recap

cd — change your working directory

command options arguments

ed none directoryname

Description: cd changes your position in the file system from
the current directory to the directory specified. If
no directory name is given as an argument, the cd
command places you in your home directory.

Remarks: When the shell places you in the directory
specified, the prompt ($ by default) is returned to
you. To access a directory that is not in your

working directory, you must use the full or relative

path name in place of a simple directory name.

Figure 3-11: Summary of the cd Command

Removing Directories: the rmdir Command

If you no longer need a directory, you can remove it with the
command rmdir (short for remove a directory). The standard syntax
for this command is:

rmdir directoryname(s)<CR>

You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not
the owner of it or if the directory is not empty. To remove a file in
another user's directory, the owner must give you write permission

for the parent directory of the file you want to remove.

USING THE FILE SYSTEM 3-29

Organizing a Directory

If you try to remove a directory that still contains subdirectories

and files (that is, is not empty), the rmdir command prints the mes-
sage directoryname not empty. You must remove all subdirectories
and files; only then will the command succeed.

For example, say you have a directory called memos that con-
tains one subdirectory, tech, and two files, june.30 and july.31.

(Create this directory in your home directory now so you can see how
the rmdir command works.) If you try to remove the directory
memos (by issuing the rmdir command from your home directory),
the command responds as follows:

$ rmdir memos<CR >

rmdir: memos not empty

$

To remove the directory memos, you must first remove its contents:
the subdirectory tech, and the files june.30 and july.31. You can

remove the tech subdirectory by executing the rmdir command. For
instructions on removing files, see ”Accessing and Manipulating
Files” later in this chapter.

Once you have removed the contents of the memos directory,
memos itself can be removed. First, however, you must move to its

parent directory (your home directory). The rmdir command will
not work if you are still in the directory you want to remove. From
your home directory, type:

rmdir memos< CR >

If memos is empty, the command will remove it and return a
prompt.

3-30 USER'S GUIDE

0
6

91

Organizing a Directory

Figure 3-12 summarizes the syntax and capabilities of the rmdir
command.

Command Recap

rmdir — remove a directory

command options arguments

rmdir none directoryname(s)

Description: =srmdir removes specified directories if they do not
contain files and/or subdirectories.

Remarks: If the directory is empty, it is removed and the
system returns a prompt. If the directory con-
tains files or subdirectories, the command returns

the message, rmdir: directoryname not empty.

Figure 3-12: Summary of the rmdir Command

USING THE FILE SYSTEM 3-31

Accessing and Manipulating Files

This section introduces several UNIX system commands that
access and manipulate files in the file system structure. Information
in this section is organized into two parts; basic and advanced. The
part devoted to basic commands is fundamental to using the file sys-
tem; the advanced commands offer more sophisticated information
processing techniques for working with files.

Basic Commands

This section discusses UNIX system commands that are necessary
for accessing and using the files in the directory structure. Figure
3-13 lists these commands.

3-32 USER'S GUIDE

6

93

Accessing and Manipulating Files

Command Function

cat prints the contents of a specified file
on a terminal

pg prints the contents of a specified file
on a terminal in chunks or pages

pr prints a partially formatted version of
a specified file on the terminal

lp requests a paper copy of a file from a

line printer

ep makes a duplicate copy of an existing

file

mv moves and renames a file

rm removes a file

we reports the number of lines, words,

and characters in a file

chmod changes permission modes for a file (or

a directory)

Figure 3-13: Basic Commands for Using Files

USING THE FILE SYSTEM 3-33

dk i; z = SER

Accessing and Maniputating Files

Each command is discussed in detail and summarized in a table
that you can easily reference later. These tables will allow you to
review the syntax and capabilities of these commands at a glance.

Displaying a File's Contents: the cat, pg, and pr Commands

The UNIX system provides three commands for displaying and
printing the contents of a file or files: cat, pg, and pr. The cat com-
mand (short for concatenate) outputs the contents of the file(s)
specified. This output is displayed on your terminal screen unless
you tell cat to direct it to another file or a new command.

The pg command is particularly useful when you want to read
the contents of a long file because it displays the text of a file in pages
a screenful at a time. The pr command formats specified files and
displays them on your terminal or, if you so request, directs the for-
matted output to a printer (see the Ip command in this chapter).

The following sections describe how to use the cat, pg, and pr
commands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For
example, say you are located in the directory letters (in the sample
file system) and you want to display the contents of the file johnson.
Type the command line shown on the screen and you will receive the
following output:

3-34 USER'S GUIDE

v
6

95

de
Accessing and Manipulating Files

SEN <CR>

Angust 5, 1989

Mr. Ron Johnsan

Layton Printing

52 Hudsan Stræt

New York, N.Y.

Dear Mr. Johnson:

I enjøyed speaking with you this morning

about your campany”s plans to autarate

If I can be of further assistance to you,

please don't hesitate to call.

Yours truly,

John Howe

S
sd

To display the contents of two (or more) files, simply type the
names of the files you want to see on the command line. For exam-
ple, to display the contents of the files joknson and sanders, type:

S$ cat johnson sanders<CR>

The cat command reads johnson and sanders and displays their
contents in that order on your terminal.

USING THE FILE SYSTEM 3-35

Accessing and Manipulating Files

$ cat johnson sanders<CR >
August 5, 1989

Mr. Røn Jahnsan

Layton Printing

52 Hudson Street

New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning

Yours truly,

John Hoæ

Angust 5, 1989

Mrs. D.L. Sanders

Sanders Research, Inc.

43 Nassau Street

Princeton, N.J.

Dear Mrs. Sanders:

My colleagues and I have been following, with great interest,

Sinærely,

John Hor

$

3-36 USER'S GUIDE

97

Accessing and Manipulating Files

To direct the output of the cat command to another file or to a
new command, see the sections in Chapter 7 that discuss input and
output redirection.

Figure 3-14 summarizes the syntax and capabilities of the cat
command.

Command Recap

cat — concatenate and print a file's contents

command options arguments

cat available” filename(s)

Description: The cat command reads the name of each file
specified on the command line and displays its
contents.

Remarks: If a specified file exists and is readable, its con-
tents are displayed on the terminal screen; other-
wise, the message cat: cannot open filename

appears on the screen.

To display the contents of a directory, use the Is
command.

£ See the cat(1) page in the System V Reference Manual for all available

options and an explanation of their capabilities.

Figure 3-14: Summary of the cat Command

USING THE FILE SYSTEM 3-37

 |

Accessing and Manipulating Files

Paging Through the Contents of a File: the pg Command

The command pg (short for page) allows you to examine the con-
tents of a file or files, page by page, on a terminal. The pg command
displays the text of a file in pages (chunks) followed by a colon
prompt (:), a signal that the program is waiting for your instructions.
Possible instructions you can then issue include requests for the com-
mand to continue displaying the files contents a page at a time, and
a request that the command search through the file(s) to locate a
specific character pattern. Figure 3-15 summarizes some of the avail-
able instructions.

3-38 USER'S GUIDE

8
6

99

Accessing and Manipulating Files

Command" Function

h help; display list of available pgt commands

q or Q quit pg perusal mode

<CR> display next page of text

1 display next line of text

d or ”d display additional half page of text

or /l redisplay current page of text

f skip next page of text and display following one

n begin displaying next file you specified
on command line

p display previous file specified on command line

$ display last page of text in file currently displayed

[pattern search forward in file for specified character pat-
tern

?pattern search backward in file for specified character
pattern

Most commands can be typed with a number preceding them. For example,

+1 (display next page), —1 (display previous page), or 1 (display first page of
text).

T See the System V Reference Manual for a detailed explanation of all available
pg commands.

Figure 3-15: Summary of Commands to Use with pg

USING THE FILE SYSTEM 3-39

Accessing and Manipulating Files

The pg command is useful when you want to read a long file or a
series of files because the program pauses after displaying each page,
allowing time to examine it. The size of the page displayed depends
on the terminal. For example, on a terminal capable of displaying
twenty-four lines, one page is defined as twenty-three lines of text
and a line containing a colon. However, if a file is less than twenty-
three lines long, its page size will be the number of lines in the file
plus one (for the colon).

To peruse the contents of a file with pg, use the following com-
mand line format:

pg filename(3)< CR >

For example, to display the contents of the file outline in the
sample file system, type:

pg outline< CR >

The first page of the file will appear on the screen. Because the file
has more lines in it than can be displayed on one page, a colon
appears at the bottom of the screen. This is a reminder to you that

there is more of the file to be seen. When you are ready to read
more, press the RETURN key and pg will print the next page of the
file.

The following screen summarizes our discussion of the pg com-
mand this far.

3-40 USER'S GUIDE

0
0
L

10
1

de
Accessing and Manipulating Files

S$ pg outline <CR >

After you analyze the subject for your

report, you must consider organizing and

arranging the material you want to use in

writing it.

An cutline is an effective method of

is a type of blueprint or skeleton,

a framework for you the builderwriter

of the report; in a sense it is a recipe

:<CR>

After you press the RETURN key, pg will resume printing the file's
contents on the screen.

Your outline need not be elaborate or

overly detailed; it is simply a guide ycu

may consult as you write, to be varied,

if need be, when additicnal important

ideas are suggested in the actual writing.

(EOF):

USING THE FILE SYSTEM 3-41

Accessing and Manipulating Files

Notice the line at the bottom of the screen containing the string
(EOF):. This expression (EOF) means you have reached the end of
the file. The colon prompt is a cue for you to issue another com-
mand.

When you have finished examining the file, press the RETURN

key; a prompt will appear on your terminal. (Typing q or & and
pressing the RETURN key also gives you a prompt.) Or you can use

one of the other available commands, depending on your needs. In
addition, there are a number of options that can be specified on the
pg command line (see the pg(1) page in the System V Reference

Manual).

Proper execution of the pg command depends on specifying the
type of terminal you are using. This is because the pg program was

designed to be flexible enough to run on many different terminals;
how it is executed differs from terminal to terminal. By specifying
one type, you are telling this command:

EH how many lines to print

EH how many columns to print

mM how to clear the screen

MH how to highlight prompt signs or other words

Mm how to erase the current line

To specify a terminal type, assign the code for your terminal to
the TERM variable in your .profile file. (For more information
about TERM and .profile, see Chapter 7; for instructions on setting
the TERM variable, see Appendix F.)

Figure 3-16 summarizes the syntax and capabilities of the pg
command.

3-42 USER'S GUIDE

Z
O
L

10
3

Accessing and Manipulating Files

Command Recap

pg — display a file”s contents in chunks or pages

command options arguments

pg available” filename(s)

Description: The pg command displays the contents of the
specified file(s) in pages.

Remarks: After displaying a page of text, the pg com-
mand awaits instructions from you to do one
of the following: continue to display text,
search for a pattern of characters, or exit the
pg perusal mode. In addition, a number of

options are available. For example, you can

display a section of a file beginning at a
specific line or at a line containing a certain

sequence or pattern. You can also opt to go

back and review text that has already been
displayed.

å See the pg(1l) page in the System V Reference Manual for all available
options and an explanation of their capabilities.

Figure 3-16: Summary of the pg Command

USING THE FILE SYSTEM 3-43

 — OR ———————————————— 7
Accessing and Manipulating Files

Print Partially Formatted Contents of a File: the pr Command

The pr command is used to prepare files for printing. It supplies
titles and headings, paginates, and prints a file, in any of various page

lengths and widths, on your terminal screen.

You have the option of requesting that the command print its

output on another device, such as a line printer (read the discussion
of the lp command in this section). You can also direct the output of
pr to a different file (see the sections on input and output redirection
in Chapter 7).

If you choose not to specify any of the available options, the pr
command produces output in a single column that contains sixty-six
lines per page and is preceded by a short heading. The heading con-
sists of five lines: two blank lines; a line containing the date, time,
file name, and page number; and two more blank lines. The format-
ted file is followed by five blank lines. (Complete sets of text format-
ting tools are available on UNIX systems equipped with the
Documenter's Workbench Software. Check with your system
administrator to see if this software is available to you.)

The pr command is often used together with the lp command to
provide a paper copy of text as it was entered into a file. (See the
section on the lp command for details.) However, you can also use
the pr command to format and print the contents of a file on your
terminal. For example, to review the contents of the file johnson in
the sample file system, type:

pr johnson<CR >

The following screen gives an example of output from this command.

3-44 USER'S GUIDE

v
O
L

10
5

de
Accessing and Manipulating Files

"ÆRE <CR>

Aug 5 15:43 1989 johnson Page 1

Anqust 5, 19896

Mc. Ron Johnson

Layton Printing

52 Hudson Street

New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning

abcut your campany's plans to autarate

your business,

Enclosed please find

the material you requested

about AB&C's line of computers

and office autanaticon software.

If I can be of further assistance to you,

please don't hesitate to call.

Yours truly,

John Horææ

The ellipses after the last line in the file represent the remaining
lines (all blank in this case) that pr formatted into the output (so
that each page contains a total of sixty-six lines). If you are working
on a video display terminal, which allows you to view twenty-
four lines at a time, the entire sixty-six lines of the formatted file

USING THE FILE SYSTEM 3-45

 UUE Gl

Accessing and Manipulating Files

will be printed rapidly without pause. This means that the first
forty-two lines will roll off the top of your screen, making it impossi-

ble for you to read them unless you have the ability to roll back a

screen or two. However, if the file you are examining is particularly

long, even this ability may not be sufficient to allow you to read the
file.

In such cases, type <"s> (control—s) to interrupt the flow of
printing on your screen. When you are ready to continue, type

<"q> (control— q) to resume printing.

Figure 3-17 summarizes the syntax and capabilities of the pr
command.

3-46 USER'S GUIDE

9
0
L

10
7

 (ET REE SEE ESSENS NESS æg dk szss=u
b—=——]
;—=—5]

Accessing and Manipulating Files

Command Recap

pr — print formatted contents of a file

command options arguments

pr available” filename(s)

Description:

Remarks:

The pr command produces a formatted copy
of a file(s) on your terminal screen unless you

specify otherwise. It prints the text of the

file(s) on sixty-six line pages, and places five
blank lines at the bottom of each page and a
five-line heading at the top of each page. The
heading includes: two blank lines; a line con-
taining the date, time, file name, and page
number; and two additional blank lines.

If a specified file exists, its contents are for-
matted and displaye; if not, the message pr:
can't open filename is printed.

The pr command is often used with the lp
command to produce a paper copy of a file. It
can also be used to review a file on a video
display terminal. To stop and restart the
printing of a file on a terminal, type <"s>

and <"q>, respectively.

x
See the pr(1) page in the System V Reference Manual for all available
options and an explanation of their capabilities.

Figure 3-17: Summary of the pr Command

USING THE FILE SYSTEM 3-47

Accessing and Manipulating Files

Requesting a Paper Copy of a File: the Ip Command

Some terminals have built-in printers that allow you to get paper
copies of files. If you have such a terminal, you can get a paper copy
of your file simply by turning on the printer and executing the cat or
pr command. However, if you are using a video display terminal, you

must send a request for a paper copy of a file to a printer (see Figure
3-18). The command lp (short for line printer) allows you to do this.

With Tractor Feed

With Tractor Feed Belt
Laser Printer

Figure 3-18: Examples of Line Printers

3-48 USER'S GUIDE

80
L

10
9

Accessing and Manipulating Files

To execute lp, follow this format:

lp filename<CR >

For example, to print the file johnson on a line printer, type the fol-
lowing command line:

lp johnson<CR >

The system responds with the name (or type) of the printer on which
the file will be printed, and an identification (ID) number for your

request.

$ lp johnson<CR>

request id is laser—6885 (1 file)

$

The system response shows that your job is to be printed on a
laser printer (this system's default type of printer), has a request ID
number of 6885, and includes one file.

The —ddest (short for destination) option on the command line

causes your file to be printed on another available device that you
specify in the dest argument. The —m option causes mail to be sent
to you stating the job has been completed.

To cancel a request to a printer, type the command cancel and
specify the request ID number. For example, to cancel your request

for a printing of the file letters (request ID laser-6885), type:

cancel laser-6885<CR>

To check the status of a line printer job that it is in progress, or

to get its request ID number, execute the Ipstat command. This
command also provides a complete listing of every printer available
on your system. Which printers are available to you depends on your

UNIX system facility. Ask your system administrator for the names
of available line printers, or type the following command line:

lpstat -v<CR>

USING THE FILE SYSTEM 3-49

Accessing and Manipulating Files

Figure 3-19 summarizes the syntax and capabilities of the lp
command.

Command Recap

lp — request paper copy of file from a line printer

command options arguments

lp —d, —m, and others” file(s)

Description: The lp command requests that specified files be
printed by a line printer, thus providing paper
copies of the contents.

Options: —ddest Allows you to choose dest as the
printer or type of printer to produce
the paper copy. If you do not use

this option, the lp program specifies
the printer for you.

-m Sends a message to you via mail
after the printing is complete.

Remarks: You can cancel a request to the line printer by
typing cancel and the request ID furnished to
you by the system when the request was ack-
nowledged.

Check with your system administrator for infor-
mation on additional and/or different commands
for printers that may be available at your location.

£ See the 1p(1) page in the System V Reference Manual for all available options
and an explanation of their capabilities.

Figure 3-19: Summary of the Ip Command

3-50 USER'S GUIDE

OL
L

11
1

Accessing and Manipulating Files

Making a Duplicate Copy of a File: the cp Command

When using the UNIX system, you may want to make a copy of a

file. For example, you might want to revise a file while leaving the

original version intact. The command cp (short for copy) copies the
complete contents of one file into another. The ep command also
allows you to copy one or more files from one directory into another

while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in

the sample directory, simply type cp outline new.outline and
press the RETURN key. The system returns the prompt when the

copy is made. To verify the existence of the new file, you can type Is

and press the RETURN key. This command lists the names of all
files and directories in the current directory, in this case draft. The

following screen summarizes these activities.

$ cp outline new.outline <CR >

sSIs<CR>

new.outline

outline

The UNIX system does not allow you to have two files with the
same name in a directory. In this case, because there was no file

called new.outline when the cp command was issued, the system
created a new file with that name. However, if a file called

new.outline had already existed, it would have been replaced by a
copy of the file outline; the previous version of new.outline would

have been deleted.

USING THE FILE SYSTEM 3-51

 5 RR |]
Accessing and Manipulating Files

If you had tried to copy the file outline to another file named
outline in the same directory, the system would have told you the
file names were identical and returned the prompt to you. If you had
then listed the contents of the directory to determine exactly how
many copies of outline existed, you would have received the follow-
ing output on your screen:

$ cp outline outline<CR>

cp: outlins and outline are idontical

$ Ils<CR>

outline

table

$

The UNIX system does allow you to have two files with the same
name as long as they are in different directories. For example, the
system would let you copy the file outline from the draft directory
to another file named outline in the letters directory. If you were
in the draft directory, you could use any one of four command lines.
In the first two command lines, you specify the name of the new file
you are creating by making a copy.

EH cp outline /userl/jmrs/letters/outline<CR> (full path
name specified)

H cp outline ../letters/outline<CR> (relative path name
specified)

However, the cp command does not require that you specify the
name of the new file. If you do not include a name for it on the com-
mand line, cp gives your new file the same name as the original one,
by default. Therefore you could also use either of these command
lines:

3-52 USER'S GUIDE

Ci
L

11
3

Accessing and Manipulating Files

mM cp outline /userl/jmrs/letters<CR> (full path name
specified)

mM cp outline ../letters<CR> (relative path name specified)

In any of these four cases, cp will make a copy of the outline file
in the letters directory and call it outline, too.

Of course, if you want to give your new file a different name, you
must specify it. For example, to copy the file outline in the draft
directory to a file named outline.vers2 in the letters directory, you

can use either of the following command lines:

H cp outline /userl/jmrs/letters/outline.vers2 <CR> (full
path name)

Mm cp outline ../letters/outline.vers2<CR> (relative path
name)

When assigning new names, keep in mind the conventions for naming
directories and files described in ”Naming Directories and Files” in
this chapter.

Figure 3-20 summarizes the syntax and capabilities of the ep
command.

USING THE FILE SYSTEM 3-53

Accessing and Manipulating Files

Command Recap

cp — make a copy of a file

command options arguments

filel file2

cp none file(s) directory

Description: cp allows you to make a copy of filel and call
it file2 leaving filel intact or to copy one or
more files into a different directory.

Remarks: When you are copying filel to file2 and a file
called file2 already exists, the ep command
overwrites the first version of file2 with a copy
of filel and calls it file2. The first version of
file2 is deleted.

You cannot copy directories with the ep com-
mand.

Figure 3-20: Summary of the ep Command

Moving and Renaming a File: the mv Command

The command mv (short for move) allows you to rename a file in
the same directory or to move a file from one directory to another. If
you move a file to a different directory, the file can be renamed or it
can retain its original name.

To rename a file within one directory, follow this format:

mv filel file2<CR>

3-54 USER'S GUIDE

tI
l

11
5

Accessing and Manipulating Files

The mv command changes a file's name from filel to file2 and
deletes filel. Remember that the names filel and file2 can be any
valid names, including path names.

For example, if you are in the directory draft in the sample file
system and you would like to rename the file table to new.table,
simply type mv table new.table and press the RETURN key. If
the command executes successfully, you will receive a prompt. To

verify that the file new.table exists, you can list the contents of the
directory by typing ls and pressing the RETURN key. The screen
shows your input and the system's output as follows:

S mv table new.table<CR>
s Is<CR>

new.table

outline

$

You can also move a file from one directory to another, keeping
the same name or changing it to a different one. To move the file

without changing its name, use the following command line:

mv file(s) directory <CR>

The file and directory names can be any valid names, including path
names.

For example, say you want to move the file table from the
current directory named draft (whose full path name is
fuserl/jmrs/draft) to a file with the same name in the directory
letters (whose relative path name from draft is ../letters and whose
full path name is /userl/jmrs/letters), you can use any one of
several command lines, including the following:

USING THE FILE SYSTEM 3-55

Accessing and Manipulating Files

mv table /userl/jmrs/letters<CR >

mv table /userl/jmrs/letters/table <CR >

mv table ../letters<CR >

mv table ../letters/table <CR >

mv /userl/jmrs/draft/table /user1/jmrs/letters/table <CR >

Now suppose you want to rename the file table as table2 when
moving it to the directory letters. Use any of these command lines:

mv table /userl/jmrs/letters/table2 <CR >

mv table ../letters/table2<CR >

mv /userl/jmrs/draft/table2 /user1/jmrs/letters/table2 < CR >

You can verify that the command worked by using the Is command to
list the contents of the directory.

Figure 3-21 summarizes the syntax and capabilities of the mv
command.

3-56 USER'S GUIDE

9L
L

11
7

Accessing and Manipulating Files

Command Recap

mv — move or rename files

command options arguments

filel file2

mv none file(s) directory

Description: mv allows you to change the name of a file or
to move a file(s) into another directory.

Remarks: When you are moving filel to file2, if a file
called /ile2 already exists, the mv command
overwrites the first version of file2 with filel
and renames it file2. The first version of file2
is deleted.

Figure 3-21: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your
directory by executing the command rm (short for remove). The
basic format for this command is:

rm file(s)<CR>

You can remove more than one file at a time by specifying those
files you want to delete on the command line with a space separating

each filename:

rm filel file2 file3 <CR >

The system does not save a copy of a file it removes; once you have
executed this command, your file is removed permanently.

USING THE FILE SYSTEM 3-57

Accessing and Manipulating Files

After you have issued the rm command, you can verify its suc-
cessful execution by running the ls command. Since Is lists the files
in your directory, you'll immediately be able to see whether or not
rm has executed successfully.

For example, say you have a directory that contains two files,
outline and table. You can remove both files by issuing the rm
command once. If rm is executed successfully, your directory will be
empty. Verify this by running the Is command.

$ rm outline table <CR>

$ Is

s

The prompt shows that outline and table were removed.

Figure 3-22 summarizes the syntax and capabilities of the rm
command.

Command Recap

rm — remove a file

command options arguments

rm available” file(s)

Description: rm allows you to remove one or more files.

Remarks: Files specified as arguments to the rm com-
mand are removed permanently.

£ See the rm(1) page in the System V Reference Manual for all available
options and an explanation of their capabilities.

Figure 3-22: Summary of the rm Command

3-58 USER'S GUIDE

BL
L

11
9

Accessing and Manipulating Files

Counting Lines, Words, and Characters in a File: the we

Command

The command we (short for word count) reports the number of
lines, words, and characters there are in the file(s) named on the

command line. If you name more than one file, the we program
counts the number of lines, words, and characters in each specified
file and then totals the counts. In addition, you can direct the we
program to give you only a line, a word, or a character count by using
the —1, —w, or —c options, respectively.

To determine the number of lines, words, and characters in a file,

use the following format on the command line:

we file1<CR>

The system responds with a line in the following format:

l w c filel

where

M / represents the number of lines in filel

EH w represents the number of words in 7ilel

EH c represents the number of characters in /ilel

For example, to count the lines, words, and characters in the file

johnson (located in the current directory, letters), type the follow-
ing command line:

$ we johnson <CR >
24 66 406 johnson

S

The system response means that the file jøobhnson has twenty-four
lines, sixty-six words, and 406 characters.

To count the lines, words, and characters in more than one file,
use this format:

we filel file2<CR>

USING THE FILE SYSTEM 3-59

Accessing and Manipulating Files

The system responds in the following format:

l w c filel
l Ww c file2
Il w c total

Line, word, and character counts for filel and file2 are displayed on

separate lines and the combined counts appear on the last line beside
the word total.

For example, ask the wc program to count the lines, words, and
characters in the files johnson and sanders in the current directory.

$ we johnson sanders<CR >

24 66 406 johnsan

28 92 559 sanders

52 158 965 total

The first line reports that the johnson file has twenty-four lines,
sixty-six words, and 406 characters. The second line reports twenty-
eight lines, ninety-two words, and 559 characters in the sanders file.
The last line shows that these two files together have a total of fifty-
two lines, 158 words, and 965 characters.

To get only a line, a word, or a character count, select the
appropriate command line format from the following lines:

we -l filel <CR> (line count)
wc —w filel1<CR> (word count)
we -—c filel!<CR> (character count)

3-60 USER'S GUIDE

(9
74
1

12
1

Accessing and Manipulating Files

For example, if you use the —1 option, the system reports only
the number of lines in sanders.

$ we —1l sanders< CR >

28 sanders

$

If the —-w or —c option had been specified instead, the command
would have reported the number of words or characters, respectively,
in the file.

Figure 3-23 summarizes the syntax and capabilities of the we
command.

USING THE FILE SYSTEM 3-61

Accessing and Manipulating Files

Command Recap

wc — count lines, words, and characters in a file

command options arguments

wc -1, —w, -—c file(s)

Description:

Options

Remarks:
we counts lines, words, and characters in the

specified file(s), keeping a total count of all tallies
when more than one file is specified.

—l1 counts the number of lines in the specified
file(s)

—w counts the number of words in the

specified file(s)

-—€ counts the number of characters in the

specified file(s)

When a file name is specified in the command line,
it is printed with the count(s) requested.

Figure 3-23: Summary of the we Command

Protecting Your Files: the chmod Command

The command chmod (short for change mode) allows you to
decide who can read, write, and use your files and who cannot.
Because the UNIX operating system is a multi-user system, you usu-
ally do not work alone in the file system. System users can follow
path names to various directories and read and use files belonging to

one another, as long as they have permission to do so.

3-62 USER'S GUIDE

r
d
l

12
3

Accessing and Manipulating Files

If you own a file, you can decide who has the right to read it,
write in it (make changes to it), or, if it is a program, to execute it.
You can also restrict permissions for directories with the chmod
command. When you grant execute permission for a directory, you
allow the specified users to cd to it and list its contents with the Is
command.

To assign these types of permissions, use the following three sym-
bols:

r allows system users to read a file or to copy its contents

w allows system users to write changes into a file (or a copy

of it)

x allows system users to run an executable file

To specify the users to whom you are granting (or denying) these
types of permission, use these three symbols:

u you, the owner of your files and directories (u is short for
user)

g members of the group to which you belong (the group

could consist of team members working on a project,
members of a department, or a group arbitrarily desig-

nated by the person who set up your UNIX system

account)

o all other system users

When you create a file or a directory, the system automatically
grants or denies permission to you, members of your group, and other
system users. You can alter this automatic action by modifying your
environment (see Chapter 7 for details). Moreover, regardless of how
the permissions are granted when a file is created, as the owner of
the file or directory you always have the option of changing them.
For example, you may want to keep certain files private and reserve

them for your exclusive use. You may want to grant permission to

read and write changes into a file to members of your group and all
other system users as well. Or you may share a program with
members of your group by granting them permission to execute it.

USING THE FILE SYSTEM 3-63

 GE E————]
Accessing and Manipulating Files

How to Determine Existing Permissions

You can determine what permissions are currently in effect on a
file or a directory by using the command that produces a long listing
of a directory's contents: Is —1l. For example, typing Is —1 and
pressing the RETURN key while in the directory named jmrs/bin in
the sample file system produces the following output:

S$ Is —1<CR>

total 35

-Twxr-xr-x 1 ss project 9346 Jul 1 08:06 display

-rw-r—r— 1 Es project 6428 Bug 2 10:24 list

drwx—x—x 2 mrs project 32 Jul 8 15:32 tools

$

Permissions for the display and list files and the tools directory
are shown on the left of the screen under the line total 35, and

appear in this format:

-rwxr-xr-Xx (for the display file)
-rw-r--r-- (for the list file))

drwx-—-x-—- (for the tools directory)

After the initial character, which describes the file type (for exam-
ple, a - (dash) symbolizes a regular file and a d a directory), the
other nine characters that set the permissions comprise three sets of
three characters. The first set refers to permissions for the owner,
the second set to permissions for group members, and the last set to
permissions for all other system users. Within each set of characters,
the r, w, and x show the permissions currently granted to each
category. If a dash appears instead of an r, w, or x, permission to
read, write, or execute is denied.

3-64 USER'S GUIDE

v
E
L

12
5

 de
Accessing and Manipulating Files

The following diagram summarizes this breakdown for the file
named display.

user group others

ler ØR RS
TWXT-XT-X
bi Permission to write to

Å the file denied to
read group and other

write

execute

Ås you can see, the owner has r, w, and x permissions and members

of the group and other system users have r and x permissions.

There are two exceptions to this notation system. Occasionally
the letter s or the letter 1 may appear in the permissions line,
instead of an r, wor x. The letter s (short for set user ID or set

group ID) represents a special type of permission to execute a file. It
appears where you normally see an x (or —) for the user or group
(the first and second sets of permissions). From a user's point of
view it is equivalent to an x in the same position; it implies that exe-
cute permission exists. It is significant only for programmers and

system administrators. (See the System Administrator's Guide for
details about setting the user or group ID.)

The letter 1 is the symbol for lock enabling. It does not mean
that the file has been locked. It simply means that the function of
locking is enabled, or possible, for this file. The file may or may not
be locked; that cannot be determined by the presence or absence of
the letter 1.

USING THE FILE SYSTEM 3-65

Accessing and Manipulating Files

How to Change Existing Permissions

After you have determined what permissions are in effect, you
can change them by executing the chmod command in the following
format:

chmod who +permission file(s)< CR >

chmod who =permission file(s)< CR >

The following list defines each component of this command line.

chmod

who

+ or —

permission

file(s)

3-66 USER'S GUIDE

name of the program

one of three user groups (u, g, or 0)

u = user

g = group
o = others

instruction that grants (+) or denies (—)

permission

any combination of three authorizations (r, w,

and x)

r = read

w = write

x = execute

file (or directory) name(s) listed; assumed
to be branches from your current directory,

unless you use full pathnames.

9
.

12
7

Accessing and Manipulating Files

The chmod command will not work if you type a space(s) between

NOTE who, the instruction that gives (+) or denies (—) permission, and
the permission.

The following examples show a few possible ways to use the
chmod command. Ås the owner of display, you can read, write, and
run this executable file. You can protect the file against being
accidentally changed by denying yourself write (w) permission. To do
this, type the command line:

chmod u—w display<CR>

After receiving the prompt, type ls —1 and press the RETURN key
to verify that this permission has been changed, as shown in the fol-
lowing screen.

S chmod u— w display<CR>

S$ Is -—I<CR>
total 35

—r—x0xr-x 1 mes project 9346 Jul 1 08:06 display

rw-r—r— 1 mrs project 6428 Aug 2 10:24 list

drwéx—x—x 2 mrs project 32 Jul 8 15:32 tools

$

Ås you can see, you no longer have permission to write changes into
the file. You will not be able to change this file until you restore
write permission for yourself.

Now consider another example. Notice that permission to write
into the file display has been denied to members of your group and
other system users. However, they do have read permission. This
means they can copy the file into their own directories and then

make changes to it. To prevent all system users from copying this

USING THE FILE SYSTEM 3-67

Accessing and Manipulating Files

file, you can deny them read permission by typing:

chmod go-r display <CR >

The g and & stand for group members and all other system users,
respectively, and the —r denies them permission to read or copy the
file. Check the results with the ls —1 command.

$ chmod go-r display<CR >
$ Is —1I<CR>

total 35

—rw—x—x 1 mrs project 9346 Jul 1 08:06 display

rwrr— 1 mrs project 6428 Aug 2 10:24 list
drwx—x—x 2 mrs project 32 Jul 8 15:32 tools

$

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission
for directories as well as files. Simply specify a directory name
instead of a file name on the command line.

However, consider the impact on various system users of chang-
ing permissions for directories. For example, say you grant read per-
mission for a directory to yourself (u), members of your group (g),
and other system users (0). Every user who has access to the system
will be able to read the names of the files contained in that directory

by running the Is —1 command. Similarly, granting write permission
allows the designated users to create new files in the directory and
remove existing ones. Granting permission to execute the directory
allows designated users to move to that directory (and make it their
current directory) by using the cd command.

3-68 USER'S GUIDE

8
o
L

12
9

Accessing and Manipulating Files

An Alternative Method

There are two methods by which the chmod command can be
executed. The method described above, in which symbols such as r,

w, and x are used to specify permissions, is called the symbolic
method.

An alternative method is the octal method. Its format requires
you to specify permissions using three octal numbers, ranging from 0
to 7. (The octal number system is different from the decimal system
that we typically use on a day-to-day basis.) To learn how to use the
octal method, see the chmod(1) page in the System V Reference
Manual.

Figure 3-24 summarizes the syntax and capabilities of the
chmod command.

Command Recap

chmod — change permission modes for files (and directories)

command instruction arguments

chmod who + — permission filename(s)
directoryname(s)

Description: chmod gives (+) or removes (—) permission
to read, write, and execute files for three

categories of system users: user (you), group

(members of your group), and other (all other
users able to access the system on which you

are working).

Remarks: The instruction set can be represented in
either octal or symbolic terms.

Figure 3-24: Summary of the chmod Command

USING THE FILE SYSTEM 3-69

Accessing and Manipulating Files

Advanced Commands

Use of the commands already introduced will increase your fami-
liarity with the file system. As this familiarity increases, so might
your need for more sophisticated information processing techniques
when working with files. This section introduces three commands
that provide just that.

diff finds differences between two files

grep scarchcs for a pattern in a file

sort sorts and merges files

For additional information about these commands refer to the System
V Reference Manual.

Identifying Differences Between Files: the diff Command

The diff command locates and reports all differences between two
files and tells you how to change the first file so that it is a duplicate
of the second. The basic format for the command is:

diff filel file2 <CR >

If filel1 and file2 are identical, the system returns a prompt to you. If
they are not, the diff command instructs you on how to change the
first file so it matches the second by using ed (line editor) commands.
(See Chapter 5 for details about the line editor.) The UNIX system
flags lines in filel (to be changed) with the < (less than) symbol, and
lines in /i/e2 (the model text) with the > (greater than) symbol.

For example, say you execute the diff command to identify the
differences between the files jøhmson and medonough. The
medonough file contains the same letter that is in the johnson file,
with appropriate changes for a different recipient. The diff command
will identify those changes as follows:

3-70. USER'S GUIDE

O
E
L

13
1

 G il

Accessing and Manipulating Files

3,6c3,6

< Mc. Ron Johnson

< Layton Printing

< 52 Hudson Street

< New York, N.Y.

> Mc. J.J. McDonough

> Uku Press

> 37 Chico Place

> Springfield, N.J.

9c9

< Dear Mr. Johnson:

> Dear Mr. McDongugh:

dl

”,

The first line of output from diff is :

3,6c3,6

This means that if you want joøhnson to match medonough, you
must change (c) lines 3 through 6 in johnson to lines 3 through 6 in
medonough. The diff command then displays both sets of lines.

If you make these changes (using a text editor such as ed or vi),
the johnson file will be identical to the sanders file. Remember, the
diff command identifies differences between specified files. If you
want to make an identical copy of a file, use the cp command.

Figure 3-25 summarizes the syntax and capabilities of the diff
command.

USING THE FILE SYSTEM 3-71

Accessing and Manipulating Files

Command Recap

diff — finds differences between two files

command options arguments

diff available” filel file2

Description: The diff command reports what lines are
different in two files and what you must do to
make the first file identical to the second.

Remarks: Instructions on how to change a file to bring it
into agreement with another file are line edi-
tor (ed) commands: a (append), ce (change),
and d (delete). Numbers given with a, c, or d

show the lines to be modified. Also used are
the symbols < (showing a line from the first
file) and > (showing a line from the second
file).

£ See the diff(1) page in the System V Reference Manual for all available
options and an explanation of their capabilities.

Figure 3-25: Summary of the diff Command

Searching a File for a Pattern: the grep Command

You can instruct the UNIX system to search through a file for a
specific word, phrase, or group of characters by executing the com-
mand grep (short for globally search for a regular expression and
print). Put simply, a regular expression is any pattern of characters
(be it a word, a phrase, or an equation) that you specify.

3-72 USER'S GUIDE

E
L

13
3

Accessing and Manipulating Files

The basic format for the command line is:

grep pattern file(s)<CR>

For example, to locate any lines that contain the word automa-
tion in the file johnson, type:

grep automation johnson<CR >

The system responds:

$ grep automation johnson <CR >
and office automation software.

$

The output consists of all the lines in the file jøhnson that contain
the pattern for which you were searching (automation).

If the pattern contains multiple words or any character that con-
veys special meaning to the UNIX system, (such as $, |, ", ?, and so
on), the entire pattern must be enclosed in single quotes. (For an
explanation of the special meaning for these and other characters see
”Metacharacters” in Chapter 7.) For example, say you want to locate
the lines containing the pattern office automation. Your command
line and the system's response will read:

$ grep ”office automation” johnson<CR >
and office automation software.

$

But what if you cannot recall which letter contained a reference
to office automation; your letter to Mr. Johnson or the one to Mrs.
Sanders? Type the following command line to find out:

$ grep ”office automation” jøohnson sanders <CR >
johnson:and office automation software.

$

The output tells you that the pattern office automation is found
once in the johnson file.

USING THE FILE SYSTEM 3-73

Accessing and Manipulating Files

In addition to the grep command, the UNIX system provides
variations of it called egrep and fgrep, along with several options
that enhance the searching powers of the command. See the grep(1),
egrep(1), and fgrep(1) pages in the System V Reference Manual for
further information about these commands.

Figure 3-26 summarizes the syntax and capabilities of the grep
command.

Command Recap

grep — searches a file for a pattern

command options arguments

grep available” pattern file(s)

Description: The grep command searches through specified
file(s) for lines containing a pattern and then
prints the lines on which it finds the pattern.
If you specify more than one file, the name of
the file in which the pattern is found is also
reported.

Remarks: If the pattern you give contains multiple
words or special characters, enclose the pat-
tern in single quotes on the command line.

& See the grep(1) page in the System V Reference Manual for all available

options and an explanation of their capabilities.

Figure 3-26: Summary of the grep Command

3-74 USER'S GUIDE

vE
L

13
5

Accessing and Manipulating Files

Sorting and Merging Files: the sort Command

The UNIX system provides an efficient tool called sort for sorting
and merging files. The format for the command line is:

sort file(s)<CR>

This command causes lines in the specified files to be sorted and
merged in the following order.

mM Lines beginning with numbers are sorted by digit and listed
before lines beginning with letters.

mM Lines beginning with upper case letters are listed before lines
beginning with lower case letters.

m Lines beginning with symbols such as %, %, or &, are sorted on

the basis of the symbol's ASCII representation.

For example, let's say you have two files, groupl and group2,
each containing a list of names. You want to sort each list alphabeti-
cally and then interleave the two lists into one. First, display the
contents of the files by executing the cat command on each.

dl groupl<CR>

Smith, Allyn

Wolf, Robert

$ cat group2 <CR >
Frank, M. Jay
Nelson, Jæres

West, Donna

Hill, Charles

VK -
USING THE FILE SYSTEM 3-75

 dk
Accessing and Manipulating Files

(Instead of printing these two files individually, you could have
requested both files on the same command line. If you had typed
cat groupl group2 and pressed the RETURN key, the output
would have been the same.)

Now sort and merge the contents of the two files by executing the
sort command. The output of the sort program will be printed on
the terminal screen unless you specify otherwise.

æl groupl group2 <CR >

In addition to combining simple lists as in the example, the sort

command can rearrange lines and parts of lines (called fields) accord-
ing to a number of other specifications you designate on the com-
mand line. The possible specifications are complex and beyond the
scope of this text. Refer to the System V Reference Manual for a full
description of available options.

Figure 3-27 summarizes the syntax and capabilities of the sort
command.

3-76 USER'S GUIDE

9£
L

13
7

Accessing and Manipulating Files

Command Recap

sort — sorts and merges files

command options arguments

sort available” file(s)

Description: The sort command sorts and merges lines

from a file or files you specify and displays its
output on your terminal screen.

Remarks: If no options are specified on the command
line, lines are sorted and merged in the order

defined by the ASCII representations of the
characters in the lines.

x
See the sort(1) page in the System V Reference Manual for all available

options and an explanation of their capabilities.

Figure 3-27: Summary of the sort Command

USING THE FILE SYSTEM 3-77

Summary

This chapter described the structure of the file system and
presented ways to use and to navigate through the file system by
using UNIX system commands. The next chapter gives you an over-
view of a variety of UNIX system capabilities: text editing, using the
shell as a command language, communicating electronically with
other system users, and programming and developing software.

3-78 USER'S GUIDE

BE
L

13
9

Chapter 4: Overview of the Tutorials

Page

Introduction ever nerne 4-1

Text Editing ce ererssssiiisikisieiieidiersden ere 4-2

What is a Text Editor? …........u.ud.ssscsereerrerereerssererrrrenn erne 4-2

How Does a Text Editor Work?sssscesrsrrrrrrrsererrsnnnnee 4-3

Text Editing Buffers seerne 4-3

Modes of Operationsscssseserssrrssrrnsssenensenn renerne 4-4

Line Editorsscsseeesesereserrssentesnn rese esk seneste E LEE ESSENS 4- 4

Screen Editor …....u..ssseserrsererererreererser ener rnsn eneret kreere 4-5

The ShellWu.usccseeereereerererersesererrere renser resettet neere 4-7

Customizing Your Computing Environment 4-8

Programming in the Shell 2... sssscseersreesereneereeenrennes 4-9

Communicating Electronically secure 4-12

Programming in the System 1... 4-13

TABLE OF CONTENTS

Table of Contents

i USER'S GUIDE

This page is intentionally left blank

Ob
lL

141

Introduction

This chapter serves as a transition between the overview that
comprises the first three chapters and the tutorials in the following
four chapters. Specifically, it provides an overview of the subjects
covered in these tutorials: text editing, working in the shell, and

communicating electronically. Text editing is covered in Chapter 5,
”Line Editor Tutorial,” and Chapter 6, ”Screen Editor Tutorial.”

How to work and program in the shell is taught in Chapter 7, ”Shell
Tutorial,” and methods of electronic communication are covered in

Chapter 8, ”Communication Tutorial.”

OVERVIEW OF THE TUTORIALS 4-1

 Ms

Text Editing

Using the file system is a way of life in a UNIX system environ-
ment. This section will teach you how to create and modify files with
a software tool called a text editor. The section begins by explaining
what a text editor is and how it works. Then it introduces two types
of text editors supported on the UNIX system: the line editor, ed,
and the screen editor, vi (short for visual editor). A comparison of
the two editors is also included. For detailed information about ed
and vi, see Chapters 5 and 6.

What is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform

one or more of the following tasks: insert new or additional material,
delete unneeded material, transpose material (sometimes called cut-
ting and pasting), and, finally, prepare a clean, corrected copy. Text
editors perform these tasks at your direction, making writing and
revising text much easier and quicker than if done by hand.

The UNIX system text editors, like the UNIX system shell, are

interactive programs; they accept your commands and then perform
the requested functions. From the shell's point of view, the editors
are executable programs.

ÅA major difference between a text editor and the shell, however,
is the set of commands that each recognizes. All the commands
introduced up to this point belong to the shell's command set. A text
editor has its own distinct set of commands that allow you to create,
move, add, and delete text in files, as well as acquire text from other

files.

4-2. USER'S GUIDE

c
v

14
3

Text Editing

How Does a Text Editor Work?

To understand how a text editor works, you need to understand
the environment created when you use an editing program and the

modes of operation understood by a text editor.

Text Editing Buffers

When you use a text editor to create a new file or modify an exist-

ing one, you first ask the shell to put the editor in control of your

computing session. Ås soon as the editor takes over, it allocates a

temporary work space called the editing buffer; any information that

you enter while editing a file is stored in this buffer where you can

modify it.

Because the buffer is a temporary work space, any text you enter

and any changes you make to it are also temporary. The buffer and
its contents will exist only as long as you are editing. If you want to

save the file, you must tell the text editor to write the contents of the

buffer into a file. The file is then stored in the computer's memory.
If you do not, the buffer”s contents will disappear when you leave the

editing program. To prevent this from happening, the text editors

send you a reminder to write your file if you attempt to end an edit-
ing session without doing so.

If you have made a critical mistake or are unhappy with the edited

NOTE! version, you can choose to leave the editor without writing the file.
| By doing so, you leave the original file intact; the edited copy disap-

pears.

Regardless of whether you are creating a new file or updating an
existing one, the text in the buffer is organized into lines. A line of
text is simply a series of characters that appears horizontally across

the screen and is ended when you press the RETURN key. Occasion-

ally, files may contain a line of text that is too long to fit on the ter-

minal screen. Some terminals automatically display the continuation

of the line on the next row of the screen; others do not.

OVERVIEW OF THE TUTORIALS 4-3

Text Editing

Modes of Operation

Text editors are capable of understanding two modes of opera-
tion: command mode and text input mode. When you begin an edit-
ing session, you will be placed automatically in command mode. In
this mode you can move around in a file, search for patterns in it, or
change existing text. However, you cannot create text while you are

in command mode. To do this you must be in text input mode.

While you are in this mode, any characters you type are placed in the
buffer as part of your text file. When you have finished entering text
and want to run editing commands again, you must return to com-
mand mode.

Because a typical editing session involves moving back and forth
between these two modes, you may sometimes forget which mode you
are working in. You may try to enter text while in command mode or
to enter a command while in input mode. This is something even

experienced users do from time to time. It will not take long to

recognize your mistake and determine the solution after you complete

the tutorials in Chapters 5 and 6.

Line Editor

The line editor, accessed by the ed command, is a fast, versatile
program for preparing text files. It is called a line editor because it
manipulates text on a line-by-line basis. This means you must
specify, by line number, the line containing the text you want to
change. Then ed prints the line on the screen where you can modify
it.

This text editor provides commands with which you can change

lines, print lines, read and write files, and enter text. In addition,

you can invoke the line editor from a shell program; something you

cannot do with the screen editor. (See Chapter 7 for information on
basic shell programming techniques.)

4-4. USER'S GUIDE

b
v
l

14
5

Text Editing

The line editor (ed) works well on video display terminals and

paper printing terminals. It will also accommodate you if you are
using a slow-speed telephone line. (The visual editor, vi, can be used

only on video display terminals.) Refer to Chapter 5, ”Line Editor

Tutorial,” for instructions on how to use this editing tool. Also see

Appendix C for a summary of line editor commands.

Screen Editor

The screen editor, accessed by the vi command, is a display-

oriented, interactive software tool. It allows you to view the file you

are editing a page at a time. This editor works most efficiently when

used on a video display terminal operating at 1200 or higher baud.

For the most part, you modify a file (by adding, deleting, or
changing text) by positioning the cursor at the point on the screen
where the modification is to be made and then making the change.
The screen editor immediately displays the results of your editing;

you can see the change you made in the context of the surrounding

text. Because of this feature, the screen editor is considered more

sophisticated than the line editor.

Furthermore, the screen editor offers a choice of commands. For

example, a number of screen editor commands allow you to move the
cursor around a file. Other commands scroll the file up or down on

the screen. Still other commands allow you to change existing text or
to create new text. In addition to its own set of commands, the

screen editor can access line editor commands.

The trade-off for the screen editor's speed, visual appeal,

efficiency, and power is the heavy demand it places on the computer's
processing time. Every time you make a change, no matter how sim-

ple, vi must update the screen. Refer to Chapter 6, ”Screen Editor
Tutorial,” for instructions on how to use this editor. Appendix D
contains a summary of screen editor commands, and Figure 4-1 com-

pares the features of the line editor (ed) and the screen editor (vi).

OVERVIEW OF THE TUTORIALS 4-5

 mm]

Text Editing

Feature Line Editor (ed) Screen Editor (vi)

Recommended Video display or Video display
terminal type paper-printing

Speed Accommodates Works best via high-
high- and low- speed data transmission
speed data lines (1200 + baud).
transmission lines.

Versatility Can be specified to Must be used interac-
run from shell tively during editing ses-
scripts as well as sions.
used during edit-
ing sessions.

Sophistication Changes text Changes text easily.
quickly. Uses com- However, can make

paratively small heavy demands on com-
amounts of pro- puter resources.
cessing time.

Power Provides a full set Provides its own editing
of editing com- commands and recog-
mands. Standard nizes line editor com-
UNIX system text mands as well.
editor.

Advantages There are fewer vi allows you to see the
commands you effects of your editing in
must learn to use the context of a page of
ed. text, immediately.

Figure 4-1: Comparison of Line and Screen Editors (ed and vi)

4-6. USER'S GUIDE

9
v
l

14
7

The Shell

Every time you log in to the UNIX system you start communicat-
ing with the shell, and continue to do so until you log off the system.
However, while you are using a text editor, your interaction with the
shell is suspended; it resumes as soon as you stop using the editor.

The shell is much like other programs, except that instead of per-
forming one job, as cat or Is does, it is central to your interactions
with the UNIX system. The shell's primary function is to act as a
command interpreter between you and the computer system. As an
interpreter, the shell translates your requests into language the com-
puter understands, calls requested programs into memory, and exe-
cutes them.

This section introduces methods of using the shell that enhance
your ability to use system features. In addition to using it to run a
single program, you may also use the shell to:

MH interpret the name of a file or a directory you enter in an
abbreviated way using a type of shell shorthand

EH redirect the flow of input and output of the programs you run

EH execute multiple programs simultaneously or in a pipeline for-
mat

EH tailor your computing environment to meet your individual

needs

In addition to being the command language interpreter, the shell
is a programming language. For detailed information on how to use

the shell as a command interpreter and a programming language,
refer to Chapter 7. Complete information about shell programming is
available in a separate document, Shell Commands and Program-
ming.

OVERVIEW OF THE TUTORIALS 4-7

The Shell

Customizing Your Computing Environment

This section deals with another control provided by the shell:
your environment. When you log in to the UNIX system, the shell
automatically sets up a computing environment for you. The default
environment set up by the shell includes these variables:

HOME your login directory

LOGNAME. your login name

PATH route the shell takes to search for executable files

or commands (typically PATH =:/bin:/usr/bin)

The PATH variable tells the shell where to look for the execut-
able program invoked by a command. Therefore it is used every time
you issue a command. If you have executable programs in more than
one directory, you will want all of them to be searched by the shell to
make sure every command can be found.

You can use the default environment supplied by your system or
you can tailor an environment to meet your needs. If you choose to
modify any part of your environment, you can use either of two
methods to do so. If you want to change a part of your environment
only for the duration of your current computing session, specify your
changes in a command line (see Chapter 7 for details). However, if
you want to use a different environment (not the default environ-

ment) regularly, you can specify your changes in a file that will set up
the desired environment for you automatically every time you log in.
This file must be called profile and must be located in your home
directory. ”

The .profile typically performs some or all of the following tasks:
checks for mail; sets data parameters, terminal settings, and tab
stops; assigns a character or character string as your login prompt;

and assigns the erase and kill functions to keys. You can define as
few or as many tasks as you want in your .profile. You can also
change parts of it at any time. For instructions on modifying a
"profile, see ”Modifying Your Login Environment” in Chapter 7.

4-8 USER'S GUIDE

a
v
l

14
9

The Shell

Now check to see whether or not you have a .profile. If you are
not already in your home directory, cd to it. Then examine your
profile by issuing this command:

cat profile

If you have a .profile, its contents will appear on your screen. If you
do not have a .profile you can create one with a text editor, such as
ed or vi. (See ”Modifying Your Login Environment” in Chapter 7 for
instructions.)

Programming in the Shell

The shell is not only the command language interpreter; it is also
a command level programming language. This means that instead of

always using the shell strictly as a liaison between you and the com-
puter, you can also program it to repeat sequences of instructions

automatically. To do this, you must create executable files containing
lists of commands. These files are called shell procedures or shell
scripts. Once you have a shell script for a particular task, you can
simply request that the shell read and execute the contents of the
script whenever you want to perform that task.

Like other programming languages, the shell provides such
features as variables, control structures, subroutines, and parameter

passing. These features enable you to create your own tools by link-
ing together system commands.

For example, you can combine three UNIX system programs (the

date, who, and wc commands) into a simple shell script called users
that tells you the current date and time, and how many users are
working on your system. If you use the vi editor (described in
Chapter 6) to create your script, you can follow this procedure. First,
create the file users with the editor by typing

vi users<CR >

The editor will draw a blank page on your screen and wait for you to
enter text.

OVERVIEW OF THE TUTORIALS 4-9

 dd
The Shell

U
I
?

 "users" [New file]

æ.

Enter the three UNIX system commands on one line:

date; who | we —1

Then write and quit the file. Make users executable by adding exe-
cute permission with the chmod command.

chmod ug+x users<CR>

Now try running your new command. The following screen shows
the kind of output you will get.

$ users<CR >

Mon May 1 16:40:12 EST 1989
4

$

4-10 USER'S GUIDE

OS
L

15
1

The Shell

The output tells you that four users were logged in on the system
when you typed the command at 16:40 on Monday, May 1, 1989.

For step-by-step instructions on writing shell scripts and informa-
tion about more sophisticated shell programming techniques, see
Chapter 7, ”Shell Tutorial.”

OVERVIEW OF THE TUTORIALS 4-11

 = Svevæ= mL

Communicating Electronically

As a UNIX system user, you can send messages or transmit infor-
mation stored in files to other users on your system or another UNIX

system. To do so, you must be logged in on a UNIX system capable
of communicating with the UNIX system to which you want to send
information. The command used to send information depends on
what you are sending. Chapter 8 offers tutorials on these commands.

mail This command allows you to send messages or files
to other UNIX system users, using their login
names as addresses. It also allows you to receive
messages sent by other users. mail holds mes-
sages and lets the recipient read them at his or her
convenience.

mailx This command is a sophisticated, more powerful
version of mail. It offers a number of options for
managing the electronic mail you send and receive.

uucp This command is used to send files from one UNIX

system to another. (Its name is an acronym for

UNIX to UNIX system copy.) You can use uucp
to send a file to a directory you specify on a remote
computer. When the file has been transferred, the
owner of the directory is notified of its arrival by
mail.

uuto/uupick These commands are used to send and retrieve
files. You can use the uuto command to send a

file(s) to a public directory; when it is available,
the recipient is notified by mail that the file(s) has
arrived. The recipient then can use the uupick
command to copy the file(s) from the public direc-
tory to a directory of choice.

uux This command lets you execute commands on a
remote computer. It gathers files from various
computers, executes the specified command on
these files, and sends the standard output to a file
on the specified computer.

4-12. USER'S GUIDE

c
S
L

15
3

Programming in the System

The UNIX system provides a powerful and convenient environ-

ment for programming and software development, using the C pro-
gramming language, FORTRAN-77, BASIC, Pascal, and COBOL. As

well, the UNIX system provides some sophisticated tools designed to
make software development easier and to provide a systematic

approach to programming.

For information on the general topic of programming in the
UNIX system environment, see the Programmer's Guide. Besides
supplementing texts on programming languages, the Programmer's
Guide provides tutorials on the following five tools:

SCcCcSs Source Code Control System

RJE Remote Job Entry (not available on all UNIX sys-

tems)

make maintains programs

lex generates programs for simple lexical tasks

yace generates parser programs

OVERVIEW OF THE TUTORIALS 4-13

4-14 USER'S GUIDE

This page is intentionally left blank

V
S
L

15
5

Chapter 5: Line Editor Tutorial (ed)

Introducing the Line Editor cesser

Suggestions for Using this Tutorialssscssscerssserresereer

Getting Started osse Es ENES

How to Enter €dssssssrssrrssstsererssssnnrerrrrrnnrneesrrrnnnnneesee

How to Display Text 1..........sssssserererrrrrrrssrnersrrsnrrrrernnserernes

How to Delete a Line of Text 0sssseessrrrrreressrrerrnsrrrrennnee

How to Move Up or Down in the File sr

How to Save the Buffer Contents in a File...

How to Quit the Editor …...........sssssccesseeseersesrsrssssnserernnkeeee

Exercise 168888 t ENE NELL SENERE REEL TE LEE RESENS E EEN EES

Line Addressing 1.......scsscesseersesseensenssnressensseres rss snes sse nerne nr renee

Numerical Addressessscesresrrrversesensnesnrses esserne seenennes

Symbolic Addresses ….....sessserserenssseseesreerseeresersrteernsenseerneneee

Symboliec Address of the Current Line 1

Symbolic Address of the Last Liner

Symbolic Address of the Set of All Lines...

Symbolic Address of the Current Line
through the Last Linessssveeerreserrrerreseseenkerrnnenee

Relative Addresses: Adding or Subtracting Lines
from the Current LineM..ssscceeeneeeeserseeresrenneee

Character String Addresses ...cseevsssssesrrsessrssrnsser

Specifying a Range of Lines scenerne

Specifying a Global Search serene

TABLE OF CONTENTS

Table of Contents

Page

Exercise 2 5-32

Displaying Text in a Filessscsrrsesssssrsssrsenssessrdersesesnnee 5-33

Displaying Text Alone: the p Command. 5-33

Displaying Text with Line Addresses: the mn Command… 5-34

Creating Text 1…..….u..ssevcsersersereeseeeee senest ree renees sets ts sansen sansen 5-36

Appending Text: the a Command scssrisrrrsrrrrnes 5-36

Inserting Text: the i Command users 5-39

Changing Text: the € Command successer 5-41

Exercise Friisk Rs 5-44

Deleting Text ….....…..ssscesssrerssserenesrern seernes sensases renere erne gene 5-46

Deleting Lines: the d Commandsssscessesersessrerenseer 5-46

Undoing the Previous Command: the u Command... 5-48

How to Delete in Text Input Mode …......G.sscsceserererserersrnnee 5-50

Substituting Textsssceveeseesssersersrsessrserrrrrsrerrrerr rr 5-51

Substituting on the Current Line suser 5-52

Substituting on One Linesssccrrserteeesenerreenenenesensne 5-53

Substituting on a Range of Lines users 5-54

- Global Substitutionsscsesserrrtsrrersrrerrrnsen rr nrenennee 5-56

Exercise 4 sign En EEK EEN EAST EREEEERE 5-60

Special Characters 1............svesssssssssersesrssrsessrreressrnrrernrnnnennernnnee 5-62

Exercise 5 css ENKEN 5-74

Moving Text sssssrsrsrnsessiinirsikiee eN ERE EEN 5-76

Move Lines of Textsuscsessrsrrserresrrrerserereessrerenernngee 5-76

Copy Lines of Text ….....sseverereeerrrseerrererererserennerrnrernnnnnee 5-79

Joining Contiguous Linesscssserereerrsrssresrsnerssererereneee 5-81

Write Lines of Text to a File2ssscssserrrsrrsirerresisnernee 5-82

i USER'S GUIDE

9
6
4

15
7

Page

ProblemsM.sseuevveser808 88843888 888 SEE SEE E TERESE FEER REELLE LES 5- 83

Read in the Contents of a File 1. 5- 84

Exercise 6.….Guuuvsescsseeseeeeverssreesereennnn erne A EET SE Edb ede 5- 87

Other Useful Commands and Information cc 5- 89

Help Commands 2 i rrdes 5- 89

Display Nonprinting Charactersusususrrresseresirsesere 5- 92

The Current File Name css rss E REESE ES 5- 93

Escape to the ShellW.seererresersserrrrrrnnen ternene aserne rensnnnee 5- 95

Recovering From System Interrupts suser 5- 96

Conclusion 22222555 90 ERNE EEG EDEE 5- 97

Exercise 7M.M..severeressrst tt 88888 E LER EE NERE REE R EL REE TEEN E TEE TEE ESS 5- 99

Answers to Exercises …........6sssssssstessesesssrseneeeesssndeesvesensteessntenteee 5-101

Answer to Exercise 1.......ssssssssevessisvissssissssedbkesse brast ene esedese 5-101

Answer to Exercise 2..sssserrrsrrsresssrerserensensrnernnrnerrnnnee 5-103

Answer to Exercise 32 tttbtt str ELERS LSE! 5-107

Answer to Exercise 4.....…cssssresssssessesssersessssessssersesneseseveere 5-111

Answer to Exercise 5ceusrsrrrrseresserssersrersavrsdernenernnnne 5-114

Answer to Exercise 6...........ssssrssrssserssresesersrrenssrerernrnssrnner 5-118

Answer to Exercise 7.,..0eescrsvssvssrrsssrsssetseresserssesssveressensenseer 5-120

TABLE OF CONTENTS

Table of Contents

iv: USER'S GUIDE

This page is intentionally left blank

8
9
4

15
9

Introducing the Line Editor

This chapter is a tutorial on the line editor, ed. ed is versatile
and requires little computer time to perform editing tasks. It can be
used on any type of terminal. The examples of command lines and
system responses in this chapter will apply to your terminal, whether
it is a video display terminal or a paper printing terminal. The ed

commands can be typed in at your terminal or they can be used in a
shell program (see Chapter 7, ”Shell Tutorial”).

ed is a line editor; during editing sessions it is always pointing at
a single line in the file called the current line. When you access an
existing file, ed makes the last line the current line so you can start
appending text easily. Unless you specify the number of a different
line or range of lines, ed will perform each command you issue on the
current line. In addition to letting you change, delete, or add text on
one or more lines, ed allows you to add text from another file to the
buffer.

During an editing session with ed, you are altering the contents
of a file in a temporary buffer, where you work until you have
finished creating or correcting your text. When you edit an existing
file, a copy of that file is placed in the buffer and your changes are
made to this copy. The changes have no effect on the original file
until you instruct ed, by using the write command, to move the con-

tents of the buffer into the file. Read and try the examples and exer-
cises and you will have a good working knowledge of ed. The follow-
ing basics are included:

H entering the line editor ed, creating text, writing the text to
file, and quitting ed

M addressing particular lines of the file and displaying lines of
text

M deleting text

EH substituting new text for old text

EH using special characters in search and substitute patterns

LINE EDITOR TUTORIAL (ed) 5-1

Introducing the Line Editor

H moving text around in the file, as well as other useful com-
mands and information

5-2 USER'S GUIDE

0
9
4

D

16
1

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end
of that section. A summary of all ed commands introduced in this
chapter is found in Appendix C, where they are listed by topic.

At the end of some sections, exercises are given so you can experi-
ment with the commands. The answers to all exercises are at the
end of this chapter.

The notation conventions used in this chapter are those used
throughout this Guide. They are described in the Preface.

LINE EDITOR TUTORIAL (ed) 5-3

Getting Started

The best way to learn ed is to log in to the UNIX system and try
the examples as you read this tutorial. Do the exercises; do not be
afraid to experiment. As you experiment and try out ed commands,
you will learn a fast and versatile method of text editing.

In this section you will learn the commands used to:

enter ed

append text

move up or down in the file to display a line of text

delete a line of text

write the buffer to a file

quit ed

How to Enter ed

To enter the line editor, type ed and a file name:

ed filename <CR >

Choose a name that reflects the contents of the file. If you are
creating a new file, the system responds with a question mark and
the file name:

S ed new-file< CR >

?new-file

If you going to edit an existing file, ed responds with the number of
characters in the file:

$ ed old-file<CR>
235

5-4 USER'S GUIDE

cY
L

16
3

Getting Started

How to Create Text

The editor receives two types of input, editing commands and
text, from your terminal. To avoid confusing them, ed recognizes
two modes of editing work: command mode and text input mode.
When you work in command mode, any characters you type are inter-

preted as commands. In input mode, any characters you type are

interpreted as text to be added to a file.

Whenever you enter ed you are put into command mode. To

create text in your file, change to input mode by typing a (for

append), on a line by itself, and pressing the RETURN key:

a<CR>

Now you are in input mode; any characters you type from this point

wil be added to your file as text. Be sure to type a on a line by itself;
if you do not, the editor will not execute your command.

After you have finished entering text, type a period on a line by

itself. This takes you out of the text input mode and returns you to
the command mode. Now you can give ed other commands.

The following example shows how to enter ed, create text in a

new file called try-me, and quit text input mode with a period.

S$ ed try-me<CR>

? tryme

a<CR>

This is the first line of text.<CR>

This is the second line,<CR>

and this is the third line. <CR >

.<CR>

LINE EDITOR TUTORIAL (ed) 5-5

il

Getting Started

Notice that ed does not give a response to the period; it just waits
for a new command. If ed does not respond to a command, you may
have forgotten to type a period after entering text and may still be in
text input mode. Type a period and press the RETURN key at the
beginning of a line to return to command mode. Now you can exe-
cute editing commands. For example, if you have added some
unwanted characters or lines to your text, you can delete them once

you have returned to command mode.

How to Display Text

To display a line of a file, type p (for print) on a line by itself.
The p command prints the current line, that is, the last line on which

you worked. Continue with the previous example. You have just
typed a period to exit input mode. Now type the p command to see

the current line.

ARE <CR>

? tryre

a<CR>

This is the first line of text.<CR>

This is the second line, <CR >

and this is the third line.<CR>
.<CR>
p<CR>

You can print any line of text by specifying its line number (also
known as the address of the line). The address of the first line is 1;

of the second, 2; and so on. For example, to print the second line in
the file try-me, type:

5-6 USER'S GUIDE

v
9
L

16
5

Getting Started

2p<CR>

This is the second line,

You can also use line addresses to print a span of lines by specify-

ing the addresses of the first and last lines of the section you want to
see, separated by a comma. For example, to print the first three lines

of a file, type:

1,3p,<CR>

You can even print the whole file this way. For example, you can
display a twenty-line file by typing 1,20p. If you do not know the

address of the last line in your file, you can substitute a $ sign, ed
symbol for the address of the last line. (These conventions are dis-
cussed in detail in the section ”Line Addressing.”)

1,$9<CR>

This is the first line of text.

This is a second line,

If you forget to quit text input mode with a period, you will add
text that you do not want. Try to make this mistake. Add another
line of text to your try-me file and then try the p command without
quitting text input mode. Then quit text input mode and print the
entire file.

LINE EDITOR TUTORIAL (ed) 5-7

li g
Getting Started

ll >

and this is the third line.

a<CR>

This is the fourth line.<CR >
p<CR>

.<CR>

1,$9<CR>
This is the first line of text.

This is the second line,

and this is the third line.

This is the fourth line.

NG
What did you get? The next section will explain how to delete the
unwanted line.

How to Delete a Line of Text

E;

To delete text, you must be in the command mode of ed. Typing
d deletes the current line. Try this command on the last example to
remove the unwanted line containing p. Display the current line (p
command), delete it (d command), and display the remaining lines in
the file (p command). Your screen should look like this:

5-8 USER'S GUIDE

9
9
1

16
7

Getting Started

Gl

p
d<CR>
1,$p<CR>
This is the first line of text.

This is a secand line,

and this is the third line.

TTT /

ed does not send you any messages to confirm that you have
deleted text. The only way you can verify that the d command has
succeeded is by printing the contents of your file with the p com-
mand. To receive verification of your deletion, you can put the d and
p together on one command line. If you repeat the previous example
with this command, your screen should look like this:

p<CR>

p
dp<CR>

This is the fourth line.

LINE EDITOR TUTORIAL (ed) 5-9

Getting Started

How to Move Up or Down in the File

To display the line below the current line, press the RETURN
key while in command mode. If there is no line below the current

line, ed responds with a ? and continues to treat the last line of the
file as the current line. To display the line above the current line,
press the minus key (—).

The following screen provides examples of how both of these com-
mands are used:

an D
This is the fourth lire.

-— <CR>

and this is the third line.

- <CR>

This is a second line,

- <CR>

This is the first line of text.

<CR>

This is a second line,

<CR>

 and this is the third line.

+
Notice that by typing — <CR> or <CR>, you can display a line of
text without typing the p command. These commands are also line
addresses. Whenever you type a line address and do not follow it
with a command, ed assumes that you want to see the line you have
specified. Experiment with these commands: create some text, delete
a line, and display your file.

5-10 USER'S GUIDE

89
14

16
9

Getting Started

How to Save the Buffer Contents in a File

Ås we discussed earlier, during an editing session, the system
holds your text in a temporary storage area called a buffer. When
you have finished editing, you can save your work by writing it from
the temporary buffer to a permanent file in the computer's memory.
By writing to a file, you are simply putting a copy of the contents of
the buffer into the file. The text in the buffer is not disturbed, and

you can make further changes to it.

It is a good idea to write the buffer text into your file frequently. If
NOTE an interrupt occurs (such as an accidental loss of power to your ter-

minal), you may lose the material in the buffer, but you will not lose
the copy written to your file.

To write your text to a file, enter the w command. You do not
need to specify a file name; simply type w and press the RETURN
key. If you have just created new text, ed creates a file for it with
the name you specified when you entered the editor. If you have
edited an existing file, the w command writes the contents of the
buffer to that file by default.

If you prefer, you can specify a new name for your file as an argu-
ment on the w command line. Be careful not to use the name of a
file that already exists unless you want to replace its contents with
the contents of the current buffer. ed will not warn you about an
existing file; it will simply overwrite that file with your buffer con-
tents.

For example, if you decide you would prefer the try-me file to be
called stuff, you can rename it:

LINE EDITOR TUTORIAL (ed) 5-11

 CS
Getting Started

ÆRE <CR>

? tryme

a<CR>
This is the first line of text.<CR>

This is the second line, <CR>
and this is the third line.<CR >

EN stuff <CR>

Notice the last line of the screen. This is the number of characters in

your text. When the editor reports the number of characters in this
way, the write command has succeeded.

How to Quit the Editor

When you have completed editing your text, write it from the
buffer into a file with the w command. Then leave the editor and
return to the shell by typing q (for quit).

The system responds with a shell prompt. At this point the editing

5-12 USER'S GUIDE

O
Z
L

17
1

Getting Started

buffer vanishes. If you have not executed the write command, your
text in the buffer has also vanished. If you did not make any changes
to the text during your editing session, no harm is done. However, if
you did make changes, you could lose your work in this way. There-
fore, if you type q after changing the file without writing it, ed warns
you with a ?. You then have a chance to write and quit.

If, instead of writing, you insist on typing q a second time, ed

assumes you do not want to write the buffer's contents to your file

and returns you to the shell. Your file is left unchanged and the con-
tents of the buffer are wiped out.

You now know the basic commands needed to create and edit a

file using ed. Figure 5-1 summarizes these commands.

LINE EDITOR TUTORIAL (ed) 5-13

Command Function

ed file enter ed to edit file

a append text after the current line

, quit text input mode and return to ed com-
mand mode.

p print text on your terminal

d delete text

<CR> display the next line in the buffer (literally,
carriage return)

+ display the next line in the buffer

— display the previous line in the buffer

wW write the contents of the buffer to the file

quit ed and return to the shell "==

Figure 5-1: Summary of ed Editor Commands

5-14. USER'S GUIDE

C
Å
L

17
3

Exercise 1

Answers for all the exercises in this chapter are found at the end

of the chapter. However, they are not necessarily the only possible

correct answers. Any method that enables you to perform a task

specified in an exercise is correct, even if it does not match the

answer given.

1-1. Enter ed with a file named junk. Create a line of text con-

taining Hello World, write it to the file and quit ed.

Now use ed to create a file called stuff. Create a line of text

containing two words, Goodbye world, write this text to the

file, and quit ed.

1-2. Enter ed again with the file named junk. What was the
editor's response? Was the character count for it the same as
the character count reported by the w command in
Exercise 1-1?

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the
file. Why do you think the editor allowed you to quit without
writing to the buffer?

1-3. Enter ed with the file junk. Add a line:

Wendy's horse came through the window.

Since you did not specify a line address, where do you think
the line was added to the buffer? Display the contents of the
buffer. Try quitting the buffer without writing to the file.
Try writing the buffer to a different file called stuff. Notice
that ed does not warn you that a file called stuff already
exists. You have erased the contents of stuff and replaced

them with new text.

LINE EDITOR TUTORIAL (ed) 5-15

General Format of ed Commands

ed commands have a simple and regular format:

[address] [,address2]lcommand[argument]< CR >

The brackets around addressl, address2, and argument show that
these are optional. The brackets are not part of the command line.

addressl,address2

The addresses give the position of lines in the
buffer. Address] through address2 gives you a
range of lines that will be affected by the com-
mand. If address2 is omitted, the command will
affect only the line specified by addressl.

command The command is one character and tells the edi-

tor what task to perform.

argument The arguments to a command are those parts of
the text that will be modified, or a file name, or

another line address.

This format will become clearer to you when you begin to experi-
ment with the ed commands.

5-16 USER'S GUIDE

v
Z
L

17
5

Line Addressing

A line address is a character or group of characters that identifies
a line of text. Before ed can execute commands that add, delete,
move, or change text, it must know the line address of the affected
text. Type the line address before the command:

laddress1],[address2]command <CR >

Both addressl and address2 are optional. Specify addressl alone
to request action on a single line of text; both address1 and address2
to request a span of lines. If you do not specify any address, ed
assumes that the line address is the current line.

The most common ways to specify a line address in ed are:

MH by entering line numbers (assuming that the lines of the files
are consecutively numbered from 1 to n, beginning with the
first line of the file)

mM by entering special symbols for the current line, last line, or a
span of lines

Hm by adding or subtracting lines from the current line

EH by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search
for all lines containing a specified character string. (A character

string is a set of successive characters, such as a word.)

Numerical Addresses

ed gives a numerical address to each line in the buffer. The first
line of the buffer is 1, the second line is 2, and so on, for each line in

the buffer. Any line can be accessed by ed with its line address
number. To see how line numbers address a line, enter ed with the

file try-me and type a number.

LINE EDITOR TUTORIAL (ed) 5-17

 DE]
Line Addressing

$ ed try-me<CR>

110

1<CR>

This is the first line of text.

3<CR>

and this is the third line.

Remember that p is the default command for a line address
specified without a command. Because you gave a line address, ed
assumes you want that line displayed on your terminal.

Numerical line addresses frequently change in the course of an
editing session. Later in this chapter you will create lines, delete
lines, or move a line to a different position. This will change the line
address numbers of some lines. The number of a specific line is
always the current position of that line in the editing buffer. For
example, if you add five lines of text between line 5 and 6, line 6
becomes line 11. If you delete line 5, line 6 becomes line 5.

Symbolic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed
command. If you have just entered ed with an existing file, the
current line is the last line of the buffer. The symbol for the address
of the current line is a period. Therefore you can display the current
line simply by typing a period (.) and pressing the RETURN key.

Try this command in the file try-me:

5-18 USER'S GUIDE

(F
AR

17
7

BSK STENE ESSEN

Line Addressing

$ ed try-me< CR >

110

.<CR>

This is the fourth line.

The . is the address. Because a command is not specified after the
period, ed executes the default command p and displays the line
found at this address.

To get the line number of the current line, type the following
command:

…=<CR>

ed responds with the line number. For example, in the try-me file,

the current line is 4.

LINE EDITOR TUTORIAL (ed) 5-19

Line Addressing

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To
verify that the $ sign accesses the last line, access the try-me file

with ed and specify this address on a line by itself. (Keep in mind
that when you first access a file, your current line is always the last
line of the file.)

$ ed try-me<CR>
110

.<CR>

This is the fourth line.

$<CR>

This is the fourth line.

Remember that the $ address within ed is not the same as the $

prompt from the shell.

5-20 USER'S GUIDE

8
4
1

17
9

Line Addressing

Symbolic Address of the Set of All Lines

When used as an address, a comma (,) refers to all the lines of a

file, from the first through the last line. It is an abbreviated form of
the string mentioned earlier that represents all lines in a file, 1,$.

Try this shortcut to print the contents of try-me:

»p<CR>

This is the first line of text.

Inis is the second line,

and this is the third line.

This is the fourth line.

Symbolic Address of the Current Line through the Last Line

The semi-colon (;) represents a set of lines beginning with the

current line and ending with the last line of a file. It is equivalent to
the symbolic address .,$. Try it with the file try-me:

LINE EDITOR TUTORIAL (ed) 5-21

Line Addressing

Relative Addresses: Adding or Subtracting Lines from the
Current Line

You may often want to address lines with respect to the current
line. You can do this by adding or subtracting a number of lines from
the current line with a plus (+) or a minus (—) sign. Addresses
derived in this way are called relative addresses. To experiment with
relative line addresses, add several more lines to your file try-me, as

shown in the following screen. Also, write the buffer contents to the
file so your additions will be saved:

ADREN <CR>
110

.<CR>

This is the fourth line.

a<CR>

five<CR>
six< CR >

seven <CR >
eight<CR>

nine<CR>

ten<CR>

.<CR>
w<CR>

140

KN. BE;
Now try adding and subtracting line numbers from the current line,

5-22 USER'S GUIDE

0
8
L

18
1

FORE ere es

Line Addressing

)
What happens if you ask for a line address that is greater than the

last line, or if you try to subtract a number greater than the current

line number?

æn an

”,

Notice that the current line remains at line 5 of the buffer. The

current line changes only if you give ed a correct address. The ?
response means there is an error. ”Other Useful Commands and
Information,” at the end of this chapter, explains how to get a help
message that describes the error.

LINE EDITOR TUTORIAL (ed) 5-23

Line Addressing

Character String Addresses

You can search forward or backward in the file for a line contain-

ing a particular character string. To do so, specify a string, preceded
by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed

where a string starts and ends. The most common delimiter is /
(slash), used in the following format:

[pattern

When you specify a pattern preceded by a / (slash), ed begins at the
current line and searches forward (down through subsequent lines in
the buffer) for the next line containing the pattern. When reaching
the last line of the buffer, ed wraps around to the beginning of the
file and continues its search from line 1.

The following rectangle represents the editing buffer. The path
of the arrows shows the search initiated bya/:

r7o77-+%
| i

i first line

'
i

U

U

Å current line

'
i
'
'

'

i last line
n T

Lcd

Another useful delimiter is ?. If you specify a pattern preceded
by a ?, (?pattern), ed begins at the current line and searches back-

ward (up through previous lines in the buffer) for the next line con-
taining the pattern. Reaching the first line of the file, it will wrap
around and continue searching upward from the last line of the file.

5-24 USER'S GUIDE

cC
8L

18
3

Line Addressing

The following rectangle represents the editing buffer. The path
of the arrows shows the search initiated by a? :

sæ
i

| first line

current line

 last line

m
m
m
]

r I I I L

Experiment with these two methods of requesting address
searches on the file try-me. What happens if ed does not find the
specified character string?

AN <CR>

140
.<CR>

ten
?first< CR >

This is the first line of text.

/fourth<CR >

This is the fourth line.

fjunk<CR >

?

NO

LINE EDITOR TUTORIAL (ed) 5-25

Line Addressing

In this example, ed found the specified strings first and fourth.
Then, because no command was given with the address, it executed

the p command by default, displaying the lines it had found. When
ed cannot find a specified string (such as junk), it responds with a ?

You can also use the / (slash) to search for multiple occurrences
of a pattern without typing it more than once. First, specify the pat-
tern by typing /pattern, as usual. After ed has printed the first

occurrence, it waits for another command. Type / and press the
RETURN key; ed will continue to search forward through the file for
the last pattern specified. Try this command by searching for the

word line in the file try-me:

This is the first line of text.

Nine<CR >

This is the secand lire,

/<CR>

/<CR>

This is the fourth lire.

/<CR>

This is the first line of text.

”,

Notice that after ed has found all occurrences of the pattern

between the line where you requested a search and the end of the
file, it wraps around to the beginning of the file and continues search-
ing.

5-26 USER'S GUIDE

v
8
L

18
5

Line Addressing

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a

range of lines, such as addressl through address2, or you can specify
a global search for all lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line
numbers of the first and last lines of the range, separated by a
comma. Place this address before the command. For example, if you
want to display lines 2 through 7 of the editing buffer, give address]
as 2 and address2 as 7 in the following format:

2,7p<CR>

Try this on the file try-me:

Did you try typing 2,7 without the p? What happened? If you do

not add the p command, ed prints only address2, the last line of the
range of addresses.

Relative line addresses can also be used to request a range of
lines. Be sure that addressl precedes address2 in the buffer. Rela-
tive addresses are calculated from the current line, as the following
example shows:

LINE EDITOR TUTORIAL (ed) 5-27

Line Addressing

This is the fourth line

-2,+3p<CR>

This is the second lire,

and this is the third line.

This is the fourth line.

five

six

seven

Specifying a Global Search

There are two commands that do not follow the general format of
ed commands: g and v. These are global search commands that
specify addresses with a character string (pattern). The g command
searches for all lines containing the string pattern and performs the
command on those lines. The v command searches for all lines that
do not contain the pattern and performs the command on those lines.

The general format for these commands is:

g/pattern/command<CR>
v/pattern/command<CR >

Try these commands by using them to search for the word line in
try-me:

5-28 USER'S GUIDE

9
8
1

18
7

Line Addressing

g/line/p<CR >

This is the first line of text.

This is the second line,

This is the fourth line

v/line/p<CR>

"| five

six

seven

eignt
nine

ten

Notice the function of the v command: it finds all the lines that
do not contain the word specified in the command line (line).

Once again, the default command for the lines addressed by g or

v is p; you do not need to include a p as the last delimiter on your

command line.

LINE EDITOR TUTORIAL (ed) 5-29

00 eee reg
Line Addressing

g/line<CR>

This is the first line of text.

This is the second lire,

This is the fourth line

However, if you are giving line addresses to be used by other ed com-
mands, you need to include beginning and ending delimiters. You can
use any of the methods discussed in this section to specify line
addresses for ed commands. Figure 5-2 summarizes the symbols and
commands available for addressing lines.

5-30 USER'S GUIDE

8
8
1

18
9

Line Addressing

Address Description

ey the number of a line in the buffer

the current line (the line most recently acted on by
an ed command)

= the command used to request the line number of
the current line

$ the last line of the fle

. the set of lines from line 1 through the last line

3 the set of lines from the current line through the

last line

+n the line that is located n lines after the current

line

-n the line that is located n lines before the current
line

[abc the command used to search forward in the buffer
for the first line that contains the pattern abe

abc the command used to search backward in the
buffer for the first line that contains the pattern
abe

g/abc the set of all lines that contain the pattern abe

v/abec the set of all lines that do NOT contain the pattern abe

Figure 5-2: Summary of Line Addressing

LINE EDITOR TUTORIAL (ed) 5-31

Exercise 2

2-1.

2-2.

2-3.

2-7.

5-32

Create a file called towns with the following lines:

My kind of town is

Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York

I lost my heart in
San Francisco
I lost $$ in

Las Vegas

Display line 3.

If you specify a range of lines with the relative address
—2,+3p, what lines are displayed ?

What is the current line number? Display the current line.

What does the last line say?

What line is displayed by the following request for a search?

?town<CR>

After ed responds, type this command alone on a line:

2?<CR>

What happened?

Search for all lines that contain the pattern in. Then search
for all lines that do NOT contain the pattern in.

USER'S GUIDE

0
6
1

19
1

Displaying Text in a File

ed provides two commands for displaying lines of text in the edit-
ing buffer: p and n.

Displaying Text Alone: the p Command

You have already used the p command in several examples. You
are probably now familiar with its general format:

[address] ,address2]p < CR >

p does not take arguments. However, it can be combined with a sub-

stitution command line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 5-3 on a file
in your home directory. Try the p command with each address and
see if ed responds as described in the figure.

LINE EDITOR TUTORIAL (ed) 5-33

Displaying Text in a File

Specify this Address Check for this Response

1,$9<CR>

—5p<CR>

+2p<CR>

1,/x/p<CR >

ed should display the entire file on
your terminal.

ed should move backward five lines

from the current line and display the
line found there.

ed should move forward two lines

from the current line and display the
line found there.

ed displays the set of lines from line
one through the first line after the
current line that contains the charac-
ter x. It is important to enclose the
letter x between slashes so that ed can
distinguish between the search pattern
address (x) and the ed command (p).

Figure 5-3: Sample Addresses for Displaying Text

Displaying Text with Line Addresses: then

Command

The n command displays text and precedes each line with its
numerical line address. It is helpful when you are deleting, creating,
or changing lines. The general command line format for n is the
same as that for p.

[addressl,address2]n <CR >

Like p, n does not take arguments, but it can be combined with the

substitute command.

5-34 USER'S GUIDE

C6
1

19
3

 dd
Displaying Text in a File

Try running n on the try-me file:

<A <CR>

140

1,$n<CR>

1 This is the first line of text.

This is the second line,

This is the fourth line.

five

o
æ
Ø
o
J
N
M
I
M
E
W
N

 g

Figure 5-3 summarizes the ed commands for displaying text.

Command Function

p displays specified lines of text in the editing buffer

on your terminal

n displays specified lines of text in the editing buffer
with their numerical line addresses on your termi-

nal

Figure 5-4: Summary of Commands for Displaying Text

LINE EDITOR TUTORIAL (ed) 5-35

Creating Text

ed has three basic commands for creating new lines of text:

a append text

i insert text

c change text

Appending Text: the a Command

The append command, a, allows you to add text AFTER the
current line or a specified address in the file. You have already used
this command in the ”Getting Started” section of this chapter. The
general format for the append command line is:

[address1]a< CR >

Specifying an address is optional. The default value of address] is the
current line.

In previous exercises, you used this command with the default
address. Now try using different line numbers for addressl. In the
following example, a new file called new-file is created. In the first
append command line, the default address is the current line. In the

second append command line, line 1 is specified as addressl. The
lines are displayed with n so that you can see their numerical line
addresses. Remember, the append mode is ended by typing a period

(.) on a line by itself.

5-36 USER'S GUIDE

v
6
L

19
5

 de
Creating Text

Ce —file<CR>

?new-file

a<CR>

Create some lines

of text in
this file.

.<CR>

1,$1<CR>

1 Create sare lines

2 of text in

3 this file.

la<CR>

This will be line 2<CR >

This will be line 3<CR >

.<CR>

1,$n<CR>

1 Create sare lines

2 This will be line 2

3 This will be line 3

4 of text in

5 this file.

od
Notice that after you append the two new lines, the line that was

originally line 2 (of text in) becomes line 4.

You can take shortcuts to places in the file where you want to

append text by combining the append command with symbolic
addresses. The following three command lines allow you to move
through and add to the text quickly in this way.

a<CR> appends text after the current line

$a<CR> appends text after the last line of the file

0a<CR> appends text before the first line of the file (at a
symbolic address called line 0)

LINE EDITOR TUTORIAL (ed) 5-37

ES
Creating Text

To try using these addresses, create a one-line file called lines
and type the examples shown in the following screens. (The exam-
ples appear in separate screens for easy reference only; it is not
necessary to access the lines file three times to try each append sym-
bol. You can access lines once and try all three consecutively.)

AR <CR>

?lines

a<CR>

This is the current line. <CR >

.<CR>
p<CR>

»a<CR>

This line is after the current line.<CR>
<CR>

-—1,p<CR>

This line is after the curment line. 96
L

S$Sa<CR>
This is the last line now.<CR>
.<CR>

S<CR>

This is the last line now.

5-38 USER'S GUIDE

19
7

 ES
Creating Text

GR

This is the first line now.<CR >

This is the second line now. <CR >
The line numbers change <CR >
as lines are added. <CR>

.<CR>
1,4n<CR>

1 This is the first line now.

2 This is the second line now.

3 The line mmbers change

4

NER »
Because the append command creates text after a specified

address, the last example refers to the line before line 1 as the line
after line 0. To avoid such circuitous references, use another com-

mand provided by the editor: the insert command, i.

Inserting Text: the i Command

The insert command (i), allows you to add text BEFORE a
specified line in the editing buffer. The general command line format
for i is the same as that for a.

[laddressl]i< CR>

Ås with the append command, you can insert one or more lines of
text. To quit input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert com-
mand (i):

LINE EDITOR TUTORIAL (ed) 5-39

Creating Text

SN <CR>

?insert

a<CR>

Line 1<CR>

Line 2<CR>

Line 3<CR>
Line 4<CR>

.<CR>

w<CR>

69
E.

Now insert one line of text above line 2 and another above line 1.

Use the n command to display all the lines in the buffer:

5-40 USER'S GUIDE

8
6
1

19
9

de
Creating Text

SR

This is the new line 2.<CR>

.<CR>

1,$n<CR>

1 Line 1

2 This is the new line 2.

3 Line 2

4 Line 3

5 Line 4

li<CR>

This is the beginning. <CR >
.<CR>
1,$n<CR>

1 In the beginning
2 Line 1

3 Nw this is line 2

4 Line 2

5 Line 3

Sj Line 4
»,

Experiment with the insert command by combining it with sym-
bolic line addresses, as follows:

= .i<CR>

m $i<CR>

Changing Text: the c Command

The change text command (c) erases all specified lines and allows
you to create one or more lines of text in their place. Because c can

erase a range of lines, the general format for the command line
includes two addresses.

[addressl,address2]e < CR >

The change command puts you in text input mode. To leave input

LINE EDITOR TUTORIAL (ed) 5-41

Creating Text

mode, type a period alone on a line.

Addressl is the first and address2 is the last of the range of lines
to be replaced by new text. To erase one line of text, specify only
addressl. If no address is specified, ed assumes the current line is
the line to be changed.

Now create a file called change in which you can try this com-
mand. After entering the text shown in the screen, change lines one
through four by typing 1,4c:

Cm

1 line 1

2 line 2

3 lime 3

4 line 4

5 line 5

1,4c<CR>

Change line 1<CR >

and lines 2 through 4<CR>
.<CR>

1,$n<CR>
1 change line 1

2 and lines 2 through 4

3 line 5
i

Now experiment with c and try to change the current line:

5-42 USER'S GUIDE

0
0
g

20
1

Creating Text

.<CR>

line 5

ce<CR>

This is the new line 5.

.<CR>

.<CR>

This is the new lire 5.

If you are not sure whether you have left text input mode, it is a

good idea to type another period. If the current line is displayed, you

know you are in the command mode of ed.

Figure 5-5 summarizes the ed commands for creating text.

Command Function

a append text after the specified line in the buffer

i insert text before the specified line in the buffer

c change the text on the specified line(s) to new text

$ quit text input mode and return to ed command mode

Figure 5-5: Summary of Commands for Creating Text

LINE EDITOR TUTORIAL (ed) 5-43

Exercise 3

3-1.

3-3.

3-4.

5-44

Create a new file called ex3. Instead of using the append
command to create new text in the empty buffer, try the
insert command. What happens?

Enter ed with the file towns. What is the current line?

Insert above the third line:

Illinois<CR>

Insert above the current line:

or<CR>

Naperville <CR >

Insert before the last line:

hotels in<CR >

Display the text in the buffer preceded by line numbers.

In the file towns, display lines 1 through 5 and replace lines 2
through 5 with:

London<CR>

Display lines 1 through 3.

After you have completed exercise 3-3, what is the current
line?

Find the line of text containing:

Toledo

Replace

Toledo

with

Peoria

Display the current line.

USER'S GUIDE

g
0
g

20
3

Exercise 3

3-5 With one command line search for and replace:

New York

with:

Iron City

LINE EDITOR TUTORIAL (ed) 5-45

Deleting Text

This section discusses two types of commands for deleting text in
ed. One type is to be used when you are working in command mode:
d deletes a line and u undoes the last command. The other type of
command is to be used in text input mode. The keys used in input

mode are the same keys you use for text editing after a shell prompt.
They are described in detail in ”Correcting Typing Errors” in
Chapter 2.

Deleting Lines: the d Command
You have already deleted lines of text with the delete command

(d) in the ”Getting Started” section of this chapter.

The general format for the d command line is:

[address1,address2]d <CR >

You can delete a range of lines (addressl through address2) or you
can delete one line only (address1). If no address is specified, ed
deletes the current line.

The next example displays lines one through five and then deletes
lines two through four:

5-46. USER'S GUIDE

v
O
c

20
5

CIS
Deleting Text

"SD

1 1 horse

2 2 chickens

3 3 ham tacos

4 4 cans of mustard

5 5 bails of hay
2,4d<CR>

1,$n<CR>

1 1 horse NE 5 bails of hay)

How can you delete only the last line of a file? Using a symbolic
line address makes this easy:

$d<CR>

How can you delete the current line? One of the most common
errors in ed is forgetting to type a period to leave text input mode.
When this happens, unwanted text may be added to the buffer. In
the next example, a line containing a print command (1,$p) is

accidentally added to the text before the user leaves input mode.
Because this line was the last one added to the text, it becomes the
current line. The symbolic address . is used to delete it.

LINE EDITOR TUTORIAL (ed) 5-47

 il G
Deleting Text

cm N
Last line of text< CR >
1,$p<CR>

.<CR>
p<CR>

1,$p
d<CR>
p<CR>

Last line of text.

ad

Before experimenting with the delete command, you may first
want to learn about the undo command, u.

Undoing the Previous Command: the u
Command

The command u (short for undo) nullifies the last command and
restores any text changed or deleted by that command. It takes no
addresses or arguments. The format is:

u<CR>

One purpose for which the u command is useful is to restore text
you have mistakenly deleted. If you delete all the lines in a file and
then type p, ed will respond with a ? since there are no more lines in
the file. Use the u command to restore them.

5-48 USER'S GUIDE

90
7

20
7

Deleting Text

1,$p<CR>

This is the first line.

This is the middle line.

This is the last line.

1,$4<CR>
p<CR>

2
u<CR>
p<CR>

This is the last lire.

NER

i.

Now experiment with u: use it to undo the append command.

This is the cnly line of text
a<CR>

Add this line<CR >
.<CR>
1,$p<CR>

This is the only line of text

Add this line

u<CR>

1,$p<CR> This is the only line of text

LINE EDITOR TUTORIAL (ed) 5-49

Deleting Text

NOTE

u cannot be used to undo the write command (w) or the quit com-

mand (q). However, u can undo an undo command (u).

How to Delete in Text Input Mode

While in text input mode, you can correct the current line of
input with the same keys you use to correct a shell command line.
(See ”Correcting Typing Errors” in Chapter 2 for details.)

Figure 5-6 summarizes the ed commands and shell commands for

deleting text in ed.

Command Function

In command mode only:

<d> delete one or more lines of text

<u> undo the previous command

In text input mode:

<shift> F6 Erase one character.

F6 Insert one character.

<shift> F7 Mover cursor to beginning of line.

F7 Move cursor to end of line.

<shift > F8 Erase the current line.

F8 Erase all characters from current cursor

position to end of line.

> Move cursor one character to the right.

<— Move cursor one character to the left.
Figure 5-6: Summary of Commands for Deleting Text

5-50 USER'S GUIDE

8
0
7

20
9

Substituting Text

You can modify your text with a substitute command. This com-

mand replaces the first occurrence of a string of characters with new

text. The general command line format is

[address1,address2]s/old text/new text/[command]< CR >

Each component of the command line is described below.

address1,address2

The range of lines being addressed by s. The

address can be one line, (address1), a range of

lines (addressl through address2), or a global
search address. If no address is given, ed makes
the substitution on the current line.

s The substitute command

[old text The argument specifying the text to be replaced is
usually delimited by slashes, but can be delimited
by other characters such as a ? or a period. It
consists of the words or characters to be replaced.
The command will replace the first occurrence of
these characters that it finds in the text.

/new text The argument specifying the text to replace
old text. It is delimited by slashes or the same
delimiters used to specify the old text. It consists

of the words or characters that are to replace the
old text.

/command Any one of the following four commands:

g Change all occurrences of old text on the specified
lines.

1 Display the last line of substituted text, including
nonprinting characters. (See the last section of

this chapter, ”Other Useful Commands and Infor-

mation.”)

LINE EDITOR TUTORIAL (ed) 5-51

Substituting Text

n Display the last line of the substituted text pre-
ceded by its numerical line address.

p Display the last line of substituted text.

Substituting on the Current Line

The simplest example of the substitute command is making a
change to the current line. You do not need to give a line address for
the current line.

s/old text/new text/<CR>

The next example contains a typing error. While the line that
contains it is still the current line, you make a substitution to correct
it. The old text is the ai of airor and the new text is er.

a<CR>

In the beginning, I made an airor.
.<CR>
p<CR>

In the beginning, I made an airor.

s/ai/er/<CR>

Notice that ed gives no response to the substitute command. To
verify that the command has succeeded in this case, you either have
to display the line with p or n, or include p or n as part of the substi-
tute command line. In the following example, n is used to verify that

the word file has been substituted for the word toad.

5-52 USER'S GUIDE

O
l
e

21
1

Substituting Text

SR

.p<CR>

This is a test toad

s/toad/file/n <CR >

1 This is a test file

However, ed allows you one shortcut: it prints the results of the
command automatically, if you omit the last delimiter after the
new text argument:

p<CR> Å
This is a test file

s/file/frog < CR >

This is a test frog

Substituting on One Line

To substitute text on a line that is not the current line, include

an address in the command line, as follows:

[address]]s/old text/new text/<CR>

LINE EDITOR TUTORIAL (ed) 5-53

 de
Substituting Text

For example, in the following screen the command line includes
an address for the line to be changed (line 1) because the current line
is line 3:

This is a pest toad

testing testing

come in toad

.<CR>

care in toad

1s/pest/test <CR>

TTT

Ås you can see, ed printed the new line automatically after the

change was made, because the last delimiter was omitted.

Substituting on a Range of Lines

You can make a substitution on a range of lines by specifying the
first address (address1) through the last address (address2).

[addressl,address2]s/old text/new text/ <CR>

If ed does not find the pattern to be replaced on a line, no changes
are made to that line.

In the following example, all the lines in the file are addressed for
the substitute command. However, only the lines that contain the
string es (the o/d text argument) are changed.

5-54 USER'S GUIDE

c
l
e

21
3

4

Substituting Text

1,$p<CR>

This is a test toad

testing testing

core in toad

testing 1, 2, 3

1,$s/es/ES/n<CR>

tESting 1, 2, 3

When you specify a range of lines and include p or n at the end of

the substitute line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p

command with the address 1,$.

al

2

3

4

1,$n<CR>

This is a tESt toad

tESting testing

come in toad

tESting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been
changed. To change every occurrence of a pattern, use the g com-
mand, described in the next section.

LINE EDITOR TUTORIAL (ed) 5-55

Substituting Text

Global Substitution

One of the most versatile tools in ed is global substitution. By
placing the g command after the last delimiter on the substitute com-

mand line, you can change every occurrence of a pattern on the
specified lines. Try changing every occurrence of the string es in the
last example. If you are following along, doing the examples as you
read this, remember you can use u to undo the last substitute com-
mand.

em
1,$p<CR>

This is a test toad
testing, testing

came in toad

testing 1, 2, 3
1,$s/es/ES/g<CR>
1,$p<CR>

This is a tESt toad

tESting tESting

core in toad

 tESting 1, 2, 3 ».

Another method is to use a global search pattern as an address

instead of the range of lines specified by 1,$.

5-56 USER'S GUIDE

b
l
e

21
5

Substituting Text

ARN >

This is a test toad

testing testing

omme in toad

testing 1, 2, 3

g/test/s/es/ES/g<CR>

1,$p<CR>

This is a tESt toad

tEsting tESting

core in toad

tESting 1, 2, 3 i”.

If the global search pattern is unique and matches the argument
old text (text to be replaced), you can use an ed shortcut: specify the
pattern once as the global search address and do not repeat it as an
old text argument. ed will remember the pattern from the search
address and use it again as the pattern to be replaced.

NOTE

g/old text/s//new text/g<CR>

Whenever you use this shortcut, be sure to include two slashes (//)
after the s.

LINE EDITOR TUTORIAL (ed) 5-57

Substituting Text

 n

This is a test toad

testing testing

care in toad

testing 1, 2, 3

g/es/s//ES/g<CR >
1,$p<CR>
This is a tEFSt toad

testing tESting

core in toad

sml »,
Experiment with other search pattern addresses:

[pattern <CR >
pattern <CR>

v/patiern <CR >

See what they do when combined with the substitute command. In
the following example, the v/pattern search format is used to locate
lines that do not contain the pattern testing. Then the substitute
command (s) is used to replace the existing pattern (in) with a new
pattern (out) on those lines.

5-58 USER'S GUIDE

g
l

21
7

Substituting Text

v/testing/s/in/out < CR >

This is a test toad

care out toad

Notice that the line This is a test toad was also printed, even

though no substitution was made on it. When the last delimiter is
omitted, all lines found with the search address are printed, regard-

less of whether or not substitutions have been made on them.

Now search for lines that do contain the pattern testing with the
g command.

g/testing/s//jumping < CR >

jurping testing
jumping 1, 2, 3

Notice that this command makes substitutions only for the first

occurrence of the pattern (testing) in each line. Once again, the lines
are displayed on your terminal because the last delimiter has been
omitted.

LINE EDITOR TUTORIAL (ed) 5-59

Exercise 4

4-1.

4-2.

4-3.

5-60

In your file towns change town to city on all lines but the
line with little town on it.

The file should read:

My kind of city is
London

Like being no where at all in
Peoria

I lost those little town blues in

Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

Try using ? as a delimiter. Change the current line

Las Vegas

to

Toledo

Because you are changing the whole line, you can also do this
by using the change command, c.

Try searching backward in the file for the word

lost

and substitute

found

using the ? as the delimiter. Did it work?

USER'S GUIDE

B
l
e

21
9

Exercise 4

4-4... Search forward in the file for

no

and substitute

NO

for it. What happens if you try to use ? as a delimiter?

Experiment with the various command combinations available for
addressing a range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try
to substitute Big $ for $ on line 9 of your file. Type:

9s/$/Big $<CR>

What happened?

LINE EDITOR TUTORIAL (ed) 5-61

== CS

Special Characters

If you try to substitute the $ sign in the line

I lost my $ in Las Vegas

you will find that instead of replacing the $, the new text is placed at
the end of the line. The $ is a special character in ed that is sym-
bolic for the end of the line.

ed has several special characters that give you a shorthand for
search patterns and substitution patterns. The characters act as wild
cards. If you have tried to type in any of these characters, the result
was probably different than what you had expected.

The special characters are:

5-62

Match any one character.

Match zero or more occurrences of the preceding charac-
ter.

Match zero or more occurrences of any character follow-
ing the period.

Match the beginning of the line.

Match the end of the line.

Take away the special meaning of the special character
that follows.

Repeat the old text to be replaced in the new text of the
replacement pattern.

Match the first occurrence of a character in the brackets.

Match the first occurrence of a character that is NOT in

the brackets.

USER'S GUIDE

o
g
e

22
1

 de
Special Characters

In the following example, ed searches for any three-character
sequence ending in the pattern at.

1,$p<CR>

rat

cat

turtle

o0ow

goat
g/.at<CR>

rat
cat

SE r.

Notice that the word goat is included because the string oat matches
the string .at.

The + (asterisk) represents zero or more occurrences of a
specified character in a search or substitute pattern. This can be use-
ful in deleting repeated occurrences of a character that have been
inserted by mistake. For example, suppose you hold down the R key
too long while typing the word broke. You can use the + to delete
every unnecessary R with one substitution command.

LINE EDITOR TUTORIAL (ed) 5-63

 de
Special Characters

p<CR>

brrroke

s/br"/br<CR>

bruke

Notice that the substitution pattern includes the b before the
first r. If the b were not included in the search pattern, the «+ would
interpret it, during the search, as a zero occurrence of r, make the

substitution on it, and quit. (Remember, only the first occurrence of
a pattern is changed in a substitution, unless you request a global
search with g.) The following screen shows how the substitution
would be made if you did not specify both the b and the r before the
k.,

p<CR>

brrroke

s/r"/r<CR >

rbrrroke

If you combine the period and the +, the combination will match
all characters. With this combination you can replace all characters
in the last part of a line:

N
i

u
d

5-64 USER'S GUIDE

B
e
c

22
3

Special Characters

p<CR>

Toads are slimy, cold creatures

s/are.”/are wonderful and warm <CR >

Toads are wonderful and warm

The .” can also replace all characters between two patterns.

p<CR>

Toads are slimy, cold creatures

s/are.”cre/are wonderful and warm cre<CR >
Toads are wonderful and warm creatures

If you want to insert a word at the beginning of a line, use the ”
(circumflex) for the old text to be substituted. This is very helpful
when you want to insert the same pattern in the front of several
lines. The next example places the word all at the beginning of each
line:

LINE EDITOR TUTORIAL (ed) 5-65

 de
Special Characters

SR

creatures great and small

things wise and wonderful

things bright and beautiful

1,$s/"/all /<CR>

1,$p<CR>
all creatures great and small

all things wise and wonderful

all things bright and beautiful

NU
The $ sign is useful for adding characters at the end of a line or a

range of lines:

The IRS wants my
1,$s/$/ money.<CR >
1,$p < CR >

-

—

In these examples, you must remember to put a space after the
word all or before the word money because ed adds the specified
characters to the very beginning or the very end of the sentence. If
you forget to leave a space before the word money, your file will look

like this:

5-66 USER'S GUIDE

v
e
g

22
5

 ES
Special Characters

1,$s/$/money/<CR>
1,$p<CR>

I lovemaney

I needmoney

I usemoney

The IRS wants mymoney

The $ sign also provides a handy way to add punctuation to the end
of a line:

CC n N
I love money

I need money

I use money

The IRS wants my money

1,$5/$/./<CR>
1,$p/<CR>
I love money.

I need money.

I use money.

TT my money. ».

Because . is not matching a character (old text), but replacing a
character (new text), it does not have a special meaning. To change a
period in the middle of a line, you must take away the special mean-
ing of the period in the old text. To do this, simply precede the
period with a backslash (V. This is how you take away the special
meaning of some special characters that you want to treat as normal
text characters in search or substitute arguments. For example, the

LINE EDITOR TUTORIAL (ed) 5-67

 rr]
Special Characters

following screen shows how to take away the special meaning of the
period:

p<CR>

Way to go. Wow!

S/V/I<CR>

Way to gol Wowi

The same method can be used with the backslash character itself.
If you want to treat a V as a normal text character, be sure to precede
it with a V. For example, if you want to replace the V symbol with
the word backslash, use the substitute command line shown in the

following screen:

1,2p<CR>

This chapter explains

S/W/backslash<CR>

how to use the backslash.

If you want to add text without changing the rest of the line, the
& provides a useful shortcut. The & (ampersand) repeats the old text
in the replacement pattern, so you do not have to type the pattern
twice. For example:

5-68 USER'S GUIDE

g
e

22
7

 CS
Special Characters

p<CR>

The neanderthal skeletal remains

s/thal/& man's/<CR>
p<CR>

The neanderthal man's skeletal remains

ed automatically remembers the last string of characters in a
search pattern or the old text in a substitution. However, you must
prompt ed to repeat the replacement characters in a substitution

with the % sign. The % sign allows you to make the same substitu-
tion on multiple lines without requesting a global substitution. For
example, to change the word money to the word gold, repeat the last
substitution from line 1 on line 3, but not on line 4.

ln

1 I love money

2 I need food

3 I use money

4 The IRS wants my money

1s/money/gold<CR >

I love gold

3s//%<CR>
I use gold

1,$n<CR>

1 I love gold

2 I need food

3 I use gold

4 The IRS wants my money
EF.

LINE EDITOR TUTORIAL (ed) 5-69

Special Characters

ed automatically remembers the word money (the old text to be
replaced), so that string does not have to be repeated between the
first two delimiters. The % sign tells ed to use the last replacement
pattern, gold.

ed tries to match the first occurrence of one of the characters
enclosed in brackets and substitute the specified old text with new
text. The brackets can be at any position in the pattern to be
replaced.

In the following example, ed changes the first occurrence of the
numbers 6, 7, 8, or 9 to 4 on each line in which it finds one
of those numbers:

nn

Monday 33,000

Tuesday 75,000

Wednesday 88,000

62,000

1,$s/[6789]/4< CR >
Monday 33,000
Tuesday 45,000

Wednesday 48,000 Thursday 42,000 ir.

The next example deletes the Mr or Ms from a list of names:

5-70 USER'S GUIDE

B
e
e

22
9

3
Special Characters

i

Mr Arthur Middleton

Mr Matt Iewis

Ms Anna Kelley

Ms M. L. Hodel

1,$s/M[rs] //<CR>
1,$p9<CR >

Arthur Middleton

Matt Iewis

Anna Kelley

SC ”,
If a ” (circumflex) is the first character in brackets, ed interprets

it as an instruction to match characters that are NOT within the
brackets. However, if the circumflex is in any other position within
the brackets, ed interprets it literally, as a circumflex.

CC

grade A Carputer Science

grade B Robot Design
grade A Boolean Algebra

grade D Jogging
C Tennis

1,$5/grade ["AB]/grade A<CR>
1,$p<CR>

grade A Carputer Science

grade B Robot Design
grade A Boolean Algebra

grade A Jogging
grade A Tennis

PB,

LINE EDITOR TUTORIAL (ed) 5-71

 me
Special Characters

Whenever you use special characters as wild cards in the text to
be changed, remember to use a unique pattern of characters. In the
above example, if you had used only

1,$s/D AB]/A<CR>

You would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what hap-
pens (or does not happen) if you use them in different combinations.

Figure 5-7 summarizes the special characters for search or substi-
tute patterns.

5-72. USER'S GUIDE

O
g

23
1

Special Characters

Command Function

[...]

["...]

Match any one character in a search or substitute pat-
tern.

Match zero or more occurrences of the preceding char-
acter in a search or substitute pattern.

Match zero or more occurrences of any characters fol-
lowing the period.

Match the beginning of the line in the substitute pat-
tern to be replaced or in a search pattern.

Match the end of the line in the substitute pattern to
be replaced.

Take away the special meaning of the special character

that follows in the substitute or search pattern.

Repeat the old text to be replaced in the new text
replacement pattern.

Match the last replacement pattern.

Match the first occurrence of a character in the brack-

ets.

Match the first occurrence of a character that is NOT in

the brackets.

Figure 5-7: Summary of Special Characters

LINE EDITOR TUTORIAL (ed) 5-73

Exercise 5

5-1.

5-2,

5-74

Create a file that contains the following lines of text.

ÅA Computer Science
D Jogging

C Tennis

What happens if you try this command line:

1,$5s/["AB]/A/<CR >

Undo the above command. How can you make the C and D
unique? (Hint: they are at the beginning of the line, in the
position shown by the ”.) Do not be afraid to experiment!

Insert the following line above line 2:

These are not really my grades.

Using brackets and the ” character, create a search pattern
that you can use to locate the line you inserted. There are
several ways to address a line. When you edit text, use the
way that is quickest and easiest for you.

Add the following lines to your file:

I love money
I need money
The IRS wants my money

Now use one command to change them to:

It”s my money
It's my money
The IRS wants my money

Using two command lines, do the following: change the word
on the first line from money to gold, and change the last two
lines from money to gold without using the words money or
gold themselves.

USER'S GUIDE

g
E
e

23
3

Exercise 5

5-4, How can you change the line

1020231020

to

10202031020

without repeating the old digits in the replacement pattern?

5-5... Create a line of text containing the following characters.

FF VN&%”?

Substitute a letter for each character. Do you need to use a
backslash for every substitution?

LINE EDITOR TUTORIAL (ed) 5-75

Moving Text

You have now learned to address lines, create and delete text, and
make substitutions. ed has one more set of versatile and important
commands. You can move, copy, or join lines of text in the editing
buffer. You can also read in text from a file that is not in the editing
buffer, or write lines of the file in the buffer to another file in the
current directory. The commands that move text are:

m move lines of text

t copy lines of text

j join contiguous lines of text

wW write lines of text to a file

r read in the contents of a file

Move Lines of Text

The m command allows you to move blocks of text to another
place in the file. The general format is:

[address1,address21m[address3]< CR. >

The components of this command line include:

address1,address2

The range of lines to be moved. If only one line is
moved, only addressl is given. If no address is given,
the current line is moved.

m The move command.

address3 Place the text after thig line.

Try the following example to see how the command works.
Create a file that contains these three lines of text:

5-76 USER'S GUIDE

v
E
c

Moving Text

I want to move this line.

I want the first line

below this line.

Type:

1m3<CR>

ed will move line 1 below line 3.

I want to move this line.

I want the first line

below this line.

I want to move this line.

The next screen shows how this will appear on your terminal:

SØ >

I want to move this line.

I want the first line

1m3<CR>

1,$9<CR>

I want the first line

I want to move this line.

23
5

dl

If you want to move a paragraph of text, have addressl and
address2 define the range of lines of the paragraph.

LINE EDITOR TUTORIAL (ed) 5-77

dd
Moving Text

In the following example, a block of text (lines 8 through 12) is
moved below line 65. Notice the mn command that prints the line
numbers of the file:

sl CR>

8 This is line 8.

9 It is the beginning of a

10 very short paragraph.

11 This paragraph ends

12 on this line.

64,65n <CR >

64 Move the block of text
65 below this line.
8,12m65<CR.>

59,65n < CR >

59 Move the block of text
60 below this line.

61 This is line 8.
62 It is the beginning of a

63 very short paragraph.

64 This paragraph ends

65 on this line.
E.

How can you move lines above the first line of the file? Try the
following command.

3,4m0<CR >

When address3 is 0, the lines are placed at the beginning of the file.

5-78. USER'S GUIDE

9€
C

23
7

Moving Text

Copy Lines of Text

The copy command t (transfer) acts like the m command except
that the block of text is not deleted at the original address of the line.
ÅA copy of that block of text is placed after a specified line of text.
The general format of the command line is also similar.

The general format of the t command also looks like the m com-
mand.

laddress1,address2]t[address3] < CR. >

address1,address2

The range of lines to be copied. If only one line is
copied, only addressl is given. If no address is given,
the current line is copied.

t The copy command.

address3 Place the copy of the text after this line.

The next example shows how to copy three lines of text below the
last line.

LINE EDITOR TUTORIAL (ed) 5-79

Moving Text

Safety procedures:

If there is a fire in the building:

Close the door of the room to seal off the fire

Break glass of nearest alarm.
Pull lever.

Locate and use fire extinguisher.

A chemical fire in the lab requires that you:

Break glass of nearest alarm
Pull lever

—>| Locate and use fire extinguisher

The commands and ed's responses to them are displayed in the
next screen. Again, the mn command displays the line numbers:

5-80. USER'S GUIDE

B
E
C

23
9

Moving Text

SDN

5 Close the door of the rocm, to seal off the fire.

6 Break glass of nearest alarm.

7 Pull lever.

8 Locate and use fire extinguisher.

30n<CR>

30 A chemical fire in the lab requires that you:

6,8430<CR>

30,$n<CR>

30 A chemical fire in the lab requires that you:

31 Break glass of nearest alarm

32 Pull lever

33 Locate and use fire extinguisher

6,8n< CR >

6 Break glass of nearest alarm

7 Pull lever NER Locate and use fire extinguisher

The text in lines 6 through 8 remains in place. ÅA copy of those
three lines is placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

The j command joins the current line with the following line.
The general format is:

[laddress1,address2lj <CR >

The next example shows how to join several lines together. An
easy way of doing this is to display the lines you want to join using p
or n.

LINE EDITOR TUTORIAL (ed) 5-81

les 5]

Moving Text

1p<CR>

Now is the tire to join
j<CR>
p<CR>

TET
dd

Notice that there is no space between the last word (join) and
the first word of the next line (the), and the last word (play). You
must place a space between them by using the s command.

Write Lines of Text to a File

The w command writes text from the buffer into a file. The gen-
eral format is:

[address],address2]w [filename] < CR >

address1,address2

The range of lines to be placed in another file. If you
do not use addressl or address2, the entire file is

written into a new file.

w The write command.

filename The name of the new file that contains a copy of the
block of text.

5-82 USER'S GUIDE

O
v
e

24
1

 de
Moving Text

In the following example the body of a letter is saved in a file
called memo, so that it can be sent to other people.

ln

March 17, 1989

Dear Kelly,

There will be a mæting in the

green roam at 4:30 P.M. today.

5 Refreshmæents will be served.

3,6w& memo<CR>

87

1

2

3

4

-

The w command places a copy of lines three through six into a
new file called memo. ed responds with the number of characters in
the new file.

Problems

The w command overwrites preexisting files; it erases the current

file and puts the new block of text in the file without warning you.
If, in our example, a file called memo had existed before we wrote

our new file to that name, the original file would have been erased.

In ”Special Commands,” later in this chapter, you will learn how
to execute shell commands from ed. Then you can list the file names
in the directory to make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to
the file memo. If you try to add lines 13 through 16, the existing
lines (3 through 6) will be erased and the file will contain only the
new lines (13 through 16).

LINE EDITOR TUTORIAL (ed) 5-83

Moving Text

Read in the Contents of a File

The r command can be used to append text from a file to the
buffer. The general format for the read command is:

[address]]r filename <CR >

address] The text will be placed after the line addressl. If
addressl is not given, the file is added to the end of the
buffer.

r The read command.

filename The name of the file that will be copied into the editing
buffer.

Using the example from the write command, the next screen
shows a file being edited and new text being read into it.

SR N

1 March 17, 1989

2 Dear Michael,

3 Are you fræ later today?

4 Hope to see you there.

3r memo<CR >
87

3,$n<CR>

3 Åre you fræ later today?

4 There is a mæting in the

5 green room at 4:30 P.M. today.

6 Refreshments will be served.

7 Hope to see you there.
Er.

ed responds to the read command with the number of characters in
the file being added to the buffer (in the example, memo).

5-84 USER'S GUIDE

c
r
e

24
3

 de
Moving Text

[| mmm

It is a good idea to display new or changed lines of text to be sure
that they are correct.

Figure 5-8 summarizes the ed commands for moving text.

Command Function

m move lines of text

t copy lines of text

j join contiguous lines

wW write text into a new file

r read in text from another file

Figure 5-8: Summary of ed Commands for Moving Text

LINE EDITOR TUTORIAL (ed) 5-85

5-86 USER'S GUIDE

This page is intentionally left blank

b
e
g

24
5

| Sem de

Exercise 6

6-1.

6-2.

There are two ways to copy lines of text in the buffer: by
issuing the copy command; or by using the write and read
commands to first write text to a file and then read the file
into the buffer.

Writing to a file and then reading the file into the buffer is a
longer process. Can you think of an example where this
method would be more practical?

What commands can you use to copy lines 10 through 17 of
file exer into the file exer6 at line 7?

Lines 33 through 46 give an example that you want placed
after line 3, and not after line 32. What command performs
this task?

Say you are on line 10 of a file and you want to join lines 13
and 14. What commands can you issue to do this?

LINE EDITOR TUTORIAL (ed) 5-87

5-88 USER'S GUIDE

This page is intentionally left blank

S
i
d

24
7

 "| Ncmsemmess== [dk

Other Useful Commands and Information

There are four other commands and a special file that will be use-
ful to you during editing sessions.

h,H access the help commands, which provide error mes-
sages

1 display characters that are not normally displayed

f display the current file name

! temporarily escape ed to execute a shell command

ed.hup When a system interrupt occurs, the ed buffer is
saved in a special file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed
responds to some of your commands with a ?. The ? is a diagnostic
message issued by ed when it has found an error. The help com-
mands give you a short message to explain the reason for the most
recent diagnostic.

There are two help commands:

h Display a short error message that explains the reason for
the most recent ?.

H Place ed into help mode so that a short error message is
displayed every time the ? appears. (To cancel this request,
type H.)

You know that if you try to quit ed without writing the changes
in the buffer to a file, you will get a ?. Do this now. When the ?
appears, type h:

LINE EDITOR TUTORIAL (ed) 5-89

Other Useful Commands and Information

The ? is also displayed when you specify a new file name.on the
ed command line. Give ed a new file name. When the ? appears,
type h to find out what the error message means.

ed newfile<CR >
? newfile
h<CR>

cannot open input file

This message means one of two things: either there is no file called
newfile or there is such a file but ed is not allowed to read it.

Ås explained earlier, the H command responds to the ? and then
turns on the help mode of ed, so that ed gives you a diagnostic expla-
nation every time the ? is displayed subsequently. '1'o turn off help
mode, type H again. The next screen shows H being used to turn on
help mode. Sample error messages are also displayed in response to
some common mistakes:

5-90 USER'S GUIDE

B
r
e

24
9

(| Sr de
Other Useful Commands and Information

ln <CR>

?newfile

H<CR>

cannot open input file
/hello<CR>
2?

search string not found

1,22p<CR >

?

line cut of range

a<CR>

.<CR>

s/$ tea party< CR >

2

illegal or missing delimiter

»$s/$/ tea party<CR>
2?

unknown command

H<CR>

q<CR>

?

h<CR>

warning: expecting "w"
I am appending this line to the buffer.

”/

These are some of the most common error messages that you may
encounter during editing sessions:

search strings not found

ed cannot find an occurrence of the search pattern hello
because the buffer is empty.

line out of range

ed cannot print any lines because the buffer is empty or the

line specified is not in the buffer.

LINE EDITOR TUTORIAL (ed) 5-91

Other Useful Commands and Information

Å line of text is appended to the buffer to show you some error mes-
sages associated with the s command.

illegal or missing delimiter

The delimiter between the old text to be replaced and the
new text is missing.

unknown command

addressl was not typed in before the comma; ed does not
recognize ,$.

Help mode is then turned off and h is used to determine the
meaning of the last ? . While you are learning ed, you may want to
leave help mode turned on. If so, use the H command. However,
once you become adept at using ed, you will only need to see error
messages occasionally. Then you can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally
display up to eight spaces (covering the space up to the next tab set-
ting. (Your tab setting may be more or less than eight spaces. See

Chapter 7, ”Shell Tutorial,” on setting using stty).

If you want to see how many tabs you have inserted into your
text, use the I (list) command. The general format for the I command

is the same as for n and p.

[address1,address2]1 <CR >

The components of this command line are:

address1,address2

The range of lines to be displayed. If no addross is givon,
the current line will be displayed. If only addressl is given,
only that line will be displayed.

1 The command that displays the nonprinting characters
along with the text.

5-92 USER'S GUIDE

O
G

25
1

Other Useful Commands and Information

The I command denotes tabs with a > (greater than) character.
To type control characters, hold down the CONTROL key and press
the appropriate alphabetic key. The key that sounds the bell is ”g
(control-g). It is displayed as W07 which is the octal representation
(the computer's code) for ”g.

Type in two lines of text that contain a <"g> (control-g) and a
tab. Then use the 1 command to display the lines of text on your ter-
minal.

a<CR>
Add a <"g> (control-g) to this line.<CR>
Add a <tab> (tab) to this line. <CR>

.<CR>

1,21<CR>

Add a VW07 (oontrol-g) to this line.<CR>
Båd a > (tab) to this line.<CR>

Did the bell sound when you typed <"g>?

The Current File Name

In a long editing session, you may forget the file name. The f
command will remind you which file is currently in the buffer. Or,
you may want to preserve the original file that you entered into the
editing buffer and write the contents of the buffer to a new file. In a
long editing session, you may forget, and accidentally overwrite the
original file with the customary w and q command sequence. You
can prevent this by telling the editor to associate the contents of the
buffer with a new file name while you are in the middle of the editing
session. This is done with the f command and a new file name.

LINE EDITOR TUTORIAL (ed) 5-93

 000 eee
Other Useful Commands and Information

The format for displaying the current file name is f alone on a
line:

f<CR>

To see how f works, enter ed with a file. For example, if your file is
called oldfile, ed will respond as shown in the following screen:

ed oldfile <CR>

323

f<CR>
oldfile

To associate the contents of the editing buffer with a new file
name use this general format:

f newfile< CR >

If no file name is specified with the write command, ed
remembers the file name given at the beginning of the editing session
and writes to that file. If you do not want to overwrite the original
file, you must either use a new file name with the write command, or
change the current file name using the f command followed by the
new file name. Because you can use f at any point in an editing ses-
sion, you can change the file name immediately. You can then con-
tinue with the editing session without worrying about overwriting the
original file.

The next screen shows the commands for entering the editor with
oldfile and then changing its name to newfile. A line of text is
added to the buffer and then the write and quit commands are issued.

5-94 USER'S GUIDE

T
S

25
3

 de
Other Useful Commands and information

[| Nemme

(men

323

f<CR>

oldfile

f newfile< CR >

Add a line of text. <CR >

.<CR>

w<CR>

343

NE -
Once you have returned to the shell, you can list your files and

verify the existence of the new file, newfile. newfile should contain
a copy of the contents of oldfile plus the new line of text.

Escape to the Shell

How can you make sure you are not overwriting an existing file
when you write the contents of the editor to a new file name? You
need to return to the shell to list your files. The ! allows you to tem-
porarily return to the shell, execute a shell command, and then
return to the current line of the editor.

The general format for the escape sequence is:

!shell command line<CR>
shell response to the command line
!

When you type the ! as the first character on a line, the shell
command must follow on that same line. The program's response to
your command will appear as the command is running. When the
command has finished executing, the ! will be appear alone on a line.

LINE EDITOR TUTORIAL (ed) 5-95

=="

Other Useful Commands and Information

This means that that you are back in the editor at the current line.

For example, if you want to return to the shell to find out the
correct date, type ! and the shell command date.

p<CR>

This is the current line

I date<CR>

Sat Apr 1 14:24:22 FEST 1989

!

p<CR>

This is the current line.

The screen first displays the current line. Then the command is
given to temporarily leave the editor and display the date. After the
date is displayed, you are returned to the current line of the editor.

If you want to execute more than one command on the shell com-

mand line, see the discussion on ; in the section called ”Special Char-

acters” in Chapter 7.

Recovering From System Interrupts

What happens if you are creating text in ed and there is an inter-
rupt to the system, you are accidentally hung up on the system, or
your terminal is unplugged? When an interrupt occurs, the UNIX
system tries to save the contents of the editing buffer in a special file
named ed.hup. Later you can retrieve your text from this file in one
of two ways. First, yvu cau use a shell comunand tv move ed.hup lw
another file name, such as the name the file had while you were edit-
ing it (before the interrupt). Second, you can enter ed and use the f

command to rename the contents of the buffer. An example of the
second method is shown in the following screen:

5-96 USER'S GUIDE

v
S
e

25
5

 dk
Other Useful Commands and Information

ed ed.hup <CR >

928

f myfile< CR >

myfile

If you use the second method to recover the contents of the buffer, be
sure to remove the ed.hup file afterward.

Conclusion

You now are familiar with many useful commands in ed. The
commands that were not discussed in this tutorial, such as G, P, Q

and the use of () and f), are discussed on the ed(1) page of the Sys-
tem V Reference Manual. You can experiment with these commands
and try them to see what tasks they perform.

Figure 5-9 summarizes the functions of the commands introduced
in this section.

LINE EDITOR TUTORIAL (ed) 5-97

Other Useful Commands and information

Command Function

h Display a short error message for the preceding
diagnostic ?.

H Turn on help mode. An error message will be
given with each diagnostic ?. The second H turns
off help mode.

1 Display nonprinting characters in the text.

f Display the current file name.

f newfile Change the current file name associated with the
editing buffer to newfile.

Jemd Temporarily escape to the shell to execute a shell
command cmd.

ed.hup The editing buffer is saved in ed.hup if the termi-
nal is hung up before a write command.

Figure 5-9: Summary of Other Useful Commands

5-98 USER'S GUIDE

9

25
7

(Sr de

Exercise 7

1-2.

7-3.

Create a new file called newfilel. Access ed and change the
file's name to currentl. Then create some text and write
and quit ed. Run the Is command to verify that there is not

a file called newfile1 in your directory. If you do the shell
command Is, you will see the directory does not contain a file

called newfilel.

Create a file named filel. Append some lines of text to the

file. Leave append mode but do not write the file. Turn off

your terminal. Then turn on your terminal and log in again.

Issue the Is command in the shell. Is there a new file called

ed.hup? Place ed.hup in ed. How can you change the
current file name to filel? Display the contents of the file.
Åre the lines the same lines you created before you turned off

your terminal?

While you are in ed, temporarily escape to the shell and send
a mail message to yourself.

LINE EDITOR TUTORIAL (ed) 5-99

Exercise 7

5-100 USER'S GUIDE

This page is intentionally left blank

B
S
C

25
9

([

Answers to Exercises

Exercise 1

1-1.

(an.
? junk
a<CR>

Hello world. <CR. >
.<CR>

w<CR>

12

q<CR>

$S

N.

AS

$ ed junk<CR >
12

1,$p<CR>
Hello world. <CR>
q<CR>

$

LINE EDITOR TUTORIAL (ed) 5-101

Answers to Exercises

The system did not respond with the warning question mark
because you did not make any changes to the buffer.

1-3.

(.

5-102

12

a<CR>

Wendy's horse came through the window. <CR >
.<CR>
1,$p<CR>

Hello world.

Wendy's horse came through the window.

q<CR>

?

w stuff<CR >
60

q<CR>

$

USER'S GUIDE

0
9

26
1

 de
Answers to Exercises

|
Exercise 2

2-1.

<CR>
? towns

a<CR>

My kind of town is< CR >
Chicago<CR>

Like being no where at all in<CR>
Toledo<CR>

I lost those little town blues in<CR>
New York<CR>

I lost my heart in< CR >
San Francisco <CR >
I lost $$ in<CR>

Las Vegas<CR >
.<CR>
w<CR>

164

3<CR>

Like being no where at all in

LINE EDITOR TUTORIAL (ed) 5-103

Answers to Exercises

2-3.

-2,+3p<CR>

My kind of town is

Chicago

Like being no where at all in

Toledo

I lost those little town blues in

New Yark

2-4.

) Å

5-104 USER'S GUIDE

26
3

Borre SERENE

Answers to Exercises

SsS<CR>

Ias Vegas

2-6.

?town<CR>

I lost those little town blues in

?2<CR>

My kind of town is

LINE EDITOR TUTORIAL (ed) 5-105

Answers to Exercises

2-7.

al CR>

5-106

My kind of town is

Like being no where at all in

I lost those little town blues in

I lost my heart in

I lost $$ in

v/in<CR>

Chicago

Toledo
New Yark

San Francisco

Las Vegas
NK

v9
g

USER'S GUIDE

26
5

 |
Exercise 3

3-1.

 de
Answers to Exercises

$ ed ex3< CR >

?ex3

i<CR>
2?

q<CR>

The ? after the i means there is an error in the command. There

is no current line before which text can be inserted.

LINE EDITOR TUTORIAL (ed) 5-107

Answers to Exercises

3-2.

$ ed towns<CR >
164

n<CcR>

10 Las Vegas

3i<CR>

Illinois <CR >
.<CR>

i<CR>
or<CR>

Naperville <CR >
.<CR>

$i<CR>

hotels in< CR >

1,$n<CR>

my kind of town is

Chicago

or

Naperville

Illinois

Toledo

I lost those little town blues in

New York

b
S
&
v
V
v
0
o
s
a
m
n
m
w
…
N
e

ig E
R
 = E i

5-108 USER'S GUIDE

9
9

26
7

Answers to Exercises

ØR

1 My kind of town is

2 Chicago

3 or

4 Naperville

5 Illinois

2,5c<CR>

London <CR >

.<CR>
1,3n<CR>

1 My kind of town is

2 London

3 Like being no where at all

.<CR>

Like being no where at all
/Tol<CR>

Toledo

c<CR>

Peoria<CR>

.<CR>

.<CR>

Peoria

NU

LINE EDITOR TUTORIAL (ed) 5-109

Answers to Exercises

3-5.

.<CR>

[New Y/c< CR >

Iron City<CR>
.<CR>

.<CR>
Iron City

Your search string need not be the entire word or line. It only
needs to be unique.

5-110 USER'S GUIDE

8
9
7

26
9

Answers to Exercises

Exercise 4

4-1.

v/little town/s/town/city <CR >

My kind of city is

London

Like being no where at all in

Peoria

Iron City
I lost my heart in
San Francisco

I lost $$ in

hotels in

Las Vegas

—

The line

I lost those little town blues in

was not printed because it was NOT addressed by the v command.

LINE EDITOR TUTORIAL (ed) 5-111

Answers to Exercises

4-2.

.<CR>

Las Vegas

s?Las Vegas?Toledo <CR>
Toledo

4-3.

?lost?s??found < CR >
I found $$ in

5-112. USER'S GUIDE

O
Z
e

27
1

 er ESES HEE SINE TEE
Answers to Exercises

4-4.

/mo?s??NO<CR>
?

/10/s//NO<CR >

Like being NO where at all in

You cannot mix delimiters such as / and ? in a command line.

The substitution command on line 9 produced this output:

I found $$ inBig $

kt did not work correctly because the $ sign is a special character in
ed.

LINE EDITOR TUTORIAL (ed) 5-113

de
Answers to Exercises

Exercise 5

5-1.

ll <CR>

? filel

a<CR>

D Jogging<CR>
C Tennis<CR>
.<CR>

1,$9<CR>

A Carputer Science

A. Jogging
A Tennis

u<CR>

A Computer Science <CR>

1,$5/["AB]/A/<CR>

NE

1,$p<CR>

A Computer Science

A. Jogging
A Tennis

1,$s/"["AB]/A< CR >

5-114. USER'S GUIDE

C
L
E

27
3

5-2.

ln

1,$p<CR>

A Computer Science

These are not really my grades.

A Tennis

A Jogging
AUA1<CR>

These are not really my grades

?”[T]<CR >

These are not really my grades

These are not really my grades. <CR>

1,$p<CR>

I love money

I need money

The IRS wants my money

g/”I/s/1.”m /It's my m<CR>

It's my money

It's my money

LINE EDITOR TUTORIAL (ed)

Answers to Exercises

5-115

 —I dk
Answers to Exercises

/s/money/gold< CR >
It's my gold

2,$5//%/<CR>

The IRS wants my gold

5-4,

s/10202/80<CR>
10202031020

5-5.

a<CR>

Å&%”"F<CR>
.<CR>
s/"/a<CR>

da. VE&RTE
s/"/b< CR >

aa. VNVE$%”b

NO

LJ

N
Ø

NV

 /

Because there were no preceding characters, ” substituted for itself.

5-116: USER'S GUIDE

V
I
E

27
5

 |

Answers to Exercises

E
N

s/ b/c<CR>

ac Vv&%”b
s/ W/d<CR>

acd&%"b

s/&/e<CR>

acdet”b

s/%/f<CR>

acdef"”b

”=

No
/

The & and % are only special characters in the replacement text.

s/ V/g<CR>

acdefgb

(
G
3
N

K
i
 /

LINE EDITOR TUTORIAL (ed) 5-117

Answers to Exercises

Exercise 6

6-1. Any time you have lines of text that you may want to have
repeated several times, it may be easier to write those lines to
a file and read in the file at those points in the text.

If you want to copy the lines into another file you must write
them to a file and then read that file into the buffer contain-
ing the other file.

Øl <CR>

725

10,17 w temp<CR >

210

q<CR>

ed exer6<CR >
305

7r temp<CR>

 210
N.

The file temp can be called any file name.

5-118: USER'S GUIDE

KY
FA

27
7

Answers to Exercises

33,46m3<CR>

.=<CR>

10

13p<CR>

This is line 13.

j<CR>

p<CR>

This is line 13.and line 14.

Remember that .= gives you the current line.

6-3.

LINE EDITOR TUTORIAL (ed) 5-119

Answers to Exercises

Exercise 7

7-1.

$ ed newfilel<CR>
? newfilel

f current1< CR >
currentl

a<CR>

This is a line of text< CR >

Will it go into newfilel<CR >
or into currentl<CR >

.<CR>

w<CR>

66

q<CR>

$ ls<CR>
bin

currentl

ed file1<CR>
? filel

a<CR>

I am adding text to this file. <CR >

Will it show up in ed.hup?<CR>
.<CR>

5-120 USER'S GUIDE

8
2

27
9

Answers to Exercises

Turn off your terminal.

Log in again.

ed ed.hup<CR>

58

f flel<CR>
filel

1,$p<CR>

I an adding text to this file.

Will it show up in ed.hup?

$ ed file1< CR >
58

! mail mylogin< CR >
You will get mail when<CR>

you are done editing! <CR >

7-3.

.<CR>
!

LINE EDITOR TUTORIAL (ed) 5-121

5-122

This page is intentionally left blank

USER'S GUIDE

o
g

28
1

 em

Chapter 6: Screen Editor Tutorial (vi)

Page

Introduction eneret serene sr rn 6-1

Suggestions for Reading this Tutorial eur 6-3

Getting Startedssssssssrs rn 6- 4

Setting the Terminal Configurationsssecerereree 6- 4

Changing Your Environment ...sscucceerertersresretersereer 6-5

Setting the Automatic RETURNssceveversesererersrrerrersser 6- 6

Creating a File sits 6- 8

How to Create Text: the Append Mode…........u.scecerrree 6-9

How to Leave Append Mode 2uereerssssrsrssrrssrnse 6-10

Editing Text: the Command Mode cesser 6-11

How to Move the Cursorssceseeseserereererereeerssseseserese 6-11

Moving the Cursor to the Right or Left succeer 6-13

How to Delete Text css renerne 6-16

How to Add Text …......ssssssseseessesesrrereneseeneneesens ene esne rese ennen 6-18

Quitting vi 1suussrrrsrstrrrsereeererrrernrneen ennen rrrrrrrnes 6-20

Exercise 1 isse ES yen yreerre 6-23

Moving the Cursor Around the Screen .cucunerrerersrree 6-24

Positioning the Cursor on a Character... suser 6-25

Moving the Cursor to the Beginning or End of a Line. 6-25

Searching for a Character on a Line 1... scccceerere 6-27
Line Positioningusevesrersesessenerseseneeneesensereneessneseees 6-28

The Minus Sign Motion Command screen 6-29

The Plus Sign Motion Command screen. 6-29

Word Positioning 22 6-30

TABLE OF CONTENTS i

 Er
Table of Contents

Page

Positioning the Cursor by Sentencessssueuenssrsee 6-34

Positioning the Cursor by Paragraphs .usesssrreseseres 6-36

Positioning in the Windowsssssesesersrrrsrsrererereereee renee 6-37

Positioning the Cursor in Undisplayed Texts 6-43

Serolling the Text ….….W.u..sssssscssseesertk skt HEER ERE E SEERE S EEN LEES 6-43

The Control-f Commandsscressrrrrrrsersererserserersrernee 6-43

The Control-d Command0ssssessrssrsssessssrnssrsese 6-44

The Control-b Commandsssscerereresesertrtsresesesrernenee 6-44

The Control-u Command ...ssssssceereessesrerrrererkrere 6-46

Go to a Specified Line.............sssscseeerresrsssstssrtresrrrrsererereernnee 6-47

Line Numbers ...sssseseseessressrsstanss test ER ERE E RENEE ER ERE ES 6-47

Searching for a Pattern of Characters:
the / and ? Commandsssscscserestrrsrrsestrsrsrrrrrnreerrere 6-49

Exercise 2 ..seuesertereststssrrseressrsennesreseseenrsrsneserrenesene rene ner enes 6-56

Creating Text sager REDER 6-58

ÅAppending Text... secs EL Es bEVekesebe 6-58

Insert ing LER cer ENGEE 6-58

Opening a Line for TØXt......sessrrerssrsrersesrererrrrrrsererenernnee 6-60

Exercise 3 MM Mussceesecerervessaresssrsrnnee EEN ERE EEØESEEEERLNNGS 6-63

Deleting LEX tprsrorrrssnsrenensesneeeee rev SEENDE TREERE AGERER 6-64

Undoing Entered Text in Text Input Mode 6-64

Undo the Last Commandsssscsrserersrsreseerererrrnnnnnee 6-65

Delete Commands in Command Mode sssusursetrresee 6-66

Deleting Words 1... ssscescessssesverrestressnsrrrtnnrn ersten annnser 6-67

Deleting Paragraphs ….......….sssscesesevsrrerertesersnsrrerrerrerrnnreee 6-68

Deleting Linesssscsssessrsrsssereresererrnreserrennrrnrnserrnnrnrree 6-68

Deleting Text After the Cursor seen 6-69

ii USER'S GUIDE

C
8
c

28
3

 |
Table of Contents

Page

Exercise 4 ØRER skyerne gegrerese 6- 71

Modifying Text sussie SENSE oe 6- 72

Replacing Text ssusseersssrrsersssrreerreseeserssenrnrrre sr srt rrrnee 6- 72

Substituting Text nerverne sener nnee 6- 73

Changing Text... ligere 6- 75

Cutting And Pasting Text Electronically user 6- 80

Moving TEeXt....ueesse stks tt tE ES EEN ER ESS ENES E ER ERE LETTERE NEEDED 6- 80

Fixing Transposed Letters ss eseesesrereressrseensrsrrrenenree 6- 81

Copying Text Museerne FEE EERIEENINISE 6- 81

Copying or Moving Text Using Registers usus 6- 83

Exercise 5 sisssrgenkerssetsernsstndsenensepsrereneenegtertsesenereeg teser n tere peges rene 6- 85

Special Commands 2....cverestssesssesassnstesnsssen sen snne nes re nn nr nnenee 6- 87

Repeating the Last Command cuarrrsrsrstrrrrrsrrsere 6- 87

Joining Two Lines.............evessrrrrrerersreserrrnrnrrsensnrnennrsrrsnnnee 6- 87

Clearing and Redrawing the Window 2 ucrurnrrre 6- 88

Changing Lower Case to Upper Case and Vice Versa .….... 6- 88

Using Line Editing Commands in Vi usus 6- 90

Temporarily Returning to the Shell:
the :sh and :! Commandscuevesrrrrrerrrsrrsrsrrrrersnenee 6- 90

Writing Text to a New File: the sw Command... 6- 91

Finding the Line Number ..0ssceurerererererersressstertr tree 6- 92

Deleting the Rest of the Buffer nusser 6- 93

Adding a File to the Buffer 1... ersrrsrsrersssrsserersese 6- 93

Making Global Changes22csuussssrssssrssrenrsrrsesnnsrsnrnene 6- 94

Quitting Vi suser rt AL ELLEN EL EET E ELLE E REE E ner 6- 97

Special Options for visersrssrrsrsrrsrsseserserssrssernrrererrnee 6-100

Recovering a File Lost by an Interrupt ce 6-100

TABLE OF CONTENTS iii

"de [==

Table of Contents

Page

Editing Multiple Files uusersrrsrrsrersssrsrerrrrerernnnerneee 6-100

Viewing a Filesscccsesererrrererrstrrrsr erne r tr EEN ETERN ERE ES 6-101

Exercise 64443777 EDEL ress 6-103

Answers To Exercises 1... tt E ENE ER HEER SEES E LEES 6-105

Answer to Exercise 1 .sesserrrrrrrssserrerersssserrrngerrerrnnenen 6-105

Answer to Exercise 2sssssessssssssssrsssserrsssesnssrsrssnssrsssennrsee 6-107

Answer to Exercise 3 Ms scssssssssssssriessssdedisstevsenendsnsdsnndestirterreee 6-109

Answer to Exercise Å 1... users sst PEEL EL ER ELLE SETE E RES 6-111

Answer to Exercise 5sverrrrsrrserserrsrrrssseresrersenssrrnnennrree 6-113

Answer to Exercise 6 ….W..u..u..sessevesereserreserseeesese renset st sE RER LER 6-115

iv: USER'S GUIDE

v
8
g

28
5

 de | Sum

Introduction

This chapter is a tutorial on the screen editor, vi (short for visual
editor). The vi editor is a powerful and sophisticated tool for creat-
ing and editing files. It is designed for use with a video display termi-
nal which is used as a window through which you can view the text

of a file. A few simple commands allow you to make changes to the

text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows
you to move the cursor to any point on the screen or in the file (by

specifying places such as the beginning or end of a word, line, sen-

tence, paragraph, or file) and create, change, or delete text from that

point. You can also use some line editor commands, such as the

powerful global commands that allow you to change multiple

occurrences of the same character string by issuing one command.

To move through the file, you can scroll the text forward or back-
ward, revealing the lines below or above the current window, as

shown in Figure 6-1.

Not all terminals have text scrolling capability; whether or not you

NOTE! can take advantage of vi's scrolling feature depends on what type of
terminal you have.

SCREEN EDITOR TUTORIAL (vi) 6-1

introduction

TEXT FILE

You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

This part of the file
is in the display window.

You can edit it.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 6-1: Displaying a File with a vi Window

6-2 USER'S GUIDE

98
2

28
7

Introduction

There are more than 100 commands within vi. This chapter
covers the basic commands that will enable you to use vi simply but
effectively. Specifically, it explains how to do the following tasks:

set up your terminal so that vi is accessible

enter vi, create text, delete mistakes, write the text to a file,

and quit

move text within a file

electronically cut and paste text

use special commands and shortcuts

temporarily escape to the shell to execute shell commands

use line editing commands available within vi

edit several files in the same session

recover a file lost by an interruption to an editing session

change your shell environment to set your terminal

configuration and an automatic carriage return

Suggestions for Reading this Tutorial

Ås you read this tutorial, keep in mind the notation conventions
described in the Preface. In the screens in this chapter arrows are
also used to show the position of the cursor.

The commands discussed in each section are reviewed at the end
of the section. A summary of vi commands is found in Appendix D,
where they are listed by topic. At the end of some sections, exercises
are given so you can experiment. The answers to all the exercises are

at the end of this chapter. The best way to learn vi is by doing the
examples and exercises as you read the tutorial. Log in on the UNIX
system when you are ready to read this chapter.

SCREEN EDITOR TUTORIAL (vi) 6-3

Getting Started

The UNIX system is flexible; it can run on many types of comput-
ers and can be accessed from many kinds of terminals. However,
because it is internally structured to be able to operate in so many
ways, it needs to know what kind of hardware is being used in a
given situation.

In addition, the UNIX system offers various optional features for
using your terminal that you may or may not want to incorporate
into your computing session routine. Your choice of these options,
together with your hardware specifications, comprise your login
environment. Once you have set up your login environment, the
shell implements these specifications and options automatically every
time you log in.

This section describes two parts of the login environment: setting
the terminal configuration, which is essential for using vi properly,
and setting the wrapmargin, or automatic (carriage) RETURN, which
is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration.
This simply means that you tell the UNIX system what type of termi-
nal you are using. This is necessary because the software for the vi
editor is executed differently on different terminals.

Each type of terminal has several code names that are recognized
by the UNIX system. Appendix F, ”Setting Up the Terminal,” tells
you how to find a recognized name for your terminal. Keep in mind
that many computer installations add terminal types to the list of ter-
minals supported by default in your UNIX system. It is a good idea
to check with your local system administrator for the most up-to-date
list of available terminal types.

6-4. USER'S GUIDE

8
8

28
9

Getting Started

To set your terminal configuration, type

TERM =terminal name <CR>
export TERM<CR>

The first line puts a value (a terminal type) in a variable called
TERM. The second line exports this value; it conveys the value to all
UNIX system programs whose execution depends on the type of ter-

minal being used.

For example, if your terminal is a Teletype 5425 this is how your
commands will appear on the screen.

$ TERM=5425<CR >

$ export TERM<CR>

Do not experiment by entering names for terminal types other
than your terminal. This might confuse the UNIX system, and you
may have to log off, hang up, or get help from your system adminis-

trator to restore your login environment.

Changing Your Environment

If you are going to use vi regularly, you should change your login
environment permanently so you do not have to configure your termi-
nal each time you log in. Your login environment is controlled by a
file in your home directory called .profile. (This file, pronounced dot
profile, does not exist in the file system; you must create it. For

details, see Chapter 7.)

SCREEN EDITOR TUTORIAL (vi) 6-5

Getting Started

If you specify the setting for your terminal configuration in your
profile, your terminal will be configured automatically every time

you log in. You can do this by adding the three lines shown in the
last screen (the TERM assignment, export command, and tput com-
mand) to your .profile. (For detailed instructions, see Chapter 7.)

Setting the Automatic RETURN

To set an automatic RETURN you must know how to create a file.
NOTE If you are familiar with another text editor, such as ed, follow the

instructions in this section. If you do not know how to use an editor
I but would like to have an automatic RETURN setting, skip this sec-

tion for now and return to it when you have learned the basic skills
taught in this chapter.

If you want the RETURN key to be entered automatically, create

a file called .exre in your home directory. You can use the .exrc file
to contain options that control the vi editing environment. (For
details about the .exre file, see the Editing Guide or Editing Utilities
Guide.)

To create a .exre file, enter an editor with that file name. Then

type in one line of text: a specification for the wrapmargin
(automatic carriage return) option. The format for this option
specification is

set wm=n<CR>

n represents the number of characters from the righthand side of the
screen where you want an automatic carriage return to occur. For

example, say you want a carriage return at twenty characters from
the righthand side of the screen. Type

set wm=20<CR>

6-6 USER'S GUIDE

0
6
e

29
1

Getting Started

Finally, write the buffer contents to the file and quit the editor (see
”Text Editing Buffers” in Chapter 4). The next time you log in, this
file will give you an automatic RETURN.

To check your settings for the terminal and wrapmargin when
you are in vi, enter the command

:set< CR >

vi will report the terminal type and the wrapmargin, as well as any
other options you may have specified. You can also use the :set com-

mand to create or change the wrapmargin option. Try experimenting

with it.

SCREEN EDITOR TUTORIAL (vi) 6-7

Creating a File

First, enter the editor; type vi and the name of the file you want
to create or edit.

vi filename<CR>

For example, say you want to create a file called stuff. When you
type the vi command with the file name stuff, vi clears the screen

and displays a window in which you can enter and edit text.

I
E
E
E

 "stuff" [New file] /

The (underscore) on the top line shows the cursor waiting for
you to enter a command there. (On video display terminals the cur-
sor may be a blinking underscore or a reverse color block.) Every

other line is marked with a — (tilde), the symbol for an empty line.

If, before entering vi, you have forgotten to set your terminal
configuration or have set it to the wrong type of terminal, you will

see an error message instead.

6-8 USER'S GUIDE

2
6
6

29
3

Creating a File

$ vi stuff<CR>

terminal name: unknown terminal type

[Using open mode]

"stuff" [New file]

You cannot set the terminal configuration while you are in the editor;
you must be in the shell. Leave the editor by typing

:q<CR>

Then set the correct terminal configuration.

How to Create Text: the Append Mode

If you have successfully entered vi, you are in command mode
and vi is waiting for your commands. How do you create text?

m Press the A key (<a>) to enter the append mode of vi. (Do
not press the RETURN key.) You can now add text to the file.
(An A is not printed on the screen.)

m Type in some text.

m To begin a new line, press the RETURN key.

If you have specified the wrapmargin option in a .exre file, you
will get a new line whenever you get an automatic RETURN
(see ”Setting the Automatic RETURN”).

SCREEN EDITOR TUTORIAL (vi) 6-9

Creating a File

How to Leave Append Mode

When you finish creating text, press the ESCAPE key to leave
append mode and return to command mode. Then you can edit any
text you have created or write the text in the buffer to a file.

<a>Create some text <CR >

in the screen editor<CR>

and return to<CR>

command mode. < ESC >

If you press the ESCAPE key and a bell sounds, you are already

in command mode. The text in the file is not affected by this, even if
you press the ESCAPE key several times.

6-10 USER'S GUIDE

v
6
c

29
5

Editing Text: the Command Mode

To edit an existing file you must be able to add, change, and
delete text. However, before you can perform those tasks you must
be able to move to the part of the file you want to edit. vi offers an
array of commands for moving from page to page, between lines, and
between specified points inside a line. These commands, along with
commands for deleting and adding text, are introduced in this sec-
tion.

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the
sereen where you will begin the correction. This is easily done with
four keys that are grouped together on the keyboard: h, j, k, and l.

<h> moves the cursor one character to the left

<j> moves the cursor down one line

<k> moves the cursor up one line

<l> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the
cursor. For example, if the cursor is on the seventh character from
the left, when you type <j> or <k> it goes to the seventh charac-
ter on the new line. If there is no seventh character on the new line,

the cursor moves to the last character.

Many people who use vi find it helpful to mark these four keys
with arrows showing the direction in which each key moves the cur-
sor.

SCREEN EDITOR TUTORIAL (vi) 6-11

Editing Text: the Command Mode

 É

OM

Er rer EN ONE

BETEGNE] ll ERE
ERE EN Em ANE 4 (FA ET El |
AM ANRAMAMNnNENH AISTEL.
MM ANA EARE Bj] FA FTH

da ma

”,

NOTE

Some terminals have special cursor control keys that are marked
with arrows. Use them in the same way you use the <h>, <j>,
<k>, and <l1l> commands.

Watch the cursor on the screen while you press the keys <h>,
<j>, <k>, and <1>. Instead of pressing a motion command key a
number of times to move the cursor a corresponding number of
spaces or lines, you can precede the command with the desired
number. For example, to move two spaces to the right, you can press
<l> twice or enter <21>. To move up four lines, press <k> four
times or enter <4k>. If you cannot go any farther in the direction
you have requested, vi will sound a bell.

Now experiment with the j and k motion commands. First, move
the cursor up seven lines. Type

6-12

<Yk>

USER'S GUIDE

96
2

29
7

— SEE
Editing Text: the Command Mode

The cursor will move up seven lines above the current line. If there
are less than seven lines above the current line, a bell will sound and
the cursor will remain on the current line.

Now move the cursor down thirty-five lines. Type

<35j>

vi will clear and redraw the screen. The cursor will be on the thirty-
fifth line below the current line, appearing in the middle of the new
window. If there are less than thirty-five lines below the current line,
the bell will sound and the cursor will remain on the current line.
Watch what happens when you type the next command.

<35k>

Like most vi commands, the <h>, <j>, <k>, and <l>

motion commands are silent; they do not appear on the screen as you

enter them. The only time you should see characters on the screen is
when you are in append mode and are adding text to your file. If the
motion command letters appear on the screen, you are still in append

mode. Press the ESCAPE key to return to command mode and try
the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <l>, the
space bar and the BACKSPACE key can be used to move the cursor
right or left to a character on the current line.

<space bar > move the cursor one character to the right

<nspace bar > move the cursor n characters to the right

<BACKSPACE> move the cursor one character to the left

<nBACKSPACE >move the cursor n characters to the left

Try typing in a number before the command key. Notice that the
cursor moves the specified number of characters to the left or right.
In the example below, the cursor movement is shown by the arrows.

SCREEN EDITOR TUTORIAL (vi) 6-13

Editing Text: the Command Mode

To move the cursor quickly to the right or left, prefix a number
to the command. For example, suppose you want to create four
columns in your screen. After you've finished typing the headings for
the first three columns, you notice a typing mistake.

Colum 1 Colum 2 colum

<ESC>

You want to correct your mistake before continuing. Exit insert
mode and return to command mode by pressing the ESCAPE key; the
cursor will move to the n. Then use the <h> command to move
back five spaces.

6-14 USER'S GUIDE

8
6
€

29
9

Editing Text: the Command Mode

(Colum 2

Colum 1 Colum 2

colum

<5h>

colum

 <x><i>C<ESC>

—

Erase the c by typing <x>. Then change to insert mode (<i>),
enter a C, followed by pressing the ESCAPE key. Use the <l>
motion command to return to your earlier position.

Colum 1 Colum 2

SCREEN EDITOR TUTORIAL (vi) 6-15

Editing Text: the Command Mode

By now you may have discovered that you can move the cursor
back and forth on a line by using the space bar and the BACKSPACE
key.

<space bar > move the cursor one character to the right

<nspace bar > move the cursor n characters to the right

<BACKSPACE> move the cursor one character to the left

<nBACKSPACE >move the cursor n characters to the left

Again, you can specify a multiple space movement by typing a
number before pressing the space bar or BACKSPACE key. The cur-
sor will move the number of characters you request to the left or
right.

How to Delete Text

If you want to delete a character, move the cursor to that charac-

ter and press the <x>. Watch the screen as you do so; the charac-
ter will disappear and the line will readjust to the change. To erase
three characters in a row, press <x> three times. In the following
example, the arrows under the letters show the positions of the cur-
sor.

<xX> delete one character

<nx> delete n characters, where n is the number of

characters you want to delete

6-16 USER'S GUIDE

0
0
£

30
1

Editing Text: the Command Mode

Eee an

”,

Hello weld!

Now try preceding <x> with the number of characters you want
to delete. For example, delete the second occurrence of the word
deep from the text shown in the following screen. Put the cursor on
the first letter of the string you want to delete, and delete five charac-
ters (for the four letters of deep plus an extra space).

Tororrw the Loch Ness monster

shall slither forth from

the deep dark deep depths of the lake.

<5x>

SCREEN EDITOR TUTORIAL (vi) 6-17

 de
Editing Text: the Command Mode

Tororrw the Loch Ness monster

shall slither forth fran

the deep dark deæpths of the lake.

<5x>

Notice that vi adjusts the text so that no gap appears in place of
the deleted string. If, as mm this case, the string you want to delete
happens to be a word, you can also use the vi command for deleting a

word. This command is described later in the section ”Word Posi-

tioning.”

How to Add Text

There are two basic commands for adding text: the insert (<i>)
and append (<a>) commands. To add text with the insert command

at a point in your file that is visible on the screen, move the cursor to

that point by using <h>, <j>, <k>, and <1>. Then press <i>
and start entering text. As you type, the new text will appear on the
screen to the left of the character on which you put the cursor. That
character and all characters to the right of the cursor will move right
to make room for your new text. The vi editor will continue to
accept the characters you type until you press the ESCAPE key. If
necessary, the original characters will even wrap around onto the
next line.

6-18 USER'S GUIDE

C
0
£

30
3

Editing Text: the Command Mode

<i>o

Hello World!

 <ESC>
PB,

You can use the append command in the same way. The only
difference is that the new text will appear to the right of the charac-
ter on which you put the cursor.

Later in this tutorial you will learn how to move around on the
sereen or scroll through a file to add or delete characters, words, or
lines.

SCREEN EDITOR TUTORIAL (vi) 6-19

 mm

Quitting vi

When you have finished your text, you will want to write the

buffer contents to a file and return to the shell. To do this, hold

down the SHIFT key and press Z twice (<ZZ>). The editor
remembers the file name you specified with the vi command at the
beginning of the editing session, and moves the buffer text to the file
of that name. A notice at the bottom of the screen gives the file

name and the number of lines and characters in the file. Then the

shell gives you a prompt.

Øl is a test file. <CR >
I am adding text to<CR>

a temporary buffer and< CR >

now it is perfect. <CR>

I want to write this file,<CR >

and return to the shell.<ESC> <ZZ>

”stuff" [New file] 7 lines, 151 characters

$
—

You can also use the :w and :q commands of the line editor for
writing and quitting a file. (Line editor commands begin with a colon

and appear on the bottom line of the screen.) The :w command
writes the buffer to a file. The :q command leaves the editor and
returns you to the shell. You can type these commands separately or

combine them into the single command :wq. It is easier to combine
them.

6-20 USER'S GUIDE

v
0
E

Quitting vi

<a> This is a test file. <CR >

I am adding text to<CR>

now it is perfect.<CR>

a temporary buffer and<CR >

I want to write this file, <CR>

and return to the shell. < ESC >

30
5

SCREEN EDITOR TUTORIAL (vi) 6-21

Quitting vi

Figure 6-2 summarizes the basic commands you need to enter
and use vi.

Command Function

TERM =terminal name
export TERM set the terminal configuration

vi filename enter vi editor to edit the file called filename

<a> add text after the cursor

<h> move one character to the left

<j> move down one line

<k> move up one line

<l> move one character to the right

<x> delete a character

<CR> carriage return

<ESC> leave append mode, and return to vi
command mode

w write to a file

:q quit vi

wq write to a file and quit vi

<ZZ> write to a file and quit vi

Figure 6-2: Summary of Commands for the vi Editor

6-22 USER'S GUIDE

9
0
8

30
7

Exercise 1

Answers to the exercises are given at the end of this chapter.
However, keep in mind that there is often more than one way to per-
form a task in vi. If your method works, it is correct.

Ås you give commands in the following exercises, watch the
screen to see how it changes or how the cursor moves.

1-1. If you have not logged in yet, do so now. Then set your ter-
minal configuration.

1-2. Enter vi and append the following five lines of text to a new
file called exerl.

This is an exercise!
Up, down,
left, right,

build your terminal's
muscles bit by bit

1-3. Move the cursor to the first line of the file and the seventh

character from the right. Notice that as you move up the file,
the cursor moves in to the last letter of the file, but it does

not move out to the last letter of the next line.

1-4. Delete the seventh and eighth characters from the right.

1-5. Move the tursor to the last character on the last line of the
text.

1-6. Append the following new line of text:
and byte by byte

1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file
exerl.

What does the notice at the bottom of the screen say once you
have reentered vi to edit exerl?

SCREEN EDITOR TUTORIAL (vi) 6-23

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>,
<j>, <k>, <1>, BACKSPACE key, and the space bar. There are
several other commands that can help you move the cursor quickly
around the screen. This section explains how to position the cursor
in the following ways:

m by characters on a line

M by lines

M by text objects

o Words

o sentences

u paragraphs

HH in the window

There are also commands that position the cursor within parts of the
vi editing buffer that are not visible on the screen. These commands
will be discussed in the next section, ”Positioning the Cursor in
Undisplayed Text.”

To follow this section of the tutorial, you should enter vi with a
file that contains at least forty lines. If you do not have a file of that
length, create one now. Remember, to execute the commands

described here, you must be in command mode of vi. Press the
ESCAPE key to make sure that you are in command mode rather
than append mode.

6-24 USER'S GUIDE

8
0
£

30
9

 BESES
Moving the Cursor Around the Screen

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a
line.

EH by moving the cursor right or left to a character

m by specifying the character at either end of the line

MH by searching for a character on a line

The first method was discussed earlier in this chapter under ”Moving
the Cursor to the Right or Left.” The following sections describe the
other two methods.

Moving the Cursor to the Beginning or End of a Line

The second method of positioning the cursor on a line is by using
one of three commands that put the cursor on the first or last charac-
ter of a line.

<$> puts the cursor on the last character of a
line

<0> (zero) puts the cursor on the first character of a
line

<”> (circumflex) puts the cursor on the first nonblank charac-
ter of a line

The following examples show the movement of the cursor pro-
duced by each of these three commands.

SCREEN EDITOR TUTORIAL (vi) 6-25

Moving the Cursor Around the Screen

ØGET

<$>

Go to the end of the line!

se

Co to the beginning of the line!

<0>

Co to the beginning of the line!

6-26 USER'S GUIDE

OL
E

31
1

 FS ==
Moving the Cursor Around the Screen

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a
specific character on the current line. If the character is not found
on the current line, a bell sounds and the cursor does not move.

(There is also a command that searches a file for patterns. This will
be discussed in the next section.) There are six commands you can

use to search within a line: <f>, <F>, <t>, <T>, <;>, and

<,>. You must specify a character after all of them except the <;>
and <,> commands.

<fx> Move the cursor to the right to the specified character x.

<Fx> Move the cursor to the left to the specified character x.

<tx> Move the cursor right to the character just before the
specified character x.

<Tx> Move the cursor left to the character just after the
specified character x.

SCREEN EDITOR TUTORIAL (vi) 6-27

Moving the Cursor Around the Screen

<;>. Continue the search specified in the last command, in the

same direction. The ; remembers the character and seeks

out the next occurrence of that character on the current

line.

<,>. Continue the search specified in the last command, in the
opposite direction. The , remembers the character and
seeks out the previous occurrence of that character on the
current line.

For example, in the following screen vi searches to the right for
the first occurrence of the letter A on the current line.

mn

<fA>

Go forward to the letter A on this line.

RE | sd

Try the search commands on one of your files.

Line Positioning

Besides the <j> and <k> commands that you have already
used, the <+ >, <->, and <CR> commands can be used to move
the cursor to other lines.

6-28 USER'S GUIDE

L
E

31
3

 Bosse IEEE ==
Moving the Cursor Around the Screen

The Minus Sign Motion Command

The <-> command moves the cursor up a line, positioning it at
the first nonblank character on the line. To move more than one line

at a time, specify the number of lines you want to move before the
<-> command. For example, to move the cursor up thirteen lines,
type:

<13— >

The cursor will move up thirteen lines. If some of those lines are
above the current window, the window will scroll up to reveal them.
This is a rapid way to move quickly up a file.

Now try to move up 100 lines. Type:

<100— >

What happened to the window? If there are less then 100 lines above
the current line a bell will sound, telling you that you have made a
mistake, and the cursor will remain on the current line.

The Plus Sign Motion Command

The plus sign command (< + >) or the <CR> command moves

the cursor down a line. Specify the number of lines you want to
move before the <+ > command. For example, to move the cursor
down nine lines, type:

<9+>

The cursor will move down nine lines. If some of those lines are

below the current screen, the window will scroll down to reveal them.

Now try to do the same thing by pressing the RETURN key.
Were the results the same as when you pressed the + key?

SCREEN EDITOR TUTORIAL (vi) 6-29

Moving the Cursor Around the Screen

Word Positioning

The vi editor considers a word to be a string of characters that
may include letters, numbers, or underscores. There are six word
positioning commands: <w>, , <e>, <W>, , and
<E>. The lower case commands (<w>, , and <e>) treat
any character other than a letter, digit, or underscore as a delimiter,
signifying the beginning or end of a word. Punctuation before or
after a blank is considered a word. The beginning or end of a line is
also a delimiter.

The upper case commands (<W>, , and <E>) treat punc-
tuation as part of the word; words are delimited by blanks and new-
lines only.

The following is a summary of the word positioning commands.

<w> Move the cursor forward to the first character in the next
word. You may press <w> as many times as you want
to reach the word you want, or you can prefix the neces-
sary number to the <w>.

<nw> Move the cursor forward n number of words to the first
character of that word. The end of the line does not stop
the movement of the cursor; instead, the cursor wraps

around and continues counting words from the beginning

of the next line.

6-30. USER'S GUIDE

v
L
E

31
5

Moving the Cursor Around the Screen

all command

leaps word by word through the

file. Move from THIS word forward

<6w>

 six words to THIS word.

ll command

leaps word by word through the

file. Move from THIS word forward

six words to THIS word.

KN

NO
I
N

<W> Ignore all punctuation and move the cursor forward to
the word after the next blank.

<e> Moves the cursor forward in the line to the last character

in the next word.

SCREEN EDITOR TUTORIAL (vi) 6-31

Moving the Cursor Around the Screen

Go forward one word to the end of

the next word in this line

e

Æ
R
E

Go forward one word to the end of

the next word in this line

a
e

Go to the end of the third word after the current word.

<3e>

(
C
E
N

6-32 USER'S GUIDE

9
L
E

31
7

 oa ——KK
Moving the Cursor Around the Screen

Go to the end of the third word after the current word.

<E> Ignores all punctuation except blanks, delimiting words
only by blanks.

 Move the cursor backward in the line to the first charac-

ter of the previous word.

<nb> Move the cursor backward n number of words to the first

character of the nth word. The command does not

stop at the beginning of a line, but moves to the end of
the line above and continues moving backward.

 Can be used just like the command, except that it
delimits the word only by blank spaces and newlines. It
treats all other punctuation as letters of a word.

Ieap backward word by word through

the file. Go back four words fran here.

<4b>

SCREEN EDITOR TUTORIAL (vi) 6-33

Moving the Cursor Around the Screen

the file. Go back four words fram here. j

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence ends in
! or . or ?. If these delimiters appear in the middle of a line, they
must be followed by two blanks for vi to recognize them. You should
get used to the vi convention of recognizing two blanks after a period
as the end of a sentence, because it is often useful to be able to
operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file

with the <(> (open parenthesis) and <)> (close parenthesis) com-
mands.

< (> Move the cursor to the beginning of the current sentence.

< n(> Move the cursor to the beginning of the nth sentence
above the current sentence.

<) > Move the cursor to the beginning of the next sentence.

< n) > Move the cursor to the beginning of the nth sentence
below the current sentence.

6-34 USER'S GUIDE

B
L
E

31
9

Bee

Moving the Cursor Around the Screen

The example in the following screens shows how the open
parenthesis moves the cursor around the screen.

Suddenly we spotted whales in the

distance. Daniel was the first to see them,

<(>

i Daniel was the first to sæ them. j

Now repeat the command, preceding it with a number. For
example, type:

<3(> (or)

<5)>

Did the cursor move the correct number of sentences?

SCREEN EDITOR TUTORIAL (vi) 6-35

Moving the Cursor Around the Screen

Positioning the Cursor by Paragraphs

Paragraphs are recognized by vi if they begin after a blank line.
If you want to be able to move the cursor to the beginning of a para-

graph (or later in this tutorial, to delete or change a whole para-

graph), then make sure each paragraph ends in a blank line.

</[> Move the cursor to the beginning of the current
paragraph, which is delimited by a blank line
above it.

<n(> Move the cursor to the beginning of the nth para-
graph above the current paragraph.

<)> Move the cursor to the beginning of the next para-
graph.

<n)> Move the cursor to the nth paragraph below the
current line.

The following two screens show how the cursor can be moved to
the beginning of another paragraph.

nn

distance. Daniel was the first to see them.

ud

6-36 USER'S GUIDE

O
g
E

32
1

or

Moving the Cursor Around the Screen

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

"Hey look! Here care the whales!” he cried excitedly.

Positioning in the Window

The vi editor also provides three commands that help you posi-
tion yourself in the window. Try out each command. Be sure to type
them in upper case.

<H> Move the cursor to the first line on the screen.

<M> Move the cursor to the middle line on the screen.

<L> Move the cursor to the last line on the screen.

SCREEN EDITOR TUTORIAL (vi) 6-37

Moving the Cursor Around the Screen

This part of the file is
above the display window.

Type <H> (HOME) to move the cursor here. D

Type <M> (MIDDLE) to move the cursor here.

i
Type <L> (LAST line on screen) to move

the cursor here.

This part of the file is
below the display window.

Figures 6-3 through 6-6 summarize the vi commands for moving
the cursor by positioning it on a character, line, word, sentence, para-
graph, or position on the screen. (Additional vi commands for mov-

ing the cursor are summarized in Figure 6-7, later in the chapter.)

6-38 USER'S GUIDE

G
G
E

32
3

Moving the Cursor Around the Screen

Positioning on a Character

<h> Move the cursor one character to the left.

<l> Move the cursor one character to the right.

<BACKSPACE> | Move the cursor one character to the left.

<space bar> Move the cursor one character to the right.

<fx> Move the cursor to the right to the specified
character x.

<Fx> Move the cursor to the left to the specified
character x.

<tx> Move the cursor to the right, to the character

just before the specified character x.

<Tx> Move the cursor to the left, to the character

just after the specified character x.

<;> Continue searching in same direction on the
line for the last character requested with
<f>, <F>, <t>, or <T>. The ;
remembers the character and finds the next

occurrence of it on the current line.

<,> Continue searching in opposite direction on
the line for the last character requested with
<f>, <F>, <t>, or <T>. The,

remembers the character and finds the next

occurrence of it on the current line.

Figure 6-3: Summary of vi Motion Commands (Sheet 1 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-39

Moving the Cursor Around the Screen

Positioning on a Line

<k>

<j>

<+t>

<CR>

Move the cursor up to the same column in the
previous line (if a character exists in that column).

Move the cursor down to the same column in the

next line (if a character exists in that column).

Move the cursor up to the beginning of the previ-
ous line.

Move the cursor down to the beginning of the
next line.

Move the cursor down to the beginning of the
next line.

Figure 6-4: Summary of vi Motion Commands (Sheet 2 of 4)

6-40 USER'S GUIDE

v
e

32
5

Moving the Cursor Around the Screen

Positioning on a Word

<w>

Move the cursor forward to the first character in

the next word.

Ignore all punctuation and move the cursor for-
ward to the next word delimited only by blanks.

Move the cursor backward one word to the first

character of that word.

Move the cursor to the left one word, which is del-

imited only by blanks.

Move the cursor to the end of the current word.

Delimit the words by blanks only. The cursor is
placed on the last character before the next blank
space, or end of the line.

Figure 6-5: Summary of vi Motion Commands (Sheet 3 of 4)

SCREEN EDITOR TUTORIAL (vi) 6-41

Moving the Cursor Around the Screen

Positioning on a Sentence

<(> Move the cursor to the beginning of the current
sentence.

<)> Move the cursor to the beginning of the next sen-
tence.

Positioning on a Paragraph

</> Move the cursor to the beginning of the current
paragraph.

<)l> Move the cursor to the beginning of the next

paragraph.

Positioning in the Window

<H> Move the cursor to the first line on the screen

(the home position).

<M> Move the cursor to the middle linc on the screen.

<L> Move the cursor to the last line on the screen.

Figure 6-6: Summary of vi Motion Commands (Sheet 4 of 4)

6-42 USER'S GUIDE

9
g
E

32
7

Positioning the Cursor in Undisplayed
Text

How do you move the cursor to text that is not shown in the
current editing window? One option is to use the <20j> or <20k>
command. However, if you are editing a large file, you need to move
quickly and accurately to another place in the file. This section cov-
ers those commands that can help you move around within the file in
the following ways:

EH by scrolling forward or backward in the file

EH by going to a specified line in the file

M by searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The <"f>
(control-f) and <”d> (control-d) commands scroll the screen for-

ward. The <"b> (control-b) and <"”u> (control-u) commands scroll

the screen backward.

The Control-f Command

The <"f> (control-f) command scrolls the text forward one full

window of text below the current window. To do this vi clears the

screen and redraws the window. The three lines that were at the

bottom of the current window are placed at the top of the new win-
dow. If there are not enough lines left in the file to fill the window,
the screen displays a — (tilde) to show that there are empty lines.

vi clears and redraws the screen as follows:

SCREEN EDITOR TUTORIAL (vi) 6-43

Positioning the Cursor in Undisplayed Text

These last three lines of the current
window become the first two lines of
the new window.

'-

|

This part of the file
is below the display
window.

You can scroll forward

to place this text in the
display window.

NE ()

The Control-d Command

The <"d> (control-d) command scrolls down a half screen to
reveal text below the window. When you type <"d>, the text
appears to be rolled up at the top and unrolled at the bottom. This
allows the lines below the screen to appear on the screen, while the
lines at the top of the screen disappear. If there are not enough lines
in the file, a bell will sound.

The Control-b Command

The <"b> (control-b) command scrolls the screen back a full

window to reveal the text above the current window. To do this, vi

clears the screen and redraws the window with the text that is above

the current screen. Unlike the <"f> command, <"b> does not

6-44. USER'S GUIDE

BØ
E

32
9

Positioning the Cursor in Undisplayed Text

leave any reference lines from the previous window. If there are not
enough lines above the current window to fill a full new window, a
bell will sound and the current window will remain on the screen.

(anis part of the file (|)
is above the display
window.

You can scroll backward
to place this text in the
display window. Any text in this display window

will be placed below the current
window.

The current window clears and is re-

drawn with the text above the window.

Now try scrolling backward. Type

vi clears the screen and draws a new screen.

SCREEN EDITOR TUTORIAL (vi) 6-45

 me
Positioning the Cursor in Undisplayed Text

This part of the file I
is above the display window.

You can scroll backward
to place this text in the
display window.

Åny text in this display window
will be placed below the current
window.
The current window clears and is

redrawn with the text above the
window.

Any text that was in the display window is placed below the current
window.

The Control-zu Command

The <"u> (control-u) command scrolls up a half screen of text
to reveal the lines just above the window. The lines at the bottom of
the window are erased. Now scroll down in the text, moving the por-

tion below the screen into the window. Type:

<"u>

When the cursor reaches the top of the file, a bell sounds to notify

you that the file cannot scroll further.

6-46 USER'S GUIDE

O
£
E

33
1

Positioning the Cursor in Undisplayed Text

Go to a Specified Line

The <G> command positions the cursor on a specified line in
the window; if that line is not currently on the screen, <G> clears
the screen and redraws the window around it. If you do not specify a
line, <G> goes to the last line of the file.

<G> go to the last line of the file

<nG> go to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its posi-
tion in the buffer. To get the number of a particular line, position
the cursor on it and type <"g>. The <"g> command gives you a
status notice at the bottom of the screen which tells you:

m the name of the file

mM if the file has been modified

MH the line number on which the cursor rests

EH the total number of lines in the buffer

M the percentage of the total lines in the buffer represented by
the current line

SCREEN EDITOR TUTORIAL (vi) 6-47

Positioning the Cursor in Undisplayed Text

6-48

This line is the 35th line of the buffer.

The cursar is on this line.

FS <"g>

There are several more lines in the

buffer.

The last line of the buffer is line 116.

This line is the 35th line of the buffer.

The cursor is on this lire.

There are several more lines in the

buffer,

The last line of the buffer is lire 116.

"file.nare"” [modified] line 36 of 116 —349—

USER'S GUIDE

f4
%9
%

33
3

 Br 7] ==
Positioning the Cursor in Undisplayed Text

Searching for a Pattern of Characters: the /
and ? Commands

The fastest way to reach a specific place in your text is by using

one of the search commands: /, ?, <n>, or <N>. These com-

mands allow you to search forward or backward in the buffer for the

next occurrence of a specified character pattern. The / and ? com-
mands are not silent; they appear as you type them, along with the
search pattern, on the bottom of the screen. The <n> and <N>
commands, which allow you to repeat the requests you made for a
search with a / or ? command, are silent.

The /, followed by a pattern (/pattern), searches forward in the
buffer for the next occurrence of the characters in pattern, and puts
the cursor on the first of those characters. For example, the com-
mand line

/Hello world<CR >

finds the next occurrence in the buffer of the words Hello world and

puts the cursor under the H.

The ?, followed by a pattern (?pattern), searches backward in the
buffer for the first occurrence of the characters in pattern, and puts
the cursor on the first of those characters. For example, the com-
mand line

?data set design <CR>

finds the last occurrence in the buffer (before your current position)
of the words data set design and puts the cursor under the d in
data.

These search commands do not wrap around the end of a line
while searching for two words. For example, say you are searching
for the words Hello world. If Hello is at the end of one line and
world is at the beginning of the next, the search command will not
find that occurrence of Hello World.

SCREEN EDITOR TUTORIAL (vi) 6-49

Positioning the Cursor in Undisplayed Text

However, they do wrap around the end or the beginning of the
buffer to continue a search. For example, if you are near the end of
the buffer, and the pattern for which you are searching (with the
[pattern command) is at the top of the buffer, the command will find
the pattern.

The <n> and <N> commands allow you to continue searches
you have requested with /pattern or ?pattern without retyping them.

<n> Repeat the last search command.

<N> Repeat the last search command in the opposite direction.

For example, say you want to search backward in the file for the
three-letter pattern the. Initiate the search with ?the and continue it
with <n>. The following screens offer a step-by-step illustration of
how the <n> searches backward through the file and finds four
occurrences of the character string the.

nm y, ve spotted whales in the

distance. Daniel was the first to see them.

"Key look! Here came the whales!” he cried excitedly.

 ?the

KO

6-50 USER'S GUIDE

v
e
r

33
5

Positioning the Cursor in Undisplayed Text

ARE

distance. Daniel was the first to see them.

P

”Hey look! Here care the whales!” he cried excitedly.

(1)

distance. Daniel was the first to sæ them.

"Hey lcok! Here care the whales!” he cried excitedly.

SCREEN EDITOR TUTORIAL (vi)

N

”/

oms me ts IN

B,

6-51

dd
Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the

distance. Daniel was the first to see them.

(2)

"Hey lookl Here care the whalesl” he cried excitedly.

KN

Suddenly, we spotted whales in the

distance. Daniel was the first to sæ them.

<n>

 "Hey look! Here core the whales!” he cried excitedly.

6-52. USER'S GUIDE

9
£
E

33
97

Positioning the Cursor in Undisplayed Text

nn

distance. Daniel was the first to see them.

(3)

 ”Hey look! Here care the whales!” he cried excitedly.

SEERE

distance. Daniel was the first to see them.

<n>

P ”Hey look! Here care the whales!” he cried excitedly.

N

ik

»,

SCREEN EDITOR TUTORIAL (vi) 6-53

Kæs=r==; = == — =— me z BES DD == =

Positioning the Cursor in Undisplayed Text

mn

(4)

distance. Daniel was the first to sæ them.

.P

ATT Here care the whales!” he cried excitedly. ”,

The / and ? search commands do not allow you to specify particu-
lar occurrences of a pattern with numbers. You cannot, for example,

request the third occurrence (after your current position) of a pat-

tern.

Figure 6-7 summarizes the vi commands for moving the cursor

by scrolling the text, specifying a line number, and searching for a
pattern.

6-54 USER'S GUIDE

BE
E

33
9

Positioning the Cursor in Undisplayed Text

Secrolling

<"f> Scroll the screen forward a full window, revealing the win-
dow of text below the current window.

<"d> Seroll the screen down a half window, revealing lines below
the current window.

 Seroll the screen back a full window, revealing the window of
text above the current window.

<"u> Seroll the screen up a half window, revealing the lines of text
above the current window.

Positioning on a Numbered Line

<l1G> Go to the first line of the file.

<G> Go to the last line of the file.

<"g> Give the line number and file status.

Searching for a Pattern

[pattern | Search forward in the buffer for the next occurrence of the
pattern. Position the cursor on the first character of the pat-
tern.

pattern | Search backward in the buffer for the first occurrence of the

pattern. Position the cursor under the first character of the
pattern.

<n> Repeat the last search command.

<N> Repeat the search command in the opposite direction.

Figure 6-7: Summary of Additional vi Motion Commands

SCREEN EDITOR TUTORIAL (vi) — 6-55

—Å dd

Exercise 2

2-1.

Create a file called exer2. Type a number on each line,
numbering the lines from 1 to 50. Your file should look simi-
lar to the following.

C ON

NC »,

2-2.

2-3.

6-56

Try using each of the scroll commands, noticing how many
lines scroll through the window. Try the following:

<"f>
<"b>
<"u>

<"d>

Go to the end of the file. Append the following line of text.

123456789 123456789

What number does the command <7h> place the cursor on?
What number does the command <3l1> place the cursor on?

Try the command <$> and the command <0> (number
zero).

USER'S GUIDE

O
v
E

34
1

Exercise 2

Go to the first character on the line that is not a blank. Move

to the first character in the next word. Move back to the first

character of the word to the left. Move to the end of the

word.

Go to the first line of the file. Try the commands that place
the cursor in the middle of the window, on the last line of the

window, and on the first line of the window.

Search for the number 8. Find the next occurrence of the

number 8. Find 48.

SCREEN EDITOR TUTORIAL (vi) 6-57

Creating Text

There are three basic commands for creating text:

<a> append text

<i> insert text

<0o> open a new line on which text can be entered

After you finish creating text with any one of these commands,
you can return to the command mode of vi by pressing the ESCAPE
key.

Appending Text

<a> append text after the cursor

<A> append text at the end of the current line

You have already experimented with the <a> command in the
”Creating a File” section. Make a new file named junk2. Append

some text using the <a> command. To return to command mode of
vi, press the ESCAPE key. Then compare the <a> command to the
<A> command.

Inserting Text

<i> insert text before the cursor

<I> insert text at the beginning of the current line before the

first character that is not a blank

To return to the command mode of vi, press the ESCAPE key.

In the following examples you can compare the append and insert
commands. The arrows show the position of the cursor, where new
text will be added.

6-58 USER'S GUIDE

cC
vE

34
3

Creating Text

mmm

<a>

Append three spaces AFTER the Hof H ere.

<ESC>

DN

AE

<i>.

Insert three spaces BEFORE the Hof Here.

<ESC>

SCREEN EDITOR TUTORIAL (vi) 6-59

Creating Text

Opening a Line for Text

<o> Create text from the beginning of a new line below the
current line. You can issue this command from any point

in the current line.

<O> Create text from the beginning of a new line above the
current line. This command can also be issued from any
position in the current line.

The open command creates a directly above or below the current
line, and puts you into text input mode. For example, in the follow-
ing screens the <O> command opens a line above the current line,
and the <0o> command opens a line below the current line. In both
cases, the cursor waits for you to enter text from the beginning of the

new line.

"Æ
l NU

6-60. USER'S GUIDE

v
r
e

34
5

 de
Creating Text

Now create text BELOW the current line.

[blank line]

Figure 6-8 summarizes the commands for creating and adding
text with the vi editor.

SCREEN EDITOR TUTORIAL (vi) 6-61

Creating Text

Command Function

<a> Create text after the cursor.

<A> Create text at the end of the current line.

<i> Create text in front of the cursor.

<I> Create text before the first character on the

current line that is not a blank.

<o0o> Create text at the beginning of a new line
below the current line.

<0o> Create text at the beginning of a new line
above the current line.

<ESC> Return vi to command mode from any of the
above text input modes.

Figure 6-8: Summary of vi Commands for Creating Text

6-62 USER'S GUIDE

9
v
E

34
7

Exercise 3

3-1.

3-2.

3-3.

3-5.

3-7.

Create a text file called exer3.

Insert the following four lines of text.

Append text
Insert text

a computer's
job is boring.

Add the following line of text above the last line:

financial statement and

Using a text insert command, add the following line of text
above the third line:

Delete text

Add the following line of text below the current line:

byte of the budget

Using an append command, add the following line of text

below the last line:

But, it is an exciting machine.

Move to the first line and add the word some before the word

text.

Now practice using each of the six commands for creating
text.

Leave vi and go on to the next section to find out how to
delete any mistakes you made in creating text.

SCREEN EDITOR TUTORIAL (vi) 6-63

Deleting Text

You can delete text with various commands in command mode,

and undo the entry of small amounts of text in text input mode. In
addition, you can undo entirely the effects of your most recent com-
mand.

Undoing Entered Text in Text Input Mode

To delete a character at a time when you are in text input mode
use the BACKSPACE key.

<BACKSPACE > Delete the current character (the character

shown by the cursor).

The BACKSPACE key backs up the cursor in text input mode
and deletes each character that the cursor backs across. However,

the deleted characters are not erased from the screen until you type

over them or press the ESCAPE key to return to command mode.

In the following example, the arrows represent the cursor.

6-64 USER'S GUIDE

B
v
E

34
9

dk
Deleting Text

all

Mary håd a litttl

<BACKSPACE> <BACKSPACE >

Mary had a litttl

<ESC>

Mary had a litt

K. Er.
Notice that the characters are not erased from the screen until you
press the ESCAPE key.

There is one more key for deleting text in text input mode.
Although you may not use this key often, you should be aware that it
is available.

<"w> undo the entry of the current word

When you type <"w>, the cursor backs up over the word last
typed and waits on the first character. It does not literally erase the
word until you press the ESCAPE key or enter new characters over
the old ones.

Undo the Last Command

Before you experiment with the delete commands, you should try
the u command. This command undoes the last command you issued.

SCREEN EDITOR TUTORIAL (vi) 6-65

Deleting Text

<u> undo the last command

<U> restore the current line to its state before you changed it

If you delete lines by mistake, type <u>; your lines will reap-
pear on the screen. If you type the wrong command, type <u> and
it will be nullified. The <U> command will nullify all changes made
to the current line as long as the cursor has not been moved from it.

If you type <u> twice in a row, the second command will undo
the first; your undo will be undone! For example, say you delete a
line by mistake and restore it by typing <u>. Typing <u> a
second time will delete the line again. Knowing this command can
save you a lot of trouble.

Delete Commands in Command Mode

You know that you can precede a command by a number. Many
of the commands in vi, such as the delete and change commands, also
allow you to enter a cursor movement command after another com-
mand. The cursor movement command can specify a text object such
as a word, line, sentence, or paragraph. The general format of a vi
command is:

[number][command]text object

The brackets around some components of the command format show
that those components are optional.

All delete commands issued in command mode immediately

remove unwanted text from the screen and redraw the affected part

of the screen.

The delete command follows the general format of a vi command.

[number]dtext object

6-66 USER'S GUIDE

O
S
E

 BE
Deleting Text

Deleting Words

You can delete a word or part of a word with the <dw> com-
mand. Move the cursor to the first character to be deleted and type
<dw>. The character under the cursor and all subsequent charac-

ters in that word will be erased.

the deep dark deæpths of the lake.

<2dw>

35
1

the depths of the lake.

The <dw> command deletes one word or punctuation mark and
the space(s) that follow it. You can delete several words or marks at

once by specifying a number before the command. For example, to
delete three words and two commas, type <5dw>.

SCREEN EDITOR TUTORIAL (vi) 6-67

 dd
Deleting Text

the deep, deep, dark depths of the lake

<ddw>

the dæpths of the lake

SN I
N

Deleting Paragraphs

To delete paragraphs, use the following commands.

<d[> or <d)>

Observe what happens to your file. Remember, you can restore the
deleted text with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a
number before the command. For example, typing

<l0dd >

6-68 USER'S GUIDE

S
E

35
3

Deleting Text

will erase ten lines. If you delete more than a few lines, vi will
display this notice on the bottom of the screen:

10 lines deleted

If there are less than ten lines below the current line in the file, a

bell will sound and no lines will be deleted.

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the
first character to be deleted and type

<D> or <d$>.

Neither of these commands allows you to specify a number of lines;
they can be used only on the current line.

Figure 6-9 summarizes the vi commands for deleting text.

SCREEN EDITOR TUTORIAL (vi) 6-69

Deleting Text

Command Function

For INSERT Mode:

<BACKSPACE > Delete the current character.

<h> Delete the current character.

<"w> Delete the current word.

For COMMAND Mode:

<u> Undo the last command.

<U> Restore current line to its previous state.

<x> Delete the current character.

<ndx> Delete n number of text objects of type x.

<dw> Delete the word at the cursor through
the next space or to the next punctua-

tion mark.

<dWw> Delete the word and punctuation at the
cursor through the next space.

<dd> Delete the current line.

<D> Delete the portion of the line to the right
of the cursor.

<d)> Delete the current sentence.

<d)> Delete the current paragraph.

Figure 6-9: Summary of Delete Commands

6-70. USER'S GUIDE

v
S
E

35
5

Exercise 4

4-1.

4-2.

Create a file called exer4 and put the following four lines of
text in it:

When in the course of human events
there are many repetitive, boring

chores, then one ought to get a

robot to perform those chores.

Move the cursor to line two and append to the end of that
line:

tedious and unsavory.

Delete the word unsavory while you are in append mode.

Delete the word boring while you are in command mode.

What is another way you could have deleted the word boring?

Insert at the beginning of line four:

congenial and computerized.

Delete the line.

How can you delete the contents of the line without removing
the line itself?

Delete all the lines with one command.

Leave the screen editor and remove the empty file from your
directory.

SCREEN EDITOR TUTORIAL (vi) 6-71

 —J dde F————————E7N

Modifying Text

The delete commands and text input commands provide one way
for you to modify text. Another way you can change text is by using

a command that lets you delete and create text simultaneously.
There are three basic change commands: <r>, <s>, and <c>.

Replacing Text

<r> Replace the current character (the character shown by
the cursor). This command does not initiate text input
mode, and so does not need to be followed by pressing the
ESCAPE key.

<nr> Replace n characters with the same letter. This command
automatically terminates after the næh character is
replaced. It does not need to be followed by pressing the
ESCAPE key.

<R> Replace only those characters typed over until the
ESCAPE command is given. If the end of the line is
reached, this command will append the input as new text.

The <r> command replaces the current character with the next
character that is typed in. For example, suppose you want to change
the word acts to ants in the following sentence:

The circus has many acts.

Place the cursor under the c of acts and type

<r>n

The sentence becomes

The circus has many ants.

6-72. USER'S GUIDE

9
S
E

35
7

 BESES SEERE
Modifying Text

To change many to 7777, place the cursor under the m of many and
type

<4r7>

The <r> command changes the four letters of many to four
occurrences of the number seven.

The circus has 7777 ants.

Substituting Text

The substitute command replaces characters, but then allows you
to continue to insert text from that point until you press the
ESCAPE key.

<s> Delete the character shown by the cursor and append
text. End the text input mode by pressing the ESCAPE
key.

<ns> Delete n characters and append text. End the text input
mode by pressing the ESCAPE key.

<S> Replace all the characters in the line.

When you enter the <s> command, the last character in the
string of characters to be replaced is overwritten by a $ sign. The
characters are not erased from the screen until you type over them,
or leave text input mode by pressing the ESCAPE key.

Notice that you cannot use an argument with either <r> or
<s>. Did you try?

Suppose you want to substitute the word million for the word
hundred in the sentence My salary is one hundred dollars. Put the
cursor under the h of hundred and type <7s>. Notice where the $
sign appears.

SCREEN EDITOR TUTORIAL (vi) 6-73

Modifying Text

My salary is one hundred dollars.

<7s>

Then type million.

My salary is one hundre$ dollars.

million

My salary is one million dollars.

NO

J
N
 I
N

6-74. USER'S GUIDE

BS
sE

35
9

Modifying Text

Changing Text

The substitute command replaces characters. The change com-
mand replaces text objects, and then continues to append text from
that point until you press the ESCAPE key. To end the change com-
mand, press the ESCAPE key.

The change command can take an argument. You can replace a
character, word, or an entire line with new text.

<nex > Replace n number of text objects of type x, such as
sentences (shown by <)>) and paragraphs (shown by
<)>).

<cw> Replace a word or the remaining characters in a word
with new text. The vi editor prints a $ sign to show
the last character to be changed.

<new> Replace n words.

<cc> Replace all the characters in the line.

<nce> Replace all characters in the current line and up ton
lines of text.

<C> Replace the remaining characters in the line, from the
cursor to the end of the line.

<nC> Replace the remaining characters from the cursor in
the current line and replace all the lines following the
current line up to n lines.

The change commands, <cw> and <C>, use a $ sign to mark
the last letter to be replaced. Notice how this works in the following
example:

SCREEN EDITOR TUTORIAL (vi) 6-75

Modifying Text

They are now dåe to arrive on Tuesday.

<cw>

They are now due to arrive on Tuesda$.

Wednesday <ESC >

They are now due to arrive on Wednesday.

6-76. USER'S GUIDE

09
e

36
1

Modifying Text

Notice that the new word (Wednesday) has more letters than the word
it replaced (Tuesday). Once you have executed the change command
you are in text input mode and can enter as much text as you want.
The buffer will accept text until you press the ESCAPE key.

The <C> command, when used to change the remaining text on
a line, works in the same way. When you enter the command it uses
a $ sign to mark the end of the text that will be deleted, puts you in
text input mode, and waits for you to type new text over the old. The
following screens offer an example of the C command.

"AE

Oh, I mist have the wrong number.

<C>

This is lire 3.

N

SER ir.

(ass an

Æ.

Oh, I must have the wrong nunbers

This is line 2.<ESC>

This is line 3.

This is line 4.

ml

SCREEN EDITOR TUTORIAL (vi) 6-77

 rr]
Modifying Text

Now try combining arguments. For example, type

<c/>

Because you know the undo command, do not hesitate to experiment

with different arguments or to precede the command with a number.
You must press the ESCAPE key before using the <u> command,

since <c> places you in text input mode.

Compare <S> and <cc>. The two commands should produce

the same results.

Figure 6-10 summarizes the vi commands for changing text.

6-78 USER'S GUIDE

C
9
€

36
3

Modifying Text

Command Function

<r> Replace the current character.

<R> Replace only those characters typed over with

new characters until the ESCAPE key is
pressed.

<s> Delete the character the cursor is on and
append text. End the append mode by press-
ing the ESCAPE key.

<S> Replace all the characters in the line.

<cc> Replace all the characters in the line.

<ncx> Replace n number of text objects of type x,
such as sentences (shown by <)>) and para-

graphs (shown by <) >).

<cw> Replace a word or the remaining characters in

a word with new text.

<C> Replace the remaining characters in the line,

from the cursor to the end of the line.

Figure 6-10: Summary of vi Commands for Changing Text

SCREEN EDITOR TUTORIAL (vi) 6-79

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file.
Another set of commands copies a portion of text and places it in
another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by
deleting the lines and then placing them at the required point. The
last text that was deleted is stored in a temporary buffer. If you
move the cursor to that part of the file where you want the deleted
lines to be placed and press the p key, the deleted lines will be added
below the current line.

<p> Place the contents of the temporary buffer after the cur-

sor.

Å partial sentence that was deleted by the <D> command can

be placed in the middle of another line. Position the cursor in the

space between two words, then press <p>. The partial line is placed
after the cursor.

Characters deleted by <nx> also go into a temporary buffer.
Any text object that was just deleted can be placed somewhere else in
the text with <p>.

The <p> command should be used right after a delete command
since the temporary buffer only stores the results of one command at
a time, The <p> command is also used to copy text placed in the
temporary buffer by the yank command. The yank command (<y>)

is discussed in ”Copying Text.”

6-80 USER'S GUIDE

v
9
E

36
5

Cutting And Pasting Text Electronically

Fixing Transposed Letters

Å quick way to fix transposed letters is to combine the <x> and
the <p> commands as <xp>. <x> deletes the letter. <p>
places it after next character.

Notice the error in the next line.

A line of tetx

This error can be changed quickly by placing the cursor under the t
in tx and then pressing the <x> and <p> keys, in that order. The
result is:

A line of text

Try this. Make a typing error in your file and use the <xp>
command to correct it. Why does this command work?

Copying Text

You can yank (copy) one or more lines of text into a temporary

buffer, and then put a copy of that text anywhere in the file. To put
the text in a new position type <p>; the text will appear on the next
line.

The yank command follows the general format of a vi command.

[number]yl[text object]

Yanking lines of text does not delete them from their original position
in the file. If you want the same text to appear in more than one
place, this provides a convenient way to avoid typing the same text
several times. However, if you do not want the same text in multiple
places, be sure to delete the original text after you have put the text
into its new position.

SCREEN EDITOR TUTORIAL (vi) 6-81

Cutting And Pasting Text Electronically

Figure 6-11 summarizes the ways you can use the yank command.

Command Function

<nyx> Yank n number of text objects of type x, (such
as sentences) and paragraphs)).

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line.

<nyy> Yank n lines.

<y)> Yank all text up to the end of a sentence.

<yl> Yank all text up to the end of the paragraph.

Figure 6-11: Summary of the Yank Command

Notice that this command allows you to specify the number of text
objects to be yanked.

Try the following command lines and see what happens on your
screen. (Remember, you can always undo your last command.) Type:

<byw>

Move the cursor to another spot. Type:

<p>

Now try yanking a paragraph <y)> and placing it after the current
paragraph. Then move to the end of the file <G> and place that

same paragraph at the end of the file.

6-82 USER'S GUIDE

9
9
€

36
7

Cutting And Pasting Text Electronically

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of
the file is tedious work. vi provides a shortcut for this: named regis-
ters in which you can store text until you want to move it. To store
text you can either yank or delete the text you wish to store.

Using registers is useful if a piece of text must appear in many

places in the file. The extracted text stays in the specified register
until you either end the editing session, or yank or delete another
section of text to that register.

The general format of the command is:

[number] [”x]command[text object]

The x is the name of the register and can be any single letter. It
must be preceded by a double quotation mark. For example, place
the cursor at the beginning of a line. Type:

<3”ayy>

Type in more text and then go to the end of the file. Type:

<”ap>

Did the lines you saved in register a appear at the end of the file?

Figure 6-12 summarizes the cut and paste commands.

SCREEN EDITOR TUTORIAL (vi) 6-83

il G
Cutting And Pasting Text Electronically

Command Function

<p>

<yy>

<nyx>

<”"xyn>

<”xp>

Place the contents of the temporary buffer
containing the text obtained from the most
recent delete or yank command into the text
after the cursor.

Yank a line of text and place it into a tem-
porary buffer.

Yank a copy of n number of text objects of
type x and place them in a temporary buffer.

Place a copy of a text object of type n in the
register named by the letter x.

Place the contents of the register x after the
cursor.

Figure 6-12: Summary of vi Commands for Cutting and Pasting Text

6-84 USER'S GUIDE

89
£

36
9

ESI==

Exercise 5

5-1.

5-3.

Enter vi with the file called exer2. that you created in Exer-
cise 2.

Go to line eight and change its contents to END OF FILE

Yank the first eight lines of the file and place them in register
z. Put the contents of register z after the last line of the file.

Go to line eight and change its contents to eight is great

Go to the last line of the file. Substitute EXERCISE for

FILE Replace OF with TO

SCREEN EDITOR TUTORIAL (vi) 6-85

6-86 USER'S GUIDE

This page is intentionally left blank

O
Z
E

37
1

SCREEN EDITOR TUTORIAL (vi) 6-87

Special Commands

Here are some special commands that you will find useful.

<.> repeat the last command

<J> join two lines together

<"r> clear the screen and redraw it

<-—>… change lower case to upper case and vice versa

Repeating the Last Command

The . period repeats the last command to create, delete, or change
text in the file. It is often used with the search command.

For example, suppose you forget to capitalize the S in United

States. However, you do not want to capitalize the s in chemical

states. One way to correct this problem is by searching for the word
states. The first time you find it in the expression United States, you

can change the s to S. Then continue your search. When you find
another occurrence, you can simply type a period; vi will remember
your last command and repeat the substitution of s for S.

Experiment with this command. For example, if you try to add a
period at the end of a sentence while in command mode, the last text
change will suddenly appear on the screen. Watch the screen to see
how the text is affected.

Joining Two Lines

The <J> command joins lines. To enter this command, place

the cursor on the current line, and press the SHIFT and j keys simul-
taneously. The current line is joined with the following line.

SCREEN EDITOR TUTORIAL (vi) 6-87

Special Commands

For example, suppose you have the following two lines of text:

Dear Mr.

Smith:

To join these two lines into one, place the cursor under any character
in the first line and type:

<J>

You will immediately see the following on your screen:

Dear Mr. Smith:

Notice that vi automatically places a space between the last word on
the first line and the first word on the second line.

Clearing and Redrawing the Window

If another UNIX system user sends you a message using the write

command while you are editing with vi, the message will appear in

your current window, over part of the text you are editing. To

restore your text after you have read the message, you must be in

command mode. (If you are in text input mode, press the ESCAPE
key to return to command mode.) Then type <”r> (control-r). vi
will erase the message and redraw the window exactly as it appeared

before the message arrived.

Changing Lower Case to Upper Case and Vice
Versa

Å quick way to change any lower case letter to upper case, or vice

versa, is by putting the cursor on the letter to be changed and typing

a <—> (tilde). For example, to change the letter a to Å, press —.

You can change several letters by typing — several times, but you
cannot precede the command with a number to change several letters

with one command.

6-88 USER'S GUIDE

C
L
E

37
3

Special Commands

Figure 6-13 summarizes the special commands.

Command Function

<.> Repeat the last command.

<J> Join the line below the current line with the current
line.

<'r> Clear and redraw the current window.

<—> Change lower case to upper case, or vice versa.

Figure 6-13: Summary of Special Commands

SCREEN EDITOR TUTORIAL (vi) 6-89

Using Line Editing Commands in vi

The vi editor has access to many of the commands provided by a
line editor called ex. (For a complete list of ex commands see the
ex(1) page in the System V Reference Manual.) This section discusses

some of those most commonly used.

The ex commands are very similar to the ed commands discussed
in Chapter 5. If you are familiar with ed, you may want to experi-
ment on a test file to see how many ed commands also work in vi.

Line editor commands begin with a : (colon). After the colon is

typed, the cursor will drop to the bottom of the screen and display

the colon. The remainder of the command will also appear at the
bottom of the screen as you type it.

Temporarily Returning to the Shell: the :sh and
:! Commands

When you enter vi, the contents of the buffer fill your screen,

making it impossible to issue any shell commands. However, you

may want to do so. For example, you may want to get information
from another file to incorporate into your current text. You could get
that information by running one of the shell commands that display

the text of a file on your screen, such as the cat or pg command.
However, quitting and reentering the editor is time consuming and

tedious. vi offers two methods of escaping the editor temporarily so
that you can issue shell commands (and even edit other files) without

having to write your buffer and quit: the :! command and the :sh
command.

The :! command allows you to escape the editor and run a shell
command on a single command line. From the command mode of vi,
type :!. These characters will be printed at the bottom of your screen.

Type a shell command immediately after the !. The shell will run
your command, give you output, and print the message [Hit return
to continue]. When you press the RETURN key vi will refresh the
screen and the cursor will reappear exactly where you left it.

6-90 USER'S GUIDE

v
Z
E

37
5

Using Line Editing Commands in vi

The ex command :sh allows you to do the same thing, but
behaves differently on the screen. From the command mode of vi
type :sh and press the RETURN key. A shell command prompt will
appear on the next line. Type your command(s) after the prompt as

you would normally do while working in the shell. When you are
ready to return to vi, type <"d> or exit; your screen will be
refreshed with your buffer contents and the cursor will appear where
you left it.

Even changing directories while you are temporarily in the shell
will not prevent you from returning to the vi buffer where you were
editing your file when you type exit or <"d>.

Writing Text to a New File: the :w Command

The :w (for write) command allows you to create a file by copying
lines of text from the file your are currently editing into a file that
you specify. To create your new file you must specify a line or range
of lines (with their line numbers), along with the name of the new
file, on the command line. You can write as many lines as you like.
The general format is:

line number[,line number]w filename

For example, to write the third line of the buffer to a line named

three, type:

:3wW three<CR>

vi reports the successful creation of your new file with the following
information:

"three” [New file] 1 line, 20 characters

To write your current line to a file, you can use a . (period) as the
line address:

;w junk<CR>

ÅA new file called junk will be created. It will contain only the
current line in the vi buffer.

SCREEN EDITOR TUTORIAL (vi) — 6-91

Using Line Editing Commands in vi

You can also write a whole section of the buffer to a new file by

specifying a range of lines. For example, to write lines 23 through 37

to a file, type the following:

:23,37w newfile <CR >

Finding the Line Number

To determine the line number of a line, move the cursor to it and

type : (colon). The colon will appear at the bottom of the screen.
Type .= after it and press the RETURN key.

If you want to know the nnber

of this line, type :=<CR>

Ås soon as you press the RETURN key, your command line will
disappear from the bottom line and be replaced by the number of

your current line in the buffer.

6-92 USER'S GUIDE

g9
ZE

37
7

 de
Using Line Editing Commands in vi

If you want to know the number

of this line, type in :,= <CR>

34

(
C
E
N

You can move the cursor to any line in the buffer by typing : and
the line number. The command line

m<CR>

means to go to the nth line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current
line and the end of the buffer is by using the line editor command d
with the special symbols for the current and last lines.

:$d<CR>

The . represents the current line; the $ sign, the last line.

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer,
use the :r (read) command. For example, to put the contents of a file
called data into your current file, place the cursor on the line above
the place where you want it to appear. Type:

:r data<CR>

You may also specify the line number instead of moving the cursor.
For example, to insert the file data below line 56 of the buffer, type

SCREEN EDITOR TUTORIAL (vi) 6-93

Using Line Editing Commands in vi

:56r data<CR>

Do not be afraid to experiment; you can use the <u> command to

undo ex commands, too. '

Making Global Changes

One of the most powerful commands in ex is the global com-

mand. The global command is given here to help those users who are
familiar with the line editor. Even if you are not familiar with a line
editor, you may want to try the command on a test file.

For example, say you have several pages of text about the DNA
molecule in which you refer to its structure as a helix. Now you want
to change every occurrence of the word helix to double helix. The ex
editor's global command allows you to do this with one command
line. First, you need to understand a series of commands.

:g/pattern/command< CR >

For each line containing pattern, execute the ex command

named command. For example, type: :g/helix<CR>.
The line editor will print all lines that contain the pattern

helix.

:s/pattern/new words/<CR>

This is the substitute command. The line editor searches
for the first instance of the characters pattern on the
current line and changes them to new words.

:s/pattern/new words/g<CR>

If you add the letter g after the last delimiter of this com-
mand line, ex will change every occurrence of pattern on
the current line. If you do not, ex will change only the

first occurrence.

6-94 USER'S GUIDE

B
L
E

37
9

Using Line Editing Commands in vi

:g/helix/s//double helix/g< CR >

This command line searches for the word helix. Each
time helix is found, the substitute command substitutes

two words, double helix, for every instance of helix on
that line. The delimiters after the s do not need to have
helix typed in again. The command remembers the word
from the delimiters after the global command g. This is a
powerful command. For a more detailed explanation of

global and substitution commands, see Chapter 5.

Figure 6-14 summarizes the line editor commands available in vi.

SCREEN EDITOR TUTORIAL (vi) 6-95

Using Line Editing Commands in vi

Command Function

Shows that the commands that follow
are line editor commands.

:sh<CR> Temporarily returns you to the shell
to perform shell commands.

<"d> Escapes the temporary shell and
returns you to the current window of
vi to continue editing.

mn<CR> Goes to the nth line of the buffer.

x,yw data<CR> Writes lines from the number x

through the number y into a new file
(data).

:$<CR> Goes to the last line of the buffer.

: $d<CR> Deletes all the lines in the buffer from

the current line to the last line.

ir shell.file<CR> Inserts the contents of shell.file after
the current line of the buffer.

:s/text/new words/<CR> |Replaces the first instance of the char-
acters text on the current line with
new words.

:s/text/new words/g<CR> |Replaces every occurrence of text on
the current line with new words.

:g/text/s//new words/g<CR> |Replaces every occurrence of zext in
the file with new words.

Figure 6-14: Summary of Line Editor Commands

6-96 USER'S GUIDE

O8
E

38
1

Quitting vi

There are five basic command sequences to quit the vi editor.
Commands that are preceded by a colon (:) are line editor commands.

<ZZ> or wq<CR> Write the contents of the vi buffer to the
UNIX file currently being edited and quit vi.

:w filename<CR > Write the temporary buffer to a new file
:q<CR> named filename and quit vi.

:w! filename < CR > Overwrite an existing file called filename with
:q<CR> the contents of the buffer and quit vi.

:q!<CR> Quit vi without writing the buffer to a file,
and discard all changes made to the buffer.

:q<CR> Quit vi without writing the buffer to a UNIX
file. This works only if you have made no
changes to the buffer; otherwise vi will warn
you that you must either save the buffer or

use the :;q!< CR > command to terminate.

The <ZZ> command and :wq command sequence both write the
contents of the buffer to a file, quit vi, and return you to the shell.
You have tried the <ZZ> command. Now try to exit vi with :waq.
vi remembers the name of the file currently being edited, so you do
not have to specify it when you want to write the buffer's contents
back into the file. Type

wq<CR>

The system responds in the same way it does for the <ZZ> com-
mand. It tells you the name of the file, and reports the number of
lines and characters in the file.

SCREEN EDITOR TUTORIAL (vi) 6-97

 BE 5]
Quitting vi

What must you do to give the file a different name? For example,
suppose you want to write to a new file called junk. Type:

w junk<CR>

After you write to the new file, leave vi. Type:

:q<CR>

If you try to write to an existing file, you will receive a warning.
For example, if you try to write to a file called jøhnson, the system
will respond with:

”johnson” File exists - use ”w! johnson” to overwrite

If you want to replace the contents of the existing file with the con-
tents of the buffer, use the :w! command to overwrite johnson.

wil johnson <CR >

Your new file will overwrite the existing one.

If you edit a file called memo, make some changes to it, and then

decide you don't want to keep the changes, or if you accidentally
press a key that gives vi a command you cannot undo, leave vi
without writing to the file. Type:

:q!<CR>

Figure 6-15 summarizes the quit commands.

6-98 USER'S GUIDE

(4
:1
3

38
3

Quitting vi

ww! filename<CR >
:q<CR>

:q!<CR>

:q<CR>

Command Function

<ZZ> Write the file and quit vi.

wq<CR> Write the file and quit vi.

:w filename< CR > Write the editing buffer to a new file
:q<CR> (filename) and quit vi.

Overwrite an existing file (filename) with the

contents of the editing buffer and quit vi.

Quit vi without writing buffer to a file.

Quit vi without writing the buffer to a file.

Figure 6-15: Summary of the Quit Commands

SCREEN EDITOR TUTORIAL (vi) 6-99

 BR eee]

Special Options For vi

The vi command has some special options. It allows you to:

H recover a file lost by an interrupt to the UNIX system

H place several files in the editing buffer and edit each in
sequence, and

EH view the file at your own pace by using the vi cursor position-
ing commands

Recovering a File Lost by an Interrupt

If there is an interrupt or disconnect, the system will exit the vi

command without writing the text in the buffer back to its file. How-
ever, the UNIX system will store a copy of the buffer for you. When
you log back in to the UNIX system you will be able to restore the
file with the —r option for the vi command. Type

vi —r filename<CR >

The changes you made to filename before the interrupt occurred are
now in the vi buffer. You can continue editing the file, or you can
write the file and quit vi. The vi editor will remember the file name
and write to that file.

Editing Multiple Files

If you want to edit more than one file in the same editing session,

issue the vi command, specifying each file name. Type

vi filel file2 <CR >

vi responds by telling you how many files you are going to edit. For
example:

2 files to edit

6-100 USER'S GUIDE

v
8
£

38
5

Special Options For vi

After you have edited the first file, write your changes (in the
buffer) to the file (file). Type

w<CR>

The system response to the :w <CR> command will be a message at
the bottom of the screen giving the name of the file, and the number
of lines and characters in that file. Then you can bring the next file
into the editing buffer by using the :n command. Type

m<CR>

The system responds by printing a notice at the bottom of the screen,
telling you the name of the next file to be edited and the number of
characters and lines in that file.

Select two of the files in your current directory. Then enter vi
and place the two files in the editing buffer at the same time. Notice
the system responses to your commands at the bottom of the screen.

Viewing a File

It is often convenient to be able to inspect a file by using vi's
powerful search and scroll capabilities. However, you might want to

protect yourself against accidentally changing a file during an editing
session. The read-only option prevents you from writing in a file. To

avoid accidental changes, you can set this option by invoking the edi-
tor as view rather than vi.

Figure 6-16 summarizes the special options for vi.

SCREEN EDITOR TUTORIAL (vi) 6-101

Special Options For vi

Option Function

vi filel file2 file3g <CR> Enter three files (/ilel, file2, and file3)

into the vi buffer to be edited.

w<CR> Write the current file and call the next

in<CR> file into the buffer.

vi —r file1< CR > Restore the changes made to /ilel.

Figure 6-16: Summary of Special Options for vi

6-102 USER'S GUIDE

9
g
E

38
7

Exercise 6

6-1. Try to restore a file lost by an interrupt.

Enter vi, create some text in a file called exer6. Turn off

your terminal without writing to a file or leaving vi. Turn

your terminal back on, and log in again. Then try to get back

into vi and edit exer6.

Place exerl and exer2 in the vi buffer to be edited. Write

exerl and call in the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

Try out the command:

vi exer? <CR >

What happens? Try to quit all the files as quickly as possible.

Look at exer4 in read-only mode.

Seroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

SCREEN EDITOR TUTORIAL (vi) 6-103

Exercise 6

This page is intentionally left blank

6-104 USER'S GUIDE

8
8
€

38
9

 EEN

Answers To Exercises

There is often more than one way to perform a task in vi. Any
method that works is correct. The following are suggested ways of
doing the exercises.

Exercise 1

1-1. Ask your system administrator for your terminal's system
name. Type:

TERM =terminal name<CR>

1-2. Enter the vi command for a file called exerl:

vi exerl< CR >

Then use the append command (<a>) to enter the following
text in your file:

This is an exercise! <CR >
Up, down<CR>

left, right,<CR>

build your terminal's < CR >
muscles bit by bit < ESC >

1-3. Use the <k> and <h> commands.

SCREEN EDITOR TUTORIAL (vi) 6-105

Answers To Exercises

1-4.

1-5.

1-6.

1-7,

6-106

Use the <x> command.

Use the <j> and <1> commands.

Enter vi and use the append command (<a>) to enter the
following text:

and byte by byte<ESC>

Then use <j> and <l1> to move to the last line and charac-
ter of the file. Use the <a> command again to add text.
You can create a new line by pressing the RETURN key. To
leave text input mode, press the ESCAPE key.

<ZZ>

vi exerl<CR >

Notice the system response:

”exerl” 7 lines, 102 characters

USER'S GUIDE

0
6
£

Answers To Exercises

Exercise 2

2-1. Type:
vi exer2< CR >

<a>1<CR>

2<CR>

3<CR>

48<CR>

49<CR>

50<ESC>

<"f>

<u>

<"d>

39
1

Notice the line numbers as the screen changes.

2-3. Type:
<G>

<o0o>

123456789 123456789<ESC>

<7h>

<3l>

Typing <7h> puts the cursor
on the 2 in the second set of numbers.

Typing <3l> puts the cursor
on the 5 in the

second set of numbers.

2-4. $ = end of line

= first character in the line

2-5. Type:

SCREEN EDITOR TUTORIAL (vi) 6-107

Answers To Exercises

2-6.

2-7.

6-108

<e>

Type:
<l1G>

<M>

<L>

<H>

/8
<n>

/48

USER'S GUIDE

C
6
E

39
3

Answers To Exercises

Exercise 3

3-1. Type:

vi exer3< CR >

3-2... Type:
<a> Append text <CR>
Insert text< CR >

a computer's <CR>
job is boring. <ESC>

3-3 Type:

<O0O>

financial statement and < ESC >

3-4 Type
<3G>

<i>Delete text< CR> <ESC>

The text in your file now reads:

Append text

Insert text

Delete text

a computer's

financial statement and

job is boring.

3-5. The current line is a camputer's. To create a line of text
below that line use the <0> command.

3-6. The current line is byte of the budget.
<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line.
<CR> creates the new line.
Add the sentence: But, it is an exciting machine.
<ESC> leaves append mode.

SCREEN EDITOR TUTORIAL (vi) 6-109

Answers To Exercises

3-7... Type:
<IG>
[text
<i>some<space bar> <ESC>

3-8. <ZZ> will write the buffer to exer3 and return you to the
shell.

6-110: USER'S GUIDE

v
6
E

39
5

R
a
t

Answers To Exercises

Exercise 4

4-1. Type:

vi exer4<CR >
<a> When in the course of human events< CR >
there are many repetitive, boring < CR >
chores, then one ought to get a<CR>
robot to perform those chores. < ESC >

<2G>

<A> tedious and unsavory <8BACKSPACE > <CR>
<ESC>

Press <h> until you get to the b of boring. Then type:
<dw>. (You can also use <6x>.)

You are at the second line. Type:
<2j>
<l1> congenial and computerized < ESC >
<dd>

To delete the line and leave it blank, type in:
<0> (zero moves the cursor to the beginning of the line)
<D>

<H>

<3dd>

Write and quit vi.

<ZZ>

Remove the file.

rm exer4< CR >

SCREEN EDITOR TUTORIAL (vi) 6-111

Answers To Exercises

6-112: USER'S GUIDE

This page is intentionally left blank

9
6
£

39
7

Answers To Exercises

Exercise 5

5-1. Type:

vi exer2<CR>

<8G>

<cc> END OF FILE <ESC>

<1G>
<8”zyy >
<G>
<”zp>

<8G>
<cc> 8 is great <ESC>

<G>

<2w>

<cw>

EXERCISE <ESC >

<2b>

<cw>

TO<ESC>

SCREEN EDITOR TUTORIAL (vi) 6-113

Answers To Exercises

6-114. USER'S GUIDE

This page is intentionally left blank

8
6
€

Answers To Exercises

Exercise 6

6-1. Type:
vi exer6<CR >
<a> (append several lines of text)

<ESC>

Turn off the terminal.

Turn on the terminal.

Log in on your UNIX system. Type:
vi —r exer6<CR >
wq<CR>

6-2. Type:
vi exerl exer2 <CR >

w<CR>

m<CR>

wjunk<CR >
<ZZ>

39
9

vi exer? <CR>

(Response:)

8 files to edit (vi calls all files with names that begin
with exer.)

<ZZ>

<ZZ>

view exer4<CR >

<"f>

<"d>

<"u>

:q<CR>

SCREEN EDITOR TUTORIAL (vi) 6-115

 HEE Er Øl
Answers To Exercises

This page is intentionally left blank

6-116 USER'S GUIDE

0
0
v

40
1

Chapter 7: Shell Tutorial

Page

Introduction 45505033 EERERNERE 7-1

Shell Command Language...........ssussresrsessrsererstersrsnesserrensenserrersernee 7-2

Metacharacters…...........ssvssrrssersersrrersererrersrerrnnnrrreneereernerrererrnrnee 7-4

The Metacharacter That Matches All Characters:
the Asterisk (?) LSE KERES ERR 7-4

The Metacharacter That Matches One Character:
the Question Mark (?) (.W.W….GWuduw.ussssesersererseessseeseeses essensen enes sen nesker 7-7

Using the f or ? to Correct Typing Errors …............sssccrsuss 7- 8

The Metacharacters That Match One of a Set:
Brackets ([[]) 1ssesssssrrssrsertrrssrrersetrertrsrnne stresser r renses arsen trkrene 7-9

Special Characters (….........sescsesreeeeeesesereenereseeveen sene ree seneste nnennee 7-10

Running a Command in Background: the Ampersand (&). 7-10

Executing Commands Sequentially: the Semicolon (;) .….. 7-11

Turning Off Special Meanings: the Backslash (V .…........ 7-12

Turning Off Special Meanings: Quotes............ssscccecerereeee 7-12

Using Quotes to Turn Off the Meaning of a Space …Å..[.[|[|.[.W|.[.W[|.W1.1.1. 7-13

Input and Output Redirectionceesessssrsrrssrerssrrsesrsrrernee 7-15

Redirecting Input: the < Sign.Msssrsrssssrsrsesrssrsrsersnrer 7-15

Redirecting Output to a File: the > Sign …....u.u.ssssecerererere 7-15

Appending Output to an Existing File: the > > Symbol... 7-17

Useful Applications of Output Redirection 7-18

The spell Command sesssrstrssrrrssrsrrrerserererrsrrrrrrrrerrse 7-18

The sort Command ssssiiggsrssrennnegeeeenernnee 7-19

Combining Background Mode and Output Redirection .…...]. 7-20

Redirecting Output to a Command: the Pipe (|)..…..[.. 7-20

A Pipeline Using the cut and date Commands …............... 7-21

TABLE OF CONTENTS i

Table of Contents

Page

Substituting Output for an Argument scenerier 7-26

Executing and Terminating Processes 22 uens 7-26

Running Commands at a Later Time With the batch
and at Commandsssccevsrsssssetertreesnnser nen sennn renen ennn eve 7-26

Obtaining the Status of Running Processes cu 7-32

Terminating Active Processessscessesererrsrsrsnrsrrrsrerrensenener 7-33

Using the nohup Command cu uuaenrnrrrrrrerere 7-35

Command Language Exercises 2222222 cuuuuesevesrs ennen 7-37

Shell Programming 222.22222 ueverertterrrrssssersrrsrersererrserer rr. 7-39

Shell Programsssececersrsrerseresers renee tesserts tre r retn rre rr nnnen 7-40

Creating a Simple Shell Program 22 7-40

Executing a Shell Program users 7-41

Creating a bin Directory for Executable Files... 7-42

Warnings about Naming Shell Programs cu 7-43

Variables ruterne EET drer eden 7-44

Positional Parameters... 7-45

Special Parameters... vscvssstessstererstdevrerssvevetvereseesesesesv server 7-49

Named Variable 4 orga RRS TEks 7-53

Assigning a Value to a Variablecssrrsrrrrsrssssrrrrreee 1-55

Shell Programming Constructs sner 7-63

Comments... csceseresersesrerrn re EEN REN NREN, 7-65

The here Document 2... sussstsrsssrsrrtrsrsrsrtestssstsrkss ekte r strate 7-66

Using ed in a Shell Program seriernes 7-68

Return Codes...........sscseeseresererrsetrssrerrrnnn renerne rn nrrrrrenne 7-71

Looping esserne ENNA LEN Edd 7-72

The Shell's Garbage Can: /dev/nul 2.222 uusseerterrrn 7-79

Conditional Constructsmcsersrrrssrresrrrrrsrsrrsssnrrrrrerenntre 7-79

i USER'S GUIDE

z
O
v

40
3

 EEN EEEERESE
Table of Contents

Page

Unconditional Control Statements: the break
and continue Commands suveversrereresssrrsresssrrerrererer, 7-91

Debugging Programsissiggirgrisissinriiiriserrdriekndereeseksrekeekeee 1T- 92

Modifying Your Login Environment uscsrseserrrsererssrerees 7- 98

Adding Commands to Your .profile arr 1- 98

Setting Terminal Options .2cusesesrssssrsrssererersrseereernere 7- 99

Creating an rje Directory ..2ssenuusssssrsresssresrrsererrreseneee 7-101

Using Shell Variables ..ucesrsrsssrrssssrstssesrrsserserrrreserrrrreerrnes 7-101

Shell Programming Exercises rarere 7-105

Answers To Exercises use usssrssssestsssssntassssesskeseses sense kraner ernere 717-107

Answer to Command Language Exercises suc 717-107

Answer to Shell Programming Exercises sure 7-109

TABLE OF CONTENTS iii

Table of Contents

This page is intentionally left blank

iv: USER'S GUIDE

v
o
r

40
5

Introduction

This chapter describes how to use the UNIX system shell to do
routine tasks. For example, it shows you how to use the shell to
manage your files, to manipulate file contents, and to group com-
mands together to make programs the shell can execute for you.

The chapter has two major sections. The first section, ”Shell
Command Language,” covers in detail using the shell as a command
interpreter. It tells you how to use shell commands and characters
with special meanings to manage files, redirect standard input and
output, and execute and terminate processes. The second section,

”Shell Programming,” covers in detail using the shell as a program-
ming language. It tells you how to create, execute, and debug pro-
grams made up of commands, variables, and programming constructs
like loops and case statements. Finally, it tells you how to modify
your login environment.

The chapter offers many examples. You should login to your
UNIX system and recreate the examples as you read the text. As in

the other examples in this guide, different type (bold, italic, and
constant width) is used to distinguish your input from the UNIX
system's output. See ”Notation Conventions” in the Preface for
details.

In addition to the examples, there are exercises at the end of both

the ”Shell Command Language” and ”Shell Programming” sections.
The exercises can help you better understand the topics discussed.
The answers to the exercises are at the end of the chapter.

Your UNIX system might not have all commands referenced in this

NOTE! chapter. If you cannot access a command, check with your system

 administrator.

If you want an overview of how the shell functions as both command
interpreter and programming language, see Chapters 1 and 4 before
reading this chapter. Also, refer to Appendix E, Summary of Shell
Command Language.

SHELL TUTORIAL. 7-1

 — dt E———------>

Shell Command Language

This section introduces commands and, more importantly, some
characters with special meanings that let you

mM find and manipulate a group of files by using pattern matching

EH run a command in the background or at a specified time

H run a group of commands sequentially

mm redirect standard input and output from and to files and other
commands

M terminate processes

It first covers the characters having special meanings to the shell and
then covers the commands and notation for carrying out the tasks
listed above. For your convenience, Figure 7-1 summarizes the char-
acters with special meanings discussed in this chapter.

7-2. USER'S GUIDE

9
0
v

40
7

Shell Command Language

Character Function

£?[1]

&

3 99

metacharacters that provide a shortcut for specifying
file names by pattern matching

places commands in background mode, leaving your
terminal free for other tasks

separates multiple commands on one command line

turns off the meaning of special characters such as +,

?,[1, &,;, >, <, and |.

single quotes turn off the delimiting meaning of a
space and the special meaning of all special characters

double quotes turn off the delimiting meaning of a
space and the special meaning of all special characters

except $ and ”

redirects output of a command into a file (replaces
existing contents)

redirects input for a command to come from a file

redirects output of a command to be added to the end
of an existing file

creates a pipe of the output of one command to the
input of another command

grave accents allow the output of a command to be
used directly as arguments on a command line

used with positional parameters and user-defined vari-
ables; also used as the default shell prompt symbol

Figure 7-1: Characters with Special Meanings in the Shell Language

SHELL TUTORIAL 7-3

Shell Command Language

Metacharacters

Metacharacters, a subset of the special characters, represent

other characters. They are sometimes called wild cards, because they
are like the joker in card games that can be used for any card. The
metacharacters ” (asterisk), ? (question mark), and [] (brackets) are
discussed here.

These characters are used to match file names or parts of file
names, thereby simplifying the task of specifying files or groups of
files as command arguments. (The files whose names match the pat-
terns formed from these metacharacters must already exist.) This is
known as file name expansion. For example, you may want to refer
to all file names containing the letter ”a”, all file names consisting of
five letters, and so on.

The Metacharacter That Matches All Characters: the

Asterisk (7)

The asterisk (”) matches any string of characters, including a null

(empty) string. You can use the " to specify a full or partial file
name. The ” alone refers to all the file and directory names in the
current directory. To see the effect of the +, try it as an argument to

the echo(1) command. Type:

echo "<CR>

The echo command displays its arguments on your screen. Notice
that the system response to echo 7 is a listing of all the file names in
your current directory. However, the file names are displayed hor-
izontally rather than in vertical columns such as those produced by
the Is command.

Figure 7-2 summarizes the syntax and capabilities of the echo
command.

7-4. USER'S GUIDE

8
0
p

40
9

Shell Command Language

Command Recap

echo — write any arguments to the output

command options arguments

echo none any character(s)

Description: echo writes arguments, which are separated

by blanks and ended with <CR>, to the out-
put.

Remarks: In shell programming, echo is used to issue
instructions, to redirect words or data into a

file, and to pipe data into a command. All
these uses will be discussed later in this

chapter.

Figure 7-2: Summary of the echø Command

The £ is a powerful character. For example, if you type rm ” you
will erase all the files in your current directory. Be very careful
how you use it!

For another example, say you have written several reports and
have named them report, reportl, reportla, reportlb.01,
report25, and report316. By typing report1” you can refer to all

files that are part of reportl, collectively. To find out how many
reports you have written, you can use the Is command to list all files
that begin with the string ”report,” as shown in the following exam-
ple.

SHELL TUTORIAL. 7-5

F:3:

Shell Command Language

$ Is report"<CR>
report

repaortl
reportla

reportlib.01

repaort25
report31l6 $

”,
The £ matches any characters after the string ”report”, including no
letters at all. Notice that " matches the files in numerical and alpha-

betical order. A quick and easy way to print the contents of your
report files in order on your screen is by typing the following com-
mand:

pr report” <CR >

Now try another exercise. Choose a character that all the file
names in your current directory have in common, such as a lower
case ”a”. Then request a listing of those files by referring to that
character. For example, if you choose a lower case ”a”, type the fol-
lowing command line:

ls "af<CR>

The system responds by printing the names of all the files in your
current directory that contain a lower case ”a”.

The ” can represent characters in any part of the file name. For
example, if you know that several files have their first and last letters

in common, you can request a list of them on that basis. For such a
request, your command line might look like this:

ls F"E<CR>

The system response will be a list of file names that begin with F,

end with E, and are in the following order:

7-6. USER'S GUIDE

(8
15
4

41
1

Shell Command Language

F123E
FATE
FE
Fig3.4E

The order is determined by the ASCII sort sequence: (1) numbers;
(2) upper case letters; (3) lower case letters.

The Metacharacter That Matches One Character: the

Question Mark (?)

The question mark (?) matches any single character of a file
name. If you have written several chapters in a book with twelve
chapters, and you want a list of those you have finished through
Chapter 9. Use the Is command with the ? to list all chapters that
begin with the string ”chapter” and end with any single character, as
shown below:

$ Is chapter?<CR>

chapterl

chapter2

chapter5
chapter9

$

The system responds by printing a list of all file names that match.
Although ? matches any one character, you can use it more than once
in a file name. To list the rest of the chapters in your book, type:

ls chapter?? <CR >

Of course, if you want to list all the chapters in the current directory,
use the %:

ls chapter”

SHELL TUTORIAL. 7-7

 [ll G |
Shell Command Language

Using the % or ? to Correct Typing Errors

Suppose you use the mv(1) command to move a file, and you

make an error and enter a character in the file name that is not

printed on your screen. The system incorporates this non-printing

character into the name of your file and subsequently requires it as

part of the file name. If you do not include this character when you

enter the file name on a command line, you get an error message.

You can use > or ? to match the file name with the non-printing char-
acter and rename it to the correct name.

Try the following example.

1.

2.

7-8

Make a very short file called trial.

Type: mv trial trial<"g>1<CR>

(Remember, to type <"g> you must hold down the CON-
TROL key and press the g key.)

Type: Is triall<CR>

The system will respond with an error message:

$ Is triall< CR >
triall: no such file or directory

$

Type: Is trial?1<CR>

The system will respond with the file name triall (including
the non-printing character), verifying that this file exists.
Use the ? again to correct the file name.

$ mv trial?1 triall< CR >
$ Is triall<CR>
triall

S

USER'S GUIDE

e
l
v

41
3

Shell Command Language

The Metacharacters That Match One of a Set: Brackets ([1)

Use brackets ([1) when you want the shell to match any one of
several possible characters that may appear in one position in the file
name. For example, if you include [erf] as part of a file name pat-
tern, the shell will look for file names that have the letter ”c”, the

letter ”r”, or the letter ”f” in the specified position, as the following
example shows.

S Is [erf]at <CR >

This command displays all file names that begin with the letter ”c”,
”r”, or ”f” and end with the letters ”at”. Characters that can be

grouped within brackets in this way are collectively called a ”charac-
ter class”.

Brackets can also be used to specify a range of characters,
whether numbers or letters. For example, if you specify

chapter[1—5]

the shell will match any files named chapterl through chapter5.
This is an easy way to handle only a few chapters at a time.

Try the pr command with an argument in brackets:

$ pr chapter[2—4]<CR >

This command will print the contents of chapter2, chapter3, and
chapter4, in that order, on your terminal.

SHELL TUTORIAL 7-9

Shell Command Language

A character class may also specify a range of letters. If you
specify [A-Z], tlie shell will lovk only for upper case letters; if [a-z],
only lower case letters.

The uses of the metacharacters are summarized in Figure 7-3.
Try out the metacharacters on the files in your current directory.

Character Function

EH matches any string of characters, including an empty
(null) string

? matches any single character

[] matches one of the sequence of characters specified
within the brackets

[—] matches one of the range of characters specified

Figure 7-3: Summary of Metacharacters

Special Characters

The shell language has other special characters that perform a
variety of useful functions. Some of these additional special charac-
ters are discussed in this section; others are described in the next sec-
tion, ”Input and Output Redirection.”

Running a Command in Background: the Ampersand (&)

Some shell commands take considerable time to execute. The

ampersand (&) is used to execute commands in background mode,

thus freeing your terminal for other tasks. The general format for
running a command in background mode is

command &<CR>

7-10. USER'S GUIDE

b
l
y

41
5

Shell Command Language

You should not run interactive shell commands, for example read
NOTE (see ”Using the read Command” in this chapter), in the back-

ground.

In the example below, the shell is performing a long search in
background mode. Specifically, the grep(1) command is searching for
the string ”delinquent” in the file accounts.) Notice the & is the
last character of the command line:

S grep delinquent accounts &<CR>
21940

S

When you run a command in the background, the UNIX system out-

puts a process number; 21940 is the process number in the example.

You can use this number to stop the execution of a background com-
mand. (Stopping the execution of processes is discussed in the ”Exe-
cuting and Terminating Processes” section.) The prompt on the last
line means the terminal is free and waiting for your commands; grep

has started running in background.

Running a command in background affects only the availability of

your terminal; it does not affect the output of the command.

Whether or not a command is run in background, it prints its output

on your terminal screen, unless you redirect it to a file. (See
”Redirecting Output,” later in this chapter, for details.)

If you want a command to continue running in background after
you log off, you can submit it with the nohup(1) command. (This is
discussed in ”Using the nohup Command,” later in this chapter.)

Executing Commands Sequentially: the Semicolon (;)

You can type two or more commands: on one line as long as each
pair is separated by a semicolon (;) , as follows:

commandl; command2; command3<CR >

The UNIX system executes the commands in the order that they
appear in the line and prints all output on the screen. This process is
called sequential execution.

SHELL TUTORIAL 7-11

Shell Command Language

Try this exercise to see how the ; works. First, type

ed; pwd; ls<CR>

The shell executes these commands sequentially:

1. cd changes your location to your login directory

2... pwd prints the full path name of your current directory

3. Is lists the files in your current directory

If you do not want the system's responses to these commands to
appear on your screen, refer to ”Redirecting Output” for instructions.

Turning Off Special Meanings: the Backslash (V)

The shell interprets the backslash (VW) as an escape character that
allows you to turn off any special meaning of the character immedi-
ately after it. To see how this works, try the following exercise.
Create a two-line file called trial that contains the following text:

The all + game

was held in Summit.

Use the grep command to search for the asterisk in the file, as
shown in the following example:

$ grep V" trial< CR >
The all + game

S

The grep command finds the ” in the text and displays the line in
which it appears. Without the V, the ” would be a metacharacter to
the shell and would match all file names in the current directory.

Turning Off Special Meanings: Quotes

Annuller way to escape the meaning of a special character is to
use quotation marks. Single quotes ('..”) turn off the special mean-
ing of any character. Double quotes (”.”) turn off the special mean-
ing of all characters except $ and " (grave accent), which retain their
special meanings within double quotes. An advantage of using quotes
is that numerous special characters can be enclosed in the quotes;

7-12. USER'S GUIDE

9
l
v

41
7

 | E il

Shell Command Language

this can be more concise than using the backslash.

For example, if your file named trial also contained the line

He really wondered why? Why???

you could use the grep command to match the line with the three
question marks as follows:

$ grep 7???" trial< CR >

He really wondered why? Why???

$

If you had instead entered the command

grep ??? trial< CR >

the three question marks would have been used as shell metacharac-

ters and matched all file names of length three.

Using Quotes to Turn Off the Meaning of a Space

Å common use of quotes as escape characters is for turning off

the special meaning of the blank space. The shell interprets a space
on a command line as a delimiter between the arguments of a com-
mand. Both single and double quotes allow you to escape that mean-

ing.

For example, to locate two or more words that appear together in
text, make the words a single argument (to the grep command) by
enclosing them in quotes. To find the two words ”The all” in your
file trial, enter the following command line:

$ grep ”The all” trial< CR >

The all + game

$

grep finds the string ”The all” and prints the line that contains
it. What would happen if you did not put quotes around that string?

The ability to escape the special meaning of a space is especially
helpful when you are using the banner(1) command. This command
prints a message across a terminal screen in large, poster size letters.

SHELL TUTORIAL 7-13

Shell Command Language

To execute banner, specify a message consisting of one or more
arguments (in this case usually words), separated on the command
line by spaces. The banner will use these spaces to delimit the argu-
ments and print each argument on a separate line.

To print more than one argument on the same line, enclose the
words, together, in double quotes. For example, to send a birthday

greeting to another user, type:

banner happy birthday to you<CR>

The command prints your message as a four-line banner. Now print
the same message as a three-line banner. Type:

banner happy birthday ”to you” <CR>

Notice that the words ”to” and ”you” now appear on the same line.
The space between them has lost its meaning as a delimiter.

Figure 7-4 summarizes the syntax and capabilities of the banner
command.

Command Recap

banner — make posters

command options arguments

banner none characters

Description: banner displays up to ten characters in large
letters

Remarks: Later in this chapter you will learn how to
redirect the banner command into a file to be

uged as a poster.

Figure 7-4: Summary of the banner Command

7-14. USER'S GUIDE

B
l
v

41
9

Shell Command Language

Input and Output Redirection

In the UNIX system, some commands expect to receive their
input from the keyboard (standard input) and most commands
display their output at the terminal (standard output). However, the
UNIX system lets you reassign the standard input and output to

other files and programs. This is known as redirection. With redirec-
tion, you can tell the shell to

mM take its input from a file rather than the keyboard

MH send its output to file rather than the terminal

M use a program as the source of data for another program

You use a set of operators, the less than sign (<), the greater
than sign (>), two greater than signs (> >), and the pipe (|) to
redirect input and output.

Redirecting Input: the < Sign

To redirect input, specify a file name after a less than sign (<) on
a command line:

command < file<CR>

For example, assume that you want use the mail(1) command
(described in Chapter 8) to send a message to another user with the
login colleague and that you already have the message in a file
named report. You can avoid retyping the message by specifying the
file name as the source of input:

mail colleague < report <CR >

Redirecting Output to a File: the > Sign

To redirect output, specify a file name after the greater than sign
(>) on a command line:

command > file<CR>

SHELL TUTORIAL 7-15

Shell Command Language

If you redirect output to a file that already exists, the output of
your command will overwrite the contents of the existing file.

Before redirecting the output of a command to a particular file,
make sure that a file by that name does not already exist, unless you
do not mind losing it. Because the shell does not allow you to have
two files of the same name in a directory, it will overwrite the con-
tents of the existing file with the output of your command if you
redirect the output to a file with the existing file's name. The shell
does not warn you about overwriting the original file.

To make sure there is no file with the name you plan to use, run

the Is command, specifying your proposed file name as an argument.
If a file with that name exists, Is will list it; if not, you will receive a

message that the file was not found in the current directory. For
example, checking for the existence of the files temp and junk would
give you the following output.

$ Is temp<CR>

tearp
$ Is junk<CR >

junk: no such file ar directory

$

This means you can name your new output file junk, but you cannot
name it temp unless you no longer want the contents of the existing
temp file.

7-16. USER'S GUIDE

(7
2/

4

42
1

Shell Command Language

Appending Output to an Existing File: the > > Symbol

To keep from destroying an existing file, you can also use the
double redirection symbol (>>), as follows:

command > > file<CR>

This appends the output of a command to the end of the file file. If
file does not exist, it is created when you use the > > symbol this
way.

The following example shows how to append the output of the
cat command to an existing file. First, the cat command is first exe-
cuted on both files without output redirection to show their respec-
tive contents. Then the contents of trial2 are added after the last
line of triall by executing the cat command on trial2 and redirect-
ing the output to triall.

mn <CR>

This is the first line of triall.

Hello.

This is the last line of triall.

$

$ cat trial2<CR>

This is the beginning of trial2.

Hello.

This is the end of trial2.

$

$ cat trial2 > > triall<CR>

$ cat triall< CR >

This is the first line of triall.

Hello.

This is the last line of triall.

This is the beginning of trial2.

Hello.

This is the end of trial2.

S

NE »,
SHELL TUTORIAL 7-17

Shell Command Language

Useful Applications of Output Redirection

Redirecting output is useful when you do not want it to appear on
your screen immediately or when you want to save it. Output
redirection is also especially useful when you run commands that per-
form clerical chores on text files. Two such commands are spell and
sort.

The spell Command

The spell program compares every word in a file against its inter-
nal vocabulary list and prints a list of all potential misspellings on the
screen. If spell does not have a listing for a word (such as a person's
name), it will report that as a misspelling, too.

Running spell on a lengthy text file can take a long time and
may produce a list of misspellings that is too long to fit on your
screen. spell prints all its output at once; if it does not fit on the
screen, the command scrolls it continuously off the top until it has all
been displayed. A long list of misspellings will roll off your screen
quickly and may be difficult to read.

You can avoid this problem by redirecting the output of spell to a
file. In the following example, spell searches a file named memo and
places a list of misspelled words in a file named misspell:

$ spell memo > misspell< CR >

Figure 7-5 summarizes the syntax and capabilities of the spell
command.

7-18. USER'S GUIDE

c
e
r

42
3

Shell Command Language

Command Recap

spell — find spelling errors

command options arguments

spell available” file

Description: spell collects words from a
specified file or files and looks
them up in a spelling list. Words
that are not on the spelling list are
displayed on your terminal.

Options: spell has several options, includ-
ing one for checking British spel-
lings.

Remarks: The list of misspelled words can be
redirected into a file.

al See the spell(1) manual page in the System V Reference Manual for all avail-

able options and an explanation of their capabilities.

Figure 7-5: Summary of the spell Command

The sort Command

The sort command arranges the lines of a specified file in alpha-
betical order (see Chapter 3 for details). Because users generally
want to keep a file that has been alphabetized, output redirection
greatly enhances the value of this command.

SHELL TUTORIAL 7-19

Shell Command Language

Be careful to choose a new name for the file that will receive the
output of the sort command (the alphabetized list). When sort is
executed, the shell first empties the file that will accept the redirected
output. Then it performs the sort and places the output in the blank
file. If you type

sort list > list<CR>

the shell will empty list and then sort nothing into list.

Combining Background Mode and Output Redirection

Running a command in background does not affect the
command's output; unless it is redirected, output is always printed on
the terminal screen. If you are using your terminal to perform other
tasks while a command runs in background, you will be interrupted
when the command displays its output on your screen. However, if
you redirect that output to a file, you can work undisturbed.

For example, in the ”Special Characters” section you learned how
to execute the grep command in background with &. Now suppose
you want to find occurrences of the word ”test” in a file named
schedule. Run the grep command in background and redirect its
output to a file called testfile:

$ grep test schedule > testfile &<CR>

You can then use your terminal for other work and examine testfile
when you have finished it.

Redirecting Output to a Command: the Pipe (|)

The | character is called a pipe. Pipes are powerful tools that
allow you to take the output of one command and use it as input for
another command without creating temporary files. A multiple com-
mand line created in this way is called a pipeline.

The general format for a pipeline is:

commandl | command2 | command3…..<CR>

The output of commandl is used as the input of command2. The out-
put of commandZ is then used as the input for command3.

7-20 USER'S GUIDE

t
e
r

42
5

Shell Command Language

To understand the efficiency and power of a pipeline, consider the
contrast between two methods that achieve the same results.

E= To use the input/output redirection method, run one command
and redirect its output to a temporary file. Then run a second
command that takes the contents of the temporary file as its
input. Finally, remove the temporary file after the second
command has finished running.

m To use the pipeline method, run one command and pipe its out-
put directly into a second command.

For example, say you want to mail a happy birthday message in a

banner to the owner of the login david. Doing this without a pipe-
line is a three-step procedure. You must

1. Enter the banner command and redirect its output to a tem-
porary file:

banner happy birthday > message.tmp

2. Enter the mail command using message.tmp as its input:

mail david < message.tmp

3... Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday | mail david<CR>

A Pipeline Using the cut and date Commands

The cut and date commands provide a good example of how
pipelines can increase the versatility of individual commands. The
cut command allows you to extract part of each line in a file. It looks
for characters in a specified part of the line and prints them. To
specify a position in a line, use the —c option and identify the part of

SHELL TUTORIAL 7-21

Shell Command Language

the file you want by the numbers of the spaces it occupies on the line,
counting from the left-hand margin.

For example, say you want to display only the dates from a file
called birthdays. The file contains the following list:

Anne — 12/26
Klaus 7/4

Mary — 10/18
Peter — 11/9
Nandy — 4/23
Sam 8/12

The birthdays appear between the ninth and thirteenth spaces on
each line. To display them, type:

cut —c9—13 birthdays< CR >

The output is shown below:

7-22 USER'S GUIDE

g
r

42
7

 |

Shell Command Language

Figure 7-6 summarizes the syntax and capabilities of the cut
command.

Command Recap

cut — cut out selected fields from each line of a file

command options arguments

cut — elist file

— flist [— d]

Description: cut extracts columns from a table or fields
from each line of a file

Options: —c lists the number of character positions
from the left. A range of numbers such as
characters 1—9 can be specified by —c1—9

—f lists the field number from the left
separated by a delimiter described by —d.

—d gives the field delimiter for —f. The
default is a space. If the delimiter is a colon,
this would be specified by —d:.

Remarks: If you find the cut command useful, you may
also want to use the paste command and the
split command.

Figure 7-6: Summary of the cut Command

The cut command is usually executed on a file. However, piping
makes it possible to run this command on the output of other com-
mands, too. This is useful if you want only part of the information
generated by another command. For example, you may want to have

SHELL TUTORIAL 7-23

Shell Command Language

the time printed. The date command prints the day of the week,
date, and time, as follows:

$ date< CR >

Sat Aug 26 13:12:32 EST 1989

Notice that the time is given between the twelfth and nineteenth
spaces of the line. You can display the time (without the date) by
piping the output of date into cut, specifying spaces 12 —19 with the
—c option. Your command line and its output will look like this:

$ date | cut —c12—19<CR>
13:14:56

Figure 7-7 summarizes the syntax and capabilities of the date
command.

7-24. USER'S GUIDE

8
æ
v

42
9

Shell Command Language

Command Recap

date - display the date and time

command options arguments

date +%m%d%y? available”

+%H%%M%S

Description: date displays the current date and time on
your terminal

Options: +% followed by m (for month), d (for day), y (for
year), H (for hour), M (for month), and S (for
second) will echo these back to your terminal.
You can add explanations such as:

date ”+%H:%M is the time”

Remarks: If you are working on a small computer sys-

tem of which you are both a user and the sys-
tem administrator, you may be allowed to set
the date and time using optional arguments to
the date command. Check your reference
manual for details. When working in a mul-

tiuser environment, the arguments are avail-
able only to the system administrator.

Figure 7-7: Summary of the date Command

»k See the date(1) manual page in the System V Reference Manual for all avail-
able options and an explanation of their capabilities.

SHELL TUTORIAL 7-25

Shell Command Language

Substituting Output for an Argument

The output of any command may be captured and used as argu-
ments on a command line. This is done by enclosing the command in
grave accents ("...”) and placing it on the command line in the posi-
tion where the output should be treated as arguments. This is
known as command substitution.

For example, you can substitute the output of the date and cut
pipeline command used previously for the argument in a banner
printout by typing the following command line:

$ banner "date | cut —c12 —19' <CR>

Notice the results: the system prints a banner with the current time.

The ”Shell Programming” section in this chapter shows you how
you can also use the output of a command line as the value of a vari-
able.

Executing and Terminating Processes

This section discusses the following topics:

Em how to schedule commands to run at a later time by using the
batch or at command

Em how to obtain the status of active processes

Em how to terminate active processes

mM how to keep background processes running after you have
logged off

Running Commands at a Later Time With the batch and at
Commands

The batch and at commands allow you to specify a command or
sequence of commands to be run at a later time. With the batch

command, the system determines when the commands run; with the
at command, you determine when the commands run. Both com-
mands expect input from standard input (the terminal); the list of

7-26 USER'S GUIDE

(9
1%

4

43
1

Shell Command Language

commands entered as input from the terminal must be ended by
pressing <"”d> (control-d).

The batch command is useful if you are running a process or
shell program that uses a large amount of system time. The batch
command submits a batch job (containing the commands to be exe-
cuted) to the system. The job is put in a queue, and runs when the
system load falls to an acceptable level. This frees the system to
respond rapidly to other input and is a courtesy to other users.

The general format for batch is:

batch <CR >
first command<CR>

last command<CR>
<"d>

If there is only one command to be run with batch, you can enter it
as follows:

batch command line<CR>
<"d>

The next example uses batch to execute the grep command at a
convenient time. Here grep searches all files in the current directory
and redirects the output to the file dol.file.

$ batch grep dollar + > dol-file< CR >
<"d>

job 155223141.b at Sun Æg 27 11:14:54 1989

Ss

After you submit a job with batch, the system responds with a job

SHELL TUTORIAL 7-27

Shell Command Language

number, date, and time. This job number is not the same as the pro-
cess number that the system generates when you run a command in

the background.

Figure 7-8 summarizes the syntax and capabilities of the batch
Command.

Command Recap

batch — execute commands at a later time

command options input

batch none command lines

Description: batch submits a batch job, which is placed in
a queue and executed when the load on the
system falls to an acceptable level.

Remarks: The list of commands must end with a <"d>

(control-d).

Figure 7-8: Summary of the batch Command

The at command allows you to specify an exact time to execute
the commands. The general format for the at command is

at time<CR>

first command<CR>

last command<CR>

<"d>

7-28 USER'S GUIDE

C
E
r

43
3

Shell Command Language

The time argument consists of the time of day and, if the date is
not today, the date.

The following example shows how to use the at command to mail
a happy birthday banner to login emily on her birthday:

$ at 8:15am Aug 27<CR>

banner happy birthday | mail emily<CR>
<"d>

job 453400603.a at Sun Aug 27 08:15:00 1989

$

Notice that the at command, like the batch command, responds with
the job number, date, and time.

If you decide you do not want to execute the commands currently
waiting in a batch or at job queue, you can erase those jobs by using
the —r option of the at command with the job number. The general
format is

at -r jobnumber<CR >

Try erasing the previous at job for the happy birthday banner.

Type in:

at —r 453400603.a<CR>

If you have forgotten the job number, the at —1 command will give
you a list of the current jobs in the batch or at queue, as the follow-
ing screen shows:

SHELL TUTORIAL 7-29

—1— ————

Shell Command Language

Sat -—I1I<CR>

user = mylogin 168302040.a at Man Jan 30 13:00:00 1989

user = mylogin 453400603.a at Sun Aug 27 08:15:00 1989
s”

Notice that the system displays the job number and the time the job
will run.

Using the at command, mail yourself the file memo at noon, to
tell you it is lunch time. (You must redirect the file into mail unless
you use the ”here document,” described in the ”Shell Programming”
section.) Then try the at command with the —1 option:

HEE <CR>
mail mylogin < memo<CR>
<"d>

job 263131754.a at Jun 30 12:00:00 1989

$
$ at —1I<CR>

user = mylogin 263131754.a at Jun 30 12:00:00 1989

NER

Figure 7-9 summarizes the syntax and capabilities of the at com-
mand.

7-30. USER'S GUIDE

v
e
r

43
5

Shell Command Language

Command Recap

at — execute commands at a specified time

command options arguments

at -r time (date)
—1 Jobnumber

Description: Executes commands at the time specified. You

can use between one and four digits, and am
or pm to show the time. To specify the date,

give a month name followed by the number
for the day. You do not need to enter a date if
you want your job to run the same day. See

the at(1) manual page in the System V Refer-
ence Manual for other default times.

Options: The —r option with the job number removes
previously scheduled jobs.

The —I1 option (no arguments) reports the job
number and status of all scheduled at and

batch jobs.

Remarks: Examples of how to specify times and dates
with the at command:

at 08:15am Feb 27

at 5:14pm Sept 24

Figure 7-9: Summary of the at Command

SHELL TUTORIAL 7-31

Shell Command Language

Obtaining the Status of Running Processes

The ps command gives you the status of all the processes you are
currently running. For example, you can use the ps command to
show the status of all processes that you run in the background using
& (described in the earlier section ”Special Characters”).

The next section, ”Terminating Active Processes,” discusses how

you can use the PID (process identification) number to stop a com-
mand from executing. ÅA PID is a number from 1 to 30,000 that the
UNIX system assigns to each active process.

In the following example, grep is run in the background, and
then the ps command is issued. The system responds with the pro-
cess identification (PID) and the terminal identification (TTY) number.
It also gives the cumulative execution time for each process (TIME),

and the name of the command that is being executed (COMMAND).

Al word ” > temp &<CR>

28223

$
$ps<CR>

PID TIY TIME COMMAND

28124 ttyl0 0:00 sh

28223 ttyl0 0:04 grp
28224 ttylo 0:04 ps

$

mr.
Notice that the system reports a PID number for the grep com-

mand, as well as for the other processes that are running: the ps

command itself, and the sh (shell) command that runs while you are

logged in. The shell program sh interprets the shell commands and
is discussed in Chapters 1 and 4.

7-32 USER'S GUIDE

9
E
v

43
7

Shell Command Language

Figure 7-10 summarizes the syntax and capabilities of the ps
command.

Command Recap

ps — report process status

command options arguments

ps several” none

Description: ps displays information about active processes.

Options: Several. If none are specified, ps displays the
status of all active processes you are running.

Remarks: Gives you the PID (process ID). This is
needed to kill a process (stop the process from
executing).

N See the ps(1) manual page in the System V Reference Manual for all avail-

able options and an explanation of their capabilities.

Figure 7-10: Summary of the ps Command

Terminating Active Processes

The kill command is used to terminate active shell processes.
The general format for the kill command is

kill PID<CR>

You can use the kill command to terminate processes that are run-
ning in background. Note that you cannot terminate background
processes by pressing the BREAK or DELETE key.

SHELL TUTORIAL 7-33

Shell Command Language

The following example shows how you can terminate the grep
command that you started executing in background in the previous
example.

S kill 28223<CR>

28223 Terminated

S

Notice the system responds with a message and a $ prompt,
showing that the process has been killed. If the system cannot find
the PID number you specify, it responds with an error message:

ki1l1l:28223:No such process

Figure 7-11 summarizes the syntax and capabilities of the kill

command.

Command Recap

kill — terminate a process

command options arguments

kill available" Job number or PID

Description: kill terminates the process specified by the
PID number.

£ See the kill(1) manual page in the System V Reference Manual for all avail-

able options and an explanation of their capabilities.

Figure 7-11: Summary of the kill Command

7-34. USER'S GUIDE

S
e
r

43
9

Shell Command Language

Using the nohup Command

Al processes are killed when you log off. If you want a back-
ground process to continue running after you log off, you must use

the nohup command to submit that background command.

To execute the nohup command, follow this format:

nohup command &<CR>

Notice that you place the nohup command before the command you
intend to run as a background process.

For example, say you want the grep command to search all the
files in the current directory for the string ”word” and redirect the
output to a file called word.list, and you wish to log off immediately
afterward. Type the command line as follows:

nohup grep word ” > word.list & <CR>

You can terminate the nohup command by using the kill command.
Figure 7-12 summarizes the syntax and capabilities of the nohup
command.

Command Recap

nohup — prevents interruption of command execution by hang ups

command options arguments

nohup none command line

Description: Executes a command line, even if you
hang up or quit the system.

Figure 7-12: Summary of the nohup Command

SHELL TUTORIAL 7-35

Shell Command Language

Now that you have mastered these basic shell commands and
notations, use them in your shell programs! The exercises that follow
will help you practice using shell command language. The answers to
the exercises are at the end of the chapter.

7-36 USER'S GUIDE

O
t
v

44
1

Command Language Exercises

1-1. What happens if you use an ” (asterisk) at the beginning of a
file name? Try to list some of the files in a directory using
the ” with the last letter of one of your file names. What hap-
pens?

Try the following two commands; enter them as follows:

cat[0-9]" <CR >

echo ”<CR>

Is it acceptable to use a ? at the beginning or in the middle
of a file name generation? Try it.

Do you have any files that begin with a number? Can you list

them without listing the other files in your directory? Can
you list only those files that begin with a lower case letter
between a and m? (Hint: use a range of numbers or letters
in[DD.

Is it acceptable to place a command in background mode on a
line that is executing several other commands sequentially?
Try it. What happens? (Hint: use ; and &.) Can the com-
mand in background mode be placed in any position on the
command line? Try placing it in various positions. Experi-
ment with each new character that you learn to see the full
power of the character.

Redirect the output of pwd and Is into a file by using the fol-
lowing command line:

ed; pwd; Is; ed trial< CR >

Remember, if you want to redirect both commands to the
same file, you have to use the >> (append) sign for the
second redirection. If you do not, you will wipe out the infor-
mation from the pwd command.

SHELL TUTORIAL. 7-37

 BE es er sg]
Command Language Exercises

1-7. Instead of cutting the time out of the date response, try

redirecting only the date, without the time, into banner.
What is the only part you need to change in the time com-
mand line?

banner 'date | cut — c12-19' <CR >

7-38. USER'S GUIDE

o
r
e

44
3

Shell Programming

You can use the shell to create programs — new commands. Such
programs are also called ”shell procedures.” This section tells you
how to create and execute shell programs using commands, variables,
positional parameters, return codes, and basic programming control
structures.

The examples of shell programs in this section are shown two
ways. First, the cat command is used in a screen to display the con-
tents of a file containing a shell program:

S cat testifile< CR. >

first command

last command

$

Second, the results of executing the shell program appear after a
command line:

$ testfile< CR >
program. output

$

You should be familiar with an editor before you try to create
shell programs. Refer to the tutorials in Chapter 5 (for the ed edi-
tor) and Chapter 6 (for the vi editor).

SHELL TUTORIAL 7-39

Shell Programming

Shell Programs

Creating a Simple Shell Program

We will begin by creating a simple shell program that will do the
following tasks, in order.

mM print the current directory

Mm list the contents of that directory

M display this message on your terminal: ”This is the end of the
shell” program.

Create a file called dl (short for directory list) using your editor
of choice, and enter the following:

pwd<CR>
ls<CR>
echo This is the end of the shell program.<CR >

Now write and quit the file. You have just created a shell program!
You can cat the file to display its contents, as the following screen
shows:

$ cat dl<CR>

pwd

ls

echo This is the end of the shell program.

$

7-40 USER'S GUIDE

v
v
v

44
5

Shell Programming

Executing a Shell Program

One way to execute a shell program is to use the sh command.
Type:

sh dl< CR>

The dl command is executed by sh, and the path name of the current
directory is printed first, then the list of files in the current directory,

and finally, the comment This is the end of the shell program.

The sh command provides a good way to test your shell program to
make sure it works.

If dl is a useful command, you can use the chmod command to
make it an executable file; then you can type dl by itself to execute
the command it contains. The following example shows how to use
the chmod command to make a file executable and then run the Is
—1 command to verify the changes you have made in the permissions.

$ chmod u+x dl<CR>
$ Is —1<CR>

total 2

—Tw-—— 1. login login 3661 Jun 2 10:28 mbax

—rwx-——— 1 login login 48 Jun 15 10:50 dl

Notice that chmod turns on permission to execute (+x) for the
user (u). Now dl is an executable program. Try to execute it. Type:

dl<CR>

You get the same results as before, when you entered sh dl to exe-

cute it. For further details about the chmod command, see Chapter
3.

SHELL TUTORIAL 7-41

Shell Programming

Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories,
you can make a bin directory from your login directory and move the
shell files to your bin.

You must also set your shell variable PATH to include your bin
directory:

PATH = $PATH:$HOME /bin

See ”Variables” and ”Using Shell Variables” in this chapter for more
information about PATH. For more advanced information, refer to

the manual Shell Commands and Programming.

The following example will remind you which commands are
necessary. In this example, dl is in the login directory. Type these
command lines:

cd<CR>

mkdir bin<CR>

mv dl bin/dl<CR >

Move to the bin directory and type the Is —1 command. Does dl still
have execute permission?

Now move to a directory other than the login directory, and type

the following command:

d1<CR>

What happened?

Figure 7-13 summarizes your new shell program, dl.

7-42 USER'S GUIDE

9
t
y

44
7

 |

Shell Programming

Shell Program Recap

dl — display the directory path and directory contents (user defined)

command arguments

dl none

Description: dl displays the output of the shell command
pwd and Is.

Figure 7-13: Summary of the dl Shell Program

It is possible to give the bin directory another name; if you do so,
you need to change your shell variable PATH again.

Warnings about Naming Shell Programs

You can give your shell program any appropriate file name. How-

ever, you should not give your program the same name as a system

command. If you do, the system will execute your command instead
of the system command. For example, if you had named your dl pro-
gram mv, each time you tried to move a file, the system would have

executed your directory list program instead of mv.

Another problem can occur if you name the dl file Is, and then
try to execute the file. You would create an infinite loop, since your

program executes the Is command. After some time, the system

would give you the following error message:

Too many processes, cannot fork

What happened? You typed in your new command, Is. The shell

read and executed the pwd command. Then it read the Is command
in your program and tried to execute your ls command. This formed
an infinite loop.

SHELL TUTORIAL 7-43

==

Shell Programming

UNIX system designers wisely set a limit on how many times an
infinite loop can execute. One way to keep this from happening is to
give the path name for the system's Is command, /bin/ls, when you
write your own shell program.

The following Is shell program would work:

S cat ls<CR>

pwd

/pin/ls

echo This is the end of the shell progran

If you name your command Is, then you can only execute the sys-

tem Is command by using its full path name, /bin/ls.

Variables

Variables are the basic data objects shell programs manipulate,
other than files. Here we discuss three types of variables and how
you can use them:

M positional parameters

EH special parameters

EH named variables

7-44. USER'S GUIDE

B
r

i

44
9

 Fe NEROS

Shell Programming

Positional Parameters

Å positional parameter is a variable within a shell program whose
value is set from an argument specified on the command line invok-
ing the program. Positional parameters are numbered and are

referred to with a preceding $: $1, $2, $3, and so on.

A shell program may reference up to nine positional parameters.
If a shell program is invoked on with a command line that appears
like this:

shell.prog ppl pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9<CR>

then positional parameter $1 within the program will be assigned the
value ppl, positional parameter $2 within the program will be
assigned the value pp2, and so on, when the shell program is
invoked.

Create a file called pp (short for positional parameters) to prac-
tice positional parameter substitution. Then enter the echo com-
mands shown in the following screen. Enter the command lines so
that running the cat command on your completed file will produce
the following output:

S cat pp<CR>

echo The first positicnal paraæreter is: $1<CR>

echo The secand positicnal parareter is: $2<CR>

echo The third positicnal parameter is: $3<CR>

echo The fourth positicnal parameter is: $4<CR>

$

If you execute this shell program with the arguments one, two,
three, and four, you will obtain the following results (first you must
make the shell program pp executable using the chmod command):

SHELL TUTORIAL 7-45

Shell Programming

u+x pp<CR>

$
$ pp one two three four<CR >

The first positional parareter is: one

The second positicnal paræeter is: two

The third positicnal parareter is: three

The fourth positional parareter is: four

 $

A
R
 NG

The following screen shows the shell program bbday, which
mails a greeting to the login entered in the command line:

$ cat bbday<CR >

banner happy birthday | mail $1

Try sending yourself a birthday greeting. If your login name is
sue, your command line will be:

bbday sue< CR >

Figure 7-14 summarizes the syntax and capabilities of the bbday
shell program.

7-46. USER'S GUIDE

o
G
v

45
1

Shell Programming

Shell Program Recap

bbday — mail a banner birthday greeting (user defined)

command arguments

bbday login

Description: bbday mails the message happy birthday, in
poster-sized letters, to the specified login.

Figure 7-14: Summary of the bbday Command

The who command lists all users currently logged in on the sys-
tem. How can you make a simple shell program called whoson, that
will tell you if the owner of a particular login is currently working on
the system?

Type the following command line into a file called whoson:

who | grep $1<CR>

The who command lists all current system users, and grep searches
the output of the who command for a line containing the string con-
tained as a value in the positional parameter $1.

Now try using your login as the argument for the new program
whoson. For example, say your login is sue. When you issue the
whoson command, the shell program substitutes sue for the parame-
ter $1 in your program and executes as if it were:

who | grep sue <CR>

The output is shown on the following screen:

SHELL TUTORIAL 7-47

 ||
Shell Programming

S$ whoson sue<CR >

sw tty26 Jan 24 13:35
S

If the owner of the specified login is not currently working on the sys-
tem, grep fails and the whoson prints no output.

Figure 7-15 summarizes the syntax and capabilities of the who-
son command.

Shell Program Recap

whoson — display login information if user is logged in (user defined)

es
t

command arguments

whoson login

Description: If a user is on the system, whoson displays the user's

login, the TTY number, and the time and date the
user logged in.

Figure 7-15: Summary of the whosøon Command

The shell allows a command line to contains 128 arguments.

However, a shell program is restricted to referencing nine positional

parameters, $1 through $9, at a given time. This restriction can be

worked around using the shift command, described in the manual

7-48. USER'S GUIDE

45
3

 |

Shell Programming

Shell Commands and Programming. The special parameter $%,
described in the next section, can also be used to access the values of

all command line arguments.

Special Parameters

$4 This parameter, when referenced within a shell program, con-
tains the number of arguments with which the shell program
was invoked. Its value can be used anywhere within the shell
program.

Enter the command line shown in the following screen in an exe-
cutable shell program called get.num. Then run the cat command
on the file:

$ cat get.num <CR>

echo The myber of argurents is: $å

$

The program simply displays the number of arguments with
which it is invoked. For example:

SHELL TUTORIAL 7-49

Shell Programming

$ get.num test out this program <CR >

The mmber of arguments is: 4

$

Figure 7-16 summarizes the get.num shell program.

Shell Program Recap

get.num — count and display the number of arguments (user defined)

command arguments

get.num (character string)

Description: get.num counts the number of arguments given to

the command and then displays the total.

Remarks: This command demonstrates the special parameter

$Æ.

Figure 7-16: Summary of the get.num Shell Program

$= This special parameter, when referenced within a shell pro-
gram, contains a string with all the arguments with which
the shell program was invoked, starting with the first. You
are not restricted to nine parameters as with the positional
parameters $1 through $9.….

7-50. USER'S GUIDE

v
S
v

45
5

ber TE dk

Shell Programming

You can write a simple shell program to demonstrate $7. Create
a shell program called show.param that will echo all the parame-
ters. Use the command line shown in the following completed file:

$ cat show.param <CR >

echo The parareters for this command are: $x

S

show.param will echo all the arguments you give to the command.
Make show.param executable and try it out, using these parame-
ters:

Hello. How are you?

$ show.param Hello. How are you? <CR>

The paræeters for this command are: Hello. How are you?

S

Notice that show.param echoes Hello. How are you? Now try

show.param using more than nine arguments:

SHELL TUTORIAL 7-51

Shell Programming

S show.param one two345six7891011<CR>
The parareters for this command are: one two 3 4 5 six 7 8 9 10 11

$

Once again, show.param echoes all the arguments you give. The $"
parameter can be useful if you use file name expansion to specify

arguments to the shell command.

N
I

Use the file name expansion feature with your show.param com-

mand. For example, say you have several files in your directory
named for chapters of a book: chapl, chap2, and so on, through

chap7. show.param will print a list of all those files.

$ show.param chap?<CR >

The parameters for this command are: chapl chap2 chap3

chap4 chap5 chapé chap7
$

NE
ED

S

7-52. USER'S GUIDE

9
S
v

45
7

ler==z=

EEN dk (ma

Shell Programming

Figure 7-17 summarizes the show.param shell program.

Shell Program Recap

show.param — display all positional parameters (user defined)

command arguments

show.param (any positional parameters)

Description: show.param displays all the parameters.

Remarks: If the parameters are file name generations, the com-
mand will display each of those file names.

Figure 7-17: Summary of the show.param Shell Program

Named Variables

Another form of variable that you can use within a shell program
is a named variable. You assign values to named variables yourself.
The format for assigning a value to a named variable is

named variable = value <CR>

Notice that there are no spaces on either side of the = sign.

In the following example, varl is a named variable, and myname
is the value or character string assigned to that variable:

varl= myname<CR >

A $ is used in front of a variable name in a shell program to
reference the value of that variable. Using the example above, the
reference $varl tells the shell to substitute the value myname

(assigned to varl), for any occurrence of the character string $varl.

SHELL TUTORIAL 7-53

Shell Programming

The first character of a variable name must be a letter or an
underscore. The rest of the name can be composed of letters, under-
scores, and digits. As in shell program file names, it is not advisable
to use a shell command name as a variable name. Also, the shell has

reserved some variable names you should not use for your variables.
ÅA brief explanation of these reserved shell variable names follows:

= CDPATH defines the search path for the ed command.

Hm HOME is the default variable for the cd command (home

directory).

m IFS defines the internal field separators (normally the space,
the tab, and the carriage return).

m LOGNAME is your login name.

m MAIL names the file that contains your electronic mail.

m PATH determines the search path used by the shell to find
commands.

m PSI1 defines the primary prompt (default is $).

m PS2 defines the secondary prompt (default is >).

Mm TERM identifies your terminal type. It is important to set this
variable if you are editing with vi.

Mm TERMINFO identifies the directory to be searched for infor-
mation about your terminal, for example, its screen size.

m TZ defines the time zone (default is EST5EDT).

Many of these variables are explained in ”Modifying Your Login
Environment” later in this chapter. You can also read more about
them on the sh(1) manual page in the User's Reference Manual.

You can see the value of these variables in your shell in two ways.
First, you can type

echo $variable name

The system outputs the value of variable name. Second, you can use

the env(1) command to print out the value of all defined variables in
the shell. To do this, type env on a line by itself; the system outputs
a list of the variable names and values.

7-54. USER'S GUIDE

8
G
p

45
9

Shell Programming

Assigning a Value to a Variable

If you edit with vi, you know you can set the TERM variable by
entering the following command line:

TERM = terminal name<CR>

This is the simplest way to assign a value to a variable.

There are several other ways to do this:

m Use the read command to assign input to the variable.

m Redirect the output of a command into a variable by using
command substitution with grave accents (” … ”).

HM Åssign a positional parameter to the variable.

The following sections discuss each of these methods in detail.

Using the read Command

The read command used within a shell program allows you to
prompt the user of the program for the values of variables. The gen-
eral format for the read command is:

read variable <CR. >

The values assigned by read to variable will be substituted for Svari-
able wherever it is used in the program. If a program executes the
echo command just before the read command, the program can
display directions such as Type in The read command will
wait until you type a character string, followed by a RETURN key,
and then make that string the value of the variable.

The following example shows how to write a simple shell program
called num.please to keep track of your telephone numbers. This
program uses the following commands for the purposes specified:

echo to prompt you for a person's last name

read to assign the input value to the variable name

SHELL TUTORIAL 7-55

Shell Programming

grep to search the file list for this variable

Your finished program should look like the one displayed here:

$ cat num.please <CR >

echo Type in the last nære:

read nære

grep $Snæ list

$

Create a file called list that contains several last names and
phone numbers. Then try running num.please.

The next example is a program called mknum, which creates a
list. mknum includes the following commands for the purposes
shown.

km echo prompts for a person's name

EH read assigns the person's name to the variable name

mi echo asks for the person's number

H read assigns the telephone number to the variable num

kt echo adds the values of the variables name and num to the file

list

If you want the output of the echo command to be added to the end
of list, you must use >> to redirect it. If you use >, list will con-

tain only the last phone number you added.

7-56 USER'S GUIDE

09
gv

46
1

Sheli Programming

Running the cat command on mknum displays the program's
contents. When your program looks like this, you will be ready to
make it executable (with the chmod command):

dl mknum <CR >

echo Type in nære

read næe

echo Type in number
read mm

echo $nare $mm >> list

$ chmod u+x mknum <CR >

$

NS
Try out the new programs for your phone list. In the next exam-

ple, mknum creates a new listing for Mr. Niceguy. Then
num. please gives you Mr. Niceguy's phone number:

ln

Type in the nære

Mr. Niceguy<CR>

Type in the number

668-0007<CR>

$ num.please<CR >

Type in last name

Niceguy<CR >

Mr. Niceguy 668-0007
$

—

SHELL TUTORIAL 7-57

Shell Programming

Notice that the variable name accepts both Mr. and Niceguy as the
value.

Figures 7-18 and 7-19 summarize the mknum and num.please
shell programs, respectively.

Shell Program Recap

mknum — place name and number on a phone list

command arguments

mknum (interactive)

Description: Asks you for the name and number of a per-
son and adds that name and number to your
phone list.

Remarks: This is an interactive command.

Figure 7-18: Summary of the mknum Shell Program

7-58. USER'S GUIDE

co
r

46
3

Shell Programming

Shell Program Recap

num.please — display a person's name and number

command arguments

num.please (interactive)

Description: Asks you for a person's last name, and then
displays the person's full name and telephone
number.

Remarks: This is an interactive command.

Figure 7-19: Summary of the num.please Shell Program

Substituting Command Output for the Value of a Variable

You can substitute a command's output for the value of a variable
by using command substitution. This has the following format:

variable = "command" <CR>

The output from command becomes the value of variable.

In one of the previous examples on piping, the date command
was piped into the cut command to get the correct time. That com-
mand line was the following:

date | cut —c12-19<CR>

You can put this in a simple shell program called t that will give you
the time.

SHELL TUTORIAL 7-59

 dd
Shell Programming

$ catt<CR>

tim="date | cut 12-19"

echo The time is: $time

S

Remember there are no spaces on either side of the equal sign. Make
the file executable, and you will have a program that gives you the
time:

$ chmod u+x t<CR>
S$St<CR>

The time is: 10:36

$

Figure 7-20 summarizes your t program.

NI

/

va
r

7-60. USER'S GUIDE

46
5

Shell Programming

Shell Program Recap

t — display the correct time

command arguments

t none

Description: t gives you the correct time in hours and
minutes.

Figure 7-20: Summary of the t Shell Program

Assigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by

using the following format:

varl = $1< CR >

The next example is a simple program called simp.p that
assigns a positional parameter to a variable. The following screen
shows the commands in simp.p:

$ cat simp.p<CR>
varl=$1

echo $varl

$

SHELL TUTORIAL 7-61

Shell Programming

Of course, you can also assign the output of a command that uses
positional parameters to a variable, as follows:

person= "who | grep $1' <CR>

In the next example, the program log.time keeps track of your

whoson program results. The output of whoson is assigned to the
variable person, and added to the file login.file with the echo com-
mand. The last echo displays the value of $person, which is the
same as the output from the whoson command:

$ cat log.time<CR>

person="who | grep $1
echo $person >> login.file

echo $person

$

The system response to log.time is shown in the following
screen:

$ log.time maryann <CR >
maryann tty6l Apr 11 10:26

$

7-62 USER'S GUIDE

9
9

46
7

Shell Programming

Figure 7-21 summarizes the log.time shell program.

Shell Program Recap

log.time — log and display a specified login (user defined)

command arguments

log.time login

Description: If the specified login is currently on the sys-
tem, log.time places the line of information
from the who command into the file
login.file and then displays that line of infor- mation on your terminal.

Figure 7-21: Summary of the log.time Shell Program

SHELL TUTORIAL 7-63

Shell Programming

This page is intentionally left blank

7-64. USER'S GUIDE

8
9
v

46
9

Shell Programming Constructs

The shell programming language has several constructs that give
added flexibility to your programs:

Mm Comments let you document a program's function.

m The ”here document” allows you to include within the shell
program itself lines to be redirected to be the input to some
command in the shell program.

m The exit command lets you terminate a program at a point
other than the end of the program and use return codes.

m The looping constructs, for and while, allow a program to
iterate through groups of commands in a loop.

m The conditional control commands, if and case, execute a

group of commands only if a particular set of conditions is met.

m The break command allows a program to exit unconditionally
from a loop.

Comments

You can place comments in a shell program in two ways. All text
on a line following a £ (pound) sign is ignored by the shell. The £
sign can be at the beginning of a line, in which case the comment

uses the entire line, or it can occur after a command, in which case
the command is executed but the remainder of the line is ignored.
The end of a line always ends a comment. The general format for a
comment line is

iøicomment<CR>

For example, a program that contains the following lines will
ignore them when it is executed:

it This program sends a generic birthday greeting.<CR>

it This program needs a login as<CR>

ik the positional parameter.<CR>

Comments are useful for documenting a program's function and
should be included in any program you write.

SHELL TUTORIAL 7-65

Shell Programming Constructs

The here Document

A ”here document” allows you to place into a shell program lines
that are redirected to be the input of a command in that program. It
is a way to provide input to a command in a shell program without
needing to use a separate file. The notation consists of the redirec-
tion symbol << and a delimiter that specifies the beginning and end
of the lines of input. The delimiter can be one character or a string
of characters; the ! is often used.

Figure 7-22 shows the general format for a here document.

command < <delimiter<CR>

…Input lines… < CR >
delimiter<CR >

Figure 7-22: Format of a Here Document

In the next example, the program gbday uses a here document to
send a generic birthday greeting by redirecting lines of input into the
mail command:

S$ cat gbday<CR>

mail $1 <<!

!

$

7-66. USER'S GUIDE

O
Z
v

47
1

Shell Programming Constructs

When you use this command, you must specify the recipient's login as
the argument to the command. The input included with the use of
the here document is:

Best wishes to you on your birthday

For example, to send this greeting to the owner of login mary, type:

$ gbday mary<CR>

Login mary will receive your greeting the next time she reads her
mail messages:

S$ mail<CR>

Fran mylogin Wed May 17 14:31 CDTI 1989

Best wishes to you on your birthday

$

Figure 7-23 summarizes the format and capabilities of the gbday
command.

SHELL TUTORIAL 7-67

Shell Programming Constructs

Shell Program Recap

gbday - send a generic birthday greeting (user defined)

command arguments

gbday login

Description: gbday sends a generic birthday greeting to
the owner of the login specified in the argu-
ment.

Figure 7-23: Summary of the gbday Command

Using ed in a Shell Program

The here document offers a convenient and useful way to use ed
in a shell script. For example, suppose you want to make a shell pro-
gram that will enter the ed editor, make a global substitution to a
file, write the file, and then quit ed. The following screen shows the
contents of a program called ch.text which does these tasks.

7-68. USER'S GUIDE

C
i
r

47
3

eeÉ ke

Shell Programming Constructs

AE <CR>

echo Type in the file name.

read filel

echo Type in the exact text to be changed.

read old text

echo Type in the exact new text to replace the above.

read new text

ed — $filel <<!

g/$old text/s//$new text/g
WwW

 q
i

$

SO d
Notice the — (minus) option to the ed command. This option

prevents the character count from being displayed on the screen.
Notice, also, the format of the ed command for global substitution:

g/old text/s//new text/g<CR>

The program uses three variables: filel, old text, and new text.
When the program is run, it uses the read command to obtain the
values of these variables. The variables provide the following infor-
mation:

file the name of the file to be edited

old text the exact text to be changed

new text the new text

Once the variables are entered in the program, the here docu-
ment redirects the global substitution, the write command, and the
quit command into the ed command. Try the new ch.text command.
The following screen shows sample responses to the program
prompts:

SHELL TUTORIAL 7-69

Shell Programming Constructs

Gl <CR>

Type in the filenare.

memo<CR>

Type in the exact text to be changed.

Dear John: <CR>

Type in the exact new text to replace the above,

To whom it may concern: <CR >

$ cat memo <CR >

To wham it may concern:

S

BP.

Notice that by running the cat command on the changed file, you
could examine the results of the global substitution.

Figure 7-24 summarizes the format and capabilities of the
ch.text command.

Shell Program Recap

ch.text — change text in a file

command arguments

ch.text (interactive)

Description: Replaces text in a file with new text.

Remarks: This shell program is interactive. It will
prompt you to type in the arguments.

Figure 7-24: Summary of the ch.text Command

7-70. USER'S GUIDE

27
44

47
5

Shell Programming Constructs

If you want to become more familiar with ed, see Chapter 5,
”Line Editor Tutorial (ed).” The stream editor sed can also be used
in shell programming. You can find more information on the sed edi-
tor in the Editing Guide or Editing Utilities Guide.

Return Codes

Most shell commands issue return codes that indicate whether
the command executed properly. By convention, if the value returned
is 0 (zero) than the command executed properly; any other value indi-
cates that it did not. The return code is not printed automatically,
but is available as the value of the shell special parameter $?.

Checking Return Codes

After executing a command interactively, you can see its return

code by typing

echo $?

Consider the following example:

This is file hi.

$ echo $?
0

$ cat hello

cat: cannot open hello

$ echo $?
2

In the first case, the file hi exists in your directory and has read per-
mission for you. The cat command behaves as expected and outputs
the contents of the file. It exits with a return code of 0, which you
can see using the parameter $?. In the second case, the file either

does not exist or does not have read permission for you. The cat

SHELL TUTORIAL 7-71

Shell Programming Constructs

command prints a diagnostic message and exits with a return code of
2.

Using Return Codes With the exit Command

A shell program normally terminates when the last command in
the file is executed. However, you can use the exit command to ter-
minate a program at some other point. Perhaps more importantly,
you can also use the exit command to issue return codes for a shell

program. For more information about exit, see the exit(2) manual

page in the System V Reference Manual or Shell Commands and Pro-
gramming.

Looping

In the previous examples in this chapter, the commands in shell
programs have been executed in sequence. The for and while loop-

ing constructs allow a program to execute a command or sequence of
commands several times.

The for Loop

The for loop executes a sequence of commands once for each
member of a list. It has the following format:

for variable<CR>
in a list of values<CR >

do<CR>
command 1<CR>

command 2<CR>

last command <CR>

done<CR>
Figure 7-25: Format of the for Loop Construct

7-72. USER'S GUIDE

Z
Z

47
7

Shell Programming Constructs

For each iteration of the loop, the next member of the list is
assigned to the variable given in the for clause. References to that
variable may be made anywhere in the commands within the do
clause.

It is easier to read a shell program if the looping constructs are

visually clear. Since the shell ignores spaces at the beginning of lines,
each section of commands can be indented as it was in the above for-

mat. Also, if you indent each command section, you can easily check
to make sure each do has a corresponding done at the end of the
loop.

The variable can be any name you choose. For example, if you

call it var, then the values given in the list after the keyword in will
be assigned in turn to var; references within the command list to

$var will make the value available. If the in clause is omitted, the

values for var will be the complete set of arguments given to the
command and available in the special parameter $”, The command
list between the keywords do and done will be executed once for
each value.

When the commands have been executed for the last value in the

list, the program will execute the next line below done. If there is

no line, the program will end.

The easiest way to understand a shell programming construct is

to try an example. Create a program that will move files to another
directory Include the following commands for the purposes shown:

echo to prompt the user for a path name to the
new directory.

read to assign the path name to the variable
path

for variable to call the variable file; it can be refer-

enced as $file in the command sequence.

in list of values to supply a list of values. If the in clause

is omitted, the list of values is assumed to

be $" (all the arguments entered on the

command line).

SHELL TUTORIAL 7-73

Shell Programming Constructs

do command sequence to provide a command sequence. The
construct for this program will be:

do

mv Sfile Spath/Sfile< CR >
done

The following screen shows the text for the shell program
mv.file:

mn <CR>

echo Please type in the directory path

read path

for file

in memol memo2 memo3

do

mv $file $path/Sfile

dane

 $

/
In this program the values for the variable file are already in the

program. To change the files each time the program is invoked,
assign the values using positional parameters or the read command.
When positional parameters are used, the in keyword is not needed,
as the next screen shows:

7-74. USER'S GUIDE

8

47
9

Fe —cI—

Shell Programming Constructs

mv Sfile $path/Sfile

done

$,.

You can move several files at once with this command by specify-
ing a list of file names as arguments to the command. (This can be
done most easily using the file name expansion mechanism described
earlier).

Figure 7-26 summarizes the mv.file shell program.

SHELL TUTORIAL 7-75

Shell Programming Constructs

Shell Program Recap

mv.file — move files to another directory (user defined)

command arguments

mv file filenames
(interactive)

Description: Moves files to a new directory.

Remarks: This program requires file names to be given
as arguments. The program prompts for the
path to the new directory.

Figure 7-26: Summary of mv.file Shell Program

The while Loop

Another loop construct, the while loop, uses two groups of com-
mands. It will continue executing the sequence of commands in the
second group, the do…done list, as long as the final command in the
first group, the while list, returns a status of true (meaning the com-
mand can be executed).

The general format of the while loop is shown in Figure 7-27.

7-76... USER'S GUIDE

o
g
r

48
1

Shell Programming Constructs

while<CR>
command 1<CR>

last command <CR>

do<CR>
command 1<CR>

last command <CR>

done<CR>

Figure 7-27: Format of the while Loop Construct

For example, a program called enter.name uses a while loop to
enter a list of names into a file. The program consists of the follow-
ing command lines:

while

read x

do

echo $x>>xfile

done

$

$ cat enter.name <CR >

SHELL TUTORIAL 7-77

de
Shell Programming Constructs

With some added refinements, the program becomes:

cat enter.name < CR >

echo Please type in each person's nære and then a <CR>

echo Please end the list of names with a <"d>

while read x

do

echo $xoxfile

dane

echo xfile contains the following næs:

cat xfile

$

Notice the program executes the commands below the done.

You used special characters in the first two echo command lines,
so you must use quotes to turn off the special meaning. The next
screen shows the results of enter.name:

$ enteryname<CR>

Please type in each person's nare and then a <CR>

Please end the list of names with a <"d>

Mary Lou<CR>
Janice<CR>
<"d>

xfile contains the following næres:

Mary Iou

Janice

$

7-78. USER'S GUIDE

c
8
v

48
3

Shell Programming Constructs

Notice that after the loop completes, the program prints all the
names contained in xfile.

The Shell's Garbage Can: /dev/null

The file system has a file called /dev/null where you can have
the shell deposit any unwanted output.

Try out /dev/null by destroying the results of the who com-
mand. First, type in the who command. The response tells you who
is on the system. Now, try the who command, but redirect the out-
put into /dev/null:

who > /dev/null<CR>

Notice that the system responded with a prompt. The output
from the who command was placed in /dev/null and was effectively
discarded.

Conditional Constructs

if…then

The if command tells the shell program to execute the then

sequence of commands only if the final command in the if command
list is successful. The if construct ends with the keyword fi.

The general format for the if construct is shown in Figure 7-28.

SHELL TUTORIAL 7-79

Shell Programming Constructs

if<CR>

commandl<CR>

last Com are <CR>
then<CR>

commandl<CR>

last command <CR>

fi<CR>

Figure 7-28: Format of the if…then Conditional Construct

For example, a shell program called search demonstrates the use
of the if…then construct. search uses the grep command to search
for a word in a file. If grep is successful, the program will echo that
the word is found in the file. Copy the search program (shown on
the following screen) and try it yourself:

7-80. USER'S GUIDE

v
8
r

48
5

horn

Shell Programming Constructs

$ cat search <CR>

echo Type in the word and the file næe.

read word file

if grep Sword $file
then echo Sword is in Sfile

fi

$

Notice that the read command assigns values to two variables.
The first characters you type, up until a space, are assigned to word.
The rest of the characters, including embedded spaces, are assigned
to file.

ÅA problem with this program is the unwanted display of output
from the grep command. If you want to dispose of the system
response to the grep command in your program, use the file
/dev/null, changing the if command line to the following:

if grep $word $file > /dev/null<CR>

Now execute your search program. It should respond only with the
message specified after the echo command.

if…then… else

The if.….then construction can also issue an alternate set of com-

mands with else, when the if command sequence is false. It has the

following general format:

SHELL TUTORIAL. 7-81

Shell Programming Constructs

if<CR>

commandl<CR>

last Command <CR>
then< CR >

commandl<CR>

last command <CR>
else <CR >

commandl<CR>

last COME erEE <CR>
fi<CR>

Figure 7-29: Format of the if…then… else Conditional Construct

You can now improve your search command so it will tell you
when it cannot find a word, as well as when it can. The following
screen shows how your improved program will look:

7-82 USER'S GUIDE

9
8
v

48
7

Shell Programming Constructs

”æ

$ cat search<CR>
echo Type in the word and the file nare.

read word file

if

grep Sword Sfile >/dev/mul

then

echo Sword is in $file

else

echo Sword is NOT in $file

fi

$
sd

Figure 7-30 summarizes your enhanced search program.

Shell Program Recap

search - tells you if a word is in a file (user defined)

command arguments

search interactive

Description: Reports whether a word is in a file.

Remarks: The command prompts you for the arguments
(the word and the file)

Figure 7-30: Summary of the search Shell Program

SHELL TUTORIAL 7-83

Shell Programming Constructs

The test Command for Loops

The test command, which checks to see if certain conditions are

true, is a useful command for conditional constructs. If the condition

is true, the loop will continue. If the condition is false, the loop will

end and the next command will be executed. Some of the useful

options for the test command are:

test —r file<CR> true if the file exists and is readable

test —w /ile<CR> true if the file exists and has write permission

test —x file<CR> true if the file exists and is executable

test —s file<CR> true if the file exists and has at least one character

test varl — eq var2<CR>true if varl equals var2

test varl —ne var2<CR>true if var] does not equal var2

You may want to create a shell program to move all the execut-
able files in the current directory to your bin directory. You can use
the test —x command to select the executable files. Review the
example of the for construct that occurs in the mv.file program,

shown in the following screen:

Al mv.file< CR >

echo type in the directory path

read path

for file

do

mv $file $path/Sfile

done

$

7-84. USER'S GUIDE

8
8
r

48
9

de
Shell Programming Constructs

Create a program called mv.ex that includes an if test —x state-
ment in the do…done loop to move executable files only. Your pro-
gram will be as follows:

"SN <CR>

echo type in the directory path

read path

for file

do

if test —x $file

then

mv Sfile $path/$file

fi

done

NG i”.

The directory path will be the path from the current directory to
the bin directory. However, if you use the value for the shell vari-
able HOME, you will not need to type in the path each time.
$HOME gives the path to the login directory. $HOME/bin gives
the path to your bin.

In the following example, mv.ex does not prompt you to type in
the directory name, and therefore, does not read the path variable:

SHELL TUTORIAL 7-85

BREST
FEEEN
===

Shell Programming Constructs

(. cat mv.ex< CR >

for file

do

if test —x $file

then

mv $file $HOME/bin/S$file

sd

Test the command, using all the files in the current directory,

specified with the ” metacharacter as the command argument. The
command lines shown in the following example execute the command
from the current directory and then changes to bin and lists the files
in that directory. All executable files should be there.

$ mv.ex Z<CR>

S$ cd; cd bin; ls< CR >

list of executable files

$

Figure 7-31 summarizes the format and capabilities of the mv.ex
shell program.

7-86 USER'S GUIDE

0
6
v

49
1

Shell Programming Constructs

Shell Program Recap

mv.ex — move all executable files in the current

directory to the bin directory

command arguments

mv.ex £ (all file names)

Description: Moves all files in the current directory with
execute permission to the bin directory.

Remarks: All executable files in the bin directory (or
any directory shown by the PATH variable)
can be executed from any directory.

Figure 7-31: Summary of the mv.ex Shell Program

case….esac

The case…esac construction has a multiple choice format that
allows you to choose one of several patterns and then execute a list of
commands for that pattern. The pattern statements must begin with
the keyword in, and a) must be placed after the last character of
each pattern. The command sequence for each pattern is ended with
;;. The case construction must be ended with esac (the letters of the

word case reversed).

The general format for the case construction shown in Figure 7-
32:

SHELL TUTORIAL 7-87

Shell Programming Constructs

case word<CR>
in<CR>

patternl)<CR>
command line 1<CR>

last command line<CR>
s<CR>
pattern2) <CR >

command line 1<CR>

last command line<CR>
s<CR>

pattern3)<CR>
command line 1<CR>

last command line<CR>
s<CR>
+) <CR>

command 1<CR>

last Command <CR>
s<CR>

esac<CR>

Figure 7-32: The case…esac Conditional Construct

The case construction tries to match the word following the word
case with the pattern in the first pattern section. If there is a match,

the program executes the command lines after the first pattern and
up to the corresponding ;;.

7-88. USER'S GUIDE

e
6
v

49
3

Shell Programming Constructs

If the first pattern is not matched, the program proceeds to the
second pattern. Once a pattern is matched, the program does not try
to match any more of the patterns, but goes to the command follow-
ing esac.

The ” used as a pattern matches any word, and so allows you to
give a set of commands to be executed if no other pattern matches.
To do this, it must be placed as the last possible pattern in the case
construct, so that the other patterns are checked first. This provides
a useful way to detect erroneous or unexpected input.

The patterns that can be specified in the pattern part of each sec-
tion may use the metacharacters %, ?, and [] as described earlier in

this chapter for the shell's file name expansion capability. This pro-
vides useful flexibility.

The set.term program contains a good example of the
case…esac construction. This program sets the shell variable TERM
according to the type of terminal you are using. It uses the following
command line:

TERM =terminal name<CR>

(For an explanation of the commands used, see the vi tutorial in
Chapter 6.) In the following example, the terminal is a Teletype
4420, Teletype 5410, or Teletype 5420.

set.term first checks to see whether the value of term is 4420.

If it is, the program makes T4 the value of TERM, and terminates.
If it the value of term is not 4420, the program checks for other

values: 5410 and 5420. It executes the commands under the first

pattern that it finds, and then goes to the first command after the
esac command.

The pattern % , meaning everything else, is included at the end of
the terminal patterns. It will warn that you do not have a pattern
for the terminal specified and will allow you to exit the case con-
struct:

SHELL TUTORIAL 7-89

Shell Programming Constructs

ÆRE <CR>

echo If you have a TIY 4420 type in 4420

echo If you have a TIY 5410 type in 5410

echo If you have a TIY 5420 type in 5420

read term

case $term

in

Notice the use of the export command. You use export to make

a variable available within your environment and to other shell pro-
cedures. What would happen if you placed the ” pattern first? The
set.term program would never assign a value to TERM, since it
would always match the first pattern =, which means everything.

Figure 7-33 summarizes the format and capabilities of the

set.term shell program.

7-30 USER'S GUIDE

v
6
v

49
5

Shell Programming Constructs

Shell Program Recap

set.term - assign a value to TERM (user defined)

command arguments

set.term interactive

Description: Assigns a value to the shell variable TERM
and then exports that value to other shell pro-
cedures.

Remarks: This command asks for a specific terminal
code to be used as a pattern for the case con-
struction.

Figure 7-33: Summary of the set.term Shell Program

Unconditional Control Statements: the break and continue

Commands

The break command unconditionally stops the execution of any
loop in which it is encountered, and goes to the next command after
the done, fi, or esac statement. If there are no commands after that

statement, the program ends.

In the example for set.term, you could have used the break
command instead of echo to leave the program, as the next example
shows:

SHELL TUTORIAL. 7-91

Shell Programming Constructs

$ cat set.term <CR> Å

echo If you have a TTY 4420 type in 4420

echo If you have a TIY 5410 type in 5410

echo If you have a TIY 5420 type in 5420

read term

case $term

in

4420)

TERM=T4

5410)

TERM=-TS

5420)

TERM=T7

ii

-)
break

fi

esac

export TERM
echo end of program

$
ir.

The continue command causes the program to go immediately to
the next iteration of a dø or for loop without executing the remain-
ing commands in the loop.

Debugging Programs

At times you may need to debug a program to find and correct
errors. There are two options to the sh command (listed below) that
can help you debug a program:

7-92 USER'S GUIDE

9
6
v

49
7

Shell Programming Constructs

sh —v shellprogramname prints the shell input lines as they are
read by the system

sh —x shellprogramname prints commands and their arguments
as they are executed

To try out these two options, create a shell program that has an
error in it. For example, create a file called bug that contains the
following list of commands:

dl bug<CR>

today=" date”

echo enter person

read person

mail $1

S$person

When you log off care into my office please.

$today.
MIH

NE /

Notice that today equals the output of the date command, which
must be enclosed in grave accents for command substitution to occur.

The mail message sent to Tom ($1) at login tommy ($2) should
read as the following screen shows:

SHELL TUTORIAL 7-93

 gg
Shell Programming Constructs

S$ mail<CR >

Franmlh Wed Sæ 21 11:36 CST 1988

Tom

When you log off care into my office please.

Man Sæp 11 11:36:32 CST 1989

MH

g

If you try to execute bug, you will have to press the BREAK or

DELETE key to end the program.

To debug this program, try executing bug using sh —v. This

will print the lines of the file as they are read by the system, as
shown below:

$ sh —v bug tom <CR >

today=" date”

echo enter person

enter person

read person

tommy

mail $1

Notice that the output stops on the mail command, since there is
a problem with mail. You must use the here document to redirect

input into mail.

7-94. USER'S GUIDE

g
6
v

49
9

Shell Programming Constructs

Before you fix the bug program, try executing it with sh —x,
which prints the commands and their arguments as they are read by
the system:

ll x bug tom tommy<CR>

+tdate

today=Fri Sep 15 11:07:23 CST 1989
+ echo enter person

enter person

+ read person

tommy

+ mail tom

NE od
Once again, the program stops at the mail command. Notice

that the substitutions for the variables have been made and are
displayed.

The corrected bug program is as follows:

SHELL TUTORIAL 7-95

[ll 8
Shelt Programming Constructs

mn
today=" date”

When you log off came into my office please.

S$today
MH

!

The tee command is a helpful command for debugging pipelines.

While simply passing its standard input to its standard output, it also
saves a copy of its input into the file whose name is given as an argu-
ment.

The general format of the tee command is:

commandl | tee saverfile a//(ov command2<CR

saverfile is the file that saves the output of commandl for you to
study.

For example, say you want to check on the output of the grep
command in the following command line:

who | grep $1 | cut —c1-9<CR>

You can use tee to copy the output of grep into a file called check,
without disturbing the rest of the pipeline.

who | grep $1 | tee check | cut —-c1—-9<CR>

The file check contains a copy of the grep output, as shown in the
following screen:

7-96 USER'S GUIDE

O
0
G

50
1

 EESSESSEEREE

Shell Programming Constructs

$ who | grep mlhmo | tee check | cut —c1—9<CR>

mlkmo

$ cat check<CR>
mlhmo ttyél Sø 15 11:30
$

For further information about shell programming, including
features such as command return codes, refer to the manual Shell

Commands and Programming.

SHELL TUTORIAL 7-97

 Er

Modifying Your Login Environment

The UNIX system lets you modify your login environment in
several ways.

When you log in, the shell first examines a file in your login direc-
tory named .profile (pronounced ”dot profile”). This file contains
commands that control your shell environment.

Because the .profile is a file, it can be edited and changed to suit
your needs. On some systems you can edit this file yourself, while on
others, the system administrator does this for you. To see whether
you have a «profile in your home directory, type:

ls — al $HOME

If you can edit the file yourself, you may want to be cautious the
first few times. Before making any changes to your .profile, make a
copy of it in another file called safe.profile. Type:

cp profile safe.profile < CR >

You can add commands to your .profile just as you add com-

mands to any other shell program. You can also set some terminal
options with the stty command, and set some shell variables.

Adding Commands to Your .profile

Practice adding commands to your .profile. Edit the file and add
the following echo command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to
initiate them in the current work session, you may cause the com-
mands in .profile to be executed directly using the . (dot) shell com-
mand. The shell will reinitialize your environment by reading execut-
ing the commands in your .profile. Try this now. Type:

7-98 USER'S GUIDE

c0
oS

50
3

Modifying Your Login Environment

. «profile<CR>

The system should respond with the following:

Good Morning! I am ready to work for you.

S

Setting Terminal Options

The stty command can make your shell environment more con-
venient. There are three options you can use with stty: —tabs,
echoe and put.

stty — tabs This option preserves tabs when you are
printing. It expands the tab setting to
eight spaces, which is the default. The
number of spaces for each tab can be
changed. (See stty(1) in the System V
Reference Manual for details.)

stty echoe If you have a terminal with a screen, this
option erases characters from the screen
as you erase them with the BACKSPACE
key.

If you want to use these options for the stty command, you can
create those command lines in your .profile just as you would create
them in a shell program. If you use the tail command, which
displays the last few lines of a file, you can see the results of adding
those four command lines to your .profile:

SHELL TUTORIAL 7-99

Modifying Your Login Environment

S$ tail —4 .profile< CR >

echo Good Morning! I am ready to work for you

stty —tabs
stty echoe

$

Figure 7-34 summarizes the format and capabilities of the tail

command.

Command Recap

tail — display the last portion of a file

command options arguments

tail -n filename

Description: Displays the last lines of a file.

Options: Use —n to specify the number of lines n
(default is ten lines). You can specify a
number of blocks (—-nb) or characters (-— nec)
instead of lines.

Figure 7-34: Summary of the tail Command

7-100 USER'S GUIDE

v
O
S

50
5

Modifying Your Login Environment

Creating an rje Directory

We have often talked about sharing useful programs with other
users in this chapter. Similarly, these users may have programs or
other files that they want to share with you. So that these users can
send you the files easily, you should create an rje (remote job entry)
directory:

mkdir rje
chmod go+w rje

Notice that you have to change the permissions of the directory using
chmod. When you have an rje directory with the correct permis-
sions, other users can send you files using the uucp command. See
the uucp(1) manual page in the User's Reference Manual for details.

Using Shell Variables

Several of the variables reserved by the shell are used in your
"profile. You can display the current value for any shell variable by
entering the following command:

echo $variable name

Four of the most basic of these variables are discussed next.

HOME

This variable gives the path name of your login directory.
Use the cd command to go to your login directory and type:

pwd<CR>

What was the system response? Now type:

echo $HOME<CR>

Was the system response the same as the response to pwd?

SHELL TUTORIAL 7-101

Modifying Your Login Environment

$HOME is the default argument for the cd command. If

you do not specify a directory, cd will move you to $HOME.

PATH

This variable gives the search path for finding and execut-
ing commands. To see the current values for your PATH

variable type:

echo $PATH<CR>

The system will respond with your current PATH value.

$ echo $PATH<CR >

: nylogin/bin: /bin: /usr/bin: /usr/lib

$

The colon (:) is a delimiter between path names in the
string assigned to the $PATH variable. When nothing is
specified before a :, then the current directory is understood.

Notice how, in the last example, the system looks for com-
mands in the current directory first, then in /mylogin/bin/,
then in /bin, then in /usr/bin, and finally in /usr/lib.

If you are working on a project with several other people,
you may want to set up a group bin, a directory of special

shell programs used only by your project members. The path
might be named /projectl/bin. Edit your profile, and add
:/projectl/bin to the end of your PATH, as in the next
example.

PATH=”:/mylogin/bin:/bin:/usr/lib:/project1/bin” <CR >

7-102. USER'S GUIDE

9
0
S

50
7

Modifying Your Login Environment

TERM

This variable tells the shell what kind of terminal you are
using. To put assign a value to it, you must execute the fol-
lowing three commands in this order:

TERM =terminal name<CR>
export TERM<CR>

The first two lines, together, are necessary to tell the

computer what type of terminal you are using. (For an
explanation of exporting variables, see Shell Commands
and Programming.) The last line, containing the tput com-
mand, tells the terminal that the computer is expecting to
communicate with the type of terminal specified in the TERM
variable. Therefore this command must always be entered
after the variable has been exported.

If you do not want to specify the TERM variable each
time you log in, add these three command lines to your
profile; they will be executed automatically whenever you
log in. To determine what terminal name to assign to the
TERM variable, see the instructions in Appendix F, ”Setting
Up the Terminal.”

If you log in on more than one type of terminal, it would
also be useful to have your set.term command in your
"profile.

PS1

This variable sets the primary shell prompt string (the
default is the $ sign). You can change your prompt by chang-
ing the PS1 variable in your .profile.

Try the following example. Note that to use a multi-word
prompt, you must enclose the phrase in quotes. Type the fol-
lowing variable assignment in your .profile.

PS1=”Your command is my wish<CR>”

SHELL TUTORIAL 7-103

(ea er=::

Modifying Your Login Environment

Now execute your profile (with the . command) and watch
for your new prompt sign.

$. sprofile< CR >
Your command is my wish

The mundane $ sign is gone forever, or at least until you
delete the PS1 variable from your .profile.

7-104 USER'S GUIDE

8B
0S

50
g

Shell Programming Exercises

2-1.

2-7.

2-9.

Create a shell program called time from the following com-
mand line:

banner "date | cut —c12-19" <CR>

Write a shell program that will give only the date in a banner
display. Be careful not to give your program the same name
as a UNIX system command.

Write a shell program that will send a note to several people
on your system.

Redirect the date command without the time into a file.

Echo the phrase Dear colleague in the same file that contains
the date command, without erasing the date.

Using the above exercises, write a shell program that will
send a memo to the same people on your system mentioned in
Exercise 2-3. Include in your memo:

The current date and the words Dear colleague at the top
of the memo

The body of the memo (stored in an existing file)

The closing statement

How can you read variables into the mv.file program?

Use a for loop to move a list of files in the current directory
to another directory. How can you move all your files to
another directory?

How can you change the program search, so that it searches
through several files?

Hint:

for file

in $"

SHELL TUTORIAL 7-105

Shell Programming Exercises

2-10. Set the stty options for your environment.

2-11... Change your prompt to the word Hello.

2-12, Check the settings of the variables $HOME, $TERM, and
$PATH in your environment.

7-106 USER'S GUIDE

O
L
S

51
1

Answers To Exercises

Command Language Exercises

1-1. The ” at the beginning of a file name refers to all files that
end in that file name, including that file name.

$ Is ”t<CR>

cat

123t

new.t

t

$

1-2. The command cat [0-9]" will produce the following output:

1memo

100data

9

05name

The command echo ” will produce a list of all the files in the
current directory.

1-3. You can place ? in any position in a file name.

1-4. The command Is [0-9]" will list only those files that start

with a number.

The command Is [a-m]" will list only those files that start

with the letters ”a” through ”m”.

SHELL TUTORIAL 7-107

Answers To Exercises

1-5. If you placed the sequential command line in the background
mode, the immediate system response was the PID number
for the job.

No, the & (ampersand) must be placed at the end of the com-
mand line.

1-6. The command line would be:

cd; pwd > junk; Is >> junk; ed trial<CR>

1-7. Change the —c option of the command line to read:

banner "date | cut -c1-10' <CR>

7-108 USER'S GUIDE

Z
I
S

51
3

Answers To Exercises

Shell Programming Exercises

2-1.

$ cat time<CR>

banner ”date | cut —c12-19

;
$ chmod u+x time<CR>
S time<CR>

(banner display of the time 10:26)

$

SHELL TUTORIAL 7-109

Answers To Exercises

2-2.

$ cat mydate<CR>

banner ”date | cut -c1-10"

$

2-3

KF

J
N

$ cat tofriends< CR >

echo Type in the nare of the file containing the note.

read note

mail janice marylou bryan < $note

S

Or, if you used parameters for the logins, instead of the logins
themselves, your program may have looked like this:

7-110. USER'S GUIDE

51
5

 Eger

Answers To Exercises

$ cat tofriends<CR >
echo Type in the name of the file containing the note.

read note

mail $x < S$note

$

2-4... date | cut —c1-10 > file1<CR>

2-5... echo Dear colleague >> file1<CR>

SHELL TUTORIAL 7-111

Answers To Exercises

2-6.

$ cat send.memo<CR>
date | cut —c1-10 > mmol

echo Dear colleague >> memol

cat memo >> memol

echo A memo fram M. L. Kelly >> menol

mail janice marylou bryan < memol

$

2-7.

al mv.file<CR>

echo type in the directory path

read path

echo type in file næres, end with <"d>

while

read file

do

mv $file Spath/$file

dame

echo all døre

$

7-112. USER'S GUIDE

9
3
S

51
7

2-8.

Answers To Exercises

AN <CR>

echo Please type in directory path

read path

for file in $+

do

mv Sfile $path/Sfile

dane

$

The command line for moving all files in the current directory is:

$ mv.file "<CR>

2-9... See hint given with exercise 2-9.

ØE <CR>

for file

in $+

do

if grep Sword $file >/dev/mll

then echo $word is in $file

else echo Sword is NOT in $file

fi

done

SHELL TUTORIAL 7-113

N

”

Answers To Exercises

2-10. Add the following lines to your .profile.

stty -tabs< CR >
stty echoe<CR>

2-11. Add the following command lines to your -profile

PS1=Hello<CR>
export PS1

2-12. To check the values of these variables in your home environ-
ment:

- $ echo $HOME<CR>

$ echo $TERM<CR>

S$ echo $PATH<CR >

[I
[]

7-114. USER'S GUIDE

B
I
S

51
9

Page

Introduction ssgsgsisgssssesggsgskeekerde enedes orde 8-1

Exchanging Messages 2..2ssscnseerrreerserrsesensennersee serene rdr k REE 8- 2

Mail, 44705 0WNKHRKEKRS ERKKI EEK REESE EEKEEEESRSEREDEEEEEEKEEEEEKEENEENEERERE 8- 3

Sending Messagesseverrrsrrsrrrrrrerrerrrrrererenrrerererrer ennen rrerrrrere 8-3

Undeliverable Mail cesser 8-4

Sending Mail to One Person 1.....6ssssesesssrnssrssrrnnerenernnrnne 8-6

Sending Mail to Several People Simultaneously 8-7

Sending Mail to Remote Systems:
the uname and uuname Commands uven, 8-8

Managing Incoming Mail usus 8-12

Mail X 65645650 EELEEEESSEEDENER 8-16

mailx Overview ..uuesssrerrsrrerrrrrerererrerrerrerneeerererrrrenrnne rss rnrrenere 8-17

Command Line Options …......sssecererererrerrrreeserree ner nernete nens n enes s st ts s 8-19

How to Send Messages: the Tilde Escapes sescrrrrrrrerrrrrneeres 8-20

Editing the Messageusersrrrrrsersrerrrerrserersrrrrrererrensrnreenennnerree 8-22

Incorporating Existing Text into Your Message... scccrreree. 8-24

Reading a File into a Message susssrersrrsrrrserrrerrrsrrrsnene 8-25

Incorporating a Message from Your Mailbox into a Reply. 8-26

Changing Parts of the Message Header …….......Gu.u.ssceceerrersrererersee 8-27

Adding Your Signaturesssceservesreserererseneree renee ren enn nnnnee 8-28

Keeping a Record of Messages You Send 1... 8-29

Exiting from mail& uses 8-31

Summary 11.sussceverertesssserssrrerrretensenker enn rsnense sneen sanne renses eres ke rn NET 8-32

How to Manage Incoming Mail ..csessseesersessssssserserssesennsenseenree 8-33

TABLE OF CONTENTS i

Table of Contents

Page

The msglist Argument ……...ssseserrrressrsrrrrrrernrrrererre nerne 8-33

Commands for Reading and Deleting Mail 21... scener 8-34

Reading Mail sr sr dinner, 8-35

Scanning Your Mailbox 0cuscsssresrrrsrrestrerrernsnnresrerrnerengnnee 8-36

Switching to Other Mail Files ses 8-37

Deleting Mail …......…..ssscrrsresererrssest rr EEEE EDER LEE ED 8-38

Commands for Saving Mailsscsseeeerreersrserstsesssrnrr renee 8-39

Commands for Replying to Mail 1sssesesersrrrrrerrrressrrrrserrennnneee 8-40

Commands for Getting Out of mail 1... ssscsssrssssessrerree 8-41

mailx Command Summary 22222cscuucrrrrsrrrssrrrsskerrsennenerers 8-42

The .mailre File 2. iii rrste tres nens venne 8-43

Sending and Receiving Files... 8-48

Sending Small Files: the mail Command scene 8-48

Sending Large Filesusssssssrsasrserrrsrrsrsrstrnrnrn snert nerne 8-49

Getting Ready: Do You Have Permission? screen 8-50

The uucp Command 1... 8-52

Command Line Syntax 1…......Gsssssssussrrsersssrrsrrrrerr str LEE TEENS 8-53

Sample Usage of Options with the uucp Command... 8-55

How the uucp Command Works 1... 8-57

The uuto Command iris FE iReEEN rs 8-60

Sending a File: the 202m Option
and the uustat Commandssssssssesrsrsrrsrssrrsserrrnee ner LEN 8-60

Receiving Files Sent with uuto:
the uupick Command 20sssccsseissrsnerrernsnrserrrernnr renterne 8-65

Networking M..sssseesrereeereserse renser reen rrersn nt ser eders 8-69

Connecting a Remote Terminal: the c£ Command 2... 8-69

Command Line Format 220sccssssrserssrssrsrrrsrese seeren nnrrns 8-70

Sample Command Usage 1….G.….ssscsseesrsseerserenereese rer rar serene 8-70

USER'S GUIDE

o
g
s

52
1

Table of Contents

Page

Calling Another UNIX System: the cu Command... 8-72

Command Line Format users 8-73

Sample Command Usage useueverrrrsssseesersnnsstsesersrsssrnssrsee 8-75

Executing Commands on a Remote System:
the uux Command rok erne 8-77

Command Line Format. ssercrsereeseseeseerrssrseserrersrrernee 8-78

Sample Command Usage 2......ssssssseseesersrsrsersrsernnrese venne 8-78

TABLE OF CONTENTS | iii

Table of Contents

This page is intentionally left blank

iv: USER'S GUIDE

g
e
s

52
3

Introduction

The UNIX system offers a choice of commands that enable you to
communicate with other UNIX system users. Specifically, they allow
you to: send and receive messages from other users (on either your
system or another UNIX system); exchange files; and form networks
with other UNIX systems. Through networking, a user on one sys-
tem can exchange messages and files between computers, and execute
commands on remote computers.

To help you take advantage of these capabilities, this chapter will
teach you how to use the following commands.

For exchanging messages: mail, mailx, uname,

and uuname

For exchanging files: uucp, uuto, uupick, and uustat

For networking: ct, cu, and uux

COMMUNICATION TUTORIAL 8-1

ED ' smsen

Exchanging Messages

To send messages you can use either the mail or mailx com-
mand. These commands deliver your message to a file belonging to
the recipient. When the recipient logs in (or while already logged in),
he or she receives a message that says you have mail. The recipient
can use either the mail or mailx command to read your message and
reply at his or her leisure.

The main difference between mail and mailx is that only mailx
offers the following features:

Hi a choice of text editors (ed or vi) for handling incoming and
outgoing messages

H a list of waiting messages that allows the user to decide which
messages to handle and in what order

MH several options for saving files

må commands for replying to messages and sending copies (of both
incoming and outgoing messages) to other users

You can also use mail or mailx to send short files containing
memos, reports, and so on. However, if you want to send someone a
file that is over a page long, use one of the commands designed for
transterring files: uuto or uucp. (See ”Sending Large Files” later in
this chapter for descriptions of these commands.)

8-2 USER'S GUIDE

v
e
s

52
5

mail

This section presents the mail command. It discusses the basics
of sending mail to one or more people simultaneously, whether they

are working on the local system (the same system as you) or on a

remote system. It also covers receiving and handling incoming mail.

Sending Messages

The basic command line format for sending mail is

mail login <CR >

where login is the recipient's login name on a UNIX system. This

login name can be either of the following:

WH a login name if the recipient is on your system (for example,

bob)

H a system name and login name if the recipient is on another

UNIX system that can communicate with yours (for example,

sys2!bob)

For the moment, assume that the recipient is on the local system.
(We will deal with sending mail to users on remote systems later.)
Type the mail command at the system prompt, press the RETURN
key, and start typing the text of your message on the next line.

There is no limit to the length of your message. When you have
finished typing it, send the message by typing a period (.) ora <"d>
(control-d) at the beginning of a new line.

The following example shows how this procedure will appear on
your screen.

COMMUNICATION TUTORIAL 8-3

 de
mail

æl phyllis< CR >
My meeting with Smith's<CR >

group tomorrow has been moved< CR >

up to 3:00 so I won't be able to< CR >
see you then, Could we meet <CR>
in the morning instead? < CR. >
.<CR>

NG

The prompt on the last line means that your message has been
queued (placed in a waiting line of messages) and will be sent.

Undeliverable Mail

If you make an error when typing the recipient's login, the mail
command will not be able to deliver your mail. Instead, it will print
two messages telling you that it has failed and that it is returning
your mail. Then it will return your mail in a message that includes
the system name and login name of both the sender and intended
recipient, and an error message stating the reason for the failure,

For example, say you (owner of the login kol) want to send a
message to a user with the login chris on a system called marma-
duk. Your message says The meeting has been changed to 2:00.
Failing to notice that you have incorrectly typed the login as cris,
you try to send your message.

8-4. USER'S GUIDE

9
g
S

52
7

$ mail cris<CR>
The meeting has been changed to 2:00.
.<CR>

mail: Can't send to cris

mail: Return to kol

you have mail in /usr/mail/kol

$

The mail that is waiting for you in /usr/mail will be useful if you do
not know why the mail command has failed, or if you want to
retrieve your mail so that you can resend it without typing it in
again. It contains the following:

all <CR>

Fram kol Sat Aug 19 17:33 EST 1989

>From kol Sat Aug 19 17:33 EST 1989 forwarded by kol

&kxk UNDELIVERABLE MAIL sent to cris, being returned by marmaduk!kol xxx

mail: ERROR ff 8 'Invalid recipient' encountered an system marmaduk

The meeting has been changed to 2:00.

 ?

To learn how to display and handle this message see ”Managing
Incoming Mail” later in this chapter.

COMMUNICATION TUTORIAL 8-5

Sending Mail to One Person

The following screen shows a typical message.

æl tommy<CR >
Tom, <CR>

There's a meeting of the review committee < CR >
at 3:00 this afternoon. D.F. wants your <CR >

comments and an idea of how long you think<CR >

the project will take to complete. <CR>
B.K.<CR>
.<CR>

$

When Tom logs in at his terminal (or while he is already logged in),

he receives a message that tells him he has mail waiting:

$ you have mail

To find out how he can read his mail, see the section ”Managing
Incoming Mail” in this chapter.

You can practice using the mail command by sending mail to
yourself. Type in the mail command and your login ID, and then
write a short message to yourself. When you type the final period or
<"d>, the mail will be sent to a file named after your login ID in the
fusr/mail directory, and you will receive a notice that you have mail.

Sending mail to yourself can also serve as a handy reminder sys-
tem. For example, suppose you (login ID bob) want to call someone
the next morning. Send yourself a reminder in a mail message.

8-6 USER'S GUIDE

g
e
s

52
9

 dk
mail

$ mail bob< CR >

Call Accounting and find out <CR >

why they haven't returned my 1985 figures! <CR >
.<CR>

$

When you log in the next day, a notice will appear on your screen

informing you that you have mail waiting to be read.

Sending Mail to Several People Simultaneously

You can send a message to a number of people by including their

login names on the mail command line. For example:

$ mail tommy jane wombat dave<CR>
Diamond cutters,<CR >

The game is on for tonight at diamond three. <CR >
Don't forget your gloves!<CR >
Your Manager < CR >
.<CR>

$

Figure 8-1 summarizes the syntax and capabilities of the mail

command.

COMMUNICATION TUTORIAL 8-7

Command Recap

mail — sends a message to another user's login

command options arguments

mail none [system name!jlogin

Description: Typing mail followed by one or more login
names, sends the message typed on the lines
following the command line to the specified
login(s).

Remarks: Typing a period or a <"d> (followed by the
RETURN key) at the beginning of a new line
sends the message.

Figure 8-1: Summary of Sending Messages with the mail Command

Sending Mail to Remote Systems: the uname
and uuname Commands

Until now we have assumed that you are sending messages to

users on the local UNIX system. However, your company may have

three separate computer systems, each in a different part of a build-
ing, or you may have offices in several locations, each with its own

system.

You can send mail to users on other systems simply by adding the
name of the recipient's system before the login ID on the command
line.

mail sys2!bob <CR >

8-8 "USER'S GUIDE

0
£
S

53
1

mail

Notice that the system name and the recipient's login ID are
separated by an exclamation point.

Before you can run this command, however, you need three pieces
of information:

M the name of the remote system

Mm whether or not your system and the remote system communi-
cate

EH the recipient's login name

The uname and uuname commands allow you to find this informa-
tion.

If you can, get the name of the remote system and the recipient's

login name from the recipient. If the recipient does not know the
system name, have him or her issue the following command on the
remote system:

uname -n<CR>

The command will respond with the name of the system. For exam-
ple:

$ uname -n<CR>

dumbo

$

Once you know the remote system name, the uuname command

can help you verify that your system can communicate with the

remote system. At the prompt, type:

uuname<CR >

This generates a list of remote systems with which your system can

communicate. If the recipient”s system is on that list, you can send

messages to it by mail.

You can simplify this step by using the grep command to search
through the uuname output. At the prompt, type:

uuname | grep system <CR >

(Here system is the recipient's system name.) If grep finds the

COMMUNICATION TUTORIAL 8-9

specified system name, it prints it on the screen. For example:

$ uuname | grep dumbo<CR >
dumbo

$

This means that dumbo can communicate with your system. If
dumbo does not communicate with your system, uuname returns a
prompt.

$ uuname | grep dumbo<CR>

$

To sumarize our discussion of uname and uuname, consider

an example. Suppose you want to send a message to login sarah on
the remote system dumbo. Verify that dumbo can communicate with
your system and send your message. The following screen shows
both steps.

SR | grep dumbo <CR > N
dumko

$ mail dumbo!sarah < CR >
Sarah, <CR >

The final counts for the writing seminar <CR>
are as follows: <CR >
<CR>

Qur department -— 18<CR>

Your department — 20<CR>
<CR>

Tom <CR>

.<CR>

$

8-10 USER'S GUIDE

cC
EG

53
3

Figures 8-2 and 8-3 summarize the syntax and capabilities of the
uname and uuname commands, respectively.

Command Recap

uname — displays the system name

command options arguments

uname -n and others” none

Description: uname —n displays the name of the system on which your login resides.

Figure 8-2: Summary of the uname Command

£ See the uname(1) manual page in the System V Reference Manual

for all available options and an explanation of their capabilities.

Command Recap

uuname — displays a list of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that

can communicate with your system.

Figure 8-3: Summary of the uuname Command

COMMUNICATION TUTORIAL 8-11

Managing Incoming Mail

Ås stated earlier, the mail command also allows you to display

messages sent to you by other users on your screen so you can read

them. If you are logged in when someone sends you mail, the follow-
ing message is printed on your screen:

you have mail

This means that one or more messages are being held for you in a file
called /usr/mail/your login, usually referred to as your mailbox. To
display these messages on your screen, type the mail command
without any arguments:

mail<CR >

The messages will be displayed one at a time, beginning with the
one most recently received. Å typical mail message display looks like
this:

$ mail
From tarmy Wed Jul 26 15:33 CST 1989

Bob,

Do you still want the material for the technical review?

Tom

NH

The first line, called the header, provides information about the mes-

sage: the login name of the sender and the date and time the mes-
sage was sent. The lines after the header (up to the line containing
the ?) comprise the text of the message.

8-12 USER'S GUIDE

v
e
s

53
5

mail

If a long message is being displayed on your terminal screen, you
may not be able to read it all at once. You can interrupt the printing
by typing <"s> (control-s). This will freeze the screen, giving you a

chance to read. When you are ready to continue, type <"q> and the
printing will resume.

After displaying each message, the mail command prints a ?

prompt and waits for a response. You have many options, for exam-
ple, you can leave the current message in your mailbox while you

read the next message; you can delete the current message; or you
can save the current message for future reference. For a list of
mail's available options, type a ? in response to mail's ? prompt.

To display the next message without deleting the current mes-
sage, press the RETURN key after the question mark.

?<CR>

The current message remains in your mailbox and the next message
is displayed. If you have read all the messages in your mailbox, a

prompt appears.

To delete a message, type a d after the question mark:

? d<CR>

The message is deleted from your mailbox. If there is another mes-
sage waiting, it is then displayed. If not, a prompt appears as a signal
that you have finished reading your messages.

To save a message for later reference, type an s after the question
mark:

? s<CR>

This saves the message, by default, in a file called mbox in your
home directory. To save the message in another file, type the name
of that file after the s command.

COMMUNICATION TUTORIAL 8-13

For example, to save a message in a file called mailsave (in your
current directory), enter the response shown after the question mark:

? s mailsave <CR >

If mailsave is an existing file, the mail command appends the mes-
sage to it. If there is no file by that name, the mail command creates
one and stores your message in it. You can later verify the existence
of the new file by using the Is command. (ls lists the contents of
your current directory.)

You can also save the message in a file in a different directory by
specifying a path name. For example:

? s project1/memo<CR >

This is a relative path name that identifies a file called memo (where
your message will be saved) in a subdirectory (projectl) of your
current directory. You can use either relative or full path names
when saving mail messages. (For instructions on using path names,
see Chapter 3.)

To quit reading messages, enter the response shown after the
question mark:

? q<CR>

Any messages that you have not read are kept in your mailbox until
the next time you use the mail command.

To stop the printing of a message entirely, press the BREAK key.
The mail command will stop the display, print a ? prompt, and wait
for a response from you.

Figure 8-4 summarizes the syntax and capabilities of the mail
command for reading messages.

8-14. USER'S GUIDE

g
e
s

53
7

Command Recap

mail — reads messages sent to your login

command options arguments

mail available” none

Description: When issued without options, the mail com-
mand displays any messages waiting in your
mailbox (the system file
fusr/mail/your login).

Remarks: Å question mark (?) at the end of a message

means that a response is expected. A full list

of possible responses is given in the System V Reference Manual.

Figure 8-4: Summary of Reading Messages with the mail Command

il See the mail(1) manual page in the System V Reference Manual for

all available options and an explanation of their capabilities.

COMMUNICATION TUTORIAL 8-15

mailx

This section introduces the mailx facility. It explains how to set
up your mailx environment, send messages with the mailx com-
mand, and handle messages that have been sent to you. The material
is presented in four parts:

Mm mailx Overview

EH Sending Messages

m Managing Incoming Mail

= The .mailrc File

8-16: USER'S GUIDE

B
E
S

53
9

mailx Overview

The mailx command is an enhanced version of the mail com-
mand. There are many options to mailx that are not available in
mail for sending and reading mail. For example, you can define an
alias for a single login or for a group. This allows you to send mail
to an individual using a name or word other than their login ID, and
to send mail to a whole group of people using a single name or word.
When you use mailx to read incoming mail you can save it in various
files, edit it, forward it to someone else, respond to the person who

originated the message, and so forth. By using mailx environment
variables you can develop an environment to suit your individual

tastes.

If you type the mailx command with one or more logins as argu-
ments, mailx decides you are sending mail to the named users,
prompts you for a summary of the subject, and then waits for you to

type in your message or issue a command. The section ”How to Send

Messages” describes features that are available to you for editing,

incorporating other files, adding names to copy lists, and more.

If you enter the mailx command with no arguments, mailx

checks incoming mail for you in a file named /usr/mail/your login.
If there is mail for you in that file, you are shown a list of the items
and given the opportunity to read, store, remove or transfer each one
to another file. The section entitled ”How to Manage Incoming Mail”
provides some examples and describes the options available.

If you choose to customize mailx, you should create a start-up

fle in your home directory called .mailrc. The section on ”The

mailrc File” describes variables you can include in your start-up file.

mailx has two modes of functioning: input mode and command
mode. You must be in input mode to create and send messages.
Command mode is used to read incoming mail. You can use any of
the following methods to control the way mailx works for you:

EH by entering options on the command line. (See the mailx(1)
manual page in the System V Reference Manual.)

COMMUNICATION TUTORIAL 8-17

dd
mailx

H by issuing commands when you are in input mode, for example,
creating a message to send. These commands are always pre-

ceded by a ” (tilde) and are referred to as tilde escapes. (See
the mailx(1) manual page in the System V Reference Manual.)

H by issuing commands when you are in command mode, for
example, reading incoming mail.

mM by storing commands and environment variables in a start-up
file in your home directory called $HOME/.mailrc.

Tilde escapes are discussed in ”Sending Messages,” command
mode commands in ”Managing Incoming Mail,” and the .mailre file
in ”The mailrc File.”

8-18. USER'S GUIDE

Oo
rs

54
1

Command Line Options

In this section, we will look at command line options.

The syntax for the mailx command is:

mailx [options] [name…]

The options are flags that control the action of the command, and
name. represents the intended recipients.

Anything on the command line other than an option preceded by
a hyphen is read by mailx as a name; that is, the login or alias of a

person to whom you are sending a message.

Two of the command line options deserve special mention:

m —f [filename]:

Allows you to read messages from filename instead of your

mailbox.

Because mailx lets you store messages in any file you name,

you need the —f option to review these stored options. The
default storage file is $HOME/mbox, so the command:

mailx —f

is used to review messages stored there.

H —n:

Do not initialize from the system default mailx.re file.

If you have your own .mailrc file (see ”The .mailre File”)
mailx will not look through the system default file for
specifications when you use the —n option, but will go directly
to your .mailre file. This results in faster initialization; sub-

stantially faster when the system is busy.

COMMUNICATION TUTORIAL 8-19

How to Send Messages: the Tilde
Escapes

To send a message to another UNIX system user, enter the fol-

lowing command:

$ mailx daves< CR >

The login name specified belongs to the person who is to receive the

message. The system puts you into input mode and prompts you for

the subject of the message. (You may have to wait a few seconds for

the Subject: prompt if the system is very busy.) This is the sim-

plest way to run the mailx command; it differs very little from the
way you run the mail command.

The following examples show how you can edit messages you are

sending, incorporate existing text into your messages, change the

header information, and perform other tasks that take advantage of
the mailx command's capabilities. Each example is followed by an
explanation of the key points illustrated in the example.

$ mailx daves< CR >)

Subject:

Whether to include a subject or not is optional. If you elect not

to, press the RETURN key. The cursor moves to the next line and

the program waits for you to enter the text of the message.

8-20 USER'S GUIDE

cv
sS

54
3

 dk
How to Send Messages: the Tilde Escapes

All daves<CR>

Subject: meeting<CR >
We're having a meeting for novice mailx users in<CR >

the auditorium at 9:00 tomorrow.<CR >
Would you be willing to give a demonstration? <CR >

Bob<CR>
”, <CR>

EOT

=

I

There are two important things to notice about the above exam-

ple:

mM You break up the lines of your message by pressing the

RETURN key at the end of each line. This makes it easier for
the recipient to read the message, and prevents you from
overflowing the line buffer.

M You end the text and send the message by entering a tilde and
a period together (7.) at the beginning of a line. The system
responds with an end-of-text notice (EOT) and a prompt.

There are several commands available to you when you are in
input mode (as we were in the example). Each of them consists of a
tilde (7), followed by an alphabetic character, entered at the begin-
ning of a line. Together they are known as tilde escapes. (See the
mailx(1) manual page in the System V Reference Manual.) Most of

them are used in the examples in this section.

You can include the subject of your message on the command line
by using the —s option. For example, the command line:

S$ mailx —s ”meeting” daves< CR >

is equivalent to:

COMMUNICATION TUTORIAL 8-21

How to Send Messages: the Tilde Escapes

S mailx daves<CR >

Subject: meeting < CR >

The subject line will look the same to the recipient of the mes-
sage. Notice that when putting the subject on the command line, you

must enclose a subject that has more than one word in quotation
marks.

Editing the Message

When you are in the input mode of mailx, you can invoke an edi-
tor by entering the ”e (tilde e) escape at the beginning of a line. The
following example shows how to use tilde:

Al daves<CR>

Subject: Testing my tilde<CR >

When entering the text of a message<CR>
that has somehow gotten grabled < CR >
you may invoke your favorite editor<CR >

by means of a 'e (tilde e).

”,

Notice that you have misspelled a word in your message. To correct
the error, use ”e to invoke the editor, in this case the default editor,

ed.

8-22 USER'S GUIDE

v
v
s

54
5

How to Send Messages: the Tilde Escapes

CO | N
”e<CR>
12

/grabled/p
that has sarehow gotten grabled

s/gra/gar/p
that has samehow gotten garbled

w

132

q
(continue)

What more can I tell you?

sd

In this example the ed editor was used. Your .profile or a
mailrc file controls which editor will be invoked when you issue a ”e
escape command. The ”v (tilde v) escape invokes an alternate editor
(most commonly, vi).

When you exited from ed (by typing q), the mailx command
returned you to input mode and prompted you to continue your mes-
sage. At this point you may want to preview your corrected message
by entering a ”p (tilde p) escape. The ”p escape prints out the entire
message up to the point where the ”p was entered. Thus, at any

time during text entry, you can review the current contents of your

message.

COMMUNICATION TUTORIAL 8-23

How to Send Messages: the Tilde Escapes

Pp
Message contains:

TO: daves

Subject: Testing my tilde

When entering the text of a message

that has samehow gotten garbled

you may invoke your favorite editor

by means of a tilæe (”e).

What more can I tell yuu?

(contimæ)

Eor

S
rr.

Incorporating Existing Text into Your Message

mailx provides four ways to incorporate material from another
source into the message you are creating. You can:

EH read a file into your message

M read a message you have received into a reply

Em incorporate the value of a named environment variable into a
message

EH execute a shell command and incorporate the output of the
command int a message

The following examples show the first two of these functions.
These are the most commonly used of these four functions. For
information about the other two, see the mailx(1) manual page of the
System V Reference Manual.

8-24 USER'S GUIDE

9
v
s

54
7

SES ZØ
(==)
(—=———=I

How to Send Messages: the Tilde Escapes

Reading a File into a Message

dl daves<CR>

Subject: Work Schedule<CR >

Ås you can see from the following<CR >

”r letters/filel

"letters/filel” 10/725
we have our work cut out for us.

Please give me your thoughts on this.
- Bob

FØr

$
”/

Ås the example shows, the ”r (tilde r) escape is followed by the

name of the file you want to include. The system displays the file
name and the number of lines and characters it contains. You are

still in input mode and can continue with the rest of the message.
When the recipient gets the message, the text of letters/filel is
included. (You can, of course, use the ”p (tilde p) escape to preview
the contents before sending your message.)

COMMUNICATION TUTORIAL 8-25

 de
How to Send Messages: the Tilde Escapes

Incorporating a Message from Your Mailbox into a Reply

Ce <CR>

mailx version 2.14 2/9/85 Type ? for help.
”usr/mail/roberts": 2 messages 1 new

SN 1 abc Tue Jun 6 08:09 8/155 Meeting Notice
2 hatrs Mon May 29 16:57 4/127 Schedule

? m jones< CR >

Subject: Hq Schedule < CR >
Here is a copy of the schedule from headquarters… <CR >

f2<CR>

Interpolating: 2

(continue)

Ås you can see, the boss will be visiting our district on<CR >

the 14th and 15th. <CR >

— Robert

 .

FOT

Cd

There are several important points illustrated in this example:

m The sequence begins in command mode, where you read and
respond to your incoming mail. Then you switch into input

mode by issuing the command m jones (meaning send a mes-
sage to jones).

m The ”f escape is used in input mode to call in one of the mes-
sages in your mailbox and make it part of the outgoing mes-

sage. The number 2 after the ”f means message 2 is to be
interpolated (read in).

Mm mailx tells you that message 2 is being interpolated and then
tells you to continue.

8-26 USER'S GUIDE

8
v
G

54
9

How to Send Messages: the Tilde Escapes

m When you finish creating and sending the message, you are
back in command mode, as shown by the ? prompt. You may
now do something else in command mode, or exit mailx by
typing q.

An alternate command, the ”m (tilde m) escape, works the way

that ”f does except the read-in message is indented one tab stop.
Both the ”m and ”f commands work only if you start out in com-
mand mode and then enter a command that puts you into input

mode. Other commands that work this way will be covered in the
section ”How to Manage Incoming Mail.”

Changing Parts of the Message Header

The header of a mailx message has four components:

MH subject

Hi recipient(s)

HH copy-to list

Mm blind-copy list (a list of intended recipients that is not shown

on the copies sent to other recipients)

When you enter the mailx command followed by a login or an
alias you are put into input mode and prompted for the subject of
your message. Once you end the subject line by pressing the
RETURN key, mailx expects you to type the text of the message. If,
at any point in input mode, you want to change or supplement some

of the header information, there are four tilde escapes that you can
use: ”h, ”t, ”c, and ”b.

”h displays all the header fields: subject, recipient, copy-to
list, and blind copy list, with their current values. You
can change a current value, add to it, or, by pressing the
RETURN key, accept it.

"tt lets you add names to the list of recipients. Names can be
either login names or aliases.

COMMUNICATION TUTORIAL 8-27

How to Send Messages: the Tilde Escapes

c lets you create or add to a copy-to list for the message.
Enter either login names or aliases of those to whom a
copy of the message should be sent.

”b lets you create or add to a blind-copy list for the message.

All tilde escapes must be in the first position on a line. For the
"t, ”e or ”b, any additional material on the line is taken to be input

for the list in question. Any additional material on a line that begins
with a ”h is ignored.

Adding Your Signature

If you want, you can establish two different signatures with the
sign and Sign environment variables. These can be invoked with
the ”a (tilde a) or ”A (tilde A) escape, respectively. Assume you have
set the value Supreme Commander to be called by the ”A escape.

Here's how it would work:

$ mailx —s orders all< CR >
Be ready to move out at 0400 hours. <CR>
”A<CR>

Supreme Commander

".<CR>

FOT

$

Having both escapes (”a and ”A) allows you to set up two forms
for your signature. However, because the sender's login automati-
cally appears in the message header when the message is read, no sig-
nature is required to identify you.

8-28 USER'S GUIDE

o
G
G

55
1

How to Send Messages: the Tilde Escapes

Keeping a Record of Messages You Send

The mailx command offers several ways to keep copies of outgo-
ing messages. Two that you can use without setting any special

environment variables are the ”w (tilde w) escape and the —F option
on the command line.

The ”w followed by a file name causes the message to be written
to the named file. For example:

ll bdr<CR >

Subject: Saving Copies <CR >
When you want to save a copy of<CR>

the text of a message, use the tilde w.<CR>

"w savemail

"savemail” 2/71

FOT

$

ss
If you now display the contents of savemail, you will see this:

COMMUNICATION TUTORIAL 8-29

How to Send Messages: the Tilde Escapes

ÆÆ

$ cat savemail< CR >
When you want to save a copy of

the text of a message, use the tilde w.

$

The drawback to this method, as you can see, is that none of the
header information is saved.

Using the —F option on the command line does preserve the
header information. It works as follows:

We can check the results by looking at the file bdr.

8-30 USER'S GUIDE

$ mailx —F —s Savings bdr<CR>

This method appends this message to a

file in my current directory named bdr.

FOT

$
fa
se
;

55
3

 de
How to Send Messages: the Tilde Escapes

mn
Fron: kol Fri Søæp 8 11:14:45 1989

To: bdr

Subject: Savings

This method appends this message to a

file in my current directory named bår.

S

The —F option appends the text of the message to a file named
after the first recipient. If you have used an alias for the recipient(s)
the alias is first converted into the appropriate login(s) and the first
login is used as the file name. Ås noted above, if you have a file by
that name in your current directory, the text of the message is

appended to it.

Exiting from mailx

When you have finished composing your message, you can leave
mailx by typing any of the following three commands:

-
tilde period (7.) is the standard way of leaving input mode.
It also sends the message. If you entered input mode
from the command mode of mailx, you now return to the
command mode (as shown by the ? prompt you receive
after typing this command). If you started out in input
mode, you now return to the shell (as shown by the shell
prompt).

q tilde q (”q) simulates an interrupt. It lets you exit the
input mode of mailx. If you have entered text for a mes-
sage, it will be saved in a file called dead.letter in your
home directory.

COMMUNICATION TUTORIAL 8-31

How to Send Messages: the Tilde Escapes

X tilde x ("x) simulates an interrupt. It lets you exit the
input mode of mailx without saving anything.

Summary

In the preceding paragraphs we have described and shown exam-
ples of some of the tilde escape commands available when sending
messages via the mailx command. (See the mailx(1) manual page in
the System V Reference Manual.)

8-32 USER'S GUIDE

v
S
G

55
5

How to Manage Incoming Mail

mailx has over fifty commands which help you manage your

incoming mail. See the mailx(1) manual page in the System V Refer-
ence Manual for a list of all of them (and their synonyms) in alpha-
betic order. The most commonly used commands (and arguments)
are described in the following subsections:

mM the msglist argument

commands for reading and deleting mail

commands for saving mail

commands for replying to mail

commands for getting out of mailx

The msglist Argument

Many commands in mailx take a form of the msglist argument.
This argument provides the command with a list of messages on
which to operate. If a command expects a msglist argument and you
do not provide one, the command is performed on the current mes-
sage. Any of the following formats can be used for a msglist:

n message number n the current message

” the first undeleted message

$ the last message

E all messages

n-m an inclusive range of message numbers

user all messages from user

/string All messages with string in the subject line (case is
ignored)

:c all messages of type c where c is:

d - deleted messages
n - new messages

COMMUNICATION TUTORIAL 8-33

How to Manage Incoming Mail

o - old messages

r - read messages

u - unread messages

The context of the command determines whether this type of

specification makes sense.

Here are two examples (the ? is the command mode prompt):

? d 1-3 [Delete messages 1, 2 and 3]
? s bdr bdr [Save all messages from user bdr in a

file named bdr.]

Additional examples may be found throughout the next three subsec-
tions.

Commands for Reading and Deleting Mail

When a message arrives in your mailbox the following notice
appears on your screen:

you have mail

The notice appears when you log in or when you return to the shell
from another procedure.

8-34 USER'S GUIDE

9
S
S

55
7

How to Manage Incoming Mail

Reading Mail

To read your mail, enter the mailx command with or without
arguments. Execution of the command places you in the command

mode of mailx. The next thing that appears on your screen is a

display that looks something like this:

mailx version 2,14 10/19/86 Type ? for help

”fusr/mail/bdr”: 3 messages 3 new
> N 1 rbt Wed May 30 14:20 8/190 Review Session

N 2 admin Wed May 30 15:56 5/84 New printer

N 3 daves Mon Jul 3 08:39 64/1574 Reorganization

?

The first line identifies the version of mailx used on your system,

displays the date, and reminds you that help is available by typing a

question mark (?). The second line shows the path name of the file

used as input to the display (the file name is normally the same as

your login name) together with a count of the total number of mes-

sages and their status. The rest of the display is header information

from the incoming messages. The messages are numbered in

sequence with the last one received at the bottom of the list. To the
left of the numbers there may be a status indicator; N for new, U for

unread. A greater than sign (>) points to the current message. Other
fields in the header line show the login of the originator of the mes-
sage, the day, date and time it was delivered, the number of lines and
characters in the message, and the message subject. The last field
may be blank.

When the header information is displayed on your screen, you can
print messages either by pressing the RETURN key or entering a
command followed by a msglist argument. If you enter a command
with no msglist argument, the command acts on the message pointed
at by the > sign. Pressing the RETURN key is the equivalent of a

COMMUNICATION TUTORIAL 8-35

How to Manage Incoming Mail

typing the p (for print) command without a msglist argument; the

message displayed is the one pointed at by the > sign. To read some

other message (or several others in succession), enter a p (for print)

or t (for type) followed by the message number(s). Here are some

examples:

? <CR> [Print the current message.]

? p2<CR> [Print message number 2.]

? pdaves<CR> [Print all messages from user daves.]

The command t (for type) is a synonym of p (for print).

Scanning Your Mailbox

The mailx command lets you look through the messages in your

mailbox while you decide which ones need your immediate attention.

When you first enter the mailx command mode, the banner tells
you how many messages you have and displays the header line for

twenty messages. (If you are dialed into the computer system, only
the header lines for ten messages are displayed.) If the total number
of messages exceeds one screenful, you can display the next screen by

entering the z command. Typing z— causes a previous screen (if
there is one) to be displayed. If you want to see the header informa-
tion for a specific group of messages, enter the f (for from) command
followed by the msglist argument.

Here are examples of those commands:

8-36 USER'S GUIDE

B
G
G

55
9

How to Manage Incoming Mail

2? [Scroll forward one screenful of header lines.]
? Z— [Scroll backward one screenful.]

? f daves [Display headers of all messages from user daves.]

Switching to Other Mail Files

When you enter mailx by issuing the command:

$ mailx<CR>

you are looking at the file /usr/mail/your login.

mailx lets you switch to other mail files and use any of the mailx
commands on their contents. (You can even switch to a non-mail file,

but if you try to use mailx commands you are told No applicable

messages.) The switch to another file is done with the fi or fold com-
mand (they are synonyms) followed by the filename. The following
special characters work in place of the filename argument:

% the current mailbox

%login the mailbox of the owner of login (if you have the
required permissions)

bid the previous file

& the current mbox

Here is an example of how this might look on your screen:

COMMUNICATION TUTORIAL 8-37

How to Manage Incoming Mail

$ mailx< CR >

mailx version 2.14 10/19/86 Type ? for help.
”usr/mail/daves”: 3 messages 2 new 3 unread

U 1 jaf Sat Jul 9 07:55. 7/137 test25

> N 2 todd Sat Jul 9 08:59 9/377 UNITS requirements

N 3 has Sat Jul 9 11:08 29/1214 access to bailey

? fi & [Enter this command to transfer to your mbox. |)

Held 3 messages in /usr/mail/daves
” [£s1/daves/rbax”: 74 messages 10 unread

? q<CR>
»

Deleting Mail

To delete a message, enter a d followed by a msglist argument. If
the msglist argument is omitted, the current message is deleted. The

messages are not deleted until you leave the mailbox file you are pro-

cessing. Prior to that, the u (for undelete) gives you the opportunity
to change your mind. Once you have issued the quit command (q) or

switched to another file, however, the deleted messages are gone.

mailx permits you to combine the delete and print command and
enter a dp. This is like saying, ”Delete the message I just read and
show me the next one.” Here are some examples of the delete
mand:

8-38 USER'S GUIDE

com-

0
9
G

56
1

 æ

 de
How to Manage Incoming Mail

[Delete all my messages.)

[Delete all messages that have been read. |]

[Delete the current message and print the next one.]

[Delete messages 2 through 5.]

Commands for Saving Mail

All messages not specifically deleted are saved when you quit
mailx. Messages that have been read are saved in a file in your
home directory called mbox. Messages that have not been read are
held in your mailbox (/usr/mail/your login).

The command to save messages comes in two forms: with an

upper case or a lower case s. The syntax for the upper case version

is:

S [msglist]

Messages specified by the msglist argument are saved in a file in the

current directory named for the author of the first message in the
list.

The syntax for the lower case version is:

s [msglist] [filename]

Messages specified by the msglist argument are saved in the file
named in the filename argument. If you omit the msglist argument,
the current message is saved. If you are using logins for file names,

this can lead to some ambiguity. If mailx is puzzled, you will get an

error message.

COMMUNICATION TUTORIAL 8-39

How to Manage Incoming Mail

Commands for Replying to Mail

The command for replying to mail comes in two forms: with an
upper case or a lower case r. The principal difference between the
two forms is that the upper case form (R) causes your response to be
sent only to the originator of the message, while the lower case form
(r) causes your response to be sent not only to the originator but also
to all other recipients. (There are other differences between these
two forms. For details, see the mailx(1) manual page in the System
V Reference Manual.)

When you reply to a message, the original subject line is picked
up and used as the subiect of your reply. Here's an example of the
way it looks:

AN CR>

mailx version 2.14 10/19/86 Type ? for help.

”usr/mail/daves”: 3 messages 2 new 3 unread

U 1 jaf Wed Aug 9 07:55 7/137 test25

> N 2 todd Wed Aug 9 08:59 9/377 UNITS requirements

N 3 has Wed Ayg 9 11:08 29/1214 access to bailey

?R2

To: todd Subject: Re: UNITS requirements ,,

Assuming the message about UNITS requirements had been sent to
some additional people, and the lower case r had been used, the
header might have appeared like this:

8-40 USER'S GUIDE

c
9
G

56
3

er EET

How to Manage Incoming Mail

Commands for Getting Out of mailx

There are two standard ways of leaving mailx: with aq or with
an x. If you leave mailx with a q, you see messages that summarize
what you did with your mail. They look like this:

? q<CR>

Saved 1 message in /fs1/bdr/mbax

Held 1 message in /usr/rail/bdr

$

From the example we can surmise that user bdr had at least two

messages, read one and either left the other unread or issued a com-
mand asking that it be held in /usr/mail/bdr. If there were more
than two messages, the others were deleted or saved in other files.
mailx does not issue a message about those.

COMMUNICATION TUTORIAL 8-41

How to Manage Incoming Mail

If you leave mailx with an x, it is almost as if you had never
entered. Mail read and messuges deleled are retained in your mail-
box. However, if you have saved messages in other files, that action
has already taken place and is not undone by the x.

mailx Command Summary

In the preceding subsections we have described some of the most
frequently used mailx commands. (See the mailx(1) manual page in
the System V Reference Manual for a complete list.) If you need help
while you are in the command mode of mailx, type either a ? or help
after the ? prompt. A list of mailx commands and what they do will
be displayed on your terminal screen.

8-42 USER'S GUIDE

v
9
G

56
5

The .mailrc File

The .mailrc file contains commands to be executed when you
invoke mailx.

There may on your system be a system-wide start-up file

(/usr/lib/mailx/mailx.rc). If it exists it is used by the system
administrator to set common variables. Variables set in your .mailre

file take precedence over those in mailx.rc.

Most mailx commands are legal in the .mailrce file. However,
the following commands are NOT legal entries:

! (or) shell escape to the shell

Copy save messages in msglist in a file whose name
is derived from the author

edit invoke the editor

visual invoke vi

followup respond to a message

Followup respond to a message, sending a copy to

msglist

mail switch into input mode

reply respond to a message

Reply respond to the author of each message in
msglist

You can create your own .mailre with any editor, or copy a
friend's. Figure 8-5 shows a sample .mailrc file.

COMMUNICATION TUTORIAL 8-43

ifr

cd $HOME/mail
endif

set allnet append asksub askøc autoprint dot

set metoo quiet save showto header hold keep keepsave

set outfolder

set folder='mail'

set record="outbox"

set crt=24

set EDITOR=" /bin/ed"
set sign="Roberts"

set Sign="'Jackson Roberts, Supervisar'

set toplines=10

alias fred fjs

alias bob rom

alias alice ap

alias mark net

alias donna dr

alias pat pat
group robertsgrp fred bob aliæ pat mark

group accounts robertsgrp danna

NS

Figure 8-5: Sample .mailre File

The example in Figure 8-5 includes the commands you are most
likely to find useful: the set command and the alias or group com-
mands.

The set command is used to establish values for environment

variables. The command syntax is:

set

set name

set name = string
set name = number

8-44. USER'S GUIDE

og
s

56
7

mailx

When you issue the set command without any arguments, set

produces a list of all defined variables and their values. The argu-
ment name refers to an environmental variable. More than one name

can be entered after the set command. Some variables take a string
or numeric value. String values are enclosed in single quotes.

When you put a value in an environment variable by making an
assignment such as HOME =my login, you are telling the shell how

to interpret that variable. However, this type of assigment in the
shell døes not make the value of the variable accessible to other
UNIX system programs that need to reference environment variables.

To make it accessible, you must export the variable. If you set the
TERM variable in your environment in Chapter 6 or Chapter 7, you

will remember using the export command as shown in the following
example:

$ TERM = 5425
$ export TERM

When you export variables from the shell in this way, programs

that reference environment variables are said to import them. Some
of these variables (such as EDITOR and VISUAL) are not peculiar

to mailx, but may be specified as general environment variables and
imported from your execution environment. If a value is set in
mailrc for an imported variable it overrides the imported value.
There is an unset command, but it works only against variables set
in mailrce; it has no effect on imported variables.

There are forty-one environment variables that can be defined in
your .mailre; too many to be fully described in this document. For
complete information, consult the mailx(1) manual page in the Sys-
tem V Reference Manual.

Three variables used in the example in Figure 8-5 deserve special
attention because they demonstrate how to organize the filing of mes-
sages. These variables are: folder, record, and outfolder. All
three are interrelated and control the directories and files in which
copies of messages are kept.

COMMUNICATION TUTORIAL 8-45

mailx

To put a value into the folder variable, use the following format:

set folder = directory

This specifies the directory in which you want to save standard mail

files. If the directory name specified does not begin with a / (slash),
it is presumed to be relative to $HOME. If folder is an exported
shell variable, you can specify file names (in commands that call for a
filename argument) with a / before the name; the name will be
expanded so that the file is put into the folder directory.

To put a value in the record variable, use the following format:

set record =filename

This directs mailx to save a copy of all outgoing messages in the
specified file. The header information is saved along with the text of
the message. By default, this variable is disabled.

The outfoølder variable causes the file in which you store copies
of outgoing messages (enabled by the variable record=) to be located
in the folder directory. It is established by being named in a set
command. The default is nooutfolder.

The alias and group commands are synonyms. In Figure 8-5,
the alias command is used to associate a name with a single login;

the group command is used to specify multiple names that can be
called in with one pseudonym. This is a nice way to distinguish
between single and group aliases, but if you want, you can treat the
commands as exact equivalents. Notice, too, that aliases can be

nested.

In the .mailre file shown in Figure 8-5, the alias robertsgroup

represents five users; three of them are specified by previously
defined aliases and one is specified by a login. The fifth user, pat, is
specified by both a login and an alias. The next group command in
the example, accounts, uses the alias robertsgroup plus the alias
donna. It expands to twelve logins.

The .mailrc file in Figure 8-5 includes an if-endif command.
The full syntax of that command is:

8-46 USER'S GUIDE

8
9
G

56
9

if s (bv r mail commands

else mail commands

endif

The s and r stand for send and receive, so you can cause some initial-

izing commands to be executed according to whether mailx is

entered in input mode (send) or command mode (receive). In the
preceding example, the command is issued to change directory to
$HOME/mail if reading mail. The user in this case had elected to
set up a subdirectory for handling incoming mail.

The environment variables shown in this section are those most

commonly included in the .mailrce file. You can, however, specify any
of them for one session only whenever you are in command mode.
For a complete list of the environment variables you can set in mailx
see the mailx(1) manual page in the System V Reference Manual.

COMMUNICATION TUTORIAL 8-47

 SIE SS SES

Sending and Receiving Files

This section describes the commands available for transferring
files: the mail command for small files (a page or less), and the
Uuucp and uuto commands for long files. The mail command can be
used for transferring a file either within a local system or to a remote
system. The uucp and uuto commands transfer files from one syS-
tem to another.

Sending Small Files: the mail Command

To send a file in a mail message, you must redirect the input to
that file on the command line. Use the < (less than) redirection
symbol as follows:

mail login < filename<CR>

(For further information on input redirection, see Chapter 7.) Here
login is the recipient's login ID and filename is the name of the file
You want to send. For example, to send a copy of a file called agenda
to the owner of login sarah (on your system) type the following com-
mand line:

$ mail sarah < agenda< CR >
$

The prompt that appears on the second line means the contents of
agenda have been sent. When sarah issues the mail command to
read her messages, she will receive agenda.

To send the same file to more than one user on your system, use
the same command line format with one difference; in place of one
login ID, type several, separated by spaces. For example:

$ mail sarah tommy dingo wombat < agenda<CR>
S

Again, the prompt returned by the system in response to your com-
mand is a signal that your message has been sent.

8-48 USER'S GUIDE

O
Z
S

57
1

Sending and Receiving Files

The same command line format, with one addition, can also be

used to send a file to a user on a remote system that can communi-
cate with yours. In this case, you must specify the name of the
remote system before the user's login name. Separate the system
name and the login name with an ! (exclamation point):

mail system!login < filename<CR >

For example:

$ mail dumbo!wombat < agenda<CR>

$

The system prompt on the second line means that your message (con-

taining the file) has been queued for sending.

If you are using mailx, you cannot use the mail command line
syntax to send a file. Instead, you use the ”r option as follows:

$ mailx phyllis

Subject: Memo

”r memo

S

Sending Large Files

The uucp and uuto commands allow you to transfer files to a
remote computer. uucp allows you to send files to the directory of

your choice on the destination system. If you are transferring a file
to a directory that you own, you will have permission to put the file

in that directory. (See Chapter 3 for information on directory and
file permissions.) However, if you are transferring the file to another

COMMUNICATION TUTORIAL 8-49

li G
Sending and Receiving Files

user's directory, you must be sure, in advance, that the user has
given ymn permission to write a file to his or hor directory. In addi-
tion, because you must specify path names that are often long and
accuracy is required, uucp command lines may be cumbersome and
lead to error.

The uuto command is an enhanced version of uucp. It automati-
cally sends files to a public directory on the recipient's system called
fusr/spool/uucppublic. This means you cannot choose a destina-
tion file. However, it also means that you can transfer a file at any
time without having to request write permission from the owner of
the destination directory. Finally, the uuto command line is shorter
and less complicated than the uucp command line. When you type a
uuto command line, the likelihood of making an error is greatly
reduced.

Getting Ready: Do You Have Permission?
Before you actually send a file with the uucp or uuto command,

you need to find out whether or not the file is transferable. To do
that, you must check the file's permissions. If they are not correct,
You must use the chmod command to change them, if you own the
files. (Permissions and the chmod command are covered in Chapter
3.)

There are two permission criteria that must be met before a file
can be transferred using uucp or uuto.

m The file to be transferred must have read permission (r) for
others.

Mm The directory that contains the file must have read (r) and exe-
cute (x) permission for others.

For example, assume that you have a file named chicken, under
a directory named soup (in your home directory). You want to send
a copy of the chicken file to another user with the uuto command.
First, check the permissions on soup:

8-50 USER'S GUIDE

C
L
G

57
3

 CI
Sending and Receiving Files

sS Is —1I<CR>

total 4

drwxr-—xr—x 2 reader groupl 45 Feb 9 10:43 soup

$

The response of the Is command shows that soup has read (r) and
execute (x) permissions for all three groups; no changes have to be
made. Now use the cd command to move from your home directory
to soup, and check the permissions on the file chicken:

$ Is —1 chicken< CR >

total 4

—rw-—— 1 reader groupl 3101 Mar 1 18:22 chicken

The command's output means that you (the user) have permission to

read the file chicken, but no one else does. To add read permissions
for your group (g) and others (0), use the chmod command:

$ chmod go+r chicken<CR >

Now check the permissions again with the Is —1 command:

COMMUNICATION TUTORIAL 8-51

Sending and Receiving Files

$ Is —1 chicken <CR >

-Tw-r—r— 1 reader Sgropl 3101 Mar01 18:22 chicken

This confirms that the file is now transferable; you can send it with
the uucp or uuto command. After you send copies of the file, you
can reverse the procedure and replace the previous permissions.

The uucp Command

The command uucp (short for UNIX-to-UNIX system copy)

allows you to copy a file directly to the home directory of a user on

another computer, or to any other directory you specify and for which

you have write permission.

uucp is not an interactive command. It performs its work

silently, invisible to the user. Once you issue this command you may

run other processes.

Transferring a file between computers is a multiple-step pro-
cedure. First, a work file, containing instructions for the file transfer,

must be created. When requested, a data file (a copy of the file being
sent) is also made. Then the file is ready to be sent. When you issue
the uucp command, it performs the preliminary steps described
above (creating the necessary files in a dedicated directory called a
spool directory), and then calls the uucico daemon that actually

transfers the file. (Daemons are system processes that run in back-
ground.) The file is placed in a queue and uucico sends it at the first
available time.

8-52 USER'S GUIDE

V
I
S

57
5

Sending and Receiving Files

Thus, the uucp command allows you to transfer files to a remote
computer without knowing anything except the name of the remote
computer and, possibly, the login ID of the remote user(s) to whom
the file is being sent.

Command Line Syntax

uucp allows you to send:

EH one file to a file or a directory or

Em multiple files to a directory

To deliver your file(s), uucp must know the full path name of both
the source-file and the destination-file. However, this does not mean

you must type out the full path name of both files every time you use
the uucp command. There are several abbreviations you can use once
you become familiar with their formats; uucp will expand them to
full path names.

To choose the appropriate designations for your source-file and

destination-file, begin by identifying the source-file's location relative
to your own current location in the file system. (We'll assume, for
the moment, that the source-file is in your local system.) If the
source-file is in your current directory, you can specify it by its name

alone (without a path). If the source-file is not in your current direc-
tory, you must specify its full path name.

How do you specify the destination-file? Because it is on a remote
system, the destination-file must always be specified with a path
name that begins with the name of the remote system. After that,
however, uucp gives you a choice: you can specify the full path or
use either of two forms of abbreviation. Your destination-file should
have one of the following three formats:

mM system name!full path

H system name! login name[/directory name/filename]

COMMUNICATION TUTORIAL 8-53

Sending and Receiving Files

MH systemname! [login name[/directory name/filename]

The login name, in this case, belongs to the recipient of the file.

Until now we have described what to do when you want to send a
file from your local system to a remote system. However, it is also

possible to use uucp to send a file from a remote system to your local

system. In either case, you can use the formats described above to

specify either source-files or destination-files. The important distinc-
tion in choosing one of these formats is not whether a file is a
source-file or a destination-file, but where you are currently located in

the file system relative to the files you are specifying. Therefore, in
the formats shown above, the /ogin name could refer to the login of
the owner or the recipient of either a source-file or a destination-file.

For example, let's say you are login kol on a system called
mickey. Your home directory is /usr/kol and you want to send a
file called chapl (in a directory called text in your home directory) to
login wsm on a system called minnie. You are currently working in
fusr/kol/text, so you can specify the source-file with its relative
path name, chapl. Specify the destination-file in any of the ways
shown in the following command lines:

mM Specify the destination-file with its full path name:

uucp chapl minnie!/usr/wsm/receive/chapl

mM Specify the destination-file with "login name (which expands to
the name of the recipient”s home directory) and a name for the
new file.

uucp chapl minnie!"wsm/receive/chapl

(The file will go to minnie!/usr/wsm/receive/chapl.)

mM Specify the destination-file with "login name (which expands to
the recipient”s home directory) but without a name for the new
file; uucp will give the new file the same name as the source-
file.

uucp chapl minnie!" wsm/receive

(The file will go to minnie!/usr/wsm/receive/chapl.)

8-54 USER'S GUIDE

9
/
S

57
7

Sending and Receiving Files

E Specify the destination-file with ”/login name. This expands
to the recipient's subdirectory in the public directory on the
remote system.

uucp chapl minnie!" /wsm

(The file will go to minnie!/usr/spool/uucppublic/wsm)

Sample Usage of Options with the uucp

Command

Suppose you want to send a file called minutes to a remote com-

puter named eagle. Enter the command line shown in the following

screen:

$ uucp -m —s status —j minutes eagle!/usr/gws/minutes <CR >

eagleNn3£45

S

This sends the file minutes (located in your current directory on
your local computer) to the remote computer eagle, and places it
under the path name /usr/gws in a file named minutes. When the
transfer is complete, the user gws on the remote computer is notified

by mail.

The —m option ensures that you (the sender) are also notified by
mail as to whether or not the transfer has succeeded. The —s option,
followed by the name of the file (status), asks the program to put a
status report of the file transfer in the specified file (status).

COMMUNICATION TUTORIAL 8-55

Sending and Receiving Files

Be sure to include a file name after the —s option. If you da not,

NOTE you will get this message: uucp failed carpletely.

|

The job ID (eagleN3£45) is displayed in response to the — j option.

Even if uucp does not notify you of a successful transfer soon
after you send a file, do not assume that the transfer has failed. Not
all systems equipped with networking software have the hardware
needed to call other systems. Files being transferred from these so
called passive systems must be collected periodically by active systems
equipped with the required hardware (see ”How the uucp Command
Works” for details). Therefore, if you are transferring files from a
passive system, you may experience some delay. Check with your SyS-
tem administrator to find out whether your system is active or pas-
sive.

The previous example uses a full path name to specify the
destination-file. There are two other ways the destination-file can be
specified:

m The login directory of gws can be specified through use of the
— (tilde), as shown below:

eagle!— gws/minutes

is interpreted as:

eagle!/usr/gws/minutes

Em The uucppublic area is referenced by a similar use of the tilde
prefix to the path name. For example:

eagle! — /gws/minutes

is interpreted as:

fusr/spvuol/uueppublic/gws/minutes

8-56 USER'S GUIDE

8
4
S

57
9

Sending and Receiving Files

How the uucp Command Works

This section is an overview of what happens when you issue the

uucp command. An understanding of the processes involved may
help you to be aware of the command's limitations and requirements:

why it can perform some tasks and not others, why it performs tasks

when it does, and why you may or may not be able to use it for tasks

that uucp performs. For further details see the System
Administrator's Guide and the System V Reference Manual.

When you enter a uucp command, the uucp program creates a

work file and usually a data file for the requested transfer. (uucep
does not create a data file when you use the —c option.) The work
file contains information required for transferring the file(s). The

data file is simply a copy of the specified source file. After these files
are created in the spool directory, the uucico daemon is started.

The uucico daemon attempts to establish a connection to the

remote computer that is to receive the file(s). It first gathers the
information required for establishing a link to the remote computer
from the Systems file. This is how uucico knows what type of dev-
ice to use in establishing the link. Then uucico searches the Dev-
ices file looking for the devices that match the requirements listed in
the Systems file. After uucico finds an available device, it attempts
to establish the link and log in on the remote computer.

When uucico logs in on the remote computer, it starts the
uucico daemon on the remote computer. The two uucico daemons
then negotiate the line protocol to be used in the file transfer(s). The

local uucico daemon then transfers the file(s) that you are sending to
the remote computer; the remote uucico places the file in the
specified path name(s) on the remote computer. After your local com-
puter completes the transfer(s), the remote computer may send files

that are queued for your local computer. The remote computer can

be denied permission to transfer these files with an entry in the Per-
missions file. If this is done, the remote computer must establish a

link to your local computer to perform the transfers.

COMMUNICATION TUTORIAL 8-57

Sending and Receiving Files

If the remote computer or the device selected to make the connec-
tion to the remote computer is unavailable, the request remains
queued in the spool directory. Each hour (default), uudemon.hour
is started by cron which in turn starts the uusched daemon. When
the uusched daemon starts, it searches the spool directory for the
remaining work files, generates the random order in which these
requests are to be processed, and then starts the transfer process
(uucico) described in the previous paragraphs.

The transfer process described generally applies to an active com-
puter. An active computer (one with calling hardware and network-
ing software) can be set up to poll a passive computer. Because it has
networking software, a passive computer can queue file transfers.
However, it cannot call the remote computer because it does not have
the required hardware. The Poll file (/usr/lib/uucp/Poll) contains
a list of computers that are to be polled in this manner.

Figure 8-6 summarizes the syntax and capabilities of the uucp
command.

8-58. USER'S GUIDE

o
g
s

58
1

Sending and Receiving Files

Command Recap

uucp — copies a file from one computer to another

command options argumenis

uucp —jl, -m, —s and others" source-file

Description: uucp performs preliminary tasks required to
copy a file from one computer to another, and

calls uucico, the daemon (background pro-
cess) that transfers the file. The user need
only issue the uucp command for a file to be
copied.

Remarks: By default, the only directory to which you
can write files is /usr/spool/uucppublic. To
write to directories belonging to another user,

you must receive write permission from that

user. Although there are several ways of
representing path names as arguments, it is

recommended that you type full path names to
avoid confusion.

Figure 8-6: Summary of the uucp Command

& See the uucp(1) manual page in the System V Reference Manual for all avail-

able options and an explanation of their capabilities.

COMMUNICATION TUTORIAL 8-59

 de ===
Sending and Receiving Files

The uuto Command

The uuto command allows you to transfer files to the public
directory of another system. The basic format for the uuto command
is:

uuto /ilename system!login < CR >

where filename is the name of the file to be sent, system is the
recipient's system, and login is the recipient's login name.

If you send a file to someone on your local system, you may omit
the system name and use the following format:

uuto /ilename login <CR >

Sending a File: the — m Option and uustat
Command

Now that you know how to determine if a file is transferable, let's

take an example and see how the whole thing works.

The process of sending a file by uuto is referred to as a job.
When you issue a uuto command, your job is not sent immediately.
First, the file is stored in a queue (a waiting line of jobs) and assigned
a job number. When the job's number comes up, the file is transmit-
ted to the remote system and placed in a public directory there. The
recipient is notified by a mail message and must use the uupick
command (discussed later in the chapter) to retrieve the file.

For the following discussions, assume this information:

wombat your login name

sysl your system name

marie recipient's login name

sys2 recipient”s system name

money file to be sent

8-60 USER'S GUIDE

c
8
s

58
3

Sending and Receiving Files

Also assume that the two systems can communicate with each other.

To send the file money to login marie on system sys2, enter the
following:

$ uuto money sys2!marie < CR >

$

The prompt on the second line is a signal that the file has been sent
to a job queue. The job is now out of your hands; all you can do is
wait for confirmation that the job reached its destination.

How do you know when the job has been sent? The easiest
method is to alter the uuto command line by adding a — m option, as

follows:

$ uuto — m money sys2!marie <CR >

$

This option sends a mail message back to you when the job has
reached the recipient's system. The message may look something like
this:

$ mail<CR>

Fran uxp Mon Jul 3 09:45 EST 1989

file /sysl/worbat/money, system sysl

copy sucoseded

2

If you would like to check if the job has left your system, you can use
the uustat command. This command keeps track of all the uucp
and uuto jobs you submit and reports the status of each on demand.
For example:

COMMUNICATION TUTORIAL 8-61

Sending and Receiving Files

$ uustat<CR >

1145 worbat sys2 10/07-09:31 10/07-—09:33 JOB IS ØUEUED
S

The elements of this sample status message are as follows:

MH 1145 is the job number assigned to the job of sending the file
money to marie on sys2.

wombat is the login name of the person requesting the job.

sys2 is the recipient's system.

10/07-09:31 is the date and time the job was queued.

10/07-09:33 is the date and time this uustat message was
sent.

The final part is a status report on the job. Here the report
shows that the job has been queued, but has not yet been sent.

To receive a status report on only one uuto job, use the —j
option and specify the job number on the command line:

uustat —jjobnumber< CR >

For example, to get a report on the job described in the previous
example, specify 1145 (the job number) after the —j option:

8-62. USER'S GUIDE

v
8
s

58
5

 er me
Sending and Receiving Files

$ uustat —j1l145< CR >
1145 worbat sys2 10/07-09:31 10/07-09:37 COPY FINISHED, JOB DELETED

$

This status report shows that the job was sent and deleted from the
job queue; it is now in the public directory of the recipient's system.

Other status messages and options for the uustat command are
described in the System V Reference Manual.

That is all there is to sending files. To practice, try sending a file
to yourself.

Figures 8-7 and 8-8 summarize the syntax and capabilities of the
uuto and uustat commands, respectively.

COMMUNICATION TUTORIAL 8-63

Sending and Receiving Files

Command Recap

uuto — sends files to another login

command options arguments

uuto — m and others” file system!login

Description: uuto sends a specified file to the public direc-
tory of a specified system, and notifies the
intended recipient (by mail addressed to his or
her login) that the file has arrived there.

Remarks: Files to be sent must have read permission for
others; the files parent directory must have

read and execute permissions for others.

The -—m option notifies the sender by mail
when the file has arrived at its destination.

Figure 8-7: Summary of the uuto Command

£ See the uuto(1) manual page in the System V Reference Manual for

all available options and an explanation of their capabilities.

8-64 USER'S GUIDE

9
8
S

58
7

Sending and Receiving Files

Command Recap

uustat — checks job status of a uucp or uuto job

command options arguments

uustat —j and others” none

Description: uustat reports the status of all uucp and
uuto jobs you have requested.

Remarks: The —j option, followed by a job number,
allows you to request a status report on only

the specified job.

Figure 8-8: Summary of the uustat Command

x See the uustat(1) manual page in the System V Reference Manual
for all available options and an explanation of their capabilities.

Receiving Files Sent with uuto: the uupick
Command

When a file sent by uuto reaches the public directory on your
UNIX system, you receive a mail message. To continue the previous
example, the owner of login marie receives the following mail mes-
sage when the file money has arrived in her system's public direc-
tory:

COMMUNICATION TUTORIAL 8-65

Sending and Receiving Files

oo

$ mail

Fran uucp Wed Jul 19 09:22 EST 1989

fusr/spool /uucppublic/receive/rarie/sys1//money from sysliwarbat arrived
$

The message contains the following pieces of information:

m The first line tells you when the file arrived at its destination.

m The second line, up to the two slashes (//), gives the path
name to the part of the public directory where the file has been
stored.

Em The rest of the line (after the two slashes) gives the name of
the file and the sender.

Once you have disposed of the mail message, you can use the
uupick command to store the file where you want it. Type the fol-
lowing command after the system prompt:

uupick<CR >

The command searches the public directory for any files sent to you.
If it finds any, it reports the filename(s). It then prints a ? prompt as
a request for further instructions from you.

For example, say the owner of login marie issues the uupick
command to retrieve the money file. The command will respond as
follows:

$ uupick<CR>
from system sysl: file money

?

There are several available responses; we will look at the most com-
mon responses and what they do.

8-66 USER'S GUIDE

8g
8s

58
9

Sending and Receiving Files

The first thing you should do is move the file from the public
directory and place it in your login directory. To do so, type an m

after the question mark:

?

m<CR>

$

This response moves the file into your current directory. If you want
to put it in some other directory instead, follow the m response with

the directory name:

?

m other directory <CR>

If there are other files waiting to be moved, the next one is displayed,
followed by the question mark. If not, uupick returns a prompt.

If you do not want to do anything to that file now, press the
RETURN key after the question mark:

?

<CR>

The current file remains in the public directory until the next time
you use the uupick command. If there are no more messages, the
system returns a prompt.

If you already know that you do not want to save the file, you can

delete it by typing d after the question mark:

?

d<CR>

This response deletes the current file from the public directory and
displays the next message (if there is one). If there are no additional

messages about waiting files, the system returns a prompt.

Finally, to stop the uupick command, type a q after the question

mark:

?

q<CR>

Any unmoved or undeleted files will wait in the public directory until
the next time you use the uupick command.

COMMUNICATION TUTORIAL 8-67

Sending and Receiving Files

Other available responses are listed in the System V Reference
Manual.

Figure 8-9 summarizes the syntax and capabilities of the uupick
command.

Command Recap

uupick — searches for files sent by uuto or uucp

command options arguments

uupick —s system name

Description: uupick searches the public directory of your
system for files sent by uuto or uucp. If any
are found, the command displays information
about the file and prompts you for a response.

Remarks: The question mark (?) at the end of the mes-
sage shows that a response is expected. A
complete list of responses is given in the Sys-
tem V Reference Manual.

Figure 8-9: Summary of the uupick Command

8-68 USER'S GUIDE

0
6
S

59
1

Networking

Networking is the process of linking computers and terminals so
that users may be able to:

EH log in on a remote computer as well as a local one

m log in and work on two computers in one work session (without
alternately logging off one and logging in on the other)

H exchange data between computers

The commands presented in this section make it possible for you

to perform these tasks. The ct command allows you to connect your

computer to a remote terminal that is equipped with a modem. The
cu command enables you to connect your computer to a remote com-

puter, and the uux command lets you run commands on a remote
system, without being logged in on it.

On some small computers, the presence of these commands may

NOE! depend on whether or not networking software is installed. If it is
not installed on your system, you will receive a message such as the

| following when you type a networking command:

cu: not found

Check with your system administrator to verify the availability of
networking commands on your UNIX system.

Connecting a Remote Terminal: the ct

Command

The ct command connects your computer to a remote terminal

equipped with a modem, and allows a user on that terminal to log in.
To do this, the command dials the phone number of the modem. The

modem must be able to answer the call automatically. When ct
detects that the call has been answered, it issues a getty (login) pro-

cess for the remote terminal and allows a user on it to log in on the
computer.

COMMUNICATION TUTORIAL 8-69

Networking

This command can be useful when issued from the opposite end,
that is, from the remote terminal itself. If you are using a remote
terminal that is far from your computer and want to avoid long dis-
tance charges, you can use ct to have the computer place a call to
your terminal. Simply call the computer, log in, and issue the ct
command. The computer will hang up the current line and call your
(remote) terminal back.

If et cannot find an available dialer, it tells you that all dialers
are busy and asks if it should wait until one becomes available. If
YOU answer yes, it asks how long (in minutes) it should wait for one.

Command Line Format

To execute the ct command, follow this format:

et [options] telno <CR.>

The argument zelno is the telephone number of the remote terminal.

Sample Command Usage

Suppose you are logged in on a computer through a local terminal
and you want to connect a remote terminal to your computer. The
phone number of the modem on the remote terminal is 932-3497.
Enter this command line:

ct —h —w5 —s1200 9=9323497<CR>

The equal sign (=) represents a secondary dial tone, and dashes (—)

NOTE! following the phone number represent delays (the dashes are useful
following a long distance number).

et. will call the modem, using a dialer operating at a speed of 1200
baud. If a dialer is not available, the — w5 option will cause ct to
wait for a dialer for five minutes before quitting. The —h option tells
et not to disconnect the local terminal (the terminal on which the
command was issued) from the computer.

8-70. USER'S GUIDE

Z
6
s

59
3

Networking

Now imagine that you want to log in on the computer from home.

To avoid long distance charges, use ct to have the computer call your
terminal:

ct —s1200 9=9323497<CR>

Because you did not specify the —w option, if no device is available,
et sends you the following message:

1 busy dialer at 1200 baud Wait for dialer?

If you type n (no), the ct command exits. If you type y (yes), ct

prompts you to specify how long et should wait:

Time, in minutes?

If a dialer is available, ct responds with:

Allocated dialer at 1200 baud

This means that a dialer has been found. In any case, ct asks if you
want the line connecting your remote terminal to the computer to be

dropped:

Confirm hangup?

If you type y (yes), you are logged off and et calls your remote termi-
nal back when a dialer is available. If you type n (no), the et com-
mand exits, leaving you logged in on the computer.

Figure 8-10 summarizes the syntax and capabilities of the ct com-

mand.

COMMUNICATION TUTORIAL 8-71

 dk (== om rs SS == — ===—==———N REN SEE

mm

Networking

Command Recap

ect — connect computer to remote terminal

command options arguments

et —-h, —w, —s and others” telno

Description: ct connects the computer to a remote terminal

and allows a user to log in from that terminal.

Remarks: The remote terminal must have a modem
capable of answering phone calls automati-
cally.

Figure 8-10: Summary of the ct Command

See the et(1) manual page in the System V Reference Manual for all
available options and an explanation of their capabilities.

Calling Another UNIX System: the cu
Command

The cu command connects a remote computer to your computer
and allows you to be logged in on both computers simultaneously.
This means that you can move back and forth between the two com-
puters, transferring files and executing commands on both, without
dropping the connection.

The method used by the cu command depends on the information
You specify on the command line. You must specify the telephone
number or system name of the remote computer. If you specify a
phone number, it is passed on to the automatic dial modem. If you
specify a system name, cu obtains the phone number from the Sys-
tems file. If an automatic dial modem is not used to establish the
connection, the line (port) associated with the direct link to the

8-72 USER'S GUIDE

v
e
s

59
5

Networking

remote computer can be specified on the command line.

Once the connection is made, the remote computer prompts you
to log in on it. When you have finished working on the remote termi-
nal, log off it and terminate the connection by typing <".>. You will
still be logged in on the local computer.

The cu command is not capable of detecting or correcting errors;

NOTE data may be lost or corrupted during file transfers. After a transfer,
you can check for loss of data by running the sum command or the

I ls —1 command on the file that was sent and the file that was

received. Both of these commands will report the total number of
bytes in each file; if the totals match, your transfer was successful.
The sum command checks more quickly and gives output that is
easier to interpret. (See the sum(l1) and the Is(1) manual pages in
the System V Reference Manual for details.)

Command Line Format

To execute the cu command, follow this format:

cu [options] telno | systemname <CR>

The components of the command line are:

telno the telephone number of a remote computer

Equal signs (=) represent secondary dial tones and

dashes (—) repreent four-second delays.

systemname a system name that is listed in the Systems file.

The cu command obtains the telephone number and
baud rate from the Systems file and searches for a
dialer. The —s, —n, and —1l options should not be

used together with systemname. (To see the list of
computers in the Systems file, run the uuname
command.)

Once your terminal is connected and you are logged in on the
remote computer, all standard input (input from the keyboard) is
sent to the remote computer. Figures 8-11 and 8-12 show the com-
mands you can execute through cu.

COMMUNICATION TUTORIAL 8-73

Networking

String Interpretation

—e Terminate the link.

—! Escape to the local computer without dropping
the link. To return to the remote computer,
type <"d> (control-d).

—Icommand Execute command on the local computer.

—$command Run command locally and send its output to
the remote system.

— %ced path Change the directory on the local computer
where path is the path name or directory
name.

— %take from [to] Copy a file named from (on the remote com-
puter) to a file named to (on the local com-
puter). If to is omitted, the from argument is
used in both places.

— %put from [to] Copy a file named from (on the local com-
puter) to a file named to (on the remote com-

puter). If to is omitted, the from argument is
used in both places.

Send a line beginning with — (— —….) to the
remote computer.

— %break Transmit a BREAK to the remote computer

(can also be specified as — %b).

Figure 8-11: Command Strings for Use with cu (Sheet 1 of 2)

8-74. USER'S GUIDE

96
9

59
7

Networking

String Interpretation

—%nostop | Turn off the handshaking protocol for the
remainder of the session. This is useful when

the remote computer does not respond prop-
erly to the protocol characters.

—%debug | Turn the —d debugging option on or off (can
also be specified as — %d).

—t Display the values of the terminal I/O
(input/output) structure variables for your
terminal (useful for debugging).

—1 Display the values of the termio structure variables for the remote communication line

(useful for debugging).

Figure 8-12: Command Strings for Use with cu (Sheet 2 of 2)

NOTE

The use of — %put requires stty and cat on the remote computer.
It also requires that the current erase and kill characters on the
remote computer be identical to the current ones on the local com-
puter.

The use of — %take requires the existence of the echo and cat com-
mands on the remote computer. Also, stty tabs mode should be set
on the remote computer if tabs are to be copied without expansion.

Sample Command Usage

Suppose you want to connect your computer to a remote com-

puter called eagle. The phone number for eagle is 847 — 7867. Enter

the following command line:

cu —s1200 9=8477867<CR>

COMMUNICATION TUTORIAL 8-75

Networking

The —s1200 option causes cu to use a 1200 baud dialer to call eagle.
If the —s option is not specified, cu uses a dialer at the default speed,
300 baud.

When eagle answers the call, cu notifies you that the connection
has been made, and prompts you for a login ID:

connected

login:

Enter your login ID and password.

The take command allows you to copy files from the remote com-
puter to the local computer. Suppose you want to make a copy of a
file named proposal for your local computer. The following com-
mand copies proposal from your current directory on the remote
computer and places it in your current directory on the local com-
puter. If you do not specify a file name for the new file, it will also be
called proposal.

—%take proposal <CR>

The put command allows you to do the opposite: copy files from
the local computer to the remote computer. Say you want to copy a
file named minutes from your current directory on the local com-
puter to the remote computer. Type:

—%put minutes minutes.9—18<CR>

In this case, you specified a different name for the new file
(minutes.9-18). Therefore the copy of the minutes file that is made
on the remote computer will be called minutes.9-18.

Figure 8-13 summarizes the syntax and capabilities of the cu
command.

8-76 USER'S GUIDE

8
6
S

59
9

= BEER =D —mEEz—el

oe —————————— dk

Networking

Command Recap

cu — connects computer to remote computer

command options arguments

cu —s and others” telno (or) systemname

Description: cu connects your computer to a remote com-

puter and allows you to be logged in on both
simultaneously. Once you are logged in, you

can move between computers to execute com-

mands and transfer files on each without dropping the link.

Figure 8-13: Summary of the cu Command

iaj See the cu(1) manual page in the System V Reference Manual for all

available options and an explanation of their capabilities.

Executing Commands on a Remote System:
the uux Command

The command uux (short for UNIX-to-UNIX system command

execution) allows you to execute UNIX system commands on remote
computers. It can gather files from various computers, execute a
command on a specified computer, and send the standard output to a

file on a specified computer. The execution of certain commands may

be restricted on the remote machine. The command notifies you by
mail if the command you have requested is not allowed to execute.

COMMUNICATION TUTORIAL 8-77

Networking

Command Line Format

To execute the uux command, follow this format:

uux [options] command — string < CR >

The command —string is made up of one or more arguments. All spe-
cial shell characters (such as ”<>|7”) must be quoted either by
quoting the entire command —string or quoting the character as a
separate argument, Within the command — string the command and
file names may contain a system name! prefix. All arguments that do
not contain a systemname are interpreted as command arguments. A
file name may be either a full path name or the name of a file under
the current directory (on the local computer).

Sample Command Usage

If your computer is hard-wired to a larger host computer you can
use uux to get printouts of files that reside on your computer by
entering:

pr minutes | uux —p host!lp <CR >

This command line queues the file minutes to be printed on the area
printer of the computer host.

Figure 8-14 summarizes the syntax and capabilities of the uux
command.

8-78 USER'S GUIDE

00
9

60
1

Networking

Command Recap

uux — executes commands on a remote computer

command options arguments

uux —1, —p, and others” command-string

Description: uux allows you to run UNIX system com-

mands on remote computers. It can gather

files from various computers, run a command
on a specified computer, and send the stan-
dard output to a file on a specified computer.

Remarks: By default, users of the uux command have
permission to run only the mail and mailx
commands. Check with your system adminis-
trator to find out if users on your system have
been granted permission to run other com- mands.

Figure 8-14: Summary of the uux Command

x See the uux(1) manual page in the System V Reference Manual for
all available options and an explanation of their capabilities.

COMMUNICATION TUTORIAL 8-79

8-80 USER'S GUIDE

This page is intentionally left blank

c
0
9

60
3

Appendices

TABLE OF CONTENTS

Page

Appendix A: Summary of the File System sure A-1

The UNIX System Files users A-1

File System Structuressusssrrsssrsssrsrssrsrsrssssrnsnree A-1

UNIX System Directories ……....W…..u.ssssssrerserssesseesersensensenee A- 4

Appendix B: Basic of UNIX System Commands 2... B-1

Appendix C: Quick Reference to ed Commands …................. C-1

The ed Commands….ssssnsecereeserenseresnssesnsesersennssene C-1

Commands for Getting Started ses C-1

Line Addressing Commands uussesrrrrsresrrrrrerernneee C- 2

Display Commands sceersrsreserssnsssrseennnenernesnnes C- 2

Text In PU 2-0 ennrnrensrEsEnEer Fr RKNGESEKEENFEENEEREENERNSNEDREES C- 3

Deleting Text suser C- 3

Substituting Text sorger ggessesseinkesknsdededskee C- 3

Special Characters .00ssssserssseersssesrnvtessersssesrerseseesetee C-3

Text Movement Commands serene C- 4

Other Useful Commands and Information... C- 5

Appendix D: Quick Reference to vi Commands... D-1

vi Quick Referencessccsrsrrrsrerserrsrrssrsserssrerkernsres D-1

Commands for Getting Started cesser D-1

Basic vi Commandssssssrrserrrrrsrrsrsererrersrressrrneee D- 2

Commands for Positioning in the Window... D- 2

Positioning by Character 1..sessssrssersesesssssssee D-2

Positioning by Linessssssrsrrestrserrersrrrernreresennnee D-3

Positioning by Word 2.erssrsrersrersrssseresreresssserrer D- 4

TABLE OF CONTENTS i

Appendices

Page

Positioning by Sentence neuer D- 4

Positioning by Paragraph ..2ccuuuuuruueresersssersrrre D- 4

Positioning in the Window... cceseseeserssesrersrerere D- 4

Commands for Positioning in the File... D-5

Serolling .encceresrssreereersreserrrrerer BRENNER D-5

Positioning on a Numbered Line cen D- 5

Searching for a Patterncsrssrssrrssstesrsrseser D- 5

Commands for Inserting TOXt2uyuunanrresrrrree D-6

Commands for Deleting Text. sunususurrinsrrerenee D-6

In Text Input Mode seven D-6

In Command Mode 22 une D- 6

Commands for Modifying Text succeer nen D- 7

Characters, Words, Text Objects senere D- 7

Cutting and Pasting Textseuus veere sneen D-8

Other Commandsisiisssssssssniinriirsekeen D-9

Special Commands seveeecereeerereree rese sesnrereregee D-9

Line Editor Commands .ccseseresrrssrrrssresrrsnser D-9

Commands for Quitting Vi......sssessveerrrrrrrrreer D-10

Special Options for Vi seernes rrrrsnensene D-11

Appendix E: Summary of Shell Command Language... E-1

The Vocabulary of Shell Command Language …..[.[.[.[. E-1

Special Characters in the Shell 1 uusrrsrsrrsse E-1

Redirecting Input and Output uens E- 1

Executing and Terminating Processes E- 2

Making a File Accessible to the Shell... E- 2

Variables .,uesssrssssserssssererererrereererererene renerne E-3

Variables Used in the System cusrrsrrrrre E-3

Shell Programming Constructs uens E-5

ii USER'S GUIDE

+
0
9

60
5

Appendices

Page

Here Document gisninger E- 5

For LOOP sisters Es koNsEes E- 5

While, LOC Pisco NENT ANKEDE E-6

I. Then 222 eres sr re rrere E- 6

If…. Then. Elsesuseceessssersrserrereresserserrerserereeerees E-7

Appendix F: Setting Up the Terminal... F-1

Setting the TERM Variablesuesersseresessssereses F-1

Example .M…..ssscsseeseerrsrsrerterersrr tree rest rer stenene trrkerer F-3

GlIOSSATY sans EKENTLEN SEKS EENE ENE EEEE EET RES KESNERNRKSSRESE G-1

Index ER EEN Ede« I- 1

TABLE OF CONTENTS | iii

Appendices

This page is intentionally left blank

iv USER'S GUIDE

9
0
9

60
7

The UNIX System Files

This appendix summarizes the description of the file system given

in Chapter 1 and reviews the major system directories in the root

directory.

File System Structure

The UNIX System files are organized in a hierarchy; their struc-
ture is often described as an inverted tree. At the top of this tree is

the root directory, the source of the entire file system. It is desig-
nated by a / (slash). All other directories and files descend and
branch out from root, as shown in Figure A-1.

SUMMARY OF THE FILE SYSTEM A-1

The UNIX System Files

O = Directories

[|] = Ordinary Files /

(root)
V = Special Files

UNIX bin dev etc lib tap usr

date cat ÉN «e) ly ly sail news

Figure A-1: Directory Tree from root

One path from root leads to your home directory. You can
organize and store information in your own hierarchy of directories
and files under your home directory.

Other paths lead from root to system directories that are avail-
able to all users. The system directories described in this book are
common to all UNIX system installations and are provided and main-
tained by the operating system.

A-2. USER'S GUIDE

8
0
9

60
9

The UNIX System Files

In addition to this standard set of directories, your UNIX system
may have other system directories. To obtain a listing of the direc-
tories and files in the root directory on your UNIX system, type the

following command line:

Is —1 /<CR>

To move around in the file structure, you can use path names.

For example, you can move to the directory /bin (which contains
UNIX system executable files) by typing the following command line:

cd /bin<CR>

To list the contents of a directory, issue one of the following com-
mand lines:

ls<CR> for a list of file and directory names
ls -—1<CR> for a detailed list of file and

directory names

To list the contents of a directory in which you are not located,
issue the Is command as shown in the following examples:

ls /bin<CR> for a short listing
ls —1 /bin< CR > for a detailed listing

The following section provides brief descriptions of the root

directory and the system directories under it, as shown in Figure A-1.

SUMMARY OF THE FILE SYSTEM A-3

== CS

UNIX System Directories

A-4

/

/bin

[lib

/dev

Jete

/tmp

A re ud JR, — rar ke annen]

ET ———

The source of the file system (called root directory)

Contains many executable programs and utilities,
such as the following:

cat

date
login

grep
mkdir
who

Contains available program libraries and language
libraries, such as

libec.a system calls, standard I/O

libm.a math routines and support for
languages such as C, FORTRAN,

and BASIC.

Contains special files that represent peripheral dev-
ices, such as:

console console
lp line printer
ttyn user terminal(s)
dsk/” disks

Contains programs and data files for system adminis-
tration

Contains temporary files, such as the buffers created
for editing a file

USER'S GUIDE

0
1
9

61
1

fusr

UNIX System Directories

Contains the following subdirectories which, in turn,
contain the data listed below:

news important news items
mail electronic mail
spool files waiting to be printed on the line

printer

SUMMARY OF THE FILE SYSTEM A-5

A-6

This page is intentionally left blank

USER'S GUIDE

cl
9g

61
3

Basic UNIX System Commands

at

banner

batch

cat

Request that a command be run in background mode
at a time you specify on the command line. If you do
not specify a time, at(1) displays the job numbers of

all jobs you have running in at(1), batch(1), or back-
ground mode. A sample format is:

at 8:45am Jun 09<CR>

commandl<CR>
command2 <CR >
<"d>

If you use the at command
without the date,

the command executes within twenty-four hours

at the time specified.

Display a message (in words up to ten characters

long) in large letters on the standard output.

Submit command(s) to be processed when the system
load is at an acceptable level. A sample format of this
command is:

batch <CR>
commandl<CR>

command2<CR>
<"d>

You can use a shell script for a command in batch(1).
This may be useful and timesaving if you have a set of

commands you frequently submit using this com-
mand.

Display the contents of a specified file at your termi-

nal. To halt the output on an ASCII terminal tem-
porarily, use <"s>; type <"q> to restart the out-
put. To interrupt the output and return to the shell
on an ASCII terminal, press the BREAK or DELETE
key.

SUMMARY OF UNIX SYSTEM COMMANDS B-1

== [3]
Basic UNIX System Commands

B-2

cd

cp

cut

date

diff

echo

ed

grep

kill

lex

mm

Change directory from the current one to your home
directory. If you include a directory name, changes
from the current directory to the directory specified.
By using a path name in place of the directory name,
you can jump several levels with one command.

Copy a specified file into a new file, leaving the origi-
nal file intact.

Cut out specified fields from each line of a file. This
command can be used to cut columns from a table, for

example.

Display the current date and time.

Compare two files. The diff(1) command reports
which lines are different and what changes should be
made to the second file to make it the same as the

first file.

Display input on the standard output (the terminal),

including the carriage return, and returns a prompt.

Edit a specified file using the line editor. If there is
no file by the name specified, the ed(1) command
creates one. See Chapter 5 for detailed instructions

on using the ed(l1) editor.

Search a specified file(s) for a specified pattern and
prints those lines that contain the pattern. If you

name more than one file, grep(1) prints the file that
contains the pattern.

Terminate a background process specified by its pro-
cess identification number (PID). You can obtain a
PID by running the ps(1) command.

Generate programs to be used in simple lexical
analysis of text, perhaps as a first step in creating a
compiler. See the System V Reference Manual for
details.

USER'S GUIDE

+
1
9

61
5

mail

mailx

make

mkdir

mv

Basic UNIX System Commands

Print the contents of a specified file on a line printer,

giving you a paper copy of the file.

Display the status of any requests made to the line
printer. Options are available for requesting more

detailed information.

List the names of all files and directories except those
whose names begin with a dot (.). Options are avail-

able for listing more detailed information about the
files in the directory. (See the l1ls(1) entry in the Sys-

tem V Reference Manual for details.)

Display any electronic mail you may have received at
your terminal, one message at a time. Each message
ends with ? prompt; mail(1) waits for you to request
an option such as saving, forwarding, or deleting a

message. To obtain a list of options, type ?.

When followed by a login name, mail(1) sends a mes-
sage to the owner of that name. You can type as

many lines of text as you want. Then type <"d> to

end the message and send it to the recipient. Press
the BREAK key to interrupt the mail session.

mailx(1) is a more sophisticated, expanded version of
electronic mail.

Maintain and support large programs or documents

on the basis of smaller ones. See the make(1) page in
the System V Reference Manual for details.

Make a new directory. The new directory becomes a

subdirectory of the directory in which you issue the
mkdir command. To create subdirectories or files in

the new directory, you must first move into the new

directory with the cd command.

Move a file to a new location in the file system. You
can move a file to a new file name in the same direc-

tory or to a different directory. If you move a file to a

different directory, you can use the same file name or

choose a new one.

SUMMARY OF UNIX SYSTEM COMMANDS B-3

ill 8
Basic UNIX System Commands

B-4

nohup

pg

pr

ps

rmdir

sort

Place execution of a command in the background, so it
will continue executing after you log otf of the system.
Error messages are placed in a file called nohup.out.

Display the contents of a specified file on your termi-
nal, a page at a time. After each page, the system

pauses and waits for your instructions before proceed-
ing.

Display a partially formatted version of a specified file
at your terminal. The pr(1) command shows page

breaks, but does not implement any macros supplied
for text formatter packages.

Display the status and number of every process

currently running. The ps(1) command does not

show the status of jobs in the at(1) or batch(1)
queues, but it includes these jobs when they are exe-
cuting.

Display the full path name of the current working
directory.

Remove a file from the file system. You can use meta-
characters with the rm(1) command but should use

them with caution; a removed file cannot be recovered

easily.

Remove a directory. You cannot be in the directory
you want to delete. Also, the command will not delete
a directory unless it is empty. Therefore, you must
remove any subdirectories and files that remain in a
directory before running this command on it. (See
rm -r in the System V Reference Manual for the abil-
ity to remove directories that are not empty.)

Sort a file in ASCII order and displays the results on
your terminal. ASCII order is as follows:

1. numbers before letters
2. upper case before lower case
3. alphabetical order

There are other options for sorting a file. For a

USER'S GUIDE

9
1
9

61
7

spell

stty

uname

uucp

uuname

uupick

uustat

uuto

Basic UNIX System Commands

complete list of sort(1) options, see the sort(1) page
in the System V Reference Manual.

Collect words from a specified file and check them
against a spelling list. Words not on the list or not

related to words on the list (with suffixes, prefixes,
and so on) are displayed.

Report the settings of certain input/output options for
your terminal. When issued with the appropriate
options and arguments, stty(1) also sets these

input/output option. (See the stty(1l) entry in the
System V Reference Manual.)

Display the name of the UNIX system on which you

are currently working.

Send a specified file to another UNIX system. (See

the uucp(l) page in the System V Reference Manual

for details.)

List the names of remote UNIX systems that can com-

municate with your UNIX system.

Search the public directory for files sent to you by the
uuto(1) command. If a file is found, uupick(1)
displays its name and the system it came from, and

prompts you (with a ?) to take action.

Report the status of the uuto(1) command you issued

to send files to another user.

Send a specified file to another user. Specify the des-
tination in the format system !login. The system must

be on the list of systems generated by the uuname(1)
command.

Edit a specified file using the vi(1) screen editor. If
there is no file by the name you specify, vi(1) creates
one. (See Chapter 6 for detailed information on
using the vi(l) editor.)

SUMMARY OF UNIX SYSTEM COMMANDS B-5

Basic UNIX System Commands

we Count the number of lines, words, and characters in a
specifled file and display the results on your terminal.

who Display the login names of the users currently logged
in on your UNIX system. List the terminal address
for each login and the time each user logged in.

yace Impose a structure on the input of a program. See
the System V Reference Manual for details.

B-6 USER'S GUIDE

8
1
9

61
9

The ed Commands

The general format for ed commands is:

[address1,address2]command[parameter]..< CR. >

where addressl and address2 denote line addresses and the parame-
ters show the data on which the command operates. The commands
appear on your terminal as you type them. You can find complete

information on using ed commands in Chapter 5, ”Line Editor
Tutorial.”

The following is a glossary of ed commands. The commands are

grouped according to function.

Commands for Getting Started

ed filename

a

Accesses the ed line editor to edit a specified file.

Appends text after the current line.

Ends the text input mode and returns to the com-
mand mode.

Displays the current line.

Deletes the current line.

Moves down one line in the buffer.

Moves up one line in the buffer.

Writes the buffer contents to the file currently
associated with the buffer.

Ends an editing session. If changes to the buffer
were not written to a file, a warning (?) is issued.

Typing q a second time ends the session without
writing to a file.

QUICK REFERENCE TO ed COMMANDS C-1

The ed Commands

Line Addressing Commands

1, 2,3…

g/abc

v/abc

Denotes line addresses in the buffer.

Address of the current line in the buffer.

Displays the current line address.

Denotes the last line in the buffer.

Addresses the first through the last line.

Addresses the current line through the last line.

Relative address, determined by adding x to the
current line number.

Relative address, determined by subtracting x from
the current line number.

Searches forward in the buffer and addresses the first

line after the current line that contains the pattern
abe.

Searches backward in the buffer and addresses the

first line before the current line that contains the pat-
tern abc.

Addresses all lines in the buffer that contain the pat-
tern abc.

Addresses all lines in the buffer that do not contain

the pattern abc.

Display Commands

p

n

Displays the specified lines in the buffer.

Displays the specified lines preceded by their line
addresses and a tab space.

C-2 USER'S GUIDE

0
2
9

62
1

The ed Commands

Text Input

a Enters text after the specified line in the buffer.

i Enters text before the specified line in the buffer.

c Replaces text in the specified lines with new text.

; When typed on a line by itself, ends the text input
mode and returns to the command mode.

Deleting Text

d Deletes one or more lines of text (command mode).

u Undoes the last command given (command mode).

(CO) Deletes the current line (in text input mode) or a

command line (in command mode).

Substituting Text

addressl,address2s/old text/new text/command
Substitutes new text for old text within the range of
lines denoted by addressl,address2 (which may be
numbers, symbols, or text). The command may be g,
1, n, p, or gp.

Special Characters

Matches any single character in search or substitution
patterns.

la Matches zero or more occurrences of the preceding

character in search or substitution patterns.

[...] Matches the first occurrence of a pattern in the brack-

ets.

[".…] Matches the first occurrence of a character that is not

in the brackets.

QUICK REFERENCE TO ed COMMANDS C-3

 —HE mm
The ed Commands

st Matches zero or more occurrences of any characters
following the period in search or substitution pat-

terns.

The circumflex (”) matches the beginning of the line

in search or substitution patterns.

$ Matches the end of the line in search or substitution
patterns.

AN Takes away the special meaning of the special charac-
ter that follows in search and substitution patterns.

& Repeats the last pattern to be substituted.

% Repeats the last replacement pattern.

Text Movement Commands

m Moves the specified lines of text after a destination

line; deletes the lines at the old location.

t Copies the specified lines of text and places the copied
lines after a destination line.

å Joins the current line with the next contiguous line.

wWw Copies (writes) the buffer contents into a file.

r Reads in text from another file and appends it to the
buffer.

C-4 USER'S GUIDE

c
c
9

62
3

The ed Commands

Other Useful Commands and Information

h Displays a short explanation for the preceding diag-
nostic response (?).

1 Displays nonprinting characters in the text.

f Displays the current file name.

f newfile Changes the current file name associated with the
buffer to newfile.

!'command Allows you to escape, temporarily, to the shell to exe-
cute a shell command.

ed.hup If the terminal is hung up before a write command,
the editing buffer is saved in the file ed.hup.

QUICK REFERENCE TO ed COMMANDS C-5

C-6 USER'S GUIDE

This page is intentionally left blank

v
e
9

62
5

 | | T

vi Quick Reference

This appendix is a glossary of commands for the screen editor vi.
The commands are grouped according to function.

The general format of a vi command is:

[x [command] text-object

where x denotes a number and text-object shows the portion of text on
which the command operates. The commands appear on your screen

as you type them. For an introduction to the use of vi commands,

see Chapter 6, ”Screen Editor Tutorial.”

Commands for Getting Started

Shell Commands

TERM =code Puts a code name for your terminal into the
variable TERM.

export TERM Conveys the value of TERM (the terminal
code) to any UNIX system program that is ter-

minal dependent.

Before you can use vi, you must complete the first two steps
NOTE| represented by the above lines: setting the TERM variable and

exporting the value of TERM.

—

vi filename Accesses the vi screen editor so that you can

edit a specified file.

QUICK REFERENCE TO vi COMMANDS | D-1

—T dk
vi Quick Reference

Basic vi Commands

<a>

<ESC>

<h>

<j>

Enters text input mode and appends text after
the cursor.

Escape; leaves text input mode and returns to
command mode.

Moves the cursor to the left one character.

Moves the cursor down one line in the same

column.

Moves the cursor up one line in the same
column.

Moves the cursor to the right one character.

Deletes the current character.

Carriage return; moves the cursor down to the

beginning of the next line.

Writes changes made to the buffer to the file
and quits vi.

Writes changes made to the buffer to the file.

Quits vi if changes made to the buffer have
been written to a file.

Commands for Positioning in the Window

Positioning by Character

<h> Moves the cursor one character to the left.

<BACKSPACE >

D-2 USER'S GUIDE

Backspace; moves the cursor one character to
the left.

9
9

62
7

<l>

<space bar >

<fx>

<Fx>

Positioning by Line

<j>

<k>

<+>

<CR>

vi Quick Reference

Moves the cursor one character to the right.

Moves the cursor one character to the right.

Moves the cursor right to the specified charac-
ter x.

Moves the cursor left to the specified charac-
ter x.

Moves the cursor right to the character just

before the specified character x.

Moves the cursor left to the character just
after the specified character x.

Continues the search for the character

specified by the <f>, <F>, <t>, or <T>

commands. The ; remembers the character

specified and searches for the next occurrence
of it on the current line.

Continues the search for the character

specified by the <f>, <F>, <t>, or <T>
commands. The , remembers the character

specified and searches for the previous
occurrence of it on the current line.

Moves the cursor down one line from its

present position, in the same column.

Moves the cursor up one line from its present
position, in the same column.

Moves the cursor down to the beginning of the
next line.

Carriage return; moves the cursor down to the

beginning of the next line.

QUICK REFERENCE TO vi COMMANDS D-3

vi Quick Reference

<-—> Moves the cursor up to the beginning of the
next line.

Positioning by Word

<w> Moves the cursor to the right, to the first
character in the next word.

 Moves the cursor back to the first character of
the previous word.

<e> Moves the cursor to the end of the current
word.

Positioning by Sentence

<(> Moves the cursor to the beginning of the sen-
tence.

<)> Moves the cursor to the beginning of the next
sentence.

Positioning by Paragraph

<(> Moves the cursor to the beginning of the para-
graph.

<)> Moves the cursor to the beginning of the next
paragraph.

Positioning in the Window

<H> Moves the cursor to the first line on the
screen, or "home.”

<M> Moves the cursor to the middle line on the
screen.

<L> Moves the cursor to the last line on the
screen.

D-4 USER'S GUIDE

8
2
9

62
9

vi Quick Reference

Commands for Positioning in the File

Scrolling

<"f> Scrolls the screen forward a full window,

revealing the window of text below the
current window.

Scrolls the screen down a half window, reveal-

ing lines of text below the current window.

Scrolls the screen back a full window, reveal-
ing the window of text above the current win-
dow.

Scrolls the screen up a half window, revealing
the lines of text above the current window.

Positioning on a Numbered Line

<G>

<nG>

Moves the cursor to the beginning of the last
line in the buffer.

Moves the cursor to the beginning of the nth
line of the file (n = line number).

Searching for a Pattern

[pattern

pattern

Searchs forward in the buffer for the next

occurrence of the pattern of text. Positions
the cursor under the first character of the pat-
tern.

Searches backward in the buffer for the first
occurrence of pattern of text. Positions the
cursor under the first character of the pat-
tern.

QUICK REFERENCE TO vi COMMANDS D-5

—| de
vi Quick Reference

<n> Repeats the last search command.

<N> Repeats the search command in the opposite
direction.

Commands for Inserting Text

<a> Enters text input mode and appends text after

the cursor.

<i> Enters text input mode and inserts text before
the cursor.

<o> Enters text input mode by opening a new line

immediately below the current line.

<0> Enters text input mode by opening a new line
immediately above the current line.

<ESC> Escape; returns to command mode from text
input mode (entered with any of the above
commands).

Commands for Deleting Text

In Text Input Mode

<BACKSPACE > Backspace; deletes the current character.

<"w> Deletes the current word delimited by blanks.

In Command Mode

<xX> Deletes the current character.

D-6 USER'S GUIDE

0£
9

63
1

<dw>

vi Quick Reference

Deletes a word (or part of a word) from the
cursor through the next space or to the next
punctuation.

Deletes the current line.

Deletes n number of text objects of type x,
where x may be as a word, line, sentence, or
paragraph.

Deletes the current line from the cursor to the
end of the line.

Commands for Modifying Text

Characters, Words, Text Objects

<r>

<s>

Replaces the current character.

Deletes the current character and appends
text until the <ESC> command is typed.

Replaces all the characters in the current line.

Changes upper case to lower case or lower

case to upper case.

Replaces the current word or the remaining
characters in the current word with new text,

from the cursor to the next space or punctua-
tion.

Replaces all the characters in the current line.

Replaces n number of text objects of type x,
where x may be a word, line, sentence, or

paragraph.

Replaces the remaining characters in the
current line, from the cursor to the end of the

line.

QUICK REFERENCE TO vi COMMANDS D-7

 — ie ===
vi Quick Reference

Cutting and Pasting Text

<p>

<yy>

<nyx>

< ”lyx >

<”xp>

D-8 USER'S GUIDE

Places the contents of the temporary buffer

(containing the output of the last delete or
yank command) into the text after the cursor

or below the current line.

Yanks (extracts) a specified line of text and
puts it into a temporary buffer.

Extracts a copy of n number of text objects of

type x and puts it into a temporary buffer.

Places a copy of text object x into a register

named by a letter /. x may be a word, line,
sentence, or paragraph.

Places the contents of register x after the cur-
sor or below the current line.

ce
g9

63
3

vi Quick Reference

Other Commands

Special Commands

<'g> Gives the line number of current cursor posi-
tion in the buffer and modification status of

the file.

Repeats the action performed by the last com-
mand.

Undoes the effects of the last command.

Restores the current line to its state prior to
present changes.

Joins the line immediately below the current
line with the current line.

Clears and redraws the current window.

Line Editor Commands

:x,2w filename

:$

Tells vi that the next commands you issue will

be line editor commands.

Temporarily returns to the shell to perform
some shell commands without leaving vi.

Escapes the temporary return to the shell and
returns to vi so you can edit the current win-
dow.

Goes to the nth line of the buffer.

Writes lines from the number x through the
number z into a new file called filename.

Moves the cursor to the beginning of the last
line in the buffer.

QUICK REFERENCE TO vi COMMANDS D-9

 "
vi Quick Reference

:…$d Deletes all the lines from the current line to

the last line.

ir filename Inserts the contents of the file filename under

the current line of the buffer.

:s/text/new text/
Replaces the first instance of text on the
current line with new text.

:s/text/new text/g
Replace every occurrence of text on the

current line with new text.

:g/text/s//new text/g
Changes every occurrence of text in the buffer
to new text.

Commands for Quitting vi

<ZZ> Writes the buffer to the file and quits vi.

wq Writes the buffer to the file and quits vi.

tw filename

:q Writes the buffer to the new file filename and
quits vi.

:w! filename
:q Overwrites the existing file filename with the

contents of the buffer and quits vi.

:q! Quits vi whether or not changes made to the
buffer were written to a file. Does not incor-

porate changes made to the buffer since the
last write (sw) command.

:q Quits vi if changes made to the buffer were
written to a file.

D-10 USER'S GUIDE

v
e
9

63
5

vi Quick Reference

Special Options for vi

vi filel file2 file3

Emters three files into the vi buffer to be

edited. Those files are /i/el, file2, and file3.

w
nm When more than one file has been called on a

single vi command line, writes the buffer to
the file you are editing and then calls the next
file in the buffer (use :n only after :w).

vi —r filel Restores the changes made to filel that were
lost because of an interrupt in the system.

view filel Displays filel in the read-only mode of vi.
Any changes made to the buffer will not be
allowed to be written to the file.

QUICK REFERENCE TO vi COMMANDS D-11

D-12 USER'S GUIDE

This page is intentionally left blank

9£
9

63
7

N

Summary of Shell Command Language

This appendix is a summary of the shell command language and
programming constructs discussed in Chapter 7, ”Shell Tutorial.”
The first section reviews metacharacters, special characters, input
and output redirection, variables and processes. These are arranged
by topic in the order that they were discussed in the chapter. The
second section contains models of the shell programming constructs.

The Vocabulary of Shell Command Language

Special Characters in the Shell

x 9

&

Metacharacters; used to provide a shortcut to

referencing file names, through pattern matching.

Executes commands in the background mode.

Sequentially executes several commands typed on
one line, each pair separated by ;.

Turns off the meaning of the immediately following
special character.

Enclosing single quotes turn off the special mean-
ing of all characters.

Enclosing double quotes turn off the special mean-
ing of all characters except $ and ”.

Redirecting Input and Output

<

>

Redirects the contents of a file into a command.

Redirects the output of a command into a new file,
or replaces the contents of an existing file with the
output.

SUMMARY OF SHELL COMMAND LANGUAGE. E-1

Summary of Shell Command Language

>>

"command"

Redirects the output of a command so that it is
appended to the end of a file.

Directs the output of one command so that it
becomes the input of the next command.

Substitutes the output of the enclosed command in
place of "command".

Executing and Terminating Processes

batch

at

at —l1

at -r

ps

kill PID

Submits the following commands to be processed
at a time when the system load is at an acceptable
level. <"d> ends the batch command.

Submits the following commands to be executed at
a specified time. <”d> ends the at command.

Reports which jobs are currently in the at or
batch queue.

Removes the at or batch job from the queue.

Reports the status of the shell processes.

Terminates the shell process with the specified pro-
cess ID (PID).

nohup command list &

Continues background processes after logging off.

Making a File Accessible to the Shell

chmod u + x /ilename

Gives the user permission to execute the file (use-
ful for shell program files).

mv filename $HOME/bin/filename

Moves your file to the bin directory in your home
directory. This bin holds executable shell pro-
grams that you want to be accessible. Make sure
the PATH variable in your .profile file specifies
this bin. If it does, the shell will search in

E-2 USER'S GUIDE

8
8
9

63
9

Summary of Shell Command Language

$HOME/bin for your file when you try to execute
it. If your PATH variable does not include your
bin, the shell will not know where to find your file
and your attempt to execute it will fail.

filename The name of a file that contains a shell program
becomes the command that you type to run that
shell program.

Variables

positional parameter
Å numbered variable used within a shell program
to reference values automatically assigned by the
shell from the arguments of the command line
invoking the shell program.

echo Å command used to print the value of a variable on
your terminal.

$4 Å special parameter that contains the number of
arguments with which the shell program has been
executed.

$+ Å special parameter that contains the values of all
arguments with which the shell program has been
executed.

named variable

Å variable to which the user can give a name and
assign values.

Variables Used in the System

HOME Denotes your home directory; the default variable

i for the cd command.

PATH Defines the path your login shell follows to find
commands.

SUMMARY OF SHELL COMMAND LANGUAGE E-3

Summary of Shell Command Language

E-4

CDPATH

MAIL

PS1 PS2

TERM

LOGNAME

IFS

TERMINFO

TZ

Defines the search path for the cd command.

Gives the name of the file containing your elec-
tronic mail.

Define the primary and secondary prompt strings.

Defines the type of terminal.

Login name of the user.

Defines the internal field separators (normally the

space, the tab, and the carriage return).

Allows you to request that the curses and ter-
minfo subroutines search a specified directory tree
before searching the default directory for your ter-
minal type.

Sets and maintains the local time zone.

USER'S GUIDE

0
+
9

64
1

Summary of Shell Command Language

Shell Programming Constructs

Here Document

command <<!

input lines
!

For Loop

for variable <CR>

in this list of values<CR>
do the following commands<CR>

command 1<CR>

command 2<CR>

<CR>

.<CR>

last command<CR>

done<CR>

SUMMARY OF SHELL COMMAND LANGUAGE E-5

ml de
Summary of Shell Command Language

While Loop

while command list<CR>

do<CR>

commandl<CR>

command2 <CR>

.<CR>

.<CR>

last command<CR>

done<CR>

If..Then

if this command is successful <CR>
then commandl<CR>

command2 <CR>

.<CR>

.<CR>

last command<CR>

fi<CR>

E-6 USER'S GUIDE

cv
9

64
3

00 SEEREN NE DUANE] dk > SEES]
(fr e]

(| fm |

Summary of Shell Command Language

If….Then…Else

if command list< CR >

then command list<CR>

else command list<CR>

fi<CR>

SUMMARY OF SHELL COMMAND LANGUAGE E-7

Summary of Shell Command Language

Case Construction

case word<CR>
in<CR>

patternl)< CR >

command line 1<CR>

.<CR>

.<CR>

last command line<CR>

;<CR>

palttern2)< CR >

command line 1<CR>

.<CR>

.<CR>

last command line<CR>

;<CR>
pattern3) <CR>

command line 1<CR>

.<CR>

.<CR>

last command line<CR>

;<CR>
esac<CR>

break and continue Statements

A break or continue statement forces the program to leave any
loop and execute the command following the end of the loop.

E-8 USER'S GUIDE

t
r
a

64
5

Setting the TERM Variable

AT&T supports many types of terminals for use with the UNIX
system. Because some commands are terminal dependent, the system

must know what type of terminal you are using whenever you log in.
To establish the Virtual Terminal translation table for your terminal,
the terminology program must be executed. Furthermore, the vari-
able TERM need to contain the name of the file describing your ter-
minal to the UNIX system. (Normally TERM ="T3-24-C80 on a

SUPERMAX.

This method of telling the UNIX system what type of terminal
you are using is called setting the terminal configuration. To set your
terminal configuration, type the command lines shown on the follow-
ing screen.

$ TERM = T3-24-C80< CR >
S export TERM<CR>
$ /etc/terminology filename <CR >

The first two lines must be executed every time you log in. There-
fore, most users put these lines into a file called .profile that is
automatically executed every time they log in. For details about the
"profile file, see Chapter 7.

The specified filename is the name of the file containing the Vir-
tual Terminal Interface program to be compiled. The specified
filename is always taken to be relative to the directory /eic/types.

Further information about terminology can be found in System
V Programmer's Guide, Chapter 7.

SETTING UP THE TERMINAL | F-1

Setting the TERM Variable

The terminology command must be executed after boot of the
SUPERMAX. This can be done automatically if you insert a line in
the file

[ete/rc.d/InitTerm

If your terminal is a dde450 and your terminal is connected to
dev/tty10, the line should be as follows:

[etc/terminology int/dde450.t /dev/tty10

You are advised to contact your System Administrator for further
help.

F-2 USER'S GUIDE

9
7
9

64
7

Example

Suppose your terminal is an dde450. First, you find an acceptable
name for it in the /etc/types directory. Next, you are now ready to
execute the terminology program with the appropriate name:

Jetc/terminology int/dde450.t

The following screen shows which commands you need to do this:

ÆREN <CR>
$ Is

dde420.t
dde450.t
dde490.t
dde550.t
sgd.t
vt220.t
$ /etc/terminology int/dde450.t

VK ”,
The UNIX system now knows what type of terminal you are

using and will execute commands appropriately.

SETTING UP THE TERMINAL F-3

F-4 USER'S GUIDE

This page is intentionally left blank

64
9

 2

Glossary

acoustic coupler
A device that permits transmission of data over an ordinary
telephone line. When you place a telephone handset in the
coupler, you link a computer at one end of the phone line to
a peripheral device, such as a user terminal, at the other.

address
Generally, a number that indicates the location of informa-
tion in the computer's memory. In the UNIX system, the

address is part of an editor command that specifies a line
number or range.

append mode
A text editing mode in which the characters you type are
entered as text into the text editor's buffer. In this mode
you enter (append) text after the current position in the
buffer. See text input mode, compare with command
mode and insert mode.

argument

The element of a command line that specifies data on which

a command is to operate. Arguments follow the command

name and can include numbers, letters, or text strings. For

instance, in the command Ilp —-m myfile, lp is the com-
mand and myfile is the argument. See option.

ASCII
(pronounced as”-kee) American Standard Code for Informa-

tion Interchange, a standard for data transmission that is
used in the UNIX system. ASCII assigns sets of Os and Is to
represent 128 characters, including alphabetical characters,

numerals, and standard special characters, such as +, $, %,

and &.

background
Å type of program execution where you request the shell to
run a command away from the interaction between you and
the computer (”in the background”). While this command
runs, the shell prompts you to enter other commands
through the terminal.

GLOSSARY G-1

Glossary

G-2

baud rate
A measure of the speed of data transfer from a computer to
a peripheral device (such as a terminal) or from one device
to another. Common baud rates are 300, 1200, 4800, and

9600. As a general guide, divide a baud rate by 10 to get the
approximate number of English characters transmitted each
second.

buffer
Å temporary storage area of the computer used by text edi-
tors to make changes to a copy of an existing file. When you
edit a file, its contents are read into a buffer, where you
make changes to the text. For the changes to become a part
of the permanent file, you must write the buffer contents
back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be exe-
cuted by the computer on request. Compiled programs and
shell programs are forms of commands.

command file

See executable file.

command language interpreter

A program that acts as a direct interface between you and
the computer. In the UNIX system, a program called the
shell takes commands and translates them into a language
understood by the computer.

command line
A line containing one or more commands, ended by typing a
carriage return (<CR>). The line may also contain
options and arguments for the commands. You type a com-
mand line to the shell to instruct the computer to perform
one or more tasks.

USER'S GUIDE

0
9
9

65
1

 BE SES
Glossary

command mode
Å text editing mode in which the characters you type are
interpreted as editing commands. This mode permits
actions such as moving around in the buffer, deleting text,

or moving lines of text. See text input mode, compare
with append mode and insert mode.

context search
Å technique for locating a specified pattern of characters
(called a string) when in a text editor. Editing commands
that cause a context search scan the buffer, looking for a
match with the string specified in the command. See
string.

control character
Å nonprinting character that is entered by holding down the
control key and typing a character. Control characters are
often used for special purposes. For instance, when viewing
a long file on your screen with the cat command, typing

control-s (”s) stops the display so you can read it, and typ-
ing control-q (”q) continues the display.

current directory
The directory in which you are presently working. You

have direct access to all files and subdirectories contained in
your current directory. The shorthand notation for the
current directory is a dot (.).

cursor
AÅ cue printed on the terminal screen that indicates the posi-
tion at which you enter or delete a character. It is usually a
rectangle or a blinking underscore character.

default
An automatically assigned value or condition that exists
unless you explicitly change it. For example, the shell
prompt string has a default value of $ unless you change it.

delimiter
A character that logically separates words or arguments on
a command line. Two frequently used delimiters in the
UNIX system are the space and the tab.

GLOSSARY G-3

Glossary

diagnostic
Å message printed at your terminal to indicate an error
encountered while trying to execute some command or pro-

gram. Generally, you need not respond directly to a diag-
nostic message.

directory
A type of file used to group and organize other files or direc-
tories. You cannot directly enter text or other data into a
directory. (For more detail, see Appendix A, Summary of
the File System.)

disk
ÅA magnetic data storage device consisting of several round

plates similar to phonograph records. Disks store large
amounts of data and allow quick access to any piece of data.

electronic mail
The feature of an operating system that allows computer
users to exchange written messages via the computer. The
UNIX system mail command provides electronic mail in
which the addresses are the login names of users.

environment

The conditions under which you work while using the UNIX
system. Your environment includes those things that per-

sonalize your login and allow you to interact in specific ways

with the UNIX system and the computer. For example,
your shell environment includes such things as your shell

prompt string, specifics for backspace and erase characters,
and commands for sending output from your terminal to the
computer.

escape
A means of getting into the shell from within a text editor
or other program.

execute

The computer's action of running a program or command
and performing the indicated operations.

G-4 USER'S GUIDE

2
5
9

65
3

En

Glossary

executable file
Å file that can be processed or executed by the computer
without any further translation. When you type in the file

name, the commands in the file are executed. See shell

procedure.

file

A collection of information in the form of a stream of char-

acters. Files may contain data, programs, or other text.

You access UNIX system files by name. See ordinary file,

permanent file, and executable file.

file name
Å sequence of characters that denotes a file. (In the UNIX
system, a slash character (/) cannot be used as part of a file

name.)

file system

ÅA collection of files and the structure that links them
together. The UNIX file system is a hierarchical structure.
(For more detail, see Appendix Å, Summary of the File Sys-

tem.) ”

filter

Å command that reads the standard input, acts on it in
some way, and then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground
The normal type of command execution. When executing a
command in foreground, the shell waits for one command to
end before prompting you for another command. In other

words, you enter something into the computer and the com-

puter ”replies” before you enter something else.

full-duplex
Å type of data communication in which a computer system
can transmit and receive data simultaneously. Terminals

and modems usually have settings for half-duplex (one-way)

and full-duplex communication; the UNIX system uses the

full-duplex setting.

GLOSSARY G-5

5 ==

Glossary

full path name
AÅ path name that originates at the root directory of the

UNIX system and leads to a specific file or directory. Each

file and directory in the UNIX system has a unique full path
name, sometimes called an absolute path name. See path
name.

global

A term that indicates the complete or entire file. While nor-
mal editor commands commonly act on only the first

instance of a pattern in the file, global commands can per-

form the action on all instances in the file.

hardware

The physical machinery of a computer and any associated

devices.

hidden character
One of a group of characters within the standard ASCII

character set that are not printable. Characters such as

backspace, escape, and <"d> are examples.

home directory

The directory in which you are located when you log in to

the UNIX system; also known as your login directory.

input/output
The path by which information enters a computer system
(input) and leaves the system (output). An input device that
you use is the terminal keyboard and an output device is the

terminal display.

insert mode
Å text editing mode in which the characters you type are
entered as text into the text editor's buffer. In this mode

you enter (insert) text before the current position in the

buffer. See text input mode, compare with append mode
and command mode.

G-6 USER'S GUIDE

vr
ag

65
5

Glossary

interactive
Describes an operating system (such as the UNIX system)
that can handle immediate-response communication
between you and the computer. In other words, you
interact with the computer from moment to moment.

line editor
An editing program in which text is operated upon on a
line-by-line basis within a file. Commands for creating,
changing, and removing text use line addresses to determine
where in the file the changes are made. Changes can be
viewed after they are made by displaying the lines changed.
See text editor, compare with screen editor.

login
The procedure used to gain access to the UNIX operating
system.

login directory
See home directory.

login name
Å string of characters used to identify a user. Your login
name is different from other login names.

log off
The procedure used to exit from the UNIX operating sys-
tem.

metacharacter
ÅA subset of the set of special characters that have special
meaning to the shell. The metacharacters are %, ?, and the
pair []. Metacharacters are used in patterns to match file
names.

mode
In general, a particular type of operation (for example, an
editor's append mode). In relation to the file system, a
mode is an octal number used to determine who can have
access to your files and what kind of access they can have.
See permissions.

GLOSSARY G-7

Glossary

modem

ÅA device that connects a terminal and a computer by way of
a telephone line. A modem converts digital signals to tones
and converts tones back to digital signals, allowing a termi-
nal and a computer to exchange data over standard tele-
phone lines.

multitasking
The ability of an operating system to execute more than one
program at a time.

multiuser

The ability of an operating system to support several users
on the system at the same time.

nroff

Å text formatter available as an add-on to the UNIX system.
You can use the nroff program to produce a formatted on-
line copy or a printed copy of a file. See text formatter.

operating system

The software system on a computer under which all other
software runs. The UNIX system is an operating system.

option

Special instructions that modify how a command runs.
Options are a type of argument that follow a command and
usually precede other arguments on the command line. By
convention, an option is preceded by a minus sign (—); this
distinguishes it from other arguments. You can specify
more than one option for some commands given in the
UNIX system. For example, in the command
Is —1 -—a directory, —1 and —a are options that modify
the Is command. See argument.

ordinary file

A file, containing text or data, that is not executable. See

executable file.

output

Information processed in some fashion by a computer and
delivered to you by way of a printer, a terminal, or a similar
device.

G-8 USER'S GUIDE

96
9

65
7

Glossary

parameter

ÅA special type of variable used within shell programs to
access values related to the arguments on the command line
or the environment in which the program is executed. See
positional parameter.

parent direetory
The directory immediately above a subdirectory or file in
the file system organization. The shorthand notation for
the parent directory is two dots (..).

parity
A method used by a computer for checking that the data
received matches the data sent.

password
Å code word known only to you that is called for in the login
process. The computer uses the password to verify that you
may indeed use the system.

path name
Å sequence of directory names separated by the slash char-
acter (/) and ending with the name of a file or directory.
The path name defines the connection path between some
directory and the named file.

peripheral device
Auxiliary devices under the control of the main computer,
used mostly for input, output, and storage functions. Some
examples include terminals, printers, and disk drives.

permanent file
The data stored permanently in the file system structure.
To change a permanent file, you can make use of a text edi-
tor, which maintains a temporary work space, or buffer,

apart from the permanent files. Once changes have been
made to the buffer, they must be written to the permanent
file to make the changes permanent. See buffer.

GLOSSARY G-9

dk Fr ELERS me enhe

Glossary

G-10

permissions
Access modes, associated with directories and files, that per-
mit or deny system users the ability to read, write, and/or
execute the directories and files. You determine the permis-
sions for your directories and files by changing the mode for
each one with the chmod command.

pipe
AÅA method of redirecting the output of one command to be
the input of another command. It is named for the
character | that redirects the output. For example, the
shell command who | we —l1l pipes output from the who
command to the we command, telling you the total number
of people logged into your UNIX system.

pipeline
A series of filters separated by | (the pipe character). The
output of each filter becomes the input of the next filter in
the line. The last filter in the pipeline writes to its standard
output, or may be redirected to a file. See filter.

positional parameters
Numbered variables used within a shell procedure to access
the strings specified as arguments on the command line
invoking the shell procedure. The name of the shell pro-
cedure is positional parameter $0. See variable and shell
procedure.

prompt

Å cue displayed at your terminal by the shell, telling you
that the shell is ready to accept your next request. The
prompt can be a character or a series of characters. The
UNIX system default prompt is the dollar sign character ($).

printer

An output device that prints the data it receives from the
computer on paper.

process
Generally a program that is at some stage of execution. In
the UNIX system, it also refers to the execution of a com-
puter environment, including contents of memory, register

USER'S GUIDE

8
5
9

65
9

eQ. C EGE

Glossary

values, name of the current directory, status of files, infor-

mation recorded at login time, and various other items.

program
The instructions given to a computer on how to do a specific
task. Programs are user-executable software.

read-ahead capability
The ability of the UNIX system to read and interpret your
input while sending output information to your terminal in
response to previous input. The UNIX system separates

input from output and processes each correctly.

relative path name
The path name to a file or directory which varies in relation

to the directory in which you are currently working.

remote system

A system other than the one on which you are working.

root
The source directory of all files and directories in the file
system; designated by the slash character (/).

screen editor
An editing program in which text is operated on relative to
the position of the cursor on a visual display. Commands
for entering, changing, and removing text involve moving

the cursor to the area to be altered and performing the
necessary operation. Changes are viewed on the terminal

display as they are made. See text editor, compare with

line editor.

search pattern
See string.

search string
See string.

secondary prompt
A cue displayed at your terminal by the shell to tell you that
the command typed in response to the primary prompt is
incomplete. The UNIX system default secondary prompt is
the ”greater than” character (>).

GLOSSARY G-11

Glossary

G-12

shell

A UNIX system program that handles the communication
between you and the computer. The shell is also known as
a command language interpreter because it translates your

commands into a language understandable by the computer.
The shell accepts commands and causes the appropriate pro-
gram to be executed.

shell procedure
An executable file that is not a compiled program. A shell
procedure calls the shell to read and execute commands con-
tained in a file. This lets you store a sequence of commands
in a file for repeated use. It is also called a shell program or
command file. See executable file.

silent character

See hidden character.

software

Instructions and programs that tell the computer what to
do. Contrast with hardware.

source code
The uncompiled version of a program written in a language
such as C or Pascal. The source code must be translated to
machine language by a program known as a compiler before
the computer can execute the program.

special character

A character having special meaning to the shell program
and used for common shell functions such as file redirection,

piping, background execution, and file name expansion. The

special characters include <, >, |, ;, &, ", ?, [, and].

special file

A file (called a device driver) used as an interface to an
input/output device, such as a user terminal, a disk drive, or
a line printer.

standard input
An open file that is normally connected directly to the key-
board. Standard input to a command normally goes from
the keyboard to this file and then into the shell. You can

USER'S GUIDE

0
9
9

Glossary

redirect the standard input to come from another file
instead of from the keyboard; use an argument in the form
< file. Input to the command will then come from the
specified file.

standard output
An open file that is normally connected directly to a primary
output device, such as a terminal printer or screen. Stan-
dard output from the computer normally goes to this file
and then to the output device. You can redirect the stan-
dard output into another file instead of to the printer or
screen; use an argument in the form > file. Output will
then go to the specified file.

string
Designation for a particular group or pattern of characters,
such as a word or phrase, that may contain special charac-
ters. In a text editor, a context search interprets the special
characters and attempts to match the specified pattern with
a string in the editor buffer.

string variable
Å sequence of characters that can be the value of a shell
variable. See variable.

subdirectory
ÅA directory pointed to by a directory one level above it in
the file system organization; also called a child directory.

SUPERMAX Computers
Computers manufactured by Dansk Data Elektronik, Inc.
Denmark.

system administrator
The person who monitors and controls the computer on
which your UNIX system runs; sometimes referred to as a
super-user.

terminal
An input/output device connected to a computer system,
usually consisting of a keyboard with a video display or a
printer. Å terminal allows you to give the computer instruc-
tions and to receive information in response.

GLOSSARY G-13

text editor

Software for creating, changing, or removing text with the
aid of a computer. Most text editors have two modes--an
input mode for typing in text and a command mode for mov-
ing or modifying text. Two examples are the UNIX system
editors ed and vi. See line editor and screen editor.

text formatter

A program that prepares a file of text for printed output.
To make use of a text formatter, your file must also contain
some special commands for structuring the final copy.
These special commands tell the formatter to justify mar-
gins, start new paragraphs, set up lists and tables, place
figures, and so on. Two text formatters available as add-ons
to your UNIX system are nroff and troff.

text input mode
A text editing mode in which the characters you type are

entered as text into the text editor's buffer. To execute a
command, you must leave text input mode. See command

mode, compare with append mode and insert mode.

timesharing

tool

A method of operation in which several users share a com-
mon computer system seemingly simultaneously. The com-

puter interacts with each user in sequence, but the high-
speed operation makes it seem that the computer is giving

each user its complete attention.

A package of software programs.

troff

tty

Å text formatter available as an add-on to the UNIX system.

The troff program drives a phototypesetter to produce
high-quality printed text from a file. See text formatter.

Historically, the abbreviation for a teletype terminal.
Today, it is generally used to denote a user terminal.

G-14 USER'S GUIDE

c9
9

66
3

Glossary

user

Anyone who uses a computer or an operating system.

user-defined

Something determined by the user.

user-defined variable
A named variable given a value by the user. See variable.

UNIX system
ÅA general-purpose, multiuser, interactive, time-sharing
operating system developed by AT&T Bell Laboratories.
The UNIX system allows limited computer resources to be
shared by several users and efficiently organizes the user's
interface to a computer system.

utility
Software used to carry out routine functions or to assist a
programmer or system user in establishing routine tasks.

variable
Å symbol whose value may change. In the shell, a variable
is a symbol representing some string of characters (a string
value). Variables may be used in an interactive shell as
well as within a shell procedure. Within a shell procedure,
positional parameters and keyword parameters are two
forms of variables. (Keyword parameters are discussed fully
in ”Shell Commands and Programming”.)

video display terminal
ÅA terminal that uses a television-like screen (a monitor) to

display information. A video display terminal can display
information much faster than printing terminals.

visual editor

See screen editor.

working directory
See current directory.

GLOSSARY G-15

G-16 USER'S GUIDE

This page is intentionally left blank

+
9
9

66
5

Index

absolute path name … 3:8
acceptable terminal names

F:2-4

active computer … 8:56

alias … 8:17, 19, 27, 30, 43, 45
background mode … 7:10-11, 20,

37, 103; B:1; E:1; F:6
backslash … 2:10; 5:47, 65-66,

72; 7:12
banner … 7:13-14, 21, 26, 29, 37,

"100; 8:35; B:1

BASIC … 4:13; A:3

Basic Windowing Utilities … F:6
baud rate … 2:3, 15, 20; 8:70

calling another unix system …
2:15; 8:69

case construction … 7:83-85; E:7

cat … 3:21, 27, 33-34, 36, 47,
72-73; 4:7-8; 6:86; 7:17, 37-
39, 44, 48, 55, 67-68, 102;
8:72; A:3; Bil

cd … 3:16, 26-27, 60, 65; 4:8;
7:12, 37, 41, 53, 96-97, 103;
8:50; A:2; B:2-3; E:3

change text … 1:2, 9; 3:67-68;

4:3-5; 5:l, 4, 10, 12, 16-17,
32, 34, 39, 45, 50, 52-53,
65-66, 69, 81, 88, 93; 6:1,
65, 71, 75, 83; 7:66; 8:20,
27; D:8

changing directories … 3:26, 60,
64-65

changing permissions … 3:60,
63-65; 7:40, 96; 8:49-50

character counts … 3:57-58;

5:14; 7:21, 66; B:5

child directory … 3:12, 19, 26

chmod … 3:23, 60, 63-66; 4:10;

7:40, 44, 55, 96; 8:49-50;
E:2

command line syntax … 1:10-11;
8:48, 51

command mode … 1:3; 3:22, 60,

67; 4:3-4; 5:4-7, 9, 37, 39-
40, 44-45, 47, 84, 86; 6:6,
11-12, 22, 60, 64, 66, 75, 84,
86; 7:10-11, 37, 103; 8:17-18,
20-21, 23, 26-27, 31, 33, 35,
41, 45-46, 66-67, 69, 72; B:1;
C:1, 3; D:2, 5-6; E:1; F:6

configuration checks … 2:3, 20
connecting remote terminal …

8:66-68, 70
continue statements … 7:87; E:7

control characters … 2:11-12, 25;

5:87

copy-to list … 8:27
COREterm … F:2

cp … 3:50-52, 68; 7:93; B:2

ct … 8:1, 66-68

cu command … 8:66, 69-70, 73

current directory … 3:6, 11, 13,

16, 18-21, 26, 50, 54, 57-58,
65; 5:73; 7:4-7, 10, 12, 16,
27, 35, 39-40, 80-82, 97,
100, 102, 107; 8:13-14, 30,
38, 52-53, 64, 73, 75; B:2, 4

data file … 1:1, 8, 11; 4:8; 7:43;

8:51, 55, 70; A:3
date … 2:9, 22-23; 3:18, 43; 4:9-

10; 5:90; 7:21, 23-24, 26-29,
37, 58, 89, 100, 105; 8:12,
34, 60; A:3; B:1-2

INDEX. 1-1

index

default environment … 4:7-8;

5:47; 7:93

defined aliases … 8:45

defined variables … 7:53; 8:44

delete functions … 2:8-10; 5:47

deleting mail … 8:13, 32-33, 37,

41; B:3
deleting text … 1:5; 2:8, 10; 4:2,

4; 5:11, 3, 5, 7-9, 16-17, 32,
44-48, 73, 75; 6:1, 3, 6, 71,
75, 78, 100; C:3-4; D:6-7

destination directory … 3:13;

8:48-49
destination-file … 8:51-54

diff … 3:67-68; B:2

directory … 1:5-8, 11; 3:1-2, 4, 6-
8, 11-16, 18-23, 26-29, 31, 33,
50-51, 53-58, 60-61, 65; 4:7-
8, 12; 5:31, 73, 79, 93; 6:5,

70, 95; 7:4-8, 10, 12, 16, 27,
35, 37, 39-42, 51, 53, 68, 70,
80-82, 93, 96-97, 100, 102,
107; 8:6, 13-14, 17-18, 30-31,
38, 44-45, 48-58, 60, 62-64,
73, 75; A:1-3; B:2-5; E:2-4;

F:2, 4

display commands … 3:33-42
echo … 2:16; 7:4, 37, 39, 44, 49-

51, 53-55, 60, 68, 70, 74,
76-77, 87, 93-94, 96-97, 100,
102, 105, 108; 8:72; B:2; E:3

editing messages … 5:83, 85;
6:94; 8:17, 20, 22

else … 7:77, 85; E:6

environment … 1:1, 9-10; 3:60;

4:2, 7-8, 13; 5:47; 6:3, 5;

7:1, 53, 86, 93-94, 101, 108;
8:16-18, 24, 28, 43-44, 46

1-2 USER GUIDE

erase function …
5:47

executing commands, remote
system … 8:1, 74

exit … 2:25; 5:5; 6:87, 94; 7:62,

68-69, 85; 8:23, 26, 31, 68
exiting mailx … 8:26, 31
file system … 1:1, 3-11; 2:16, 18,

23; 3:1-2, 4, 6-8, 11, 13, 15-
16, 18, 20, 26, 31, 33, 39, 43,
48, 50-51, 53, 55, 57, 60-61,
64-67, 69, 72, 75; 4:2, 12;
5:3, 10, 83, 90; 6:5, 91-92;
7:1, 4, 6-8, 15, 42, 75, 77,
90, 93; 8:1, 19, 25, 34, 42,
47-49, 51-52, 54-55, 57-58,
62-64, 69-70, 74-75;1; A:1-3;
B:3-5; D:9; F:6

flow of control … 1:8, 12; 3:45
folder variable … 8:44-45
full path name … 3:6-8, 14, 16,

19-20, 26-27, 51-52, 54; 7:12,
43; 8:14, 51-52, 54, 75; B:4

glossary … 2:24; C:1; D:1
grep … 3:67, 69-71; 7:11-13, 20,

27, 32, 34-35, 46-47, 54, 76-
77, 92; 8:9; A:3; B:2

help … 2:3-25; 5:83-86; C:4; F:6

HOME … E:3
home directory … 1:6; 3:4, 6, 16,

21, 26, 29; 4:8; 5:31; 6:5;
7:53, 81, 93, 97; 8:13, 17-18,
31, 38, 44, 49-53; A:l; B:2;
E:2-3; F:4

if-endif command … 8:45

incorporate existing text … 8:20,
24

input redirection … 3:36, 43;
7:10, 15, 20, 63; 8:47; E:1

2:8-10; 4:8;

9
9
9

66
7

job number … 3:48; 7:27, 29-30,

103; 8:58, 60; B:1, 4
job queue … 7:27, 29; 8:58, 60;

B:4; E:2

kernel … 1:1, 3-4, 6-7, 12-13

kill function … 2:8-9; 4:8; 5:47

layers … 3:2, 11; F:6-7, 10

leaving mailx … 8:13, 31, 40-41

lex … 4:13; B:2

libwindows … F:10
Line Addressing … 5:6, 16
line addressing commands

5:9, 15-18, 24-28, 31-32, 34-
35, 37, 39, 50-53, 59, 73, 75;
C:1-3

line kill function … 2:8-9; 5:47

link count … 3:23

linking computers …
8:55, 66, 69

local system … 2:13; 8:3, 8, 47,

52, 58
lock enabling … 2:20; 3:62
log off … 2:1, 9, 12, 25; 4:7; 5:93;

7:11, 35; 8:66, 70; B:3
login name … 2:1, 10, 12-13, 16,

18, 23; 3:4, 6, 23; 4:8, 12;
7:15, 45, 53, 96; 8:3-4, 7-9,
12, 17, 19-20, 27, 30, 34, 38,
45, 47, 51-52, 58, 60; B:3, 5;
E:3

login procedure …
7:21

LOGNAME … 7:53; E:3
loop … 7:1, 42-43, 62, 69-70, 72-

75, 80, 87-88, 100; E:4-5, 7
lp … 3:33, 43, 47-48; 8:75; A:3;

B:2

lpstat … 3:48; B:2

1:1; 2:17;

2:16-19; 3:4;

Index

ls … 3:16, 18-24, 50, 53-54, 56-
58, 60-62, 64-65; 4:7; 5:50,
83, 86-87, 93; 6:11, 84; 7:4-
8, 12, 16, 37, 39-43, 93, 102;
8:13, 50, 70; A:2; B:3; C:3-

4; D:2, 4, 7-8
mail … 1:8, 10; 3:48; 4:8, 12;

5:93; 7:15, 21, 29-30, 45, 53,
63-64, 89-91; 8:1-9, 12-14,
16-18, 20, 26-27, 32-33, 36-
42, 44-45, 47-48, 53-54, 58-
59, 62-63, 74; A:3; B:3; E:3

mailbox … 8:12-14, 19, 26, 33,
35-38, 41

mailrc … 8:16-19, 23, 42, 44-46
mailx … 1:8, 10; 3:48; 4:8, 12;

5:93; 7:15, 21, 29-30, 45, 53,
63-64, 89-91; 8:1-9, 12-14,
16-24, 26-28, 31-42, 44-48,
53-54, 58-59, 62-63, 74; A:3;
B:3; E:3

managing incoming mail … 8:5-

6, 12, 16-18, 27, 32
merging files … 3:67, 72-73
mkdir … 3:16-17, 26; 7:41, 96;

A:3; B:3

msglist … 8:32, 34-35, 37-38, 42
mv … 3:53-54; 7:8, 41-42, 71-72,

80-82, 100, 107; B:3; E:2
networking … 8:1, 54, 56, 66

octal method … 3:65

ordinary file … 1:5-6; 3:2, 23

outfolder variable … 8:44-45

output redirection … 3:36, 43;

7:10, 15, 17-20; E:1

parent directory … 3:11-13, 19,

23, 28-29
password … 2:1, 10, 16-19; 8:73

INDEX. 1-3

Index

PATH … E:2-3
path names … 3:6-8, 11-16, 18-

20, 26-27, 51-54, 60; 7:12,
40, 42-43, 70, 81, 96-97;
8:14, 34, 48, 51-55, 63, 75;
A:2; B:2, 4

permission … 1:6; 3:1, 4, 20, 23,

28, 60-65; 4:10; 7;40-41, 68,
80, 96; 8:36, 48-51, 55; E:2

pg … 3:21, 33, 37, 39-41; 6:86;

B:3

pr … 3:21, 33, 42-45, 47; 7:6, 9;

8:75; B:4
print command … 3:43-49
profile … 2:9-10; 3:21, 41; 6:5;

7:93-94, 96-99, 108; 8:23;
E:2

protecting files … 3:60, 63

public directory … 4:12; 8:49,
53, 57-58, 60, 62-64; B:5

put command … 1:10; 3:69; 5:4,

8, 39, 79; 6:88; 7:27, 98;
8:20, 27, 45, 73

pwd … 3:6-8, 18, 26; 7:12, 37,
39, 42, 96; B:4

quitting vi … D:2, 9
read permission … 1:6; 3:23, 60-

61, 63-65; 7:68; 8:49-50
reading mail … 4:12; 7:64, 89;

8:2, 6-7, 12-14, 17-18, 26,
32-33, 41, 45, 47

reassigning delete functions …
2:8-10

receiving files … 1:6; 3:33, 50,

53; 4:12; 5:4, 8; 6:92; 7:15-
16, 19; 8:1-2, 6, 47, 55, 62,
70

record variable … 8:44-45

I-4 USER GUIDE

redirecting input … 4:7; 7:1-2,
15, 20, 62-63, 90; 8:47; E:1

relative path name … 3:6-7, 11-

14, 16, 19-20, 26-27, 51-52,
54; 8:14, 52

remote command execution …

8:74

remote system … 4:12-13; 8:1, 3,

8-10, 47-48, 52-53, 55, 58,
66, 69, 74; B:5

removing file … 1:5-6, 10; 3:28-
29, 55-56, 65; 5:7, 91; 6:101;
1:20-21; 8:17; B:4

renaming file … 3:53-54; 5:10,

90; 7:8
rm … 3:55-56; 7:5, 21; B:4

rmdir … 3:16, 28-29; B;:4

root directory … 1:6-7; 3:2, 6-8,

11; A:1-3

saving mail … 8:14, 32, 38, 41;

B:3

serolling … 4:5; 6:1, 26-27, 95;

7:18; D:4

set command … 1:9; 3:68; 4:2, 5,

8; 5:73; 6:4; 7:43-44, 54, 62,
70, 77, 85, 87, 93, 98; 8:16,
43-46, 72; A:2; B:1; Fil, 6

shell … 1:1, 3, 8-13; 2:9-10, 24-
25; 3:75; 4:1-4, 7-9, 11; 5:1,
11-12, 14, 19, 44, 47-48, 79,
83, 86, 89-90, 93; 6:4, 6,
86-87, 91; 7:1-2, 9-13, 15-16,
19-20, 26-27, 30, 32-33, 36,
38-49, 51-54, 56, 58, 61-63,
65, 68-72, 75-76, 80-82,

85-86, 88-89, 92-94, 96-98,
100, 103; 8:24, 31, 33, 42,
44-45, 75; B:1l; C:5; D:;1, 8;
E:1-4; F:1-2, 6, 8-10

8
9
9

66
9

shell programming constructs …
7:1, 62, 69-70, 75-76; E:1, 4

shell script … 1:9; 4:9, 11; 7:65;

Bl

software development, tools …
1:2, 9; 4:13

sort command … 3:72-73; 7:18-

19 '
source-file … 8:51-53
special character … 2:6, 10, 18;

3:70; 5:1, 60, 65, 69, 90,
104, 108; 7:1-2, 4, 10, 12-13,
20, 32, 74; 8:36, 75; C:3-4;
E:1

specification file … 8:19; F:7-10
spell command … 7:18
spool directory … 8:51, 55-56
status report 8:54, 59-60;

B:5; E:2

symbolic method … 3:65
take command … 4:8; 5:4, 31-32,

35, 45; 6:73; 7:10, 18, 20;
8:1, 20, 32, 44, 73; B:5

TERM … 3:41; E:3; F;1-4, 9
terminal configuration … 2:3,

20; 6:3-4, 6; F:1
tilde escapes … 8:17-18, 20-23,

25, 27-28, 31
time command … 2:16, 22; 3:7,

22, 33, 37, 39, 43, 55; 4:4,
8-9; 5:84; 6:5, 86, 95; 7:2,

10, 18, 23-24, 26-30, 32, 37,
42-43, 47, 58, 60, 69, 71, 88,
98, 100; 8:14, 49, 51, 64;
Bil; E:2; F:2, 6

tput command … 6:5; 7:98; D:1;

F:1-2, 4

uname … 8:1, 8-10; B:5

Index

undeliverable mail … 8:4

uucico … 8:51, 55-56

uucp … 4:12; 7:96; 8:1-2, 47-56,

59; B:5

uuname … 8:1, 8-10, 70; B:5

uupick … 4:12; 8:1, 58, 62-65;

B:5

uustat … 8:1, 58-61; B:5

uuto … 4:12; 8:1-2, 47-50, 57-62;

B:5

uux … 4:12; 8:1, 66, 74-75
wc … 1:11; 3:57-59; 4:9-10; B:5

who command … 2:22-23; 3:23,

60, 63, 65; 4:9; 7:46, 75
windowing … 5:14; 6:1, 6, 34, 41,

43-44, 48, 56, 84; D:2, 4, 8;
F:6-10

work file … 2:9, 23; 3:1, 4, 6, 8,

11, 18, 22, 29, 31, 44, 60, 66;
4:2-4, 12; 5:1, 4-5, 10, 12, 73,
88; 6:79; 7:12, 20, 40; 8:36,
51-52, 54-56, 58; F:6

write permission … 1:6; 3:28,

60-61, 63-65; 4:10; 7:80;
8:48-49, 51

yacc … 4:13; B:5

INDEX. 1-5

USER GUIDE

04
9

NOTES

NOTES

NOTES

NOTES

0)
Li
[mm

O

|
Va
bg
KS

NOTES

NOTES

NOTES

