
na,co

NASCOM PASCAL
Programming Manual

The Nascom Microcomouters Division of Lucas Logic Limited reserves
rhe r,_qht to amend/delete any specification in th1S brochure in
accordance with future developments

Cl Copyr1ghr Lucas logic Limited

Nascom Microcomputers
Division of Lucas Logic Limited
Welton Road Wedgnock Industrial Estate
Warwick CV34 5PZ
Tel: 0926 497733 Telex: 312333

Lucas Logic ~,

NASCOM PASCAL Programming Manual

TABLE OF CONTENTS

O. INTRODUCTION ••• 3

1. BASIC ELEMENTS OF THE LANGUAGE ••••••••••••••••••••••••••• 4
1.1 Symbols .•••••••••••••••• , •••••••••••• , •••••••••••••• , • 4
1,2 Reserved words and standard identifiers •·•••••••••••• 4
1.3 Seperators •• , 4

2. USER DEFINED ELEMENTS •••••••••••••••••••••••••• , • • • • • • • • • 5
2.1 Identifiers •• 5
2. 2 Numbers • 5
2.3 Strings •• 5
2. 4 Comments •••••••••• , • 5

3 • DATA TYPES • 6
3 .1 Integers • 6
3. 2 Reals •• 6
3. 3 Booleans ••••••••••••••••• , • 6
3.4 Strings •• 6
3.5 Arrays ••••••••••••••••••••••••••• , ••••••••••• , ••••••• 6

3.5.1 The mem array •••••••••••••••••••••••••••••••••• 7

4. THE DECLARATION PART •• , ••••• , •••••••••••••••••••••••••••• 8
4. 1 Label declaration part ••••••••••••••••••••••••••••••• 8
4.2 Constant definition part ••••••••••••••••••·•••••••••• 8
4.3 Variable declaration part ~-. •-• 9
4.4 Procedure and function declaration part •••••••••••••• 9

5. EXPRESSIONS ••• 10
5.1 The operator NOT · 10

5.2 Multiplying operators ·········•·•••················• 10
5.3 Adding operators 10
5.4 Relational operators 10
5. 5 Function designators •••••••••••••••••••••••••••••••• 11

6. STATEMENTS ••• , 12
6. 1 Simple statements ••••••••••••••••••••••••••••••••••• 12

6.1.1 Assignment statements •• • ••••··••••••••••·••••• 12
6.1.2 Procedure statements •··••••••·•••••••••••••••• 12
6.1.3 GOTO statements ••••••••••• •••••••·•••••••••••• 12
6.1.4 INIT statements ••••••• • •••••••••••••••••·••••• 13
6.·1.5 The empty statement ••••••••••••••••••••••••••• 14

6.2 Structured statements ••••••••••••••••••••••• ••• ••••• 14
6.2.1 Compound statements ·••••••••••••••• ••••••••••• 14
6.2.2 Conditional statements · ••••••••••••••·•••••••• 14

6.2.2.1 IF statements ••••••••••••••••••••••••• 14
6.2.2.2 CASE statements ••••••••••••••••••••••• 15

6.2.3 Repetitive statements •••••••••••••••••••••·••• 15
6.2.3.1 WHILE statements •••••••••••••••••••••• 15
6.2.3.2 REPEAT statements •••••••••••••••·••••• 16
6.2.3.3 FOR statements •••••••••••••••••••••••• 16

-1-

-2- NASCOM PASCAL Programming Manual

TABLE OF CONTENTS

7. PROCEDURES •• , , • , •••• , ••••• , , • , • , •• , •••••••••• , ••••• , • • • • 1 7
7.1 Procedure declarations •••••••••••••••••••••••••••••• 17

7. 1 .1 Procedure heading , •••••••••• , • , ••• , •• , ••• , •• , • 17
7.1.2 The declaration part •••••••••••••••• ••••••• •• , 17
7. 1. 3 The statement part 17

7. 2 Standard procedures ••••••• , •••••••• , ••••• , •• , •• , • • • • 1 7

8. FUNCTIONS ••• , , •• , •••• , •••••• , • , • , •• , • , • , •• , •• , • , • , • , • • • • 19
8. 1 Function declarations •••••••• , •••• , •• , ••••• , •••••• , • 19

8.1.1 Function heading •••••••••••• , •• , ••••• •••, •• •• , 19
8.1.2 The declaration part , ••••• , ••••••••••• ••• 19
8.1.3 The statement part •• ••••• •• •••• , •••• ••••• •• ••• 19

8.2 Standard functions •••••••••••••••••••••••••••••••••• 19
8.2.1 Arithmetic functions •••·•••••••••••••••••·•••• 20
8.2.2 Integer functions ••• •••••• ••• ••, •• 20
8.2.3 String functions ••••••• , ••••••••••••• ••••• •••• 20
8.2.4 Transfer functions ••• , • , •• , •••••••• ,. ••• •••• •• 21
8.2.5 Further standard functions •••••••••••••••••••• 21

9. PARAMETERS ••• , •• , •••••••••••••• , •• , , •• , ••••••• , •••••• , , • 22
9.1 Formal and actual parameters •• , • , ••••••••••• , ••••• · •• 22
9. 2 Parameter types •••• , •••• , • , • , , ••••• , ••••• , •••••• 22

9. 2. 1 Value parameters ••••••••••••• , •• , ••• , •••••• , • • 22
9.2.2 Variable parameters ••••••••••••••••••••••••••• 22

9.3 Rules applying to parameters ••·······•••••••••••·•·· 23

10. INPUT AND OUTPUT •• , ••••• , •• , , • , • , ••••• , ••••• , ••• , , 24
10.1 Input ••••• , •••••••• , ••••• , ••••••• , ••••• , • , •• , ••• , • 24

10. 1. 1 The procedure read , •••••••••••• , , •••••• , • , • 24

10.1.2 The procedure readln ················•···••• 24
10. 2 Output • , , •• , • , ••••••• , ••• , •• , • , • , •• , •••• , , • • • • • • • • 25

10.2.1 The procedure write •••••••••••••••••••••••• 25
10.2.2 The procedure writeln ••••••••·•··········•· 26

10.3 Saving and loading arrays ••••••••••••••••••••••••• 26
10.3. 1 The procedure save ••• , • , ••••••••••• , ••••••• 26
10.3.2 The procedure load • , • , ••• , ••• , • , •••• , ••• , •• 26

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:

NASCOM PASCAL syntax
Some useful ~outines

•••••••••••••••••••• , ••• , • • 27

The system workspace •••••••••••••••••••••••••••
Internal data format •••••• , •••••••••• , •• , , •• , ••
External and code subprograms ••••••••••••••••••
Printer interfacing ••• , ••••••••••••••• , ••• , ••••
Compiler error messages ••••••••••••••••••••••••
Runtime error messages •••••••••••••••••••••••••

31
33
34
36
38
39
40

NASCOM PASCAL Programming Manual

0: INTRODUCTION

The NASCOM PASCAL Language System is meant to offer an alternative to BASIC.
Programs written in NASCOM PASCAL will execute much faster than their BASIC
equivalents, and better programming techniques can be practised, as Pascal is
far more versatile than BASIC.

As the NASCOM PASCAL system is very compact (only 12K, hereof S.SK compiler),
it has not, of course, been possible to implement standard Pascal in full: The
NASCOM PASCAL subset does not support user defineable types, sets and
file-types. However all of the basic statement constructions are retained,
and procedures and functions allow for both value and variable parameters.
The fundamental data types INTEGER, REAL and BOOLEAN are likewise supported,
while the type CHAR has been replaced by the type STRING, which offers a more
flexible character handling.

This manual fully defines the NASCOM PASCAL subset, and should be carefully
studied before any programming efforts are made.

The NASCOM PASCAL Language System is copyrighted and all rights are reserved
by Poly-Data microcenter ApS. The distribution and sale of this product are
intended for use of the original purchaser only. Copying, duplicating,
selling or otherwise distributing this product is a violation of law.

Copyright (C) 1981 Poly-Data microcenter ApS
Strandboulevarden 63, DK 2100 Copenhagen 0

-4- NASCOM PASCAL Programming Manual

1: BASIC ELEMENTS OF THE LANGUAGE

1.1 SYMBOLS

The basic vocabulary of Pascal consists of basic symbols classified into
letters, digits, and special symbols:

Letters: A to Z, a to z, and '\'.
Digits: 0 1 2 3 4 5 6 7 8 9
Symbols: + - * I - < > (l [J • , ; : ' { }

The compiler does not differ
opera tores and delimiters are

between upper case and lower case letters. Some
formed using two special symbols:

1.2

The

1. <> <• >= ·-2. (. and .) can be used
3. (* and *) can be used

instead of [and J.
instead of { and },

RESERVED WORDS AND STANDARD IDENTIFIERS

reserved words listed below can not be used as user defined identifiers:

AND ARRAY BEGIN BOOLEAN
CASE DIV DO DOWNTO
ELSE END EXOR EXTERNAL
FOR FUNCTION GOTO IF
INIT INTEGER LABEL MOD
NOT OF OR OTHERS
PROGRAM PROCEDURE REAL REPEAT
SHIFT STRING THEN TO
UNTIL VAR .WHILE

Certain identifiers, called standard identifiers, are predefined (e.g. sin,
cos). Unlike the reserved words these identifiers can be redefined by the
user:

abs
chr
exp
int
load
odd
plot
read
save
succ
writeln

1.3 SEPARATORS

addr
concat
false
keyboard
maxint
ord
point
readln
sin
true

arctan call
cos empty
frac inp
left ln
mem mid
out pi
pred random
right round
sqr sqrt
trunc write

Blanks, ends of lines, and comments are considered as separators, At least
one separator most occur between any pair of consecutive identifiers, numbers
or reserved words.

NASCOM PASCAL Programming Manual -5-

2: USER DEFINED ELEMENTS

2.1 IDENTIFIERS

Ident'ifiers are names denoting constants, procedures, functions, variables,
and labels. They must begin with a letter, which may be followed by any
number of letters, digits, or '.'-characters. Examples:

PASCAL Pascal NAME.41. CODE

Note that the compiler does not differ between upper case and lower case
letters. Thus, the identifier 'PASCAL' is identical to 'Pascal'.

2.2 NUMBERS

Numbers may be written in both decimal and hexadecimal notations. Hexadecimal
numbers must be preceeded by a $-sign. The lett~c E preceeding the scale
factor is pronounced as 'times 10 to the power of'. Examples:

100 $25EC 0.138 SElO 87.13556E-8

No separators may occur within numbers.

2.3 STRINGS

Sequences of characters enclosed by single quote marks are called strings. To
include a quote mark in a string it should be written twice. Examples:

'NASCOM PASCAL' , A' 'A 'that''s all folks'

2.4 COMMENTS

A comment is a sequence of characters enclosed in curly brackets (or (* and
*)), which can be removed from the program text without altering its meaning.
Example:

(* This is a comment*)

-6- NASCOM PASCAL Programming Manual

3: DATA TYPES

A data type defines the set of values a variable may assume. Every variable
occuring in a program ·must be associated with one and only one data type.
NASCOM PASCAL supports four basic data types: Integer, real, boolean, and
string.

3.1 INTEGERS

An integer is a whole number within the range -32768 to 32767. When operating
on integers overflow and underflow will not be detected.

3.2 REALS

A real is a real number within one of these ranges:

-l.7014118346E+38 <• R <• -2.9387358770E-39
R • 0
2.9387358770E-39 <• R <= l.7014118346E+38

Reals provide 11+ significant digits. If an overflow occurs during an
arithmetic operation involving reals, the program will break and display an
error message. If an underflow occurs the result will be zero.

3.3 BOOLEANS

A boolean variable should only assume the predefined values true (-1) and
false (O). However, as NASCOM PASCAL does not differ between integers and
booleans, a boolean variable can assume other values, but this is strongly
discouraged.

3.4 STRINGS

When a string variable is declared one informs the compiler of the maximum
length it may assume (between 1 and 255). Examples:

STRING[32)
STRING[stringsize)

3.5 ARRAYS

An array is a structure consisting of a fixed number of components which are
all of the same type, called the component type. The elements of the array
are designated by indices, which are of the type integer. Upon declaration
the upper and lower bound of each index is written seperated by '•• •
Examples:

ARRAY (1 •• 10) OF INTEGER
ARRAY [O •• maxsize) OF STRING[32)
ARRAY (-5 •• 11,29 •• 45) OF REAL

Components in an n-dimensional array are designated by n integer expressions.
Examples:

NASCOM PASCAL Programming Manual

data[l2]
b[i+j,7]
names[pointers[8] ,3]

3.5.1 The mem array

-7-

The mem array is a predefined one-dimensional array representing memory. Each
component designates a byte, whose address is given by the index. Components
of the mem array can only assume values between O and 255. If a value greater
than 255 is assigned the actual value will only be the least significant 8
bits. Examples:

i:-mem[$COO] AND $16;

FOR p:zl TO length(s) DO
mem[offset+p] :=ord(mid(s,p,l));

-8- NASCOM PASCAL Programming Manual

4: DECLARATIONS

A program consists of 3 parts:

l. The program header
2. The declaration part
3. The statement part

The program heading gives the program a name and lists its parameters, through
which the program communicates with the environment. Examples:

PROGRAM conversion;

PROGRAM calculation(input,output);

In NASCOM PASCAL the program header is purely optional,
everything between the reserved word PROGRAM and
considered as a comment.

Declarations must be listed in the following order:

l. Label declaration part
2. Constant definition part
3. Variable declaration part
4. Procedure and function declaration part

and if it is used
the first semicolon is

None of the above mentioned parts need to be present (thus the declaration
part may be empty).

4.1 LABEL DECLARATION PART

All labels used in the program must be declared in the label declaration part,
which is introduced by the reserved word LABEL. A label may either be an
identifier or an unsigned number. Examples:

LABEL l,error,999,stop;

Any statement in the program may be prefixed by a label followed by a colon
(making possible a reference by a goto statement). Examples:

999: write('Done ••• ');

A label should only be referenced within the block in which it is declared.

4.2 CONSTANT DEFINITION PART

A constant definition introduces an identifier as a synonym for a constant.
The symbol CONST introduces the constant definition part. Example:

CONST
number•45;
max•l93.l58;
min•11ax;
namee'Johnson';

Predifined constants are as follows:

NASCOM PASCAL Programming Manual

pi Real
true Boolean
false Boolean
maxint Integer

.empty String

4.3 VARIABLE DECLARATION PART

3.1415926536.
True (-1).
False (O).
32767.
,, (The empty string).

-9-

Every variable occuring in the program must be declared in the variable
declaration part, which is introduced by the reserved word VAR. A variable
declaration associates an identifier and a data type to the variable. More
variables of the same data type can be declared on the same line. Examples:

VAR
i,j,k: INTEGER;
xcoor,ycoor: REAL;
names: ARRAY [1 •• 100) OF STRING [32)

The variable is accessable throughout the entire block containing the
declaration, unless the identifier is redefined in a subordinate block.

When entering a block all variables declared within the block will cleared,
e.g. reals and integers assumes the value 0, booleans assumes the value
false, and strings assumes the value empty.

4.4 PROCEDURE AND FUNCTION DECLARATION PART

The procedure declaration serves to define
procedure or program (see chapter 7).
procedure statement (see chapter 6.1.2).

procedures
A procedure

within the current
is activated from a

The function declaration part serves to define a program part which computes
and returns a value (see chapter 8). Functions are activated by the
evaluation of a function designator, which is a constituent of an expression
(see chapter 5.4).

-10- NASCOM PASCAL Programming Manual

5: EXPRESSIONS

Expressions are constructs denoting rules of computation for obtaining values
of variables and generating new values by the application of operators.
Expressions consist of operators and operands, i.e. variables, constants, and
functions.

The rules of composition specify operator precedences according to four
classes of operators. The NOT operator has the highest precedence, followed
by the multiplying operators (*/DIV MOD AND SHIFT), then the adding
operators (+ - OR EXOR), and, finally, with the lowest precedence, the
relational operators (• <> > < >~ <•). All operators allowing integers
as operands will also allow booleans. Any expression enclosed within
parentheses is evaluated independently of preceeding or succeeding operators.

5.1 THE NOT OPERATOR

The NOT operator denotes complementation of its operand, which must be of the
type integer or of the type boolean. Examples:

NOT true
NOT false
NOT 5

• false
• true
- -6

5.2 MULTIPLYING OPERATORS

Operator Operation

*
I
DIV
MOD
SHIFT
AND

Multiplication
Division
Integer division
Modulus
Logical shift
Logical AND

Type of operands

real, integer
real, integer
integer
integer
integer
integer

Type of result

real, integer
real
integer
integer
integer
integer

The operation I SHIFT J has the following effect: I will be shifted to the
left J times, if J is positive, and -J times to the right, if J is negative.
Thus the result will always equal zero if ABS(J) is greater than 15.

5.3 ADDING OPERATORS

Operator Operation

+

OR
EXOR

Addition
Subtraction
Logical OR
Logical EXOR

Type of operands

real, integer
real, integer
integer
integer

Type of result

real, integer
real, integer
integer
integer

When used as operators with one operand only, - denotes sign inversion, and+
denotes the identity operation.

NASCOM PASCAL Programming Manual -11-

5,4 FUNCTION DESIGNATORS

A function designator specifies the activation of a function, It consists of
the identifier designating the function and a list of actual parameters, The
parAmeters are variables or expressions, and are substituted for the
corresponding formal parameters, Examples:

sin(y)*cos(x)
concat('Name: ',firstname,' ',lastname)
arctan(l.O)*4,O
(sum(a,1OO)<5) AND (z•O)

-12- NASCOM PASCAL Programming Manual

6: STATEMENTS

Statements denote algorithmic actions and are said to be executable. They may
be prefixed by a label which can be referenced by a GOTO statement (see
chapter 6.1.3).

6.1 SIMPLE STATEMENTS

A simple statement is a statement of which no part constitutes another
statement. In this group are the assignment, procedure, GOTO, INIT, and empty
statements.

6.1.l Assignment statements

The assignment statement serves to replace the current value of a variable or
a function identifier by a new value specified as an expression.

The variable (or function) and the expression must be of identical type, with
the following exceptions being permitted:

1) If the type of the variable is r~al, the type of the expression may be
integer.

2) A string expression need not have the same length as the maximum
length of the string variable. If more characters are assigned than
specified by the maximum length, only the lefmost characters will be
transferred.

Example:

x:=y+z {replace current value of x by sum of y and z}

6.1.2 Procedure statements

A procedure statement serves to execute the procadure denoted by the procedure
identifier. The procedure statement may contain a list of actual parameters
which are substituted in place of their corresponding formal parameters (see
chapter 9) defined in the procedure declaration. Examples:

sort(names);
exchange(x,y);
plot(x,round(sin(x*f)*2O)+24,l

6.1.3 GOTO statements

A GOTO statement serves to indicate that further processing should continue at
another part of the program, namely, at the place of the label.

The following restrictions hold concerning the applicability of labels:

1) The scope of a label is the block within which it is declared. It is,
therefore, not possible to jump into or out of a procedure or a
function.

2) Jumps into and out of FOR statements are not allowed.

NASCOM PASCAL Programming Manual -13-

3) Every label must be specified in a label declaration in the heading of
the block in which the label marks a statement.

6.1.4 !NIT statements

An !NIT statement serves to initialize an array structure to a set of constant
values. The constants and the components of the array must be of identical
type. Example:

VAR
data: ARRAY[l •• 6] OF INTEGER;

BEGIN
INIT data TO 15,6,19,8,1,3;

END.

The above program is equal to:

VAR
data: ARRAY[l •• 6) OF INTEGER;

BEGIN
data[l] :=15; data[2] :z6; data[3] :zl9;
data[4] :=8; data[5] :=l; data[6) :z3;

END.

If less constants are specified than the total number of components in the
array, only the first components will be initialized. Example:

VAR
numbers: ARRAY[0 •• 9] OF STRING[5];

BEGIN
INIT numbers TO empty,'one' ,'two' ,'three' ,'four' ,'five';

END.

When the !NIT statement has been executed, the components of numbers will have
the following values:

numbers[O]=empty
numbers[2]='two'
numbers[4]='four'
numbers[6]=empty
numbers[8]=empty

numbers[l]='one'
numbers[3]='three'
numbers[5]z'five'
numbers[7]=empty
numbers[9]=empty

When initializing array structures with more than one dimension the components
will be processed with the rightmost dimension increasing first. Example:

VAR
a: ARRAY[l •• 3,1 •• 3) OF INTEGER;

BEGIN
!NIT a TO 9,6,8,15,18,33,7,10,19;

.,;1:n .

-14- NASCOM PASCAL Programming Manual

The above program will initialize the components of a to:

a [1, l l s9;
a[2,ll=l5;
a[3,1]=7;

at 1, 2 l =6;
a[2,2]=18;
a[3,2]=10;

a[l,3]=8;
a[2,3]=33;
a[3,3]=19;

The INIT statement can in addition serve to initialize a section of memory.
Example:

INIT mem[base] TO $EF,$41,$42,$43,$00,$C9;

Assuming that the variable base equals $DOD, the byte at $DOD will equal $EF,
the byte at $D01 will equal $41, etc., upon completing the INIT statement.

6.1,5 Empty statements

The empty statement denotes no action and occurs whenever the syntax of Pascal
requires a statement but no statement appears. Examples:

BEGIN END;
WHILE digit AND (a>l7) DO {nothing};
REPEAT {wait} UNTIL keyboard;

6.2 STRUCTURED STATEMENTS

Structured statements are constructs composed of other statements which have
to be executed in sequence (compound statements), conditionally (conditional
statements), or repeatedly (repetitive statements).

6.2.l Compound statements

The compound statement specifies that its component statements are to be
executed in the same sequence as they are written. The symbols BEGIN and END
act as statement brackets. Example:

BEGIN
z:=x; x:=y; y:=z; {interchange values of x and y}

END;

The compound statement neither forbids nor requires a semicolon succeeding the
last statement.

6.2.2 Conditional statements

A conditional statement selects for execution a single of its component
statements.

6.2.2.l IF statements

The IF statement specifies that a statement be executed only if a certain
condition (boolean expression) is true, If it is false, then either no
statement is to be executed, or the statement following the symbol ELSE is to
be executed.

Tn, syntac :: ' c ambiguit :-, r. tiding frora t he construct

NASCOM PASCAL Programming Manual -15-

IF <el> THEN IF <e2> THEN <sl> ELSE <s2>

is 'resolved by evaluating

IF <el> is false, no statement is executed.
IF <el> is true and <e2> is true, <sl> is executed.
IF <el> is true and <e2> is false, <s2> is executed.

Examples:

IF x<l.5 THEN z:=x+y ELSE z:=1.5;
IF name=empty THEN name:='Not stated';

6.2.2.2 CASE statements

The CASE statement consists of an expression (the selector) and a list of
statements, each labelled by a constant or a list of constants of the type of
the selector. It specifies that the one statement be executed whose constant
list contains the current value of the selector. If no constant equals the
value of the selector, control is given to the statement succeeding the
OTHERS: label, if it exists. Otherwise, no statement will be executed.

Valid selector types are integer, boolean, and string types (reals are not
allowed). Examples:

CASE operator OF
'+': x:=x+y;
, _,: x:=x-y;
'*': x:=x*y;
'/': x:=x/y

END;

CASE number OF
1: write('one');
2: write('two');
3,4,5: write('some');
OTHERS: write('several');

END;

The CASE statement neither forbids nor requires a semicolon succeeding the
last statement.

6.2.3 Repetitive statements

Repetitive statements specify that certain statements are to be executed
repeatedly. If the number of repetitions is known beforehand (i,e. before
the repetitions are started), the FOR statement is the appropriate construct
to express this situation; otherwise, the WHILE or the REPEAT statement should
be used.

6.2.3.1 WHILE statements

The expression controlling repetition must be of type boolean.
is repeatedly executed until the expression becomes false. If
false at the beginnJng, th~ 3tatement is not executed at all.

The statement
its value is

Examr le:

-16-

WHILE a<lOOO DO
BEGIN

a:=sqr(a); b:•b+l;
END;

6.2,3,2 REPEAT statements

NASCOM PASCAL Programming Manual

The expression controlling repetition must be of type boolean. The sequence
of statements between the symbols REPEAT and UNTIL is repeatedly executed (and
at least once) until the expression becomes true. Example:

REPEAT
read(digit); write(digit);
number:-number*lo+ord(digit)-48;

UNTIL number>lOOO;

The REPEAT statement neither forbids nor requires a semicolon succeeding the
last statement.

6.2.3.3 FOR statements

The FOR statement indicates that the component statement is to be repeatedly
executed while a progression of values is assigned to a variable which is
called the control variable of the FOR statement. The progression can be up
TO (succeeding) or DOWNTO (preceding) a final value.

The control variable, the initial value, and the final value must be of type
integer.

If the initial value is greater than the final value when using the TO clause,
or if the initial value is less than the final value when using the DOWNTO
clause, the component statement is not executed at all.

Examples:

FOR i:sl TO max DO writeln(i:5,sqr(i):8);

FOR i:•l TO 100 DO FOR j:=l TO 10 DO
BEGIN

IF a[i,j)>S THEN a[i,j) :=5;
count:=count+a[i,j);

END;

Upon completion of a FOR statement the value of the control variable is given
by:

1) If the component statement was not executed the control variable will
equal the initial value.

2) When using the TO clause the control variable will equal the final
value plus one.

3) When using the DOWNTO clause the control variable will equal the final
value less one.

NASCOM PASCAL Programming Manual -17-

7: PROCEDURES

A procedure is a seperate program part which may be activated from a procedure
statement (see chapter 6,1,2).

7,1 PROCEDURE DECLARATIONS

A procedure declaration generally consists of 3 parts:

1) The procedure heading,
2) The declaration part.
3) The statement part,

7,1.1 The procedure heading

The procedure heading specifies the identifier ~aming the procedure, an
optional formal parameter list, and an optional EXTERNAL specification,

The paramaters are either value or variable parameters (see chapter 9).

EXTERNAL specifies that the procedure is a seperate machine code subroutine,
which resides at the address given by the integer constant following the
EXTERNAL symbol (see appendix E), CODE specifies that the procedure is listed
in Z-80 machine code, directly following the CODE symbol (see appendix E). In
the case of EXTERNAL or CODE procedures the declaration part as well as the
statement part is empty,

7,1,2 The declaration part

The declaration part has the same form as that of a program. All identifiers
introduced in the formal parameter list and the declaration part are local to
the procedure declaration, which is called the scope of these identifiers.
They are not known outside their scope, A procedure declaration may reference
any constant, variable, procedure, or function identifier global to it (i.e.
defined in an outer block), or it may choose to redefine the name.

7,1,3 The statement part

The statement part specifies the algorithmic actions to be
activation of the procedure by a procedure statement. The
takes the form of a compound statement (see chapter 6,2,1).

executed upon
statement part

The use of a
procedure identifier in a procedure statement within the statement part
implies recursive execution of the procedure,

7,2 STANDARD PROCEDURES

A standard procedure need not be
programmer by using its name
declaration,

declared, and
as a procedure

may be redefined by the
identifier in a procedure

call (a) Generate a call to the memory address given by the integer
expression a.

screen(x,y) Move the cur e- or to line y , coloumn x. x and y are int'\ger

-18-

plot(x,y,f)

out(p,d)

NASCOM PASCAL Programming Manual

expressions. If a coordinate value is illegal, the current
value of this coordinate is unchanged by the procedure
activation. Thus the screen procedure may be used as a
tabulator by zeroing they-coordinate.

x,y, and fare integer expressions. Alter the state of the
semigraphic pixel at x,y, according to the value off:

f•O: Reset x,y. '
f•l: Set x,y.
f•2: Invert x,y.

The plot procedure compensates for the offset of line 16 on
the NASCOM display. Hence, pixels with y-coordinates within
the interval 0<-y<•2 resides on line 16. A procedure
activation involving illegal coordinate values will be
ignored.

Output least significant 8 bits of d to the port given by the
least significant 8 bits of p. p and d are integer
expressions.

The standard procedures supporting input and output are described in chapter
10.

NASCOM PASCAL Programming Manual -19-

8: FUNCTIONS

A function is a program part which computes and returns a value. Functions
are activated by the evaluation of a function designator (see chapter 5,5)
which is , a constituent of an expression.

8,1 FUNCTION DECLARATIONS

A function declaration generally consists of 3 parts:

1) The function heading.
2) The declaration part.
3) The statement part.

8.1.l The function heading

The function heading specifies the identifier naminb the function, an optional
formal paramater list, the result type, and an optional EXTERNAL
specification.

The paramaters are either value or variable parameters (see chapter 9).

The result type of the function can be either integer, boolean, real, or
string.

EXTERNAL specifies that the function is a seperate machine code subroutine
which resides at the address given by the integer constant following the
EXTERNAL symbol (see appendix E), CODE specifies that the function is listed
in Z-80 machine code, directly following the CODE symbol (see appendix E), In
the case of EXTERNAL or CODE functions the declaration part as well as the
statement part is empty,

8,1,2 The declaration part

The declaration part has the same form as that of a program, All identifiers
introduced in the formal parameter list and the declaration part are local to
the function declaration, which is called the scope of these identifiers.
They are not known outside their scope. A function declaration may reference
any constant, variable, procedure, or function identifier global to it (i,e.
defined in an outer block), or it may choose to redefine the name.

8.1.3 The statement part

The statement part takes the form of a compound sta~cment (see chapter 6,1.2).
Within the statement part at least one statement assigning a value to the
function identifier must occur. This assignment determines the result of the
function. The appearance of the function identifier in an expression within
t he function itself implies recursive execution of the function.

8,2 STANDARD FUNCTIONS

A standard function need not be
programmer by using its name
declaration.

declared, and
as a function

may be redefined
identifier in a

by the
function

-20- NASCOM PASCAL Programming Manual

8.2.l Arithmetic functions

In the functions listed below the type of x must be either real or integer,
and the type of the result is the type of x.

abs(x)

sqr(x)

Computes the absolute value of x.

Computes x*x.

In the functions listed below the type of x must be either real or integer,
and the type of the result is real.

sin(x)

cos(x)

arctan(x)

ln(x)

exp(x)

sqrt(x)

int(x)

frac(x)

Sine.

Cosine.

Arccus tangent.

Natural logarithm.

Exponential function.

Square root.

The whole part of x, i.e the result is the greatest whole
number less than or equal to x for x>~O, and the least whole
number greater than or equal to x for x<O.

The fractional part of x with the same sign as x, i.e.
frac(x)-x-int(x).

8.2.2 Integer functions

In the functions listed below the type of i is integer.

succ(i)

pred(i)

odd(i)

Computes i+l. The type of the result is integer.

Computes i-1. The type of the result is integer.

Returns the boolean value true if i is odd, or the boolean
value false if i is even.

8.2.3 String functions

length(s)

mid(s,p,n)

mid(s,p)

left(s,n)

Returns the length of the strings. The type of the result is
integer.

Returns a string containing n characters copied from s
starting at the p'th position ins. The type of sis string,
and the type of n and pis integer.

Ret ·1rns the leftmost cahracters copied from s starting at the
p'th pos i tion ins. The type of sis string and the type of p
is integer.

Returns the leftmost n characters copied from s. The type of s
is st r i n2 and the type of n is integer.

NASCOM PASCAL Programming Manual -21-

right(s,n)

concat(strs)

Returns the rightmost n characters copied from s. The type of
sis string and the type of n is integer.

strs is any number of string expressions separated. by commas.
The result is a string which is the concatenation of the
parameters in the same sequence as they are written.

8.2.4 Transfer functions

trunc(x)

round(x)

ord(s)

chr(i)

The type of xis real; the result is the greatest integer less
than or equal to x for x>=O, and the least integer graeter
than or equal to x for x<O.

The type · of x is real; the result, of type integer, is the
value of x rounded, i.e.:

round(x) • trunc(x+0.5), for x>=O
trunc(x+0.5), for x<O

Returns the ASCII value of the leftmost
string s. Ifs is empty the result will be
the result is integer.

character in the
zero. The type of

Returns a string containing one character whose ASCII value is
i. The type of i is integer.

8,2.5 Further standard functions

addr(v)

random

random(i)

inp(p)

keyboard

point(x,y)

Returns the memory address of the
address of an array can be calculated
first element of each dimension.

variable v. The memory
by referring to the

Returns a random number within the interval D<=r<l. The type
of the result is real.

Returns a random integer within the interval O<•r<i. The type
of the result is integer.

Returns the value
expression within the
result is integer.

read from port p. p must be an integer
interval 0<-p<•255. The type of the

Scans the
currently
returned.

keyboard once, and returns the ASCII value
depressed key. If no key is depressed
The type of the result is integer.

of the
0 is

Returns the boolean value true if the semigraphic pixel x,y is
set, otherwise returns the boolean value false, The type of x
and y must be integer.

-22- NASCOH PASCAL Programming Manual

9: PARAMETERS

Parameters provide a substitution mechanism that allows the algorithmic
actions of a procedure or a function (in this chapter referred to as a
subprogram) to be repeated with a variation of its arguments.

9.1 FORMAL AND ACTUAL PARAMETERS

A procedure statement or a function designator may contain a list of actual
parameters, which are substituted for the corresponding formal parameters that
are defined in the heading of the subprogram. The correspondance is
established by the positioning of the parameters in the lists of actual and
formal parameters.

9.2 PARAMETER TYPES

BLS Pascal supports two kinds of parameters: Value parameters and variable
parameters.

9.2.1 Value parameters

When no symbol heads a formal parameter·part of a subprogram heading, the
parameter(s) of this part are said to be value parameters. In this case the
actual parameter must be an expression (of which a variable is a simple case).
The corresponding formal parameters represents a local variable in the
subprogram. As its initial value this variable receives the current value of
the corresponding actual parameter (i.e. the value of the expression at the
time of the call). The subprogram may then change the value of this variable
by assigning to it; this will not, however, affect the value of the actual
parameter. Hence, a value parameter can never represent a result of a
computation.

Consider the following procedure declaration:

PROCEDURE printline(width: INTEGER);
BEGIN

FOR width:-width DOWNTO 1 DO write('*');
writeln;

END;

The procedure statement "printline~a)_ ;" will have the same effect as executing

width:•a;
FOR width:•width DOWNTO 1 DO write(' *');
writeln;

Although the variable
will be left unchanged,
actual parameter need
"printline(a+2*b);" and

width is altered during the procedure, the variable a
as width _is a value parameter. As mentioned above the

not be· a variable, but can be any expression, e.g.
"printline (25) ; ". ·

9.2.2 Variable parameters

When the symbo' VAR heads a formal parameter part of a subprogram heading, the
parameter(s) J1 this part are said to be variable parameters. In this ' case

NASCOM PASCAL Programming Manual -23-

the actual parameter must be a variable. The corresponding formal parameter
represents this variable during the entire execution of the subprogram. Any
operation involving the formal parameter is preformed directly upon the actual
parameter. Hence, whenever a parameter is to represent a result of the
subprogram, it must be declared as a variable parameter.

Consider the following procedure declaration:

PROCEDURE swap(VAR x,y: REAL);
VAR temp: REAL;
BEGIN

temp:ax; x:•y; y:•temp;
END;

The procedure statement
"temp:za; a:•b; b:ztemp;".
result in an error, as
impossible to execute.

"swap(a,b) ;" will have the same effect as executing
Obviously, the statement "swap(20,a+b) ;" will

the statements "temp:•20; 20:•a+b; a+b:•temp;" are

9.3 RULES APPLYING TO PARAMETERS

The formal parameter list and the
respect to the total number of
parameters respectively.

actual parameter
parameters and

list must agree with
the type of each of the

All address calculation is done at the time of the call. Thus, if a variable
is a component of an array, its index expression(s) is evaluated upon
activating the subprogram,

In the case of a parameter being an array structure, the actual parameter and
the formal parameter must agree with respect to component type and number of
components, However the lower and upper limits of each dimension, and the
number of dimensions need not agree.

If a formal parameter is a variable parameter of the type real, the
corresponding actual parameter may be an expression of the type integer. This
does not apply to variable parameters,

If a formal parameter is a variable parmeter of the type string, the
corresponding actual parameter can be a string expression of any length.
However, if the length of the actual string parameter is greater than the
maximum length of the formal parameter, only the leftmost characters will be
transferred. This does not apply to variable parameters,

-24- NASCOM PASCAL Programming Manual

10: INPUT AND OUTPUT

NASCOM PASCAL allows for input and output by means of four standard procedures
(read, readln, write, and writeln). In addition two standard procedures (load
and save) allows for loading and saving of arrays from and to the tape
recorder.

10.l INPUT

Input is supported by the standard procedures read and readln.

10,1,l The procedure read

The procedure read allows for strings and numeric values to be input, The
format of the procedure statement is:

read(vl,v2, ••• ,vn);

Which is equal to

BEGIN read(vl); read(v2); ,,, read(vn) END;

During data entry the following control keys are available:

<BS>
<ESC>
<ENTER>

Backspace
Clear line
Process entry

For a variable of one of the numeric types (real or integer) the read
procedure expects to read a string of characters which can be interpreted as a
numeric value of the same type, Numeric values should follow the rules that
apply to numeric constants (see chapter 2, 2), The entry must be terminated by
a carriage return (i,e, <ENTER>) immediately following the last character of
the numeric value. The carriage return is not echoed. If the interpretation
results in an error, the entry field will be cleared, indicating that a new
value must be entered, A special case of numeric input is when no value is
entered, i,e. the entry consists of nothing but a carriage return. Instead
of assigning a new value to the variable, the current value will be retained.

When reading strings with a maximum length greater than one, read will accept
all characters up to but not Hrcluding the terminating carriage return. The
maximum number of characters which can be entered is given by the maximum
length of the string variable (howev er, not more than 63 characters),

When reading strings with a maximum
resume the moment a key is depressed, and
echoed,

10,1,2 The procedure readln

length of one program execution will
the character read will not be

The procedure readln is identical to read, except that after a value has been
read a carriage return is output, The format of the vr ocedure statement is:

readln(vl,v2, •• . ,v~) :

wh (ch is equal t c

NASCOM PASCAL Programming Manual -25-

BEGIN readln(vl); readln(v2); ••• readln(vn) END;

10.'2 OUTPUT

Output is supported by the standard procedures write and writeln,

10,2.1 The procedure write

The procedure write allows str:tngs and numeric values to be output. The
format of the procedure statement ts:

write(pl,p2,.,.,pn);

which is equal to

BEGIN write(pl); write(p2); ••• write(pn) END;

pl,p2, ••• ,pn denote so-called write parameters, which, according to the type
of the value to be output, can take on one of the following formats (m, n, and
i denote integer expressions, r denote a real expression, and s denote a
string expression):

i The decimal representation of i is output with no preceding
blanks.

i:n The decimal representation of i is output preceded by
appropriate number of blanks to make the field width n.

an

r The decimal representation of r is output in floating point format
in a field of 18 characters:

r:n

r:n:m

s

"sd.ddddddddddEtdd"

wheres stands for either"" or
stands for either"+" or"-".

"" - , d stands for a digit, and t

The decimal representation
format. The field width and
depends on the value of n:

of r is output in floating point
the number of significant digits

n<8: "d.dEtdd'' or "-d.dEtdd"

8<=n<l7: "sd.<dig:!.ts>Etdd", where <digits> denotes n-6
decimal digits.

n>l7: "<spaces:>sd.ddddddddddEtdd", where <spaces> denotes
n-17 blanks.

The decimal representation of r is output in fixed point format
with m digits after the decimal point in a field of n characters.
m must be within the interval O<=m<s24. If not, floating point
format is used.

sis output with no preceding blanks.

s:n sis output preceded by an appropriate number of blanks to make
the field width n.

-26- NASCOM PASCAL Programming Manual

10.2.2 The procedure writeln

The procedure writeln is identical to write, except that after the last value
has been written, a carriage return is output. The format of the procedure
statement is:

writeln(pl,p2, ••• ,pn);

which is equal to

BEGIN write(pl); write(p2); ••• writeln(pn) END;

To produce a single carriage return call writeln without any parameters.

10.3 SAVING AND LOADING ARRAYS

Input and output of arrays from and to the tape recorder are supported by the
standard procedures load and save.

10.3.1 The procedure save

The procedure save will output arrays of any type to the tape recorder. The
format of the procedure statement is:

save(a);

where a denotes an array identifier. Upon activation of the procedure the
tape LED will be switched on, a brief pause will be issued, the array will be
output, and the tape LED will be switched off.

10.3.2 The procedure load

The procedure load will read a tape previously written by the save procedure.
The format of the procedure statement is:

load(a,i);

where a denotes an array identifier, and i denotes the identifier of an
integer variable in Which an error status will be returned.

Upon activation of the procedure the tape LED will be switched on. When the
procedure ends the tape LED will be switched off, and the variable i will
contain the error status of the procedure call:

i=O: No errors occured.
i=l: Type mismatch. The number of components or the component type does

not agree.
i=2: Checksum error.
i=3: The procedure was aborted by the user pressing the <ESC> key.

NASCOM PASCAL Programming Manual -27-

APPENDIX A: NASCOM PASCAL SYNTAX

The syntax of NASCOM PASCAL is presented using BNF formalism.
symbols are meta-symbols belonging to the BNF formalism, and
the Pascal language:

The following
not symbols of

I
{ ... }

Means 'is defined as'.
Means 'or'.
Denotes possible repetition of the enclosed
symbols zero or more times.

The symbol <character> denotes any printable character, i.e. a character
with an ASCII value between $20 and $FF.

<letter> : :z A B C I D E F G H I J Kl L
M I N I 0 I p I Q I R I s I T I u I V I w I X I y I z
\ I I a I b I C I d I e I f I g I h I i I j I k I 1
m I n I o I p I q I r I s I t I u I V I w I X I y I z

<digit> : := 0 I l I 2 3 4 5 6 7 8

<hexdigit> : : = <digit> A B C D E F

<empty> : :=

<program> ::= <program heading> <block> ,

<block> ::= <declaration part> <statement part>

<declaration part> ::= <label declaration part>

I 9

<constant definition part> <variable declaration part>
<procedure and function declaration part>

<label declaration part> ::= <empty> I LABEL <label> { , <label> }

<label> ::= <unsigned integer> <identifier>

<unsigned integer> ::z <digit> { <digit>}

<identifier> ::= <letter> { <letter or digit> }

<letter or digit> ::= <letter> I <digit> I •

<constant definition part> : := empty I
CONST <constant definition> ; { <constant definition>

<constant definition> : :=<identifier>= <constant>

<constant> ::= <unsigned number> I <sign> <unsigned number> I
<constant identifier> I <sign> <constant identifier> I
<string>

<unsigned number> ::= <unsigned integer> I <unsigned real> I
<unsigned hexinteger>

<unsigned real> : := <unsigned int0ger: • <digit> { <dic; i·· > } I
<unsigne d integL- > <d ~git> I <digit > } <seal s facto r >
<unsigne ·'nteger> : <sea.a.., fc~ to . ·

-28- NASCOM PASCAL Programming Manual

<scale factor> : :z <unsigned integer> I <sign> <uns·igned integer>

<sign> ::= + I -

<unsigned hexinteger> ::= $ <hexdigit> { <hexdigit> }

<constant identifier> ··= <identifier>

<string> ::= ' { <character> } '

<variable declaration part> ::= <empty>
VAR <variable declaration> ; { <variable declaration> ; }

<variable declaration> ::= <identifier> { , <identifier> } : <type>

<type> ::z <simple type> I <structured type>

<simple type> ::z INTEGER I REAL I BOOLEAN

<string type> • ·= STRING [<constant>)

<string type>

<structured type> ··= ARRAY [<index type> { , <index type> }) OF
<simple type>

<index type> ::= <constant> •• <constant>

<procedure and function declaration part> ::=
{ <procedure or function declaration>

<procedure or function declaration> ::z
<procedure declaration> I <function declaration>

<procedure declaration> ::= <procedure heading> <block>

<procedure heading> ::= PROCEDURE <identifier>
<formal parameter list> I PROCEDURE <identifier>
<formal parameter list> ; <external spec~fication>

<formal parameter list> ::= <empty>
(<formal parameter part> { <formal parameter part> })

<formal parameter part> ::= <parameter group>
VAR <parameter group>

<parameter group> ::= <variable declaration>

<external specification> ::= EXTERNAL <constant>

<function declaration> ::= <function heading> <block>

<function heading> ::= FUNCTION <identifier>
<formal parameter list> : <result type> ; I FUNCTION
<identifier> <formal parameter list> : <result type>
<external specification>

<result type> ::z <simple type>

<s :.atement part> : := <compound statemen t >

<co~pound e _atement: : := BEC'IN <st0 teme·,1~> :,. tale::.F:i.t> } END

NASCOM PASCAL Programming Manual

<statement> ::= { <label> : } <unlabelled statement>

<unlabelled statement> ::= <simple statement> I
<structured statement>

<simple statement> ::= <assignment statetement> I
<procedure statement> I <goto statement> I
<init statement> I <empty statement>

<assignment statement> ::= <variable> := <expression>
<function identifier> := <expression>

<variable> : := <simple variable>

<simple variable> ::= <identifier>

<component variable>

<component variable> ::= <array identifier> [<expression>
{ , <expression>}]

<array identifier> ::= <identifier>

<function identifier> ::= <identifier>

<expression> ::= <simple expression> I <simple expression>
<relational operator> <simple expression>

<relational operator> ::• • I <> I > I < I >= I <=

<simple expression> ::= <term> { <adding operator> <term>

<adding operator> ::= + I - I OR I EXOR

<term> ::= <factor> { <multiplying operator> <factor> }

<multiplying operator> ::• * I / I DIV I MOD I AND I SHIFT

<factor> : := <uncomplemented factor> I NOT <uncomplemented factor>

<uncomplemented factor> ::• <unsigned factor> I
<sign> <unsigned factor>

<unsigned factor> ::= <variable> I <unsigned constant>
(<expression>) I <function designator>

<unsigned constant> ::= <unsigned number> I <string>
<constant identifier>

<function designator> ::= <function identifier>
<actual parameter list>

<actual parameter list> ::= <empty> I (<actual parameter>
{ , <actual parameter> })

<actual parameter> ::= <expression> I <variable> I
<array identifier>

<procedure statement> ::= <procedure identifier>
<actual parameter list>

<goto statement> ::= GOTO <label>

-29-

-30- NASCOM PASCAL Programming Manual

<init statement> ::• INIT <array identifier> TO <constant list> I
INIT MEM [<expression>] TO <constant list>

<constant list> ::• <constant> { , <constant>}

<empty statement> ::• <empty>

<structured statement> ::• <compound statement> I
<conditional statement> I <repetitive statement>

<conditional statement> ::• <if statement> I <case statement>

<if statement> ::z IF <expression> THEN <statement> I
IF <expression> THEN <statement> ELSE <statement>

<case statement> ::• CASE <expression> OF <case list> END
CASE <expression> OF <case list> ; OTHERS: <statement> END

<case list> ::• <case list element> { ; <case list element>

<case list element> ::• <constant list> : <statement>

<repetitive statement> ::• <while statement> I <repeat statement> I
<for statement>

<while statement> ::• WHILE <expression> DO <statement>

<repeat statement> ::- REPEAT <statement> {
UNTIL <expression>

<statement>

<for statement> ::- FOR <control variable> ·• <for list> DO
<statement>

<control variable> ::• <variable>

<for list> ::• <initial value> TO <final value>
<initial value> DOWNTO <final value>

<initial value> ::• <expression>

<final value> ::• <expression>

NASCOM PASCAL Programming Manual -31-

APPENDIX B: SOME USEFUL ROUTINES

This appendix lists some useful procedures and functions. You may also refer
to appendix F, which gives instructions on the routines needed to interface a
printer· from NASCOM PASCAL.

{ value will convert the decimal number contained ins into }
{areal value }

FUNCTION value(s: STRING[48]): REAL;
CONST

zero-48; {ASCII zero}
VAR

r,f: REAL;
p: INTEGER;
ch: STRING[l];
neg,decpoint: BOOLEAN;

PROCEDURE nextchar;
BEGIN

p:•pred(p); ch:-mid(s,p,l)
END {of nextchar};
BEGIN {value}

f:•l; nextchar;
IF ch•'-' THEN
BEGIN neg:•true; nextchar END;
WHILE (ch>•'O') AND (ch<•'9') DO
BEGIN

r:•r*lO.O+(ord(ch)-zero);
IF decpoint THEN f:•f*lO.O;
nextchar;
IF (ch='.') AND NOT decpoint THEN
BEGIN decpoint:•true; nextchar END;

END;
IF neg THEN value:=-r/f ELSE value:•r/f;

END {of value};

pos will return the position of the first occurrance of }
the target string tin the source strings. If t does not}
occur withins, a zero will be returned }

FUNCTION pos(t,s: STRING[48]): INTEGER;
LABEL exitpos;
VAR

ldif,lt,p: INTEGER;
BEGIN

lt:=length(t); ldif:=length(s)-lt;
WHILE p<•ldif DO

p:•succ(p);
IF mid(s,p,lt)•t THEN
BEGIN pos:•p; GOTO exitpos END

END;
exitpos:

END {of pos};

-32- NASCOM PASCAL Programming Manual

topline will display the strings on line 16 of the
NASCOM display

PROCEDURE topline(s: STRING[48]);
CONST

toplineaddr•$BC9;
blank•32;

VAR
p: INTEGER;

BEGIN

{topline address - l}
{ASCII blank}

FOR p:•l TO length(s) DO
mem[p+toplineaddr] :•ord(mid(s,p,l));
FOR p:•p TO 48 DO
mem[p+toplineaddr] :•blank;

END {of topline};

{ hex will return the hexadecimal representation of n with}
{ d digits as a string. Up to four digits are allowed. }

FUNCTION hex(n,d: INTEGER): STRING[4];
CONST

hexdigits•'Ol23456789ABCDEF';
VAR

s: string [4];
BEGIN

WHILE d>O DO
BEGIN

s:•concat(mid(hexdigits,succ(n and $OF),l),s);
n:-n shift -4; d:•pred(d);

END;
hex:=s;

END {of hex};

NASCOM PASCAL Programming Manual -33-

APPENDIX C: THE SYSTEM WORKSPACE

The system workspace resides between $C80 and $D00,
following addresses may be of interest to the user:

In this area the

C92-C93 WSP

C94-C95 PMTP

C98-C9B RNDN

The program workspace stack pointer, When executing a program
WSP will be set to point to the end address of the program,
Each time a program block is activated {the main program, a
procedure, or a function), WSP will move to a higher address,
thus reserving memory for the variables of that program part,
When exiting the block, WSP will be altered to point to its
original position,

The highest RAM address the currently executing program is
allowed to access, Should WSP move beyond PMTP, the program
will break and display a runtime error (runtime error 99),

The last calculated random seed, By initializing these four
bytes (to an abitrary selected value) the user can obtain the
same random sequence each time the program is run,

The first instruction sequence in the object code of a program is a call to
the initializing routine, followed by 7 bytes of parameters:

CD xx xx aa bb cc dd ee ff gg

bbaa is the end address of the program, WSP will be initialized to this
v~ . ddcc is the highest RAM address the program is allowed to access (ddcc
is obtained from 1'ffOP (see NASCOM PASCAL Operating Manual, appendix C) during
compilation), PMTP will be initialized to this value, ffee is the address to
be loaded into the stack pointer (SP), and is set to $1000 by default, gg is
a byte telling the runtime package where to transfer control to, in case of a
runtime error, or when completing execution of the program, If gg is zero a
jump to the language system will be executed, otherwise control will be
transferred to NAS-SYS ,

Normally, the area between $DOO and $1000 is reserved for the system stack,
However, the stack pointer initialization value can be modified (using the
NAS-SYS M command), allowing for other areas to be used, The following
applies concerning the use of the system stack area:

A procedure or a function call consumes two bytes of stack, An active FOR
loop consumes four bytes of stack, When evaluating an expression the stack
will be used to store intermediate results, Hence, a comparison of two
strings, may consume as much as 512 bytes, if both strings are of length 255,

During program execution the position of the stack pointer will NOT be
checked, Thus, the you must ensure that recursive execution of procedures or
functions does not enter an endless loop,

-34- NASCOM PASCAL Programming Manual

APPENDIX D: INTERNAL DATA FORMAT

In the descriptions following below the symbol 'addr' denotes the address of
the first byte a variable of the described type consumes. It is this value
the standard function addr returns.

Integers and booleans:

Internally NASCOM PASCAL does not differ between integers and booleans. An
integer is stored as a 2's complement 16 bit number, thus consuming 2 bytes.
The least significant byte is stored first, as the Z-80 standard specifies:

addr
addr+l

Reals:

Least significant byte.
Most significant byte.

A real is stored as a 40 bit mantissa and an 8 bit 2's exponent, thus
consuming 6 bytes:

addr

addr+4
addr+S

Most significant byte of mantissa.

Least significant byte of mantissa.
2's exponent.

The exponent is in binary format with an offset of $80. Hence, an exponent of
$84 means that the value of the mantissa is to be multiplied by 2~($84-$80) =
2~4 • 16. An exponent value of zero indicates that the the value of the
variable is zero. The value of the mantissa can be obtained by dividing the
unsigned integer, consisting of the first five bytes, by 2~40. The mantissa
is always normalized, i.e. the most siginificant bit should be interpreted is
a 1. However, the sign of the mantissa is stored in this bit, a l indicating
that the value is negative, and a O indicating that the value is positive.

Strings:

A string will consume its maximum length plus one bytes of storage. The first
byte contains the current length of the string (called n), the second byte
contains the n'th character of the string, the third byte contains the n-l'th
character, etc.:

addr
addr+l
addr+2

addr+n

Current length (n).
n'th character.
n-l'th character.

First character.

If the current length of the string is less than the maximum length, the
contents of the unused bytes are unknown.

NASCOM PASCAL Programming Manual -35-

Arrays:

A component of an array uses the same internal format as a simple variable of
that specific type. The components with the lowest index values will be
stored first. An array with more than one dimension will be stored with the
rightmost dimension increasing first. E.g. an array declared as:

a: ARRAY[l •• 3,1 •• 3]

will be stored in this order:

lowest addr. a[l,l]
a[l,2]
a[l,31
a[2,l]
a[2,2]

highest addr. a[3,3]

-36- NASCOH PASCAL Programming Manual

APPENDIX E: EXTERNAL AND CODE SUBPROGRAMS

Declaring procedures and functions with the EXTERNAL or the CODE specification
allows the user to call seperate machine code subroutines.

Parameters are transferred to the subroutine using the program workspace
stack. Each parameter value is 'pushed' onto the stack, in the same order as
they appear. When evaluating a function designator, memory space for the
result value is reserved, before any parameters are pushed. The machine code
routine may access the parameters by indexing from the value contained in WSP
(see appendix C).

The format of a value parameter is described in appendix D. In the case of a
variable parameter a word (2 bytes) will be pushed containing the absolute
address of the first byte of the referenced variable. If the variable
parameter is an array, the absolute address of the first component will be
pushed.

Assume that the following function declaration has been made:

FUNCTION test(VAR i: INTEGER; r: REAL): STRING[l6];
EXTERNAL $DOO;

When evaluating the function designator a call will be placed to $DOD, and the
top of the workspace stack will be organised in the following manner:

lowest addr.

highest addr.

WSP-25

WSP-9

WSP-8
WSP-9

WSP-6

WSP-1

17 bytes reserved for the result
value (of type string). These
bytes are cleared at the time of
the call.

A word containing the address of
the integer variable.

Value of type real.

The address of the first byte of the locations reserved for the result may be
calculated like this:

WSP: EQU OC92H

LD HL, (WSP)
LD DE,-25
ADD HL,DE

When executing the code HL will point to the first byte. The address of the
integer variable can be obtained by executing:

LD HL , (WSP)
LD DE,-8
ADD HL,DE

A, (HL)
... re HL

LD H, (EL)
LD L,A

NASCOM PASCAL Programming Manual

As an example of user written machine code subroutines two routines are
below which will input and output values from and to the data ports
These routines are predeclared in NASCOM PASCAL, see chapters 8.2.5 and
In the main program the following declarations should be made:

CONST
outaddr-$DOO;
inpaddr-$DOD;

PROCEDURE out(port,data: INTEGER); EXTERNAL outaddr;
FUNCTION inp(port: INTEGER): INTEGER; EXTERNAL inpaddr;

The machine code subroutines could be like this:

0001 ODOO ORG ODOOH
0002
0003 OC92 WSP: EQU OC92H
0004
0005 ODOO DD2A920C OUTP: LD IX, (WSP)
0006 0D04 DD7EFE LD A,(IX-2)
0007 OD07 DD4EFC LD C, (IX-4)
0008 ODOA ED79 OUT (C) ,A
0009 ODOC C9 RET
0010
0011 ODOD DD2A920C INP: LD IX, (WSP)
0012 ODll DD4EFE LD C, (IX-2)
0013 0Dl4 ED78 IN A, (C)
0014 OD16 DD77FC LD (IX-4) ,A
0015 OD19 C9 RET
0016
0017 ODlA END

The above routines can also be implemented using the CODE specification:

PROCEDURE out(port,data: INTEGER);
CODE $DD,$2A,$92,$0C,$DD,$7E,$FE,$DD,$4E,$FC,$ED,$79;

FUNCTION inp(port: INTEGER): INTEGER;
CODE $DD,$2A,$92,$0C,$DD,$4E,$FE,$ED,$78,$DD,$77,$FC;

-37-

shown
(NOTE:
7.2).

It is important to note that only fully relocateable routines can be
implemented using the CODE specification. Also note that the RET instruction
($C9) ending an EXTERNAL routine should not be given in a CODE routine.

All RAM between WSP and PMTP can be used as workspace by the machine code
routine.

The object code produced by the compiler, as well as the runtime package
routines, are fully interruptable. If interrupts are used, the interrupt
service routine must save all registers to be used, and restore them before
returning.

-38- NASCOM PASCAL Programming Manual

APPENDIX F: PRINTER INTERFACING

This appendix describes the routines needed to interface a printer (or
actually any user defined output device) from NASCOM PASCAL.

To interface a printer you must create a machine code routine, which will
perform the actions needed to output the accumulator (the A register) to the
printer. In the NASCOM PASCAL Operating Manual, appendix D, is shown an
example of such a routine. Note that the output routine must be fully
relocateable. To implement the output driver, a CODE procedure is created,
which contains the actual code, as well as the code needed to insert a jump
vector to the routine in addresses $C77-$C79 (referred to as $UOUT in the
NAS-SYS workspace):

PROCEDURE prepareprinter;
CODE $D7,nn,xx,xx,xx, ••••• ,xx,xx,$El,

$22,$78,$OC,$3E,$C3,$32,$77,$OC;

where nn is the length (in bytes) of the output routine, and the xx's are the
actual machine code. Thus, to implement the output routine shown in the
Operating Manual, the following CODE procedure must be declared:

PROCEDURE prepareprinter;
CODE $D7,$OA,$F5,$DB,$OO,$17,$3O,$FB,

$Fl,$DF,$6F,$C9,$El,$22,$78,$OC,
$3E,$C3,$32,$77,$OC;

In addition to the prepareprinter procedure, two CODE procedures must be
declared, which will switch on and off the printer:

PROCEDURE pron; CODE $D7,$O2,$75,$OO,$El,$DF,$71;
PROCEDURE prof£; CODE $DF,$77;

Below is shown a skeleton program which uses the printer interfacing routines:

PROGRAM usesprinter;

PROCEDURE prepareprinter; CODE ••••••
PROCEDURE pron; CODE ••••• ;
PROCEDURE prof£; CODE ••••• ;

BEGIN
prepareprinter;

pron;
writeln('This should be output to the
prof£;
writeln('This should be output on the

END.

printer');

screen');

The prepareprinter procedure is only called once, in the beginning of the
program. When the pron procedure is called, output will be directed to the
printer, until prof£ is called, which restores normal operation.

NASCOM PASCAL Programming Manual

APPENDIX G: COMPILER ERROR MESSAGES

00 EIND address found.

01 Syntax error (e.g. missing in the line above).
02 ,_, expected.
03 , : ., expected.
04 , [, expected.
05 , l , expected.
06 , (, expected.
07 ,) , expected.
08

, ,
expected.

09
, ,

expected.
10

,
expected.

11 , :•' expected.

20 Lower limit greater than upper limit in array declaration.
21 Overflow in array declaration.
22 'OF' missing in array declaration.
23 Illegal character in identifier.
24 String length cannot be zero.
25 Unknown data type.

30 Constant of type integer expected.
31 Constant of type string expected.
32 Constant of type real expected.
33 Integer constant should be within the range 0<•i<•255.

40 'BEGIN' expected.
41 'THEN' missing in if statement.
42 Case selector must be of type integer or of type string,
43 'OF' missing in case statement.
44 'END' missing in case statement.
45 'DO' missing in while statement.
46 Varible of type integer expected.
47 'TO' or 'DOWNTO' missing in for statement.
48 'DO' missing in for statement.
49 Label identifier has not been declared.
50 'TO' missing in init statement.

60 Type string not allowed here.
61 Expression of type integer expected.
62 Expression of type string expected.
63 Type mismatch in expression.
64 Unknown identifier in expression.
65 Syntax error or overflow in numeric constant, or string
.· , :·:· _c,onstant contains a carriage return.

· 66 · ~tring constant too long.

70 Type mismatch in assignment or parameter list.
71 Unknown variable identifier.
72 Unknown array identifier.

80 Label declared and referenced but not defined.

99 Unexpected end of source text.

-39-

-40- NASCOM PASCAL Programming Manual

APPENDIX H: RUNTIME ERROR MESSAGES

01 Floating point overflow,
02 Division by zero attempted,
03 Attempt to calculate the square root of a negative number,
04 Attempt to calculate the natural logarithm of a negative or zero number,
05 Attempt to convert a real value outside the integer range into an integer,

10 The resulting string at a concat function call is longer than 255
characters, or the position at a mid function call is less than or equal
to zero,

20 An array index is outside range.

99 Workspace overflow, All available RAM has been used,

T
o

n
d

er O
ffsettry

k

	Page_00
	Page_01
	Page_02
	Page_03
	Page_04
	Page_05
	Page_06
	Page_07
	Page_08
	Page_09
	Page_10
	Page_11
	Page_12
	Page_13
	Page_14
	Page_15
	Page_16
	Page_17
	Page_18
	Page_19
	Page_20
	Page_21
	Page_22
	Page_23
	Page_24
	Page_25
	Page_26
	Page_27
	Page_28
	Page_29
	Page_30
	Page_31
	Page_32
	Page_33
	Page_34
	Page_35
	Page_36
	Page_37
	Page_38
	Page_39
	Page_40
	Page_41

