

 €
Commodore

©English Edition, Copyright 1985

Commodore Data A/S, Horsens, Denmark

and Frank Bason & Leo Hajsholi-Poulsen, Silkeborg, Denmark

®A Danish Edition, copyright 1985
Commodore Data A/S, Horsens, Denmark, and Leo Hajsholt-Poulsen

& Frank Bason is published simultaneously.

Consultants: UniComal ApS, Jels, Denmark

Editor: Jan Nymand, Commodore Data A/S

Cover and Illustrations: Fejltrak, Silkeborg

Printed in Denmark by Werks Offset, Aarhus

The cover illustration suggests the evolution of COMAL for the Commo-

dore 64 with its diversity of packages. The cover art and the drawings of

the cartoon figures showing "the Superintendent's” encounters with

COMAL are copyrighted by Fejltrak, Christian XIII Vej, 8600 Silkeborg,

Denmark.

Copyright
The computer language COMAL for the Commodore 64 is covered by the

following copyright:

Commodore Data A/S and UniComal ApS 1985

This manual is covered by copyright Commodore Data A/S, Frank Bason

& Leo Hajsholt-Poulsen Denmark, 1985. No part of the system, the

program cartridge or this manual may be reproduced, stored in a data

retrieval system or in any way be transmitted electronically or mechani-

cally, photocopied or be duplicated in any other way without the prior

written permission of the owner of the copyright. Copying the COMAL

cartridge is forbidden; however the Demonstration diskette or tape may

be copied freely.

Assistance

If you have any comments concerning this COMAL manual or the pro-

gramming language itself, please pass them along to your dealer. Com-

modore Data A/S has made every effort to assure that the contents of this

manual are correct and complete and that the programming language

itself functions as it should. Every error discovered by users will be

corrected as soon as possible. Your help in this connection will be

sincerely appreciated, not least by other COMAL users.

Responsibility
Neither Commodore Data A/S or any of this company’s dealers or distri-

butors give any guarantee expressed or implied concerning the COMAL

computer language as described in this manual and tutorial. The lan-

guage and documentation are sold "as is” with no claim being made as to

its quality or suitability for specific tasks. The risk concerning the quality

and performance of this product rests with the buyer. Should this product

prove defective after purchase, it is the buyer (and neither the producer

UniComal A/S, Commodore Data A/S, nor any distributor or dealer) who

must take full responsibility for service, repair and any other costs acc-

rued due to errors or defects. This is true even if the producer of the

program has been given prior notice of the possible existence of such

errors or defects.

Table of Contents

Introduction 0... cc cece ccc cc cee eee e ee eee eee eeeeeees 9

What is COMAL? ccc ccc cece cece eee teen teereetenenes 9

The Origins of COMAL cece cece cece cece eee e reer reenreeene 10

COMAL and Commodore ccc eee eee e eee et eeeeeeenenes 10

Using this Tutorial... 0.0... cece cece eee reer ee ener eee eeeeneeeee a

Chapter 1: Setting up your Computer.....................00005 13

Your Computer and AcceSSOrie€S...........cceeceeneeeeeueueeens 13

Installing your COMAL Cartridge ccc cece eect eee eee ee 15

Connecting the TV or MOnitor 0c cece cece ee eee eee neeeee 17

The Commodore Keyboard ccc cece cece cee e eee e ee eeeees 18

Running the Demonstration Program0cce eee ee ee cece 19

Using the Datassetie Unit cc cee ce eee eee eee ete eens 19

Using the Disk Drive 0... ccc cece cece cece eee eee eee eeeees 20

Preparing a Storage Diskette cece cece eee eee e ee eeee 21

REVIOW 2 occ ccc ee nn nnn wininieiiiiorere:Sininieieete ere -eious were lea ae ereereTeR 22

Chapter 2: Let’s get started 0.0... .. ccc cece cece cece ee eeees 23

- Why learn to program?........ ccc cece cece e eee teen eeeenees 23

Direct Execution of COMAL Orders cc cece cece eee eens 25

A Quick Look at Turtle Graphics ccc cece cece eee eee eee 28

What iS & PrOQraM? .. siciversiswewasrwwieievie siwieieae b'slele anieceleoaisle easels’ 31

Repeating Instructions 2.0.0.0... cece ccc c cee cece eee eeneeneees 34

COMAL Procedures ...cccscescecnsssacceessccevecencseecbacees 36

Saving Programs and Procedures 0c cc cece neeeeeennees 39

Using the Datassette .. 00... ccc ccc cece cece cece eee ceceneeeeees 39

Using the Disk Drive 2.0.0... ccc cece cece cece eee e eee eeeeeneees 40

ROVIOW occ c cece ce en nn oo Biaveraetere raat aie selsare raises Bavereialwialeewwiere’s 41

Chapter 3: Programming with COMAL.....................000005 45

Acquire good programming habits............... ccc cece cece eee 45

A First Calculationcccscccceccceeesecccescceccscecccucebeece 46

The INPUT Statement 0.0 ccc cece cece ee eee eee eees 48

CICIES ceraranereraisiavarereretararcctaet26tE ee dia SOG MAUR ER EW SERS OBOE I 49

Procedures | vssaatueectgnaialyig gy aia ciptale walle Caiule WGVG-a5 eleva biolevelawlers-%s 51

COMAL and Text 00. c cece ccc c eee e eect eneeeaeeenteenes 54

Branching. Conditional Execution 0. ccc cece eee eee eeee 57

The CASE Structure ccc ccsscccccececccevceesvveseeepeeere 60

Repetition and LOOpS cc cece cece cece eee cree ee eeeteeees 62

Arrays. Indexed Variables 0c. cece cece eee e eee eeereeeee 67

Jext ArrayS 02... cece can + oWeseieisselatlaleiein Selene siinsaeiaweiseo eee oe 69

Procedures UW... cece ce ee ee eee eee eee e eee eee e eee eeeeee 72

Local and Global Namescccee cece cree reece eee eeeennes 73

FUNCTIONS 0... cece cece cece ese e eee e ete ee seen ee ee ee eennenes 76

String FUNCTIONS ©... 0... cece eee eee eee ene nen eee e teste eae 80

Closed ProcedureS 2... ccc cece eee e eee e eect eee eer ee ee seeaeenaee 81

File Handling ccc cece eee e cece eee e eee ne renner eens eeenne 85

Error Handlingccesee cece errr e reer eene ene n reese teeteee 88

Chapter 4: COMAL Overview cece cece eee eens 91

Commands Used Before and During Program Entry: 91

NEW - AUTO - RENUM cece cece cence ene e eens 91
Commands Which are Used for Editing Programs:+.. 92

EDIT - FIND - CHANGE - DEL - SCAN 0c cece eee eens 92
Other COMMANAS? seravscereie:sinvsrerncers la wears /etesecer4 vaserere Ra era -w1ay ear aie evaco@ieresiane 94

SETEXEC sosevsceiece azarae auarsara: oars econ otorarw ya wseislie/eserererasainiora)waye'a laannereleieeies 94
Commands Used to Check Available Memory and Disk Storage: . 95

SIZE - CAT - DIR... . . ccoricassca aenzsies sense revavornrere aren aioreerayalaza-a) aera rereieyeerei 95
LIST - ENTER - MERGE - DISPLAY cece ece eee ee eee e eens 96
SAVELOAD ... 2... ss esaeniiatara-arsnarasacerareiane'a arene sa wrare e acereelerere sree wee 98
RUN - CHAIN - CON Lo. cece ccc ccc cece ener e ere eee center ee eeees 99
STATUS - STATUSS wc itesisieascivsiaceaiasa cranes a aaa earn salesaenereawteeas 100
VERIFY | sssvesevecacerasevazeveiaree saaiece 0 5606aie tala covalera oa ww ta atnere (a wee 0 EN HOOD 100
COPY - DELETE - RENAME - PASS ccc cece cece enes 100
SELECT INPUT - SELECT OUTPUT 2c ee eee e eee eee 101
Commands for System Start-up: ce eee eee ee eee eens 102

BASIC - SYS to COMAL 2... cece cece eee e eee e eee eeees 102
Commands and Statements Concerning the Use of

Machine Code Program Packages:ccese eee e eee eeeneee 103

USE LINK - DISCARD ccc cece cece cece eee ete eens 103
Statements Used During Read-in and Printout:45. 104

INPUT - INPUT AT - KEY$ 0. cece ee ee reece cere eee eeeees 104
PRINT - PRINT AT - PRINT USING - TAB - ZONE 105
PAGE - CURSOR 2... cece ce eee ee ree renee ene eeenee 107
READ - DATA - RESTORE Label: EOD ccc cece eee eee eee 108
Instructions for Communication with Files: ee ee eee 109

MOUNT ~- CREATE 22... ec ccc cece ccc eee eee a nee eeeeee 109
OPEN FILE/OPEN - READ - WRITE - APPEND - RANDOM 110
PRINT FILE - INPUT FILE 2... . ccc cece e ee eee eee aees 114
WRITE FILE - READ FILE cc cece eee e cece ee eee eee e eens 112
CLOSE FILE/CLOSE _ .| J. wisrsieisiersssiciecrcieieierarejale ease v's eiete wipes esters ers 113
EOF coc ccc cece rece no iRereieraleyeiateln Site alaeieie ie Bl Waleve were eles sete eRe 113
UNIT-UNITS$ w..cccececevccevsccccevvecsesssscceveesessseeeees 113
Conditionals: 20... .. 0. cece eee eee e een n ene eenene 114

IF - THEN - ELIF - ELSE - ENDIF 2.0... . cece cece eee ees 114
CASE - OF - WHEN - OTHERWISE - ENDCASE..............+.. 117

LOOP StateMENtS: csisisseravecnsmravessca sravevae aiavaecpi ave aeralane abba a) Stella! WASTE ANS 118

REPEAT - UNTIL eee cece cnc eee een eee eneeeeees 118

WHILE - DO - ENDWHILE ccc cece nce eees 118

FOR - TO - STEP - DO - ENDFOR 2... . ccc ccc eee ee eee eens 119

LOOP - EXIT - EXIT WHEN - ENDLOOP0.....000e eee 120

Error handling: cece eee e cee eee ee eee eeeeeeeeeeeees 121

TRAP - HANDLER - ENDTRAP 0. cece eee cee ee eeees 121

ERR - ERRFILE - ERRTEXT$ ccc cece eee eee eeeeee 121

REPORT 2... ec ccc eee eee tn nn a BREET Ie BAM reletets uti 122

GOTO Label: ssiaisinecaicavecsrasssmave ctaceraeacera slaiece wie ia aie ioe ieee terete wratbse wis 123

“PHOCEGUSES: ook cn nn no BiaTera TR retbUét iN MINUS aie. a elete laLatate ete 124

PROG - ENDPROC 1... os siarsisisncerreate re wieivinisisiens wiaeuiarecsarewe 124

REF - CLOSED - IMPORT... cc. eee c eee e eee e eee eens 126

EXTERNAL - MAIN 0 cece cece eee e cece beatae cece cence 128

FUNCTIONS: 2... eee en a Hai aieiteenatsiteee wiwinle alanine Fallin iw wiety w Siete eX 129

FUNC - ENDFUNC - RETURN 0.2... ee eee cee cece eee eee 129

Other Functions: ccc cece cece cece cece cece eeeeeeeees 131

ABS - INT - SGN -SQR- PI oo. cece ccc ccc eee cece eee eee eee 131

COS - SIN - TAN -ATN oo. cece ccc cece ccc ccc ence eee ence ences 132

LOG - EXP 20.0... occ ee oo aisiaraierate mr etate pi ktciers gp Sate o Rete allele o aletetelels 133

CHR$ - STR$ - SPC$ cece ccc cc cece cece cence eet eueeeneus 133

ORD - VAL - LEN ccc eee e ence eee neeeeeseeeseeeereeeens 134

TRUE - FALSE 2.2.0... aisiere store aiscaryinra prallara ern alalaiere Viei8ieln alee aX 135

TIME occ cece eee ne nn dite mieiae BISTy eWRa loerallala Glave ceia else SNe ears 135

RANDOMIZE - RND 0.0 eee ccc c cece c cece ee eeneee 136

ESC - TRAP ESC sessissasicace a iataveaigiaigieta ele ee aedib sieie evolu -vloiniaie olelere.s 137

Operators: siexisarsiers were aia pelea e sia oleae ernie WME wae elaraiers 137

DIV - MOD... sictusasssisseiacecatnia nase wiaiite wate rev elala es Gilead sie oie’ iein'ee 137

Logical Operators: siavssia cassie creeds asin welablaeiow esleleldieiee Wareiie’e's 138

NOT - AND - AND - THEN - OR - OR ELSE000 0005 138

VIN aswscavssaincas aszunararararaca irate a Seen a whl Neligia ee i talelas a tobin gisele bide ornlare late iaree’s 140

BITAND - BITOR - BITXOR 2.2... 0... ccc cece eee e eee eeeees 140

Other IMStructionss sss is eieisie'eiei%s 19 stains Wleraveraldlsoreieieieia\sce ease ieieie ele\eierelerareie 142

LM Tre TOT OC OT IAT COCO CRUTTTIOM eC rOC ore 142

TRACE _ nivpicisiatain wiareietiieie ia Gelso oleieor oils leioieloie%e alera iste seisleieterareniSinis 142

DIM +. . stapinretera ia ainlereisiansavsyelsiaysinlleireele co ntels es eter eisiasierip n@meielare 143

PEEK - POKE jiswawvaiiiuineiateisiaresiniaisiaieiaielesialie a's waieiineetien seu ae 144

SYS . seamcatery sigeare winrete Waiais eierals tei wloiavaigialeialo lereialetel aiewiaai nee vse cea Se 144

NULL sscsscaaiaarevinieinieeviaiviels aveie sine sl einsia(vin’ oilers OO NASR EAD NRE SBE 145

STOP ~ END pigaisaieiacessiesy avsiayacas esol sheieisie yates wreinrale'nS Winie Wala sis we. a1sie is 145

Chapter 5: COMAL Packages cece eee e ee eevee 147

What is a package? ccc cece cece cece cece eee een eeeeees 147

The English Package cece cc cece cece eeeereeaeeneuees » 148

The Danish Package ccc cece cece cence tee eesteeeuees 148

Graphics with COMALcccece cece seen ee eeeeeeseeeneenes 148

Graphics Overview ccc cece eee eee ee eee e ete e een eee eenes 151

In Depth Look at Graphics InstructionS6 css cece eee nnee 152

SPVITOS owecsiaracersiesacorateya.eiavans inverse ona 000 SIRES HE MeO eNO ERTS MOTE Meme 166

The sprite is enlarged ... cc cece cece cece cece eee eee eee n enn eeees 168

More Sprites ssscciaeaarae sewers eure ewureaiee a nese mewieeesieceeeeee 168

Two sprites COlide 22... cece cece creer teen eee e eee een e eens 169

Saving a Drawing on Diskette cece cece ee eee eee eee e eens 169

Sprites Used with Other GraphicS0 cece cece eee eee enes 169

Sprite CartOONs wv sisesisiaccieeaeisrewe sen eaiers ew wwe naire were enereinie ees 170

A Multi-colored Sprite 2.0.0... ccc cere eee eee eee eee eees 172

Sprite Overview 02... . cece ee cece teen e teen nett eee eeeeeenes 174

Sound and MuSic ec cece eee e eee e eee e eee eee eeeenees 184

Sound Instructions in Depth ccc ccc eee e eee ee eee eee eeeee 192

Packages for using the Control Portse cece eee eee e eee 198

PaddleS 0.0... ccc ccc ce eect eee nbe sible eee eee eee eee eeeees 198

JOYSHICKS 00... ccc ccc cece eee re bebe tease tesa nesses eeeeeees 201

LiIQhtPeN eisie visa aveieta we ciate wtewtesiereoisiaiee erie siaiaterniann alte a rowel ee 203

Overview of the Light Pen Packageseeeeeeeee ee eees 206

The System Package cesses ese eee eee e eee eee eeeeeeees 208

The Font Packagecccccc ecw e cece ec cctec enon eeeeeeneeeees 216

Example of a character replacement5:se eee e cence enees 217

Replacing an entire Character Set cece eee eee nee e eens 218

Font Package Procedures in Depth6 cece cece en eenees 219

Chapter 6: COMAL Files: cece eee e sneer eee ne eeeenee 223

What is a file? 0.0... cece cece eee eee renee ent en enna eeeees 223

Saving Programs and ProcedureSeceeeeee ee ereeeeeres 224

Sequential Files - an Address Listceeee teen eee eeeceers 226

Random Access Files - an Inventory Program--.eeseeeeeeee 236

Moving a Sequential File.... 0.0... cece eee cree cree eee ee ene ee rene 240

File TypeS 0.0... ccc cece cece cece tener ee tenner eee eee eeenaneees 240

Files and the Screen, Keyboard and Disk Drive+++++++++ 242

Your Datassette Unit and Files cece cere eee rece eee eeees 243

Using the 1520 Printer-Plottereseeeeec ener rere eeeeeeees 243

REVIGW .. ccc cc cece cece cece cece eee e enone een eeeeeeeneareeerenes 243

Chapter 7: Peripheral Devices-.......5c cece eee ener eres 245

INtroduUCHION 0.0... eee cee cece cere eee eee e eee sence eenenaeee 245

The RS-232C Interface cece reece cece eee eee e eee eeeeeeeees 246

File Transfer between Computers5e eee cere eee cteeeeees 249

IEEE Cartridges 2.0.0... ccc cece cece nee rece nena renee enna nenes 253

The Parallel Porto... cc cece cece eee cere rere teen nes en eee eeeeeees 253

The Control PortS cece cece eee e ener ee ee een eee eeeneeeeees 258

REVIEW 2... cc cc cece ccc cece rere eee eet ee tees eee ee ee ee sees eeeeeres 261

Chapter 8: COMAL and Machine Language-..555 263

What is machine language? cece cere eee eee eee teen eens 263

Modules 2. cc ccc eee ne wtacwrisieuar aveseiwie canes tarararere grereiere: sige-esminjecorsceiacere.» 265

PACKAGES 2. cece erect e eee reweeiee wee ween eens a eeee cess eneeenneeee 265

Procedures and FUNCtiONS cece cece eee eee ee eee eee eens 265

Sigal 2... 06 oe wee eo ee mererene es trecerereiene wetness nueier ecMzeseie we eMeenMinN en 266

How is memory organized? cece cece cence tenet eee e eens 267

Memory Management cece cece e eee e eee e tence eeeees 269

Creating Modules:.eccsecceeseeeseeceeeetneeresereeeens 270

Parameter Passing sieves vice sive civieee aie oe ose eee eis sine a aise w arece eee 273

Where can modules be placed? ccc cece eee eee eee e eee e eee 275

Where can module variables be placed?cceeeeeeeeees 275

Signal ROULINGS 2... cc cece cece cee eee eee eee eee e eee enees 276

Error Reporting ...ccccs sects ence sevecweeseeeseeeeeeceneeenenees 277

Package Examplecccccnveievereee seer eeceeeceneceneeees 278

Appendix A: ASCII Character Codes-. 0c eeeeeeeeeeee 285

Appendix B: Color Codes:.. cece cee eee eee n ene eeee 289

Appendix C: Calculations with COMAL-...eeeeeeee 290

Appendix D: Keyboard and Screen Editor................00eeees 293

Appendix E: Handling Text with COMAL0seeeee 297

Appendix F: COMAL Error Numbers and Messages 301

Appendix G: User Comments and Corrections05. 315

Appendix H: Sample Programs and Procedures+-- 317

VINO» wssssrararetacarayscevaceraiesane ace iaye bare lar anavertenwtere ie legal sereyerarea etecacanae wis aversiereie’ 331

Introduction

What is COMAL?
Welcome to the world of COMAL programming! Many feel that COMAL is

close to being an ideal programming language for microcomputers,

incorporating as it does the best features of Basic, Logo and Pascal. You

are about to learn a programming language which offers, among other

things, the following features:

*
COMAL (COMmon Algorithmic Language) extends Basic, giving the

language many of the powerful instructions of Pascal.

COMAL retains the convenient operating environment of Basic, and

many COMAL statements will be familiar to Basic users.

COMAL for the Commodore 64 incorporates the easy to use turtle
graphics which has made Logo famous.

COMAL on the C-64 offers useful guidance when errors occur during

program entry. The language contains structures for error handling

during execution of programs.

The language encourages structured programming with access to

loop statements like:

REPEAT - UNTIL

WHILE - DO - ENDWHILE,

flexible conditionals like

IF - THEN - ELIF - ELSE - ENDIF

CASE - OF - WHEN - OTHERWISE - ENDCASE

and valuable building blocks like procedures and functions.

COMAL for the Commodore 64 gives the user full access to the many

special facilities which have made the C64 the most popular micro-

computer in its class:

high res color graphics

sprites

music

joystick

paddles, lightpen

and much more...

INTRODUCTION 10 COMAL FOR COMMODORE

The Origins of COMAL
COMAL originated in response to the needs of computer users in Den-

mark. Borge Christensen taught computer programming in the early

1970's to students at a small college in Tander, near the German-Danish
border. He found that the students often wrote terrible programs. They

were hard to read, hard to de-bug and hard to maintain. Dr. Christensen

consulted colleagues at the Institute of Computer Science at the Danish

University of Arhus. A researcher there by the name of Benedict Lofsted

recommended that Christensen read the book, Systematic Programming

by Niklaus Wirth.
Many readers will recognize Niklaus Wirth (of the Swiss Federal Insti-

tute of Technology in Zurich) as the father of the Pascal programming

language. Inspired by Wirth's clear formulation of the principles of struc-

tured programming, Christensen contacted Benedict Lofsted. They

agreed that the Basic language offered the user a very convenient opera-

ting environment. Basic was highly interactive. \t allowed direct execu-

tion of instructions from the keyboard and required neither prior

definition of variables nor the compilation process before a program

could be run.
These features were ideal for a teaching environment. On the other

hand Basic lacked the ability to use long, descriptive variable names and

did not provide the elegant syntax of Pascal. If Basic could be augmented

with these features, it would encourage the writing of clearer, better-

structured programs. These men went to work with their colleagues to

formulate requirements for the COMAL programming language. The

language was developed and perfected during the 1970's. COMAL grew

to maturity together with the personal microcomputer. The current

version of COMAL 80, which you now own, is version 2.0. It is the product

of standardization efforts by an international committee composed of

representatives for users and industry. The COMAL kernel was agreed

upon by this group. Itis composed of all the COMAL instructions which

must be common to all versions of the COMAL language. Special featu-

res, such as the use of graphics, music, sprites and other special features

of the Commodore 64, are added as special packages. More about that

later!

COMAL and Commodore

During the growth in popularity of the COMAL language, the Danish

distributors of Commodore computers have played a leading role. With

the advent of the inexpensive and popular microcomputer, in particular

the Commodore 64, a group of young software enthusiasts, Jens Erik

Jensen, Mogens Kjzer, Helge Lassen and Lars Laursen formed a com-

pany, UniComal ApS. |n cooperation with the Danish distributor and later

with Commodore Data A/S they developed COMAL for the C-64.

When you have worked through the tutorial and written some of your

INTRODUCTION 11 COMAL FOR COMMODORE

own programs, we hope you will agree that the efforts of these pioneers

have not been in vain!

Using this Tutorial
If you examine the Table of Contents, you will see that this manual begins

with a chapter on setting up your computer and plugging in your COMAL

cartridge. Next comes an easy to read, step-by-step introduction to

COMAL programming. By the time you get to Chapter 3 we will assume

that you have overcome the initial uncertainty (which everyone feels)

when beginning with a new computer language.

Chapter 3 presents a systematic description of the most commonly

used COMAL instructions. Here you will be presented with features for

serious programming and begin to write your own COMAL programs.

Every programmer needs a good resource with information on the

precise meaning of the most important facilities which are available in the

language he uses. We have tried to provide this essential information -

with examples - in a systematic form in Chapter 4, COMAL Overview. For

those readers who require even more complete information on the defini-

tion of COMAL syntax, a comprehensive reference manual is available:

Len Lindsay, COMAL Handbook 1983.

Reston Publishing, 11480 Sunset Hills Road
Reston, VA 22090 USA (703) 437-8900
(also available from Prentice Hall International

66 Wood Lane End

Hemel Hempstead, Herts HP24RG, England

or from COMAL USERS’ GROUP, 5501 Groveland Terrace,

Madison WI! 53716 USA)

Note that the COMAL USERS’ GROUP also puts out a newsletter. It

contains many program examples and other useful information and is

highly recommended. It is always a big advantage for the beginner to be

in touch with more experienced users.

The package concept is one of those features which make COMAL for

the Commodore 64 particularly powerful. When a special feature of your

Commodore 64 (for example high resolution graphics) is to be used ina

program, a package can be activated. When that feature is not needed,

you don’t activate the package. Turtle graphics are available, if you want

to use them. Peripherals like joysticks, light pens, and paddles can be

accessed with special packages of orders which extend the standard

COMAL language. A complete description on the use of these packages

is presented in Chapter 5.

Chapter 6 includes additional information on the handling of files in

COMAL. This information will be particularly useful to those users who

may wish to take advantage of COMAL to write programs for record

INTRODUCTION 12 COMAL FOR COMMODORE

keeping and data handling which require advanced facilities of the Com-

modore disk drive.

In Chapter 7 the use of peripheral equipment is covered. This includes

the control ports to which you can attach joystick, paddles, or light pen,

and the RS232 interface, IEEE interface, parallel port and other cartrid-

ges. This last item may be of particular interest to those users who may

want to develop their own turn-key systems based on the Commodore 64.

Those of you with 16 fingers may want to get inside COMAL, learn

about the use of Commodore memory and write your own machine

language programs. This is also possible using COMAL. Read Chapter 8

to learn more about how this can be done.

This Tutorial concludes with a collection of information assembled in a

series of Appendices. Here you will find the Commodore ASCII character

codes, color codes for graphics, some tips on calculating with COMAL,

use of the keyboard and the COMAL screen editor, use of strings, error

messages and some useful programs and procedures. Finally there is an

Index to help you find information quickly when you need it.

Work through the tutorial at your own pace. Be careful not to jump too far

ahead before you’re ready. Later on you should find this tutorial useful as

a reference guide.

Happy programming!

Frank Bason & Leo Hgjsholt-Poulsen

Silkeborg, Denmark

January 1985

Chapter 1

Setting up Your Computer
\

Your Computer and Accessories
In order to use COMAL, you will require the following equipment:

* a Commodore 64 or 128 computer (or an SX-64 transportable)

* the COMAL programming language cartridge

* a video monitor or a television (color or B/W)

It is possible to run COMAL programs without an external storage

medium - i.e. a disk drive or a tape unit. However, as you will soon be

writing programs which you will want to save, it will be essential to have

one of the following:

* a Datassette tape unit, or

* a Commodore 1541 disk drive.

Optional items of equipment for your Commodore 64 - nice to have but
not essential - include:

* a Commodore printer or equivalent.

* an extra Commodore 1541 disk drive

When you begin to write longer programs, a printer is very useful to have.

For serious programming you will need listings of your programs and

printouts of your data. An extra disk drive is not an essential item.

However, if you use your computer a great deal, a second drive will make

copying programs and files a lot easier.

CHAPTER 1 14 SETTING UP

Figure 1.1 shows the connections on the rear and on the right side of your

Commodore 64. Refer to this diagram to help connect the equipment you

will be using.

Figure 1.1: Accessories and peripheral devices are attached to your Commodore via the

connectors on the rear and on the side of the computer. (1) power socket, (2) power switch,

(3) game ports, (4) cartridge slot, (5) channel selector, (6) TV connector, (7) audio/video

output, (8) serial port, (9) Datassette connector, (10) user port.

Your COMAL cartridge may also be used with the Commodore SX-64

portable version of the Commodore 64 computer. The SX-64 is illustrated

in Figure 1.2. This unit includes both a color monitor and a disk drive unit.

With a COMAL cartridge and the SX-64 you can skip ahead to the section

on Installation of the COMAL Cartridge.

Figure 1.2: The Commodore SX-64 transportable computer is completely compatible with

the Commodore 64. The SX-64 features a built-in color monitor and disk drive.

CHAPTER 1 15 SETTING UP

If you have access to a 1541 disk drive, attach it to the Commodore 64 via

the 6-pole jack on the back panel (the same jack can be used fora printer).

If you have a printer as well as a disk drive, it can be connected to the

second connector at the rear of the drive. You can use either one of the

two connectors on the disk drive for the computer and for the extension

cable to the printer.

If you are using a Datassetie tape unit, attach it to the computer via the

12 pole edge connector (next to the User Port). Note thatan ordinary tape

recorder cannot be used.

You will find detailed information on the use of these accessories in

your Commodore 64 manual, and in the disk drive, Datassette and printer

manuals.

A typical set-up will look like the illustration in Figure 1.3. The system

shown includes a single disk drive, a printer and a portable TV used asa

display.

 semouaes < =

Figure 1.3: An ideal setup for learning and using the COMAL programming language in-

cludes a Commodore 64 computer equipped with a printer, 1541 disk drive and acolor TV or

monitor.

Don't turn anything on yet. We will have to install the COMAL cartridge

before continuing!

Installing Your COMAL Cartridge
Your COMAL language cartridge is shown in Figure 1.4. It must be

installed in the cartridge slot at the rear of your computer, if you use the

Commodore 64 or 128. If you have an SX-64, then the cartridge slot is on

top of the machine on the right hand side.

CHAPTER 1 16 SETTING UP

Figure 1.4: Your COMAL cartridge allows you to expand the power of your Commodore 64

without using additional memory. It fits into the cartridge slot at the rear of the Commodore

64 (or the top of an SX-64).

Take acloser look at your COMAL cartridge. Note that there is a row of

contacts on the edge of the printed circuit board which protrudes from

the cartridge. There is a label on the front of the cartridge. This must face

upward when you insert the COMAL cartridge horizontally into the car-

tridge slot of the Commodore 64. (The label will be towards the front,

when you insert the cartridge into the cartridge slot of an SX-64.)

WARNING: Never insert a cartridge into your Commodore 64 or SX-64

(and never remove it) with the power turned on. The power to all

peripherals must be OFF when inserting or removing a cartridge!

When you are sure that the cartridge edge connector is properly aligned

with the slot in the computer, push the cartridge firmly into place using a

gentle rocking motion.

CHAPTER 1 17 SETTING UP

Connecting the TV or Monitor

POWER SUPPLY

Figure 1.5: The C-64 can be connected to the input of a standard TV receiver.

Connecting the TV or Monitor
Your Commodore 64 is supplied with the following display outputs:

* color monitor signals (audio, composite video and luminance)

* a modulated standard color TV signal

The output jacks for these signals are shown in Figure 1.1.

Because the SX-64 has its own color monitor, the following discussion

will only apply to the Commodore 64. If you will be using the SX-64, you

can proceed directly to the next section on running the demonstration

program.

A color monitor is the most desirable choice of display for your Com-

modore 64, because it will give you the sharpest image. If you have a

Commodore monitor, just attach one end of the connector cable supplied

with the monitor to the 8-pole connector on the rear panel of the Commo-

dore 64. Plug the connectors at the other end of the cable into the three

phono jacks on the rear panel of the monitor. If you will be using a

different type of monitor, your dealer will be able to assist you to find the

proper cable.

A TV connector cable is supplied with your Commodore 64 for those

users who will be using a color (or B/W) television set for their display. If

you will be using a television set, insert the phono plug end of the cable

into the phono jack on the rear panel of your Commodore 64, and plug the

other end into the antenna input jack on your television receiver.

You must also connect the Commodore transformer to your computer.

The cable from the power supply is inserted on the right hand side of your

computer (towards the rear, right next to the power switch).

When all connections have been properly made and all shipping pro-

tection has been removed from your disk drive and printer, you are ready

to turn on your equipment. To do this both the switch on the power supply

as well as the switch on the right side of the computer must be turned on.

CHAPTER 1 18 SETTING UP

found demoprogram

After a minute or so the cursor will begin blinking again, indicating that

the loading operation is completed. (You can interrupt the read-in by

pressing the Commdore key <C=>.) You are now ready to run the

demonstration program.

If you have difficulty loading the demonstration program, you can try

the following:

* Turn off the power to the computer and the Datassette, and check

again that the tape recorder is connected correctly. Is the cable intact

and plugged all the way in?

Be sure you are using the correct tape and that it has been rewound all

the way back to the beginning (all the tape should be on the left hand

reel).

When you have checked it.e above points, apply power to start

COMAL up again. Then repeat the read-in procedure.

If you still have difficulty, contact you dealer for assistance.

Using a Disk Drive:

If you have a disk drive, insert the COMAL Demonstration Diskette. The

label should face upward and be on the edge facing you when the diskette

is inserted (see Figure 1.6).

=
n
oO

3

2
o

Write 2

protect _ 7

When covered contents notch
cannot be altered.

Figure 1.6: Handle the diskette carefully. Open the drive door, and insert the diskette into

the drive as shown. Slowly push the diskette all the way into the slot. When the diskette is in

place, close the drive door until you hear it click into place.

Now type:

load "demoprogram”

and press <RETURN>. This instruction will transfer a copy of the

program from the diskette to your computer’s memory. The activity

indicator on the drive should light up, and the drive will operate for a few

seconds.

CHAPTER 1 19 SETTING UP

Whichever means you have used to load the demonstration program,

you can now type run and press <RETURN>. Then sit back, relax and

enjoy the show! Be sure your TV or monitor sound volume is turned up

slightly so music and sound effects can be heard.

 You can interrupt the progtau.. = &
<RUN/STOP> key. .

Be sure to remove the demo diskette and store it in a safe place before

proceding with the next section of this chapter.

If you follow the tutorial in the coming chapters, you will soon be able to
adapt the powerful features of your Commodore 64 with the COMAL
programming language - high resolution color graphics, sprites, sound
and more - for use in your own programs.

‘Preparing a Storage Diskette
Before we proceed to the introductory tutorial in Chapter 2, let's get a

blank diskette ready for storing your programs. This process is called

formatting the diskette. Datassette users won't need to format tapes - that

is not necessary. But tape users may want to read this section anyway to

learn more about diskettes and how they are used.

You should interrupt the COMAL demo program so that you can enter

commands from the keyboard. Press <RUN/STOP>, if you haven't
already done so.

* Be sure that the demo-diskette has been removed and stored away.

* Take a diskette which is unused (or which can be erased). Be sure

that the write protection notch is uncovered (see Figure 1.6). Cove-

CHAPTER 1 20 SETTING UP

Tune the channel selector of your color TV to find the signal. Adjust the

TV receiver for the sharpest possible picture.

If all has gone well, the following message should be present on your

display screen:

$$$ Commodore-64 COMAL 80 rev 2.01 S353

(C) 1984 by UniComal & Commodore

30714 bytes free.

and the blinking cursor will appear 3 lines below the message. If the

sound is turned up on your TV or monitor, you will also hear a signal,

indicating that COMAL is ready to go.

Should any problem arise at this point, turn off your equipment at once.

Check the setup procedure once again. Be sure that the COMAL car-

tridge is inserted correctly and is firmly seated in its socket. Check all

cables and be sure that there is power at the electrical socket. Check your

Commodore 64 Instruction Manual. If problems persist, contact your

Commodore dealer for help.

The Commodore Keyboard
If you are not familiar with the Commodore keyboard, then type anything

at all, just to get used to it. Try out the <SHIFT> and <SHIFT LOCK>

keys. If you should make a typing error, be sure that the <SHIFT LOCK>

key is disengaged, then press the "insert or delete key” marked <INST/

DEL> at the upper right hand side of the keyboard to delete the charac-

ter just to the left of the cursor.
You can also move the cursor around the screen using the cursor

control keys (next to the right hand <SHIFT> key). If the <SHIFT> key

is depressed and you press <INST/DEL> then extra spaces appear,

allowing you to make insertions. Try out the <CLR/HOME > key with and

without the <SHIFT> key engaged to learn what it does.
lf you have a black/white TV receiver or monitor, hold down the

<CTRL> key at the left of the keyboard. Press the letter W at the same

time. Doing this will change the screen and cursor colors, making the

screen easier for you to read. If you are using a color TV or monitor, try

<CTRL> V for a dark blue background and white text. More on color

changes later on!

You might try pressing the Commodore Key <C=> (on the left hand

side of the keybdard) and the <SHIFT> key at the same time. When you

do this you will "toggle” the display back and forth between capitals and

small letters and capitals and graphics characters. Be sure you have
selected capitals and small letters.

CHAPTER 1 21 SETTING UP

Check: Press the keys <A> <S> <D>

The computer prints a Ss d

Press the same keys

again while holding

down <SHIFT>.

The computer prints A Ss D

For the time being, the features described here will be adequate for

proceeding with this tutorial. You will learn about additional facilities, as

we go along. A complete description of the keyboard and the many

features of the COMAL screen editor is available in Appendix D.

Running the Demonstration Program
If your Datassette tape storage unit or your disk drive is connected

properly, you are ready to run programs. Please read the instructions

which apply to you:

Using the Datassette:

If you are using a Datassette unit for program storage, insert the COMAL

Demonstration Tape and type:

load ”cs:demoprogram”

then press the key marked <RETURN>.

Note that if you intend to use the Datassette from now on, you can make it

the default unit by typing in the command:

unit ’cs:”> <RETURN>

Note that a word like RETURN printed within brackets < > means to

press the key with that name instead of spelling out the entire word onthe

keyboard.

The C-64 responds by printing press play on tape on the screen. Be sure

that the tape has been rewound to the beginning then start the tape by

pressing the PLAY button on the Datassette. The computer responds:

ok

searching for demoprogram

The screen will go blank for a moment. When the program has been

located, the following message will be displayed:

CHAPTER 1 22 SETTING UP

ring this notch with a piece of tape prevents formatting or changing

the contents of the disk by saving new files.

Insert the diskette correctly into the disk drive, and close the drive

door, so it clicks into place.

Now type the following instruction:

pass "n0:my diskette,XX”

When you press <RETURN> the disk drive will begin to operate and

continue for about 2 minutes. The disk activity light will go out, when

the formatting process is finished. You can now use this diskette for

storing your programs and files.

A few remarks about the command which you just issued from the

keyboard: pass indicates to COMAL that the subsequent text should be

passed to the disk drive. The letter n is the code for formatting a new

diskette, and 0 means that it should be done on the first of your drives (in

case you have more than one). You are free to choose the <diskette

name> - up to 16 characters. This name (my diskette in this example)

will appear as a heading whenever you catalogue your disk (more about

this in Chapter 2). The last entry XX may be any two characters. It serves

as a diskette identifier code.

Review

Your equipment should now be set up and ready to use. You have

mounted the COMAL cartridge, powered up, and familiarized yourself

with the keyboard. You have also read in a demonstration program and

run it to check out your system.

The program has given you a preview of the impressive potential of this

programming language. Finally, if you will be using a disk drive, you have

formatted a diskette which can be used for storage of programs as you

work through the tutorial chapters which follow.

Chapter 2

Let's get started!

Why learn to program?
The computer is a tool for handling information. Properly programmed,

your Commodore 64 can do calculations, manipulate text, sort data,

collect data, control machines, create images, make sound, and much

more. The heart of the computer is the now well-known component

called the microprocessor If it is connected to sufficient memory and a

means of getting data in and reading data out, we havea microcomputer.

The elementary operations which the microprocessor performs on

individual bytes of data are very simple. Just adding two numbers like

2543 and 9320 together may require the microcomputer to perform hun-

dreds of simple operations. Yet because each operation only takes a

millionth of a second, the job is done in a thousandth of a second!

When you program a computer, it is possible (but by no means neces-

sary!) to work with the fundamental binary numbers used by the proces-

sor. Your Commodore 64 computer uses a 6510 chip. You can use

assembler language if you want to program it directly. More on this

subject is available in Chapter 8.

To make life easier for programmers, higher level languages have

evolved which allow the use of very simple instructions to accomplish a

large number of elementary processor operations. A statement like:

print 2543 + 9320

is an example of a high level instruction.

CHAPTER 2 24 GETTING STARTED

This statement causes the two numbers to be added together and printed

on an output device, say a display screen.

An ideal computer language allows the programmer to group sets of

instructions together to perform more complex tasks and to give thema

new name. For example, it would be nice to have an instruction like

Interest(12535,8)

which could compute the interest accumulated by an investment of 12535

dollars (or pounds) during an eight year period. While everyone using a

computer language will want to add numbers, not everyone will require

this particular procedure. So the ideal language will include a large

number of useful standard procedures and make it easy for the program-

mer to construct his own special ones.

COMAL is such a language. It is a procedure oriented language which

includes many clear and useful elementary instructions for custom buil-

ding your own procedures. Your procedures may be so useful that they

themselves can be used again in other programs or in other procedures

which handle larger tasks. The COMAL operating enviroment makes this

easy and convenient to do. When you have learned the COMAL lan-

guage, you will have a very powerful tool indeed to help you solve a wide

range of problems.

Learning a powerful programming language is an adventure. Adventu-

res can be fun and exciting. But no adventure worthy of the name is

without challenges and pitfalls. The ability to write your own programs

will come only with practice, persistence, curiousity and patience. You

have begun an adventure and must be prepared to go through periods of

trial and testing before you become a seasoned programmer.

Programming is not just for solving serious professional problems. It

can be fun, too! Just ask any programmer after a late evening getting his

own game program to work. The thrill of bringing a program to life after

carefully building it up out of its component parts can be compared to

other highly creative activities. (Don’t ask the programmer about this

before he or she has found the last bug and gotten the program to run!)

Programming can be used for so many purposes that it is impossible to

provide a complete list. Here are just a few; you can probably think of

many more. Properly programmed, your computer can:

play a game with graphics to help children learn

help teach music by showing notes and playing sounds

prepare an expense summary and compare it with your budget

keep sales records for a small business

record and display weather records

make measurements in the lab or on a production line

prepare an income tax return and print it out

help plan and administer a construction project

CHAPTER 2 25 GETTING STARTED

* compute the heat losses from a building

* provide motivating teaching aids to help students learn

A great deal of programming today has to do with games. Since the

earliest days of programming, programmers have loved to use their

machines for ’play”. (Rumor has it that in the late 1960’s Star Trek was the

most popular program at many university computing centers.) When

computer time cost hundreds of dollars an hour, it was aluxury few could

enjoy. Today microcomputer time costs only a few cents per day, so

game programs have proliferated as never before. If you want to play

computer games or write some yourself, then welcome to COMAL. Itisa

fast language with excellent color graphics, sprites and sound effects.

. The possibilities for game programs are endless.

Of the many program types, perhaps simulations are the most fascina-

ting. You can become the pilot of a World War | fighter plane in hot pursuit

of enemy planes. Change the program parameters, and you are pilotinga

747 jet to a landing at Paris, London or New York. Or simulate Charles

Lindberg’s aircraft, the Spirit of Saint Louis on the first non-stop New

York to Paris flight. Even the flight of the Space Shuttle or the Concorde

can be effectively simulated using a microcomputer. With color graphics

and a joystick, such simulations can be strikingly realistic.

But simulations can be much more than this. They can be effective

tools for learning - both for students and for professionals. With simula-

tion programs you can, among many other possibilities, examine:

the financial decisions of a business

the operation of a solar heating system,

the operation of a nuclear reactor,

the motion of charged particles in electric and magnetic fields,

* the orbiting of a satellite,

* or the flight of a rocket.

. Again, for those who undertake the adventure of learning to program the

‘ possibilities are almost unlimited. Limited in fact only by your imagina-

tion and your ability to use the tools which you now own: your Commo-

dore 64 computer and the COMAL programming language. Let’s learn

more about how to use them!

Direct Execution of COMAL Commands
Your computer should have the COMAL cartridge installed and should be

turned on. When you do this the following message should appear on the

screen:

$$$ Commodore-64 COMAL 80 rev 2.01 $38

(C) 1984 by UniComal & Commodore

30714 bytes free.

CHAPTER 2 26 GETTING STARTED

lf this message is on your screen, then you are ready to proceed...

For a starter, try pressing <CTRL>-V to change the screen colors to a

pleasing blue with a white cursor and text. If you’re using a B/W display,

try <CTRL>-W for a grey background and black text.

IF YOU MAKE A TYPING ERROR: You can delete the character just to

the left of the cursor by pressing the <INST/DEL> key at the upper right

of your keyboard. (The <SHIFT LOCK> key must not be depressed

when you do this!) For a complete description of the use of the keyboard

and arun-down on the many editing facilities available with COMAL, see

Appendix D.

The simplest way to start using COMAL is to type some direct instructions

from the keyboard. Try typing:

print “hello”

When you press <RETURN> the word hello should be printed on the

next line on your display screen.

It is important to understand that the computer first processes your

direct instructions when you have pressed <RETURN> giving in effect

an instruction to process the current command line.

Note that instructions may be entered in either lower case or upper case.

(You toggle the display screen between upper case/graphics and lower

case/upper case by pressing the <C=> and the <SHIFT> keys at the

same time.)

We will assume in this tutorial, unless otherwise stated, that the /ower

case/upper case mode has been selected.

You can also do calculations using direct instructions. Try the following

instruction, being careful NOT to press the <SHIFT> key when typing

the + sign:

print 217+305

After pressing <RETURN> you will see the computer print the number

522 on the next line.

CHAPTER 2 27 GETTING STARTED

You can also mix text and numbers in a PRINT instruction as in the

following example:

print "sum =”,217+305

After you have entered the instruction by pressing <RETURN> the

computer will print:

sum=522

Notice that if you give no other instructions, the text and the number will

not be separated by any spaces when they are printed. This can be

changed by using asemicolon; If asemicolon is used as a separator, then

a blank space will be printed to the right of each text segment or number.

You can also arrange the placement of your text and numbers on the

screen using the ZONE instruction. Type:

zone 10

We want to repeat the same instruction used earlier. For awork-saver try

this little trick: Depress the <SHIFT> key and press the cursor up-down

key (just below <RETURN>). Move the cursor up the screen until it is

blinking on the line:

print "sum =”,217+305

Release the <SHIFT> key and press <RETURN> Your instruction will

be executed again. But this time there will be 10 spaces between the start

of the text to the first digit of the number. The ZONE instruction is used to

specify the width of the printing columns when text or numbers are

separated by commas. The default condition ZONE 0 is set when you

start up your system.

You may want to do some experimenting with ZONE and PRINT

instructions before moving on in this tutorial. This is easy to do by using

the cursor keys to move up and down on the screen. Notice that you

needn’t be at the end of a line on the screen for the instruction to be

executed. Notice also that if extraneous text is on the same line, it will be

interpreted together with the instruction you want to execute, and an

error message will result. You can either delete the extra text (CCTRL>-

K will delete everything from the cursor position to the end of the line), or

you can write your instruction on an empty line to avoid this error. You

can also completely erase the screen by executing the instruction PAGE

or by holding down the <SHIFT> key while pressing the <CLEAR-

/HOME> key.
COMAL has many other facilities for handling text and numbers. We'll

be looking at these in much greater depth later on. Before we proceed to

CHAPTER 2 28 GETTING STARTED

write programs, let’s take a quick look at how to use the high-resolution
graphics screen.

A Quick Look at Turtle Graphics
Your Commodore 64 is almost ready to do turtle graphics as soon as you

power up. Just press <f3> to enhance COMAL with the instructions in

the turtle graphics package. When you press <f3> the words USE turtle

will appear on the screen. Then the appearance of your screen will

change. A small arrowhead will appear in the middle of the screen, and

the words USE turtle will now be at the top of the screen with the cursor

blinking on the next line. You are now looking at the sp/it screen with four

lines of text visible at the top. Pressing <f1> will bring you back to the text

screen. If you depress <f5> you will be looking at the graphics screen.

The entire screen can be used for graphics, but you will not be able to see

your instructions as you type them in. Now press <f3> again to get back
to the split screen.

Notice that by means of the USE instruction you have extended the

COMAL language with a set of extra instructions, called a package. As

you will learn, many other packages are available in your COMAL car-

tridge. Much more about packages in Chapter 5!

If you should want to remove the COMAL extensions invoked by the

instruction USE, you can type:

discard <RETURN>

This will remove ALL packages from program memory. (You cannot

remove packages selectively.) Typing new will delete your program and

deactivate all packages as well.

Let's see how the turtle (also called the graphics cursor or the pen

represented by the arrowhead can move around the screen and draw.

We'll use direct commands now but we will write a complete program later
on in this tutorial.

Turtle graphics instructions are so straigtforward that you can learn

how they work just by trying them out. Try typing:

forward(50) <RETURN>
right(90) <RETURN>

Type the same instructions again. You should have a square halfway

finished on your screen. Use these turtle graphics commands again as

needed to complete the square. The turtle should end up pointing

upwards again.

CHAPTER 2 29 GETTING STARTED

Now try the following instructions (remembering to press C<RETURN>

after each) and observe what effect they have on the turtle and the

drawing:

penup

back(50)

pendown

forward(50)

Notice that if your experimentation brings you too far in any direction, the

turtle will show up at the other side of the screen.

Type home to bring the turtle back to the center again, then type

clearscreen to erase the screen. You can also type home;cs on oneline to

accomplish this.

Now try:

left(90)

forward(50)

setheading(45)

forward(70)

What does each instruction do? Do some experimenting yourself to

understand how to move the turtle and make it draw. You might want to

try the following sequence:

for side=1 to 4 do forward(50);left(90)

This example illustrates a unique feature of COMAL: A sequence of

procedure calls or assignments separated by a semicolon can be execu-

ted directly from the keyboard!

To illustrate how COMAL actively assists you as you type in instructions

(if you haven't already noticed this), try making intentional errors while

typing in the previous command:

type: for <RETURN>

Note the computer's response.

type: for = <RETURN>

Note the response.

type: fori = <RETURN>

CHAPTER 2 30 GETTING STARTED

Note response, etc.

Another aid provided by Commodore COMAL is that the error messages

are removed from the screen as soon as you have corrected the error and

pressed <RETURN> or moved the cursor to another line.

Note what each of the following instructions does:

hideturtle

showturtle

If you have a color display you can also experiment with

background(<number>)

pencolor(<‘number>)

where <number> is a color code. See Appendix B for a list of the

graphics color codes.

The table which follows shows turtle graphics instructions with a short

form for each and a brief description. When you give the instruction use

turtle from the keyboard or in a program, all these instructions as well as

all the commands in the graphics package become available for you to

use.

TURTLE SHORT DESCRIPTION

ORDER FORM

back(L) bk(L) move L units backwards

forward(L) fd(L) move L units forward

background(C) bg(C) background color set to C

clearscreen cs clears the graphics screen

home turtle to screen center

hideturtle ht conceals the drawing cursor

showturtle st shows the drawing cursor

pencolor(C) pc(C) sets the drawing color to C

pendown pd cursor leaves a trace

penup pu cursor leaves no trace

left(D) It(D) cursor turns D degrees left

right(D) rt(D) cursor turns D degrees right

setheading(H) seth(H) cursor points to heading H

H=0 is up, 90 is right,etc.

Make careful note of these instructions. We will be using them again in

the program examples which follow.

CHAPTER 2 31 GETTING STARTED

What is a program?
In order for a machine or a computer to do a job, it has to be ’told” howto

do it. In contrast to a human being who can base his actions on skills and

experience, the machine must be given very precise instructions. Not-

hing must be taken for granted. In practice this means writing down a list

of orders, each of which can be interpreted by the computer, describing in

detail the job to be performed.

This could be a very tedious task indeed, if we were obliged to give

details on how to, say, "add two numbers together” each time it had to be

done. This is of course not necessary. When the computer has been

instructed on how to interpret the instruction PRINT x + y where x andy

are any pair of numbers, it can add any two numbers at all (within certain

very wide limits - see Appendix C). The same is true of other operations

we expect the computer to do. A few of the most commonly used

operations:

* adding, subtracting, multiplying and dividing numbers

printing numbers and text

drawing a line from point to point

* making a choice of two paths to follow

* repeating operations a certain number of times,

* selecting different tasks when certain conditions are met,

are defined in a computer language which is relatively easy for human

operators to use. COMAL is special, because this language is regarded

by many as a particularly clear, powerful and flexible language.

Let's try writing a COMAL program to illustrate some of these ideas.

Suppose we want to draw a square on the display screen of the compu-

ter. Even with no prior knowledge of programming, we could write down

a list of the tasks to be accomplished, using everyday English:

“Get the computer ready to use the screen for graphics.

“Describe how far to move and how much to turn to draw a side of the
square.

"Repeat the above step four times to complete the square.

Being a bit more specific, we could express this by writing the following

instructions. We intend to draw a square 75 "units” on a side starting at

the center of the screen. We want the sides of the square to be parallel

with the edges of the screen:

“Set the turtle graphics mode.

“Move the pen forward 75 units, and turn right 90 degrees.

* Move forward 75 units again, and turn right 90 degrees.

* Move forward 75, and turn right 90.

“Move forward 75; turn right 90.

CHAPTER 2 32 GETTING STARTED

When allthis is accomplished, we should have a square on the screen with

the drawing cursor back in its original position. It is usually good pro-

gramming practice to leave the turtle at the end of an instruction

sequence in the same state as it was when the sequence began. This idea

is particularly important when you begin to write COMAL procedures. It

makes things easier when you want to build a program up using "modu-

les” or “building blocks” which must work together to do a job.
Let’s see how the actual COMAL program would look. Note that it may

not be clear at once why certain things are done. As you progress with

this tutorial you will be presented with more thorough explanations to

reveal most of these mysteries!
First be sure you are using the text screen (press <f1> if you have been

using graphics). Be sure that no other COMAL program is in memory

(type new <RETURN>). You will probably want to clear the screen and

move the cursor to the top left side of the screen. Press the <SHIFT> key

and the <CLR/HOME> key at the same time to do this.

If you have trouble getting your computer into text mode with the screen

cleared, there is one sure-fire way of getting things straightened out.

Depress the <RUN/STOP> key and hold it down while pressing the

<RESTORE> key. This action will initialize things without loosing your

program.
Of course you can always turn off the computer power switch, wait a

few seconds, and turn it on again. You should be back in COMAL with

the greeting message on the screen, ready to go, but this solution will

erase your program.

When you prepare a program, the instructions you prepare are not execu-

ted right away. They are stored in memory and only executed when the

program is run. You will find that line numbers are not important in

COMAL except as an aid when entering and editing a program. In fact

you will be able to completely ignore line numbers when your program is

completed.
To make program entry easier, press <f4> to get automatic line num-

bering. (You get this by pressing <SHIFT> and the <f3> key.) COMAL

responds with AUTO Press <RETURN> and automatic line numbering

will be engaged.
The computer should be ready to accept instruction number 0010 Note

that it is usually wisest to number instructions with intervals of 10, so that

there will be room to make insertions in case you discover later on that an

instruction has been left out.

CHAPTER 2 33 GETTING STARTED

To get rid of automatic line numbering or to change it, just press <RUN

STOP> instead of entering a new line. If you then type auto or press

<f4> again, you will be back to automatic numbering at the line you left.

You can add one or two numbers to the AUTO command to change the

starting line and the line number interval. If you type auto,5 <RETURN>

the line number interval will be 5 (the line numbers will continue from

where you were). If you type auto 100,5 then line numbering will start at

line 100 with a line number interval of 5.

Recalling our list of plain English tasks to be performed, we can start with

the COMAL instructions which must be used to prepare the screen for

turtle graphics:

0010 use turtle

Press <RETURN> after each instruction line (although multiple instruc-

tions on the same line separated by ; are sometimes allowed, usually only

one instruction per line is recommended). As you enter program lines,

COMAL prints the next program line number, ready for your next instruc-

tion. Type as follows to continue with our sample program. Use the

cursor keys and the <INST/DEL> key as needed to correct any typing

errors. Feel free to use the abbreviated instructions if you prefer.

0020 splitscreen
0030 forward(75)
0040 right(90)
0050 forward(75)
0060 right(90)
0070 forward(75)
0080 right(90)
0090 forward(75)
0100 right(90)
0110 while key$=chr3$(0) do null

After your experience with the turtle in the last section these instructions

should be easy to understand except perhaps for the instruction in line

number 110. We want to keep the graphics screen visible after drawing

the square. When a COMAL program ends while using graphics, control

returns automatically to the textscreen screen, so that you can see your

instructions as you type. Line 110 makes the graphics screen remain

completely visible until you press any key. When key$ no longer equals

the default value chr$(0) the program will continue beyong line 110.

When the program proceeds beyond this line, there are no more instruc-

tions, so the program will stop.

Try running the program. First press <RUN/STOP> to get out of

AUTO mode. Then type in run When you press <RETURN> your pro-

CHAPTER 2 34 GETTING STARTED

gram will be carried out step by step. This process is called executing a

program.

You can save alittle effort if you want by pressing <f7> instead of typing

in run

Press <f1> to return to the text screen. Change the program and run it

again to see what happens. Try different lengths and different angles to

make other figures. When you have finished experimenting, we'll go onto

look at some additional COMAL instructions.

Notice that pressing the <f3>-key activates graphics mode while disab-

ling the default function of the key. Pressing <f3> again after say a

program stop, does not re-initialize turtle-graphics. Press <CTRL-u> to

reactivate <f3>.

Repeating Instructions
After working with the sample program to draw the square - and perhaps

after trying to draw pentagons and octagons - you may wish it were

possible to repeat a given set of instructions which you want to use

repeatedly. It is indeed possible. This programming structure is called a

loop block and is one of the most important concepts in programming.

There is an easier way to draw a square. Erase program memory using

new <RETURN®> and try the following program:

0010 // program: SQUARE
0020 // by: <your name>
0030 use turtle
0040 splitscreen
0050 for sides:=1 to 4 do
0060 forward(75)
0070 right({90)
0080 endfor
0090 while key$=chr$(0) do null
0100 end // of program

Press <RUN/STOP> to stop auto-numbering then write list to do a listing

of your program. It should Jook like this:

0010 // program: SQUARE
0020 // by: <your name>
0030 USE turtle

CHAPTER 2 35 GETTING STARTED

0040 splitscreen
0050 FOR sides:= 1TO 4DO
0060 forward(75)
0070 = right(90)
0080 ENDFOR
0090 WHILE KEYS =CHRS$(0) DO NULL
0100 END // of program

As you can see, it is possible to add titles, bylines and other comments to

your programs. Just precede them with a //. Such statements are not

executed, but they will appear in your listings. They can also be added

after COMAL instructions in a program line, as in line 100. Notice how

COMAL indents lines 60-70 in the listing to make the structure of the

program clearer. The FOR-ENDFOR construction (50-80) causes lines

60-70 to be repeated four times. Also keywords are capitalized in the

second listing.

Now SCAN your program by pressing <f8> or issue the direct instruc-

tion sean. (This process will also check through your program for errors

in structure and define any procedures in the program.)

Another LIST will show that the variabel name sides has been included

after ENDFOR in the program listing.

You have seen how COMAL edits your programs to provide a clearer

listing. From now on in this tutorial, we will show programs in their final,

edited form. It will, however, probably be easiest for you to continue

typing the programs in lower case. Let COMAL do the extra work of

providing a nice tisting for you!

Try running the program square . Press any key to stop the program, then

press <f1> to return to the full text screen. No let us try som changes to

see what happens. Can you alter the program to cause it to draw a

_ hexagon (6 sides) or an octagon (8 sides)? When instructions are to be

repeated many times, the FOR-ENDFOR construction becomes particu-

larly useful. Can you adapt the program, so the turtle draws a figure

which is close to being a circle?

You may have noticed that in order to complete a polygon and end up

facing in the same direction as when it started, the turtle must turn a total

of 360 degrees. (Those of you who are familiar with the computer

janguage Logo, which also uses turtle graphics, may recognize this

principle as the Total Turtle Trip Theorem.) Soto drawa regular polygon

with number sides, the turtle must turn 360/number degrees at each

vertex.

CHAPTER 2 36 GETTING STARTED

It is of course possible to adapt this program so that it will draw a polygon

with any number of sides we choose. To do this we will have to indicate

the number of sides desired and the length of a side by means of INPUT

statements. Erase program memory (new <RETURN>, and try entering

the following program:

0010 // program: polygon
0020 // by: <your name>
0030 PAGE // clear the screen
0040 INPUT "How many sides? ": number
0050 INPUT “Length of each? ”: length
0060 USE turtle
0070 splitscreen
0080 FOR sides:=1 TO number DO
0090 = forward(length)
0100 = right(360/number)
0110 ENDFOR sides
0120 WHILE KEY$=CHRS(0) DO NULL
0130 END // of program

Note that the program is shown here as it would be listed. You can enter

the program in lower case and without indentation, if you wish. Run it to

be sure it works as expected.

COMAL Procedures

Procedures are modules or building blocks which you can create to make

your programming easier. There is a line in the program polygon which

lends itself to being redone as a procedure. You can make your program

easier to read and easier to understand by creating a procedure. This

technique becomes very important when you begin to write longer pro-

grams!

Notice that the use of /ine numbers in COMAL is quite different from their

use in other line-oriented languages such as BASIC. In this respect

COMAL is much more akin to Pascal. Use the RENUM instruction often

to "clean up” your program. Because few COMAL instructions ever refer

to aline number, you can pay much less attention to them. In general itis

probably best to group your program instructions into three sections:

beginning

program name, date, comments,

dimensioning of variables,

setup of packages, etc.

CHAPTER 2 37 GETTING STARTED

middle
the main program sequence
consisting mainly of

procedure calls

end

collection of your procedures

called by the main program

Take a look at your program. Consider statement number 120:

0120 WHILE KEY$=CHRS$(0) DO NULL

used here as in the program square to keep the graphics screen visible

until any key is pressed. It could be made into a procedure to keep it from

cluttering up the main program:

0140
0150 PROC wait’key
0160 WHILE KEY$S=CHR3(0) DO NULL
0170 ENDPROC wait’key
0180

Notice here that we have called the procedure wait’key The apostrophe’

is needed to bind the two words describing the procedure together into

one continuous string of characters with no blanks. If this is not done,

COMAL will only interpret the letters before the first blank as the proce-

dure name, and an error message will result when COMAL tries to exe-

cute the procedure.

Add this procedure to your program, and replace line 120 by:

0120 wait’key

Now list the procedure (a little trick: use <f6> <RETURN> to do this).

Notice the following features of the COMAL listing:

* The LIST instruction indents instructions in the procedure, setting

the procedure apart and making the program listing easier to read.

* The procedure must be terminated by ENDPROC. If the program has

been SCANned or RUN, then COMAL includes the name of the

procedure in the ENDPROC instruction, if you have not already done

So.

* The blank lines in lines 140 and 180 are not required. They are

included to cause this procedure to be separated more clearly from

others when the program is listed.

CHAPTER 2 38 GETTING STARTED

The program polygon could be improved further by creating a procedure

out of the statements which actually draw the polygon.

The polygon procedure might be typed in like this:

1200 proc polygon(number,length)
1210 for sides:=1 to number
1220 torward(length)
1230 right(360/number)
1240 endfor
1250 endproc
1260

When you SCAN and then LIST the procedure, it should appear as

follows:

1200 PROC polygon(number,length)
1210 FOR sides:=1 TO number DO
1220 forward(length)
1230 right(360/number)
1240 ENDFOR sides
1250 ENDPROC polygon
1260

There are a few things you should notice about the listing:

* The procedure name is followed by two variable names (number,

length), indicating that the procedure will require values for the

number of sides and the length of each side. A procedure need not

have any variable list after its name (like the procedure wait’key. Itcan

have one, two or more indicated, as shown here.

Again we must cai// the procedure before it can be executed. The original

program must be changed, so it looks like this when RENUMbered and

LISTed:

0010 // program: polygon
0020 // by: <your name>
0030 PAGE
0040 USE turtle
0050 splitscreen
0060 INPUT ”How many sides? ”: number
0065 INPUT ”Length of each? ”: length
0070
0080 // MAIN PROGRAM
0090 polygon(number,length)
0100 wait’key
0110 END // of MAIN PROGRAM
0120
0130 PROC wailt’key
0140 WHILE KEY$S=CHRS(0) DO NULL

CHAPTER 2 39 GETTING STARTED

0150 ENDPROC wait’key
0160
0170 PROC polygon(number,length)
0180 FOR sides:=1 TO number DO
0190 forward(tength)
0200 right(360/number)
0210 ENDFOR sides
0220 ENDPROC polygon
0230

As already mentioned, you can check your program before RUNning or

LiSTing it by using the SCAN instruction. (Type scan <RETURN> or just

press <f8>. When you do this, COMAL will check the program structure

and "learn” the procedures you have defined. If you subsequently writea

defined procedure name as a direct instruction, it will be executed. This

allows you to check your procedures one by one. This is areal advantage

when "debugging” a program!
A few more remarks are in order: We have used the general structure

described earlier with adistinct beginning, middle and end ofthe program.

The input data is defined in lines 60 and 65, the main program is just a few

lines long (80-110), and the procedures are placed at the end of the

program.

in line 90 the procedure polygonis called. The two numbers in parenthe-

ses following the procedure name are the two variables which the proce-

dure needs to draw the polygon. They need not havethe same namesasthe

variable names in the procedure, although they happen to in this case. Itis

important, however, that they are in the same instruction.

A remark is also in order about the line:

0190 END // of MAIN PROGRAM

This line is not necessary to stop the program. ACOMAL programwillstop

when there are no more lines to executeinthe main programsequence. Itis

included hereto make thestructure of the main program sequenceclearer.

This is largely a question of programming style. You will have strong

opinions about such matters as you gain programming experience!

Saving Programs and Procedures

You may want to save your work now that we have begun to write programs

which could be used again later. Please follow the instructions which apply

to you:

Using a Datasette Tape Unit:
To save your program polygon on tape, proceed as follows:

CHAPTER 2 40 GETTING STARTED

Place a cassette tape in your tape unit and be sure it is rewound to the

beginning.

CAUTION If your tape has a /eader with no magnetic coating on the first

few inches of the tape, advance the tape for a fewseconds. Otherwiseyou

run the risk of not recording the first part of your program.

Type the following direct instruction on your keyboard:

save "cs:polygon” <RETURN>

The message Press record & play on Tape will appear on your screen.

Press RECORD and PLAY on your Tape Unit. Saving ashort program

like polygon should only take about 15 seconds.

When your program is being saved, the screen will be blank.

When your program has been saved, the message:

program saved

should appear.

It is strongly recommended that you repeat this process, making a

second backup copy. It will probably be most convenient to do this on

the other side of your tape if you use 10 or 15 minute data cassettes. If

you use longer tapes, it will probably be best to do it right after the first

recording, to avoid the time-consuming rewind.

Most experienced programmers save their program file every 15 minutes

or so while working. It’s a good idea to save your program whenever you

have completed morethan you would care to lose in case of apower loss or

other accident. Itis wise tosave 2 working copies: the current copy andthe

previous copy. With ataperecorder you mightdo this by reversing sides of

your short data tape every time you save your program. That way, if

something goes wrong (a power down during the save could be bad

news!), you can read in the previous version to get things moving again.

When your program is completed and de-bugged, then you would want

tomake atleast twocopies of the final working version: anoriginal working

version and a backup.

Now /fabel your tape, so you know what you have! This takes a few

seconds extra time now, but it could save you a hassle later, looking

for a ’missing program’.

Using a Disk Drive

You will need to use the storage diskette which you prepared earlier. If

CHAPTER 2 41 GETTING STARTED

you didn’t do this, follow the directions for doing so in the last section of

Chapter 1. Then proceed as follows:

*

*

Insert the storage diskette into the disk drive.

Now type the folowing command on your keyboard:

save "polygon”

The drive activity light will go on, and the drive motor will be audible

for a few seconds as a copy of your program is saved to the diskette.

You are free to use whatever name you wish (up to 16 characters). Of

course it is wise to choose names which are descriptive and make it

easy for you to find your programs again. Also, it’s a good idea to

include the program file name as one of the first lines of your program

in a remark statement.

To be sure that your program file has been saved as planned, type dir

(or cat) and press <RETURN> This will show you a directory (or

catalogue) of what’s stored on the diskette, how many blocks each

program takes up (1 block = 256 bytes), and how many blocks are

unused (XXX blocks free.).

An extra backup copy of all important programs should always be

made on another diskette... just in case! And while you are devel-

oping a program, make a copy of the most recent version every 15

minutes or so to avoid loss of work in case of a power failure or other

unexpected event! It is best to have two recent copies stored, just in

case.

Be careful to /abel your diskettes (do it at once!). That way you havea

better chance of finding your programs again. Once you start writing

lots of programs, your diskettes will multiply like mice!

It is also possible to save your procedures individually. This can be

done using a form of the LIST instruction. It is described in connec-

tion with the discussion of more advanced file handling in Chapter 6.

REVIEW

In this chapter you have been presented with information to help you:

issue instructions directly from the keyboard

correct typing errors

use the cursor control keys

use turtle graphics

write simple programs using procedures

use automatic line numbering

use a Datassette tape unit or a disk drive for storage

You should have made a special note of the following concepts:

*

*

6510 (6502) microprocessor code

high level language instructions

CHAPTER 2 42 GETTING STARTED

direct execution vs. programmed (deferred) execution

the total turtle trip theorem

printing of text and numbers on the text screen

calling of procedures

using procedures with variables

using a simple loop block

+
e
e

OF

The following COMAL instructions and keywords have been presented in

this chapter:

* PRINT <text or numbers>

"ZONE <spacing>

forward(<steps>)

" back(<steps>)

" right(<degrees>)

" left(<degrees>)

penup

pendown

*" USE <package>

clearscreen

home

splitscreen

showturtle

* hideturtle

pencolor(<color>)

background(<color>)

setheading(<degrees>)

* WHILE - DO loops

* KEYS - (checks the keyboard buffer)

* —CHRS$(0)

AUTO - (for automatic program numbering)

RUN - (to execute a program)

END - (to mark the end of a program)

// - (to insert remarks in your program)

* FOR - DO - ENDFOR loops

* INPUT ”<input prompt>”: <variable list>

NULL - an instruction which does nothing at all!

If you have worked through this chapter, you should be prepared for the

more advanced description of COMAL programming which follows inthe

coming chapter. It can be helpful to keep in mind that programming can

really be boiled down to three fundamental elements:

“Action blocks are groups of instructions which input data, perform

calculations, draw a picture, output data or carry out some other

process in the program.

CHAPTER 2 43 GETTING STARTED

* Loop blocks are groups of instructions which are repeated a number

of times. The FOR - DO - ENDFOR sequence and the WHILE - DO

construction are two of several types of loop blocks available in

COMAL.
Branch blocks are instruction sequences which include decisions

about which instructions to carry out next. You will learn more about

this type of instruction in the next chapter.

Chapter 3

Programming with COMAL

This chapter is intended to serve as an introduction to how to use COMAL

for writing programs. COMAL concepts are introduced step by step

without treating each concept in depth at this stage. Examples are provi-

ded to illustrate each new concept. We will carefully comment on selec-

ted programs to explain how they operate.

We have attemped to select the examples so that they not only treat

selected COMAL topics but also illustrate your Commodore 64’s many

facilities. Some examples have been chosen to provide a more through

treatment of earlier mentioned COMAL statements. This chapter pro-

gresses from quite easy to more advanced programming techniques. The

concept of the a/gorithm is introduced late in the chapter, and we have

made a special effort to illustrate the power of COMAL'’s structured

programming aids.

It is not our intention that you should be satisfied after trying our

program examples and exercises. They should be considered to be

guideposts to help you find your way as you begin to use COMAL. There

is a great deal to be explored. Don't be afraid to strike out on your own to

experiment with your own programs. You can return to the tutorial and

follow it again after satisfying your curiousity. Many other books about

COMAL are becoming available. Try out programs you find there or in

users’ group publications. More and more articles on COMAL will appear

in popular computer magazines as news of this exciting language spre-

ads. The best possible way to become proficient at this language will be

to use it to write programs which can help you in your education, profes-

sional work or for entertainment.

Acquire Good Programming Habits
Everyone who writes programs will sooner or later develop his or her own

programming 'style’. Inthe beginning, however, it can be helpful to follow

a few guidelines. You may want to keep the following points in mind when

you set out to solve a new programming problem:

* Type new to delete any earlier program from working memory.

* Then type auto or auto 100 to engage automatic line numbering.

“Go right ahead with the main program. Express the problem to be

solved as a list of ‘procedures’ to be carried out. it may be a good idea

CHAPTER 3 46 PROGRAMMING

to include them in a LOOP...ENDLOOP structure, if they are to be

repeated again and again. Don't worry too much about making errors.

COMAL’s flexible editing facilities will make it easy to straighten

things out later.
When the structure of the main program sequence is clear, procede to

begin writing the individual procedures. If a particular task is com-

plex, break it down into smaller procedures. This technique is called

‘top-down’ design.
LIST your program often to be sure that it looks like you expect it to.

This will not always be the case! Use renum to make room for extra

instructions if necessary. Don't worry about line numbers. Use

renum often to clean things up.

As your program nears completion, or you have completed a large

procedure, execute a scan of your program to check for correct

structure.
After listing and scanning correct possible errors using the COMAL

editing instructions. Check Appendix C for further information on

how this is done. Be careful to make backup-copies of your program

from time to time; this is quick and easy to do using COMAL.

When your program appears to be error-free, try it out by typing the

instruction run. Most often the program can be stopped again by

simply pressing <RUN/STOP>. If this doesn’t work, try pressing

<RUN/STOP> and <RESTORE> (corresponding to "reset”).

When your program is completed and checked, save a copy on your

diskette or tape for use later. The instruction save ”<program-

name>" can be used if you have a disk drive, or use save "cs:<pro-

gramname>” for a Datassette tape unit. (Don’t forget to make a

backup!)

Please note that in the following pages all programs are shown as they

will appear after a scan has been issued. During program entry you need

not worry about upper/lower case (except of course in text names). Nor

do you need to include extra blanks to emphasize program structure.

The COMAL system will take care of this for you when you scan the

program.

A First Calculation
The first example illustrates how the computer handles numbers:

Program 1:

new

auto 100

CHAPTER 3 47 PROGRAMMING

0100 // compute an average
0110 numbera:=7

0120 numberb:=15

0130 average:=(numbera+numberb)/2
0140 PRINT ”The average of the numbers”
0150 PRINT numbera;”and”;numberb
0160 PRINT "is”;average
0170 END

After entering the program check it using sean and list. Correct any

errors.

Type run then press the <RETURN>-key (or just press <f7>).

Notes about Program 1:

_ The two // slashes in line 100 indicate, that the line is a comment line

which the system will not process.

Computers “remember” numbers and other quantities by means of

variables: A variable is a name which can represent a numerical value.

Program 1 contains 3 variables: numbera, numberb and average.

In line 110 the variable numbera is assigned the value 7, and in line 120

the variable numberb is assigned the value 15. Thus variables are given

values by means of the COMAL assignment operator :=. The symbol :=

is also called a dynamic equals sign.

If you use an ordinary equality sign = when typing in a program, the

COMAL system will replace it by the dynamic equals sign after a SCAN or

RUN instruction has been executed.

A variable name must always begin with a letter and may consist of a

maximum of 80 characters (i.e. letters, numbers or special characters). If

a name is terminated with +, $ or (), it has special meaning, as will be

clarified later. The symbols a, a#, a$ and a() are all considered to

_ represent the same name within a given context.

In line 130 the expression (numbera+numberb)/2 (meaning add num-

bera and numberb, and then divide the sum by 2) is calculated. Then this

value is assigned to the variable average.

NB: The instruction of the variable and the expression is important. The

expression on the right hand side of the assignment operator is computed

first, then the variable on the left is assigned this value.

Reversing the instruction of the variable name and the expression will

cause an error message to appear when the program line is entered.

Lines 140 to 160 display the result using PRINT statements. Notice how

easy it is to combine numbers and text on the screen.

In line 140 the text between the quotation marks is printed.

In line 150 the value of numbera is printed first. Then comes the text

and, and finally the value of numberb. Notice the use of the semicolon (;)

CHAPTER 3 48 PROGRAMMING

between the numbers and the text. The semicolon is not printed, but it is

needed as a separation mark between the different parts of the line.

In line 160 the text is followed by the value of average is printed.

Note in connection with this example that:

* The printout starts on a new line after each PRINT statement.

* It is not the name of a variable but its value which is printed.

In line 170 the program is terminated by the statement END.

Exercises:

1. Modify the program, so that numbera is assigned the value 5.

2. Try other values for numbera and numberb.

3. Add a new line to the program:

105 PAGE

What effect does this instruction have?

4. Place a semicolon (;) at the end of each of the lines 140- 160. RUN the

program, and note that ; yields one space between items.

5. Try to write a program which computes the average of three numbers.

Be sure that the printout is correct.

The Input Statement
In the previous example we saw a program in which the computer did a

numerical calculation and printed out the result on the screen. In order to

compute the average of two numbers, it was necessary to change two

lines in the program when each new average was to be calculated

Now we will see how to change these lines once and for all so that the

program can compute the average of any two numbers we choose with-

out changing the program every time.

Program 2:

Program 2 is available on the demo diskette. You can copy it into working

memory by using the instruction load ”Program 2”, or type it in as follows:

new
auto 100

0100 // computing an average
0110 INPUT ”Enter the 1. number ”: numbera
0120 INPUT ”’Enter the 2. number ”: numberb
0130 average:=(numbera+numberb)/2
0140 PRINT "The average of the numbers”
0150 PRINT numbera;”and”;numberb
0160 PRINT "is”;average
0170 END “end!”

}

CHAPTER 3 49 PROGRAMMING

Check that the program is correct, then execute it using the command
RUN.

List the program and notice how using the INPUT statement allows the

program variables to be assigned a value while the program is being run.

Thus itis not only possible to print out variable values from a program,

but also to read values into a program.

Notes:

* Program execution is stopped by an INPUT statement until the user

responds. In Program 2 itis necessary to type in anumber in response

to each INPUT statement followed by a <RETURN>.

* The text of the INPUT statement must be terminated by a colon (:)

before the variable. All other characters will result in error messages.

Exercises:

1. Add a line with the instruction PAGE to the program, so the screen is

cleared at the beginning of a run.

2. Itis also possible to send the output to a printer, if available.

Add the lines

135 SELECT OUTPUT "Ip:”

165 SELECT OUTPUT “ds:”

Run the program again and see what happens.

Line 135 directs the output to the printer, and line 165 brings output

back to the display screen.

3. Write a program which computes the average of 3 numbers. The

numbers should be read in using INPUT statements.

Circles

The output from a program can also be in the form of adrawing. The next

program draws circles.

CHAPTER 3 50 PROGRAMMING

Program 3:

new
auto 100
0100 // circles are drawn
0110 PAGE
0120 INPUT "Enter the 1. radius ”: radlusa
0130 INPUT ”Enter the 2. radius ”: radlusb
0140 sumradius:=radlusa+radiusb
0150
0160 USE graphics
0170 graphicscreen(1)
0180 circle(160,100,radlusa)
0190 circle(160,100,radlusb)
0200 circle(160,100,sumradlus)
0210
0220 WHILE KEY$=CHRS(0) DO NULL
0230 END

Check the program to be sure it is correct, then run it.

The program consists of an input section and a calculation section

which is separated from the printout section by the empty line 150. Empty

lines can be useful for separating various parts of a program to make the

program structure clearer.

Lines 160 and 170 are necessary to prepare the computer for doing

graphics.

Lines 180-200 draw 8 circles all of which have their centers at screen

coordinates (160,100), i.e. about in the middle of the screen.

The radii of the three circles are obtained in lines 120-140. If the radius

exceeds 99 units, the circle will overlap the edge of the screen.

The statement in line 220 is described in Chapter 2. Its purpose is to

keep the graphics screen visible until the user presses any key.

The function KEY$ is useful for reading in characters from the keyboard

while a program is running. We will treat this function again later.

Note:
It may turn out that the “circles” look more like egg-shaped curves than

circles. This phenomenon is due to the adjustment of the screen displays

height/width ratio. If an adjustment is available, you may wish to make

use of it so that circles appear correctly on the screen.

Exercises:
1. Correct the program so that the third circle is drawn with a radius

equal to the difference between the two radii. You should also change

the name of the variable sumradius!
Experiment with the use of other arithmetic operations in line 140.

Move the centers of the circles.
Add instructions so that more circles with other radii and centra are

drawn.

f
o
n

CHAPTER 3 51 PROGRAMMING

5. The center of the circles can also be read in as an input statement.

For example add the line:

135 INPUT ”Center: X,Y = ”: xc,yc

Correct lines 180-200 to:

180 circle(xc,yc,radiusa)

190 circle(xc,yc,radlusb)

200 circle(xc,yc,sumradius)

Run the program.

Note that it is necessary to respond with two values separated by a

comma (,) in the new INPUT statement.

6. The circles can be filled with colors. Use the instruction flll(x,y) to do

this, where (x,y) must be the coordinates of a point inside the closed

figure which is to be colored in.
For example if Program 3 is extended with the lines:

202 pencolor(2)

204 fill(160,100)

the innermost circle will be colored red. Try it!

7. Try to color other regions of screen by changing the coordinates in

line 204.

For example change line 204 to:

204 fill(0,0)

What happens?

8. Nowtry to color other areas on the screen. Change the number in the

pencolor instruction in line 202 to employ other colors. See the color

code table in Appendix B.

Procedures |

When writing extensive COMAL programs, it is particularly important to

make use of procedures:

A procedure is a "subprogram” which can be called from the main

program or from another procedure. It can perhaps best be illustrated by

means of some examples. Program 4 is available on the demo diskette

* (and tape), or it may be typed in:

Program 4:

new
auto 100

0100 //filled circles and squares
0110 start’graphics
0120 draw’square(10,10,300,180,brown)
0130 draw’'circle(160,100,70,yellow)
0140 draw’square(100,50,50,50,purple)
0150 draw’circle(125,75,20,orange)
0160
0170 WHILE KEY$=””" DO NULL

CHAPTER 3 52 PROGRAMMING

0180 END
0190
0200

0210 PROC start’graphics
0220 USE graphics
0230 graphicscreen(1)
0240 brown:=8
0250 =yellow:=7
0260 purple:=4
0270 orange:=10
0280 ENDPROC start’graphics
0290

0300 PROC draw’square(xmin,ymin,xslde, yside,color)
0310 pencolor(color)
0320 moveto(xmin,ymin)
0330 draw(xside,0)
0340 draw(0,yside)
0350 draw(-xside,0)
0360 draw(0,-yside)
0370 = xpoint:=xmin+.5*xside
0380 ypoint:=ymin+.5*yside
0390 __—spaint(xpoint,ypoint)
0400 ENDPROC draw’square
0410

0420 PROC draw’circle(xcenter,ycenter,radius,color)
0430 _ ~=pencolor(color)
0440 circle(xcenter,ycenter,radius)
0460 ENDPROC draw’circle

Run the program; afterwards we'll take a look at how the program works.

Program 4 consists of:

The main program (lines 100-180)

Three procedures:

start’graphics (lines 210-280)

draw’square (lines 300-400)

draw’circle (lines 420-460)

Notice that a procedure is called by its name, sometimes followed by

parentheses with a list of parameters to be transferred to the procedure.

The procedure itself is built up as follows:

PROC <name>(<a>,,<c>....)

<statement 1>
<statement 2>

ENDPROC <name>

CHAPTER 3 53 PROGRAMMING

Recall that sharp brackets < > around aword mean that the word and the

brackets can be replaced by names or statements of the users choice:

E.g. <name> could be replaced by the name start’graphics, printout or

something else describing the purpose of the procedure. The notation

<statement no> stands for a valid COMAL statement.

The main program consists of a comment line followed by 5 lines which

all call procedures.

In line 110 the main program just calls the procedure with the name

start’graphics, and the computer proceeds to execute the statement in

this procedure.

When the computer has carried out the statements in the procedure, it

. returns to the main program and goes on to the next line.

In line 120 the procedure with the name draw’square is called. In this

case it is not only called by name but also with a pair of parentheses

containing some numbers. The numbers are separated by commas (,).

There must be exactly just as many numbers in the call as there are

variables in the parentheses following the procedure name.

draw’s quare(10 ,10 ,300 ,180 ,brown)

PROC draw’square(xmin,ymin,xside,yside,color)

Notes:

* The variable brown has the value 8. It received that assignment during

the execution of the procedure start’graphics.

* During the execution of draw’square the procedure will use these

values:

xmin:=10

ymin:=10

xside:=300

yside:=180

color:=brown (:=8)

* Now the computer can carry out the instructions in the procedure

draw’square, for the values of all variables are now available.

* The procedures draw’square and draw’clrcle consist of a sequence of

graphics instructions. Use the index to find detailed descriptions of

these instructions.

* Next the procedure draw’square computes the midpoint of the square

in lines 370 and 380.

* When the computer has completed execution of the procedure

draw’square, it returns to the next line in the main program.

* In line 130 the procedure draw’circle is called then executed.

* In lines 140 and 150 the procedures are called again, but this time

other parameter values are used.

* A procedure can be called many times with various parameter values

if desired. This is one of the great advantages of using a procedure.

CHAPTER 3 54 PROGRAMMING

Exercises:

1. Try to move the circles and squares around the screen by changing

the two first numbers in the procedure calls. These numbers stand,

respectively, for the center of the circle and the lower left corner

coordinates of the square.

For example try moving the last square and circle into the middle of

the screen:

140 draw’square(135,75,50,50,purple)

150 draw’circle(160,100,20,brown)

2. The lengths of the sides of the squares can also be changed. Change

the circles’ radii.

3. Add other colors. See the color codes in Appendix B.

4. Other circles and squares can be drawn by adding new program lines

to the main program containing procedure calls. Try it.

5. Try writing a procedure yourself which can draw a triangle and fill it

up with a color. Add a program line which calls your procedure.

COMAL and text

The next example, Program 5, is also composed of a main program which

calls two procedures:

Main program (100 - 160)

Procedure read’in (190 - 260)

Procedure printout (280 - 460)

Before we enter and try out this program, we must be familiar with the

concept of a string.

A string constant is a text enclosed in quotation marks. E.g. “John”,

"billing code” and "he has 7 seals”.

So far all the variables we have worked with have been number varia-

bles. It is also possible to define variables which contain sequences of

letters, special characters and digits. Such variables are called string

variables.

String variables can always be recognized because they end with a

dollar sign ($). Examples of string names are:

name$, city$, country$

When a string is to be assigned a value, a declaration statement must

occur early in the program to assure that enough room is reserved in

memory for the string. This is also refered to as dimensioning the string

variable.

CHAPTER 3 55 PROGRAMMING

Examples:
DIM name$ OF 20 (room for up to 20 characters)

DIM city$ OF 25 (room for up to 25 characters)

DIM country$ OF 40 (room for up to 40 characters)

Now the string variables may be assigned text values (string contants):

name$:="Jonathan Doe”

city$:=”"London”

country$:="England”

Notes:
*

*

Text must always be enclosed between quotation marks (”).

The text need not be as long as the maximum space specified in the

declaration statement.
A text variable can contain both large and small letters, spaces, digits

and certain special characters (,./<>?14$%’+-:;=). On the Commo-

dore 64 it can also include the graphics symbols. When we refer to

characters we mean any of the above.
In Program 5 we will practice the use of procedures and learn more

about strings and string variables. In addition we will also try using

the semigraphics characters of the computer. They can be seen on

the front side of most keys. See Appendix D for more about the use of

the keyboard.
Pay particular attention to the procedure printout if you will be

typing in the program instead of reading it from the demo diskette or

tape:

Line 310: 2 spaces and 36 <C= o> characters.

Line 320: 2 spaces, 1 <C=j>, 34 spaces and1<C=I> character.

Line 400: 2 spaces and 36 <C= u> characters.

(NB: <C= o> means: hold down the Commodore key, while pressing

the o-key.)

' Program 5:

new

auto 100

0100 // read’In and print’out of text
0110 DIM name$ OF 25
0120 DIM from$ OF 25
0130 DIM text$ OF 30
0140 read’ in
0150 printout
0160 END

0190 PROC read'ln
0200 PAGE

CHAPTER 3 56 PROGRAMMING

0210 PRINT "Write a message:”
0220 INPUT "The letter is to ": name$
0230 INPUT ”The letter Is from ”: from$
0240 PRINT "The message can fill one line.”
0250 INPUT "Start here:”: texts
0260 ENDPROC read’in
0270
0280 PROC print'out
0290 PAGE
0300 PRINT
0310 PRINT” ”
0320 PRINT” !
0330 PRINT” !
0340 PRINT” |
0350 PRINT” ! i
0360 PRINT” | ‘ a

!
t
!

0370 PRINT”
0380 PRINT”
0390 PRINT”

0400 PRINT” 4
0410 PRINT AT 4,6: "To ”:sname$
0420 PRINT AT 6,6: text$
0430 PRINT AT 6,6: "Best regards”
0440 PRINT AT 9,6: from$
0450 CURSOR 20,1
0460 ENDPROC print’out

In the main program the first statements declare the variables name$,
from$ and text$. Then the procedure read’in is called. It allows for the
input of values for the text variables.
When the read-in procedure is completed, the computer returns to the

main program. In the next line execution is directed to the procedure
printout, which prints out the message inside a frame.

Notes:

* A new version of the PRINT statement is used:

PRINT AT <line>,<column>.
E.g. in line 440, where the from$ text is specified to begin on line 9, in

column 6. This syntax makes it possible to place text or numbers
anywhere on the screen.

* Line 450: CURSOR 20,1

CURSOR <line>,<column> places the cursor anywhere on the

screen, but no message is printed.

* See also INPUT AT, which is used in Program 10.

Exercises:
1. Run the program a few times with different messages to get an idea of

how the program operates.

2. Ifa printer is available, one can get a hard copy of the text screen by

pressing <CTRL P>:

CHAPTER 3 57 PROGRAMMING

When the program has finished running, and the text is ready on the

screen, press P while holding down the <CTRL>-key.

3. Try revising the program so that text variables can be read in and

printed at various positions on the screen.

Here is a BRIEF REVIEW of the foregoing information on strings and text:

1. A computer can work with numbers or with words. This is done

using number variables and text variables. Text variables can be

recognized because they always end with §.

2. Variables can be given values:

* by assignment statements :=

* in parentheses in procedure calls

3. Text can be written on the screen by means of PRINT statements. (It

can also be done in other ways, e.g. in the text segment of an INPUT

statement, as we have seen.)
4. Drawings can be made on the screen using graphics instructions

from the graphics packages (use graphics or use turtle), or by means

of the semigraphics character set, whichis shown on the front of the
keys.

5. If a program is more than a few lines long, it should be composed

using procedures. A procedure is a 'sub-program’ which can be

used many times from the main program or from other procedures.

We'll be studying more on the use of procedures later in this chapter.

Branching. Conditional Execution
The computer can also distinguish between expressions, which are true

or false. Such expressions are called logical expressions. Some exam-

ples:

7=2 is a logical expression, which both we and the computer

would consider false.

23<54 is a true logical expression.

Whether or not the logical expression number>10 is true or false can not

be determined before we know the value number.

COMAL contains the two logical constants TRUE and FALSE, which

have numerical values 1 and 0 respectively.

In the following examples we have illustrated how the computer can be

made to execute various statements according to whether a logical

expression is true or false.

CHAPTER 3 58 PROGRAMMING

Program 6:

new
auto 100

0100 // find the maximum
0110 PAGE
0120 PRINT "The maximum of two numbers:”

0130 PRINT
0140 INPUT Write the 1st number ”: a
0150 INPUT ”’Write the 2nd number ”: b
0160
0170 maximum:=a
0180 IF maximum<b THEN maximum:=b
0190
0200 PRINT
0210 PRINT "Maximum is ”;maximum
0220 END

The new construction occurs in line 180: IF - THEN

It is an example of a branch, also called conditional execution. In this

case the construction means:

"IF the variable maximum is less than the variable b, THEN maximum is

set equal to b”.

The computer evaluates the logical expression maximum<b.

IF it is true, the computer will execute the statement following the

instruction THEN. This is often described by saying: the condition bet-

ween IF and THEN must be fulfilled.

If the condition is not fulfilled, the computer simply proceeds on to the

next program line.

It is often the case, however, that it is desirable to have several state-

ments executed when the condition is fulfilled, while other statements

should be executed if it isn’t. This situation is handled in COMAL by using

a new structure:

IF - THEN - ELSE - ENDIF.

IF <condition> THEN
<statement 1>
<statement 2>

ELSE
<statement a>
<statement b>

ENDIF

CHAPTER 3 59 PROGRAMMING

Lines 170 - 180 in Program 6 could thus also be written as follows using

this 1F-construction:

170 IF a<b THEN
172) maximum:=b
174 ELSE
176 maximum:=a
180 ENDIF

Program 7:

new
auto 100

0100 // right or wrong
0110 DIM text$ OF 10
0120 PAGE
0130 PRINT "Guess my number: 1, 2 or 3”
0140 INPUT "Try your luck ”:answer
0150
0160 RANDOMIZE
0170 my’number:=RND(1,3)
0180
0190 IF answer=my’number THEN
0200 _ =text$:=”"CORRECT”
0210 ELSE
0220 _—ittext$:=" WRONG”
0230 ENDIF
0240
0250 PRINT
0260 PRINT "My number was ";my’number
0270 PRINT "The guess was ”;answer
0280 PRINT
0290 PRINT "So the guess was ";text$
0300 END

Notes on this program:

* Lines 190-230: Note the IF - THEN - ELSE - ENDIF structure, descri-

bed earlier.

* Lines 160-170: the computer is able to generate a random number

with the instructions RANDOMIZE and RND:

RANDOMIZE causes the computer to position a pointer at a "ran-

dom’ position in an array of random numbers. (The present COMAL

version executes an automatic RANDOMIZE even if the statement

RANDOMIZE is left out.)

In my’number:=RND(1,3) the variable my’number is set equal to a

random (RaNDom) value 1, 2 or 3.

The range of numbers can be changed. E.g. RND(-10,10) will

randomly generate one of the numbers: -10,-9,-8....,0,...,8,9,10.

CHAPTER 3 60 PROGRAMMING

Exercises:

1. &xperiment using other number ranges in the RND function.

2. Try changing the statement RANDOMIZE to RANDOMIZE 1 and

run the program several times. What happens?

The CASE Structure

If one must distinguish among many conditions at the same time, then the

CASE structure is advantageous to use. It is built up as follows:

CASE <variable> OF
WHEN <‘st value>

<statement 1a>
<statement 1b>

WHEN <2nd value>
<statement 2a>
<statement 2b>

(additional WHEN-values)

OTHERWISE
<statement a>
<statement b>

ENDCASE

If e.g. <variable> equals <2nd value>, then execution proceeds in the

corresponding segment of instructions: <statement 2a> - <statement

2b>, etc. Then execution continues in the line after ENDCASE.

If <variable> does not equal any of the given WHEN values, then

execution continues with the statements in the OTHERWISE segment.

OTHERWISE and the statements in the corresponding segment are

optional.

This structure is used in the following example, where one can choose
among several different exercises in computation.

Each exercise is given in a procedure. An answer to an exercise is
evaluated in the procedure result, which is therefore called from each

exercise-procedure:

Main program exercise’ - result

exercise2 - result

exercise3 - result

exercise4 - result

CHAPTER 3 61 PROGRAMMING

Program 8:

new
auto 100

0100 // Computation exercises
0110 PAGE
0120 PRINT "Choose an exercise:”
0130 PRINT
0140 INPUT ’Which number (1 - 4) ”: number
0150
0160 CASE number OF
0170 WHEN 1
0180 = exercise

. 0190 WHEN 2
/ 0200 exercise2

0210 WHEN 3
0220 =o exeercise3
0230 WHEN 4
0240 —exerrcise4
0250 OTHERWISE
0260 PRINT ”You have chosen an incorrect number.”
0270 ENDCASE

0310
0320 PROC exercise1
0330 PRINT
0340 =INPUT "INT(7.3+3.2 DIV 2) = ": answer
0350 ~—correct:=INT(7.3+3.2 DIV 2)
0360 _ _—sresult(correct,answer)
0370 ENDPROC exercise
0380
0390 PROC exercise2
0400 PRINT
0410 INPUT ”3-30/2+12 = ”: answer
0420 =—s correct:=3-30/2+12
0430 _—srresult(correct,answer)

/ 0440 ENDPROC exerclse2
0450
0460 PROC exerclse3
0470 PRINT
0480 INPUT "4.25+2.5/5*2 = ": answer
0490 _ —scorrect:=4.25+2.5/5*2
0500 _=—sresult(correct,answer)
0510 ENDPROC exerclise3
0520
0530 PROC exerclse4
0540 PRINT
0550 INPUT ”34 MOD 10-2*5 =”: answer
0560 _ —scorrect:=34 MOD 10-2*5
0570 _~—srresult(correct,answer)
0580 ENDPROC exerclse4
0590

CHAPTER 3 62 PROGRAMMING

0600 PROC result(correct,answer)
0610 PRINT
0620 PRINT ”’The answer is: ";answer
0630 PRINT ’The correct answer ls: ”;correct

0640 PRINT
0650 IF answer=correct THEN
0660 PRINT ”Your answer is right!”
0670 ELSE
0680 PRINT ”Wrong. Please try again...”
0690 PRINT "Check Appendix C: calculating with COMAL.”

0700 ENDIF
0710
0720 ENDPROC result

Notes:

A procedure may be called from another procedure, as well as from the

main program. For example result is called from the exercise procedures.

Exercises:

1. Try responding to some of the exercises in the program.

2. Create a new exercise 5:

Write a procedure exercise5.

Add the new WHEN value in the CASE structure.

Remember to change the INPUT statement.

3. Write a program which prints out different messages. The messages

should depend on the value of the variable which is entered.

Repetition and Loops
Repetition is one of the fundamental building blocks of programming.

The computer is uniquely well-suited for repeating operations over and

over again. In COMAL there are several different statements which can

accomplish repetition. These statement combinations are classified as

loop blocks or simply as loops.

The first example shows how the computer be made to repeat a set of

instructions a certain number of times:

Do <these statements> 100 times.

This is accomplished with a FOR - ENDFOR loop:

FOR <no>:=<start> TO <end> DO
<statement a>

<statement b>

ENDFOR <no>

CHAPTER 3 63 PROGRAMMING

Statements a, b and so on are repeated (<end>-<start>+1) times,

if <start> and <end> are integers:

the first time <no> equals <start>

the second time <no> equals <start>+1

the third time <no> equals <start>+2

the last time <no> equals <end>

Program 9:

new
auto 100

0100 // Investigation of RND
0110 USE graphics
0120 graphicscreen(0)
0130 wrap
0140 window(0,1000,-10,10)
0150 moveto(1000,0); drawto(0,0)
0160
0170 FOR no:=0 TO 1000 DO
0180 number:=RND(-10,10)
0190 moveto(no,0); draw(0,number)
0200 ENDFOR no
0210
0220 WHILE KEY$=CHRS$(0) DO NULL
0230 END

The program illustrates graphically how "random" numbers generated by

the RND function can be distributed. Notice the loop block:

line 170-200: the FOR - ENDFOR statement.

The loop is executed 1001 times.

The statement can be extended using the STEP parameter:

FOR <no>:=<start> TO <end> STEP <steps> DO

where STEP causes <no> to take on the values: <start>, <start+

steps>, <start+2*steps> etc.

The loop ends when <no> passes <end>.

lf the STEP parameter is left out (as we have done so far), then STEP is

automatically set equal to 1.

In addition to the graphics statements which we already have become

acquainted with, the program contains some new statements. Their use

is explained in detail in Chapter 5 in the section on graphics.

Finally we can take a closer look at the statement in line 220. This is

another example of repetition:

CHAPTER 3 64 PROGRAMMING

In the WHILE - DO statement, the computer checks the keyboard again

and again, until any key is activated.
The keyword KEY$ is a function which outputs the last character which

was sent from the keyboard. If no key has been pressed, then ”” (ASCII

code 0) is returned. KEY$ will thus continue to return ”” until any key is

pressed.

while <no key is pressed> do <nothing>

WHILE KEYS=CHRS(0) DO NULL

But the most common use of the WHILE statement is in a loop block

extending over several lines:

WHILE <condlition> DO
<statement a>
<statement b>

ENDWHILE

If the <condition> between WHILE and DO is fulfilled, the computer

goes ahead with statements a, b, etc. These statements are executed one

after the other. If something occurs in the statements so that the condition

is no longer fulfilled, then program execution jumps from the WHILE-DO

line to the line just after ENDWHILE, next time the WHILE-DO line is

considered.

See the word WHILE in the index to find a more detailed description of

how this construction can be used.

Another often encountered (perhaps the most simpel) loop structure is

the REPEAT - UNTIL construction:

REPEAT
<statement a>
<statement b>

UNTIL <condition>

The statement list is repeated until the <condition> is fulfilled.

in the next example, Program 10, this type of loop determines how long

the user can continue to guess the letters in a"secret” word. The example

also illustrates the use of strings in COMAL.

The program structure:

The main program - select'word

- new’'letter

CHAPTER 3 65 PROGRAMMING

Program 10:

new
auto 100

0100 // word guessing
0110 PAGE
0120 select'word
0130 number:=0
0140
0150 REPEAT
0160 number:=number+1
0170 new’letter
0180 UNTIL answer$=remember$
0190
0200 PRINT AT 20,5: "Now finished”
0210 PRINT AT 21,5: number;"letters have been used.”
0220 END
0230
0240
0250 PROC select’word
0260 DIM name$ OF 20, letter$ OF 1
0270 DIM used$ OF 200
0280 INPUT "New word: ”: name$
0290 length:=LEN(name$)
0300 DIM answers OF length, remember$ OF length
0310 answer$:=” ”
0330 used$:=—””
0340 PAGE
0350 PRINT "GUESS THIS”;length;"LETTER WORD”
0360 PRINT AT 8,5: ’Word: ”";answer$
0370 ENDPROC select’word
0380
0390 PROC newletter
0400 INPUT AT 10,5,1: ’New fetter ”: letters
0410 used$:=used$-+letters
0420
0430 _ ~—s position:=letter$ IN name$
0440_~—sCIF position>0 AND position<=length THEN
0450 answerS$(position): =letter$
0460 name§$(position):="+”
0470 ENDIF
0480
0490 PRINT AT 10,17: ” ”
0500 PRINT AT 8,5: "word: ”;answer$
0510 PRINT AT 12,1: used$
0520 ENDPROC new'letter

Lines 150-180: the REPEAT - UNTIL loop:

When the user has the answer which the computer remembers, the

program continues in line 190.

Notes:

* Line 160: the variable number occurs on both sides of the assignment

CHAPTER 3 66 PROGRAMMING

operator :=. This is legal (and often done). Remember how the

assignment operator works: First the expression on the right hand

side of the sign is computed. Then the variable on the left side is

assigned the value computed.

* Line 400: INPUT AT 10,5,1 means that the INPUT statement must

begin on line 10, column 5, and there must be room for 1 character in

the the answer field. Try to write several answers to see how the

program works. Try changing 1 to 3, and run the altered program.

* The branch construction IF - ENDIF begins in line 440 and extends

over several lines, ending in line 470.

Line 440: AND is an example of a /ogical operator. It requires that

both conditions in the IF - THEN statement must be fulfilled.

Note particularly about strings:

* Line 290: The LEN function indicates how many characters are inclu-

ded in the word. This is how the length of the word is determined.

Line 300: It is possible to use variables in DIM statements.

Line 410: Words can be ’added together’ using the + character. This

process is called concatenation of strings.

Example: ”’cat’+"fish” yields the word "catfish”.

Line 430: IN is a logical operator which acts on strings. Itindicates the

first position of the first character in the search string.

Examples:

”ok” IN ”cooking” yields the value 3.

*i” IN *cooking” gives the value 5.

If the search string is not contained in the given text string, then the

value will equal 0 (zero).

Examples:

*salt” IN ’cooking” gives the value 0.

*sing” IN "cooking” gives the value 0.

Line 450-460: One can select particular substrings in a text by using

the position of the substring in the text.

Example:

LET text$:="cooking”

text$(3) is the letter ”o”.

text$(4:7) is the string "king”.

In line 460 the letter found is replaced by a character which never will

occur in a word. This is done to allow the same letter to occur more

than once in a word. In this case the character selected is +.

CHAPTER 3 67 PROGRAMMING

Exercises

1. The program is quickly simplified to fill in the guessed letter at all its

positions in the secret word.

Make the changes:

430 FOR position:=1 TO length DO

440 IF letter$=name3$(position:position) THEN

475 ENDFOR position

Try your new program.

2. Ifyou have changed the program according to exercise 1 the variable

remember $ and linie 460 are superfluous. Can you make the program

work with these corrections?

3. Where are you to make changes to be able to play with secret words of

more than 20 letters? Try.

Arrays. Indexed Variables
When you have to work with lots of numbers, it can become time consu-

ming to read them all in and give them different names. Sometimes at

least 100 variable names may be needed when solving one of the follo-
wing problems, for example:

* Computing the average of 100 numbers

* Determining the maximum and minimum of 100 numbers

* Sorting 100 different numbers

Large collections of numbers can be handled in COMAL by declaring an

array using a dimension statement as for example the following:

DIM x(50)

This statement reserves room for 50 numbers in the computer's memory.

Each variable will have the same name x but a different number:

x(1), x(2), x(3),...., (49), x(50)

Such variables are also termed indexed variables with the number of each

variable called an index.

It is possible (but not common practice) to give each of the indexed

variables a value using an assignment statement:

CHAPTER 3 68 PROGRAMMING

x(1):=23

x(2):=71

x(3):=-12.45

x(49):=6

x(50):=0.852

In the next program example we will work with indexed variables which

are assigned values by means of an INPUT statement.

The program draws line segments through the coordinates of anumber

of points.

Program 11 consists of:

a read-in section (lines 110-220)

a graphics section (lines 270-300)

Program 11:

new

auto 100

0100 // line segments
0110 DIM x(50), y(50)
0120 PAGE
0130 PRINT "A line is drawn through the points.”
0140 PRINT
0150 REPEAT
0160 INPUT ”Number of points: ”: number
0170 UNTIL number>=2 AND number<=50
0180 PRINT
0190 FOR no:=1 TO number DO
0200 PRINT "Enter x(",no,”),y(",no,”):”:
0210 INPUT ””: x(no),y(no)
0220 ENDFOR no
0230 PRINT
0240 PRINT ”Press any key to draw the figure.”
0250 WHILE KEY$=CHRS$(0) DO NULL
0260
0270 USE graphics
0280 graphicscreen(0)
0290 moveto(x(1),y(1))
0300 FOR no:=2 TO number DO drawto(x(no),y(no))
0310 WHILE KEY$=CHRS$(0) DO NULL
0320 END

Notes:

* Line 110: Room is reserved for 50 pairs of x- and y-coordinates.

Line 160: The program inquires in an INPUT statement how many sets

of coordinates to be read in. Tne INPUT statement is included in a

REPEAT - UNTIL loop which also ensures that at least 2 sets of

*

CHAPTER 3 69 PROGRAMMING

coordinates are entered. (A line can’t be drawn if only one set has

been entered.)

* Lines 190-220: the coordinate pairs x(1),y(1) x(2),y(2)... x(number),y-

(number) are entered in a FOR - ENDFOR loop.

* In line 270-300 the figure is drawn using graphics statements.

Exercises:

1. Use the program with a few points.

2. Add a line in the program which will place a small circle around each

point. For example try circle(x(no),y(no),3).

3. Write a program which computes the average of an arbitrary number

of values. The program should include the following sections:

Enter the number of values. Enter the values in the array of num-

bers. Compute the sum of the numbers. Average := the sum/number

of values.

4. Those arrays which we have handled so far have been arrays with one

index. They are termed one-dimensional arrays.

In COMAL an array can have two or more dimensions. For exam-

ple:

DIM bookcase (3,4)

The variable bookcase is a two dimensional array. One canimaginea

bookcase with 3 shelves, each with room for 4 items:.:

56 17 -3 72

89 05 14 94

8 -6 78 66

For example with the above values for the elements of the array:

bookcase(2,3)=14 and bookcase(3,1)=8

Try changing Program 11 so that the one-dimensional arrays x() and y()

are replaced by a two-dimensional array point(,). You can begin by

changing line 110 to DIM point(50,2).

Make changes in lines 290-300 yourself.

Text Arrays
We are not restricted to the declaration of arrays of numbers. We can also

declare arrays which contain strings:

DIM message$(8) OF 20

Room is made of 8 message$’s, each up to 20 characters in length:

message$(1):="Remember the sun.”

message$(8):="Hurrah! Hurrah!”

CHAPTER 3 70 PROGRAMMING

Just as number arrays, text arrays can have two or more dimensions.

The next program illustrates the use of a 2-dimensional text array.

The array is declared in line 130:

DIM person$(50,4) OF 30

It is to be used as an address list for up to 50 persons, with 4 items of

information about each one:

person$(no,1):=”<name>”

person$(no,2):=”<street>”

person$(no,3):=”<town>”

person$(no,4):=”"<telephone number>”

In this program we will also become acquainted with yet another way to

read in variable values: a DATA statement.

Information can be stored in DATA statements which can be read using

READ statements.

The following statements:

READ number, item$,x,points

DATA 17,”doll’,-346,10

replace four separate assignment statements:

number:=17

item$:="doll”

7=-346

points:=10

Notice here that numbers and strings can be mixed in the same DATA and

READ statements.

The following program consists of

Lines 120-250: dimensioning and assignments

Lines 270-350: printout of information which agrees with the

search code

Lines 380-500: DATA statement

Program 12:

new

auto 100

0100 // address Ilst
0110 PAGE
0120 number:=50; no:=0
0130 DIM person$(number,4) OF 30, text$ OF 30

CHAPTER 3 71 PROGRAMMING

0140 DIM found(number)
0150 REPEAT
0160 no:+1
0170 FOR information:=1 TO 4 DO READ personS(no, information)

0180 UNTIL EOD
0190 number:=no

0200
0210 INPUT ”Search for: ”: textS
0220 FOR no:=1 TO number DO
0230 Informatlon:=0
0240 REPEAT
0250 _—sinformation:=1
0260 found(no):=text$ IN person$(no, information)
0270 UNTIL found(no)>0 OR Information=4

0280 ENDFOR no

0290
0300 PRINT
0310 PRINT "Persons whom the search key flts:”

0320 PRINT
0330 FOR no:=1 TO number DO
0340 IF found(no)>0 THEN

0350 FOR information:=1 TO 4 DO PRINT person3(no, information)

0360 PRINT
0370 ENDIF
0380 ENDFOR no
0390 END
0400
0410 DATA ”Susan Hansen”,”Lindebakken 13”
0420 DATA "Silkeborg”,”06-841723”
0430 DATA "Commodore Data”,”Bjerrevej 67”
0440 DATA "8700 Horsens”,"05-641155”
0450 DATA "Jan Mogensen”,”Skovgade 4”
0460 DATA "1717 Copenhagen”,”01-456701”
0470 DATA "Knud Jensen”,”Sneglevej 12 D”
0480 DATA "2820 Gentofte”,”secret”
0490 DATA "Wesleyan University”,”Physics Department”
0500 DATA "Middletown CT 06457”,”(203) 344-7930”

Notes:

* The READ statements need not be placed together with the DATA

statements. The first READ instruction in the program begins by

reading in the first value in the first DATA statement no matter where

it occurs in the program. (This can be altered. See the discussion in

Chapter 4 on READ and DATA.)

* In line 180 the function EOD is used to terminate the reading process.

The value of EOD is 0 (i.e. false), until the last data value is read in.

Then COMAL sets it equal to 1 (i.e. true). When the UNTIL condition

thus is fulfilled, the program continues in line 190.

Exercises:

1. Try out the program. Try to understand how it operates. Try respon-

CHAPTER 3 72 PROGRAMMING

ding to Search for: with just <RETURN>. Add new DATA
statements.

2. Replace the values in the DATA statements with others of your own
choosing. The program can of course also be used to file any informa-
tion you may choose. For example you might exchange the variable
person$ with a new variable item$ which could represent items in an
inventory. For example:

item$(no,1):="warehouse”
item$(no,2):=”"storage area”
item$(no,3):="shelf”
item$(no,4):="item”

3. Add a line to the program which prints out the classification number
of the person or item along with the other information.

4. Add further information about each person in the address list:
DIM person$(number,5)

where for example:

person$(no,5):=”<profession>”

Procedures II

In the section PROCEDURES | we became acquainted with two different
ways of using procedures:

WITHOUT passing of parameters

//main program
<statements >

name
<statements>

END
//

PROC name
<statements>

ENDPROC name

WITH passing of parameters

//main program
<statements> =
name(4,”Christina”)
<statements>

END
i

PROC name(number,text$)
<statements>

ENDPROC name

\

CHAPTER 3 73 PROGRAMMING

If there is a transfer of parameters in parentheses, then the number and

type must be in agreement:

name (4 ,’John”,from,x() ,logo$)

PROC name(number,text$,start,no(),stringS)

The number and type of the actua/ parameters in the procedure call must

correspond to the number and type of the forma/ parameters in the

procedure’s parentheses.

4,” John”, from,x(),logo$ are the actual parameters.

number,text$,start,no(),string$ are the formal parameters.

If the parameters are in agreement with respect to number and type, they

need not have the same name.

We have emphasized that procedures should be used when building up

programs, because:

* Procedures can be used again and again in different parts of the
program.

* The program will be clearer to read, more logical and easier to grasp if

it has been broken down into procedures with well-chosen names.

* Procedures can be saved in a procedure library on disk or cassette

tape for use later in other programs.

There are many ways to use procedures. In the following sections you

will find an introduction to the extended use of procedures and functions:

“In what ways are they similar?

* In what ways are they different?

* How can they be used.

Local and Global Names
In COMAL one must distinguish between global and /oca/ names. A local

variable name - in contrast to a global name - is only defined and

recognized in a limited segment of the program. For example:

FOR no:=2 TO number DO
<statements>

ENDFOR no

The variable name no is local in the FOR - ENDFOR loop. It is undefined

outside this loop.

In connection with procedures one also refers to local names, only

CHAPTER 3 74 PROGRAMMING

recognized within the procedure, and global names which are recognized

throughout the program. In general, parameters listed in parentheses

after a procedure name are local. In addition the procedure may contain

other global and local parameters.
The advantage of local names is that they do not interfere with other

parts of the program and vice versa.
Enter, run and examine the next example with global and local variable

names. Note the values of the quantities which are printed out.

Program 13:

new
auto 100

0100 // local variables
0110 a:=1;b:=1
0120 PRINT a;b
0130 local’global(4)
0140 PRINT a;b
0150 END
0160
0170 PROC local’globai(a)
0180 PRINT a;b
0190 ENDPROC local’global

In the parameter transfers examined so far we have seen a number of

one-way transfers from the main program to a procedure. In order to

permit transfer of local parameters from the procedure, the parameters

must be declared using a REF prefix. The procedure in the following

example shows how this can be done.

Program 14:

new
auto 100

0100 PROC minmax(a,b,REF min,REF max)
0110 // minimum and maximum are found
0120 IF a<b THEN
0130 min:=a; max:=b
0140 ELSE
0170 min:=b; max:=a
0180 ENDIF
0190 ENDPROC minmax

CHAPTER 3 “5 PROGRAMMING

A main program which uses this procedure might look like this:

0010 //main program
0020 t:=23
0030 s:=-41
0040 minmax(t-s,t+s,minimum,maximum)
0050 PAGE
0060 PRINT "t-s =”;t-s;"and”;t+s =":t+s
0070 PRINT *Minimum, maximum:”;minimum;maximum
0080 END

Exercises:

1. The names are unimportant. Exchange the variable names minimum

and maximum with a and b respectively. Note that they have no effect

on the results. (A change like this is easiest to make using the com-

mand CHANGE: change ”minimum”,”a”, etc.)

2. After a procedure has been typed in and checked using the SCAN

command, it can be used as a direct instruction.

Type the following directly from the keyboard:

scan

minmax(12/7,7/12,x,y)

print x;y

Try using other values, and try using other procedures as direct

instructions.

3. Make the following changes and run the program:

100 PROC minmax(REF a,REF b)

185 a:=min;b:=max

and

40 minmax(t,s)

70 is deleted

Note, that the variables t and s change their value in the procedure.

Now the procedure can no longer be used in the form minmax-

(67,78) with constants in the call. But it can be used in the form

minmax(x,y) if the variables x and y have been given values in

advance:

scan

x=1236;y=251

this=(x-+y)/x;that=(x-y)/y

minmax(this,that)

print "Minimum, maximum: ”;this;that

Experiment with the legal as well as the illegal version.

CHAPTER 3 76 PROGRAMMING

A particularly elegant property of procedures is that they can call one

another. A procedure can even call itself. Such a procedure is called a

recursive procedure.

The next program shows an example of such a procedure using grap-

hics.

Program 15:

new
auto 100

0100 // concentric filled circles
0110 USE graphics
0120 graphicscreen(1)
0130

0140 draw’circle(160,100,100,2)
0150

0160 WHILE KEY$=CHRS$(0) DO NULL
0170 END
0180

0190 PROC draw’circle(xc,yc,r,color)
0200 pencolor(color)
0210 circie(xc,yc,r)
0220 paint(xc,yc)
0230

0240 IF r>10 THEN draw’circle(xc,yc,r-10,color+1)
0250
0260 ENDPROC draw’circle

In line 240 the procedure draw’circle calls itself until r gets too small.

Functions

COMAL!’s built-in standard functions can be used in computations. We

have already used standard functions like PI, RND, INT, LEN. See Chap-

ter 4 for information on other standard functions.

Just as it is possible to define procedures using the construction:

PROC - ENDPROC

you can define your own functions in COMAL using the structure:

FUNC - ENDFUNC

Procedures and functions have many properties and uses in common.

The next program shows how functions can be defined and used to find

the roots of analytical functions. The program also employs some stan-

dard functions.

CHAPTER 3 77 PROGRAMMING

Overview:

main program (lines 100-350)

function round (lines 380-400)

function f (lines 420-440)

where the functions are built up using the following structure:

FUNC <name>(<number>)
<statement a>
<statement b>

RETURN <computed’expression>

ENDFUNC <name>

An understanding of the theory behind the method to be used requires

some knowledge of mathematics. However this is not essential in order to

use the program or to understand the statements which compose it.

Within the discipline of "informatics” the word a/gorithm is sometimes

used to describe a formula or a means of computation. It is an important

part of good programming practice to provide a complete description of

the algorithm on which a program is based. The description can be given

in greater or lesser detail depending upon who will use the program. A

minimum requirement is of course that the programmer must be able to

understand it later on, if the program must be corrected or revised.

There are in fact many tragic examples of substantial waste of resour-

ces, both in government and in private industry, due to poor documenta-

tion of programs.

Program description:

1. The program searches for roots using the midpoint method.

2. The program is designed to find a solution to the equation f(x)=0,

where f is a function which is continuous in the region of interest.

3. The user must be able to provide an initial guess of two numbers aand

b with the property that f(a) and f(b) have opposite signs. !f this condi-

tion is not fulfilled, the program will request other numbers.

4. The midpoint between a and b is found, and the value of the function

in this point is determined.

5. If the value of the function is sufficiently close to zero, then the pro-

gram will conclude that the midpoint is a root. This approximation to

the root will be printed, and the program will stop.

6. Otherwise the program will continue comparing the signs of values of

the function:

CHAPTER 3 78 PROGRAMMING

If the value of the function in the midpoint has the same sign as the

value of the function in a, then the root which is sought is assumed to

lie between the midpoint and b. Therefore the midpoint is set equal to

the new a value as the search proceeds.

If on the other hand the value of the function in a and the value of the

function in the midpoint have opposite signs, then there must be a

root between a and the midpoint. The midpoint therefore becomes

the new b endpoint.

The program then returns to step 4.

In this fashion the interval around the root is narrowed down until the

root has been found within the required uncertainty, or the program is

interrupted by pressing <STOP>.

Program 16:

new

auto 100
0100 // solving the equation f(x)=0
0110 PAGE
0120 error:=—1e-04
0130 REPEAT
0140 INPUT ”End point values A,B: ”: a,b
0150 UNTIL SGN(f(a))=-SGN(f(b))
0160
0170 LOOP
0180 sign’a:=—SGN(f(a))
0190 sign’b:=SGN(f(b))
0200 xmid:=(a+b)/2
0210 ymid:=f(xmld)
0220 IF ABS(ymlid)<error THEN
0230 PRINT

0240 PRINT ”A solution to the equation —”;round(xmid)
0250 STOP
0260 ELSE
0270 PRINT ”.”;
0280 IF SGN(ymid)=slgn’a THEN
0290 3=a:=xmid
0300 ELSE
0310 b:=xmid
0320 ENDIF
0330 ENDIF
0340 ENDLOOP
0350 END
0360
0370
0380 FUNC round(number)
0390 RETURN INT(number*10000+.5)/10000
0400 ENDFUNC round
0410
0420 FUNC f(x)

0430 RETURN 3*x*x+2*x-5
0440 ENDFUNC f

CHAPTER 3 79 PROGRAMMING

The function f(x) itself is defined in the structure FUNC f(x). It is defined

here by means of the expression 3*x*x+2*x-5. Thus the program must

find solutions to the equation:

3*x*x + 2*x-5 = 0

Experiment with other functions besides this one when trying out the

program.

Notes:
* Anew COMAL loop structure: LOOP - ENDLOOP (continuous repeti-

tion) is introduced.

* Clarity is enhanced by the use of descriptive names.

* The standard function SGN(<expression>):

SGN(<expression>)=1 , if <expression> is greater than 0

SGN(<expression>)=0 , if <expression> equals 0

SGN(<expression> <expression> is less than 0

* The standard function ABS(<expression>) returns the numerical

value of the expression. E.g. ABS(-2) equals 2.

* — The function round rounds off the expression for number to 4 decimal

places.

E.g. round(3.141593) equals 3.1416

If 3 decimal places are required, then 10000 can be replaced by 1000

in this procedure, etc.

There should be a correspondence between the required accuracy

of the calculation specified by the variable error and the rounding

accuracy specified in the function round by choosing e.g. 10000. At

the very least no more decimal places than those represented by the

value of error should be returned.

Exercises:
1. Run the program with various functions f(x).

Test the program first using functions with well known roots e.g.

2x-6.
Use the program to solve equations which can not be solved by

means of ordinary analytical methods:
The equation EXP(x)=x+7 is an example of such a problem. Itis

called a "transcendental” equation. It can be solved using this pro-

gram by defining the function f to be EXP(x)-x-7.

2. Functions can also be used as direct instructions when they have

been SCANed. Try for example:

scan

print round(2.71828183)
3. Create a numerical function FUNC average(a,b), which returns the

average of a and b. Try it as a direct command.

CHAPTER 3 80 PROGRAMMING

4. Write a function FUNC vowels(text$), which counts the number of

vowels in a given string. Try using it as a direct instruction. Hint: take

a look at Program 17 for inspiration.

String Functions
Functions can be used for other purposes than just calculating matemati-

cal expressions (a job which they of course do very well).

The functions which we have just worked with are numerical functions.

COMAL can also handle string functions. A string function is a function

which outputs a string instead of a number. Just as the case of string

variables, the name of string functions must end with the character $.

KEYS is an example of a built in standard string function which is

already available in COMAL. Others include STR$(327) which changes

the numerical constant 327 to the string constant "327".

The following program illustrates how you can create your own string

functions. It consistes of a brief main program and the function separateS.

This string function is designed to separate a string into vowels and
consonants.

Program 17:

new

auto 100

0100 PRINT separate$(”"COMAL string functions”)
0110 END
0120
0130

0140 FUNC separate$(a$)
0150 // consonants or vowels
0160 long:=LEN(a$)
0170 FOR I:=1 TO long DO
0180 IF aS(i) IN "aelouAEIOU” THEN
0190 a$:=a$(I)+a$(1:i-1)+a$(i+1:long)
0200 ENDIF
0210 ENDFOR I
0220 RETURN a$
0230 ENDFUNC separate$

Try this example:

If a$:="testing” and i:=2; then line 190 will act as follows:

a$= %e” +4 t” + "string”

Notes:

* The vowels are placed in reverse order.

COMAL can interpret an expression such as a$(7:6). This is used in

line 190 when i:=long. (But note that a$(8:6) is undefined.)

*

CHAPTER 3 81 PROGRAMMING

* aS(i+1:) means: from the (i+1)’th letter to end of word

* a$(:i-1) means: from beginning to the (i-1)’th letter

Exercises:

1. Try out the program to see that it works as it should. Choose other

strings to test the program. You might want to experiment with

special cases like "a", "iiiiilieeeee”, "qwrip” and the empty string.

2. Create a string function which reverses the order of the letters in an

arbitrary string. Try it out!

3. After having been SCANed a string function can be used as a direct

command just as a numerical function. For example:

scan

print separate$("sodapop and icecream”)

4. Create a string function FUNC fillup$(number,letter$) which

prints number of the same letter$. Try it out as a direct command:

print fillup$(30,”*”).

Closed Procedures

If you want to be completely certain that any name conflicts between

variable names in procedures and the main program will be avoided, then

you can CLOSE your procedures or functions. When you do so, you

make all variable names in the procedure or function local. Only those

values which are given in parentheses after the name of the procedure are

allowed in or out.

This is accomplished by using the instruction CLOSED. For example:

PROC name(number,textS) CLOSED

It can be very useful to be able to close a procedure. This is particularly

true when you want to save a very general procedure in a procedure

library and use it in many different situations. It can be difficult to

remember the names of all the variables which were used. By closing the

procedure you can get around this problem.

The next program illustrates a general procedure which can be used to

sort any series of numbers. The numbers will be sorted so that they are

ordered by increasing value. For example 4, 3, 7,-1 are sorted to -1, 3, 4, 7.

The sorting method is called the bubble sort.

There are many algorithms available for sorting. For example on the

demonstration diskette and on the tape you will find the program quick-

-sort. It is a fast and efficient sorting program.

The bubble sort used in Program 18 in not the most efficient method,

but it is interesting and easy to understand:

Consider the numbers in pairs starting at the beginning of the

sequence. If a larger number precedes a smaller one, then they will be

CHAPTER 3 82 PROGRAMMING

swapped. Now the next pair (the second and third) is considered. These

two numbers are swapped, if the largest number comes first and so on

down the sequence. The procedure is repeated until no more swaps

occur. Here is a brief illustration of the process:

1st run-through:
43 7 -1 is changed to 34 7
3 47 -1 no change
3 4 7-1 is changed to 3 4

2nd run-through:

34 -1 7 no change

3 4 -1 7 is changed to 3 -1 4
3 -1 4 7 no change

3rd run-through:

3-1 4 7 is changed to -1 3 4
-1 34 7 no change

-1 3 47 no change

On the next run-through there will be no more exchanges.

main program (lines 100-290)

procedure print’out (lines 320-370)

procedure swap (lines 390-420)

procedure bubble’sort (lines 440-610)

All the procedures are closed.

Program 18:

new
auto 100
0100 DATA 2,4,78,45,23,-2,56,45, 199,43
0110 DATA 3,0,100,34,-19,34,67,88,4, 10
0120
0130 // data read-in
0140 DIM position(100)
0150 no+#:=0
0160 REPEAT
0170 no+#:+1
0180 READ position(no+)
0190 UNTIL EOD
0200
0210 PAGE
0220 PRINT "Unsorted number:”
0230 print’out(no+#,position())
0240 PRINT
0250 PRINT
0260 bubble’sort(no+,position())

CHAPTER 3 83 PROGRAMMING

0270 PRINT "Sorted number :”
0280 print’out(no+,position())
0290 END
0300
0310
0320 PROC print’out(total,number()) CLOSED
0330 // total number In sequence number() Is printed out
0340 ZONE 8
0350 FOR no+:=1 TO total DO PRINT number(no+),
0360 ZONE 0
0370 ENDPROC print’out
0380
0390 PROC swap(REF a,REF b) CLOSED
0400 // a and b are swapped

, 0410 remember:=a; a:=b; b:=remember
'0420 ENDPROC swap
0430
0440 PROC bubble’sort(total,REF number()) CLOSED
0450 // number() Is sorted In Increasing numerical order
0460 IMPORT swap
0470
0480 REPEAT
0490 no’swap:=TRUE
0500 FOR no+:=1 TO total-1 DO
0510 IF number(no+)>number(no#++1) THEN
0520 no’swap:=FALSE
0530 swap(number(no+),number(no++1))
0540 ENDIF
0550 ENDFOR no+
0560 UNTIL no’swap
0570 ENDPROC bubble’sort

In line 460 of bubble’sort the statementIMPORT is used. It can be used to

make variables or procedures accessible in an otherwise closed proce-

dure. In this case the procedure name swap is made available in the pro-

cedure bubble’sort.

In the main program in line 340 the instruction ZONE 8 is used to space

, the printout in columns. Printout of a row of numbers separated by a

comma (,) in PRINT-statements will be done in columns 8 spaces wide.

Note:

* The DATA statements are placed near the beginning of the main

program. They are easy to find when changing to new values.

Exercises:

1. Try out the program with the values provided. Then try with yourown

values. You should also try the program with special cases like DATA

2 or DATA 3,3,3,3,3,3.
2. This exercise deals with external procedures: lf a disk drive is

available, procedures can be saved on diskette individually. Later on

CHAPTER 3 84 PROGRAMMING

they can be brought in to be used in other programs when needed.

After use they are removed from a program.

Such procedures are termed externa! when they are available out-

side program memory, as on a diskette.

There are two conditions which external procedures must fulfill:

a. They must be CLOSED

b. They must not contain IMPORT statements.

First save the program as backup. Now remove all other program lines

from program 18 except for the procedure print’out and save printout

on diskette as a prg file under the file name ext.print’out:

save "ext.print’out”

The prefix ext. has been added to distinguish this type of file from

other information in the disk directory.

Then delete the procedure printout from program 18, and add a

line with a declaration which indicates that the program will use an

external procedure:

300 PROC print’out(no,position()) EXTERNAL ”ext.printout”

Now run the program, and note that the external procedure is fetched

from the diskette twice during program execution.

The use of external procedures saves room in memory. On the

other hand the disk operations take time, so the method should only

be used for larger programs or for programs in which the delay time is

not important.
3. Write a program which sorts words in alphabetical order.

Only a few corrections of Program 18 are necessary to accomplish

this task:

First change the following lines:

140 DIM t$(100) OF 20

510 IF t$(no+)>t$(no#+1) THEN

Next use the CHANGE instruction:

CHANGE "position”,’tS”

CHANGE ”number”,”tS”

Supply all the variables in the procedure swap with § signs, and

change the contents of the DATA statements to words or other text.

COMAL can still interpret the logical expression in line 510, be-

cause a 'word’ consists of asequence of characters each of which has

an ASCli value. See Appendix A for a list of ASCI! codes.

The computer handles the letters in each word one after the other

when two words are compared. Ifthe first letters of both words are the

same, then the next pair is compared, and so on. This allows an eva-

luation of which word is ‘largest’. For example the word apple” is

‘less than’ "banana”, because a comes before b in the alphabet, and

banana is less than baseball, because n comes before s.

Be careful when comparing words containing both upper and lower

case letters. Try some experiments!

CHAPTER 3 85 PROGRAMMING

File Handling

We have seen how it is possible to save a copy of a program on diskette or

on a cassette tape using the command SAVE. A copy of the saved pro-

gram can be fetched into the working memory later using the instruction
LOAD.

There are also other means of saving programs and program segments.

See Chapter 4 under the heading LIST - ENTER - MERGE for more infor-

mation about this. In Chapter 6 you will find a summary of these file ope-
rations.

The next program illustrates one of the many ways in which data can be

saved. By 'data’ we mean lists of numbers or text or perhaps a mixture of

numbers and text. Data can be stored in a file. A more complete treat-

.ment of the use of files in COMAL including numerous examples is found
in Chapter 6.

The introductory program which we will consider here consists of:

The main program

the procedures

file’ numbers(<fileno>,<filename$>,number(),total)

fetch’numbers(< fileno>,<filename$>,REF number())

The two procedures take care of the jobs of saving numerical data on disk

or cassette and retrieving the data again.

The main program is simply a test program which saves some numbers

in a file, fetches them again and prints them on the screen.

These procedures operate by opening a data stream to or from a region

on the diskette. The data stream is characterized by the number

<fileno>, and the region on the diskette is characterized by its

<filename$>. It is thereafter possible to write’ to the data stream, if it has

been openedin the WRITE mode, or one can read’ from the data stream, if

it has been opened in the READ mode. A data stream remains’open’ until

it is ‘closed’.

CHAPTER 3 86

Saving data:

OPEN FILE <fileno>,<filename$>,WRITE

PRINT FILE <fileno>: number

CLOSE FILE <fileno>

Fetching data:

OPEN FILE <fileno>,<filename$>,READ

INPUT FILE <fileno>: number

CLOSE FILE <fileno>

Program 19:

new
auto 100

0100 PROC file’numbers(fileno,filename$,number(),total)
0110 OPEN FILE fileno,filename$,WRITE
0120 FOR i:=1 TO total DO
0130 PRINT FILE fileno: number(i)
0140 ENDFOR i
0150 CLOSE FILE flleno
0160 ENDPROC file’numbers
0170
0180 PROC fetch’numbers(fileno,filename$,REF number())
0190 OPEN FILE fileno,filename$,READ
0200 |:=0
0210 REPEAT
0220 = «=i:+1
0230 INPUT FILE flleno: number(i)
0240 PRINT number(i);
0250 UNTIL EOF(flleno)
0260 CLOSE FILE flleno
0270 ENDPROC fetch’numbers
0280
0290
0300 // numbers are saved and read In from a file

0310 DIM number(100)
0320 PAGE
0330 PRINT "Enter numbers, each followed by <RETURN>.”
0340 PRINT "Terminate by entering 99999:”
0350 no:=0
0360 REPEAT
0370 no:+1
0380 INPUT ””: number(no);
0390 UNTIL number(no)=99999
0400:no:-1 // the last number is not saved
0410 PAGE

PROGRAMMING

CHAPTER 3 87 PROGRAMMING

0420 FOR I:=1 TO no DO PRINT number(i);
0430 PRINT
0440 PRINT "PRESS ANY KEY TO WRITE TO THE FILE”
0450 WHILE KEYS=CHRS$(0) DO NULL

0460
0470 file’numbers(2,”@0:numberdata”,number(), no)
0480
0490 PAGE
0500 PRINT "PRESS ANY KEY TO FETCH DATA AGAIN”
0510 WHILE KEYS=CHRS(0) DO NULL
0520 PAGE
0530
0540 tetch’numbers(3,” @0:numberdata”,number())

0550
0560 END

Notes:
*

*

Note that you are free to place procedures first in the program

if the data are to be saved to a cassette tape, the file name must be

supplemented with the cs: unit indicator:

”*cs:numberdata”
Data must be fetched using the same file name as the one under

which they were saved. The stream number need not be the same.

The advantage of saving data in files is that the data need not be

associated with a particular program as with DATA statements. The

same data can be used by many different programs.

Notice especially about file’numbers: In the procedure call it is

essential to specify the (total) number of data elements which are to

be saved.
But note regarding the procedure fetch’numbers that the computer

will simply stop reading in numbers from the file when no data are left.

To register this condition the function EOF(<fileno>) is very useful.

it takes on the value TRUE when the file contains no more data, there-

by fulfilling the UNTIL condition.

Data can be saved in ASCll-code format by means of the PRINT

FILE instruction. The INPUT FILE instruction must tien be used to

enter the data. This combination can be used both with a disk drive

and with a Datassette unit. If you are using a disk drive it will usually

be best to use the WRITE FILE and the READ FILE instructions in-

stead, because data can be saved more quickly and more compactly

in binary form than in ASCII form.

Exercises:

1.

2.

Try out the program with arbitrary numbers. Change the file names

and stream numbers. Check for legal stream numbers.

Use the program to create a set of data. Use these numbers instead of

the numbers in the DATA statements in Program 18. You will have to

CHAPTER 3 88 PROGRAMMING

delete lines 100-200 and replace them by lines which read in the

numbers from one of the data files which we have just worked with.

3. Write a program which saves strings in a file. Read the information

from the DATA statments in Program 12 into this file. Then use this

file instead of the DATA statements in Program 12.

Error Handling

It is important that programs are constructed so that they do not’crash’, if
the user does something unexpected.

One of the most common causes of undesired program interruption is
the entry of LETTERS in an INPUT statement in which a NUMBER is ex-
pected.

In COMAL there is an error handling structure which can take this pro-

blem and many others into account. Note that the use of this structure is
treated more completely in the reference section, Chapter 4. Here we will
concentrate on the one type of error mentioned above.

The structure is:

TRAP

(statements in which errors are expected)

HANDLER

(statements to be executed in case of an error)

ENDTRAP

If an error occurs in the statements between TRAP and HANDLER, the

computer will jump to the statements between HANDLER and ENDTRAP.
At the same time an ERR code will be generated. The ERR code can be
used to determine which of the statements in the HANDLER-section
should be executed.

In the next program example an error handling structure has been

placed in the LOOP - ENDLOOP loop which we used earlier. This loop

assures that the INPUT-statement will be executed again if input errors
are detected.

pele the following about the various COMAL loop-structures:

In the WHILE - ENDWHILE structure the condition is placed right af-

ter WHILE at the beginning of the loop.

“In the REPEAT - UNTIL loop the condition is placed at the end, right

after UNTIL.

* In the LOOP - ENDLOOP structure a condition can be placed any-

where inside the loop using the EXIT WHEN command. When the

CHAPTER 3 89 PROGRAMMING

condition is fulfilled, execution passes to the first statement after

ENDLOOP.

The LOOP - ENDLOOP structure:

LOOP

EXIT WHEN <conditlon> (or just EXIT with no condition)

ENDLOOP

The program consists of a general read-in procedure with error handling

and a brief main program used to check out the procedure.

Program 20:

new
auto 100

0100 PROC number ’input(line,pos,dpos,text$,REF number)
0110 // number-safe input
0120 // only <STOP> interrupts program
0130
0140 LOOP
0150
0160 TRAP
0170
0180 PRINT AT line,pos: SPC$(LEN(text$)-+dpos);” *”
0190 INPUT AT line,pos,dpos: textS: number
0200
0210 ~=EXIT // if the input is OK
0220
0230 HANDLER
0240
0250 CASE ERR OF

_ 0260 WHEN 2
0270 PRINT AT 24,1: ’The number was too big.”

~ 0280 WHEN 206
0290 PRINT AT 24,1: "A number is expected.”
0300 OTHERWISE
0310 PRINT AT 24,1: "What happened?”
0320 ENDCASE
0330 FOR pause:=1 TO 1000 DO NULL
0340 PRINT AT 24,1: SPC$(25)
0350
0360 ENDTRAP
0370
0380 ENDLOOP
0390
0400 ENDPROC number'’input
0410
0420

CHAPTER 3 90 : PROGRAMMING

0430 // test of input errors
0440 PAGE
0450 REPEAT
0460 number'input(10,3,10,’Type in a number: ”,number)

0470 PRINT AT 12,3: SPCS$(15)
0480 PRINT AT 12,3: number
0490 UNTIL FALSE
0500 END

Notes:
* The statement EXIT instructions the computer to jump out of the

LOOP structure if the input is ok.
The string function SPC$(number of spaces) can be useful for clear-

ing part of the screen.

Line 180 clears the INPUT field and places a * two blank spaces after

the end of the field.

Exercises:

1.

2.

Try out the program using both numbers and letters. Try pressing

<RETURN> with no input.

The LOOP structure can be replaced by a REPEAT loop. The follow-

ing lines can be used:

no’error:=FALSE

REPEAT

no’error:=TRUE

UNTIL no’error

Where should these lines be inserted?

Replace the CASE error texts the the system error message

ERRTEXTS: PRINT AT 24,1: ERRTEXTS.

Your final examination:

The character * in tine 180 is a special detail. What can happen, if this

character is left out? Experiment!

After working through this tutorial chapter you should be well pre-

pared to continue developing your skill with the COMAL pro-

gramming language. Of course there is still much more to be learned,

and you can run into situations which have not been covered here.

In Chapter 4 you will find a complete reference section treating all

of the many commands and statements in COMAL. In Chapter 4 you

will find explanations of each instruction with examples to illustrate

its use.

Chapter 4

COMAL Overview

Commands used before and during Program Entry

NEW - AUTO - RENUM

NEW

is acommand which causes the program and the data in working memory

to be deleted. System variables are set to their initial values, and

packages and associated variables are also deleted.

AUTO

is a command which sets up automatic line numbering during program

entry. The range of legal line numbers is: 1 - 9999. During program entry

each line should be terminated by pressing <RETURN>. The system will

automatically print the next line number on the screen. AUTO can be

disengaged by pressing <RUN/STOP>. If AUTO is engaged again (or

engaged after manual entry of part of a program), automatic line num-

bering will begin with the last line number in the program + 10.

Examples:

AUTO Gives line numbering: 10, 20, 30....

AUTO 1000 Gives line numbers: 1010, 1020....

AUTO 100,2 Gives line numbers: 100, 102, 104...

Notes:
Line numbering with intervals of 10 is often appropriate, for it allows the

insertion of several extra lines between existing line numbers.

if a line number already exists, the number will appear in reversed

characters to warn the user against unwanted overwriting of existing

code.

RENUM

is a command which provides the program in working memory with new

line numbers. Renumbering can begin from any line in the program.

CHAPTER 4 92 COMAL OVERVIEW

Examples:

RENUM New numbering: 10, 20, 30....

RENUM 2000,5 New numbering: 2000, 2005, 2010....

RENUM 300;4000,10 Line numbers from and including 300 will be

changed to: 4000, 4010....

Commands Which are Used for Program Editing

EDIT - FIND - CHANGE - DEL - SCAN

EDIT

is a command which causes program lines to be printed one at a time
without indentation. It is particularly useful for correction of program
lines which take up more than one line on the screen. If the LIST instruc-
tion is used, some lines may contain unwanted spaces after the end of the
first line. After editing, pressing <RETURN> will cause the next program
line to appear, if more than one line edit has been requested.

Examples:

EDIT allows editing of all lines, one at a time.
EDIT 130 allows line 130 to be edited.
EDIT 210-290 permits editing of lines 210 - 290.
EDIT colorcodes lets the user edit the procedure colorcodes.

Note:

The EDIT command can only be used for printout to the screen or to a
printer.

FIND

is a command used during editing to find a name or text segment in a
program. When the text segment has been found, the system prints out
the program line with the cursor placed on the first character of the text.
After possible corrections press <RETURN>, and the system will search
for the next occurence of the text.

Examples:

FIND "John” The system will search the entire program for
the word John.

FIND 200-500 "John” The system searches for the word John in lines
200 - 500.

FIND colorcodes "red” The system searches for the word red in the
procedure colorcodes.

CHAPTER 4 93 COMAL OVERVIEW

CHANGE

is a command which is used to search for and replace a text segment.

When the text segment to be changed has been found, the system prints

out the program line with the text segment blinking like a cursor.

There are now three options:

1. You can make the change by pressing <RETURN>.

You can edit the line without the automatic change:

Press the <C=> key.

Change the line as desired.

Press <RETURN>.

The search will be continued.

3. You can order the search to continue with no changes:

Press n or N.

The search will continue.

Press <STOP> to interrupt the CHANGE operation.

Examples:

CHANGE ”red”,’yellow” The search text red is replaced by the re-

placement text yellow everywhere in the

program.

CHANGE 50-200 ”x1”,’xstart” The change is made in lines 50 - 200.

CHANGE square "up”,”right” The change is made in the procedure

square.

DEL

is a command which is used to delete program lines.

Examples:

DEL 20 Line 20 is deleted.

DEL 40,200-280 Lines 40 and 200 - 280 are deleted.

DEL printout The procedure printout is deleted.

SCAN

is acommand which causes the system to run through the program in the

working memory. This process is also called making a prepass. The pro-

gram structure is checked for possible errors, and any error in structure is

reported. After a SCAN without any error messages, approved procedu-

res and functions can be executed directly from the keyboard like com-

mands.

CHAPTER 4 94 COMAL OVERVIEW

Examples:

Program as entered:

0100 number=0
0110 repeat
0120 print number
0130 number:+2
0140 print "You saw some even numbers.”
0150 end

SCAN

The system will report: at 150: "UNTIL” missing

add the line: 135 until number>20

After a new SCAN the program should appear as follows:

0100 number:=0
0110 REPEAT
0120 PRINT number
0130 number:+2

0135 UNTIL number>20
0140 PRINT "You saw some even numbers.”
0150 END

Other Commands

SETEXEC
is a command which has two distinct formats: SETEXEC- and

SETEXEC+.

During the initiation of the system, a SETEXEC- is executed. This

causes the keyword EXEC to be omitted from the listing of procedure

calls.

After a SETEXEC+ command EXEC will be printed before all procedure

calls.

Example:

Program segment as it would be listed after system start-up:

0100 PRINT ”’Numbers are read In and printed out.”
0110 read’in
0120 print’out
0130 END
0140
0150 PROC read’in
0160 INPUT ”’Write the number: ”: number
0170 ENDPROC read’in
0180 PROC print’out
0190 PRINT number
0200 ENDPROC print’out

CHAPTER 4 95 COMAL OVERVIEW

After SETEXEC-+ the lines 110 -120 are changed to:

0110 EXEC read’in
0120 EXEC print’out

Commands Used toCheck Available Memory and Disk Storage

SIZE - CAT - DIR

SIZE

is a command which causes the present usage of bytes of working

memory to be reported.

Example:

SIZE
System response:

prog data free

13501 02466 14747

CAT

is acommand which causes a catalogue of the contents of the diskette to

be printed. If several disk drives are connected, then the device number

can be included in the command.

Examples:

CAT All file names are listed.

CAT ”t*” The names of all files beginning with t are

listed.

CAT ”?est??” The names of all files which are 6 characters

long and with characters 2-4 equal to est are

listed.

CAT ”*=seq” All names of sequential files are listed.

CAT ”2:” The contents of the diskette in the second disk

drive are listed. The second drive must be set

up as "device 9”. This can be done using a

jumper inside the second drive or by means of

software. See your 1541 instruction manual for

more on how to do this.

Note:

Pressing the space bar will stop the printout of the disk catalogue.

Pressing it again will allow it to continue. <STOP> will end it.

CHAPTER 4 96 COMAL OVERVIEW

DIR

may be used as a command or asa statement. Like CAT this instruction

causes the contents of the diskette in the drive selected to be printed out.

Unlike CAT, DIR can be used as a statement in a program if desired.

LIST - ENTER - MERGE - DISPLAY

LIST

is acommand which is used to print out all or part of the program in work-

ing memory. It is also used to store all or part of a program to diskette or to

the Datassette tape unit. When this is done, the program is saved as a

sequential file in ASCll-format. Copies of the program which have been

saved using the LIST command must be reentered using the ENTER or

MERGE commands. They can NOT be entered using LOAD.

Examples:

LIST All program lines are printed.

LIST 200-400 Program lines 200-400 are printed.

LIST 300- The program is printed from line 300 onward.

LIST demoproc The procedure with the name demoproc is

printed.

If the LIST instruction is followed by a name in quotation marks, then the

listing will be done to diskette or cassette tape:

LIST "program name” The entire program is saved under the file

name program name.

LIST demoproc "Ist.demo”The procedure demoproc is saved under the

file name Ist.demo. The prefix Ist. is not es-

sential. It is included to remind us that the

program has been saved by aLIST command.

Notes:

The printout of the listing to the screen will proceed more slowly if the

<CTRL> key is depressed during the printout.

The printout can be stopped temporarily by pressing the space bar

once. Press it again to continue the listing.

Pressing the <STOP> key interrupts the printout.

The printout can be directed to a printer, if available, with the command

list "Ip:”

If a program line extends beyond a single line on the screen, the LIST

instruction will cause it to be split due to indentation. Place the cursor on

the line in question and press <CTRL-A>. The line will be pulled to-

gether again with no indentation.

CHAPTER 4 97 COMAL OVERVIEW

ENTER

is acommand which fetches a program which has previously been saved

to diskette or cassette tape using the LIST command into working

memory. Note: ENTER acts differently than MERGE. If thereis already a

program in working memory, ENTER will erase it.

Examples:

ENTER “Ist.name” The program Ist.name is fetched from

diskette.

ENTER ”cs:lst.Program 3” The program Ist.Program 3 is fetched

from the Datassette unit.

Note:

A program which has been saved using the SAVE instruction can NOT be

read in again using ENTER.

MERGE
is acommand which is used to fetch a program segment from diskette or

cassette and copy it into working memory. The program segment must

have been stored using the LIST command.

Examples:

MERGE "Ist.circumference” The program |Ist.circum ference is fetched

from diskette and added to the existing

program with line numbers starting after

the end of the current program.

MERGE 1000,5 “Ist.start” The program (or segment) Ist.start is read

in and added to the current program at

lines 1000, 1005, 1010...

Be careful not to unintentionally overwrite existing program lines.

DISPLAY

is acommand which lists a program or a program segment with NO LINE

NUMBERS in the listing.

Examples:
DISPLAY The entire program is listed to the screen.

DISPLAY 20-90 "Ip:” The program from line 20 to and including

line 90 is printed on the lineprinter with no

line numbers.

DISPLAY sort "dsp.sort” The contents of the procedure sort is

stored on diskette under the name dsp.-

sort.

CHAPTER 4 98 COMAL OVERVIEW

Note:

A program which has been saved on diskette (or tape) with the DISPLAY

command can not be fetched again using ENTER or MERGE. However it

can be read in as an ordinary sequential ASCII file using the instruction

INPUT FILE.

SAVE - LOAD

SAVE

is acommand which saves a copy of the program in working memory to

diskette or tape in compact binary form. A SAVEd program can be

fetched later using one of the following: LOAD, RUN or CHAIN.

Examples:

SAVE "program name” The program in working memory is saved

to disk under the file name program name.

SAVE ”cs:racetrack” The program is saved to cassette tape

under the file name racetrack.

Note:

Any program packages which are associated with the COMAL program

by means of the LINK instruction are saved together with the COMAL

program as one file. When the program is later entered into working

memory, e.g. using LOAD, both the COMAL program and the machine

language package are read in together.

LOAD

is a command which transfers a copy of a program from diskette or

cassette tape into working memory. The program must have been saved

earlier by means of the SAVE command. The LOAD command deletes

any previously existing program and all variables from working memory.

Examples:

LOAD "program name” transfers a copy of the program saved

under the file name program name from

diskette into working memory.

LOAD ”cs:” A copy of next program on the tape is

fetched into memory via the Datassette.

CHAPTER 4 99 COMAL OVERVIEW

RUN - CHAIN - CON

RUN

is acommand which causes the program in working memory to be execu-

ted. All variables are zeroed and the computer begins by examining the

program structure for possible errors. A program can also be fetched

from diskette or tape and started automatically using the RUN command.

Examples:
RUN Program execution is started (the program is

*run’).

RUN "program name” The file program name is fetched from diskette

and execution begins.

CHAIN

can be used as a statement or as a command. It fetches a copy of a pro-

gram from diskette or from cassette tape and starts it running. Any exist-

ing program in working memory will be deleted first.

Used as acommand CHAIN "<file name>” works like RUN ”<file

name>”.

CHAIN is particularly useful when used as a statement in a program. It

allows the user to break down a large program into smaller independent

units.

Examples:
CHAIN ”cs:name” The program name is fetched from cassette

tape and started.

Program example:

INPUT ”Choose a program number: ”:no
CASE no OF
WHEN 1
CHAIN "program 1”

WHEN 2
CHAIN ”program 2”

OTHERWISE
CHAIN "program 3”

ENDCASE

CON
is a command which causes program execution to continue in an inter-

rupted program. The program may have been interrupted by anerror, by

activation of the STOP key or bya STOP statement in the program. While

the program is stopped, changing the contents of existing variables is

permitted. However new variable names may not be added, and the pro-

CHAPTER 4 100 COMAL OVERVIEW

gram may not be changed. No line may be altered, and no new lines may

be added to the program while it is interrupted. If this is done, execution

cannot be continued using the CON command.

STATUS - STATUS$

STATUS is a command which causes the system to report on the status of

the disk operating system and zero the error flag. STATUS$ is a string

function which contains the status report. STATUS performs the same

Operation as PRINT STATUS$.

Example:

Right after the disk system is turned on

STATUS

will cause the system to answer

73,cbm dos v2.6 1541,00,00

depending on disk drive used.

VERIFY

is acommand which can be used to check that the program on the disket-

te or cassette tape (saved using the SAVE command) is identical to the

program which is currently in the working memory of the computer.

Warning: Take care not to change the program in working memory before

using VERIFY (spell correctly!).

Example:

VERIFY "test prog” The COMAL system reports verify error, if the

program saved under the file name test prog

and the program in working memory are not

exactly alike.

COPY - DELETE - RENAME - PASS

COPY

can be used as a command or a statement for copying diskette files.

Examples:

COPY "old’flie”,”new’file” The system makes a copy of the

program old’file and saves it on the

same disk drive under the name

new’ tlle.

CHAPTER 4 101 COMAL OVERVIEW

COPY ”0:program 3”,”1:program 3”The system copies program 3 from

disk drive 0: and saves it with the

same name on disk drive 1:.

DELETE

may be used as a command or a statement to delete files on a diskette.

DELETE "testdata” The file testdata is deleted.

DELETE "test*” All files which begin with test are deleted.

RENAME

is used as a command or a statement to change the name of a file.

Example:

RENAME ”old”,”new” The diskette file with the name old is

assigned the new name new.

PASS

can be used as a command or a statement to send instructions to the disk

operating system.

Examples:

PASS ”n0:procedurebib,a1” Formats a new diskette on disk drive 0.

This diskette gets the name procedurebib

and the identification number a1.

PASS "n2:diskname,01”,9 Formats a new diskette on the extra disk

drive (no. 2) with unit number 9.

PASS ”v” Clean house (garbage collection): The

files on the diskette are collected and any

open files are closed. The letter v repre-

sents the word validate.

Note:

There are additional instructions which can be transferred to the disk

operating system using PASS. But there are more suitable COMAL-in-

structions for accomplishing the same functions.

SELECT INPUT - SELECT OUTPUT

SELECT INPUT

may be used as a command or astatement. It causes subsequent read-in,

which normally would occur from the keyboard, to come from the speci-

CHAPTER 4 102 COMAL OVERVIEW

fied sequential ASCII file. This read-in can be terminated by pressing the

<STOP> key, by an END-OF-FILE or by errors in the program. At this

point input will again be from the keyboard.

INPUT statements, KEY$ and inkey$ also receive their input from the

SELECT INPUT file. The COMAL system interprets this input as if it came

from the keyboard and echoes it in the usual manner to the screen.

If SELECT INPUT is used as a command it can be used to redefine the

meanings of the function keys.

SELECT INPUT ”kb:” Keyboard input. As with the start up or

restart of the COMAL system.

SELECT INPUT ”checkfile” checkfile will be read in as if it came di-

rectly from the keyboard.

SELECT OUTPUT/SELECT

can be used as acommand or asa statement. It is used to select the unitto

which subsequent output will be sent. If one simply writes SELECT, the

system will automatically add OUTPUT in the program listing after the
program has been scanned or run.

SELECT OUTPUT “ds:” Printout is sent to the screen, as when

the computer first is started up.
SELECT OUTPUT "Ip:” Printout is directed to the printer.

SELECT OUTPUT "0:namefile” A sequential file with the name name-

file is created on disk drive 0, and sub-

sequent printout is directed to the file.

Notes:

SELECT OUTPUT can be abbreviated to SELECT. The system automati-

cally adds OUTPUT after a scan or a run.

Printout will automatically return to the screen after the LIST command
has been executed.

Even if printout is directed away from the screen, e.g. to a printer, text

provided in INPUT statements will still be directed to the screen.

Commands for System Start Up

BASIC - SYS to COMAL

BASIC

The BASIC command directs the computer to initiate the Basic operating
system.

CHAPTER 4 103 COMAL OVERVIEW

The computer can be directed back to the COMAL system with the in-

struction:

SYS 50000

Both instructions cause all information in working memory to be deleted.

Commands and Statements concerning the Use of Machine

Code Program Packages
(See also Chapter 8 on COMAL and programs in machine code.):

USE - LINK - DISCARD

USE

may be used as a command or a statement to append a named machine

code program package to the COMAL program in working memory. The

name of the package is hereby made known to the COMAL interpreter.

The instruction is used for example to make the built-in packages in the

COMAL cartridge accessible in a program. See more about how to use

packages in Chapter 5.

Example:
USE graphics The package graphics is activated.

LINK

is a command which fetches a file with a machine code package from

diskette and transfers a copy into working memory. The name of the

package can then be made known to the program by means of the USE

instruction.

Example:

LINK ”obj.driver” The object code file with the name obj.driver is

fetched.

USE driver The above LINKed file contains the package

with the name driver, which is hereby activated.

Note:
A machine code program which is associated with a COMAL program by

means of the command LINK is saved together with the COMAL program

as one file using the SAVE command. A later LOAD will automatically

fetch both the COMAL program and the machine code program.

CHAPTER 4 104 COMAL OVERVIEW

DISCARD

is a command which removes all machine code program packages from
working memory.

The COMAL program is not lost, but the interpreters name table is only

intact again after a RUN or a SCAN has been performed.

Statements used during Read-In and Printout

INPUT - INPUT AT - KEYS

INPUT

is a statement which reads data into a program during execution. After an

INPUT statement the system stops execution and waits for a user respon-

se. The cursor flashes at the beginning of the input field. Ail responses

must be terminated by a <RETURN>.

Examples:

INPUT ”Total ”: number The system awaits number as re-

sponse.

INPUT What's your name? ”: name$ The system awaits a string input.

INPUT ”Position (X,Y) = ”: x,y Several numbers can be entered

in the same INPUT statement.

INPUT “Item number: ”: no; A (5) or (,) after the variable name

suppresses the carriage return af-

ter the answer.

INPUT AT

acts like INPUT with the added possibility of placing the input field any-

where on the 25 lines and 40 columns of the screen.

Examples:

INPUT AT 4,10: "Number = ”: no The input message starts on line 4,

column 10.

INPUT AT 4,7,15: "Name ”: text$ The input message starts on line 4,

column 7. The input field is limited to

the 15 following spaces which are

protected from other uses.

Special case:

A 0 given as line or column number means current value.

CHAPTER 4 105 COMAL OVERVIEW

Example:

INPUT AT 0,0,10: ”Town ’:town$ The input message starts at the pre-

sent line and column, but the re-

sponse field is limited to 10 charac-

ters.

See also INPUT FILE and SELECT INPUT.

KEYS

is a function which reads the keyboard input buffer to determine the last

character activated. If no character has been sent, then the function re-

turns the value chr$(0) or””’0"”. Program execution does not waitin con-

trast to the INPUT statement and the function inkey$ (in the system

package).

Examples of use:

WHILE KEY$=CHR$(0) DO NULL The program 'hangs' in the same line

until the user presses any key.

DIM answer$ OF 1

PRINT ”Answer yes/no”

REPEAT
answer$:—=KEY$

UNTIL answer$ IN ”yYnN”

The system waits for keys y, Y, n or N to be pressed.

PRINT - PRINT AT - PRINT USING - TAB - ZONE

PRINT

may be used as acommand or a statement. It is used to print data on the

) screen or send it to other output devices. If the PRINT line contains

several items, they can be separated by a semicolon (;). This will cause a

single space to be printed between each item. If a comma (,) is used, the

the number of spaces between the beginning of each item is determined

by the ZONE instruction. During program coding PRINT can be abbrevia-

ted to ;.

Examples:

PRINT ”Result: ”;speed;”m/s” text and numbers can be mixed in

the printout.

PRINT Prints out an empty line.

PRINT texts; The carriage return is supressed by

terminating the PRINT line with a (;)

ora (,).

CHAPTER 4 106 COMAL OVERVIEW

PRINT AT

can be used as a command or as astatement. It makes it possible to print

numbers or text at any character position on the screen. Line numbers

may range from 1 - 25, and column numbers from 1 - 40.

Example:

PRINT AT 3,12: "Name is”; name$ The printout begins in the 3. line,

column 12.

Special case:

A 0 as line or position number means present or current.

Example:

PRINT AT 0,30: "COMAL” Print on the present line, column 30.

PRINT USING

can be used as a command or astatement. Itis used for printing numbers

in a well defined format.

Examples:

PRINT USING ”Price +4++.4++”: price The amount is written in the
format determined by the +
signs and the decimal point. In

this example there is room for 3

digits before the decimal point

and 2 digits after it.

The various PRINT options can be combined:

PRINT AT 10,15: USING "Speed = ++.++": speed

Note:
If the number is too big to fit in the specified format, the printout will

consist of a row of stars: *****

TAB

is a system function which is used in connection with the PRINT instruc-

tion. TAB is an abbreviation for TABulation.

CHAPTER 4 107 COMAL OVERVIEW

Example:

PRINT "Itemnumber: ”,TAB(25),no After the text Itemnumber: has

been printed, the system will

move the cursor to column 25

where no will be printed.

See also PRINT FILE and SELECT OUTPUT.

ZONE

is a statement and a function which is used in connection with the comma

(,). It is used to define the interval between columns in PRINT printouts.

When COMAL is initiated and after the use of the command NEW, ZONE

is equal to 0.

Examples:

After start-up:

PRINT 23,56,89 will be printed out as

235689 with no spaces between numbers, because ZONE

equals 0.

ZONE 5 The column interval is set to 5.

PRINT 23,56,89 will now be printed out as

23 56 89

The first number will begin in column 1, the next in column 6, the next in

11, etc.

spacing:=ZONE

ZONE can be used as a function for example to assign a value to the

variable spacing which is given the current ZONE value.

PAGE - CURSOR

PAGE

can be used as a command or a statement. It is used to clear the screen. If

a printer has been selected as the output device, a form feed instruction

will be sent to the printer.

CURSOR

can be used as acommand or astatement. It can be used to position the

cursor on the screen. The character position 1,1 is in the upper left-hand

corner, and 25,40 is in the lower right-hand corner.

CHAPTER 4 108 COMAL OVERVIEW

Examples:

CURSOR 15,30 Place the cursor on line 15, column 30.

CURSOR 0,10 Move the cursor to the present line, column 10.

A 0 means present or current.

Note that the specification of the screen position using CURSOR, INPUT
AT and PRINT AT use the line and column method in contrast to high
resolution graphics. In graphics the position is specified using a conven-
tional (X,Y) coordinate system.

READ - DATA - RESTORE - Label: - EOD

READ

is a statement which is used to read values from a DATA statement. Ifthe

READ statement contains several variable names, then these are sepa-
rated by commas (,).

Example:

READ name$,street$,no,postno,town$

DATA

is a statement which contains the values which the variable names ina

READ statement are assigned. DATA statements are not executed. For

this reason they can be placed anywhere in a program. However DATA

statements are local within a closed procedure or a closed function.

Examples:

The DATA statement can contain both text and numbers. Text must be
enclosed within quotation marks ”:

DATA "John Smith”’,”Easton”,’Pennsylvania”

DATA 230,$e6,%11100110 DATA statement can contain both deci-

mal numbers, hexadecimal numbers and

binary numbers.

RESTORE

can be used as a command or as a statement. It sets the DATA pointer to

point at the first DATA statement in a program or to the first statement
right after a label.

label:

is a freely chosen name which is used to specify an entry point at some

CHAPTER 4 109 COMAL OVERVIEW

line in the program. The label is not executed like an instruction. It canbe

used in connection with RESTORE (and GOTO). See the summary

example after the definition of EOD.

EOD

is a boolean (logical) system function which is used during a READ from

DATA statements. EOD means End Of Data. As long as DATA-values

remain in the list, EOD is FALSE. When the last DATA-value has been

read, then EOD is set to TRUE.

Summary example:

DATA ”screws”,112,”nalls”,50
toys:
DATA "cars”,220,"dolls”,35
DATA "bails”,76,"jump ropes”,24
DIM name$ of 20
RESTORE toys
WHILE NOT EOD
READ name$,total
PRINT ”There are ”;total;name$;"left.”

ENDWHILE

Notes:

It is usually convenient to place DATA statements near the beginning or

the end of the program, so they are easy to find and revise.

A label toys: has been placed just before the DATA statements contain-

ing the list of toys.

RESTORE toys assures that READ begins in the following line.

Read-in and printout of the toy inventory continues until EOD is set

equal to TRUE. This happens when there is no DATA left in the list.

Instructions for Communication with Files

MOUNT - CREATE

MOUNT

can be used as a command or as a statement. It sets up a diskette which

has just been placed in the disk drive, getting the diskette ready for read-

ing and writing operations. Cassette tapes do not require this, and disket-

tes will usually operate properly without being MOUNTed. To be onthe

safe side it is wise to MOUNT diskettes each time they are put into the

drive.

CHAPTER 4 110 COMAL OVERVIEW

Examples:
MOUNT disk drive Ois initialized. (the same as function key 2)

MOUNT ”1:” disk drive 1 is initialized.

CREATE

can be used as acommand or as astatement. It creates a random file on

diskette. A file can also be created using the OPEN instruction, but

communication with the file can be carried out about 10 times faster,

when the file has been CREATEd first.

Example:

CREATE "textfile”,300,42 A file by the name of textfile with 300 re-

cords, each 42 characters (bytes) long.

OPEN FILE/OPEN - READ - WRITE - APPEND - RANDOM

OPEN FILE/OPEN

can be used as a command or as astatement. It is used to open access to

a file on a peripheral device, e.g. diskette, cassette, printer etc. Several

sequential files can be open at the same time with different stream

numbers. The term stream number refers to that fact that a data channel is

opened to or from the file. It the word FILE is omitted during program

coding, the system will automatically add it to the listing after a SCAN or

RUN. There are many ways to open files. See Chapter 6 for further infor-

mation. In the following only a few examples of the use of READ, WRITE,

APPEND and RANDOM will be given.

Examples:

OPEN FILE 3,”datafile’, WRITE The file with the name datafile and

stream number 3 is opened to re-

ceive data. Hereafter in the program

stream number 3 is reserved for this

file, until the file is closed by means

of a CLOSE FILE 3 instruction.

OPEN FILE 7,”cs:names”,READ The cassette file names is opened to

return data to the program. The file

is identified by stream number 7.

OPEN FILE 15,”data”,APPEND An already existing sequential disk

file with the name data is opened for

addition of new data following the

existing data on the file. The file is

identified by the stream number 15.

OPEN FILE 4,”names.usr’,WRITE A sequential file is opened with the

classification usr instead of seq.

CHAPTER 4 111 COMAL OVERVIEW

OPEN FILE 5,”text”,RANDOM 42 _ The file text is opened. RANDOM

indicates that it is a random access

fille. Each record will have room for

42 characters (i.e. bytes) on the

diskette. 42 bytes will be taken upon

the diskette even though the indivi-

dual records do not use all this room.

Access to the records is speeded

however, because each record has

the same length. The position of

each record can be determined

when the record number is known.

, OPEN FILE 4,”Ip:”, WRITE A data stream is opened to the

printer

PRINT FILE - INPUT FILE

PRINT FILE

can be used as acommand or asastatement. It is used for sending datain

ASCll-format to a file on diskette, cassette tape or other peripheral. The

file must have been previously opened by means of the OPEN instruction.

The file is identified by its stream number.

When PRINT FILE is used to send data to a file, the individual data

elements are separated by a carriage return <CR>, i.e. ASClI-code 13.

A file which has been written to using PRINT FILE can be read using the

instruction INPUT FILE.

Examples:
PRINT FILE 2: item$ The value of the variable is written to the se-

quential file with stream number 2. The print-

out is terminated by a <CR> after ItemS. The

file is opened using OPEN 2,...WRITE or

APPEND.

PRINT FILE 4,7: name$ The value of the variable is written to the

random access file with stream number 4,

record number 7 (opened with RANDOM).

INPUT FILE

is acommand or a statement used to read data from a file which has been

opened with OPEN no,name$,READ or RANDOM. The file must contain

data in ASCII format, written with the PRINT FILE instruction.

Examples:
INPUT FILE 2: item$ The value of the variable is read in from the

CHAPTER 4 112 GOMAL OVERVIEW

sequential file with stream number 2. The file

must have been opened as a READ type.

INPUT FILE 4,7: name$ The value of the variable is read in from file 4,

record 7. The file must have been opened as a

RANDOM type.

WRITE FILE - READ FILE

WRITE FILE

is a command or a statement which transfers data to a file in compact

binary form. The file is sequential, if it is opened as a WRITE or APPEND

type; and it is random access, if it has been opened using RANDOM.

WRITE FILE is preferable where possible instead of PRINT FILE, because

the binary form takes up less space, and access is faster. It is not possible

to use WRITE FILE to store data on a cassette tape unit.

Examples:

WRITE FILE 2: first3,last$,tel The values of the variables are

written in binary form to the se-

quential file with stream number 2.

The file must have been opened

earlier with the instruction OPEN

2,... WRITE or APPEND.

WRITE FILE 3: tablevalues() The entire set of numbers repre-

sented by tablevalues() is written

to file 3.

WRITE FILE 4,12: no,text$,other$ The values of the variables are

written in binary form to a random

access file. The stream number is

4, and the record number is 12.

The file must have been opened

earlier using OPEN 4,.... RANDOM.

READ FILE

is a command or a statement which is used to read data from a file which

has previously been opened using the instruction OPEN no,name$,READ

or RANDOM. The file must contain data in binary form, written with the

instruction WRITE FILE.

Examples:

READ FILE 2: first$,last$,tel The data values are read in fromthe

sequential file with stream number

CHAPTER 4 113 COMAL OVERVIEW

2. The file must have been opened

as a READ type.

READ FILE 4,12: no,text$,otherS The data values are read in from file

no 4, record 12. The file is random

access and must have been opened

with RANDOM.

CLOSE FILE/CLOSE
can be used as a command or as a Statement. It closes files which have

been opened with the OPEN instruction. Serious errors can arise if one

_ attempts to copy or rearrange open files. Ifthe word FILE is omitted when

- this instruction is used as a statement, it will be added automatically by

the system after a SCAN or RUN.

Examples:

CLOSE All open files are closed.

CLOSE FILE 2 The file with stream number 2 is closed.

EOF

is a logical system function which is used during read-in from a file. EOF

means END of FILE. EOF is always used including a stream number:

EOF(<stream number>). As long as data elements are remaining in the

file, EOF equals FALSE (=0). When last element has been read, EOF

equals TRUE (=1).

Example:

no:=0
WHILE NOT EOF(2) DO

no:+1
READ FILE(2):digIt(no)

. ENDWHILE

Data is read from a file with stream number 2. The read-in terminates,

when no elements are left in the file.

UNIT - UNITS

UNIT

can be used as a command or as a Statement. It is used to specify which

unit is to be used for file operations when the file name does not contain

this information. When COMAL is started, disk drive number 0 is auto-

matically selected as the unit. See Chapter 7 on Peripheral Equipment for

further information.

CHAPTER 4 114 COMAL OVERVIEW

The following units may be selected:

cs: cassette

0: disk drive no O (default)

1: disk drive no 1

2: extra disk drive (usual choice)

Note that if a second disk drive is connected via the IEEE serial bus, it

should be set up to act as ‘device 9’. It will then repond to COMAL instruc-

tions when referenced as unit 2.

Example:

UNIT ”cs:” Cassette is the default unit.

UNITS

is a system function which returns the name of the unit to be used, if no

other specification is given in the file name.

Example:

PRINT UNITS the system responds e.g. with 0:

Programming Structures

Conditionals

Loop Statements

Error Handling

Procedures and Functions

Conditionals

IF - THEN - ELIF - ELSE - ENDIF

are statements which are used in IF-THEN structures. An IF-THEN

statement can be formulated in many different ways. The fundamental

principle is, however, quite clear: If a <logical expression> is true, then

the associated statements will be executed. Another way of expressing

the same thing is to say that if a given <condition> is fulfilled, then the

associated statements will be executed.

Example 1:

IF<logical expression> THEN <statement>

is a single line version: If the <logical expression> is true, then the

CHAPTER 4 115 COMAL OVERVIEW

<s ate nent> after THEN is executed. Otherwise the program just

continues in the next line.

IF answer$="yes” THEN print‘data

Example 2:

IF <logical expression> THEN
<statement>
<statement>

ENDIF

Multiline version:

If the expression is true, the statements between THEN and ENDIF are

executed. Otherwise execution jumps to the line after ENDIF

IF number>=0 THEN
square’root:=SQR(number)
PRINT "The square root of";number;”Is”;square’root

ENDIF

Example 3:

IF <logical expression> THEN

<statements>

ELSE

<statements>

ENDIF

If the expression is true, then the statements between THEN and ELSE are

, executed. Otherwise the statements between ELSE and ENDIF are exe-

* cuted.

IF answer$ IN "aeiou” THEN
PRINT answer$;”is a vowel.”
PRINT ”Want to try agaln?”

ELSE
PRINT answers$;”is not a vowel.”
PRINT "The letters: aeiou are vowels,”
PRINT “all other letters are usually consonants.”

ENDIF

CHAPTER 4 116 COMAL OVERVIEW

Example 4:

IF <conditlont> THEN
<statement>

ELIF <condition2> THEN
<statement>

<statement>

ENDIF

ELIF is short for ELSE IF. If <condition1 > is fulfilled then the statements

between THEN and the first ELIF, are carried out. Then program executing

continues after ENDIF. If <conditlont> is not fulfilled, then <condl-

tlon2> i checked. If true, then the statements down to the next ELIF are

executed. Next, control passes to the line after ENDIF. Otherwise <con-

dition3> is checked, etc.

IF number=0 THEN
add'data

ELIF number=1 THEN
delete’data

ELIF number=2 THEN
print’data

ENDIF

Example 5:

IF <condition1> THEN
<statement>

ELIF <condition2> THEN
<statement>

ELSE
<statement>

ENDIF

If no condition is fulfilled, then the statements between ELSE and ENDIF

are executed

IF aS="mall” AND b$="box” THEN
PRINT "Yes Indeed!”
PRINT "The word should be ;a$+b$

ELIF aS=”"box" AND b$="mall” THEN
PRINT "Try reversing the words.”

ELSE
PRINT "The words don’t agree.”
PRINT "Look at the drawing again,”
PRINT "and try again!”

ENDIF

CHAPTER 4 117 COMAL OVERVIEW

CASE - OF - WHEN - OTHERWISE - ENDCASE

are statements which are used in the CASE-structure to direct program

execution in a situation where a number of choices are available.

Example:

CASE <expression> OF
WHEN <‘1st value>

<statement>

WHEN <2nd value>
<statement>

WHEN <3rd value>
<statement>

OTHERWISE (can be left out)
<statement>

ENDCASE

Example 1:

CASE answer OF
WHEN 1

PRINT "Hm..”
WHEN 2

draw’IIne
WHEN 3,4

draw’polygon
OTHERWISE

draw’cirkel
ENDCASE

Depending on the value of answer, one of the procedures will be

executed. If the answer is 1,2,3 or 4, then the statements under the corre-

sponding WHEN are executed. Otherwise the statements following

OTHERWISE are carried out. The structure always ends with ENDCASE.

Example 2:

CASE works with string constants as well:

CASE country$ OF
WHEN ”Denmark”

PRINT "Yes. Correct!”
WHEN ”Scandinavia”’,”"Sweden”,” Norway”

PRINT ”Close. More specific, please.”

WHEN ”Europe”
PRINT "Go North.”

OTHERWISE
PRINT "Far out..”

ENDCASE

CHAPTER 4 118 COMAL OVERVIEW

Loop Statements

REPEAT - UNTIL

are statements which are used in the REPEAT-structure. The statements

within the REPEAT-UNTIL loop are repeated until the logical (boolean)

expression in the UNTIL statement is true.

Example 1:

REPEAT <statement> UNTIL <logical expression>

is a single line version:

<statement> is executed until <logical expression> is true.

REPEAT read'file UNTIL textS$="Susan” OR EOF(no)

The procedure read’file will be carried out until the logical expression is

true. Either the variables text$ is equal to "Susan’) or EOF(no) is true

(which will occur if there is no more text in the file being read).

Example 2:

REPEAT
<statement>

UNTIL <logical expresslon>

Multi-line version:

The statements between REPEAT and UNTIL run until the logical expres-

sion is true.

REPEAT
INPUT ”New number ”: a

UNTIL a<0

The INPUT statement will be carried out until the rumber read in is nega-
tive.

Note that the statements in the REPEAT structure are always carried

out at least once, because the logical expression is at the end of the loop.

WHILE - DO - ENDWHILE

are statements which are used in the WHILE-structure.

The statements within the WHILE-ENDWHILE loop are repeated as long

as the logical expression in the WHILE statement is true.

CHAPTER 4 119 COMAL OVERVIEW

Example 1:

WHILE <logical expression> DO <statement>

is a single line version:

As long as <logical expression> is true <statement> is executed.

WHILE name$<>”Peter” DO get’name

The call for the procedure get’name is repeated, as long as name$ is dif-

ferent from "Peter”.

Example 2:
WHILE <expression> DO

<statement>

ENDWHILE

As long as <expression> is true, the statement between DO

and ENDWHILE continue to be executed.

b:=1
WHILE KEY$=”""0"" DO

b:=2*b
PRINT 1/b

ENDWHILE

As long as no key is pressed, new numbers in the series will continue to

be printed out. ""0"” equals CHR$(0).

Notice that the keyword ENDWHILE must not be used inthe single line

version.

FOR - TO - STEP - DO - ENDFOR

are statements which are used in the FOR - ENDFOR structure. The

statements within the FOR loop are repeated a predetermined number of

times, then program execution continues with the line after ENDFOR.

The loop variable <counter> Is local.

Example 1:

FOR <counter>:=<start> TO <end> DO <statement>

is a single line version:

The loop is repeated <end>-<start>+1 times with <counter> equal to

<start>, <start>+1,..., until <end> is passed.

FOR n:=0 TO 30 DO PRINT a(n);

CHAPTER 4 120 COMAL OVERVIEW

Example 2:

FOR <counter>:=<start> TO <end> DO
<statement>

ENDFOR <counter>

FOR no:=1 TO 10 DO
INPUT "Name: ”:name$(no)
INPUT "text: ’:text$(no)

ENDFOR no

The FOR loop is repeated 10 times with the variable no equal to 1, 2,..., 10

Example 3:

Version with STEP parameter:

FOR angle:=0 TO 6.3 STEP 0.1 DO
PRINT COS(angle);SIN(angle)
PRINT COS(angle)i2+SIN(angle)!2
ENDFOR angle

As indicated by the STEP parameter, angle will take on the values 0, 0.1 =
6.3

FOR |+:=max TO min STEP -1 DO
moveto(0,0)
drawto(x(I4+),y(i4+))
ENDFOR I+

The integer variable i+ increases the speed. The STEP parameter can
also be negative.

Note:

The keyword ENDFOR is not used in the single line version.
The single line version can also be used as a command.

LOOP - EXIT - EXIT WHEN - ENDLOOP

are statements which are used in the LOOP-ENDLOOP structure. The
statements in the LOOP-ENDLOOP segment are repeated until an EXIT
or EXIT WHEN statement is executed. Next program execution is conti-
nued in the line after ENDLOOP. There can be 0, 1 or more EXIT’s ina
LOOP-ENDLOOP structure.

Example:

LOOP

<statement>

EXIT WHEN <loglcal expression>
<statement>

ENDLOOP

CHAPTER 4 121 COMAL OVERVIEW

LOOP
INPUT "Text ”: text$
EXIT WHEN text$="end”
WRITE FILE 3: text$
do’test
ENDLOOP

Text is read in, written to file 3 and examined in the procedure do’test,

until the text "end” is read in.

Error Handling

TRAP - HANDLER - ENDTRAP

are statements which are used to control program execution after errors

are encountered. If errors occur in the statements between TRAP and

HANDLER (called the TRAP part), then the statements between

HANDLER and ENDTRAP (the HANDLER part) are executed. Otherwise

the program continues with the line after ENDTRAP. Inthis way one can

avoid having the program stop e.g. due to a user data-entry error.

Example:

TRAP
INPUT "No. ”: no

HANDLER
check’error

ENDTRAP

If errors occur during read-in, the system will jump down to the

HANDLER part and carry out the procedure check’error.

| ERR - ERRFILE - ERRTEXT$

are system functions which are used in connection with the HANDLER

part of the TRAP structure to identify errors. See Appendix F on error

~ numbers and error messages.

ERR contains the error number.

ERRFILE contains the number of a file, if one was in use when a read or

write error occurs.

ERRTEXTS$ contains the text with the error message.

Example 1:

TRAP
INPUT "Exponent ”:exponent
PRINT 10texponent

CHAPTER 4 122 COMAL OVERVIEW

HANDLER
PRINT ERRTEXTS$
CASE ERR OF
WHEN 2

PRINT "Exponent too large”
WHEN 206

PRINT "Exponent is a number”
OTHERWISE

PRINT "Please try again!”
ENDCASE

ENDTRAP

Example 2:

TRAP
INPUT "Filename: ":nameS
OPEN FILE 2,name$,READ
OPEN FILE 3,”saveflle”, WRITE
transfer(name$,"saveflle”)

HANDLER
CLOSE
IF ERRFILE=2 THEN

PRINT "Error in read-In”
ELIF ERRFILE=3 THEN

PRINT "Error during print-out”
ELSE

PRINT "Not an input/output error”
ENDIF
PRINT ERR;ERRTEXTS

ENDTRAP

REPORT

is acommand and statement which is used in connection with the TRAP-

structure. REPORT can be used in several ways to reveal an error and to

direct subsequent error handling. REPORT can be used with or without

an argument:

REPORT Repeat earlier error. (only as statement)

REPORT errorno Report an error with errorno.

REPORT errorno,errortext$ Report errorno and errortext$.

The instruction has various effects according to where it occurs in the

structure.

REPORT outside the TRAP-ENDTRAP structure:

The error is reported to the system, which will then react to the error.

REPORT In TRAP part of the structure:

Program execution is directed to the HANDLER part, where the user

program handles the error.

REPORT in HANDLER part of the structure:

Program execution is directed to an external HANDLER structure, if

CHAPTER 4 123 COMAL OVERVIEW

found. Otherwise the error is reported to the system with an error mes-

sage on the screen.

Example:

TRAP
INPUT "Name: ”:name$
INPUT "Age: ":age

HANDLER
IF ERR=2 OR ERR=206 THEN

age:=—0
ELSE
REPORT

ENDIF
ENDTRAP

REPORT can sort out errors: If the response to Age is not anumber, or the

number is too large, then age is set equal to 0. Otherwise the error is re-

ported to the system.

GOTO - <Label:>

GOTO
is a statement which causes program execution to continue at a pre-

determined place. This place is given by a <Label>, i.e. aname followed

by acolon (:). It is not possible to jump out of a procedure or into a closed

program structure using GOTO.

Example:

FOR no:=1 TO 10 DO
READ FILE 2: number
IF number<1e-37 THEN GOTO too’small
PRINT 1/number

ENDFOR no
too’small:
PRINT "Divisor too small.”

<Label:>

is aname which is used to identify a program line. The program line is not

executed. Execution continues in the line following <Label:>. Labels

are used in connection with GOTO and RESTORE.

Examples:

See GOTO example.

CHAPTER 4 124 COMAL OVERVIEW

DATA 2,4,5,2,1
twodiglt:
DATA 12,34,18,54,22
RESTORE twodiglit
WHILE NOT EOD
READ number(no),

ENDWHILE

Read-in of numbers from the DATA statements starts with the number 12

due to the statement RESTORE twodigit.

Procedures

PROC - ENDPROC
are statements which are used to form the PROC-ENDPROC structure.
PROC-ENDPROC surround a number of statements which together form
a procedure. A procedure is a program module, recognized by a name
stated in the procedure heading: PROC <name>. The procedure is
carried out only if it is called from somewhere else in the program using
the same name that appears in the PROC heading.

COMAL programs should be created using procedures. In their
simplest form, they can be used to break a larger program down into
smaller, easy to handle units. More advanced uses with parameter trans-
fer and use of the options REF, CLOSED, IMPORT and EXTERNAL make
procedures a programming tool of substantial value.

Example 1:

// MAIN PROGRAM
<statement>

<namet >
<statement>

<name2>
<statement>

<name1>
<statement>

END // MAIN PROGRAM

PROC <name1>
<statement>

ENDPROC <name1>

CHAPTER 4 125 COMAL OVERVIEW

PROC <name2>
<statement>

ENDPROC <name2>

The statements of the procedure are enclosed in PROC <name> and

ENDPROC <name>. The procedure can be called "by name” from

various places in the main program.

// MAIN PROGRAM
start'up
read'In

The main program consists of program lines, each of which calls a pro-

cedure.

PROC start’up
USE system
textcolors(0,2,1)
DIM number(10)
PAGE

ENDPROC start’up

PROC read’In
FOR no:=1 TO 10 DO

PRINT ”Read in age (”,no,”) ”,
INPUT ””: number(no)

ENDFOR no
ENDPROC read'in

Example 2:

<statement>

print’out(member,age,names)
<statement>

PROC print’out(no,years,textS)
PRINT
PRINT "Membership number: ”,no
PRINT "Age :",years
PRINT "Name :",text$

ENDPROC printout

Notes on example 2:
In the main program the procedure print’out is called. Those values

which are contained in the actual parameters member, age and name$,

are transferred to the formal parameters no, years and text$, which occur

in the procedure heading.

CHAPTER 4 126 COMAL OVERVIEW

The variable names of the formal parameters are local within the pro-

cedure print’out.

This form for value transfer is one-way: Values can be passed into the

procedure but not from it.

Notes on procedures:

When a procedure has been RUN or SCANned, it can be used as acom-

mand.

A procedure can call another procedure, or it can even call itself.

A procedure can be placed within another procedure and thereby be

made local for just this procedure. (Similarly, a function and a label will be

local within a procedure/function.)

The command SETEXEC- will cause every procedure callin the listing

to begin with the word EXEC (for "execute”). See SETEXEC.

REF - CLOSED - IMPORT

REF

is a parameter type which is used in a procedure call. A REF preceding a

parameter in the procedure heading indicates that the name will only be

synonomous with the corresponding name in the procedure call. It is

called by reference. No room is reserved in the computer's working

memory for a new name and value. The value receives only a new,

temporary name. Both names refer to the same value. In this way room is

saved in storage, execution speed is increased, and parameter values can

be passed both ways: into and out of the procedure.

Example:

<statement>

read’In(class,nameS())
<statement>

PROC read’In(REF no,REF a$())
INPUT ”’Which class: ”: no
PRINT "Write student names.”
k:=0
REPEAT

i:+1
INPUT "Name: ”:a$(1)

UNTIL a$(iI)=””
ENDPROC read'In

While the procedure read'in is carried out, the names class and no will

refer to the same value because of the REF in front of no. The same is true

for the names name$ and a$. Both refer to the string values in a one-

dimensional array.

é

CHAPTER 4 127 COMAL OVERVIEW

CLOSED

is an instruction which is used to declare all variable names in a procedure

as local. Thus the procedure is 'closed off’ from the rest of the program

except for transfer of parameter values in the parentheses of the proce-

dure heading. In this way mixing and name conflicts between procedure

names and variable names in the rest of the program can be avoided. For

example a name can be used locally in the procedure without disturbing

the value of a variable with the same name outside the procedure.

Example:

a:=10
DIM b(a)
FOR no:=1 TO a DO INPUT "Next number: ”: b(no)
minmax(a,b(),min,max)
PRINT min;max

PROC minmax(n,a(),REF b,REF c) CLOSED
b:=a(1);c:=a(1)
FOR |#:=2 TO nDO

IF a(i##)<b THEN b:=a(I+)
IF a(i4##)>c THEN c:=a(I4+)

ENDFOR I+
ENDPROC minmax

The procedure minmax is CLOSED so that it can be used without worry-

ing about the names of the variables in the procedure.

IMPORT

is a statement which is used in closed procedures to bring in variables,

procedures and functions from outside the procedure. In this way they

can be made accessible for use in an otherwise closed procedure.

Example:

<statement>

printout(points())
<statement>

PROC print’out(number()) CLOSED
IMPORT total, t(), sort
DIM prod(total)
FOR no+#:=1 TO total DO
prod(no+):=number(no+#)*t(no+)
PRINT no+#;proc(no#)

ENDFOR no+
sort(number(), total)
sort(t(),total)
FOR no+:=1 TO total DO
PRINT no+;number(no+)*t(no+#)

CHAPTER 4 128 COMAL OVERVIEW

ENDFOR
ENDPROC printout

Even though the procedure print’out is closed, the variable total, the table

t() and the procedure sort are made accessible by means of the IMPORT

statement.

EXTERNAL - MAIN

EXTERNAL

is a keyword which is used to indicate that a given procedure is an

external procedure which must be fetched from the diskette when it is to

be used in the program. When creating a procedure for use as an

EXTERNAL procedure, it must be closed using the CLOSED instruction

and saved using the command SAVE. The SAVEd procedure can be

fetched from the diskette later for use in another program, provided it is

declared to be EXTERNAL in this program. In this way it is possible to

build up a library of procedures. The procedures can then be fetched into

the working memory as need for use in programs.

Example:

PROC test(a,b$,REF check) CLOSED
IF a=0 AND b$ IN "abed” THEN check:=TRUE

ENDPROC test

The procedure test is CLOSED and SAVEd on diskette with the command
SAVE test "ext.test”.

It can be used later in another program.

// Program start
<statement>

test(no,textS,error)
<statement>

PROC test(no,text$,REF error) EXTERNAL "ext.test”
// Program end

This program will fetch the procedure test from diskette, use it and
“forget” it again.

The line with the EXTERNAL declaration can be placed anywhere in
the program.

CHAPTER 4 129 COMAL OVERVIEW

MAIN

is a command which is used to bring the system back to the main pro-

gram, if it should stop during the execution of an EXTERNAL procedure.

If execution is stopped in an external procedure, LIST and other editing

instructions will work only on the external procedure, until MAIN removes

it and brings back the main program.

Functions

FUNC - ENDFUNC - RETURN

are statements which are used in the FUNC-ENDFUNC structure. This

structure consists of a number of statements which together compose a

user-defined function. Functions must be introduced with FUNC

<name> and terminated by ENDFUNC <name>. The value which the

function returns must be given in a RETURN-statement.

Functions can be real functions, integer functions or string functions.

A function is computed only if it is called somewhere in the program by

the same name which is indicated in the function heading (FUNC

<name>).

Functions can be associated with the same properties which were

available for procedures: REF, CLOSED, IMPORT and (<parameter

list>). See aiso under these keywords in Chapter 4. In addition you will

find that functions are used in Chapter 3 and in Appendices C and E.

In particular, all functions (after structure check caused by SCAN or

RUN) can be called as direct commands.

Example 1:

// Main program
// real function
<statements>
PRINT average(a,b)
<statements>

FUNC average(x,y)
RETURN (x+y)/2

ENDFUNC average

Example 2:

// Main program
// integer function
<statements>

first+#:=vowels+(”COMAL”)
second+:=vowels+("and functions”)
<statements>

CHAPTER 4 130 COMAL OVERVIEW

FUNC vowels+(text$) CLOSED
number+:=0
FOR i+:=1 TO LEN(text$) DO

IF textS(i4+:i++) IN "aeiouAEIOU” THEN number+:+1
ENDFOR i+
RETURN number+

ENDFUNC vowels

Example 3:

// Main program
// string functlon
<statements>
PRINT mystical$(”secret”)
<statements>

FUNC mystical$(a$)
double:= 2*LEN(a$)
DIM b§$ OF 1, c$ OF double
c$:=a$
FOR i:=1 TO double STEP 2 DO

b$:= CHR$(RND(65,93))
c$:=c8(:i)+b$+ce$(i+1:)

ENDFOR i
RETURN c$

ENDFUNC mystical$

Example 4:

PRINT grab$(0,”Once upon a time”)

FUNC grabS(first,a$)
length:=LEN(a$)
IF length>1 THEN

IF first THEN
RETURN a8(2:)

ELSE
RETURN aS(:length-1)

ENDIF
ELSE
RETURN ””

ENDIF
ENDFUNC grabs

If first<>0 then the function grab$ returns the word in variable a$ except

for the first letter, which is grabbed. If first=0, then the last ‘etter is

grabbed.

CHAPTER 4 131 COMAL OVERVIEW

Other Functions

ABS - INT - SGN - SQR - Pl

ABS

is a function which calculates the absolute value of an expression. It is

sometimes called the numerical value. If the numerical value of the ex-

pression is negative, the sign is changed to positive. A positive value re-

mains unchanged.

Examples:
ABS(3.25) equals 3.25

ABS(-7.46) equals 7.46

ABS(x-7) the result depends on the value of x. (equals x-7

if x>=7; 7-x if x<7)

INT

is a function which calculates the integer part of the value of an expres-

sion, i.e. the largest integer (whole number) which is less than or equal to

the value of the given expression.

Examples:

INT(3.25) equals 3

INT (-7.46) equals -8

INT(1/2) equals 0

SGN

is a function which assumes the value +1, 0 or -1, when the value of a

given expression is positive, zero or negative respectively.

Examples:

SGN(327.54) equals =1

SGN(-45.7) equals -1

SGN(0) equals 0
SGN(x/7-y) the result depends on x and y.

SQR

is a function which returns the square root. The argument must be non

negative (i.e. positive or zero).

CHAPTER 4 132 COMAL OVERVIEW

Examples:

SQR(16) equals 4

SQR(4.9e+09) equals 70000

SQR(xt2=yt2) the result depends on x and y.

PI

is a system constant which is assigned the value 3.14159266. PI is parti-

cularly useful in connection with the use of angles in radian measure,

where PI radians corresponds to 180 degrees.

COS - SIN - TAN - ATN

cos
is a function which calculates the cosine of anumber. This number must

be expressed in radians.

x degrees = x*PI/180 radians

x radians = x*180/PI degrees

Examples:

COS(PI/2) equals 0

COS(2.5) equals -0.801143616

COS(v*P1/180) the result depends on the value of v.

SIN

is a function which calculates the sine of a number. This number must be

expressed in radians. See under COS.

Examples:

SIN(PI/6) equals 0.5

SIN(angle) the result depends on the value of angle.

TAN

is a function which calculates the tangent of anumber. This number must

be expressed in radians. See under COS.

Examples:

TAN(-PI/4) equals -1
TAN(1.8) equals -4.28626168

CHAPTER 4 133 COMAL OVERVIEW

ATN

is a function which calculates the arc-tangent (inverse tangent) of a

number. The result is a number, expressed in radians.

Examples:
ATN(1) equals 0.785398163 (PI/4)

ATN(-200) equals -1.56579637

LOG - EXP

LOG

is a function which calculates the natural logarithm of a positive number.

LOG represents logarithms to the base e, where e is equal to 2.71828183.

LOG is the inverse function of EXP.

Examples:

LOG(1) equals 0

LOG(10) equals 2.30258509

LOG(-2) is not defined

LOG(EXP(x)) equals x

EXP

represents the exponential function. EXP(x) = e raised to the x’th power,

where e is the base of the natural logarithms. EXP is the inverse function

to LOG.

e = 2.71828183 to good approximation.

Examples:
EXP(1) equals 2.71828183 (= e)

EXP(3) equals e cubed = 20.0855369

EXP(t-a*.2) the result depends on t and a.

EXP(LOG(x)) equals x

CHRS - STRS - SPCS$

CHRS$
is a string function which equals the character which corresponds to the

ASCII code of the argument. The opposite operation is performed with

the function ORD.

See Appendix A for Commodore ASCII codes.

CHAPTER 4 134 COMAL OVERVIEW

Examples:

CHR3$(65) equals the character a

CHRS$(147) equals the code for clear screen

CHRS(<value>) the result depends on value

CHRS(ORD(’B”)) equals the character B

STRS

is a string function which converts a numerical expression to a string.

The reverse operation is performed by the function VAL.

Examples:

STRS(1.34) equals the string "1.34"

STRS$(2-5) equals the string ”-3”

STRS$(VAL("7”)) equals the string "7"

SPCS$

is a string function which returns the specified number of spaces
("blanks"),

Examples:

PRINT ”1”,SPC$(10),”2” 10 spaces are printed between 1 and 2.

text$:= "a”+SPC$(8)+’ jk” text$ is set equal to "a jk”

blanks$:=SPC$(LEN(name$)) blanks$ is a string with the same number

of spaces as there are letters in name$.

ORD - VAL - LEN

ORD

is a function. The value of ORD is the ASCII value of det first charcter in

the string argument. The "reverse operation can be carried out by the

function CHR$.

See Appendix A for Commodore ASCII codes.

Examples:

ORD("F”) equals 198

ORD(”doors”) equals 68

ORD(by$) the result depends on by$

ORD(CHRS(8)) equals 8

VAL

is a function which transforms a legal! string argument to its corre-

CHAPTER 4 135 COMAL OVERVIEW

sponding numerical value. To be legal the string must be composed of

the digits 0,...9, the signs + = —, decimal point . or e used to specify ex-

ponential notation. The reverse operation is carried out with the function

STRS.
Hexadecimal and binary notation is permitted.

Examples:

VAL("123”) equals the number 123

VAL(”2”+"3”) equals the number 23

VAL("4e12”) equals the number 4e+12
VAL(abe”) illegal

VAL(STRS(2)) equals the number 2

VAL("Sfe”) equals the number 254

LEN

is a function, whose value is the length of the string argument.

Examples:

LEN(’abcd”) equals the number 4

LEN(name$S) the result depends on name$

LEN(””) equals the number 0

LEN(’a ki”) equals the number 5

TRUE - FALSE

TRUE

is a system constant which always equals 1.

FALSE

is a system constant which always equals 0.

TIME

is a command, statement and function used with the system's built-in

real-time clock.
The clock measures time in jiffies.

1 second = 60 jiffies.

1day = 5184000 jiffies
(The clock is reset to zero.)

CHAPTER 4 136 COMAL OVERVIEW

TIME can be used to set the clock or to read the time since the previous
zeroing.

Examples:

TIME 0 The clock is zeroed.

TIME 3600 The clock is set to 3600 jiffies, i.e. 1 minute.
sec:—INT(TIME/60) sec is set equal to the number of seconds since

the last zeroing.

RANDOMIZE - RND

RANDOMIZE

is a command and statement which is used to place the random number
generator at an arbitrary point in the random number series. The random
numbers are created with the function RND.

Examples:

RANDOMIZE The initial placement in the number series is
determined by the time interval since the last

TIME operation. Since the number of jiffies

(1/60 sec) will generally be quite random, a

really random sequence can be assured.
RANDOMIZE 6 If RANDOMIZE is followed by a number, this

number will indicate the starting position inthe

random sequence each time random numbers

are generated. This will cause the same

sequence to be generated when RND is used.

RND

is a function which selects a random real number from a random number
sequence of evenly distributed ‘random’ numbers.
RANDOMIZE is used to position the random number generator at an

arbitrary position (based on the clock) in this series.

Examples:

number:=RND An arbitrary real number between 0 and 1 is
chosen: 0<=RND<1.

no:=RND(-10,30) A random number chosen among -10,-9,
.»29,30 is selected.

PRINT RND(min,max) A random integer between min and max (in-
clusive) is printed out.

CHAPTER 4 137 COMAL OVERVIEW

ESC - TRAP ESC
are keywords which control the action of the <STOP> key.

ESC is a system function. Its value depends on whether the statement

TRAP ESC-+ or the statement TRAP ESC- has been executed:

If TRAP ESC+ has been executed (it is the default condition), then

pressing the <STOP> key will interrupt program execution. The ESC
function has no meaning.

If TRAP ESC- has been executed, then pressing <STOP> will NOT

interrupt the program. ESC will have the value FALSE, until <STOP> is

pressed. Then it will remain TRUE until the value of ESC is read in the

program.

Sample sequence:

TRAP ESC- The <STOP> key will now not stop the pro-

gram and ESC is assigned the value FALSE.

<STOP> is pressed ESC is set equal to TRUE.

dummy:=ESC ESC is reset to FALSE.

TRAP ESC+ The <STOP> key regains its usual function.

Operators

See Appendix C for a more detailed treatment of operators.

DIV - MOD

DIV

is an operator which yields the value of the integer part of the quotient

after division. x DIV y is the same as INT(x/y).

Examples:

5 DIV 2 equals 2

74 DIV 10 equals 7

(x+3) DIV y the result depends on x and y.

MOD

is an operator which computes the remainder after division. x MOD y is

the same as x-INT(x/y)*y.

Examples:

5 MOD 2 equals 1

74 MOD 10 equals 4

8.25 MOD 2.1 equals 1.95

(4-x) MOD z the result depends on x and z.

CHAPTER 4 138 COMAL OVERVIEW

Logical Operators

NOT - AND - AND THEN - OR - OR ELSE

NOT

is a logical operator which changes the truth value of an expression.

Truth table:

a NOT a

TRUE FALSE

FALSE TRUE
Examples:

WHILE NOT EOF(2) DO
READ FILE 2: number
PRINT number;

ENDWHILE

The loop continues until there is no more data in the file with stream

number 2.

IF NOT ok THEN read’status(ok)

The procedure read’status is executed until the variable ok becomes

TRUE (<>0).

AND
is a logical operator which determines the truth value of a combined

expression, a AND b. The combined expression is only TRUE, if both a

and b are true.

Truth table:

a b a AND b

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Examples:

7=2 AND 3=3 gives the value FALSE

CHAPTER 4 139 COMAL OVERVIEW

WHILE expression1 AND expression2 DO make’drawing

If both expresslon1 and expression2 are TRUE, then the procedure

make’drawing is executed. Otherwise it is not.

AND THEN

is a logical operator which is an extension of the operator AND: a AND

THEN b. The same rules apply to AND THEN as for AND; but if the first

expression ais false, the expression b is not computed, for itis certain that

the entire expression will be FALSE.

. Example:

a$:="test’5i:=1

length:=LEN(a$)

WHILE i<=length AND THEN aS(I)<>”.” DO I:+1
For i:=5 an error will occur in the logical expression a$(i)<>".”, if this

case is not eliminated by the first condition.

OR

is a logical operator which determines the truth value of a combined ex-

pression, aOR b. The combined expression is true, if just one of the ex-

pressions a or b is TRUE.

Truth table:

a b aOR b

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

Examples:
7=2 OR 3=3 gives the value TRUE.

REPEAT
<statement>

UNTIL no>4 OR anss IN "yY”

The statements in the REPEAT-loop are repeated until no>4 or ans$is ay

oraY.

CHAPTER 4 140 COMAL OVERVIEW

OR ELSE

is a logical operator which is an extension of the operator OR: aOR ELSE
b. The same rules apply for OR ELSE as for OR; but if the first expressiona
is true, then the expression b is not calculated, since the combined ex-
pression must be TRUE.

Example:

IF a##+=0 OR ELSE b/a#>100 THEN new’problem

If a+ equals 0, then the first logical expression is true. In this case an
evaluation of the last expression (involving an illegal division) is super-
fluous.

IN

is a Operator which returns the position of a search string in a given text:
string IN text.

The value is the number in the text of the first character in the search
String. If the search string is not found, then the value 0 is returned.

IN can therefore be used for example to determine if a response is
contained in a string containing acceptable answers.

Examples:

x:="gram” IN "programing” x gets the value 4.
PRINT ”mel” IN ”Comal program”0 is printed.
IF answer$ IN "nN” THEN STOP If answersS consists of the letter nor N,

the expression is TRUE, and the pro-
gram stops.

Special example:
If the search string is empty, i.e. equal to ””, then IN returns the text length
+1.

*«2="" IN "Comal for CBM” =x = 14.

BITAND - BITOR - BITXOR

BITAND
is a logical (boolean) operator which executes an AND on each bit in the

binary representation of two numbers: a BITAND b.

CHAPTER 4 141 COMAL OVERVIEW

All numbers which are to be compared with the operators BITAND,

BITOR or BITXOR must be integers in the interval 0-655385, i.e. binary

numbers between %0000000000000000 and %1111111111111111.

Rules:

BITAND a|b 00 01 10 11 E.g. % 1 0 0

AND AND AND

00 00 00 00 00 % 1 1 0

01 00 01 OO 01

10 00 00 10 10 % 1 0 0

11 00 01 10 11

Examples:

%0011 BITAND %0101 gives %0001 (decimal 1)

17 BITAND 18 gives 16

$fe BITAND 5 gives 4

iF PEEK(userport) BITAND %1100 THEN register

If the contents of memory address userport has the bit pattern

% 00001100, then the procedure register will be executed.

BITOR
is a logical (boolean) operator which executes an OR on each bit of the

binary representation of two numbers: a BITOR b.

_ Rules:

BITOR alb 00 01 10 11 E.g. % 1 0 1

OR OR OR

00 00 01 10 11 % 1 0 0

01 O01 01 11 #11

10 10 11 10 11 % 1 0 1

11 11.#$11°11 «11

Examples:

%1010 BITOR %0110 gives %1110 (decimal 14)
23 BITOR $1b gives 31

CHAPTER 4 142 COMAL OVERVIEW

BITXOR

is a logical (boolean) operator which executes an XOR (i.e. an "exclusive

OR") on each bit in the binary representation of two numbers: a BITOR b.

Rules:

BITXOR a]|b 00 01 10 11 E.g.% . 1 0 1

XOR XOR XOR

00 00 O1 10 11 % 14 0 0

01 01 00 11 10

10 10 11 00 01 % O 0 1

11 11 10 01 00

Examples:

%0011 BITXOR %1010 gives %1001 (decimal 9)

17 BITXOR 8 gives 25

Other Instructions

1/

is a statement which allows the inclusion of comments in a program. The

comment statement is not executed, but is used in the program to clarify

its function. Comments make it easier for other programmers (or your-

self) who examine the program later to understand how it works.

The comment lines take up room in the working memory but do not

slow down a program's execution.

Examples:

// graphics window cleared

a$:=b$(1)+b$(LEN(b$)) // a$=b$’s first and last character

TRACE

is a command which is used to trace active procedure or function calls.

TRACE can be used to help find the cause of an error in a program.

Example:

A program might be stopped in a procedure in line 740 due to an error:

TRACE
. the program stopped at
0740 a$:=character$(1:3)
within

—

CHAPTER 4 143 COMAL OVERVIEW

0700 PROC print'out(no,character$)
which is called at
0030 print’out(2,"k”)

DIM

is a command and statement which is used to reserve room in working

memory for arrays containing numbers or text.

As a statement it will usually occur in the beginning of a program to

dimension global indexed variables, but it can also be used locally within

a closed procedure.

Arrays with numbers:

DIM table(50) The array can contain real numbers with

indices 1, 2,..,50.

DIM x+(20),y(20) A DIM-statement can contain several

arrays, separated by commas (,).

DIM point(-10:20) Array with index -10,-9, ..,0,..,20

DIM space(10,40,40) Three dimensional array

DIM price(0:100,5:10) Two-dimensional array with indices

0,..,100 and 5,..,10

Note:
If the array specification in the DIM statement does not include a lower

index limit, it is automatically set equal to 1.

When created by a DIM statement, all array values are set equal to 0.

String arrays:

DIM name$ OF 30 Room is reserved for 30 characters in the

string name$S.

_ DIM itemS$(10) OF 20 Room for up to 10 Item$-names. Each

name may contain up to 20 characters.

DIM text$(0:10,2:5) OF 80 text$ is a two-cimensional array of words

of maximum 80 characters.

Note:
The first time a string is assigned a value, room is reserved in memory for

40 characters, if not previously declared by a DIM statement.

Once dimensioned a string is set equal to the empty string,

CHAPTER 4 144 COMAL OVERVIEW

PEEK - POKE

PEEK

is a function which fetches the contents of a given storage address. The

result is an integer between 0 and 255. A map” with an overview of the

use and availability of Commodore 64 memory addresses can be seen in

Chapter 8 on Machine Language.

Examples:

line:= PEEK(214) The line number on which the cur-

sor is currently located is fetched from memory

location 214 and the variable line is assigned

this value.

PRINT PEEK($dd00) Prints the contents of the parallel port.

POKE

is acommand and a statement which is used to place a number directly

into a storage address: POKE address,number.

You must be careful when using POKE, since sending wrong numbers

to random addresses can do strange things to your program. Ifthe worst

comes to the worst, it may be necessary to power-down and power-up

again to continue programming!

Examples:

POKE 198,0 The counter of the keyboard buffer is

zeroed. |.e. the buffer is emptied.

POKE $dd03,°%11110000 The direction register of the parallel port

has the hexadecimal address $dd03. This

address will contain the binary number

%11110000 which sets bit 0-3 to inputs

and bits 4-7 to outputs.

SYS

is a command and statement which directs program execution to a

machine code subroutine starting at the address specified.

Example:

SYS 4000 execute the machine code routine starting at

(decimal) address 4000.

SYS 50000 The system carries out a COMAL start-up (this

is usually done directly from Basic to start

COMAL).

CHAPTER 4 145 COMAL OVERVIEW

NULL

is acommand or statement which is used to do nothing! In fact it is quite

useful when creating pauses and other situations, where it is desired that

the program be delayed until some event (say pressing a key) causes
execution to proceed.

Examples:

FOR pause:=1 TO 1000 DO NULL

WHILE KEY$=CHRS$(0) DO NULL

STOP - END

STOP
is a statement which is used to stop the execution of a program.

STOP can be placed anywhere in a program, and there can be several

STOP-statements in a program. After the program has been stopped, the

values of any variables can be examined and/or changed. Using the

command CON the program can be caused to continue at the line follow-

ing the STOP statement. However no changes in program syntax may be
made.

Examples:

STOP The program stops with the message:

STOP at xxxx

STOP "printout finished” The program stops with the message:

printout finished.

END

is a statement which completely terminates program execution and

marks the conclusion of a program. END can be placed anywhere in a

program. In contrast to STOP, the program can't be continued with the

CON command.

Examples:

END The program is terminated with the

message: END at xxxx

END "All finished!” The program is terminated with the

message: All finished!

CHAPTER 4 146 COMAL OVERVIEW

Chapter 5

COMAL Packages

WHat is a package?
In your COMAL cartridge there are 11 program packages with useful

procedures. The packages are written in machine code for speed and

\ compactness. They can help you to take full advantage of the many

“ resources available in COMAL and the Commodore 64.

A package and its built-in procedures and functions is made accessible

with the command or statement:

USE <package name>

where package name is one of the 11 names which follow:

When a package has been activated, its procedures and functions are

called by name just as the ordinary COMAL procedures and functions

which the user can create. All package procedures can be used as

commands as well as program statements. More than one package can

be activated at a time.

Overview of packages:

1. english , English error messages

2. dansk , Danish error messages

CHAPTER 5 148 COMAL PACKAGES

3. graphics , procedures for X-Y graphics

4. turtle , procedures for turtle (Logo) graphics

5. sprites , procedures for handling sprites

6. sound , procedures for controlling the SID sound chip

7. system , procedures for altering system configuration

8. font , procedures for defining new character sets

9. paddles , a procedure for reading the paddle inputs

10. joysticks , a procedure for reading joystick inputs

11. lightpen , procedures for control of a light pen

The English Package
USE english activates this package. When activated, all COMAL error

messages will be in English. When COMAL is started up, the command

USE english is executed automatically. This package contains no pro-

cedures.

The Danish Package
USE dansk activates the package. All COMAL error messages will then

be issued in Danish. The package contains no procedures.

Graphics with COMAL
With the Commmodore 64 you can work with two different display

screens: A text screen and a graphics screen.

To work with these screens you can imagine that the computer has two

internal 'maps’ which show the current state of each of these graphics

screens. Only one of these maps can be shown on the display screen ata

time.

Normally you will be looking at the text screen. it consists of 25 lines, each with room for 40

characters. Position 1,1 is in the upper left-hand corner, and position 25,40 is at the lower

right on your display screen. Thus the text screen has a total of 25 x 40 = 1000 different

character locations. In each position a letter, number or graphics character can be

placed.

CHAPTER 5 149 COMAL PACKAGES

a

}\— = <a.a> =

TS

“Ny

— Zi 4

The graphics screen consists of 320x200 = 64000 dots: 320 horizontally and 200 vertically.

The dots are identified in a coordinate system by means of a pair of numbers (X,Y). The point

, (0,0) on the physical display is located in the lower left-hand corner, and the point with

coordinates (319,199) is in the upper right-hand corner. Each of these dots is sometimes

referred to as a pixel (picture element).

The procedures and functions which are used to draw on the graphics

screen are made accessible when you use the instruction:

USE graphics or USE turtle.

When using the high resolution graphics screen, two further options are

available:

graphicscreen(0) , high resolution graphics

graphicscreen(1) , multicolor graphics

Both instructions make the graphics screen visible on the display and the

text screen is hidden from view but available for later use. The difference

between the two types of graphics display has to do with the number of

possible color combinations which can be displayed. See the more de-

tailed discussion of the graphicscreen instruction for further information

about this.

Use high resolution if you want to make drawings with lots of detail

using just one color besides the background color.

if the use of several colors is more important than details, then the

multicolor graphics option is the one to use.

A program which draws a yellow border around the display screen

might look like this:

USE graphics
graphicscreen(1)
pencolor(7)
drawto(319,0)
drawto(319,199)
drawto(0,199)
drawto(0,0)
WHILE KEY$=CHRS$(0) DO NULL

CHAPTER 5 150 COMAL PACKAGES

The last line of the program keeps the graphics screen visible until any
key is pressed. Whena key is pressed, the condition KEY$ = CHR$(0) will
no longer be fulfilled, and the program will end. The computer then
displays the text screen, hiding the graphics screen.

After the instruction USE graphics has been executed, you can use the
function keys <f1> and <f5> to choose which of the graphics screens
you wish to view:

<f1>_ , displays the text screen

<f5> , shows the graphics screen

The function key <f3> can still be used to issue the command USE turtle,
causing a split screen to be displayed:

<f3> __, split screen: graphics screen with 4 lines scrolling text at the
top

Pressing <CTRL-u> toggles the effect of <fi>, <f8> and <f5>
between text - and graphics mode.

While using COMAL graphics you are not limited to the use of coordi-

nates in the range from (0,0) to (319,199). You can superimpose your own

coordinate system onto the graphics screen by using the instruction

window. All graphics instructions except for the instruction viewport and

the sprite instructions will then be referred to your coordinate system.

Program example:

USE graphics
graphicscreen(1)
window(-2,2,-1,1)
moveto(0,0)
drawto(2,-1)
WHILE KEY$=CHRS(0) DO NULL

The instruction window(-2,2,-1,1) superimposes a coordinate system
onto the display screen. The point (-2,-1) is now at the lower left-hand
side of the screen, and (2,1) is at the upper right-hand corner.
When high resolution graphics is started up using the instruction USE

graphics, the coordinate system selected corresponds to the instruction
window(0,319,0,199), in accord with the standard screen coordinates.
The instruction USE turtle performs an automatic window(-160,159,
-100,99), so that the origin (0,0) is at the center of the display screen.

lf you want to write text on the graphics screen, you can use the special
writing instruction plottext.

Example:

USE graphics
graphicscreen(1)
plottext(0,100,"COMAL graphics”)
WHILE KEY$=CHRS$(0) DO NULL

CHAPTER 5 151 COMAL PACKAGES

In Chapter 3 there are further examples of the use of graphics procedures.

In addition you will find many examples of the use of graphics on the

demonstration diskette (or cassette tape) which accompanied your

COMAL cartridge.

Graphics Overview

The packages graphies and turtle contain the following instructions:

Definition of working area:

viewport - window

Choice of graphics screen and color graphics state:

graphicscreen

Choice of screen:
textscreen - fullscreen - splitscreen

Clearing of graphics screen:

clearscreen - clear

Color choice:
textcolor - textbackground - textborder

pencolor - background - border

(X,Y) graphics:

plot

drawto - moveto

draw - move

setxy

circle - arc

xcor - ycor

Intelligent color fill:

fill - paint

Turtle graphics:

showturtle - hideturtle

turtlesize

home

setheading - heading

penup - pendown

left - right

forward - back

arcl - arcr

Text on the graphics screen:

textstyle - plottext

Information on graphics modes:

ing
Storage and printing of the graphics Image:

savescreen - loadscreen

printscreen

CHAPTER 5 152 COMAL PACKAGES

In addition it is possible to use the following procedure abbrevations
when the turtle package is activated:

bk = back

bg = background

cs = clearscreen

fd = forward

ht = hideturtle

tt = left

pe = pencolor

pd = pendown

pu = penup

rt = right

seth = setheading

st = showturtle

textbg = textbackground

In Depth Look at Graphics Instructions

viewport(<vxmin>,<vxmax>,<vymin>,<vymax>)
is a procedure which limits the area of the display screen in which one can
define a coordinate system and draw.

The parameters <vxmin>, <vxmax>, <vymin> and <vymax> always
refer to the physical display screen itself with (0,0) in the lower, left-hand
corner and (319,199) in the upper, right-hand corner. Note that this
procedure is independent of any other coordinate system which may
have been chosen using the window procedure.

Example:

viewport(0,159,0,99) It is not possible to draw outside the lower left
quadrant of the display screen.

window(<wxmin>,<wxmax>,<wymin>,<wymax>)
is a procedure which defines the coordinate system in the given viewport.
The pixel in the lower, Icft-hand corner of the viewport is assigned the
coordinates (Cwxmin>,<wymin>). The pixel in the upper, right-hand
corner is assigned the coordinates (<wxmax>,<wymax>). All sub-
sequent graphics instructions (except viewport and the sprite com-
mands) will refer to this coordinate system until a new one is defined.

On start-up with USE graphics the viewport is the entire display screen
and the coordinate system is defined by window(0,319,0,199)

On start-up with USE turtle the viewport is the entire display screen and

CHAPTER 5 153 COMAL PACKAGES

the coordinate system is defined by window(-160,159,-100,99). Thus the

point (0,0) is in the middle of the display screen.

Example:

window(-1000,2000,-100,200)

graphicscreen(<mode>)
is a procedure which makes the graphics screen appear on the display

screen and makes the the text screen invisible.

The graphics screen can be made accessible in two different modes:

, graphicscreen(0) , high resolution graphics

graphicscreen(1) , multi-color graphics

The difference between the two modes lies in the manner in which color

is handled. The pixels of the display screen are not independent when

using color:

In mode 0 (high-resolution graphics) the points of the display are

associated in blocks of 64 pixels: (8 on each side). Within each block

there may only be two different colors, one of which is the background

color. If one attempts to give a pixel in the block a third color, then the

entire block will get this color.

In mode 1 (multi-color graphics) resolution in the horizontal direction

is not as good, for the pixels are associated in pairs. This means that each

block consists of 4x 8 pairs. Each of these pairs can be assigned acolor. If

one of the elements of the pair is assigned a color, the other dot will auto-

matically acquire the same color. Within each block four different colors

can be displayed at the same time. One of them is the background color.

If one attempts to introduce a fifth color, the fourth color will also be given

the new color.

. textscreen

is a procedure which makes the text screen appear on the display screen.

The graphics screen is not visible but still available in computer memory.

It can be necessary in a program to switch back and forth between the

text screen and the graphics screen. This would be the case if the pro-

gram contains INPUT statements and must also be used for drawing.

This may appear to be inconvenient. On the other hand it assures that a

drawing will not be disturbed by unwanted text.

fullscreen

is a procedure which causes the entire display screen to be filled by the

graphics screen. The instruction would be used when working with turtle

CHAPTER 5 154 COMAL PACKAGES

graphics to switch from the split screen (splitscreen) to the full graphics

screen.

splitscreen

is a procedure which shows the graphics screen and a scrolling copy of

the text screen with four lines of text and the cursor at the top of the dis-

play.

When used as a command, USE turtle does an automatic splitscreen,

but not when it is used as a program statement.

clearscreen

is a procedure which deletes the entire graphics image no matter what the

active (viewport) may be. To delete means to change all pixels to the

background color.

clear

is a procedure which only deletes the graphics image within the drawing

viewport.

Example:

vlewport(0,100,0,100) Only the 101 x 101 pixels

clear in the lower, left-hand corner of display screen

are cleared.

COLORS: In the following procedures with color specifications, the

variable <color> must be an integer from -1 to 15. (Note: -1 means the

background color.) See also Appendix B on colors and color codes.

texicolor(<color>)

is a procedure which defines the color of the characters on the text

screen.

Example:

textcolor(0) Black text is selected.

textbackground(<color>)

is a procedure which defines the background color of the text screen.

CHAPTER 5 155 COMAL PACKAGES

textborder(<color>)

is a procedure which defines the color of the text screen border.

pencolor(<color>)

is a procedure which defines the color of the pen.

Examples:
pencolor(7) Yellow is selected as the drawing color.

pencolor(-1) The background color is the drawing color.

background(<color>)

is a procedure which defines the graphics screen background color.

border(<color>)

is a procedure which defines the graphics screen border color.

getcolor(<x>,<y>)

is a function. Its value equals the color code of the pixel at location

(<x>,<y>).

If (<x>,<y>) is outside the drawing area determined by the procedure

viewport, then getcolor(<x>,<y>) returns the value -1.

The function getcolor does not change the current pen position.

Examples:

PRINT getcolor(1,2)

IF getcolor(0,0)<0 THEN move’center

_ plot(<x0>,<y0>) .
is a procedure which places a dot at pen position (<x0>,<y0>).

Example:

plot(4.3,56)

drawto(<x>,<y>)
is a procedure which draws a line from the current pen position to the

point (<x>,<y>), which becomes the new pen position.

Examples:

drawto(100,200)

drawto(-20,4000)

CHAPTER 5 156 COMAL PACKAGES

moveto(<x>,<y>)
is a procedure which moves the pen to the point (<x>,<y>).

Example:

moveto(200,-25)

draw(<dx>,<dy>)
is a procedure which draws a line from the current pen position
(<x0>,<y0>) to the point with coordinates (<x0>+<dx>,<y0>+
<dy>) and changes the pen position to the endpoint.

Examples:

draw(0,100)vertical line 101 units long
draw(-1.5,0.4)

move(<dx>,<dy>)
is a procedure which moves the pen without drawing from its current
Position (<x0>,<y0>) to the point with coordinates

(<x0> + <dx>, <y0> + <dy>).

Examples:

move(-3,20)

move(-2000,0)

setxy(<x>,<y>)
is a procedure which positions the pen at the point with coordinates
(<x>,<y>). If the pen is down, this procedure draws a line just as

drawto(<x>,<y>). if the pen is up, it is moved just as with
moveto(<x>,<y>).

circle(<x0>,<y0>,<r>)

is a procedure which draws a circle with the center in (<x0>,<y0>)
and radius <r>.

Whether the circle appears circular or elliptical depends upon your

choice of the drawing region on the screen, the coordinate system and

the adjustment of the vertical linearity of the TV or monitor screen. Ifthe

coordinate system has been selected in the drawing area so that the
condition

CHAPTER 5 157 COMAL PACKAGES

<wxmax> - <wxmin> <vymax> - <vymin>

* =1

<wymax> - <wymin> <vxmax> - <vxmin>

on window and viewport bounderies is fulfilled, then the circle should

appear to be perfectly round on the screen. If not, try adjusting the vertical

linearity of the TV or monitor.

Example 1:
When USE graphics is called, it carries out the following procedures

automatically:

viewport(0,319,0,199)

window(0,319,0,199)

The height/width ratio is equal to 1, and

circle(160,100,99)

will draw a round circle on the middle of the screen.

Example 2:

viewport(200,300,80,180)
window(-1,1,-1,1)
circle(0,0,1)

yields a round circle on the upper right-hand side of the screen.

are(<x0>,<y0>,<r>,<a0>,<da>)
is a procedure which draws an arc with the center at (<x0>,<y0>) and

radius of curvature <r>. The starting angle is <a0> degrees and the arc

will subtend <da> degrees.

Examples:

arc(100,100,50,45,90)

arc(-20,25,30,15,-60)

xcor and ycor
are functions. They equal, respectively, the current x and y coordinates of

the pen.

Examples:

PRINT xcor;ycor

plottext(xcor,ycor,”Figure 1”)

CHAPTER 5 158 COMAL PACKAGES

fill(<<x>,<y>)

is a procedure which uses pencolor to fill a region of the screen with color.

The region to be filled in must contain the point (<x>,<y>). It must be

bordered by a line or area of a different color or by an edge of the view-
port.

fill does not alter the pen position.

See the summary example under the procedure paint(<x>,<y>).

Example:

fi1(10,56)

paint(<x>,<y>)

is a procedure which fills in a region of the screen with the drawing color.

The region which is to be filled in must contain the point (<x>,<y>), and

it must be bordered by a line or area with the same color or by an edge of
the drawing area.

paint does not alter the current pen position.

Examples:

paint(-10,4)

pencotor(-1)

palnt(100,20) A region is ’erased’.

The collection of examples below illustrates the differences between fill
and palnt:

USE graphics

graphicscreen(1)

pencolor(7)

drawto(319,199)

fill(10,100) // if paint(10,100), no difference

pencolor(1)

circle(100,100,70)
fill(100,100) // if paint(100,100), a difference!

WHILE KEY$=CHR$(0) DO NULL

showturtle

is a procedure which causes the turtle to be displayed on the graphics

screen. The word ‘turtle’ is based on the use of relative graphics in the
computer language Logo.

USE turtle automatically causes the turtle to be shown.

CHAPTER 5 159 COMAL PACKAGES

hideturtle

is a procedure which causes the turtle on the graphics screen to become

invisible.

turtlesize(<size>)

is a procedure which defines size of the drawing arrowhead (the turtle).

The parameter <size> must be a number between 0 and 10. When

graphics is started up, this parameter is automatically set equal to 10.

home

is a procedure which places the turtle at coordinates (0,0) pointed up-

wards on the screen.

setheading(<heading>)
is a procedure which sets the direction in which the turtle points. If the

turtle is visible, it will turn to face this direction.

<heading> is given in degrees:

0 corresponds to upwards.

90 is towards the right side of the screen.

-90 is towards the left.

USE turtle automatically sets the heading to 0.

heading

is a function which returns the value of the current heading. The heading

is given in degrees with 0 towards the top of the screen, and 90 degrees

towards the right.

penup

is a procedure which lifts the pen.

pendown

is a procedure which lowers the pen. It causes the turtle to draw as it

moves.

When graphics is started up, the system automatically executes a

pendown.

CHAPTER 5 160 COMAL PACKAGES

left(<angle>)

is a procedure which turns the turtle <angle> degrees to the left in rela-
tion to the current heading.

tight(<angle>)

is a procedure which turns the turtle <angle> degrees to the right in rela-
tion to the current heading.

forward(<distance>)

is a procedure which moves the turtle <distance> units forward with the
current heading. If the pen is down, a line is drawn.

back(<distance>)

is a procedure which moves the turtle <distance> units backwards in re-
lation to the current heading. The turtle "backs up.” If the pen is down, a
line is drawn.

Summary example:

Press the <f3> function key (corresponding to the USE turtle command).

Write directly on the four text lines which are visible at the top of the
screen:

left(90)
forward(70)
right(130)
forward(80)
left(40)
back(100)
hideturtle

The turtle has now drawn a number 4.

arcl(<r>,<da>)

is a procedure which draws a left-hand arc with a radius of curvature <r>
and subtending an angle of <da> degrees. The starting point is the cur-
rent turtle position, and the starting direction is the current heading.

Examples:

forward(20)

arcl(50,30)

CHAPTER 5 161 COMAL PACKAGES

After having drawn a straight line, the line curves towards the left, turning

30 degrees.

Procedure example (try It to see what happens):

PROC soft’frame(xmin,ymin,width,helght)
IF width>20 AND height>20 THEN
width=wldth-20
helght=height-20
moveto(xmin+10,ymin)
setheading(90)
forward(width)
arcl(10,90)

\ forward(helght)
arcl(10,90)
forward(width)
arcl(10,90)
forward(height)
arcl(10,90)

ENDIF
ENDPROC soft’frame

arcr(<r>,<da>)

is a procedure which draws a curve to the right with radius of curvature

<r> and turning angle <da>. The starting point is the current position of

the pen, and the initial heading is the current heading.

arer(<r>,<da>) corresponds to arel(-<r>,-<da>).

Example:

arcr(3.45,50)

' va
/ wrap

is a procedure which allows lines drawn on the graphics screen to conti-

nue beyond the edge of the screen, reappearing on the opposite side, For

example, if the pen disappears at the top of the screen with x-coordinate

110 and heading 45, it will reappear at the bottom with the same x-coor-

dinate and the same heading.

When USE turtle is engaged, the procedure wrap is carried out auto-

matically. This however is NOT the case when USE graphics is started.

nowrap

is a procedure which terminates ‘wraparound’. It can be restored with the

procedure wrap.

CHAPTER 5 162 COMAL PACKAGES

textstyle(<width>,<height>,<heading>,<mode>)
is a procedure which is used to define how text printout will appear onthe

graphics screen. The actual printing of text is performed with the proce-
dure plottext.

The parameters <width>, <height>, <heading> and <mode> must

all be integers.

<width> letter width (1 corresponds to normal text.)

<height> letter height (1 corresponds to normal text.)

<heading> = 0, text is rotated 0 degrees (normal).

1, text is rotated 90 degrees.

2 , text is rotated 180 degrees.

3, text is rotated 270 degrees.

<mode> = 0, both the text and its background color is drawn. This

means that the text area is cleared before new text is printed.

1, only the characters of the text are printed. This means that a

letter a placed on top of a letter b will not delete the entire letter

b. Some of the remnants of the b will still be visible.

If a parameter is set equal to -1, then the current value is used.

On startup the computer automatically chooses textstyle(1,1,0,0),

corresponding to normal text size (as on the text screen) written horizon-

tally, and both text and its background color is printed.

Example:

textstyle(2,1,2,0) All subsequent text will be written upside down

with characters of double width.

textstyle(3,2,-1,-1) Only the text size is changed.

plottext(<x>,<y>,<text$>)

is a procedure which prints out the given text starting at the point

(<x>,<y>).

The size of the letters, the orientation and writing mode are specified hy

the procedure textstyle.

plottext does not change the position of the pen.

Examples:

plottext(100,150,"COMAL”)
textS:="What’s my name?”
textstyle(1,3, 1,0)
plottext(200, 10, text$)

CHAPTER 5 163 COMAL PACKAGES

inq(<no>)

is a function which is used to obtain information concerning the state of

the various graphics variables.

The parameter <no> must be an integer between 0 and 33.

<no> information state affected by

0 display dori graphicscreen

1 text border 0-15 textcolors, border

2 text backgnd. 0-15 textcolors, textbackground

3 text color 0-15 textcolor, textcolors

4 graph. border 0-15 border

5 graph. backgnd. 0-15 background

6 pen color 0-15 pencolor

7 gr.text width 1 - 254 textstyle

8 gr.text height 1 - 254 textstyle

9 gr.text dirn. 0-3 textstyle

10 gr.text state Oor1 textstyle

1 turtle visible TRUE,FALSE = showturtle, hideturtle

12 inside window TRUE,FALSE most drawing procedures

13 txt scrn seen TRUE,FALSE _... screen

14 split scrn seen TRUE,FALSE ... screen

15 wraparound TRUE,FALSE' wrap, nowrap

16 pen down TRUE,FALSE penup, pendown

17 x - position integer most drawing procedures

18 y - position integer most drawing procedures

19 vxmin 0-319 viewport

20 vxmax 0-319 viewport

21 vymin 0-199 viewport

22 vymax 0-199 viewport

23 wxmin realnumber window

24 wxmax realnumber window

25 wymin realnumber window

26 wymax realnumber window

27 COS (heading) -1.0- 1.0 seth, left,right,home,arcl,arcr

28 SIN(heading) -1.0- 1.0 seth, left, right, home,arcl,arcr

29 turtle size 0.0 - 10.0 turtlesize

30 x-aspect ratio real number =(wxmax-wxmin)/(vxmax-vxmin)

31 y-aspect ratio realnumber =(wymax-wymin)/(vymax-vymin)

32 x-text end integer plottext

33 y-text end integer plottext

savescreen(<filename$>)

is a procedure which saves a copy of the current graphics screen on

diskette or tape. The file is saved under the name <filename$>.

The contents of the file are:

High resolution image (take up 36 blocks of 256 bytes):

0
background color
border color
1000 bytes for colors 0 and 1
8000 bytes for the bit pattern

CHAPTER 5 164 COMAL PACKAGES

Multl-color Image (takes up 40 blocks of 256 bytes):
1
background color
border color
1000 bytes for colors 1 and 2
1000 bytes for color 3
8000 bytes for the bit pattern

Examples:

savescreen("gr0.drawing”) saves a high res image.

savescreen("gr1.circles”) saves a multi-color image.

loadscreen(<filename$>)

is a procedure which fetches an image which previously had been saved

on diskette or on tape. See savescreen.

Examples:

loadscreen("gr0.drawing”)

loadscreen(”gr1.circles”)

printscreen(<filename$>,<position>)
is a procedure which saves the contents of the current viewport to the file
named <filename$>.

The parameter <position> is an integer from 0 to 479. It specifies the

horizontal placement of the image on the MPS801 printer. Six <posi-

tion> units correspond to one character from the edge of the paper.

The procedure is intended for getting a hard copy of a graphics image

on the printer. But it can also be used, among other things, for saving a

picture on diskette or on tape for later use.

Note that hard copy to a printer can only be done if the printer is com-
patible with the Commodore MPS 801.

High resolution graphics:

Printing Color
intensity

0/4 background color

4/4 all other colors

CHAPTER 5 165 COMAL PACKAGES

Multi-color graphics:

Colors are printed according to a grey scale:

Printing Color

intensity

0/4 1: white

1/4 3: cyan, 7: yellow, 13: light green, 15: light grey

2/4 4: purple, 5: green, 8: orange, 10: pink, 12: grey,

14: light blue

3/4 2: red, 6: blue, 9: brown, 11: dark grey

4/4 0: black

Examples:
printscreen("Ip:”,79) The graphics screen is dumped toa MPS

801 printer. The image begins right after

the 13th character position.

printscreen("head”,19) The contents of the graphics screen are

saved on diskette under the name head.

The file can not be fetched again using the procedure loadscreen, but

must be entered instead as an ordinary sequential file. The following

program segment fetches the saved file and prints it out on the printer:

OPEN FILE 2,”head”,READ
SELECT OUTPUT "Ip:”
WHILE NOT EOF(2) DO PRINT GETS(2,5000),
CLOSE FILE 2
SELECT OUTPUT "ds:”

CHAPTER 5 166 COMAL PACKAGES

Sprites

With your Commodore 64 it is possible to define a small graphics image

which can be moved about on the graphics screen. Such an image is
called a sprite.

Up to 8 sprites can be on the screen at one time. This makes it possible

to create vivid graphics images with moving figures. Each sprite can be

assigned its own color and be moved around independently of the others

and the rest of the program. It is also possible to allow the sprites to

interact with one another.

A number of procedures and functions are available for controlling

sprites using the COMAL package sprites.

The package is made accessible by issuing the instruction:

USE sprites

You can imagine that you are working with sprites as follows:

You have a stage (the display screen)

with a backdrop. (the graphics background)

On the screen there are actors (sprites)

which can move around (using movesprite)

while performing an action. (using animate)

The actors can move on and off

the stage. The actors can move

in front of and bchind one an-

other, and they can move in

front of and behind the props (graphics drawings)

You can direct the actors

using sprite commands.

A sprite shape is always created in a raster of 24 horizontal dots and 21

vertical dots, a total of 504 dots. A shape is defined by assigning acolorto

CHAPTER 5 167 COMAL PACKAGES

each dot. A high res shape has two colors, the background color and one

more color. Because each dot corresponds to a bit in the computer

memory you assign a foreground color to a dot by placing a1 in the cor-

responding memory bit. All other dots are assigned the background color

by a corresponding 0.

Let’s begin by making a sprite and moving it around the screen. This

brief program shows how it can be done (it is called Sprite 1 on the demo

diskette/tape):

0100 DATA %00000000,%00000000,°~.00000000
0110 DATA %00000000,%00000000,%00000000
0120 DATA %00000000,%00000000,%00000000
0130 DATA %00001110,%00001110,%00000000
0140 DATA %00001111,%00011110,%00000000
0150 DATA %00000111,%00111100,%00000000
0160 DATA %00000011,%00110000,%00000000
0170 DATA %00000001,%1 1100000, 00000000
0180 DATA %0000001 1,%11100000,%00000000
0190 DATA %00000111,%11110000,%00000000
0200 DATA %00000011,%11100000,%00000000
0210 DATA %00110001,%11000000,%00000000
0220 DATA %00111111,%11100000,%.00000000
0230 DATA %00001111,%11110000,%00000000
0235 DATA %00000111,%11110000,%00000000
0240 DATA %00000111,%11100000,%00000000
0250 DATA %00000111,%011100000,%00000000
0260 DATA %00011111,%11111000,%00000000
0270 DATA %00111110,%01111100,%00000000
0280 DATA %00000000,%00000000,%00000000
0300 DATA %00000000,%00000000,%00000000
0310
0320 USE graphics
0330 graphicscreen(0)
0340 USE sprites
0350 DIM drawing$ OF 64
0360 FOR i:=1 TO 63 DO
0370 READ byte
0380 drawing$:+-CHR3(byte)
0390 ENDFOR |
0400 color:=1
0410 drawingno:=1
0420 spriteno:=1
0430 define(drawingno,drawing$+-”"0"")
0440 Identify(spriteno,drawingno)
0450 spritecolor(spriteno,color)
0460 spritepos(spriteno,50, 100)
0470 showsprite(spriteno)

0480
0490 WHILE KEY$=CHRS(0) DO NULL
0500
0510 movesprite(spriteno,250, 150,200,0)

0520
0530 WHILE KEY$S=CHR3(0) DO NULL

CHAPTER 5 168 COMAL PACKAGES

The DATA statements in lines 100-300 contain the definition of the figure.
These numbers (which can be written directly in binary in COMAL

simply by prefixing binary numbers with the % sign) are read in the
FOR-ENDFOR loop (360-390). The text string drawing$ contains the bit
pattern information which will form the sprite.

In line 430 this drawing is given the number 1. The extra "0" is in-
cluded to specify that the drawing is a representation in high resolution
graphics (as opposed to multi-color graphics).

In line 440 sprite 1 is identified to correspond to drawing no 1. Inline
450 the color of the sprite with number 1 is specified (color:=1, i.e. white).

In line 460 sprite no 1 is placed on the screen so that the upper left hand
corner of the figure is at (x,y) coordinates (50,100). Line 470 makes the
sprite appear on the screen.
When you have had enough of the rabbit, press any key.
Line 510 causes the sprite to move over to the point with coordinates

(250,150). The move is made in 200 steps. We will get back to the last Oin
the movesprite procedure call later.
When you again press any key, the program ends.
That was your first program using sprites. Now try giving the rabbit

another color. Try moving it around to other points on the screen.

The Sprite is enlarged
Try adding the program line:

465 spritesize(spriteno, TRUE, TRUE)

Run the program again. The sprite has become twice as high and twice as
wide!

More Sprites
Add the program lines

472 identify (2,drawingno)
474 spritecolor(2,0)
476 spritepos(2,80,100)
478 showsprite(2)

Try out the program. Can you make the new sprite move? See if you can
make the two sprites start at either side of the screen. Make them move
towards one another so that they exchange places.

You probably noticed that sprite no 1 passed in front of sprite no 2. The
sprite with the lowest spriteno will always have first priority, so that the
sprite with the lowest number will appear to pass in front of the other.

CHAPTER 5 169 COMAL PACKAGES

Two Sprites collide
The last number in the movesprite call determines how the sprite will

move in relation to the other sprites and other graphics drawings on the

screen. In the examples we have seen so far, it has been equal to 0.

If the number is changed to 1 in line 510, the sprite will be instructed to

detect a collision with the other sprite. Both sprites will stop. Try it!

Saving a Drawing on Diskette
You can save a sprite shape using the instruction

saveshape(<drawingno>,<filename$>)

Drawings can be saved either on diskette or on cassette tape. (Notice:

Use cs: in the file name to save on tape.) The drawing can be fetched for

use in another program with the instruction

loadshape(<drawingno>,<filename$>)

This can obviate the need for including all the DATA statements in pro-

grams using the same sprite image.

The following program (Sprite 2) defines the drawing of the rabbit and

saves this drawing on diskette under the name sp0.rabbit. If you run this

program, you will e.g. be able to replace lines 100-310, 360-400 and 430 in

other programs using the drawing with a single line:

430 loadshape(drawingno,”sp0.rabbit’)

First the drawing must be saved using:

0100 to 0300: DATA statements with sprite image content (See previous

program.)

0310
0320 USE sprites
0330 DIM drawing$ OF 64
0340 FOR i:=1 TO 63 DO
0350 READ byte
0360 drawing$:+CHRS$(byte)
0370 ENDFOR i
0380 drawingno:=1
0390 define(drawingno,drawingS+””’0"”)
0400 saveshape(drawingno,”sp0.rabbit”)

Sprites Used with Other Graphics
The following program Sprite 3 shows how a sprite can be prepared to

detect a collision with a graphics drawing and wait for the collision to

CHAPTER 5 170 COMAL PACKAGES

happen. After the collision, the sprite can continue in a different di-

rection.

0100 to 0300: DATA statements with sprite image content (See previous

program.)

0310
0320 USE graphics
0330 graphicscreen(0)
0340 USE sprites
0350 color:=1
0360 DIM drawings OF 64
0370 FOR i:=1 TO 63 DO
0380 READ byte
0390 drawing$:+CHR3(byte)
0400 ENDFOR i
0410 drawingno:=1
0420 spriteno:=2
0430 define(drawingno,drawing$+”"0"”)
0440 identify(spriteno,drawingno)
0450 spritecolor(spriteno,color)
0460 spritepos(spriteno,50, 100)
0470 showsprite(spriteno)
0480
0490 WHILE KEY$=CHRS3$(0) DO NULL
0500
0510 make’box
0520 movesprite(spriteno,250,150,200,4)
0530 WHILE NOT datacolllsion(spriteno, TRUE) DO NULL
0540 priority(spriteno, TRUE)
0550 movesprite(spriteno, 130,180,50,0)
0560
0570 WHILE KEYS=CHRS$(0) DO NULL
0580
0590 PROC make’box
0600 pencolor(8)
0610 moveto(100,10); draw(50,0)
0620 = draw(0,150); draw(-50,0); draw(0,-150)
0630 —‘fill(105,15)
0640 ENDPROC make’box

In line 520 the last number in the movesprite call is a4. This causes the

sprite to recognize collisions with graphics drawings. If 4is changed to 0,

the rabbit will move past the box without noticing it.

In line 530 there is a delay until a sprite-graphics collision occurs

In line 540 it is determined that the sprite will be seen behind the gra-

phics drawing. Try changing TRUE to FALSE and re-run the program.

Sprite Cartoons
By switching two or more drawings quickly in succession, one can cause

the rabbit to appear to perform actions while it moves.

CHAPTER 5 171 COMAL PACKAGES

We begin by making a few small changes in the drawing of the rabbit

which we already have used. (This is easiest to do by listing the DATA

statements and changing them directly.)
Next the order of the actions must be specified. This is done by means

of the instruction animate(<spriteno>,<action$>).

The completed program (Sprite 4) might appear as follows:

0100 DATA %00000000,%00000000,%00000000
0110 DATA %00000000,%00000000,%00000000
0120 DATA %00000000,%000000000,%00000000
0130 DATA %00001110,%00000000,%00000000
0140 DATA %00001111,%00011110,%00000000
0150 DATA %0000011 1,%00111111,%00000000
0160 DATA %00000011,%00110111,%00000000
0170 DATA %00000001,%11100000,%00000000
0180 DATA %00000011,%11100000,%00000000
0190 DATA %0000011 1,%11110000,%00000000
0200 DATA %0000001 1,%11100000,%00000000
0210 DATA %00000001,%11000000,%00000000
0220 DATA %00000011,°%11100000,%00000000
0230 DATA %00111111,%11110000,%00000000
0240 DATA %00111111,%11110000,%00000000
0250 DATA %00000111,%11100000,%00000000
0260 DATA %00000111,%11100000,°%00000000
0270 DATA %00011111,%11111000,%00000000
0280 DATA %00111110,%01111100,%00000000
0290 DATA %00000000,%00000000,%00000000
0300 DATA %00000000,°%00000000,%00000000

0310
0320 DATA %00000000,°%00000000,%00000000
0330 DATA %00000000,%00000000,%00000000
0340 DATA %00000000,%00000000,%00000000
0350 DATA %00001110,%00001110,%00000000
0360 DATA %00001111,%00011110,%00000000
0370 DATA %00000111,%00111100,%00000000
0380 DATA %00000011,%00110000,%00000000
0390 DATA %00000001,%11100000,%00000000
0400 DATA %00000011,%11100000,%00000000
0410 DATA %00000111,%11110000,%00000000
0420 DATA %00000011,%11100000,%00000000
0430 DATA %00110001,%11000000,%00000000
0440 DATA %00111111,%11100000,%00000000
0450 DATA %00001111,%11110000,%00000000
0460 DATA %00000111,%11110000,%00000000
0470 DATA %00000111,%11100000,%00000000
0480 DATA %00000111,%11100000,%00000000
0490 DATA %00011111,%11111000,%00000000
0500 DATA %00111110,%01111100,%00000000
0510 DATA %00000000,%00000000,%00000000
0520 DATA %00000000,%00000000,%00000000

0530
0540 USE graphics
0550 graphicscreen(1)
0560 USE sprites
0570 color:=1

CHAPTER 5 172 COMAL PACKAGES

0580 spriteno:=1
0590 DIM drawing$ OF 64, action$ OF 64
0600 FOR drawingno:=1 TO 2 DO
0610 drawing$:=””
0620 FORi:=1 TO 63 DO
0630 READ byte
0640 drawing$:+CHRS§(byte)
0650 ENDFOR i
0660 define(drawingno,drawing$+””’0”")
0670 ENDFOR drawingno
0680
0690 Identify(spriteno,1)
0700 spritecolor(spriteno,color)
0710 spritepos(spriteno,50, 100)
0720 showsprite(spriteno)
0730 actlons:=""'1"" + ""4"" +P] PB
0740 antmate(spriteno,actlons)
0750 movesprite(spriteno,350, 150,300,0)
0760
0770 WHILE KEY$=CHRS$(0) DO NULL

We hope that this brief program example will inspire you to attempt your

own complex dramatizations or games!

The order of the action is specified in line 730. Transiating this line we

find the following instructions: Display drawing 1 for 4 units of time, show

drawing 2 for 5 units of time. Continue to repeat this action until the sprite

stops.

See the overview under animate for further information on order of ac-

tion sequences.

A Multi-Colored Sprite

So far we have only used drawings in high-resolution graphics (specified

bya’”’0”" in the define(<drawingno>,<drawing$>=""0"”)) procedure.
The drawing is in only one color; it can readily be used either on a high-

resolution graphics screen (graphicscreen(0)) or on a multi-color screen
(graphicscreen(1)).

A sprite drawing can de created using several colors, but it is a little

more complicated to create unless you can use the program "Spriteedi-

tor” on the demo diskette or tape which accompanied your COMAL car-

tridge. See additional information on this program in Appendix H.

When a sprite image is defined using several colors, it is important to

keep in mind that the horizontal neighboring pixels are associated in pairs

when using multi-color graphics. In connection with the use of sprites in
multi-color graphics, the following pairs of numbers determine the color
of the sprite:

00 Transparent
01 Color 2
10 Foreground color 1
11. Color 3

CHAPTER 5 173 COMAL PACKAGES

Thus a sprite can be composed of 4 different colors, one of which is

“transparent”. The foreground color is determined by the spritecolor

procedure. Colors 2 and 3 are determined by the spriteback procedure.

Just as with drawings in high-res graphics, it is a good idea to start by

making a plan on graph paper. Pair the horizontal pixels when choosing

the four possible "colors”. Then prepare the drawing in the form of DATA

statements as before. But now you must be more careful when assigning

the correct number

combinations to the pixel pairs.

Here is a program (Sprite 5) which uses sprites with several colors:

0010 DATA %00000000,%00000000,%00000000
0020 DATA %00001010,%00000000,%00000000
0030 DATA %00001010,%00000000,%00000000
0040 DATA %00000101,%01010101,%01010000
0050 DATA %00000101,%01010101,%01010000
0060 DATA %00000101,%01010101,%01010000
0070 DATA %00001010,%10101010,%10100000
0080 DATA %00001010,%10101011,%11100000
0090 DATA %00001000,%00101011,%11100000
0100 DATA %00001000,%00101011,%11100000
0110 DATA %00001000,%00101011,%11100000
0120 DATA %00001000,°%00101011,%11100000
0130 DATA %00001000,°%00101001,%11100000
0140 DATA %00001010,%10101011,%11100000
0150 DATA %00001010,%10101011,%11100000
0160 DATA %00001010,%10101011,%11100000
0170 DATA %00001010,%10101011,%11100000
0180 DATA %00001010,%10101011,%11100000
0190 DATA %11141111,%11111101,%01111111
0200 DATA %11111111,%11111101,%01111111
0210 DATA %11111111,%11111101,%01111111
0220
0230 USE graphics
0240 graphicscreen(1)
0250 USE sprites
0260 DIM drawing$ OF 64
0270 FOR i:=1 TO 63 DO
0280 READ byte
0290 =drawing$:+-CHR$(byte)
0300 ENDFOR i
0310
0320 drawingno:=1
0330 define(drawingno,drawing$+""1"")
0340 background(0)
0350 spriteback(2,12)
0360 RANDOMIZE
0370 FOR spriteno:=0 TO 7 DO
0380 = spritecolor(spriteno, RND(3,10))
0390 spritepos(spriteno,spriteno*40,50)
0400 = Identify(spriteno,drawingno)
0410 showsprite(spriteno)
0420 spritesize(spriteno,1,1)

CHAPTER 5 174 COMAL PACKAGES

0430 ENDFOR spriteno
0440 FOR i:=1 TO 100 DO plot({RND(0,319),RND(50,199))
0450 WHILE KEY$S=CHR$(0) DO NULL

In line 240 multi-color graphics is selected. In line 330 the drawing is

defined as a multi-color image by means of the””’1”” in the procedure call.

In line 340 the graphics screen background color is selected. In line 350

the 2nd and 3rd colors for the sprites are chosen.

In line 380 a random foreground color is chosen for each sprite. Inline

420 all sprites are set double size. In line 440 stars are placed in the sky.

Sprite Overview

The package sprites contains 23 procedures and functions.

Definition of drawings and sprites:

define(<drawingno>,<drawing$>)

identify(<spriteno>,<drawingno>)
Sprite color(s):

spritecolor(<spriteno>,<color>)

spriteback(<color2>,<color3>)
Sprite size:

spritesize(<spriteno>,<xdouble>,<ydouble>)

Sprite position and motion:

spritepos(<spriteno>,<x>,<y>)

movesprite(<spriteno>,<x>,<y>,<dur>,<mode>)
startsprites

stopsprite(<spriteno>)

moving(<spriteno>)

spritex(<spriteno>)

spritey(<spriteno>)

animate(<spriteno>,<action$>)
Visibility:

showsprite(<spriteno>)

hidesprite(<spriteno>)

priority(<spriteno>,<graphics’in’front>)
Collision check:

spritecollision(<‘spriteno>>,<yes/no>>)

datacollision(<spriteno>,<yes/no>)
Information about sprites:b

Spriteing(<spriteno>,<property>)
A sprite is transformed into a graphics drawing:

stampsprite(<spriteno>)

Sprite images and storage:

saveshape(<drawingno>,<filename$>)

CHAPTER 5 175 COMAL PACKAGES

loadshape(<drawingno>,<filename$>)

iInkshape(<drawingno>)

(Use es: in file name for Datassette file.)

define(<drawingno>,<drawing$>)

is a procedure which defines anew drawing. The variable <drawing$> is

a string with a length of 64 characters. It contains the information which

specifies the sprite image. (See the examples at the beginning of this

section.) The image defined is assigned the number given by the para-

meter <drawingno>.

There can be up to 32 images defined at one time. The parameter

‘ <drawlngno> must be an integer between 0 and 31. The same image

may be used to identify several different sprites.

Example:

define(23,house$) The contents of the string house$ defines

drawing number 23.

identify(<spriteno>,<drawingno>)

is a procedure which specifies that the sprite with the number <sprl-

teno> is to be displayed using the image with the number <drawingno>.

There can be up to 8 different sprites on the screen at one time. The

parameter <spriteno> must be an integer from 0 to7. The same drawing

can form the basis for several sprites.

The sprite with the lowest <spriteno> has the highest priority and is

therefore displayed in front of others with which it overlaps on the screen.

If the graphics turtle is displayed on the screen, it always has sprite

number 7.

’ Example:

identify(0,23) Sprite number 0 is displayed as image no 23.

spritecolor(<spriteno>,<color>)

is a procedure which assigns the sprite with the number <spriteno> the

color specified. The parameter <spriteno> is an integer from 0 to 7, and

<color> is an integer from 0 to 15. In high-resolution graphics the sprite

will have this color. In multi-color graphics it is color.

Example:
spritecolor(0,8) Sprite number 0 is given color number 8.

CHAPTER 5 176 COMAL PACKAGES

spriteback(<color2>,<color3>)

is a procedure which specifies the colors in multi-color graphics. A

multi-color sprite can have up to four colors:

transparent (but does not cover other colors)

foreground color set with spritecolor (=color1)

additional colors set with spriteback (=color2 and color3)

Example:

spriteback(2,7) additional colors are red and yellow.

Special rules for Multi-colored Sprites:

In a multi-color drawing pixels are associated in horizontal pairs. Each

color (background-, foreground- and additional) is indicated by bit pat-
terns as follows:

Bit Color shown Is set by

pair

00 transparent graphics instructions

01 color 2 spriteback

10 color 1 spritecolor

11 color 3 spriteback

{f graphics has priority over sprites (e.g. priority(<spriteno>,TRUE)),

then color2 with bit pattern 01 will also be the background color.

The parameter color2 gives no report about collision with another

sprite (spritecollision) or with graphics drawings (datacollision).

spritesize(<spriteno>,<xdouble>,<ydouble>)

is a procedure which determines whether the sprite numbered <spri-

teno> will be displayed in double size format. Normally asprite occupies

24 pixels in the x-direction and 21 pixels in the y-direction. If <xdouble>

is set equal to a number not equal to 0 (=TRUE), then the sprite will be

shown in double width. Similarly for <ydouble>.

Examples:

spriteslze(5,0,1) Sprite 5 double height

spritesize(2, TRUE,TRUE) Sprite 2 double size

spritepos(<spriteno>,<x>,<y>)

is a procedure which places the upper left-hand corner of the sprite at the

point with screen coordinates (x,y).

Sprite positions are always specified in the screen coordinate system

CHAPTER 5 177 COMAL PACKAGES

independent of any other coordinate system which may have been de-

fined by the graphics instruction window. Sprite coordinates are in fact

specified in the coordinate system (-32768..32767, -32768..32767). Only

the points (0..319,0..199) are visible on the screen.

Example:

spritepos(0,25,50) Sprite 0 is placed at screen position (25,50).

movesprite(<spriteno>,<x>,<y>,<dur>,<mode>)

is a procedure which moves the sprite numbered <spriteno> from the

current position to the point (x,y). The motion is performed in <dur>

\ small steps. Each step takes 1/50 of a second on computers using the

European PAL standard. On computers using the American NTSC

standard, each step takes 1/60 of a second. The time in each case cor-

responds to the time it takes to update the screen image.

The parameter <dur> expresses how many time intervals (screen

updates) the movement will take. The fewer the number of steps, the

faster the motion.

The parameter <dur> determines the speed of the sprite as follows:

1. If<dur> is held constant, then the speed will always be proportional

to the distance between the two endpoints of the motion.

2. Thespeed will be independent of the distance between the endpoints

if <dur> e.g. is defined by:

FUNC dur(spriteno,x,y)

speed:=10

dx:=x-spritex(spriteno)

dy:=y-spritey(spriteno)

dist:=SQR(dx*dx-+dy*dy)

RETURN dist*speed

ENDFUNC dur

lf this function is used to determine the parameter dur, the speed will

always be constant. In this case about 1 screen time unit.

3. The speed can made independent of the x-distance (similarly for the

y-distance), so that the sprite will appear to move with constant speed

in one dimension.

This can be assured if <dur> is determined by the following func-

tion.

FUNC dur(spriteno,x)

speed:=10

dist:= ABS(x-spritex(spriteno))

RETURN dist*speed

ENDFUNC dur

CHAPTER 5 178 COMAL PACKAGES

If in particular dur equals 0, the sprite will be moved immediately (next

screen update) to the position (<x>,<y>) regardless of the value of

<mode>. The sprite will not move again, but it can be caused to perform

an action by using the procedure animate.

The parameter <mode> affects the moment when the movement

begins, and determines whether or not collision with other sprites and

graphics drawings will be taken into account. The parameter <mode> is

an integer from 0 to 7:

<mode> effect

0 Start now, no collision check

1 Await start signal, no collision check

2 Start now, check sprite/sprite collision

3 Await start signal, check sprite/sprite collision

4 Start now, check sprite/graphics collision

5 Await start signal, check sprite/graphics collision

6 Start now, check for any collision

7 Await start signal, check for any collision

Note:

The procedure movesprite starts the motion. The COMAL system does

not wait for the motion to stop but continues with the next line in the

program. This makes it possible to start other sprites in motion, print

messages, etc. Many things can be going on at the sametime. If you do

not want program execution to continue while the motion is carried out,

you can add a ’wait’ line. For example:

WHILE moving(<spriteno>) DO NULL
or

WHILE NOT datacollision(<spriteno>,TRUE) DO NULL

Examples:

movesprite(2,200,130,100,0) Move sprite no 2 to the point (200,130) in

100 screen updates. Start now with no

collision check.

movesprite(0,250,-10,300,6) | Move sprite no 0 to the point (250,-10) in

300 steps. Start now, checking for sprite

collisions and collisions with graphics

drawings.

Startsprites

is a procedure which initiates the motion of those sprites which are wait-

ing for the start signal. See the movesprite procedure.

CHAPTER 5 179 COMAL PACKAGES

stopsprite(<spriteno>)

is a procedure which stops the motion of the sprite with the number spe-

cified.

moving(<spriteno>)

is a function which takes on the value TRUE (=1) if the sprite specified

moves. Otherwise the value of function is FALSE (=0).

Example:
IF NOT moving(2) THEN movesprite(2,0,190,50,0)

If sprite 2 isn’t moving, then it should be moved at once to screen coor-

’ dinates (0,190).

spritex(<spriteno>) and spritey(<spriteno>)

are functions which have the current x- and y-positions respectively as

values.

Examples:

x’ difference:=x-spritex(4)

y'difference:=y-spritey(4)

IF spritey(3)>200 THEN movesprite(3,spritex(3),20,200,0)

If sprite no 3 collides with the upper edge of the screen, then it ‘falls’ to the

lower edge.

animate(<spriteno>,<action$>)

is a procedure which causes the sprite specified to automatically perform

a given action. The action desired must be defined in the string <ac-

tion$>.

The number of characters in the order of action specification must be

an even number (maximum 64). Thus a maximum of 32 actions can be

requested in each <action$> string.

Possible actions:

CHRS$(<drawingno>)+CHRS(<time>)the drawing with the number

indicated should be displayed

for the time specified.

Note that 0<= <drawingno> <=31 and 0<= <time> <=255 units of

time (screen updates). See the procedure movesprite for more about

timing.

CHAPTER 5 180 COMAL PACKAGES

If <time> is equal to 0, the sprite will enter a wait state which can only

be interrupted by the instruction startsprites or by a "g”-action.

*p”+CHR3S(<time>) Pause for the given time interval.

”*g”+CHR$(<spriteno>) Restart the given sprite, if it is waiting.

"s’+CHR$(<spriteno>) The specified sprite is shown.

"h”+CHR3(<spriteno>) The specified sprite is hidden.

x” +CHRS$(<xdouble>) If <xdouble> is TRUE (i.e. < > 0) the width of

the sprite is doubled. If <xdouble> is FALSE

(i.e. = 0), the sprite is 24 pixels wide.

*y”+CHRS(<ydouble>) Analogous to ”x”+CHRS$(<xdouble>).

”c”+CHRS(<color>) The sprite acquires the color indicated,

where 0<= <color> <=15.

The action must be started by the procedure movesprite. The actions

specified by the string are carried out from left to right unless the sprite is

in a wait state. When the last action has been completed, the sequence is

repeated until the sprite is no longer in motion: either the movesprite

motion is finished, or an animate(<spriteno>,””) instruction is executed.

Just as with the movesprite procedure the COMAL system does not

wait for the action sequence to be completed but procedes directly to the
next line in the program.

Note that CHR$(<value>) has the same meaning as””’<value>””, so

action$:="s” +CHRS$(1)+’p” +CHR$(10)+"h’+CHRS§(1)+”p’+CHRS$(10)
is identical to

action$:="s"'1 "p'1 0’h"1 "pI 0””

Examples:

animate(1,"s"°1"p’10"h"1"p"10"”)

movesprite(1,100,100,0,0)

WHILE KEYS=CHR$(0) DO NULL

animate(1,””)

Sprite no 1 moves at once to the screen position (100,100) and flashes for

10 time units, until any key is pressed.

anlmate(3,”"1""4""2""4""3""4"")

movesprite(3,300,180,500,0)

While sprite no 3 moves to screen position (300,180), it is first shown for

4 units of time as drawing no 1. Next it is displayed for 4 time units as

drawing no 2, followed by drawing no 3. The sequence is then repeated

again. Animation!

JA

CHAPTER 5 181 COMAL PACKAGES

showsprite(<spriteno>)

is a procedure which makes the specified sprite visible (if it is on the

screen).

hidesprite(<spriteno>)

is a procedure which conceals the sprite.

priority(<spriteno>,<graphics’in'front>)

is a procedure which determines the priority of the specified sprite in re-

lation to the graphics drawings on the screen. If <graphics’in’front> has

the value TRUE (=1), the graphics will be displayed in front of the sprite

’ when they overlap. If the value is FALSE (=0), the sprite will appear in

front of the graphics. When USE sprites is first used, the value is auto-

matically set to FALSE.

Example:
priority(6,1) Sprite no 6 will be displayed behind graphics.

spritecollision(<spriteno>,<yes’no >)

is a function which is used to specify when the given sprite collides with

another sprite, or determine if it collided with one earlier.

If <yes'no>=TRUE, then spritecollision is FALSE, until a collision

occurs.

If <yes’no>=FALSE, then spritecollision is TRUE, if a collision has al-

ready occured.

Collisions occur when colors different from the background color over-

lap. See in particular the remark under the spriteback procedure con-

cerning multi-color graphics.

Examples:

WHILE NOT spritecollision(2, TRUE) DO NULL

Do nothing before sprite no 2 collides with another sprite.

IF spritecollision(4,0) THEN spritecolor(4,2)

If sprite no 4 has previously collided with another sprite, then it should be

colored red.

datacollision(<spriteno>,<yes’no>)

is a function which is used to determine when the specified sprite collides

with graphics drawings, or if it has previously collided with graphics

drawings.

CHAPTER 5 182 COMAL PACKAGES

If <yes’no>=TRUE, then datacollision is FALSE until the collision
occurs.

If <yes’no>=FALSE, then datacollision will be TRUE if a previous col-

lision has occurred.

Acollision takes place when colors different from the background color

overlap. (See spritecollision.)

spriteing(<spriteno>,<property>)

is a function which is used to obtain information concerning the sprite

specified. The value of the parameter <property> determines which

characteristic is to indicated.

<prop- The function Range Is set with

erty>

0 visible TRUE/FALSE hide/showsprite

1 Multi-color2 (01) 0..15 spriteback

2 Multi-color1 (10) 0..15 spritecolor

3 Multi-color3 (11) 0..15 spriteback

4 double width TRUE/FALSE spritesize

5 double height TRUE/FALSE spritesize
6 Multi-color TRUE/FALSE define, identify
7 graphics/sprite priority TRUE/FALSE priority

8 drawing number 0..31 identify

9 time remaining 0..215 movesprite

10 sprite/sprite collision TRUE/FALSE movesprite

11 sprite/graphics collision TRUE/FALSE movesprite

12 mode of motion 0..7 movesprite

13 number of actions 0..32 animate

14 no. of next action 0..32 animate

Note that TRUE and FALSE have the numerical values 1 and 0.

Example:

FOR no:=1 TO 14 DO PRINT spriteinq(no)

stampsprite(<spriteno>)

ig a procedure which is used to change the sprite into a graphics image.

The sprite is "stamped” onto the graphics screen image.

Normally a sprite is not part of a graphics illustration and will therefore

not be printed out with the rest of the graphics when the procedures

printscreen and savescreen are used. The procedure stampsprite makes

a copy ofthe sprite part of the graphics screen image. This procedure can

be employed e.g. if you wish to incorporate the graphics turtle as part ofa

drawing which is to be saved or printed.

CHAPTER 5 183 COMAL PACKAGES

Example:

FOR spriteno:=7 TO 0 STEP -1 DO stampsprite(spriteno)

Copies of all visible sprites are made on the graphics screen.

saveshape(<drawingno>,<file name$>)

is a procedure which saves a copy of the sprite image on diskette or tape

(remember cs: in the file name) under the name <filename$>. The

drawing itself must be represented by a string 64 characters in length.

Example:

define(2,drawing$S)
_ saveshape(2,”sp0.flower”)

The figure contained in the string drawing§, is saved under the name

"sp0.flower”. The 0 is included in the name to indicate that the drawing is

intended for use in high-resolution graphics.

loadshape(<drawingno>,<filename$>)

is a procedure which fetches a copy of the file named <filename$> from

diskette or cassette tape. The file must have been saved previously using

the procedure saveshape. The file <filename$> must contain a string

with the definition of a sprite image. This drawing will be given the num-

ber <drawingno>.

Example:

loadshape(1,”sp0.flower”) The file sp0.flower contains a string with

an image which will be recognized as

number 1 in the program.

linkshape(<drawingno>)

is a procedure which associates a copy of the drawing indicated with the

COMAL program. When the program is saved using the instruction

SAVE, the drawing will be saved with it. It can be read in later together

with the program with the instruction LOAD.

If desired, the drawing can be disassociated from the COMAL program

by using the instruction DISCARD.

The drawing must have been fetched earlier using the procedure

loadshape. This drawing is assigned the number <drawingno>.

Example:

linkshape(7) The drawing with the number 7 is associated

with the COMAL program in working memory.

CHAPTER 5 184 COMAL PACKAGES

Sound and Music

Those of you who are familiar with the sound capabilities of the Commo-
dore 64 will be pleased to know that your COMAL cartridge offers you full
and easy access to the Commodore 6581 sound synthesizer (SID) chip.
This chip allows you to use up to three musical voices at the same time. In
addition you have considerable freedom to decide how the individual
notes will sound. You can control frequency, sound level, sound type,
modulation and filtering. This section must be considered to be only an
introduction to a very exciting subject. An entire book could be devoted
to the study of music synthesis using the Commodore 64.

Using the COMAL instruction

USE sound,

you make a number of additional procedures and functions available.
Use these procedures and COMAL programming to create your own
“orchestra”.

Individual notes are denoted by strings. For example, "middle C” onthe
musical scale is denoted by the string variable "c4”.

The other notes in this octave are denoted: "c4”,"c44","d4","d4+", etc.
Notes in the following octave are denoted by ”c5”,”c5+-” and so on. The
notation for the preceding octave is ”c3”,’c3+#”,.... Notice that sharp
notes are denoted "f44+” for "f-sharp” in the fourth octave, etc.
Although this tutorial is not intended to be a music course, here are a

few facts which may be helpful when transfering a musical score to your
Commodore 64. You will have to identify the notes and their durations.
The following figure shows the ordering of some of the notes which can
be played and the standard musical symbols for note duration:

BS
£5

5 hho o = 1

cy ft oh = d = 1/2
a = 1/4

cu a = 1/8
Be =

Ly £3035 43 4 = I/16 i “a ks = 1/32

The full range of notes starts with ’cO” and extends up to and includes
”a7+#” on computers with European PAL standard, and "b7” on computer
with the American NTSC standard.

In this section we will comment briefly on six programs, which you will
find on the demonstration diskette or tape. You will find complete print-

CHAPTER 5 185 COMAL PACKAGES

outs of these programs in Appendix H. They are titled as follows and have

the contents indicated below:

Music Demo: You will probably want to start by running this program to

get an idea of the capabilities of your COMAL sound package. After

examining the programs of lessons 1-5, you can return to study this pro-

gram to see how all three voices can be used together.

Music 1: This program illustrates how individual notes are played.

Music 2: Up to three musical voices are available. It is possible to use up

to three notes at the same time in your programs, giving your composi-

tions a rich and realistic dimension.

Music 3: Here you can hear a demonstration or make your own composi-

tion using just one voice. Again, listing the program will be helpful to help

you learn how to write your own music programs.

Music 4: This demonstration program allows you to change a number of

parameters which affect the sound of each voice: volume, soundtype and

the adsr (attack-decay-sustain-release) waveform envelope.

Music 5: Here is a complete composition illustrating synchronized music

with several voices.

After trying out the Music Demo, you will probably want to LOAD, RUN

and LIST each of the five "Music” programs. Notice that the instruction

USE sound must appear in a program, before the sound control instruc-

tions will be active. In the listing for Music 1 pay particular attention to

lines 150-320:

0150 INPUT AT 8,1: “voice: ”: voice
0160 INPUT AT 9,1: "note-code: ”:code$
0170 play(voice,code$)
0190
0200 PROC play(voice,code$)
0210 IF code$<>”z” THEN
0220 note(voice,code$)
0230 gate(voice,1) // attack & decay
0240 ENDIF
0250 = delay(16) // sustain
0260 gate(voice,0) // release
0270 ENDPROC play
0280
0290 PROC delay(sec’32)
0300 TIME 0
0310 WHILE TIME<1.875*sec’32 DO NULL
0320 ENDPROC delay

CHAPTER 5 186 COMAL PACKAGES

The first thing that happens are the INPUT statements. The voice number

(1, 2 or 3) and the note code (c0,cO#,... or a7+) are to be entered here. In

line 170 the sound procedure play is called with these two variables as
inputs.

If the note code variable code$ is a”z”, no new note will be played. Use

”z” when you want a pause to occur in your music. It must be followed by

a duration code, just like a note. If code$ is a legal note code, then the

note will be played.

This is accomplished as follows. The procedure note(voice,code$) sets

up the voice and the note, getting it ready to be played. The procedure

gate(voice,1) initiates the playing of the note; the attack and decay

portions of the adsr envelope are executed at once. The procedure delay

(which must be provided by the user) determines the length of time the

note is sustained. Finally, the instruction gate(voice,0) terminates the

sustain phase and the note procedes to decay, as specified by the adsr

procedure. More on adsr later!

The user supplied delay procedure can be any routine which can use up

a well-defined time interval. In this program we have done this by means

of a WHILE...DO loop which does nothing (NULL). The procedure call

delay(16) in line 250 causes a delay of 16/32 = 1/2 second.

To make two notes play simultaneously, instructions like the following

must be added:

225 note(2,"c5")
235 gate(2,1)
265 gate(2,0)

Try LOADing, RUNning and LISTing Music 2. You will find the proce-

dures play and delay used again. In addition you will find the following
instructions:

0130 FOR voice:=1 TO 3 DO
0140 soundtype(volce,3)
0150 ENDFOR voice
0160

0170 INPUT AT 7,1: "note-code: ”: code$
0180

0190 FOR voice:=1 TO 3 DO
0200 PRINT AT 10,1: *voice ’:voice
0210 — play(voice,code$)
0220 _—spilay(volce,”z”)
0230 ENDFOR voice

Lines 130-150 are used to set up the soundtype of each of the three voices.

This is a sound package instruction with two input variables. The first
variable is the voice number (1,2 or 3), and the second one is the sound-

type (0,1,2,3 or 4). These numbers specify soundtypes as follows:

CHAPTER 5 187 COMAL PACKAGES

soundtype 0: silence

soundtype 1: triangular wave

soundtype 2: sawtooth wave

soundtype 3: square wave

soundtype 4: white noise

It will require some experience before you become skillful at selecting the

best soundtype to achieve the effects you want. Lines 130-150 in this

example set all three voices to the square wave soundtype.

Line 170 inputs a note code. Lines 190-230 allow the note to be played

using all three voices, so that you can experience the differences among

them. Notice that the procedure play(voice,code$) is used just as it was

used earlier.

Notice also that we have used ”z” as an input to play to achieve a pause

between the playing of each note. Try removing line 220 and listen to

what happens when the program is run.

Now LOAD and RUN the program Music 3. LIST it, and pay particular

attention to lines 330-500:

0330 PROC play’melody // Row, Row, Row Your Boat

0340
0350 melody:
0360 DATA "c4”,8,"2",2,"C4”,8,"2",2,"C4",8,"d4",4

0370 DATA "e4”,8,"2",8,"e4",8,"d4",4,"e4",8
0380 DATA "f4”,4,"g4",16,"2",8,"C5",4
0390 DATA ”c5”,4,"c5”",4,"g4”,4,"g4",4
0400 DATA "g4”,4,"e4",4,"e4",4,"e4",4
0410 DATA ”c4”,4,"c4",4,"c4”,4,"2",8,"g4”,8
0420 DATA "f4”,4,"e4”,8,"d4”",4,"c4",8
0430
0440 RESTORE melody
0450 WHILE NOT EOD DO
0460 READ code$,sek’32
0470 _play(voice,codeS$)
0480 ENDWHILE
0490
0500 ENDPROC play’melody

This procedure plays a simple tune (Row, Row, Row your Boat):

CHAPTER 5 188 COMAL PACKAGES

The procedure starts by zeroing the DATA pointer (RESTORE melody),

so the DATA statements are read from the beginning each time the

melody is played. The lines of DATA contain pairs of information (note

codes and their durations). Lets take a quick look at the data to see how it

relates to the simple piece of music in this illustration.

Look at the music. The first note is "middle C” with the note code cd. It

is a quarter note. If we decide to give a whole note a duration of 32, then

the quarter note must be given a duration of 8. The first two data elements

are ”c4”,8. Notice that the first element is a string variable, while the

second element is an integer. After the first note we want a brief pause, so

the notes don’t all run together. We enter ”z”,2 to accomplish this. The

next two notes are also middle C, so they are entered in the same way.

The vertical line in the musical score indicates a brief pause, so we have

entered a ”z”,8 for this purpose. Notice that it is not always necessary to

enter a pause between notes. You must experiment until you understand
how to achieve the effect you want.

There are many ways of handling the music data. You could enter tines

of music as long strings of data and design a procedure to ’pick out” the

note codes and delays one at a time. You might choose to make the

duration codes integer variables to save memory when composing a

lengthy piece. If sections of the music are repeated, then it will be a di-

stinct advantage for you to design each unique section of the music as an

independent procedure. A "master procedure” can then be written to

play the piece, executing each section in turn.

The actual playing of the notes is accomplished in lines 450-480. Data

is entered a pair at a time (note code and duration). The note is played by

play(voice,code$). And this process continues until there is no more data
(EOD is TRUE).

Turn now to Music 4. This program will help you to experiment with a few

more instructions from the sound package. The following lines are of

particular interest:

0180 INPUT AT 11,1: "VOICE (1/2/3)? ”: voice
0190 INPUT AT 13,1: "VOLUME (0-15)? ”: vol
0200 INPUT AT 15,1: "SOUNDTYPE (1/2/3/4)? ”: type
0210 soundtype(voice,type)
0220 volume(vol)

0420 INPUT AT 21,1: "A,D,S,R? ”: a,d,s,r
0430 adsr(voice,a,d,s,r)
0440
0450 play’melody

Lines 180-200 input the voice number, music volume and the soundtype

for the voice selected. The package procedure volume(vol) can be used

to regulate the volume from silence (0) to the maximum value (15).

CHAPTER 5 189 COMAL PACKAGES

In line 430 the user can select the waveform parameters. These deter-

mine the shape of the sound intensity pattern which forms the note. The

actual sound consists of waves as specified by the soundtype procedure.

The adsr procedure allows the user to control the shape of the “envelope”

governing how the note rises in intensity (attack), decays, is sustained at

a certain level then dies away (release). Notice that the duration of the

sustain phase of the note is regulated by means of the user procedure

delay. The shape of the envelope is specificed by the following numbers,

each of which can be chosen freely in the range from 0-15:

Attack specifies the rate at which the waveform envelope rises. This rate

should be high (i.e. the attack parameter small) to achieve a ’piano”,

“banjo” or "harpsicord” sound. The sound of plucked stringed instru-

ments is characterised by a very audible attack phase when the note is

struck.

Decay determines how fast the note dies down to the sustain level. Vary-

ing this number will vary the type of stringed instrument, you want to

emulate.

Sustain defines the intensity level at which the note will be played for the

delay period specified by the user’s delay procedure.

Release regulates how fast the note "dies away” at the end of the sustain

period.

/ malllin Decay Sustain

of in

| Release

! hh

The last program, Music 5, illustrates how several voices can be played at

once using the procedure playscore. In this example only one voice is

used (voice 1). We will see later how this can be changed by adding a few

more lines.
The notes should first be read in and transformed to frequency values

by means of the function frequency. All these numbers are then stored in

a table of integers tone+() along with the associated duration data: an

CHAPTER 5 190 COMAL PACKAGES

ads’pause for the attack-decay-sustain phase and an r’pause for the re-

lease phase (including the delay between notes). The numbers are

brought into the voice 1 register by means of the procedure setscore.

Then the playing is initiated by the procedure playscore.

While the melody is played, the following COMAL program prints out

some numbers. This is done here simply to illustrate that while the SID

chip is at work playing music, the processor can proceed with other tasks.

When the background music is finished, the function waitscore takes on

the value TRUE (=1). Thus the printing of numbers in the WHILE-

ENDWHILE loop will stop when the music stops.

0090 no:=0
0100 WHILE NOT EOD DO
0110 no:+1
0120 READ code$,tim
0130 tone+(no):=frequency(code$)
0140 ads’pause+(no):=tlm’2

0150 r'pause+(no):=tim*2
0160 ENDWHILE
0170
0180 tone+(nr+1):=0

0190 setscore(1,tone+(),ads’ pause+(),r pause++())
0200 playscore(1,0,0)
0210
0220 number:=0
0230 WHILE NOT waitscore(1,0,0) DO
0240 number:+1
0250 PRINT number;
0260 ENDWHILE

Add the lines:

192 setscore(2,tone+#(),ads’ pause+#(),r’pause())
194 setscore(3,tone+(),ads’ pause+(),r pause+())

and change lines 200 and 230 to:

0200 playscore(1,1,1)
0230 waitscore(1,1,1)

The three voices will play the melody simultaneously (synchronized).

The program ends, when all three voices have finished.

Can you write a "round” with a delay between the different voices?

CHAPTER 5 191 COMAL PACKAGES

Notice that when the package is first brought into play with the instruc-

tion USE sound, the following default values are selected:

adsr(1,0,4,12,10)
adsr(2,10,8,10,9)

adsr(3,0,9,0,9)

FOR volce:=1 TO 3 DO

pulse(voice,2048)

setfrequency(voice,0)

ENDFOR volce

volume(15)

soundtype(1,1) // plano

soundtype(2,2) // violin

soundtype(3,3) // cymbal

The intention of the five introductory music programs has been to ac-

quaint you with how to control the sounds created by the sound package.

At first you may feel that there is a great deal to learn before you can

compose music. This is true. But as with many other situations, a skill

worth learning does take time and effort. Be patient, experiment and be

curious. As you solve each problem which arises, you will learn some-

thing new!

We conclude this section with a summary of the instructions made

available when you invoke the sound package:

volume(<level>)
note(<voice>,<code$>)
gate(<voice>,<start’stop>)
soundtype(<voice>,<soundtype>)
adsr(<voice>,<attack>,<decay>,<sustain >,<release>)
setscore(<voice>,<frequency()>,<pause1()>,<pause2()>
playscore(<volce1>,<voice2>,<volce3>)
stopplay(<voice1>,<volce2>,<volce3>)
waltscore(<voice1 >,<volce2>,<voice3>)
frequency(<code$ >>)
setfrequency(<voice>,<frequency’value>)
sync(<voice’combination>,<yes’no>)
filterfreq(<frequency'value>)
fllter(<voice1 >,<voice2>,<voice3>,<external>)
tiltertype(<low>,<band>,<high>,<3-interrupt>)

pulse(<voice>,<pulse’width>)
rlingmod(<voice’combinatlon>,<yes’no>)

resonance(<degree>)
env3
osc3

CHAPTER 5 192 COMAL PACKAGES

Sound Instructions in Depth

volume(<level>)
is a procedure which controls the common sound level for all three
voices. The parameter <level> is an integer from 0 to 15.

Example:

volume(15) maximum sound level

note(<voice>,<code$>)

is a procedure which is used to indicate the tone <code$> which the
voice with the number <voice> will play. The parameter <voice> canbe
1, 2 or 3; <code$> is a string with possible values: "cO”,
"cO##”,”"dO”,...,"a74#” on machines using the European PAL standard. On
machines using the American NTSC standard tones up to "b7” can be
played. The letters in each note code indicate the note, and the number
indicates the octave. The character + indicates half notes (sharp notes).

Example:

note(2,"d5”) voice 2 will play the note d5

gate(<voice>,<start’stop>)
is a procedure which either starts or stops the playing of voice number
<voice>. If the parameter <start’stop> equals 1, the note starts. If
<start’stop> equals 0, it stops.

Example:

gate(3,1) Voice 3 starts playing.

soundtype(<voice>,<soundtype>)

is aprocedure which is used to indicate which <soundtype> <voice> isto

be. The parameter <soundtype> is the periodic base signal which will be

used lo creale the notes. It can be any of the following:

<soundtype>

: silence

: triangle waveform

: sawtooth wave

: Square wave

: white noise 2
Q
O
n
D

=|

©

<
a

CHAPTER 5 193 COMAL PACKAGES

Example:

soundtype(1,3) voice 1 formed with square waves

adsr(<voice>,<attack>,<decay>,<sustain>,<release>)

is a procedure which determines the shape of the waveform envelope.

See the program, Music 4. Note especially that <sustain> indicates a

sound level from 0 to the maximum sound level (determined by volume),

while <attack>, <decay> and <release> control the time dependence.

Value <attack> <decay> and <release>:

0: 2 msec 6 msec

1: 8 24

2: 16 48

3: 24 72

4: 38 114

5: 56 168

6: 68 204

7: 80 240

8: 100 300

9: 250 750

10: 500 1.5 sec

11 800 2.4

12 1 sec 3

13 3 9

14 5 15

15 8 24

<sustain> be equal to 0, 1,..., 15

Example:

adsr(1,13,13,8,13) voice 1 envelope is specified

setscore(<voice>,<frequency()>,<pause1()>,<pause2()>

is a procedure which is used to store a melody in the register of the given

voice. <voice> must be an integer 1, 2 or 3. <frequency()> is an array

which is to contain the frequency of the individual tones, the last value

being 0 to turn off the voice. The corresponding delays are stored in the

arrays <pause1()> (the ads-delays) and in <pause2()> (the r-fase

delays).

The function frequency can be used for translating notes to these fre-

quency numbers. The playing of the tune itself is initiated by the proce-

dure playscore and stopped by the procedure stopplay.

CHAPTER 5 194 COMAL PACKAGES

Example:

setscore(2,freq(),ads’pause(),r pause())

Frequencies with corresponding pauses are stored in the register of voice
no 2.

playscore(<voice1 >,<voice2>,<voice3>)

is a procedure which is used to synchronize the start of the voices. A1in

the variable position corresponding to <voiceX > starts the voice playing:

Example:

playscore(1,1,0) voice 1 and 2 are started

stopplay(<voice1>,<voice2>,<voice3>)

is a procedure which stops the playing of the voices indicated. If <voi-

ceX> is TRUE (=1), then voice X stops playing.

Example:

stopplay(0,1,1) voice 2 and 3 are stopped

waitscore(<voice1>,<voice2>,<voice3>)

is a function which returns the value TRUE (=1) if the playing of the indi-

cated voice combination has finished.

Example:

WHILE NOT waltscore(1,1,0) DO NULL

do nothing before voice 1 and 2 have finished playing.

frequency(<code$>)

is a function which returns the integer value which the SID chip must re-

ceive to play the note. It is mostly used to compute array values for the

procedure setscore. The integer value lies between -32768 and 32767

inclusive. It is NOT possble to transform notes between octaves directly

by dividing these numbers by 2. The parameter <code$> must contain

a string with a valid note code (i.e. one of the codes "cU”, etc.).

Example:

frequency(’c4”) the note ’c4” is transformed to a number

setfrequency(<voice>,<frequency’value>)

is a procedure which is used to define the frequency of each <voice>.

CHAPTER 5 195 COMAL PACKAGES

The number <frequency’value> must be in the range 0 - 65535. These

numbers do not correspond directly to the SID chip frequency codes.

Example:

setfrequency(2,2000)

sync(<voice’combination>,<yes’no>)

is a procedure which takes care of synchronization with respect to the

<voice’combination> indicated if <yes’no> equals 1. Otherwise the

voice combination is not synchronized.

\ Note: voice’combination corresponds to sync

number: between voices:

1 1and3

2 1 and 2

3 2 and 3

Example:

sync(1,1) voice 1 and 3 are syncronized

filterfreq(<frequency’value>)

is a procedure which is used to determine the cutoff frequency for the fil-

ter. The parameter <frequency’value> must be in the range 0 to 2047 in-

clusive, corresponding to frequencies between about 30 and 12000 Hz.

Example:

filterfreq(729) Middle C

filter(<voice1>,<voice2>,<voice3>,<external>)

is a procedure which is used to select which voices are to be filtered, i.e.

damped. A 1 in a<voiceX> position means that voice X is to be filtered.

Example:
filter(0,1,1,1) voice 1 should NOT be filtered

filtertype(<low>,<band>,<high>,<3'interrupt>)
is a procedure which is used to select the filter type.

If <low> equals 1, then a low-pass’ filter is used, damping tones in the

treble range. All frequencies above the filter frequency (set by filterfreq)

are damped 12 dB per octave.

CHAPTER 5 196 COMAL PACKAGES

If <band> equals 1, then damping occurs on both sides of the filter
frequency; 6 dB per octave.

If <high> equals 1, then the low frequencies are damped by 12 dB per
octave.

lf <3’interrupt> equals 1, then voice 3 will not be audible. It can be
used to code information about synchronization and ringmodulation.

Several filters can be selected at the same time.

Example:

filtertype(1,0,1,0) creates a "notch filter” which has the opposite
effect of a *band-pass filter”: damping occurs

around the filter frequency.

pulse(<voice>,<pulse’width>)

is a procedure which is used to indicate the ratio between the time during
which a square wave is high and the time during which it is low (the
"duty-cycle”). The more this ratio deviates from 1:1, the more “nasal” and
“sharp” the sound will be. The parameter <pulse’width> is a number
from 0 to 4095 inclusive. When selected as 2048 the ratio is 1:1.

Example:

pulse(1,2048) The ratio high/low equals 1.

ringmod(<voice’combination>,<yes'no>)
is a procedure which is used to determine whether ring modulation is to
be in effect. The parameter <voice’combination> selects which voices
are affected (see sync). If <<yes’no> is TRUE (=1) modulation will occur;
it will not if <yes’no> equals FALSE (=0).
When ring modulation is in effect, then two new voices with frequencies

equal to the sum and the difference between the original voices are gene-
rated.

resonance(<degree>)
is a procedure which is used to indicate to what degree certain frequen-
cies will be emphasized. The greater the value of the parameter degree,
the greater the emphasis on the frequencies selected by the procedure
setfrequency will be. This will give the sound a synthetic quality. The
parameter <degree> must be an integer from 0 to 15.

env3

is a function with no parameters. It returns the amplitude of the intensity
envelope for voice number 3. The values of the function lies in the interval
0 - 255.

CHAPTER 5 197 COMAL PACKAGES

Displaying the intensity envelope:

USE sound
USE graphics
graphicscreen(0)
volume(10)
soundtype(3,1)
note(3,"a4”)
adsr(3,13,13,8,13)
gate(3,0)
WHILE env3<>0 DO NULL

TIME 0
gate(3,1)
WHILE TIME<60710 DO
drawto(TIME/5,env3/256* 199)

ENDWHILE
gate(3,0)
WHILE TIME/5<320 DO

drawto(TIME/5,env3/256*199)
ENDWHILE
WHILE KEY$=CHRS(0) DO NULL

osc3

is a function with no parameters. It returns a value from 0 to 255. The

number indicates the excursion of the current sound type of voice 3. In

the case of a triangle the numbers vary from 0 to 255 and back to 0 again.

For the sawtooth wave, values increase from 0 to 255 then fall rapidly back

to 0. The square wave pulse varies between 0 and 255. White noise yields

random numbers from 0 to 255.

Note that the sound continues playing after a COMAL program stops.

The sound stops only if a melody is finished, if the COMAL program

produces an error message or if it communicates with the disk drive.

These instructions all use the interrupt, also used by the sound chip.

CHAPTER 5 198 COMAL PACKAGES

Packages for using the Control Ports
The COMAL cartridge contains 3 packages which can be used with the

two input ports (game ports) on the right hand side of your Commodore

64 (on the back of the SX-64). These two inputs will be refered to as con-

trol port 1 and control port 2.

The control ports can be used to attach accessories like joysticks or

paddles. Signals from these devices can be interpreted and assigned

numbers by the the computer. The Commodore 64 can be used with a

range of different accessories - both commercially available and those

you can build yourself. (See Chapter 7 on Peripheral Equipment.)

In this section we will deal specifically with:

paddles

joystick

light pen

These accessories can be purchased from your Commodore dealer.

Some of the COMAL packages contain procedures which make it

easier to use these accessories.

Paddles

The package paddles is made available by the instruction:

USE paddles

A pair of paddles should be attached to acontrol port. The paddles will be

refered to as paddle a and paddle b. Each paddle has a knob, which is

CHAPTER 5 199 COMAL PACKAGES

used to change the position of a variable resistor, and a push-button,

which shorts a port input to ground when activated.

The package contains a single procedure:

paddle(<portno>,<a’paddle>,<b’paddle>,<a’button>,<b’button>)

which transforms information from the control port to numbers.

* The parameter <portno> must contain the number of the control

port to which the paddle pair is attached: 1 or 2.

* The variables <a’paddle> and <b’paddle> contain the numerical

value corresponding to the knob position of paddle a and paddle b

respectively:

0<= <a’paddle> <=255 and 0<= <b’paddle> <=255

* The variable <a’button> equals 1 if the a-pushbutton is depressed;

otherwise <a’button> equals 0. Similarly for <b’button>.

Example:

USE paddles
paddle(2,a’paddle,b’paddle,a’button,b’button)

PRINT a’paddle;b’paddle;a’button;b’button

The signal values are fetched from control port 2 and printed out in the

next line.

The following program example, Paddle Game, is available on the

demo diskette (tape):

0010 USE paddles

0020
0030 DIM format$ OF 40
0040 format$:=" #44 + fH +”
0050
0060 PAGE
0070 INPUT AT 2,1: ’control port no > ”: portno

0080
0090 DIM winner$ OF 1
0100 winner$:="c”

0110 PRINT AT 9,2: “Who can adjust the paddle and press ”

0120 PRINT AT 10,2: the fire button the fastest?”
0130 PRINT AT 13,2: "Press a key to start.”

0140 RANDOMIZE
0150 WHILE KEY$S=CHRS$(0) DO NULL
0160 number:=RND(0,255)
0170 PRINT AT 15,2: ’The number is: ”,number

0180

CHAPTER 5 200 COMAL PACKAGES

0190 REPEAT
0200 paddle(portno,a'paddle,b'paddle,a’button,b’button)
0210 PRINT AT 5,1:” a'paddle a’button b’paddle b’button”
0220 PRINT AT 6,1: USING formats: a'paddle,a’button, b’paddle,b’button
0230
0240 IF number=a’paddle AND a’button THEN winner$:="a”
0250 IF number=b’paddle AND b’button THEN winner$:="b”
0260 UNTIL winners IN ’ab”
0270

0280 PRINT AT 17,2: winnerS-+” was fastest!”

CHAPTER 5 201 COMAL PACKAGES

Joysticks
The package joysticks becomes accessible when you use the instruction:

USE joysticks

Attach a joystick to one of the control ports. A joystick is a peripheral

device which can be centered or moved by the user into any of 8 different

positions:

Direction COMAL - number

up 1

up-left up-right 8 2

left neutral right 7 0 3

down-left down-right 6 4

down ‘ 5

In addition there is a push-button on the joystick (the fire button) which

sends a signal to the computer when pressed.

The package contains a single procedure:

joystick(<porino>,<direction>,<button>)

which translates the signals from the joystick to numerical values for use

in programs.

* <portno> must contain the number of the port to which the joystick

is attached: 1 or 2.

<direction> is a variable which equals a number in the range 0 - 8.

These values indicate the position of the joystick. See above.

<button> is a variable with the vatue 1 when the fire button is pushed,

otherwise <button> equals 0.

Example:

USE joysticks

joystick(2,direction,button)

PRINT direction;button

The signal values are fetched form control port 2 and printed in the next

line.

The program example shows how a joystick can be used to draw:

0100 PAGE
0110 PRINT "JOYSTICK FOR DRAWING”
0120 PRINT
0130 PRINT ”The joystick determines drawing direction.”

CHAPTER 5 202 COMAL PACKAGES

0140 PRINT ”The fire button switches colors.”
0150 PRINT
0160 PRINT "Press <STOP> to stop the program.”
0170 PRINT ”Press <f5> to see the drawing again,”
0180 PRINT “and <t1> to get back to the text.”
0190 PRINT
0200 INPUT “Joystick in port no: (1 or 2) :”: portno
0210 IF portno<1 OR portno>2 THEN portno:=2
0220
0230 USE turtle
0240 USE joysticks
0250 graphicscreen(1)
0260 background(1)
0270 pencolor(5)
0280
0290 LOOP
0300 joystick(portno,direction,button)
0310 IF direction THEN
0320 setheading((direction-1)*45)
0330 forward(1)
0340 ENDIF
0350 IF button THEN // change color
0360 pencolor((ing(6)+1) MOD 16)
0370 ENDIF
0380 ENDLOOP

>

CHAPTER 5 203 COMAL PACKAGES

Light Pen

in order to understand how a light pen works, you have to know some-

thing about how the picture on your TV or monitor screen is formed. The

picture is created by an electron beam which scans back and forth across

the face of the screen at high speed. Asitscans, the intensity of the beam

changes. Phosphors on the inside surface of the screen react to the elec-

tron beam by emitting light, thus creating a visible image. The picture on

the screen is updated 50 or 60 times each second, so the eye doesn't

notice this process. A light pen contains a photodiode in its tip. It can

detect variations in the light level striking it.

When the electron beam passes the point on the screen where the light

pen is positioned, it can be illuminated. If itis illuminated and a signal is

sent to the computer, the instant when the signal arrives corresponds toa

particular position on the screen.

The light pen should always be connected to control port 1. Next make

the package lightpen accessible with the instruction:

USE lightpen

The light pen works best when the screen border is dark and the back-

ground is light.

If the program segment listed below does not work right away, then try

adjusting the contrast and brightness adjustments on your display.

Using this program you can experiment with the operation of the light

pen. Type in the program and try it to find the offset:

0010 PAGE
0020 USE lightpen
0030 USE system
0040 textcolors(0,14,6)

0050
0060 offset(0,0)
0070 REPEAT readpen(x,y,ok) UNTIL ok

0080
0090 PRINT x;y

The program contains 2 procedures from the light pen package: Line

60 specifies that the light pen’s measurement of the coordinates of a point

should not yet be offset. Line 70 detects where on the screen the light pen

is pointed.

Move the pen slowly from the dark edge in the lower left hand corner

into the light area. The program will then print out the light pen’s

measurement of the coordinates of this point. Try a few times until the

coordinates have been determined with reasonable accuracy. These

coordinates are referred to as the light pen’s offset from (0,0). We will

term this coordinate pair (<xoff>,<yoff>). The coordinates (<xoff>,

CHAPTER 5 204 COMAL PACKAGES

<yoff>) can vary from display to display due to delays in the electonic
detection process.

In line 60 of the program the offset was set equal to (0,0). Now change
this to the values of (<xoff>,<yoff>) which you have just found.
When you run the altered program and move the light pen in and out of

“the corner, it should now register the coordinates (0,0). If it does not, you
have an idea of the uncertainty with which the light pen can determine
screen coordinates. Try refining your calibration.
Now examine the coordinate range which the light pen can measure. It

should extend from (0,0) to about (319,199). After this initial adjustment,
we are ready to tackle some more challenging tasks.

The first example takes advantage of the fact that the computer auto-
matically sets some important initial parameter values whenever the in-
struction USE lightpen is invoked. This is true, for example, of the time for
which the pen must be held at the same spot on the screen before its po-
sition will be registered (the procedure delay). This is also the case for the
time which must pass from the moment when one set of coordinates has
been found to the time when a new determination will begin (the proce-
dure timeon). A program which is to be used to make drawings on the
Screen must be able to determine the coordinates of points very quickly
so delay and timeon should be set to small values. If accuracy is more
important than speed, then larger values should be used.

The program might look Ilke this:

0010 PAGE
0020 USE lightpen
0030 USE graphics
0040 graphicscreen(0)
0050 border(0)
0060 background(14)
0070 pencolor(6)
0080
0090 xoff:=52; yoff:=-51 // use your own values
0100 offset(xoff,yoff)
0110
0120 delay(1)
0130 timeon(1)
0140
0150 REPEAT readpen(x,y,ok) UNTIL ok
0160 moveto(x,y)
0170 LOOP
0180 REPEAT readpen(x,y,ok) UNTIL ok
0190 drawto(x,y)
0200 ENDLOOP

Try changing the values in lines 120 and 130. What effect does this have?
Note that all lines are connected. What should be done so that the pen

can be lifted and lines not connected?

CHAPTER 5 205 COMAL PACKAGES

If one wishes to determine the location of the pen on the text screen, the

pen’s coordinates must be transformed to a character position (<line>,

<column>). The text screen has 25 lines each with 40 columns.

In the following example two user-defined COMAL-functions (FUNC

line(y) and FUNC column(x)) are used to make the conversion. In order

for the functions to operate properly, the light pen coordinates must have

been corrected using the offset procedure described earlier, so that the

lower left corner corresponds to (0,0).

The program illustrates how a light pen can be used to make selections

from a menu containing characters, words or other choices. In this case

the problem is to select words from the list at the end of the program and

make them into a sentence with a maximum of 40 characters:

0010 PAGE
0020 DIM text$(25,4) OF 10
0030 DIM name§$ OF 10, all$ OF 40
0040 ZONE 10
0050 I:=8
0060
0070 USE system
0080 textcolors(0,14,6)
0090
0100 arrange’words
0110
0120 USE lightpen
0130 delay(60)
0140 timeon(60)
0150 accuracy(10,2)
0160 xoff:=52; yoff:=-51 // use your own values
0170 offset(xoff,yoff)
0180
0190 choose’words
0200
0210
0220 PROC arrange’words
0230 CURSOR 1,1
0240 FORi:=1TO5DO
0250 FOR J:=1TO3DO
0260 READ textS(i,j)
0270 ~=— PRINT textS(i,j),
0280 ENDFOR j
0290 PRINT
0300 ENDFOR i
0310 text$(6,1):="end”
0320 PRINT textS(6,1)
0330 PRINT AT 6,1: ’Point to words with the light pen.”
0340 ENDPROC arrange’words
0350
0360 PROC choose’words
0370 REPEAT
0380 REPEAT readpen(x,y,ok) UNTIL ok
0390 IF y<199-(I-1)*8 THEN // from line I

CHAPTER 5 206 COMAL PACKAGES

0400 name$:=textS(line(y)-I+1,column(x) DIV 10+1)
0410 IF name$<>”end” THEN all$:+” ”+name$
0420 ~=PRINT AT 2,1: alls
0430 ENDIF
0440 WHILE penon DO NULL
0450 UNTIL name$=”end”
0460 CURSOR 20,1
0470 ENDPROC choose’words
0480
0490 FUNC line(y)
0500 RETURN (200-y) DIV 8+1
0510 ENDFUNC line
0520
0530 FUNC column(x)
0540 RETURN x DIV 8+1
0550 ENDFUNC column
0560

0570 DATA ”Peter”,”takes”,”enough”
0580 DATA "the cat”,’eats”,”from”
0590 DATA "the food”,”rains”,”always”
0600 DATA "everything”,”remembers”,”never”
0610 DATA "the book”,”forgets”,”soon”

In line 150 the procedure accuracy from the light pen package is used.

The procedure accuracy(<dx>,<dy>) determines the resolution in the
xX- and y-directions.

Add some additional DATA statements yourself.

Overview of the Light Pen Package
The package contains 5 procedures and a function:

offset(<xoff>,<yoff>)

penon

readpen(<x>,<y>,<ok>)

timeon(<time>)

delay(<time>)

accuracy(<dx>,<dy>)

offset(<xoff>,<yoff>)

is a procedure which is used to offset the light pen coordinate pair so that
it agrees with the corrdinates of the graphics screen. This offset can vary
from display to display. Try starting with values such as: <xoff> = 75
and <yotf> =-45.

Example:

offset(52,-51) Light pen coordinates are offset so (0,0) is in
the lower left-nand corner.

CHAPTER 5 207 COMAL PACKAGES

penon

is a function which has the value TRUE (=1) if the pen is touching the

screen. Otherwise penon equals FALSE (=0).

readpen(<x>,<y>,<ok>)

is a procedure which reads the coordinates of the screen position and

delivers them in the variables <x> and <y>. The variable <ok> has the

value TRUE if the pen is touching the screen (just as the function penon).

_ Example:

: REPEAT readpen(x,y,ok) UNTIL ok

PRINT x;y

Read the screen coordinates when the light pen is touching the screen.

Print the coordinates on the next line.

delay(<time>)

is a procedure which is used to specify the time for which the light pen

must be held still on the screen before the light pen reading will be re-

corded. The light pen must be held still within the limits specified in the

procedure accuracy.

The parameter <time> is given in 1/60 of a second. Starting value:

<time>=10 (i.e. 10/60 = 1/6 second)

timeon(<time>)
is a procedure which is used to specify the time which must pass from one

screen reading until! the next is possible.

<time> is given in 1/60 of a second. Starting value:

<time>=30 (i.e. 30/60 = 1/2 second)

accuracy(<dx>,<dy>)

is a procedure which is used to indicate the size of the region on the

screen within which the light pen must remain to be considered to be ’at

rest’. The smaller these values, the more precisely the light pen must be

positioned to obtain a reading.

Initial values: <dx>=4 and <dy>=2

Example:

accuracy(10,8) The pen is considered to be at rest if it is held

within a 10x8 pixel region.

CHAPTER 5 208 COMAL PACKAGES

The System Package

USE system

This package contains, among other things, procedures which can be

used to specify how the screen display, keyboard and printer interfaces

should operate. In addition the package contains functions which provide

information about your system, the display and the keyboard:

textcolors(<border>,<background>,<text>)
keywords’in’upper’case(TRUE or FALSE)
names’in’upper’case(TRUE or FALSE)
quote’mode(TRUE or FALSE)
inkey$
settime(<time’of'day$>)
gettimes
getscreen(<screen$>)
setscreen(<screen$>)
hardcopy(<unit$>)
currow and curcol
bell(<duration>)
tree
defkey(<no>,<text$>)
showkeys
serial(TRUE or FALSE)
setprinter(<attributes$>)
setrecorddelay(<duration>)
setpage(<integer>)

textcolors(<border>,<background>,<text>)

is a procedure which is used to define the color combination of the

border, background and text. On start-up textcolors(14,6,14) is executed

automatically on a Commodore 64. On an SX-64 textcolors(3,1,6) is the
default value.

Examples:

textcolors(0,2,1) black border, red background and subsequent

white text

textcolors(12,11,15) grey tones

textcolors(-1,5,-1) Only the background is changed (in this case

to green).

keywords’in’upper’case(TRUE or FALSE)

is a procedure which determines whether keywords are to be written in

upper case (TRUE) or lower case (FALSE). The default is TRUE.

CHAPTER 5 209 COMAL PACKAGES

Example:
keywords’in’upper’case(FALSE) Keywords are displayed in a listing with

small letters.

names’in'upper’case(TRUE or FALSE)

is aprocedure which determines whether names are to be written in upper

case (TRUE) or not (FALSE). The default is FALSE.

Example:
names’in’upper’case(TRUE) Names will be displayed with large letters.

quote’mode(TRUE or FALSE)

is a procedure which determines whether control codes and other invi-

sible ASCII characters in string constants are to be displayed in reverse

text (TRUE) or with their ASCII values enclosed in quotes (FALSE). After

start-up the default is FALSE.

Examples:

PRINT statement after quote’mode(TRUE):

PRINT ” & Hello!”

after quote’mode(FALSE):

PRINT ””2”Hello!”

inkey$

is a function which reads in characters from the keyboard. The function

inkey$ works like KEY$. However inkey$ awaits a character with the cur-

sor flashing at its current position.

Examples:

answer$:=inkey$

PRINT inkey$

settime(<time’of'day$>)

is a procedure which is used to set the clock in the computer (CIA1 real

time clock). On start-up the clock is zeroed by settime(”00:00:00.0”).

The format of the time’of’day$ string is:

hh:mmiss.t/ff hh is the hour (0 - 24)

or mm is the minute (0 - 59)

hh:mm:ss ss is the second (0 - 59)

or t is tenths of a second (0 - 9)

CHAPTER 5 210 COMAL PACKAGES

hh:mm

or if a number field is left out,

hh it will be assigned the value 0.

ff is the frequency (50 or 60);

is optional (default: 50 Hz)

SX-64 has a switchmode power supply which is 60Hz. In this case you

should remember the ff parametre.

Examples:

settime(”07:30:15”)

settime(”10:20")

settime(”0”) The clock is reset to 0.

gettimes$

is a function which returns the time’of'day in the format hh:mm:ss.t

Examples:

PRINT gettime$ answer e.g.: 9:32:50.4

digital clock:

PAGE
USE system
LOOP

PRINT AT 1,30: gettimes,
ENDLOOP

getscreen(<screen$>)

is a procedure which takes a copy of the current text screen, and saves it

as the string screen$. The string screen$ takes up 1505 characters. Thisis

reserved by using the instruction DIM screen$ OF 1505.

The content of the string screen$(1:1505):

screen$(1) border color

2 background color

3 cursor color

4 cursor: line - 1

5 cursor: column - 1

6:1505 text and color information

Text and color information consists of 500 sequences of 3 bytes each:

character 1 For every two characters

CHAPTER 5 211 COMAL PACKAGES

character 2 their color is stored.

2. 1. Each color takes 4 bits

color making a byte.

See the program examples following setscreen(<screen$>).

setscreen(<screen$>)

is a procedure which creates a picture on the text screen. Picture infor-

mationen is contained in the string screen$. The string must contain at

least 1505 characters. See getscreen(<screen$>).

\Program example 1:
DIM a$ of 1505, b$ of 1505
USE system

getscreen(as)

getscreen(b$)
a$:=a$(1:725)+b$(726:1505)

setscreen(a$)

Note:
At two selected times during the execution of the program, the contents

of the text screens are saved in the strings a$ and b$ respectively. Latera

string is created by combining the first 725 characters of a$ (i.e. color and

cursor information, and the first 12 lines of the a$ screen image) and of

b$’s last 780 characters (i.e. the b$ screen’s lower 13 lines). The combined

image is finally presented on the screen.

Program example 2:

PROC help CLOSED
DIM s1$ OF 1505,s2$ OF 1505
USE system
getscreen(s1$) // save screen Image
OPEN FILE 10, ’screen’help”, READ
READ FILE 10:s2$
CLOSE FILE 10
setscreen(s2$) // shows a user help screen
WHILE KEY$=CHRS$(0) DO NULL
setscreen(s1$) // the old Image back again

ENDPROC help

hardcopy(<unit$>)

is a procedure which prints out the contents of the text screen to the unit

CHAPTER 5 212 COMAL PACKAGES

which is given in the string unit$. The printout begins with a carriage
return.

Example:

hardcopy("Ip:”) The contents of the text screen is printed ona

lineprinter. The instruction has the same effect

as <CTRL-P>.

currow and curcol

are two functions which return the current row and the current column
respectively.

Examples:

row:=currow; column:=curcol

PRINT AT 0,curcol-5: name$

bell(<duration>)

is a procedure which activates COMAL’s bell”. The parameter duration

must be an integer in the range 1 to 255. The value 1 corresponds to a

real-time duration of about 0.15 seconds. On start-up an automatic

bell(3) is executed.

Example:

bell(10) Sound for 1.5 sec.

free

is a function which returns the number of free bytes in working memory. A

more complete overview of the use of working memory is obtainable

using the command SIZE. But because SIZE is a command, it cannot be

used from a running program.

Example:

PRINT free

defkey(<no>,<text$>)

is a procedure which is used to redefine the meaning of the function keys.

The keys are numbered 1,..,8,11,..18.

The numbers 1 - 8 are normally active for indication of the usual func-

tion keys <f1>-<f8>. But during program execution, the function keys
will correspond to numbers 11 - 18. The string text$ may consist of a

maximum of 32 characters.

CHAPTER 5 213 COMAL PACKAGES

The procedure showkeys will print out a list of the current definitions of

the function keys.

Examples:

On start-up the following is performed:

defkey(6,”LIST ”) Activating <f6> prints LIST on the screen.

The <f3> and <f4> can e.g. after redefinition be used to assist with the

writing of procedures:

defkey(3,"AUTO"13""13"PROC ”)
detkey(4,"ENDPROC"13""141”SCAN"13””)

<f3> will cause: AUTO

0010

0020 PROC

<f4> will cause: XXXX ENDPROC
(Interrupt AUTO-numbering.)

SCAN
(Which checks the structure of the

procedure and allows use of the

procedure as a command.)

Program example:

USE system
defkey(15,"COMAL for everyone!”13””)
INPUT "What did you say? ”: textS
PRINT text$

If the <f5> key is activated in response to the INPUT statement, the

system will react as if the message came from the keyboard and print it

out.

showkeys

is a procedure which controls whether communication is sent to the serial

port or to the Commodore IEEE-488 module (if available).

serial(TRUE or FALSE)

is a procedure which controls whether communication is sent to the seria

port or to the Commoore IEEE-488 module (if available).

Examples:

serial(TRUE) Send to the serial port.

serial(FALSE) Send to the IEEE-488 module.

CHAPTER 5 214 COMAL PACKAGES

setprinter(<attributes$>)

is a procedure which is used to select the unit number and attributes of
the peripherat printer. Printout to the lineprinter (Ip:) will thereafter be
performed according to the rules given by the attributes. These are given
in a string during procedure calls.

Possible printer attributes:
/a- do not translate from C64 ASCII to standard ASCII
/at+ convert from C64 ASCII to standard ASCII

/- suppress line feed after carriage return
A+ execute line feed after each carriage return

/t- ignore ‘time out’ signal and continue printout
/t+ interrupt with error message if time runs out

Secondary adresses for the Commodore MPS 801 (partly also MPS 802)
printer: (See instruction manuals for other printers.)
/s- no secondary address used

/s0 write data as received
/s1 write data in previously defined format
/s2 save format information

/s3 number of lines per page

/s4 allow explanatory error messages

/s5 define a programmable character
/s6 number of blank lines between each printed line
/s7 print with lower case

Upon start-up in COMAL ”Ip:” is defined as the unit with the attributes
u4:/a-/l-/t+-/s7.

The MPS 801 printer can be set to act as unit 4 or unit 5 by means of a
switch on the back panel.

Examples:

setprinter(”u5:/s0”) “Ip: means hereafter unit 5; printout with upper
case.

setprinter("Ip:/a+/l-”) Convert to ASCII, send no line feed.

A procedure to define the number of lines per pageon the MPS 802 printer:

PROC page’802(lines’pr'page) CLOSED
OPEN FILE 1,”Ip:/s3”, WRITE
OPEN FILE 2,"ip:", WRITE
PRINT FILE 1: CHRS(IInes’pr'page),
PRINT FILE 2: CHRS(147),
CLOSE

ENDPROC page’802

CHAPTER 5 215 COMAL PACKAGES

setrecorddelay(<duration>)

is a procedure which causes COMAL to pause during writes to arandom

file. The parameter <duration> is given in milliseconds. The disk ope-

rating system needs time to write a block to the diskette before the

COMAL system can send anew positioning instruction. Itis rarely neces-

sary to use the procedure. When COMAL is initiated, an automatic set-

recorddelay(50) is carried out, unless the Commodore IEEE module is

connected with the COMAL cartridge. In that case a setrecorddelay(0)

will be executed.

setpage(<integer>)

is a procedure which determines to which overlay the instructions PEEK

and POKE will refer. See Chapter 8 for more information on this. The uti-

lities program showlibs on the demo diskette (or tape) uses this proce-

dure.

Examples:

setpage(0) $8000 - $9fff RAM used by packages

$A000 - $bfff hidden RAM used by packages

$d000 - $dfff hidden RAM

$e000 - Sffff graphic screen

CHAPTER 5 216 COMAL PACKAGES

The Font Package
The package font contains 6 procedures which are used to define new
screen characters. It is possible to change an entire character set or just
an individual character.

The package is activated with the order

USE font

The package affects the 4 character sets numbered:
0: User-defined read/write
1: User-defined read/write
2: Upper case/graphics set read only
3: Upper/lower case letters read only

The Commodore 64 uses a double character set. Normally COMAL uses
character set 3. By activating <SHIFT C=> you can switch back and
forth between character sets 2 and 3. These two character sets are per-
manently available in the memory of the computer, so they cannot be
changed.

With the font-package it is possible to add a new double character set
numbered 0 and 1. This character set is stored ina protected area of the
working memory of the computer.

There are now several options:

1. You can move a copy of the normal character set of the computer into
the area reserved for the user character set and change some of the
characters.

2. You can fetch acompletly new character set from diskette ortape and
Store it as the user-defined character set. It will go into effect at once.
Of course it is essential to have such a character set prepared and
available on diskette or tape. A character set is available on your
demo diskette or tape. But it is also possible to create your own and to
store it for later use.

Remarks:
* The character set used corresponds to -screen- characters. Their

. Character code are not in accord with the standard ASCII values. See
- Apperidix A for standard screen characler codes and ASCII codes.

The folowing command will print out all the standard screen
characters. Issue the order with default screen and cursor colors.
(The screen image starts at memory address 1024.):

for I=0 to 255 poke 1024+i,i
The user-defined character set is also used by the procedure plottext
from the graphics-package.
Because a printer uses its own character set, font will have no effect

*

CHAPTER 5 217 COMAL PACKAGES

on PRINT and LIST orders directed to the printer. On the other hand

<CTRL-D> (printscreen) will cause an exact copy of the graphics

screen image to be printed out on a MPS 801 compatible printer.

Example of character replacement:
First we fetch a character from the standard character set to see how it is

stored in an 8x8 raster pattern of pixels. The following program can be

used for this purpose.
The character is fetched by means of the procedure getcharacter. The

rest of the program has been added to provide a nice printout of the

character in an 8x8 matrix. We let the string function bin$ convert the

individual characters in the fetched raster pattern to binary numbers.

\ These numbers are then printed under one another to create the bit pat-

‘tern of the character:

0010 // save "Fetch Character”
0020 USE font
0030 DIM raster$ OF 8
0040 PAGE
0050 INPUT ’Character set : ”: choice+
0060 INPUT "Character no. : ": character+

0070 PRINT
0080 getcharacter(choice+,character+,raster$)
0090 FOR i:=1 TO 8 DO
0100 PRINT TAB(12),bin$(ORD(rasterS(i)))
0110 ENDFOR i
0120
0130 FUNC bin$(number) CLOSED
0140 DIM binnumbers OF 8
0150 binnumber$:=”00000000”
0160 _ —bit:=1
0170 FOR i#+:=8 TO 1 STEP -1 DO
0180 IF number BITAND bit THEN binnumberS(i#):="1”

0190 bit:+bit

0200 ENDFOR i+
0210 RETURN binnumber$
0220 ENDFUNC bin$

Try out the program. Choose a character from the double standard

character set: 2 or 3. Since we have not yet prepared any user-defined

characters, any attempt to fetch a character from sets 0 or 1 will result in

an error message. The character a has the number 1 in character set

number 3.
Next we will prepare a user-defined character by simply moving acopy

of the standard character set up to the user-defined area. Since no user-

defined character set has yet been created, the order linkfont has this

effect. Write therefore:

use font

linkfont

CHAPTER 5 218 COMAL PACKAGES

This way a user-defined character set (0 and 1) is created for immediate

use. In addition the old screen image is hidden, and a new picture is

created for using the new character set. It is always possible to return to

the standard character set by using the order DISCARD (which preserves

any program in working memory) or NEW (which does not).

It is now possible to change the characters in the double character set

0-1. The brief program which follows reads in individual characters by

means of DATA statements and makes them part of the new character set
with the order putcharacter.

The DATA in the program is for a letter @ (the Greek letter 'phi’). This

character can replace any character in set 0 or 1. If you wish to have this

Greek letter available instead of the "pound” sign, you can assign it

character number 28 in character set number 1. Then when you press the

“pound” key, a @ will appear on the screen.

Try replacing some other characters. Notice that there is an immediate
effect on the display screen.

0010 // save "Save Character”
0020 USE font
0030 DIM raster$ OF 8
0040 FOR I:=1 TO 8DO
0050 READ byte
0060 __—sraster$(i:i): =—CHRS(byte)
0070 ENDFOR i
0080 PAGE

0090 INPUT ”Character set : ’: choice+
0100 INPUT "Character no. : ”: no#
0110 putcharacter(choice#,character+,rasterS)
0120

0130 DATA %00000000
0140 DATA %00000000
0150 DATA %00111110
0160 DATA %01101110
0170 DATA %01141110
0180 DATA %01110110
0190 DATA %01111100
0200 DATA %00000000

(NB: Remember to execute use font and linkfont before running this pro-
gram.)

Replacing an entire character set

If a double character set is available on diskette, it can be fetched into
working memory by using the orders:

discard (to erase earlier linkfont)
use font

loadfont(<filename$>)

CHAPTER 5 219 COMAL PACKAGES

where <filename$> is the name of the diskette- or tape file. Thereafter

the new character set and screen image can be used.

The package font contains the procedures:

linkfont

loadfont(<filename$>)

savefont(<filename$>)

keepfont
getcharacter(<character set>,<character>,<raster$>)

putcharacter(<character set>,<character>,<raster$>)

Font Package Procedures in Depth

linkfont

is a procedure which is used to define a new double character set number

0 and 1. The procedure should only be used as a direct command, for a

program cannot continue after a linkfont statement.

* Room is reserved in working memory for the new character set and

for the screen image (4000 bytes for the character set and 1000 bytes

for the screen image).

* The extra screen becomes the current screen and is cleared.

* Because the variable table in the working memory is overwritten by

the new character set, all COMAL and package names will be un-

declared.

* If linkfont has not been called earlier, either directly or indirectly

through loadfont, then the standard character set (2-3) will be copied

over as the new character set (0-1).

* — If linkfont has been called previously, nothing happens. itis thus not

possible to overwrite an existing user-defined character set with a

new linkfont-command. The user-defined character set must be

removed first by using the order DISCARD or NEW. Individual

characters on the other hand can be replaced using the order put-

character.

* The double character set is treated as a part of your COMAL program.

When the program is stored using the SAVE command, the user

character set is saved along with it as a single file. When the program

is loaded again later using the LOAD order, the character set is also

loaded and ready to go (even before the program is run!).

loadfont(<filenameS>)

is a procedure which reads in a character set with the name <filename$>

from diskette or cassette tape. First loadfont executes an automatic link-

CHAPTER 5 220 COMAL PACKAGES

font, reserving room in working memory for the fetched character set and
the extra screen image.

The procedure loadfont replaces any existing user character set with
the one which has been read in. The new character set and screen image
can then be used as the current character set and screen.

savefont(<filename$>)

is a procedure which copies the user-defined double character set from

the working memory and saves it on diskette or tape under the name
<filename$>.

keepfont

is a procedure which is used to freeze” a user-defined character set, so

that it cannot be deleted using DISCARD or NEW. It is necessary to turn

off the computer to return to the standard character set.

* loadfont still works. A newly read-in character set will also be
“frozen”.

* After keepfont, characters will NOT be saved together with a COMAL

program by the command SAVE.

getcharacter(<character set>,<character>,<raster$>)

is a procedure which fetches a raster image of the character with the

screen code <character> from <character’set>. The image is fetched in

the form of a string variable <raster$> which is 8 characters long.

Permitted values:

<character sets>: 0, 1,2 or 3

<characters> : 0, 1,..., 255

Examples:

getcharacter(3,1,raster$) The character a is fetched from character set 3.
DIM aS OF 8

USE font

getcharacter(2,4,a$)
PRINT a$ The code character D’s raster image is

fetched and displayed.

Printout: XLFFFLX

putcharacter(<character set>,<character>,<raster$>)

is a procedure which assigns the character with the screen code <cha-

CHAPTER 5 221 COMAL PACKAGES

racter> in <character set> with the raster pattern in the string

<raster$>.

Allowed values:

<character'set>: 0, 1

<character> : 0, 1,..., 255

Examples:

putcharacter(1,5,""0""0" <FFF<"0"”)
In the extra character set 1 the character ois assigned screen character

number 5.

CHAPTER 5 222 COMAL PACKAGES

Chapter 6

COMAL Files
What is a file?

As you begin to use your computer to do more and more jobs for you, it

will be very convenient to be able to create files for storing information.

You may wish to save business transactions, financial records, address

lists, the results of calculations, measurements or other data for later use.

Of course it is possible to purchase commercially produced "database”

software to help you do this. Nevertheless many computer owners elect

to write their own programs, so that they can tailor them precisely to their

particular needs.
A file is a collection of data, organized for storage and retrieval. The

storage medium can be a Datassette tape or a diskette. Because serious

file handling usually requires the use of a disk drive, this chapter will

concentrate mostly on file storage with a disk drive.

There are several ways in which files can be organized. Sometimes itis

convenient to save a set of information one item after the other in a

sequential file. Sequential files are easy to use and do not require a great

deal of prior planning with respect to the number of storage units each

item will require. On the other hand when sequential files are used it is

necessary to read the entire file into the computer's memory. And you

must re-save the entire file again each time you have finished working

with it. Storing data as sequential files is useful as long as the file does not

get too large.
There is a way to get around the problem of having to handle the entire

file all at once. Random-access files can be created, so you only need to

read in a small portion of the file when you want to change it or refer to it.

CHAPTER 6 224 COMAL FILES

In this case you must plan ahead carefully, allotting an appropriate

amount of space for each "set” of data (i.e. each record). If we know how

much room each record takes up, it is possible to fetch or save a single

record at a time. Thus the use of random-access files can speed up

access to some types of information on a diskette (they cannot be used

with a Datassette tape unit). Random-access files are appropriate to use

for handling large collections of systematic data.

In this chapter we intend to cover several important uses for COMAL
files:

* saving and loading programs and procedures

an address list filing program using sequential files

a random-access inventory file program

moving files between diskettes

*

*

*

The demonstration programs described in this chapter are found on the

demo diskette (or tape) distributed with the COMAL cartridge. In addi-

tion, complete program listings are available in Appendix H.

Saving Programs and Procedures
As you proceed to write more programs, you will find that they become
larger. But you will also find that many of the operations to be carried out
are the same: saving data, fetching data, printing tables, printing a title
Screen, entering a user response from the keyboard, etc. It will become
very natural for you to do these jobs and others which may be required
again by using COMAL procedures. Later on the same procedures can be
used with little or no changes.

There are a number of COMAL disk drive operations which make the
building of new programs from available procedures particularly easy
and convenient to do. An overview of these operations is shown in the
table which follows.

COMPLETE PROGRAMS PROGRAM SEGMENTS

SAVE "<file name>" LIST<segment>"<file name>"

STORAGE: LIST "<file name>

SAVE "testfile” LIST 1000-1095 "printout"

LIST "testfile” LIST printout "printout.1”

LOAD "<file name>” MERGE<line>"<file name>”
ENTER "<file name>" ENTER "<file name>"

RETRIEVAL:

LOAD "testfile’ MERGE "printout”

ENTER "testfile” MERGE 1100 "printout"

MERGE 1100,5 “printout”
ENTER "printout”

CHAPTER 6 225 COMAL FILES

It should also be mentioned here that the DISPLAY command can be

used to save entire programs, individual procedures or sequences of line

numbers to diskette (or tape). The instruction DISPLAY 10-100 ”’sample”

saves program lines 10-100 with no line numbers as an ordinary sequen-

tial file. The file can (only) be retrieved using an INPUT FILE instruction

or the GET$ instruction. Other formats, analogous to the formats of the

LIST command, are also permitted. The DISPLAY command can be used

to create a sequential file from a COMAL program. The file might then be

loaded into a text editor (e.g. EASYSCRIPT).

Let's quickly review the storage and retrieval of COMPLETE PROGRAMS

on disk. Consider the lefthand column of the table.

The commands SAVE and LOAD are already familiar to you. You can

use SAVE to transfer a copy of your COMAL program file currently in

memory to diskette. The syntax is SAVE ”<file name>”, where the item

<tile name> is a program name (up to 16 characters) of your choice.

Beginning a file name with @ has a special meaning: The file will be de-

leted if it exists, and the new file will be saved in its place under the same

file name.

The instruction LOAD is the reverse operation of SAVE. The LOAD

instruction has the format LOAD ”<file name>” and causes the program

file <tile name> to be copied from the diskette to the COMAL program

storage memory of your Commodore 64. When you LOAD a program file,

the previous contents of the COMAL program area will be erased. Note

that only a program file (denoted by prg in the directory) can be LOADed.

A complete program can also be LISTed to a diskette where it will be

stored as a sequential file. It must then be ENTERed or MERGEd to be

retrieved later.
The commands RUN and CHAIN can also be used to bring program

files into memory from the disk drive. See the more detailed description

of these instructions in Chapter 4. In addition a closed procedure, saved

using SAVE, can be fetched as an external procedure during program

execution (see the descriptions of EXTERNAL and PROC in Chapter 4).

Now let’s take a look at the column titled PROGRAM SEGMENTS. This

information can be a real time-saver, so study it carefully!

Suppose that you have developed an ingenious procedure called

quick’save for quickly storing a list of items and prices on diskette. The

procedure is so general, that it could be useful in many other programs. If

it is more than a few lines in length, it will not be convenient to type it in

each time itis to be used. It should be LISTed to diskette by using the in-

struction LIST quick’save ”pre.quick’save”. If you do this and type dir,

you will observe that the file pre.quick’save is stored as a sequential (nota

program) file on the diskette. Note that it cannot be LOADed like a pro-

gram file; to get it into program memory you must use either MERGE or

ENTER. These instructions will be described shortly.

CHAPTER 6 226 COMAL FILES

You are also permitted to save your procedure by referencing the line

numbers for the procedure. For example you could store quick’save by

writing: list 1000-1090 ’pre.quick’save”, if the line numbers are correct.

Typing dir will verify that the procedure has been saved as a sequential

file. The procedure can now be brought into another program using the

MERGE or ENTER instructions.

Now comes the good part. When you want to use the procedure again,
you have the following alternatives:

* Write merge "prc.quick’save”. Your procedure will be copied from

the disk drive and appended to the program in memory. It will appear

with line numbers starting 10 beyond the last line number in the pro-

gram, even though the original file was LISTed with line numbering
1000-1090

You may instead choose to write merge 1100 ’pre.quick’save”. In this

case the procedure will appear in your current program from lines

1100 and beyond with a line number interval of 10 (the default value).

If you want the procedure to start at line 1100 with an interval of 5

between lines, just write merge 1100,5 ”prc.quick’save”.

WARNING: Be careful when merging a procedure in the middle of a pro-

gram. You must be sure that there is room enough for the procedure with

the line number interval selected. Otherwise the procedure will get

mixed up with other instructions or erase them if line numbers coincide.

In case you have LISTed an entire program to diskette, you may want

to use the instruction ENTER. If you write enter ’printout” for

example, the sequential file printout will be read into the active pro-

gram area. (NOTE: Any other program in memory will be deleted.)

If you have worked with other programming languages and operating

systems, you will appreciate how convenient these facilities can be while
developing programs.

Sequential Files - An Address List
In Chapter 3, program 19, we saw a simple example illustrating how to
Save numbers on a sequential file. You may recall that a sequential file
must be opened before data is saved or fetched. After use the file must be
closed.

The formal structures for these operations are as follows:

CHAPTER 6 227 COMAL FILES

Open a file, save data, close the file.

OPEN FILE <fileno>,<filename$>,WRITE

PRINT FILE <fileno>: <data element>

CLOSE FILE <fileno>

Open a file, fetch data, close the file.

OPEN FILE <fileno>,<filename$>,READ

INPUT FILE <fileno>: <variable name>

CLOSE FILE <fileno>

We will now turn our attention to a practical problem. Suppose you want

to create a program to save names, addresses and telephone numbers.

The following example illustrates the kind of data we want to save and va-

riable names which we will use:

example string variable

John Smith name$()

1200 Wilson Drive streetS()

Anytown, PA 19380 townS()

(242) 123-4567 phoneS()

Notice that all four string variables are to be defined as arrays. We intend

to design the program to handle up to 100 names with addresses and

phone numbers. We will refer to the collection of information illustrated

above a data record and each of the individual variables which constitute

the record as a data element. In this example each data record will consist

of four elements.

Note that all four string variables must be declared as one dimensional

arrays. We plan to permit our program to handle up to 100 records.

Consider some of the tasks which this program will have to handle:

* LOAD all the records in the data file into memory

* CREATE a data record with name, address and phone number

* LIST all records in the file

SEARCH through the file to find certain records

SORT the file alphabetically by name

CHANGE a record

DELETE a record

* SAVE the file on diskette

*
*

*
*

CHAPTER 6 228 COMAL FILES

Of course there are other operations one might want to perform ona file,
but we will limit this example to the above operations in the interest of
simplicity. When you have understood the procedures described in this
section, you will be able to extend or revise this program so that it best
suits your needs. Those of you who received this book with the COMAL
cartridge will find this program on the demo diskette or tape under the file
name Addr List Demo. The program listing is also given in Appendix H.
We intend to take a careful look at this program. Please note that it has

not been optimized”. It has been written as simply and clearly as
possible to make it easy to understand. As you learn more and more
about sequential files, feel free to make modifications and improvements!

The program starts out with a line indicating the name of the file:

0010 // SAVE ”@0:Addr List Demo

Notice that we have used a remark statement (//) and included SAVE ”
ahead of the file name. This little trick makes it easier for you to save
modifications of your program as you develop it and revise it. Just move
the cursor to this line, remove the first part of the line by typing blanks (or
use <INST/DEL>). When you press <RETURN>, the new version will
be saved. The @ symbol included as the first character of the file name
causes the existing program file to be deleted before the new file is saved.

The drive designation 0: should always be included to avoid problems
after many save operations to the same diskette.

WARNING: Be careful when using this method; you could lose a pro-

gram file. Be sure you have a backup copy of your program and update it

from time totime. Do not make revisions using the demonstration disket-
te or tape. Load the program, then save later revisions to another storage

disk or tape.

The next lines in the program listing take care of DIMensioning of arrays
and string variables used in the program:

0020 DIM reply$ OF 1, name$(100) OF 40
0030 DIM street$(100) OF 40, city$(100) OF 40
0040 DIM phoneS$(100) OF 20, flag$ OF 40
0050 DIM searchkey$ OF 40, string$ OF 150
0060 number:=0 // number of records

Notice here that we have made provision for the storage of 100 data re-
cords each consisting of four elements: a name, street, town and phone
number. Each of these elements may be up to 40 characters long. This
choice means that the sequential file can take up to 4x40x100 or about 16
kilobytes in memory. Since a total of about 30 KB is available, and the

CHAPTER 6 229 COMAL FILES

program only takes up about 4 KB, more room is available. You can

change these numbers, if you wish.

Next comes an introductory screen describing the program:

0070 PAGE
0080 PRINT "This program illustrates the use of”
0090 PRINT "SEQUENTIAL FILES. It can be used to”
0100 PRINT "create a list of names, addresses”
0110 PRINT ”and telephone numbers.”
0120 PRINT "Each record will have the format:”
0130 PRINT
0140 PRINT ” name”
0150 PRINT ” street”
0160 PRINT ” city”
0170 PRINT ” phonenumber”
0180 PRINT
0190 PRINT
0200 PRINT ”Press any key to continue...”

0210
0220 wait’for’keystroke
0230

The statement PAGE clears the screen and the following lines simply

print information on the screeen. Notice the procedure wait’forkeystro-

ke. This is a procedure which you might find convenient to use in your

own programs:

2240 PROC wait’ for’keystroke

2250 PRINT
2260 PRINT ”< >..."5
2270 REPEAT
2280 reply$:=KEY$
2290 UNTIL reply$<>CHRS(0)
2300 PRINT AT 0,2: reply$
2310 ENDPROC wait'for’keystroke

You may or may not want < >... to be printed on the screen whenever the

computer is awaiting an operator response. Change it or delete it as you

wish. The REPEAT...UNTIL loop will be executed continuously as long as

no key is depressed, since the value of the COMAL function KEY$ remain

equal to CHR$(0). When a key is pressed, KEY$ takes on the value of the

character sent from the keyboard, and reply$ will no longer be equal to

CHR$(0). The REPEAT...UNTIL loop will be terminated, and execution

proceeds to the next line. The PRINT AT 0,2: reply$ statement causes the

character which was sent from the keyboard to appear inside the brackets

in the < >... symbol.

Now take a look at the main program loop:

0240 LOOP
0250 show’menu

CHAPTER 6

0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480

230 COMAL FILES

flag$:=""
wait’for’keystroke
CASE reply$ OF
WHEN ”1”

load’file
WHEN ”2”

create’record
WHEN ”3”

list'file
WHEN "4”

search’flle
WHEN ”5”

sort’file
WHEN "6”

change'record
WHEN ”7”

delete’record
WHEN ”8”

save’ flle
OTHERWISE
PRINT “Illegal reply..”
wait’for’keystroke

ENDCASE
0490 ENDLOOP

This is really the heart of the program. The first subprocedure encoun-
tered displays the program menu:

0500
0510 PROC show’menu
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690

PAGE

PRINT
PRINT
PRINT” <1>LOAD. the file”
PRINT” <2> CREATE a record”
PRINT” <3> LIST the fille”
PRINT” <4> SEARCH the file”
PRINT” <5> SORT alphabetically”
PRINT” <6> CHANGE a record”
PRINT” <7> DELETE a record”
PRINT” <8> SAVE revised file”
PRINT
PRINT

PRINT ”Records: ”;number
iF number=0 THEN flag$:—"Please load or create file...”
PRINT
PRINT flags

0700 ENDPROC show’menu

The procedure clears the screen, indicates the user choices available,

and shows the number of records in the file. The string variable flag$,

which is used in the program to inform the user about various conditions,

CHAPTER 6 231 COMAL FILES

will be set equal to Please load or create file... if there are no records in

memory. This message will be printed below the menu to guide the user.

Considering again the main program loop, we see that the variable flag$

is again set equal (in line 260) to the empty string, so it can be used later

for other purposes. In the next line the procedure wait'for’keystroke is

executed. When a valid user choice has been entered (a digit from 1 to 8),

the program will branch as appropriate . If the choice is not a valid one,

the program simply prints out the message Illegal reply.. and waits for you

to press any key.

We will now consider each of the eight available file handling functions.

The first user choice, activated by selecting 1 from the menu, is LOAD the

file:

0710
0720 PROC load’tile
0730 OPEN FILE 1,”Addresses”,READ
0740 INPUT FILE 1: number
0750 FOR no:=1 TO number DO
0760 INPUT FILE 1: name$(no)
0770 INPUT FILE 1: street$(no)
0780 INPUT FILE 1: city$(no)
0790 INPUT FILE 1: phone$(no)

0800 ENDFOR no
0810 CLOSE FILE 1
0820 ENDPROC load’file

0830

Of course this procedure can only be used after a file has been created

and is available on the diskette in the disk drive. Usually this will be first

choice a user makes after starting the program. Itis important to under-

stand the procedure load’file, for it shows you how to read asequeniial file

from a diskette into program memory. The first thing done in this proce-

dure is to OPEN FILE number 1 as a READ file called Addresses. Should

you want to call the file some other name, you can simply alter this file

name to one of your choice, here and elsewhere in the program. The

easiest way to do this is by means of the CHANGE instruction (change

"Addresses”,”your choice”). ,
We have decided to let the first element in the file be called number cor-

responding to the number of records in the file. This variable was the first

one to be saved, and it is the first one to be read in now. Now that the

number of records in the file is known, the file itself can be readin using a

simple FOR...ENDFOR loop. (In Chapter 3 we used the logical function

EOF(<fileno>) to announce End Of File).

Notice the use of the INPUT FILE statement to define the elements in

the arrays name$(), streetS(), town$() and phoneS(). Finally, notice that

tile 1 must be CLOSEd after the data input is completed.

The following procedure, activated by user choice 2, can be used to

create new records for the file:

CHAPTER 6 232 COMAL FILES

0840 PROC create’record
0850 PAGE

0860 PRINT "::::: CREATE A NEW RECORD :::::”
0870 PRINT
0880 PRINT
0890 IF number=100 THEN flag$:=”"No more room for datal"
0900 _—sIF flag$="" THEN
0910 number:+1
0920 INPUT "Name _ ”: name$(number)
0930 INPUT "Street ”: street$(number)
0940 INPUT "City ”: city$(number)
0950 INPUT "Phone ”: phone$(number)
0960 ENDIF

0970 ENDPROC create’record
0980

The procedure begins by clearing the screen and indicating to the user

what is happening. If there is no more room for data (because number =

100), then the message variable flag$ is set to No more room for datal!, and

the next lines will not be executed (the condition flag$=”” will not be ful-

filled). If there are fewer than 100 records, then the number of records

counter number will be updated (number:+1 in line 910), and the user can

input the four data elements. Execution returns to the main program
loop.

User choice 3 allows entire contents of the file to be listed:

0990 PROC list’file
1000 PAGE

1010 PRINT "::::: LISTING THE FILE :::::”
1020 PRINT

1030 IF number=0 THEN
1040 tlag$:="No files In memory!”
1050 PRINT
1060 ELSE
1070 FOR no:=1 TO number DO print’record(no)
1080 ENDIF
1090 ENDPROC iist’file
1100

The screen is cleared and a user message is displayed. If there is no file in
memory (number—0), then a message is sent back to the menu display by
means of flag$. If there is a file in memory, then it is listed by the
FOR...ENDFOR loop. Notice that a wait occurs as each record is dis-
played. Simply holding down any key will make the records scroll up the
screen.

The search option is activated by user choice 4 from the main menu.
When a file is available in memory, it can be searched find a name, street,
town or other information:

CHAPTER 6 233 COMAL FILES

1110 PROC search’tile
1120 PAGE
1130 PRINT "::::: FILE SEARCH :::::”
1140 PRINT
1150 PRINT
1160 = ftlag$:="1 am searching...”
1170 INPUT ”’Search key: ”: searchkey$
1180 FOR no:=1 TO number DO
1190 string$:—name$+street$(no)+city$(no)+ phoneS(no)
1200 IF searchkey$ IN string$ THEN print’record(no)

1210 ENDFOR no
1220 = tlag$:=””
1230 ENDPROC search’file

1240

After clearing the screen and informing the user, this procedure allows a

search key to be entered. This can be any string of characters at all, how-

ever capitalization must be the same as in the record element which is to

be searched for. The COMAL statement IF <condition> THEN <proce-

dure> is most useful here. Each record is checked by means of the

FOR...ENDFOR loop. If any record contains the search key, then the

entire record will be printed by the subprocedure print’record(nr):

1250 PROC print’record(no)
1260 PRINT
1270 PRINT AT 0,10: ”--------------- (”,n0,”)”
1280 PRINT AT 0,10: name$(no)
1290 PRINT AT 0,10: street$(no)
1300 PRINT AT 0,10: city$(no)
1310 PRINT AT 0,10: phone§$(no)
1320 PRINT
1330 IF flag$="1 am searching...” THEN wait’for’keystroke

1340 ENDPROC print’record

1350

Now we will examine one of the more challenging procedures in this

program. The entire file can be sorted alphabetically by name. This op-

tion is activated by user choice 5 from the menu. Note that a prerequisite

for proper use of this function is of course that names must be entered

correctly, last name first, as the first element of each record. Of course a

sort could be carried out according to any other element you may choose

by simply modifying the procedure which follows as appropriate.

1360 PROC sort’file
1370 PAGE
1380 PRINT "::::: SORT BY NAME ALPHABETICALLY :::::”

1390 PRINT
1400 PRINT
1410
1420 PROC swap(REF a$,REF b$) CLOSED

1430 c$:=a$; a$:—b$; b$:=cS$

CHAPTER 6 234 COMAL FILES

1440 ENDPROC swap
1450
1460 REPEAT
1470 no’swap:= TRUE
1480 FOR no:=1 TO number-1 DO
1490 PRINT AT 10,1: "Sorting... ",no
1500 IF nameS(no+1)<name$(no) THEN
1510 swap(nameS$(no),name$(no+1))
1520 swap(street$(no),street$(no+1))
1530 swap(city$(no),city$(no+1))
1540 swap(phoneS(no),phone$(no+1))
1550 no’swap:=FALSE
1560 ENDIF
1570 ENDFOR no
1580 UNTIL no’swap
1590 ENDPROC sort'file
1600

As in Chapter 3 Program 19, the sorting algorithm used here is the simple

bubble sort. Compared to what we did in Chapter 3, we have placed the

swap procedure inside the sort’file procedure. This is done to show an

example of a local procedure inside another procedure.

The FOR...ENDFOR loop is carried out for each pair of names in the list.
If the names are not in alphabetical order the names are swapped. The
variable no’swap will now be equal to FALSE, if aswap has occurred. The
REPEAT...UNTIL no’swap=TRUE loop is repeated unti! no two names

are swapped on apass through the list. The bubble sort is not the most ef-
ficient sorting technique, but it is perhaps the easiest to understand. On
the demo diskette you will find a quick’sort procedure which is much

more efficient but harder to understand.

It will sometimes be necessary to change the contents of a record in the
file. This choice is activated by selecting 6 from the menu. The procedure
change’record is shown below:

16410 PROC change’record
1620 PAGE
1630 PRINT "::::: CHANGE A RECORD :::::”
1640 PRINT
1650 PRINT
1660 INPUT "Which record number? ”: no
1670 IF no<=number THEN
1680 print’record(no)
1690 INPUT AT 14,1: "Right record ? (y/n)? ”: replyS
1700 PRINT
1710 PRINT
1720 IF replyS IN ”yY” THEN
1730 INPUT *"Name_: ”: name$(no)
1740 INPUT "Street : ”: street$(no)
1750 INPUT "City :”: clty$(no)
1760 INPUT ”Phone : ”: phoneS$(no)
1770 ENDIF

CHAPTER 6 235 COMAL FILES

1780 ELSE
1790 flag$:="There are only ’+STR$(number)+” records”

1800 ENDIF
1810 ENDPROC change’record
1820

The procedure should be easy to follow. Itinvolves simply requesting the

user to indicate which item is to be changed then allowing the change to

be entered. Notice again the use of the variable flag$ to transmit an error

message to the menu.

Selecting user option 7 from the menu allows a record to be deleted.

A procedure which can accomplish this function is as follows:

1830 PROC delete’record
1840 PAGE
1850 PRINT "::::: DELETE A RECORD :::::”

1860 PRINT
1870 PRINT
1880 INPUT "Which record number? ”: record
1890 IF record>number THEN
1900 flag$:="Use a smaller record number!”

1910 ELSE
1920 print'record(record)
1930 PRINT
1940 INPUT “Is this the right record (y/n)? ”: reply$
1950 PRINT
1960 IF reply$ IN ’yY” THEN
1970 FOR no:=record TO number-1 DO
1980 name$(no):=name$(no+1)
1990 street$(no):=street$(no+1)
2000 city$(no):=city$(no+1)
2010 phone$(no):= phoneS(no+1)
2020 ENDFOR no
2030 number:-1
2040 ENDIF
2050 ENDIF
2060 ENDPROC delete’record

2070

After a file has been entered, sorted or modified, it will usually be

desirable to save it for later use. Choose user option 8 from the menu to

activate the following procedure:

2080 PROC save’'file
2090 PAGE
2100 PRINT “::::: SAVING FILE TO DISK :::::”
2110 OPEN FILE 1,”@0:Addresses”, WRITE
2120 PRINT FILE 1: STRS(number)

2130 PRINT
2140 PRINT
2150 FOR no:=1 TO number DO
2160 PRINT FILE 1: nameS(no)

CHAPTER 6 236 COMAL FILES

2170 PRINT FILE 1: street$(no)
2180 PRINT FILE 1: city$(no)
2190 PRINT FILE 1: phoneS(no)
2200 ENDFOR no
2210 CLOSE FILE 1
2220 ENDPROC save’file
2230

To save the file, the file must first be opened, indicating the number of the
file, 1 in this case, the file name, in this case simply Addresses, and the fact
that the file is opened as a WRITE file. Of course you can alter this pro-
cedure to make it possible to make the file name user selectable. Just
insert an input statement like INPUT "File name? ”:filename$ early in this
Procedure. You will also have to change the procedure load’file to allow
user choices there too.

The procedure save’file continues by first saving the number of records
in the file (PRINT FILE 1: STRS(number)). This information is the first
thing to be read in when the file is loaded again. The PRINT FILE state-
ments are used to transmit the contents of each record to the sequential
file. Finally the file must be CLOSEd.

Random Access Files - an Inventory Program
To illustrate the use of random access files (also called direct files), we
will describe a simple inventory program. The program Random File
Demo can be found on the demo diskette. You may wish to try LOADing,
RUNning and LISTing the program before continuing.

The first few lines of the program identify it (and facilitate saving) and
DiMension the string variables to be used:

0010 // save "@0:Random File Demo”
0020 DIM code$ OF 30, part$ OF 30
0030 DIM quantity$ OF 30, prices OF 30
0040 maxquantity:=25

Next comes a brief description of the program, displayed as soon as the
program is RUN:

0050 PAGE
0060 PRINT *::: RANDOM FILE DEMONSTRATION ;;;”
0070 PRINT
0080 PRINT
0090 PRINT "This program illustrates as simply as”
0100 PRINT "possible how you can store and retrieve”
0110 PRINT “information from a ‘direct’ or”
0120 PRINT ”’random-access’ file.”
0130 PRINT
0140 PRINT ”This example serves to save and retrieve”
0150 PRINT “information about a parts inventory”

CHAPTER 6 237 COMAL FILES

0160 PRINT
0170 PRINT ”’The information is arranged:”
0180 PRINT
0190 PRINT AT 05: *code number”
0200 PRINT AT 0,5: "part name”
0210 PRINT AT 0,5: ”quantity”
0220 PRINT AT 0,5: ’price”
0230 PRINT
0240 PRINT ”Press any key < >...”
0250 wait’for’keystroke
0260

After this introduction the program will proceed to the main program loop

_ aS soon as the user presses a key. We have used the same wait’for’key-

) stroke procedure as in the previous program.

0270 REPEAT
0280 show'menu
0290 «IF reply$="1” THEN create’record
0300 = IF reply$=”2” THEN fetch’record
0310 UNTIL reply$="3”
0320

The main loop displays a menu then diverts execution to create’record or

to fetch’record in response to a valid user response to the menu:

0330 PROC show’menu
0340 PAGE
0350 PRINT "::::: RANDOM FILE DEMO - MENU :::::”
0360 PRINT
0370 PRINT
0380 PRINT AT 0,5: "<1> CREATE a record”
0390 PRINT AT 0,5: "<2> FETCH a record”
0400 PRINT AT 0,5: "<3> terminate”
0410 PRINT
0420 PRINT
0430 = wait’for’keystroke
0440 ENDPROC show’menu
0450

If response 1 is chosen, the program allows the user to create a record for

the inventory file:

0460 PROC create’record
0470 PAGE
0480 §=PRINT "::::: CREATE A RECORD :::::”

0490 PRINT
0500 PRINT
0510 INPUT ’Which record number: ”: no

0520 PRINT
0530 PRINT

CHAPTER 6 238 COMAL FILES

0540 IF no>0 AND no<=maxquantity THEN
0550 INPUT “code number: ”: code$
0560 INPUT "part name : ”: part$
0570 INPUT "quantity : ”: quantitys
0580 INPUT "price >”: prices
0590 OPEN FILE 1,”@0:inventory”,RANDOM 128
0600 WRITE FILE 1,no: code$,part$,quantity$,price$
0610 CLOSE
0620 ENDIF

0630 ENDPROC create’record
0640

The first part of this procedure is just housekeeping. The user must enter

the reference number (1 to 25) of the record to be created. If itis valid, the

IF...ENDIF loop is executed. Notice how the random file is OPENed. The

first characters in quotes: 0: indicate that the primary disk drive, drive0, is

to be used. Ifasecond drive were available and properly connected to the

Commodore 64, it could be referenced as drive 2. (This has to do with

Commodore compatibility with the 4000 and 8000 series computers

which can have two built-in drives.) The WRITE FILE statement in line

600 transfers the four data elements in the record to the file inventory.

A few general remarks on randomaccess files are appropriate here. Data

is stored in random files in binary form:

* The instruction WRITE FILE causes the data in the record to be

saved in binary form on the diskette, where numbers and text take up

a certain number of bytes:

integers take up 2 bytes

realnumbers take up 5 bytes

strings use up 2 bytes + the string length

The 2 extra bytes for strings are added by the COMAL system to keep

track of the string length.

The Commodore disk drives 1541 and 2031 only allow one RANDOM

file to be open at a time.

In the catalogue of diskette contents, a random accoes file is classi

fied as a relative file and denoted by rel.

When we wish to retrieve information which has been stored in the direct

file inventory the following procedure, activated by user choice 2 from the

menu, can be used:

CHAPTER 6 239 COMAL FILES

0650 PROC fetch’record
0660 PAGE
0670 PRINT "::::: FETCH A RECORD FROM FILE :::::”
0680 PRINT
0690 PRINT
0700 INPUT ”Which record number: ”: no
0710 PRINT
0720 IF no>0 AND no<maxquantity THEN
0730 OPEN FILE 1,”@0:inventory”,RANDOM 128
0740 READ FILE 1,no: code$,partS, quantity$, prices
0750 CLOSE
0760 PRINT
0770 PRINT
0780 PRINT "Inventory item”;no;"is:”
0790 PRINT
0800 PRINT ”code number. ”;code$
0810 PRINT "part name : ”;part$
0820 PRINT "quantity : ’;quantity$
0830 PRINT "price : ";prices
0840 wait'for’keystroke
0850 ENDIF
0860 ENDPROC fetch’ record

This procedure requests the user to enter a record number. Then, if a valid

record number has been selected, the file is OPENed, and the four data

elements of the record are read using the READ FILE statement and print-

ed out.

Suggested improvements:

This simple program could be improved by adding a counter to keep

track of the total number of records in the file. It should be READ as

soon as the program is started and updated each time a new record is

added or an old one deleted.

* Before the program is used for the first time the file inventory should

be created in its maximum size. To do this write:

CREATE "inventory”,25,128

This way you can be sure that there is enough room on the diskette

for the complete file. Furthermore, access to the diskette will be

substantially faster, because the system need not expand the file as

it is used.

* — All the records can be zeroed with known data. This can eliminate

the possibility of reading undefined records. It also allows the

issuing of a warning if useful information is about to be overwritten.

One possibility is as follows:

CHAPTER 6 240 COMAL FILES

OPEN FILE 1: ”inventory”,RANDOM 128

FOR nr:=1 TO 25 DO WRITE FILE 1:spce$(126)

CLOSE

(The inventory is hereby zeroed using blanks. Of course you must be

sure there is nothing of value in the file before doing this!)

Moving a Sequential File

The last program in this chapter is intended to illustrate how a sequential

file can be transferred from one diskette to another. Files written in

machine code are binary files, and moving them can be a problem. The

program name is Move Sequential, and it is available on your demo
diskette or tape.

The key to this program is the statement GET$(<fileno>,<bytes>).

By using this statement everything on a diskette, including separators not

read in by the INPUT FILE statement, can be read.

The program opens a user selectable sequential file, reads the entire

contents into the variable number$ (however max. 5000 characters),

requests the user to switch diskettes and then writes the contents of

numbers to a file with the same name on the new diskette:

0010 PAGE
0020 DIM name$ OF 40
0030 INPUT “Enter file name: ”:name$
0040 OPEN FILE 2,name$,READ
0050 DIM number$ OF 5000
0060 WHILE NOT EOF(2) DO
0070 number$:+GET$(2,1000)
0080 ENDWHILE
0090 CLOSE FILE 2
0100 PRINT number$
0110 PRINT "Switch diskettes and press any key...”
0120 dummy$=KEY$
0130 WHILE KEY$=CHRS(0) DO NULL
0140 OPEN FILE 3,”@0:”+name$,WRITE
0150 PRINT FILE 3: number$
0160 CLOSE FILE 3

File Types
You have noticed that when you view the contents of the diskette using

the dir instruction that different types of files are stored. At the right next

to the file name you will see a three-letter abbreviation describing the file

type:

CHAPTER 6 241 COMAL FILES

prg program file

seq sequential file

rel relative file

usr user sequential file

This classification limits the way in which these files can be used. For

example if you try to LOAD a relative file as a program, COMAL will ge-

nerate an error message. Furthermore it enables you to select files from

the directory. Try

dir "*prg”

You will probably find it useful as you use files more and more to indicate

what the various files within a certain category are used for. You will be

working with fonts, shape tables for sprite images, listed sequential files

containing programs, procedures or functions, external procedures,

display files, textfiles or data files.

To distinguish these files from one another, and to make it possible to

show all files of a certain type using the dir instruction, it is useful to

characterize each file with a file type code. You might use a three letter

code ahead of or at the end of your file. For example you could indicate

that a sequential file consists of a LISTed program as follows:

your program.|st _—_‘Ist-your program

A text file from an editor program might be distinguished by using .txt at

the end of the file name or placing txt. at the beginning or .txt at the end:

letter.txt txt.letter

Prefixes or suffixes indicating file types could be as follows:

st Ist. for LISTed files

.dsp dsp. for DISPLAYed files

-obj obj. for object code files

-SIc src. for source code files

ext ext. for EXTERNAL procedures

-bas bas. for Basic programs

-txt txt. for text files

-gr0=s gr0. ~—s for graphics screen files

-gr gri.

‘spO spd. __ for sprite files

spi sp1.

-pre pre. for procedure files

-fnt fnt. for fonts

CHAPTER 6 242 COMAL FILES

The actual choice is of course up to you, but it can ease communication

among COMAL users if the same attribute notation is used. In this con-

nection we recommend using the prefix, because this will allow you to

catalogue all files of the same type using the DIR instruction.

For example, be sure you have a few text files denoted by the prefix txt.,

then try the following instruction:

dir "txt.*”

Only files beginning with txt. will be shown.

lf the suffix convention is used, then an instruction such as:

dir ”2272?.sp?”

will only list sprite files with five character file names.

Files and the Screen, Keyboard and Disk Drive
One of the powerful features of the COMAL language file handling

system is the ability to communicate with the various input/output de-

vices of your computer. Up to this point we have illustrated communica-

tion with the disk drive, but communication with screen, and keyboard is

also possible. ‘
In order to direct file operations to a particular device, you should use

the unit specifier unit. The unit specifier should be followed by one of the

following string expressions:

kb: keyboard

ds: display screen

Ip: line printer

sp: serial port

cs: cassette recorder

u<device>: device (such as Printer-Plotter)

<drive>: disk drive number (default 0)

Note that <device> must be a number in the range 0-31, and <drive> is

a number in the range 0-15. For example:

unit "ds:”

will direct COMAL to treat the display as the output device.

It is also possible to reveal the current unit assignment using the special

string variable unit$. For example:

print units

if unitS<>"Ip:” then

unit ”cs:”

CHAPTER 6 243 COMAL FILES

The first instruction simply prints the current unit. The second sequence

will set the default unit to the tape unit, unless the current unit is the line

printer.
A special feature of the file handling system is the symbol @ which may

be the first character of a file name. If itis, then the file will be overwritten

if it already exists on the diskette. Note that the drive designation 0:

should also be included to avoid problems with the notorious "save with

replace” bug in the C-64 file system (eg. save ”@0:testfile”).

Using Your Datassette Unit
Although serious file handling really requires the use of a disk drive,

. Datassette users will be pleased to find that many file operations can be

done with a tape unit. Operations with sequential files will, however, be

considerably slower than with a disk drive. Random access files cannot

be used with a tape unit.

Using the 1520 Printer-Plotter

One of the many useful peripheral devices which you can attach to your

Commodore 64 is the 1520 Printer-Plotter. It can be used both for listing

programs and results and for drawing graphics images of high quality in

up to four colors.

It is quite easy to activate your Printer-Plotter from COMAL. If the

Printer-Plotter is properly attached to your serial bus (or to the extra serial

bus connection at the rear of the disk drive), you can try the following

demonstration. Be sure that the 1520 is turned on. Enter a brief program,

then type:

list "U6:

Your program should be listed on the Printer-Plotter.

Other operations with the Printer-Plotter are handled in a similar

fashion. Just remember to use the device specification "u6:.

You will find a demonstration program Plotter Demo on the demo dis-

kette and listed in Appendix H. Try out this program and study the listing

to see how to use your 1520 with COMAL.

Review

In this chapter several important topics pertaining to the use of COMAL

files have been covered:

* — file operations on programs and procedures

* using sequential files for numbers and strings

* using random files

* file types

CHAPTER 6 244 COMAL FILES

* using files with input/output devices

* using the 1520 Printer-Plotter.

You should be familiar with the following concepts after working through
this chapter:

file

storage medium

sequential file

random-access (direct) file

record

data element

bubble sort

file types

device specifications

The following COMAL instructions have been discussed:

SAVE - LOAD

LIST - ENTER - MERGE

OPEN FILE - CLOSE FILE

PRINT FILE - tNPUT FILE

WRITE FILE - READ FILE

RANDOM

CREATE

GET$

In addition to the examples of the use of files shown in this chapter, you
may find it helpful to study details on the formal syntax of these instruc-
tions in Chapter 4.

The following programs have been discussed in this chapter. They are

also to be found on the demo diskette:

Addr List Demo

Random File Demo

Move Sequential

Plotter Demo

The best way to learn about files is to use them to make them work for you.

You can use the programs in this chapter as a starting point. Change

them and extend them. You will find that mastery of the art of file handling

is one of the most valuable skills that you will tearn while using your

Commodore 64 computer and the COMAL cartridge.

Chapter 7

Peripheral Devices

Introduction

Your Commodore 64 computer is provided with several different means

for attaching it to other devices. Compared with other computers in its

class there is a generous allocation of input/output connectors included

in the base price of the computer:

* — 1EEE serial bus - for connecting the C64 to disk drive, printers or other

devices,

* Datassette tape unit interface,

* Parallel input/output port,

* Cartridge port for connecting games, applications programs or

language cartridges like COMAL,

* Control ports (2) for connecting joystick, paddles, etc.

As you can see from Chapter 5 on COMAL Packages it is quite easy to in-

tegrate the use of joysticks, paddles or a lightpen into your programs.

The use of the IEEE serial bus for communicating with disk drives or

printers has been covered in Chapter 6 on COMAL Files. Those who have

a Datassette unit are also familiar with its use for saving and retrieving

programs and files.

in this chapter we intend to direct our attention to the use of the

RS-232C interface, [EEE cartridges, and particularly to the paraillel port.

CHAPTER 7 246 PERIPHERALS

The RS-232C Interface

RS-232C is an industry standard which defines a particular type of serial
communication. Data is transmitted as a series of pulses one after the
other along a single wire. Figure 7.1 illustrates the transmission pattern
which corresponds to the serial ASClI-code for the single letter C. This
letter has the ASCII decimal code 67, corresponding to the binary number
01000011.

start parity stop
bit bit bit

| iss MSB
1 ’

 +. 7 — T T T
0 T 27 #3T #47 «ST 6T FT BT ST 10T

4

110000 1

Figure 7.1: The letter C is transmitted in serial form according to the RS-232C
standard. Note that only 7 bits are sent, least significant bit first!

The data is sent in asynchronous form. The time period for the trans-
mission of a complete character can be divided into 10 equal time inter-
vals. Two well-defined voltage levels determine whether the signalina
given interval is to be interpreted as high or low. In this discussion we will
refer to logic levels, but keep in mind that in practice these levels will
appear as voltage variations in the RS-232C connector cable.

Every character signal begins with astart bit. Itis logic 0 in the example
shown in Figure 7.1. The start bit is used to synchronize the receiver with
the transmitter. When detected, the start bit starts a clock with period T
which then coordinates the reading of the serial line. The receiver can
take periodic samples to determine whether each bit is a logic 1 or alogic
0. After seven samples the binary code of the character is available in the
receiver’s storage register.

The next bit is the parity bit which indicates to the receiver whether an
even or odd number of 1’s (or 0's) is transmitted in a given character code.
For systems with even parity the parity bit will be high (logic 1) if an even
number of high bits are transmitted and low (0) ifan odd number are sent,
the parity bit included. Thls can be checked by the receiver to ascertain
whether or not transmission errors have occured. Finally, a stop bit is
sent to indicate the end of the character transmission.

The RS-232C standard also specifies a protocol which is designed to
facilitate communication. For example CTS (Clear To Send) and RTS
(Request To Send) signals are defined. Furthermore, the voltage levels
for logic 1 and logic 0 are specified as -12 and +12 volts respectively. The
complete specification can be found in textbooks on electrical engineer-

CHAPTER 7 247 PERIPHERALS

ing. The information which follows should be adequate to allow you to

begin using the RS-232C interface with COMAL.

The electrical connections to an RS-232C port are standardized using

the DB-25 connector:

pin signal code

1 protective ground GND (ora i*)

2 transmitted data SOUT aa 20

3 received data SIN eg 3°

4 equest to send RTS ei7 4°

5 clear to send CTs eig °°

6 data set ready DSR 019 7

7 signal ground GND e210) ae
8 carrier detect DCD > 9e

9-17 ... NOt used ... o23 10°

18 ring indicator Rl o24 i1e

19 ... Not used ... L225 3)

20 data terminal ready DTR

21-25 ... Not used ...

Figure 7.2: The standard pin connections for the RS-232C interface and the pin arrangement

for the DB-25 connector are shown.

All available RS-232C control signals are rarely used in actual communi-

cations setups. It is often adequate to use only the two data channels SIN

and SOUT. An interface of this type is sometimes called a three line inter-

face since it consists only of an input, output and ground.

Your Commodore 64 can handle the three line interface as well as the

complete RS-232C interface with all control signals. However the

Commodore interface deviates from the RS-232C standard with respect

to voltage levels. The Commodore 64 uses 0 volts for logic 1 and +5 volts

for logic 0. The RS-232C signals are available on the Commodore user

port as indicated in Figure 7.3:

Commodore RS-232C signal Signal DB-25 standard

user port description direction connections

A GND - 1

B SIN input 3

Cc SIN input 3

D RTC output 4

E DTR output 20

F Rl input 18

G DCD input 8

K CTS input 5

L DSR input 6

M SOUT output 2

N GND - 7

(NB; B and C should be connected together)

CHAPTER 7 248 PERIPHERALS

12 3 4 56 6 7 8 9 10 11 12

if =

A @ Cc DE FH JK & MAN

Commodore 64 user port pin connections.

Figure 7.3: The Commodore RS-232C connections are available on the user port on the rear
left-hand side of the computer.

It is very important that the voltage levels of the Commodore 64 RS-232C
interface are adapted to the +/- 12 volts present on other equipment. A
Standard adapter which accomplishes this is available from your Com-
modore dealer. Diagrams for such devices can also be found in the hobby
literature, so that you could build such an interface yourself.

WARNING: Incorrect connection of the RS-232C interface to other
equipment using +/- 12 volts can cause permanent damage to your com-
puter.

Using COMAL you can select a number of parameters to accommodate
the requirements of the communications equipment to which your Com-
modore is connected. The following COMAL program illustrates a way to
receive data using the RS-232C interface:

0010 OPEN FILE 1,”"sp:b1200d8s1pe”,READ
0020
0030 REPEAT
0040 a$:=GETS$(1,1)
0045 PRINT a$,
0050 UNTIL a$=CHRS$(255) OR KEY$<>CHRS(0)
0060
0070 CLOSE FILE 1
0080
0090 END "End”

Line 10 opens a logical file numbered 1 and specifies the following infor-
mation: the file opened is to be a file which READs the serial port witha
baud rate of 1200 (b1200), 8 data bits (d8), 1 stop bit (s1) and even parity
(pe). In general the following coding can be used to specify the para-
meters of the RS 232C interface:

Parameter syntax range default
baud rate b<baud> 50-2400 b300
data bits d<num> 5-8 d7
stop bits s<num> 0-2 s2
Parity p<type> n=none pn

e=even

o=odd

CHAPTER 7 249 PERIPHERALS

Examples:
"Sp:” 300 baud, 7 data bits, 2 stop bits, no parity bit

”sp:b600" 600 baud
"sp:b1200d8s1pe” 1200 baud, 8 data bits, 1 stop bit, even parity

Notice that the serial channel will remain open and the program con-

tinues to execute the REPEAT-UNTIL loop in lines 30-50 until a trans-

mitted character code corresponds to decimal 255 or any key is pressed.

Data transmission files are opened in the same way, using WRITE in-

stead of READ. Notice also that an RS-232C interface file which has been

OPENed must of course be CLOSEd again as soon as possible. It is not

possible to use the tape recorder or the IEEE serial bus (i.e. the disk drive)

. while the RS-232C interface is in operation. Thus data which is received

must be stored in program memory as it enters the RS-232C port and then

saved to disk later.
Similary, you must prepare a data file in working memory, OPEN the

RS-232C file, send the data, then CLOSE it before using the disk drive.

File Transfer between Computers

The RS-232C communication channel can among many things be used

for file transfer between computers. It doesn’t have to be two COMAL

computers, but in this section we will show how two COMAL computers

communicate. To achieve this it is essential that the computer with which

you want to communicate also has an RS-232C input and output connec-

tion. Furthermore, because the C-64 RS-232C interface uses TTL-logic

levels, you will require a converter module to change 0/5 voit signals to

the RS-232C standard levels of -12/+12 volt.

Three-line Interface:

Commodore 64 (C64) and another microcomputer (called PC) are con-

nected using three lines of the DB 25 connector:

Cé64 PG

pin 2 (in - signal - out) pin3

pin3 (out-signal-in) 2

pin 7 (signal ground)

CHAPTER 7 250 PERIPHERALS

Transfer of COMAL Program Files
The program you want to transmit, is stored in the memory of the trans-
mitting computer (sender). Run through the program. If you doubt, that

the COMAL of the receiving computer will be able to interpret a program

line, then make it a comment line by placing // at the beginning of the line

after the line number. In this way you avoid causing the receiver to break

the transmission because of a syntax error or losing program lines. By

making every doubtful line a comment line, a complete transmission is
insured. Later on you can revise the received program by means of the
COMAL editing facilities. Notice in this connection that the CHANGE
command will be very useful.

Before the transmission, the RS-232 transmission conditions must be

specified. On most PC's this is accomplished by means of a configuration

program, which sets up the RS-232 communication port. We shall as-
sume, that this is the case. As described earlier in this chapter, these
conditions are specified at the start of the transmission on your C64.

Make certain that the configurations match on the two computers.

Programs trom C64 to PC
Store the COMAL program in the C64 memory and adjust it according to
the description of the previous paragraph:

1/_ Type on PC: new to erase any existing program in memory.
2/ Type on PC:enter ’<name of communication port>”

The PC is now waiting for data to be received from the communi-
cation port.

3/ Type on C64: select output ”sp:b1200d7s1pe”, followed by list. When
the RETURN-key is pressed the transmission of data from the C64
serial port is initiated. The transmission form is chosen by the select
output command to be: 1200 baud, 7 data bits, 1 stop bit and even
parity.

4/ The program is now being transmitted from the C64 to the PC. A few
syntax errors might show up. If they don’t interrupt the transmission,
just type in the lines after the transmission has finished. If transmis-
sion is interrupted, then make the lines in question commentlines and
start transmission all over again.

5/ When the C64 cursor starts flashing lhe lransmission has finished,
and the PC waits fora 'terminate’-signal (EOF signal). This signal may
differ from computer to computer. Experiment with your set-up. We
shall assume that CHR$(26) signals End Of File.

6/ Type again on the C64 (just move the cursor up to the previously
typed line): select output “sp:b1200d7stpe”, followed by print
chr$(26). The PC cursor ought to start flashing to indicate the end of
transmission.

CHAPTER 7 251 PERIPHERALS

7/ Finally type on the C64: select output "ds:” to return output to the

display screen.

8/ The transmitted program can now be revised and corrected to fit the

PC COMAL.

Programs from PC to C64

The COMAL program, which is to be transmitted, is stored in the PC

memory, and if necessary some eventually a few lines are made comment

lines to prevent syntax error messages.

1/ Type on C64: select input ’sp:b300d7s1pe”. Notice the slower trans-

mission rate (remember to adjust the PC configuration accordingly).

2/ Type on PC: list ’<name of communication port>”

3/ When the PC cursor flashes the transmission has finished. Press

<STOP-RESTORE> on C64 to interrupt connection to the serial

port. The transmited program is now ready for revision.

Sequential ASCII files

It is possible to transmit any sequential ASCII file from one computer to

the other. One might mention program files, text files, as well as files with

numbers or other sorts of useful information. To accomplish this 4 short

programs are needed: a transmitting program and a receiving program

for each of the computers. The two C64 programs are always used. But

the two PC programs might be adjusted to fit precisely your situation.

The difference in programs is due mainly to differences in speed between

a 16 bit PC and the 8 bit C64 and the rather slow disk access of your C64.

Normally the following procedure is appropriate:

1/ Make sure that the computers are properly connected via the

RC-232C modul at the rear of the C64.

2/ Check that the RS-232 configurations of the two computers match. If

transmission fails you might try with a lower transmission rate.

3/ Make sure that the sequential file to be transmitted actually is on the

disk of the sender. Load the sender-program to make it ready for

execution.

4/ Load the receiver-program into the receiver-computer and run the

program, answering the question about the file name. The computer

now awaits data.

5/ Now run the sender-program. Respond to the question about the file

name.

6/ Data transmission now begins. Note that 1200 baud equals about

150 characters per second, i.e. about two screen lines per second.

Thus a kilobyte takes about 6-7 seconds.

7/ Transmission is completed when the sender transmits a terminate

character. You might use CHR$(26) for the PC and CHR$(127) for the

C64 End Of Transmission. The receiving program stores the received

file on disk.

CHAPTER 7 252 PERIPHERALS

C64 receiving program:

10 // save "@receive’C64”
20 DIM a$ OF 1, b$ OF 28000
30 PAGE

40 INPUT "Type name of stored file: ”: b$
50 PRINT Awaiting data...”
60 OPEN FILE 2,”sp:b600d7s1pe”,READ
70 b$:=""

80 WHILE a$<>CHR3S(127) DO
90 a$:=GETS(2,1)

100 = bS$:+AS$
110 ENDWHILE

120 OPEN FILE 3,”@”+b$,WRITE
130 FOR Ht:=1 TO LEN(b$)-1 DO PRINT FILE 3: b$(i#:i+),
140 CLOSE

150 PRINT Transmission finished”

C64 transmitting program:

10 // save ”@transmit’C64”
20 DIM aS OF 20
30 PAGE

40 PRINT "A file is transmitted from disk to serial port”
50 INPUT "Type fille name: ":a$
60 OPEN FILE 2, "sp:b1200d7stpe”,WRITE
70 OPEN FILE 3,a$,READ
80 PRINT "Transmitting data...”
90 WHILE NOT EOF(3) DO

100 a$:=GETS$(3,1)
110 PRINT FILE 2: as,
120 ENDWHILE

130 PRINT FILE 2: CHRS(26) // PC EOF (7)
140 CLOSE
150 PRINT "All data transmitted”

PC Recelving Program:

10 // recelve PC
20 DIM a$ OF 20

30 // clear screen
40 INPUT "Type name of file to be stored on disk: ”: a$
50 OPEN FILE 2,"<name of communication port>",READ
60 OPEN FILE 3,a$,WRITE
70 WHILE NOT EOF(2) DO
80 a$:=—GETS(2,1)
90 PRINT FILE 3: a3,

100 ENDWHILE
110 CLOSE

120 PRINT "All data recieved and stored”

CHAPTER 7 253 PERIPHERALS

PC Transmitting Program:

10 // transmit PC
20 DIM a$ OF 20
30 // clear screen
40 INPUT "Type name of file to be transmitted: ”: a$
50 OPEN FILE 2,”<name of communication port>”,WRITE
60 OPEN FILE 3,a$,READ
70 WHILE NOT EOF(3) DO
80 A%$:=GETS(3,1)
90 PRINT FILE 2: af,

100 ENDWHILE
110 PRINT FILE 2: CHR$(127) // C64 terminate
120 CLOSE
130 PRINT "All data transmitted”

IEEE Cartridges

It is possible to purchase a variety of IEEE interface modules which attach

to the Commodore 64 cartridge port. Such devices are available from

your Commodore dealer (ask for the /EEE 488 cartridge) as well as from

other suppliers. One of these is called the Bus Card I! and is available from

the company Batteries Included. These cartridges can be used with your

COMAL language cartridge, for the cartridge bus is accessible in these

products. The IEEE cartridge is inserted in the cartridge port, then your

COMAL cartridge can then be inserted in a slot in the IEEE cartridge.

The main advantage of the extra IEEE cartridge is that you can then use

your Commodore to communicate with high capacity, high speed disk

drive units like the Commodore CBM 8050 and 8250 devices.

If you have access to other cartridges such as game cartridges, spread-

sheets and the like, you must remove your COMAL cartridge in order to

use them. In that case be careful to TURN OFF THE POWER to all units in

your system before switching cartridges.

The Parallel Port

One of the most useful features of your Commodore 64 is the parallel!

input/output port, the 1/O port for short. The I/O port can be used to

communicate with the outside world. You can use the port as an output

for control purposes (to run a machine, switch lights on and off, automate

an electric train, etc.). The port can also be used as an input to gather

information (measure voltages, temperatures, and other quantities). In

this section we will describe a simple application to illustrate how the port

can be used.

CHAPTER 7 254 PERIPHERALS

This section is not intended to be a complete description of the I/O port.
The best place to find details about the parallel port is inthe Commodore
64 Programmer's Reference Guide available from your Commodore
dealer. In the following only as much information as necessary for you to
understand the examples will be presented.

The physical location of the port is the edge connector at the far right
side of your Commodore 64 when viewed from the rear. The location of
the port slot is shown in Figure 1.1 in Chapter 1. Electrical pin connec-
tions for the parallel port are shown in Figure 7.3 earlier in the present
chapter. To make an electrical hook-up to the port, you will need a 24-pin
edge connector plug, available from your dealer or from most electronics
supply houses. Note that the connections we will use are as follows:

connection signal

pin 1 (or A) ground
pin 2 +5 vde (max 100 mA)
pinc port B bit 0

pin D port B bit 1

pin E port B bit 2

pin F port B bit 3

pin H port B bit 4

pin J port B bit 5

pin K port B bit 6

pink port B bit 7

One convenient way to attach your Commodore 64 to external equipment
is by means of a meter long peace of 10 conductor ribbon cable. Solder
the 10 leads to the pins of the 24-pin edge connector as indicated above.
Solder the other end to astandard DB-25 miniature 25 pinconnector. The
pin assignments for the DB-25 connector are shown in Figure 7.2. These
connectors are quite readily available and inexpensive as they have been
adopted asa standard for for the RS-232C interface. Label the connectors
carefully. If you make a mistake applying voltages to these connectors,
you could damage your computer.

The 25-pin connector is recommended because you may decide to add
more connections for advanced projects later on. Use pin 1 on the DB-25
for ground, pin 2 for +5 volts and pins 18-25 for port B bits 0-7.

WARNING: Do not carry out these projects without some prior experi-
ence working with electrical connections. Never make connections to
the computer unless all power has been turned off. Altough the projects
are not difficult, incorrect connections to your Commodore 64 could
damage the computer. If you are not sure how to proceed, have an elec-
tronically inclined friend give you a hand, or ask your dealer for advice.

CHAPTER 7 255 PERIPHERALS

To illustrate connection of an external device to the I/O port, we have

chosen asimple control project. Once you have understood this example,

you should be prepared to tackle more ambitious tasks.

Suppose that we have a closed loop of track, one electric train anda

station. We want the computer to allow the train to run around the loop

until it approaches the station. It must stop at the station, wait for a prede-

fined period, then run around the loop again.

In order to accomplish this control process, two items of hardware are

required:

* A transistor and relay must be available to switch the power to the

train tracks on and off. This is easily accomplished using a few parts

readily available from an electronics hobby store.

* A sensor must detect the passage of the train just before the station.

This can be done using a Darlington phototransistor and a small light

source beamed across the track to strike the sensitive area of the

phototransistor. The collector should be connected to the port bit as

described below, and the emitter should be connected to ground.

Note that in order to control the train, we will need to use two bits of the

parallel port. We are free to choose. Let's use bit 0 for the light detector

and bit 1 for starting and stopping the train.

Each bit of the parallel port B can serve as aninput or an output. This is

indicated by storing the appropriate number in the data direction register

for the port, in this case port B. The addresses for the data direction re-

gister and for port B are as follows:

decimal hexadecimal

port B address 56577 $DD01

data direction register 56579 $DD03

The number stored in the data direction register (often abbreviated ddr)

determines whether the individual bits of port B will act as inputs or out-

puts. It is easiest to understand the situation using binary numbers. AO

bit in the ddr means the corresponding bit of port B will act as an input. A

1 bit in the ddr sets the corresponding bit of port B to an output. For

example, binary 00000010 (decimal 2) stored in the ddr will make port B

bit 0 an input and bit 1 an output. This is just what we need to control the

train.

Because COMAL will accept binary numbers directly, itis not necessa-

ry for the programmer to translate the binary number to its decimal equi-

valent. The programmer must simply remember to preceed binary num-

bers by the symbol %.

CHAPTER 7 256 PERIPHERALS

The program Train Demo is available on your COMAL demo diskette or
tape. It is also listed completely in Appendix H.

Line 10 indicates the name of the file. In line 30 the screen is cleared by
PAGE. Lines 40-90 print the following message on the screen:

ELECTRIC TRAIN DEMO

Your train should start at the station
with the passage detector Just behind
the last car. Start the train and then
press any key to turn control over
to your computer...

Notice line 100:

0100 WHILE KEY$=CHRS3$(0) DO NULL

These instructions keep the program in a loop until any key is pressed.
The system variable KEY$ will then be different from the null string
CHR$(0), and the program will continue.

The main program starts in line 200. The procedure define’variables in
line 220 defines the addresses of port B and its ddr, and the initial value of
the variable position is set to 1. Note the convenient variable names:

0680 PROC define'variables
0690 __—port’b:=$dd01
0700 __—port’b'ddr:—=$dd03
0710 =position:=1

0720 ENDPROC define’variabies
0730

The apostrophes’ are necessary to bind the individual words together, so
that COMAL will interpret them as a single variable name, just as with
procedure names. The variable position will be used to control a pointer
on the screen display, indicating the action of the program.

The procedure in line 230 sets port b. This is done as follows:

0740 PROC set’port’B
0750 POKE port’b’ddr,2
0760 POKE port’b,2
0770 ENDPROC set’port’B
0780

The decimal value 2 corresponds to the binary number 00000010 and
makes bit 0 an input and bit 1 an output. Bits 2-7 are not used in this case,
so it doesn’t matter how these bits in the ddr are set.

The train is started by the procedure starttrain:

0480 PROC start’train

CHAPTER 7 257 PERIPHERALS

0490 POKE port’b,PEEK(port’b) BITOR 2
0500 advance’pointer
0510 ENDPROC start’tralin
0520

The POKE instruction places the number PEEK(port’b) BITOR 2 in the

port B address. The BITOR operation is described in detail in Chapter 4. It

assures that bit 1 is high. This signal is amplified by the transistor and

activates the relay, starting the train. The procedure advance’pointer

moves an arrow on the screen to the next item of the screen list, jumping

back to the start of the list at the beginning of each loop.

0790 PROC advance’pointer
0800 PRINT AT 10+position,2: ” ”
0810 IF position<4 THEN
0820 position:=poslition+1
0830 ELSE
0840 position: =2
0850 ENDIF
0860 PRINT AT 10+position,2: ”>”
0870 ENDPROC advance’pointer

0880

The next procedure encountered is the print’list procedure. {t simply

makes a list of items on the computer display:

> train running
traln passes light
traln waiting at station
Pressing any key will stop the train
next time It stops at the station...

The pointer shows the state of the program.

Now the program enters the main loop:

0270 REPEAT
0280 = check’light
0290 = delay(1.5)
0300 —stop’train
0310 delay(10)
0320 _ start’train
0330 UNTIL KEY$<>CHR3(0)

0340 stop’train
0350 PAGE
0360 END ”Au revoir!”

This loop will continue to run until any key is pressed. If KEY$ is anything

but the null string CHR$(0), the program ends.

CHAPTER 7 258 PERIPHERALS

The procedure check’light examines the state of the bit 0 of port B. This
is done as follows:

0530 PROC check’light

0540 WHILE PEEK(port’b) BITAND 1 <> 1 DO NULL
0550 advance’pointer
0560 ENDPROC check’light
0570

The precise operation of the BITAND operator is described in Chapter 4.

In this case the condition PEEK(port’b) BITAND 1 <> 1 will be FALSE

terminating the loop when bit0 becomes high. This will happen if the light

shining on the phototransistor is interrupted. With the collector attached

to port B bit 0, the emitter grounded (the base is not used) and the

transistor illuminated, the collector-emitter resistance is low (about 100

ohms), pulling bit 0 to low. If the transistor is not illuminated, the re-

sistance becomes high (typically 1 Mohm), and bit 0 returns to the high
state.

Before stopping the train, the program executes the procedure
delay(1.5):

0580 PROC delay(sec)
0590 TIME O

0600 WHILE TIME<sec*60 DO NULL
0610 ENDPROC delay
0620

Note that the variable sec is passed to this procedure. It corresponds to
the delay time in seconds. TIME resets the internal clock. The loop inline
600 continues until the number of timing units (jiffies = 1/60 sec.)
exceeds sec=—60. Note of course that the parameter value 1.5 can be
changed in a particular situation to assure that the train stops as desired
at the station.

The train is stopped by the procedure stop’train which simply changes
bit 1 to the low state. Note that a more refined way to stop (or start) the
train would be to rapidly turn the bit off and on, altering the duty-cycle
(the proportion of the time the bit is on) gradually from 1 to 0 (or 0 to 1)
over a time interval. This will cause the train to gradually slow down (or
speed up) ina more realistic fashion. If you decide to do this, replace the
relay with a power transistor circuit to control current flow to the track.

The Control Ports

In addition to the many communications possibilities already described,
your Commodore 64 computer also has two control ports (sometimes
called game ports). The use of these ports from COMAL has already been
described in the section in Chapter 5 on COMAL packages.

In addition to 2 x 5 switch inputs (JOYAO-3, JOYBO-3, BUTTON A and
BUTTON B) available at the two control ports, a total of 4 different ana-

CHAPTER 7 259 PERIPHERALS

logue inputs are also available via the game ports. These inputs are

POTAX, POTAY, POTBX and POTBY. (Internally the SID has just

2 ADC's and an analogue switch.) Pinouts and connectionsareas follows:

pin game portA game port B

1 JOYAO JOYBO

2 JOYA1 JOYB1

3 JOYA2 JOYB2

4 JOYA3 JOYB3

5 POTAY POTBY

6 BUTTON A BUTTON B

7 + 5V + 5V

8 GROUND GROUND

9 POTAX POTBX

Note: Maximum load on the + 5V supply is 50 mA.

Note that you will need a standard DB-9 female connector to attach ex-

periments to the game ports.

The switch inputs can indicate to a program whether a given switch is

on or off. Examples of how to use these signals are available in Chapter 5.

The analogue inputs go to A/D converters which are used to digitize

the positions of potentiometers on paddles. The conversion process is

based on the time constant of acapacitor tied from the POT pin to ground,

charged via a potentiometer tied from the POT pin to +5 volts. The

component values may be estimated from the relation: RC = 4.7E-4. In

this equation R is the maximum resistance of the potentiometer and C is

the capacitance. The larger the capacitor, the lower the uncertainty in the

POT value. The recommended values for R and C are 470 kiloohm and

1000 pF. Note that a separate potentiometer and capacitor are required

for each POT pin.

Although the POT inputs in the game ports were designed to measure

the rotational position of a potentiometer, any variable resistance can be

used. For example to measure temperature simply replace the poten-

tiometer with a thermistor in the proper resistance range. Other resistive

sensing devices can of course be used to allow automated recording of

pressure, liquid level, illumination or other physical quantities. For

example the following program illustrates how you might construct a

simple digital thermometer using the game port inputs:

0010 // save ’@0: Thermometer”
0020 USE paddies
0030 // capacitor: 1000 pF
0040 // thermistor: 100 K at 20 degrees

0050 a:=1; b:=0
0060 PAGE
0070 PRINT ’DIGITAL THERMOMETER”

CHAPTER 7 260 PERIPHERALS

0080 PRINT AT 5,1: ’Thermistor and capacitor must be con-”
0090 PRINT "nected to controlport 1...”
0100
0110 // Main program
0120 REPEAT
0130 check'paddle(1)
0140 convert(average)
0150 __print’temperature
0160 UNTIL KEY$<>CHRS(0)
0170 END // Main program
0180
0190
0200 PROC check’paddle(port)
0210 = total:—0
0220 FOR i:=1TO50 DO
0230 paddle(port,a’paddle,b’paddle,a’button,b’ button)
0240 total:=total+a'paddle
0250 ENDFOR i
0260 average:=total/50
0270 ENDPROC check’paddle
0280
0290 PROC convert(average)
0300 temp:=a*average+b
0310 ENDPROC convert
0320
0330 PROC print’temperature
0340 temp:=INT(temp*t0)/10
0350 PRINT AT 10,10: "T = o”
0360 PRINT AT 10,14: temp
0370 ENDPROC print’temperature
0380

The first part of the program (lines 10-100) are just introductory informa-
tion, a display message and definition of the constants a and b. Notice
that these are set equal to 1 and 0 respectively in line 50. This causes the
program to just printout ADC values (0-255) with no conversion to tem-
perature. These values can first be found after you have constructed a test
circuit and calibrated the sensor which you plan to use.

Notice the structure of the rest of the program. The main program is
from line 110 through line 170. It consists of a REPEAT-UNTIL loop
which will be lerminated If any key is pressed. Inthe loop information is
fetched from the paddle port by the procedure check’paddle(1). Then
this quantity is converted to a temperature value using the procedure
convert(average). Finally the procedure print’temperature displays the
computed temperature on the display screen.

Make a trial setup using a 1000 pF capacitor and a thermistor (NTC or
PTC resistor) with a room temperature value of about 100 kohm. Connect
your test circuit to the control port as shown in the following figure:

CHAPTER 7 261 PERIPHERALS

(7) +5 voLT

R (NTC-mMopsTAND)

(9) POTAX
— Cs (ca, 1000 PF)

(3) QD -

Figure 7.4: Many different sensor types can be attached to the control ports. You can make

use of up to 4 analog inputs to the two control ports.

If the program is now run, the measured ADC values will be shown on the

screen. Draw agraph displaying the temperature in degrees as a function

of the ADC values. If the graph is approximately linear in the region of

interest, you can compute the constants a and b as follows:

Read two coordinate pairs from your graph (X1,Y1) and X2,¥2). (X1

and X2 correspond to ADC values, and Y1 and Y2 correspond to tempera-

tures.) The constant a can now be found using the formula:

a = (Y2- Y1)/(X2 - X1)

This is the s/ope of the line you drew on your graph. We found the follow-

ing values in our test setup which used an NTC resistor: (183,25) and

(215,20) - temperatures are in degrees centigrade. l.e. the program

showed 183 as ADC value when the sensor temperature was 25 degrees

C, and 215 when the temperature was 20 degrees. Thus a equals -0.178

in this case. To find b you can now used the equation: temp = a*average

+ b (used in the procedure convert). Inserting average = 183 and temp

= 25 into this equation yields a value for b of 57.6. If you change line 50

to reflect the new values you have found for a and b, the program should

print out the temperature when you run it again.

If you want to calibrate a sensor over a wider range of temperature,

you can use e.g. an exponential function to achieve a better calinbration

than the linear approximation we have used in the illustration above.

In this case you must revise program linie 300.

Review
in this chapter we have considered a range of possibilities for the use of

the wealth of interfacing facilities available with your Commodore 64

computer. You are encouraged to experiment with the RS-232 interface,

the parallel port and the game ports to learn more about them.

You will find more information about these ports in the Commodore 64

Programmer's Reference Guide. A great deal additional information is

also available from the popular literature about microcomputers.

CHAPTER 7 262 PERIPHERALS

Chapter 8

COMAL and Machine
Language

. What is machine language?

' The brain” in every microcomputer is a central microprocessor. Your

Commodore 64 is no exception. There are a number of different types of

microprocessors available, each with its own set of instructions. The

Commodore 64 uses a more advanced version of the 6502, the 6510. It

uses the same instruction set as the popular 6502 but has additional built-

in I/O facilities. The only language a microprocessor can interpret direct-

ly is machine language. Any higher level language must ultimately com-

municate with the microprocessor using its native language.

Inside your COMAL cartridge are a large number of machine code

routines termed collectively the COMAL system. When the computer is

turned on, the COMAL system automatically takes charge of the Com-

modore 64. Another important machine code program in your computer

is the operating system which takes care of communication with the key-

board, screen editing and other housekeeping chores. When a COMAL

program is “run”, appropriate machine code routines are brought into

play to achieve the actions which your COMAL statements require.

It should be made clear at the outset, that this chapter is not intended to

serve as a tutorial in machine language programming. We assume here

prior knowledge of 6502 machine language programming. The material

presented here is substantially more difficult than the material in previous

chapters. If you want to learn more about 6502 machine language, a

number of excellent books are available. You might want to begin with

lan Sinclair's Introducing Commodore 64 Machine Code (Granada

Publishing, London, 1984). The Programmer's Reference Guide

available from your Commodore dealer is also a valuable resource.

For further information on how COMAL actually works on the Com-

modore 64, read Jesse Knight: COMAL 2.0 PACKAGES available from

COMAL Users Group U.S.A.

Machine language will probably be easier to learn if you can share the

learning experience with others who have similar interests. In this con-

nection the many Commodore 64 and Commodore COMAL users groups

can provide useful opportunities of exchange of information. Here are

some addresses which may be helpful:

CHAPTER 8 264 MACHINE LANGUAGE

In the USA:

COMAL USERS' GROUP, 5501 Groveland Terrace, Madison WI 53716

In Canada:

TPUG Inc., COMAL USERS’ GROUP, 1912-A Avenue Rd., Ste.#1 Toron-
to, ONT M5M 4A1, CANADA

In England:

ICPUG, ATT: Brian Grainger, 73 Minehead Way, Stevenage, Herts SG1
2HZ, ENGLAND

In this chapter you will find an overview of the use of computer memory by
the COMAL system. Next comes step by step instructions showing how
you can incorporate your own machine code routines as a package ina
COMAL program.

Machine language is much easier to work with, if you have access to a
6502 assembler program. Such a program allows you to prepare a pro-
gram using symbolic machine code using mnemonic codes instead of
programming directly in hexadecimal notation. A disk drive will also
make working with machine language easier. On the demo diskette (or
cassette) you will find a textfile with the name C64SYMB. It containsalist
of all instructions which are relevant when doing machine language pro-
gramming with your Commodore 64 and COMAL. This textfile should be
included in the assembler source code with COMAL packages.

It is also possible to prepare a machine language program directly in
memory from a COMAL program by using POKE orders. In this way a
machine code program can be stored in an available area of computer
memory then started from a COMAL program by using SYS <start ad-
dress>. The last instruction in the machine code routine should be an
RTS, which causes program execution to return to COMAL. It is, how-
ever, not possible using this method to prepare machine code program
packages which can be LINK’ed to COMAL programs. In this chapter we
will only treat the preparation of machine code programs which can be
LINK’ed to a COMAL program.

The use of machine code routines is an integral part of the COMAL
system. When designing machine code facilities, three primary goals
have been strived for:

* Machine code routines should be easy to use - also for users without
knowledge of machine code.
Access to machine code routines should be by name, thereby elimi-
nating confusing details like memory addresses.
Machine code routines should be affected by commands like NEW
and RUN. In this way packages behave as if they are an integral part
of the COMAL system.

CHAPTER 8 265 MACHINE LANGUAGE

There are three commands/statements in COMAL which are used in con-

nection with the definition, use and removal of machine coded routines:

LINK <filename> // Enter a module file

USE <package> // Define procedures

DISCARD // Remove all modules

These commands (USE can also be used as a program statement) will be

explained in detail. Machine code routines use the procedure and

function mechanism in COMAL and allow therefore all parameter types.

' Modules
The LINK command fetches a machine language module (object file)

from the library which has been prepared by the assembler. This module

contains information which specifies where the machine code is to be

located in memory. COMAL can control up to 10 such modules at any one

time. At least 2 modules, containing the following, are always defined:

(Module 1) (Module 2)

english graphics sound

dansk turtle joysticks

system sprites paddles

font lightpen

These modules need not be LINK’ed, for they are already availabie in the

COMAL cartridge. Modules can be removed again using the DISCARD

command. However the above mentioned standard modules can NOT be

removed. Because the modules are not named, all other modules will

always be deleted by DISCARD. Modules can be made permanent (be

ROM'ed), whereby they can not be DISCARD’ed. Non-permanent mo-

dules are treated as if they were part of the program in working memory.

' A SAVE order will store all non-permanent modules with the COMAL

program in the same prg file. When LOAD, RUN or CHAIN is used, they

will be read in again (be LINKed).

Packages
A module can contain 0, 1 or more packages.

Procedures and Functions

A package can contain 0, 1 or more procedures or functions. Two main

elements constitute each procedure or function:

CHAPTER 8 266 MACHINE LANGUAGE

“A procedure header, which specifies how many and what type of

parameters are to be passed to the procedure.

The procedure body, i.e. the machine code which is to be executed

when the procedure is called.

This drawing illustrates the hierarchical structure:

- module 1 - - module 2- - module 3 - me module n

- package 1 - - package 2 - = sane - package m -

- proc 1 - - proc 2 - - proc 3 - ..Proc p..

| |
header 1 header 2 header 3 header p

body 1 body 2 body 3 body p

The USE statement performs the following actions: Each module, start-

ing with the last one to be read in, is checked to see if the name following

USE is to be found in the list of package names in this module. If the name

is found, then the procedures and functions found in this package are de-

fined. The locations of the procedure headers are noted.

Signals

When COMAL carries out an operation which can affect modules or

packages, a signal is issued regarding the operation in question. The

module or package may or may not react to the signal. There are two
types of signals:

* A signal is sent to a package when a USE statement is encountered

which activates the package. The signal is in effect a call to a routine

which is local for the package. As an example of what such routines

may do, the TURTLE package selects the SPLITSCREEN display,

when the command USE turtle is given. The main purpose of the rou-

tine is to initialize the variables in the package.

* On system start or when LINK, LOAD, DISCARD, NEW, RUN, CHAIN
are issued (and in certain other special situations), signals are sent to

all modules. The signal causes a call to a routine in the module (and

thus common to all packages in the module). The purpose of the sig-

nal call is to integrate all packages in the module into the COMAL

system (after start-up, LINK, LOAD), or to return the COMAL system

to its original state (after DISCARD, NEW). If a package is to use in-

CHAPTER 8 267 MACHINE LANGUAGE

terrupt (IRQ), then the module can link the interrupt routine using

LINK and disconnect it again with DISCARD.

How is memory organized?

The following diagram illustrates the entire memory of your Commodore

64 (the first 3 columns), the memory in the COMAL cartridge (the next 4

columns), and finally the user-programmable EPROM expansion (the last

2 columns). The expansion option consists of anempty EPROM socketin

the COMAL cartridge.

32KB-EPROM.

C64
RAM

GRAPH-
Ics

C64
Ports

C44
ROM

KERNEL

COMAL 1/0 CHAR

COMAL

Free

for usr

40K] pack—

ages

Working

memor ¥ OK

Cartr.
ROM

Cartr.
ROM

Cartr.
ROM

Cartr.

ROM

This cartridge can hold an 8KB-, 16KB-, or

Cartr. Cartr.
EPROM EPROM

BASIC! COMAL
 pagel

COMAL
page2

COMAL
pages

COMAL
page4

Expan—

sion
pages

Expan—

sion
paged

RAM is partitioned as follows:

System variables for KERNEL, COMAL, processor 0- 1KB

1- 2KB
2-32KB

32-48KB

48-52KB

52-56KB

56-64KB

stack.

Screen memory.

Storage for COMAL program, name table and stack.

Here is also room for packages, which take up user

memory. The character set, if used, is at 27-32KB.
Is unused. Packages can be placed here without

reducing available program working memory.

COMAL system variables, variables for standard

packages.

Variables for function keys, moving sprites, sprite

drawings and color information for graphics.

Graphics bit map.

CHAPTER 8 268 MACHINE LANGUAGE

The I/O area contains the input/output ports. All communication with the

surrounding world is carried out via these ports. The color memory for

the text screen is also jocated here. This color memory is (unfortunately)
shared with multi-color graphics.

The following ROM areas are located in the C-64:
40-48KB BASIC interpreter
52-56KB Standard double character set (font)
56-64KB KERNEL. This is the Commodore 64's operating

system. It contains among other things routines for

communicationwith the screen, cassette tape, disk

drives and the RS232interface.

The COMAL cartridge is partitioned into four pages,each containing 16
KB. The are all located in the adressrange 32-48KB. In this way the 64KB
COMAL interpreter only takes up 16KB in your Commodore 64.

The contents of the cartridge ROM’s are as follows:

Page 1 COMAL starts here when the machine is turned on.
It contains the math routines, commands and the

packages ENGLISH, DANSK and SYSTEM.
Page 2 The COMAL editor, syntax analysis and code gene-

ration, prepass (SCAN), recreator (LIST) com-
mands.

Page 3 Runtime-module.
Page 4 The packages GRAPHICS, TURTLE, SPRITES,

FONT, SOUND, JOYSTICKS, PADDLES and

LIGHTPEN are located here.

EPROM expansion in the cartridge is interpreted as follows,
depending on EPROM type:

8KB Page 5, address area $8000-$9fff.

16KB Page 5, address area $8000-Sbiff.

32KB Page 5, address area $8000-$bfff,

Page 6, address area $8000-$bfff.

Upon start-up COMAL examines every 4 KB in pages 5 and 6 to find

certain bytes which determine if package modules are present. Next,

signals are sent to the modules, indicating that the machine has been

turned on.

CHAPTER 8 269 MACHINE LANGUAGE

Memory Management
The 6510/6502-microprocessor which is used by the Commodore 64 is

not designed to address more than 64 KB. When the COMAL cartridge is

active, the processor can address up to 152 KB! A special trick has to be

used to achieve this. The trick is to determine just what the 6510 should

be able to see” in its address space. Memory is partitioned into banks

(also called pages or overlays). The different banks become active as

required. The method is termed "bank-switching” or "memory mana-

gement”. For example there are three banks in the address space

52-56KB: RAM, I/O and character set ROM (see memory manager or-

ganization). In the region 40-48KB there are actually 8 different banks

which can be used!

Banks are selected by writing a bit pattern into certain control ports.

Two such control ports are available:

R6510 Controls the C-64 memory map. Located in the

Commodore, address $0001. Can be written to or

read.

OVRLAY Control of cartridge banks. Located in the COMAL

cartridge at address $de00 in bank I/O. l.e. the port

must be accessible when it is to be changed. It can

only be written to.

COMAL has system routines, which manipulate these ports. By using

these routines, one can specify the memory map by simply altering a

single byte. The following figure specifies several interesting memory

maps (i=1,2,..,6):

RAM RAMCHR RAMIO DEFPAG CBASIC CART i

64k
RAM RAM RAM KERNEL KERNEL KERNEL

Sék
RAM CHAR 1/0 1/0 I/a 1/0

52k
RAM RAM RAM RAM RAM RAM

4Bk
BASIC

RAM RAM RAM RAN COMAL
40k pagei

RAM

32k

RAM RAM RAM RAM RAM
RAM

Ok

CHAPTER 8 270 MACHINE LANGUAGE

Creating Modules
In order for LINK, USE and DISCARD to work, the placement of code and

the format for package names, procedures and procedure headers must

be specified. ‘

If a module is to be placed in RAM, then it must have the following for-
mat:

-lib c64symb
*=<start address>
-byte <map>
-word end
-word <signal>
<package table>
<machine code>

end .end

If the module is to be placed in EPROM, then is must beformatted as
follows:

lib c64symb
*=3<start adress>
-word cold
-word warm
-byte "CBM80comal
»byte >3*

-byte <map>-+rommed
-word end
-word <signal>
<package table>
<machine code>

end .end

lib c64symb makes all KERNEL- and COMAL variables known to the
module.

<start adress> is the starting adress for the module in memory.

<map> indicates into which memory map the module is to be placed by
LINK. This memory map is automatically activated by calling a proce-
dure, function or signal handler in the module.

rommed indicates that the module cannot be DISCARD’ed.

end is the end address of the module + 1.

<signal> is the signal handler for the module, located in <machine
code>.

<package table> is a list of package names.

<machine code> is all other code in the module.

CHAPTER 8 271 MACHINE LANGUAGE

A <package table> has the following format:

-byte I1,’:packagel’

-word proctt,init1

-byte 12,’package2’

-word proct2,init2

-byte 0 ‘End of the table

li is the number of characters in the i’th package name.

*packagei’ is the name of the i’th package (in quotation marks).

procti is the address of the table of procedure names for the i’th

package.

initi is the address of the initialization routine for the i’th pac-

kage.

A table of procedure names must have the following format:

proctl -byte I1,’proct’
-word procht
-byte 12,’proc2’
-word proch2

-byte 0 ;End of the table

procti -byte (1,'proct’
-word proch1
-byte (2,’proc2’
-word proch2

-byte 0 ;End of the table

Ij is the number of characters in the j'th procedure name.

*procj’ is the name of the j'th procedure (in quotation marks).

prochj is the address of the j’th procedure header.

CHAPTER 8 272 MACHINE LANGUAGE

A procedure header has this format:
prochj -byte proc,<codeh,>codeh,n

-byte <parameter1>
-byte <parameter2>

-byte <parametern>
-byte endpre

A function header has this format:

funchj -byte func+type,<codeh,>codeh,n
-byte <parameter1>
-byte <parameter2>

-byte <parametern>
-byte endfnc

type is the function type (real, int or str).
codeh is the address of the assembler code routine.
n is the number of formal parameters.
<parameterk> is the specification of the k’th parameter.

A parameter specification is one of the following:

-byte value+type ;Simple value parameter

-byte value+array+type,dim ;Array value parameter

.byte ref+type Simple reference parameter

-byte ref+array+type,dim ‘Array reference parameter

type is the parameter type (real, int or str).

dim is the dimension of an array parameter.

real means the type is REAL.

int means integer type (INTeger).

str means the string type (STRing).

An example of how a procedure header is coded:

FUNC pip(x,y++,REF z$(,)) can be coded as

-byte func=real,<pip,>pip,3 ;Real func. with 3 param.
-byte value—real x
-byte value=int st

-byte ref=array=str,2 ;REF z8(,)
-byte endfnc ;No more parameters

CHAPTER 8 273 MACHINE LANGUAGE

Parameter Passing
When the COMAL interpreter passes control to an assembler coded rout-

ine, all actual parameters (if any) are computed. At the same time para-

meter types are checked for agreement with the procedure header speci-

fication. The number of parameters in the procedure call must also be

correct.
It is not possible to know in advance where the parameter value or the

variable (when using REF) are located in storage. Therefore it is neces-

sary to call asystem routine FNDPAR (FiND PARameter) to obtain infor-

mation about the storage address of a parameter. Then the parameter

can be handled.

FNDPAR: When called: .A is the number of the parameter.

On return: COPY1 contains parameter address.

All registers are changed.

Note: In the COMAL system the following conventions apply:integers

and real numbers are stored in high/low format, while addresses are

saved in low/high format. This is trueof actual parameters, also for para-

meters of systemroutines.

In the following the format for each parametre type is described:

VALUE+REAL and REF+REAL

(COPY1)+0: Exponent+128

+1: 5 bytes Mantissa(1)

+2: floating Mantissa(2)

+3: point Mantissa(3)

+4: Mantissa(4)

VALUE+INT and REF+INT

(COPY1)+0: 2 bytes High byte

+1: integer Low byte

CHAPTER 8

VALUE+STR and REF+STR

274

m: Maximum string length (dimensioned length).

n: Actual length (lf VALUE+STR, then m=n.)

(COPY1)+0:

+2:

+4:

+4+n-1:
+4+m-1:

bytes

High byte

Low byte

High byte

Low byte

s$(1:1)

$$(2:2)

8$(3:3)

s$(4:4)

s$(n:n)(last char.)

s$(m:m)

VALUE+ARRAY+REAL, VALUE+ARRAY-+INT,
VALUE+ARRAY+STR,
REF+ARRAY+REAL, REF+ARRAY-+INT, REF+ARRAY+STR

Every array has an information block:

n : Number of indices.

addr: Address of first element in the table.

(COPY1)-+0:

+2:

+3:

+5:

+7:

+9:

+3+(n-1)*4+2:

+3+n*4:

addr

Lower limit

for 1st index

Upper limit

for 1st index

Lower limit

for 2nd index

Upper !imit

for n’th ind.

Low byte

High byte

Number of indices

High byte

Low byte

High byte

Low byte

High byte

Low byte

High byte

Low byte

MACHINE LANGUAGE

CHAPTER 8 275 MACHINE LANGUAGE

If an array A is declared as:

DIM a(1:3,6:8)

it is placed in memory as follows:

addr +0 :a(1,6)

+1 :a(1,7)

+2*I:a(1,8)

+3*|:a(2,6)

+4*\|:a(2,7)

+5*t:a(2,8)

+6*!:a(3,6)

+7*|:a(3,7)

+8*|:a(3,8)

where | is the size (in bytes) of each array element. Each element is or-

ganized just as a simple parameter.

Where can modules be placed?

Modules can be placed in RAM from $0900-$7fff and from $8009-Sbfff.

In addition packages can be placed in an EPROM in the cartridge from

$8000-$bfff, however the start address must be a multiple of $1000.

Where can the module variables be placed?
Variables which much survive from call to call must be placed in the

module itself (for RAM-modules).

EPROM-module variables can be stored from $c855-$c87a.

Should more storage be required, and if the RS232 will not be used,

then the RS232 buffer RSOBUF (256 bytes) can be used. If cassette tape

will not be used, then the tape buffer TBUFFR (192 bytes) can be used. In

addition zero-page locations $4c, $56 and $fb-$ff can be used freely.
Routines which use variables local to the individual call can use these

local variables:

Name Address

INF1 $0038

INF2 $0039

INF3 $003a

Q1 $003 b-$003c

Q2 $003d-$003e

Q3 $003f- $0040

Q4 $0041 -$0042

Q5 $0043-$0044

CHAPTER 8 276 MACHINE LANGUAGE

COPY1 $0045-$0046 Also used by FNDPAR

COPY3 $0047-$0048

COPY3 $0049-$0050

AC1 $0061 -$0066 Also used by FP-routines

AC2 $0069-$006f

MOVEAD $007 a-$007b

TXTLO $007c

TXTHI $007d

RANGES $02e0-$02ff

TXT $c760-$cyat

Signal Routines
A signal routine is a subroutine which is terminatedby an RTS instruction.
It s permissible for a signalroutine to do anything which a procedure ora
function may do. If a signal routine is not required, then a systemroutine
named DUMMY can be used. This routine consists ofonly an RTS instruc-
tion and does nothing.

A USE-signal-routine has no parameters. Each time a USE<package>
statement is encountered ina COMAL program, this routine is called. If it
is not desired that the package be initialized every time, then a variable
should by used toindicate that a package has previously been activaed by
means of USE

A module-signal-routine has one parameter, for the .y-register will

contain a value when the call is executed, indicating which type signal is

to be transmitted. Theparameter can be one of the following:

POWER?
Is issued at start-up to all ROM'ed modules. The signal must be used to
initialize the module.

POWER2

Is issued at start-up after POWER1 has been issued. Ordinarily this signal
is ignored, but it can be used to allow a module to take complete control
before COMAL starts.

LINK

Is issued to ajust LINK’ed package or to those packages which are read in
with LOAD, RUN <filename>, or CHAIN. With this signal the module can
change vectors in COMAL and the operating system.

DSCRD

Is issued to all modules before DISCARD or the NEW command. On this
signal the module can change vectors back to what they were before
LINK.

CHAPTER 8 277 MACHINE LANGUAGE

NEW

Is issued with a NEW command,

CLRTAB
Is issued when all names in a program are undeclared. This signal is given

with the RUN and CHAIN commands and in certain other cases. When the

names are undeclared, then it is not possible to call any procedure or

function in any package.

RUN

Is issued with the RUN or CHAIN command.

WARM1
Is issued during "warm start”, i.e. when the <STOP-RESTORE> com-

bination is activated from the keyboard.

CON

Is issued with the CON command.

ERROR
Is issued after the program has stopped with an error message.

STOP!
Is issued after a program has stopped due to a STOP or END.

BASIC

Is issued before COMAL is exited.

in general a module-signal-routine follows this outline:

signal cpy #link ;LINK-command?
beg slink ;Jump if so

cpy #dserd ;DISCARD?

beq sdscrd Jump if so

rts iIgnore all other signals.

slink - ;LINK-handler

rts ;Back to COMAL

sdserd . ;DISCARD-handler

rts ;Back to COMAL

Error Reporting

It is good programming practice to check whether parameters to a proce-

dure or function are legal. It they are not, then an error message should

CHAPTER 8 278 MACHINE LANGUAGE

be issued. If itis desired that COMAL's own error messages be used, this

can be done as follows:

Idx +5 ;Give error number 5

jmp runerr ji.e. "value out of range”

With this method one can give standard error messages numbered 0 to

255. See Appendix F for these error messages. RUNERR corresponds

closely to the COMAL statement REPORT <error> and can be captured
in a TRAP structure, if this is desirable.

A more general error reporting method is available. If one wants to give

the following values to the system or to an error handler,

ERR = 300
ERRFILE = 0
ERRTEXT$ = "illegal parameter value”

it can be done with the following routine:

text .byte ‘illegal parameter value’

textl=*-text

err300 idx 4textl ;Length of text
stx ertlen ;Length of error message

errorp Ida text-1,x ;Move the text to ERTEXT

sta ertext-1,x

dex

bne errorp

Ida #$6c ;Copy jmp (trapvc) to Q1
sta qi+0

Ida +<trapve
sta qi+1

Idy +0 ;ERRFILE = 0

Idx 4+#<300 ;ERR = 300

Ida +#>300

jsr goto ;Execute jmp (trapvc) in PAGEB

.byte pageb,<q1,>q1

Package example
The following example shows how a compiete modulecontaining one

package named TEST can be created.The purpose of this example is to

illustrate how onecreates a procedure, a real function and a stringfunc-

CHAPTER 8 279 MACHINE LANGUAGE

tion. The package is placed from address $8009 in RAM in the memory

map DEFPAG (see the table of useful memory maps shown earlier).

The package is available on the demo diskette.

test.src contains the source code (src=source).

test.obj contains the object code (obj=object).

In order to get the module with the package test into the machine, type:

LINK ”test.obj”

Next type in:

AUTO
0010 USE test // makes hi, add and string known //

0020 hi
0030 PRINT add(23,45)
0040 PRINT stringS("a”,10)
0050 (Press the <STOP> key.)

RUN which gives this result:

hello!
68
aaaaaaaaaa

end at 0040

Switch to your own diskette then type:

SAVE "test” save the COMAL program and the package test.

DISCARD delete the LINK’ed module.

RUN run the program again without the package test.

The system will respond with an error message:

at 0010: test: unknown package

RUN "test” fetch and run the program with the package test.

New printout:

hello!

68
aaaaaaaaaa

end at 0040

CHAPTER 8 280 MACHINE LANGUAGE

Here is the content of the source code of test.src:
5 ---=== package test===---

; make all symbols known:

.lib c64symb

opt list ilist this module

*=$8009 start address

.byte defpag “82KB RAM memory map

.word end ithe module ends with end

.word dummy :no signal handler

;package table:

.byte 4,’test’ ithe package is called test

.word testp ;procedure table

.word dummy ino initialization

.byte 0 ;no more packages

;procedure table:

testp -byte 2,’hi’ ithe procedure hi
.word phi ;procedure header for hi
.byte 3,'add’ ithe function add
.word padd

.byte 6,’string’ ;function string

.word pstrin

.byte 0 :no more procedures

; proc hi

phi »byte proc,<hi,>hi,0 no parameters
;begins in hi

-byte endprc

;func add(a#,b+)

padd -byte functreal,<add,>add,2 ;two parameters

;begins in add
-byte value+int ;at# is integer value parameter
-byte value+int ;b4# is integer value parameter
-byte endfnc

CHAPTER &

func string$(character$,number+)

MACHINE LANGUAGE

pstrin .byte func+str,<string,>string,2;two parameters

.byte valuet+str

.byte valuet+int

sproc hi
; print “hello!”

sendproc hi

text .byte ‘hello!’,13

textl =*-text

hi Idy +0

hilp Ida texty

jsr cwrt

iny

cpy #textl
bne hilp

rts

stunc add(a#,b+#)
sreturn at¢+b4¢
;endfunc add

add Ida +1

jsr fndpar

Idx copy1

Ida copy1+1

stx copy2

sta copy2+1

Ida +2
jsr fndpar

;begins in string

;character$ is string value parameter

snumber+ is integer value parameter

.byte endfnc

;text to be printed

slength of text

;begin with 1. character

‘fetch character

sprint character on screen

;next character

finished?

;jump if not finished

sreturn to COMAL

;get address of 1. parameter

;copy1 = address

;move address to copy2

;get address of 2. parameter

;copy1 points now to b# and copy2 points now to a+

Idy +71
clc

Ida (copy2),y

adc (copyt),y

;NB: integers are in high/low format

;no carry
slow byte of att
;plus low byte of b#

CHAPTER 8 282 MACHINE LANGUAGE

tax ;.a is moved over to .x

dey .y=0

Ida (copy2),y shigh byte of a+#
adc (copy1),y ;plus high byte of b+ plus carry

bvs ovrflw ;jump if arithmetic overflow

; .xX = low byte of a#+b#
; .a = high byte of a##+b+#

i convert from integer to real number;

then put result on COMAL’s stack.

jsr pshint ;convert and push

rts ;return to COMAL with the resuh

ovrflw Idx +42 “overflow”

jmp runerr ‘report 2

‘tune string+(character$,length+) closed
i if length++<0 then report 1 // argument error //
i if len(character$)<>1 then report 1 // argument error //

; dim r$ of length+# // room for result //
; for i##=1 to length+# do // generate result //
; r$:+character$
; endfor i=
; return r$ // return result //
;endfunc string

’

num =copy2 suse Copy2 as num

string Ida +2 ;get address of 2. parameter

jsr fndpar

Idy +0 ;test sign
Ida (copy1),y

bmi argerr ;jjump, if <0

sta num+1 shigh byte of num

iny Lyi=1

Ida (copy1),y

sta num slow byte of num

;generate the result directly on COMAL's evaluation stack.

;Stos points to the next free byte on the stack

ithe stack is limited upwards by sfree

;test if there is room for the result

CHAPTER 8

strip

283

clc

adc stos

tax

Ida num+1

adc stos+1

bes sterr

tay

txa

adc #<2

tax

tya
adc +#>2

bes sterr

cpx sfree

sbc sfree+1

bes sterr

check character$.

Ida +1

jsr fndpar

idy +2

Ida (copy1),y

bne argerr

iny

Ida (copy1),y

cmp +1
bne argerr

fetch character$(1:1)

iny

Ida (copy1),y

MACHINE LANGUAGE

;clear the carry

;inum+stos

2c =low byte of num-+stos

;.a:=high byte of num+stos
‘jump, if overflow

snum+stos+2

ithe carry is known to be = 0

;jump, if overflow

;if num+stost+2>=sfree,
‘then stack-overflow

;jump, if stack-overflow

:get the address of character$

‘current length must = 1

shigh byte must = 0

Lyi=3

slow byte must = 1

Lyi=4

:.a:=character$(1:1)

write character$(1:1) num times on the stack.

Idy +0

sty qi

sty qi+1

Idx num+1

cpx qi+1

bne str1

:q1:=0 // loop variable

‘while qi<>num do

CHAPTER 8

Idx num

cpx qi

beq strok

sta (stos),y

inc stos

bne str2

inc stos+1

inc qi

bne strip

inc qi+1

jmp strip

284

set the length of the string to num.

strok

argerr

sterr

end

Ida num+1

sta (stos),y

iny

Ida num

sta (stos),y

cle

Ida stos

adc #<2

sta stos

Ida stos+1

adc +>2

sta stos+1

rts

Idx 31
jmp runerr

Idx +56
jmp runerr

.end

MACHINE LANGUAGE

ir$(q1:q1):=character$1:1)

; tos:+1

> qi:+1

;endwhile

;save high byte of the length

-y:=1

save low byte of the length

:Stos:+2 // room for the length //

turn to COMAL with the result

;”argument error’

"out of memory”

;end of source text

Appendix A

COMMODORE 64 Character

Codes

ASCII CHARACTERS SCREEN CHARACTERS

mode mode

CODE text graphics text graphics

ie) e e

1 a a
2 b 8

3 <SsToOP> c c

4 da o

S white e E

6 f F

? 9 G
B® <SHIFT - C=> disable h H
8 <SHIFT - C®> enable i 1

10) woee J J

11 clear to end of line K K

12 form feed (printer) J L

13 <RETURN> ™m ™M

14 amitch to lower case t N

18 © is]

16 wean r P
1? cursor down a Q
16 reverse on t R

19 cursor home s s
20 t T
21 u u

22 v v

23 ry WwW

24 a x

2s y Y

26 2 2
e? a 3
26 red o ©

28 cursor right r a

30 green ? t
31 blue ¢ Aa

32 space

33. «1 ' ! !
34 a so . s

3 68 « ") #
a s s s

37 % % x% %

ae 4 & & &
38 . ° ry .

40 ¢ ¢ ¢ G
ai > > > >
ae «6 2s e &

a3 ¢ + o *

a4 ° o o °

We - - =
«a. . . .

a7. 7 7 Z 7

APPENDIX A 286 CHARACTER CODES

ASCII CHARACTERS SCREEN CHARACTERS
mode mode

CODE | text graphics text graphics

Y
v
n
r
a
A
w
s
O
O
N
O
U
S
B
W
Y
W
H
O

Z
B
P
e
M
N
K
X
E
C
C
H
A
M
O
N
O
V
O
T
A
C

A
G
H

I
T
O
N
M
N
O
N
H
D
D
|

I
v
a
r
y
n
V
Q
O
V
H
U
S
U
Y
N
H
-
O

e
s
J
A
N
/
E

SS
-?

8
7

4
*
—
-
*
+
¢

9
0
X
5
6
!

N_

a

D
O
D
D
}

+
F
e
w
m
e
n
w
m
N
X

KX
E
C
C
A
Y
H
I
A
V
O
S
T
D
Z
S

F
e
n

F
O
R
G
A
N
T
H
R
A
Y
I
v
V
E
A
~
N

@H

D
O
V
O
H
U
D
A
W
W
H
O

l
g
 @

{
1

—
-
O
L
e
s
a
P
e
O
e
a
A
N
x
t
X
E
K
C
C
H
H
W
H
A
O
V
O
Z

T
S
O

A
U
K

T
F
O
M
M
I
A
N
A
D
R

Y
n

A
y
e

O
N
D
V
N
H
D
U
S
H
N
-
O

APPENDIX A

ASCII CHARACTERS

mode

text CODE graphics

287 CHARACTER CODES

SCREEN CHARACTERS

mode

text graphics

e
J
N
N
/
F
&

«2

=
I

a

R
H
P
R
A
N
K
X
E
S
C
C
H
H
B
O
V
O
Z
Z
C

A
G
H

T
O
M
M

“
+
e

_
8
0
O
X
,
-

41

,

<SHIFT-RETURN)

switch to upper case

black

cursor up

reverse off

as (CLR) (clear screen)

as CINST> ¢ insert)

broun

light red

@ark grey

grey
light green

i
e
e

e
o

e
e

et
e
e

ee
 e
e

a

e
e

|
 L
s

w
e
t

oe
?

e
e
.
 8

Codes 126-255 are

reversed images of

codes 0-127

APPENDIX A 288 CHARACTER CODES

ASCII CHARACTERS SCREEN CHARACTERS

mode mode

CODE text graphics text graphics

134 light blue 20e N 7

135 light grey 207 0 cr
156 purple zoe F 7
157 cursor left 209 0 e

138 yellow 210 R -

i139 cyan aii os 9

160 space 212 T t

igi § i 213 U r
162 «= ry eid x
163 7 a 2:5 wW o
164 _ - e1e x e

iss 1 i] 2i7 Y i}

16s a 212 2 e
167 1 { 219 € +
168 om = 220 4 |

169 & % a2i a 4
170 (I 222 & 6

171% F t 2ee3 _

172 e s 224

1730 («k t 225 4 0
1740~O4 a 226 =

i733) _ ee7 -

176 ¢ F eee _ _
177) + a ee9 } if
176 + + 230 w a
i7s 4 4 23t ' {

iso (| (] 232 =
1e1 4 | 2323 &% wv
182 | t 234 { i]
163 7 - 235 =f t
164 - 236 s a
1e35 ow - ea7 ob .

186 v ra 238 45 =
167 6 s 239 -
1e6 CO : 240 ~—- r
1e9 4) 2ai 4 a

iso * ® 242 + +
191 4 % 243 4 4
192 - 244 1 1
is3 A e 245 14 |
194 B 1 246 | |
i983 Cc - 247 = -
igg6 bD ~ 248 2° =
187 E - 249 -
196 6F 230 vy a |
i99 6G t 23: os e
200 H i} ese * s
201 =| . 233 4
202 J 4 234

203 K ? 235 & ‘
204 L L
205 ™ \

Appendix B

Color Codes
Color Color Grey ASCII Keyboard
code scale value

0 black 4/4 144 <CTRL-1>
1 white 0/4 5 <CTRL-2>
2 red 3/4 28 <CTRL-3>
3 cyan 1/4 159 <CTRL-4>

4 purple 2/4 156 <CTRL-5>

5 green 2/4 30 <CTRL-6>
6 blue 3/4 31 <CTRL-7>
7 yellow 1/4 158 <CTRL-8>
8 orange 2/4 129 <C= 1>

9 brown 3/4 149 <C= 2>

10 pink 2/4 150 <C= 3>
11 dark grey 3/4 151 <C= 4>

12 grey 2/4 152 <C= 5>
13 light green 1/4 153 <C= 6>

14 light blue 2/4 154 <C= 7>
15 light grey 1/4 155 <C= 8>

Color combinations on the TV/Monitor

(from the Commodore 64-Programmer’s Reference Guide)

How do the colors go together?

+ = very well

o = well

= poorly

screen text color code

color
o 12 3 4 § 6 7 8 9 10 11 12 13 14 15

0 +/+ o + {+ + +)/+ 4+ + +
1 + + +++ o + 0 +]+ + +
2 + fo) +i hr it fo)

3 + o + g 2
4 + oO °

5 + oOo ° ° + o

6 te} + + o + +

7 + + co} o + 0 +/+

8 o + + + + fe)
9 + +)+ + +

10 o oF ° + °

11 + + te) + + + 0 4+

12 + + °0 ° ° + +

13 + + 0 +
14 + + + + fe) to)
15 + + + oo + oo +]+ fe}

Appendix C

Calculations with COMAL

The COMAL operating system can handle 4 types of numerical constants

and variables:

real numbers E.g. 3.232 , 4.6e-12 , Pl, a, sum

integers 71 , -3067, nr+ , item#
hexadecimal numbers $1a , $d7 , $ac00 , no, position

binary numbers %1011 , %10011010 , byte , id

Number ranges:

2.93873588e-39 <= real number <= 1.70141183e+38

-32768 <= integer <= 32767

0 = $00 <= hexadecimal <= $ffff = 65535
0 = %0 <752 binary number <= %1111111111111111 = 65535

Calculations are carried out according to the following rules:

An expression to be evaluated may contain a mix of all number types and

number variables. It may contain a mix of arithmetic operators, relational

operators and boolean operators. Standard COMAL functions and user

defined functions can also be included:

"an expression is evaluated from left to right,

however, various operators have different priority. The calculations

are carried out according to the following priority, highest priority

first:

PRIORITY:

(in order of highest priority)

1 6 6 parentheses

Arithmetic operators:

2. 1 exponentiation 2t3 equals 8

3. «* multiplication 2*3 equals 6

3. / division 7/2 equals 3.5

3. DIV integer division 54 DIV 8 equals 6

3. MOD remainder after division 23 MOD 7 equals 2

4, + addition 2+3 equals 5

4. - subtraction 4-3 equals 1

4. - monadic subtraction -5+2 equals -3

APPENDIX G 291 CALCULATIONS

Logical operators for bitwise comparisons:

(See further explanations in the reference section, Chapter 4.):

5. BITAND bitwise logical ’and’

5. BITOR bitwise logical ’or’

5. BITXOR bitwise logical ’exclusive or’

Relational operators:

(Comparisons occur in logical expressions, which can be TRUE (=1), if

the comparison is true. Otherwise the logical expression has the value

FALSE (=0)).
6 02 < less than 3°2<9 equals TRUE

6 <= less than or equal to 4*3<=10 equals FALSE

6 = equal to 1=2 equals FALSE

6 >= greater than or equal to 17>3 equals TRUE

6 > greater than 7>7 equals FALSE

6 <> not equal to 3*2<>6.01 equals TRUE

Boolean (logical) operators:
(See further explanation of the individual words in Chapter 4.):

7. NOT logical negation

8. AND logical ’and’

8. AND THEN as AND
9. OR logical ’or’

9, ORELSE asOR

Standard functions:

INT (x)} Integer part of x INT(3.2) equals 3

ABS(x) Numerical value of x ABS(-2.5) equals 2.5

SGN (x) Sign of x SGN(-3) equals -1

SIN(x) Sine of x SIN(PI/6) equals 0.5

COS (x) Cosine of x COS(PI) equals -1

TAN (x) Tangent of x TAN(PI/4) equals 1

ATN(x) Inverse tangent of x ATN(1) equals PI/4

LOG(x) Natural logarithm LOG(10) equals 2.3026

EXP(x) Exponential function EXP(2) equals 7.389

SQR(x) Square root of x SQR(Q9) equals 3

APPENDIX C 292

Examples of user defined functions:

FUNC asin(x)

IF ABS(X)=1 THEN
RETURN X*PI/2

ELSE
RETURN ATN(x/SQR(1-x*x))
ENDIF

ENDIF

FUNC log10(x)
RETURN LOG(x)/LOG(10)

ENDFUNC log10

CALCULATIONS

Appendix D

Keyboard and the Screen Editor

The action of special keys in COMAL:

<->

Underlining

<CTRL>
has special meaning when used with other keys. See the following.

<RUN/STOP>

interrupts program execution.

Action is affected by the COMAL statement ESC. See Chapter 4.

<SHIFT/LOCK>

locks <SHIFT> in upper case mode.

Release by pressing the key again.

<SHIFT>
As on atypewriter. If this key is held down while another key is pressed, an

upper case character is produced. Letters appear as upper case. In the

semigraphics mode the symbols on the right front side of the keys are

produced. <SHIFT> pressed together with other special keys has other

functions as described with these keys.

<C=> The Commodore Key:

<C= SHIFT>
Each activation toggles the screen display between lower and upper case.

<C= number>
Pressing the C= key with a number 1-8 switches to colors with color

codes 8-15.

<C= graphics symbol>
Pressing a key with graphics symbols equals the symbol shown on the

front left of the key.

<CLR/HOME>
moves the cursor to the upper left corner of the screen.

APPENDIX D 294 KEYBOARD AND SCREEN

<SHIFT-CLR/HOME>

clears the screen.

<INST/DEL>

is the delete key. It deletes the character immediately to the left of the
cursor, and the remainder of the line moves one space to fill in the gap.

<SHIFT-INST/DEL>
is the insert key. It pushes the character under the cursor and the rest of
the line one space to the right.

<STOP-RESTORE>
If the <STOP> and <RESTORE> keys are pressed at the same time, the
computer is ‘reset’. The program in working memory is not lost.

<RETURN>
Indicates that all information on the current line should be interpreted
and processed.

<CRSR>

There are two keys which are used to move the cursor around the screen.
The arrows indicate directions. Each key has two functions. The function
changes when the <SHIFT> key is depressed.

The Function Keys (<f1> - <f8>):

The function keys can be programmed by the user to perform various

functions. (See further details in Chapter 5 in the section dealing with the

procedure defkey in the COMAL package system.)

When COMAL is started up, these keys have the following functions:

<f1> RENUM + <RETURN
<f2> MOUNT + <RETURN>
<f3> USE turtle + <RETURN>
<f4> AUTO
<f5> EDIT
<f6> LIST
<f7> RUN + <RETURN> + CHR$(11) + <RETURN>

Note on <f7>: In addition to ordinary running of a program, this key can

be used to start a program directly from the disk catalogue. RUN,

RETURN would have the effect of running the program with the name

which follows on the same line. However the text prg also appears after

the program name when the catalogue is displayed, so the system reacts

with an error message, placing the cursor just ahead of the ’error’ prg.

APPENDIX D 295 KEYBOARD AND SCREEN

Then ASCllI-code 11 deletes the rest of the line. Now the line is correct,

and the program can be run when the last RETURN is activated.

<f8> SCAN + <RETURN>

During program execution the function keys have other values: ASCII

values 133 - 140.

After execution of one of the instructions USE graphics or USE turtle

the function keys <ft>, <f3> and <f5> have the following meaning:

<f1> textscreen (show the text screen)

<f3> splitscreen (show graphics screen with 4 lines of text)

<f5> graphicscreen (show the graphics screen)

The Control key <CTRL>:

<CTRL-number>

<CTRL> together with a number 1 - 8 causes subsequent text to be

written with the color indicated on the front of the number key. CCTRL>

together with 9 or 0 toggles inverse text.

See also Appendix B on colors and Chapter 5 on the procedure

quote’mode in the COMAL package system.

During editing of COMAL programs the following CTRL-functions are

useful:

<CTRL> + <letter>

<CTRL-A>: Is used during the correction of a program line which

extends over more than one line on the screen. If the first 1 to 4 characters

in the linie in which the cursor is located is a line number, then the line

number will be rewritten with no gaps. <CTRL-A> can also be used as an

OOPS!-key: If a correction has been made, and C<RETURN> has not yet

been pressed, then pressing <CTRL-A> will cause the line to be printed

again in its original form.

<CTRL-B>: moves the cursor back one word.

<CTRL-C>: corresponds to <STOP>.

<CTRL-D>: dumps the graphics page to the printer. The printout

begins 13 characters from the edge of the paper.

This instruction can only be used with Commodore

MPS801 compatible matrix printers.

<CTRL-E>: changes the cursor color to white.

<CTRL-F>: moves the cursor forward one word.

<CTRL-K>: deletes all characters from the cursor position to the

end of the line.

APPENDIX D

<CTRL-L>:

<CTRL-M>:
<CTRL-P>:

<CTRL-S>:
<CTRL-U>:

<CTRL-V>:

<CTRL-W>:

<CTRL-X>:

<CTRL-Y>:

<CTRAL-Z>:

296 KEYBOARD AND SCREEN

moves the cursor to just after the last non-blank
character on the line.

corresponds to <RETURN>.
Executes a hardcopy("Ip:”). |.e. prints out the text
screen to the printer. The printout begins with acar-
riage return.

corresponds to <CLR/HOME>.
toggles the graphics mode functions for <f1>,
<f3> 0g <f5>. See also the description of the func-
tion keys.
sets up the color choice textcolors(6,6,1).
This corresponds to a blue edge, blue background
and subsequent white text. This is a good choice for
a color display. Note that the current text screen is
cleared by this instruction.
sets up the color choice as textcolors(11,15,0). This
corresponds to a dark grey border, light grey back-
ground and subsequent black text. This instruction
clears the text screen. Itis agood choice when using
a black/white display.
changes the border color... It is followed by a color
choice: <CTRL number> or <C= number>.
changes the background color... It is followed bya
color choice: <CTRL number> or <C= number>.
The selected combination of border, screen and text
colors are stored and will be reset when <STOP-
RESTORE> is executed.

Appendix E

Handling Text with COMAL

Text variables (also called ‘strings’ or ‘string variables’) are specified in

COMAL by means of a sequence of up to 80 characters followed by a$

sign. The first character must always be a letter, and certain special

} characters may not be included in the name.

Examples: name$, text$, from$, long’name$.

Before a text variable can be used, it must be declared (dimensioned).

The system must be provided with information on the maximum number

of characters the text variable will contain, so that room can be reserved

in memory. This is done using the DIM statement:

Examples: DIM text$ OF 80
DIM name$ OF 20
DIM answer$ OF 1

A text variable can contain any character sequence up to the dimen-

sioned length. (Exception: the character ” may not be used alone. If this

character is to be included, you must use ”” to indicate it. If a number is

enclosed within the ””, then the corresponding ASCII code will be part of

the text variable assignment.)

If a text variable is not dimensioned, then the first assignment instruc-

tion will automatically execute: DIM name$ OF 40. If a variable name is not

dimensioned, and the name is used before an assignment has been made,

then an error message will be generated.

Examples of text variable usage:

Make the assignments

slogan$:=”"comal is ok”

textS:="a flower is beautiful”.

The text can be analyzed with the aid of standard functions and operators

APPENDIX E

length:=LEN(slogan$)

position:="mal” IN slogan$

ascil:= ORD(text$)

text$<slogan$

Selection of String Segments:

letter$:=text$(8)

or

letter$:=text$(8:8)

first$:=slogan$(:5)

last$:=text$(13:)

or

last$:=text$(LEN(text$)-8:)

t$:=slogan$(3:8)

t$:="programs”(5:7)

t$:=STR$(1789)(2:3)

t$:= (text$(4:9))(2:4)

text$(3:8):="bee”

298 HANDLING TEXT

length is assigned the value 11, for

slogan$ consists of 11 characters.

See a detailed description of the

function LEN in Chapter 4.

position is assigned the value 3,

since the text "mal” is contained in

slogan$, and the first character in

*mal” is the 3. character in slogan$.

See the more detailed description of

the operator IN in Chapter 4.

ascii is assigned the Commodore

ASCII value for the letter a (= 65).

See the ASCII values for all charac-

ters in Appendix A.

the logical expression will be true

(TRUE = 1), because a precedes c in

the alphabef.

letter$ is assigned the string ”r’, or

which is the 8. character in text$

first$ is assigned the string ”comal”,

i.e. the 5 first characters in slogans.

last$ is assigned the text or "beautl-

ful”, i.e. the last

nine characters in text$.

t$ is assigned the string ’mal is”.
t$ is assigned the string ram.

t$ is assigned the string "78".

tS is assigned the string “owe”,

which is part of a part of a string.

text$ will equal a bee Is beautiful

after this instruction has been exe-

cuted.

APPENDIX E 299 HANDLING TEXT

Selection of text segments from indexed string variables:

DIM name$(3) OF 20

name$(1):=”"Adam Smith”

name$(2):=”Eva Smith”

name$(3):="Krystle Smith”

t$:=nameS(2)(1:5) t$ is assigned the string "Eva S”.

DIM item$(3,2) OF 10

item$(1,1):="book”

item$(1,2):=”"magazine”

item$(2,1):=”car”

item$(2,2):="train”

item$(3,1):="oll”

item$(3,2):="gas”

select$:—item$(2,1)(2:3) select$ is assigned the string ”ar”.

Concatenation of strings:

place$:—”Yankee”=” stadium” strings can be linked together using

the character +.

message$:=slogan$+” and easy” message$ is assigned the string

*comal Is ok and easy”.

hello$:=name$(2)(:3)+text$(9:)+” and ”+slogan$(10:11)

hello$ is assigned the string “Eva is beautiful and ok”.

t$:=("we and ”=slogan$(1:5))(4:8) t$ is assigned the string “and c”.

APPENDIX E 300 HANDLING TEXT

String functions:

The user can define string functions at will to produce string segments:

0010 FUNC uppers(lowers)
0020 FOR Ht:=1 TO LEN(lower$) DO
0030 a:= ORD(lower'(i++))
0040 IF a>64 AND a<94 THEN
0050 a:+128

0060 lower$(I#+):=CHRS(a)
0070 ENDIF
0080 ENDFOR I+
0090 RETURN lowers
0100 ENDFUNC uppers

Examples of the use of the function uppers:
PRINT upperS("merry christmas”) yields the printout:
MERRY CHRISTMAS

PRINT upperS("headline:”)(4:8) gives the printout:
DLINE

Using COMAL it is easy to define the Basic-function mids:

0010 FUNC mid§(a$,start,number)
0020 RETURN aS(start:start+number-1)
0030 ENDFUNC mid$

This function can be used in lieu of mid$, if you wish to use parts of exist-
ing Basic programs.

Appendix F

COMAL Error Numbers
and Messages

The standard version of Commodore 64 COMAL contains error messages

in two languages. When the computer is turned on with the COMAL cart-

ridge in place, English error messages will be in effect. If desired Danish

error messages can be selected by means of the order:

USE dansk

To get back to English, execute:

USE english

After issuing one of these orders, all subsequent error messages will be

printed in the language you have chosen. However, error messages for

the disk operating system will always be in English.

It is of course possible to incorporate error messages in other lan-

guages into a COMAL cartridge. Contact your Commodore national dis-

tribution center for further information.

The COMAL system can give error messages in the following situa-

tions:

* When typing in an instruction line

* When examining program structure (using scan)

* — During a run (run-time errors)

The remainder of this Appendix includes a list of all error messages and

their corresponding numerical code. Note that the list is given both in

English and in Danish for those of you who may be curious about the

strange language which COMAL can use:

Dynamic Syntax Error Messages:
<language element> not expected

too much on this line

<language element> ikke forventet

APPENDIX F 302 ERROR MESSAGES

<language element> missing

more language elements are expected on this line

<language element> mangler

<language element 1> expected, not <language element 2>

<language element 1> forventet, ikke <language element 2>

Dynamic Structure Error Messages (Prepass):
<statement 1> without <statement 2>

<statement 1> uden <statement 2>

<statement> missing

<statement> mangler

<statement 1> expected, not <statement 2>

open- and close statements do not fit together

<statement 1> forventet, ikke <statement 2>

<statement> not allowed in control structures

DIM, DATA, IMPORT, PROC and FUNC are not allowed in control struc-
tures

<statement> ikke tilladt i styrestrukturer

import allowed in closed proc/func only

import kun tilladt i lukket proc/func

wrong type of <statement>

E.g. 1/ Text in WHEN-line expecting numeric expression.

2/ Variable names in FOR and ENDFOR differ

forkert slags <statement>

wrong name in <statement>

ENDFOR, ENDPROC and ENDFUNC must use same name as in FOR,

PROC and FUNC respectively

forkert navn i <statement>

<name>: name already defined

The same name must not refer to different variable types inside the same

scope. E.g. a, a4, a$
<name>: navn allerede defineret

<name>: unknown label

A label is missing within the current scope. E.g. A GOTO statement inside

a procedure cannot refer to a label outside the procedure

<name>: ukendt etikette

APPENDIX F 303 ERROR MESSAGES

illegal goto
You cannot jump into a structure by means of GOTO

ulovlig goto

Dynamic Run Time Error Messages:

<name>: unknown statement or procedure E.g. Call of a package proce-

dure without previous activation of the package by: USE package name

<name>: ukendt statement eller procedure.

<name>: not a procedure

The name is a variable, package, function or a label, but not a procedure.

<name>: ikke en procedure

<name>: unknown variable
You have not assigned a value to the variable inside this scope.

<name>: ukendt variabel

<name>: wrong type

E.g. 1/ The variable is a string variable, but you try to use it as a numeric

variable. 2/ Remember that RESTORE label: must be positioned imme-

diately before a DATA line.

<name>: forkert type

<name>: wrong function type

<name>: forkert funktionstype

<name>: not an array nor a function

The name might be a simple variable, a procedure ..?

<name>: hverken tabel eller funktion

<name>: not a simple variable

The name might be an array, a procedure ..?

<name>: ikke en simpel variabel

<name>: unknown array or function

The name has not yet been dimensioned or defined.

<name>: ukendt tabel eller funktion

<name>: wrong array type
E.g. You try to refer to a two-dimensional array as though it is

a one-dimensional array.

<name>: forkert tabeltype

APPENDIX F

<name>:

304 ERROR MESSAGES

import error
The name in the IMPORT statement is unknown or the type is wrong.
<name>:

<name>:

import fejl

unknown package
The COMAL system does not recognize the package name in USE.
Remember that packages from diskette must be LINK’ed.
<name>:

<name>:

<name>:

<name>:

<name>:

<name>:

<name>:

<name>:

<name>:

ukendt pakke

array redefined

navn redefineret

name already defined

navn allerede defineret

string not dimensioned

tekstvariabel ikke defineret

not a package

ikke en pakke

RUN TIME ERROR, WHICH CAN BE TRAP’PED:

0 report error

report fej!

argument error
E.g. 1/ Square root of a negative number. 2/ LOG to anon posi-
tive number

argument fej!

overflow

A number is too big. See Appendix C
overloeb

division by zero

division med nul

substring error

E.g. 1/ a$:=text$(from:to) requires 1 <=from<=to+1.
2/ text$(from:to):=a$ requires to<=LEN(text$)
deitekst-fej|

value out of range

uden for vaerdiomraade

APPENDIX F

6

10

11

13

14

15

16

17

18

30

305 ERROR MESSAGES

step = 0

step = 0

illegal bound

DIM statements require: lower limit<=upper limit

ulovlige graenser

error in print using

The format is missing or has wrong syntax.

fejl i print using

index out of range

Index exceeds the limits from the DIM-statement.

ulovlig indexvaerdi

invalid file name

A file name must not exceed 69 characters

ulovligt filnavn

verify error

The program on disk and the program in memory differ.

Remember that new names and typing errors change the pro-

gram in memory.

verify fejl

program too big

program for stort

bad comal code

The program file has been changed, or transmission error

daarlig comalkode

not comal program file

Possibly the file is a Basic program file?

ej save-fil

program for other comal version

program til anden comalversion

unknown file attribute

ukendt filattribut

invalid color

-1<=color code<=15

ulovlig farve

APPENDIX F

31

32

33

34

35

36

306 ERROR MESSAGES

invalid boundary

In viewport: 0<=vxmin<=vxmax<=319;

0<=vymin<=vymax<=199

ulovlig graense

invalid shape number

O0<=shape number<=47 (or 46 if turtle-sprite is visible)

ulovlig tegning-nummer

shape length must be 64

tegningens laengde skal vaere 64

invalid sprite number

0<=sprite number<=7 (or 6 if turtle is visible)

ulovlig sprite-nummer

invalid voice

1<=voice<=3

ulovlig stemme

invalid note

See Index for note and frequency.

ulovlig node

Run Time Errors, Which cannot be TRAP’ped:

51

52

53

54

system error

Serious error in COMAL system. Try the NEW command.

system fejl

out of memory

Memory shortage for program, names, data and function calls.

All memory is released except for the program memory. E.g.

too many recursive calls.

for lidt hukommelse

wrong dimension in parameter

The actual and the formal parameters in a procedure call must

have the same dimension.

forkert dimension i parameter

parameter must be an array

If the formal parmeter is an array, must be also the actual

parameter

parameter skal vaere en tabel

APPENDIX F

55

56

57

58

59

60

61

62

67

307 ERROR MESSAGES

too few indices

The array is called with too few indices.

for faa indices

cannot assign variable

E.g. You have tried to assign a string to a name which is not

a String variable.

kan ikke tildele variabel

ikke implementeret

not implemented

con not possible

CON is not allowed when:

1) the computer is just switched on

2) after NEW, LINK, DISCARD or SCAN

3) after an error

4) interruption of a command (ex. a procedure call)

5) the program has terminated with END

6) the program has been revised

7) anew name is added

con ikke mulig

program has been modified

E.g. After a procedure modification, a RUN or a SCAN must

precede a call as a direct command to the procedure.

programmet er blevet modificeret

too many indices

for mange indices

function value not returned

A RETURN statement has not been executed.

funktionsvaerdi ikke returneret

not a variable

ikke en variabel

parameter lists differ or not closed

The external procedure must be CLOSED, and the parameters

must match the ones of the call.

parameterlister afviger eller ikke lukket

APPENDIX F

68

73

74

75

76

77

78

79

308 ERROR MESSAGES

no close wrong parameter type

The parameter types of the procedure call do not match the

parameters in the procedure heading.

forkert parametertype

non-ram load

An attempt has been made to store a package in occupied RAM

memory.

ikke-ram indlaesning

checksum error in object file

An error in the LINK’ed file

checksumfejl i objektfil

memory area is protected

An attempt has been made to LINK a modu! into the area of

another package or the COMAL program.

hukommelsesomraade beskyttet

too many libraries

A package modul is often called a library; the number of

libraries<=10, but there are no limits on the number of

packages.

for mange biblioteker

not an object file

The attemped LINK’ed file is not an object code file

ikke en objekttil

no matching when

A CASE-expression matches no WHEN line. Add an

OTHERWISE line.
ingen passende when

too many parameters

The procedure call contains too may parameters.

for mange parametre

Syntax Errors:
101 syntax error

The COMAL system cannot find a more appropriate error

message.

syntaksfej|

APPENDIX F

102

103

104

106

108

109

110

111

112

113

114

309 ERROR MESSAGES

wrong type

The statement contains an expression of the wrong type.

forkert type

statement too long or too complicated

saetning for lang eller for kompliceret

statement only, not command

kun som saetning, ikke som kommando

line number range: 1 to 9999

linienumre er fra 1 til 9999

procedure/function does not exist

procedure/funktion findes ikke

structured statement not allowed here

A structured statement is not allowed in single line versions of

IF-, FOR-, WHILE- or REPEAT statements.

struktureret saetning ikke tilladt her

not a statement

The first character is not a valid character for a statement on

this line.

ikke en saetning

line numbers will exceed 9999

if AUTO, RENUM or MERGE continues, line numbers will

exceed 9999.

linienumre vil overskride 9999

source protected!!!

In COMAL, lines can be protected against LIST’ing. See

program on Demo-disk.

kilde beskyttet!!!

illegal character
The symbol cannot begin with this character.

ulovligt tegn

error in constant

The syntax for the real-, binary or hexadecimal contstant is

wrong.

fejl i konstant

APPENDIX F 310 ERROR MESSAGES

115 error in exponent

The syntax of the exponent is wrong.

fejl i eksponent

Input/Output- Error Messages, Which can All be TRAP’ ped:
200 end of data

An attempt has been made to read past the last DATA value.
ikke flere datalinier

201 end of file

An attempt has been made to read past the last record in a
sequential file.

slut paa fil

202 file already open

A file with the same stream number has already been opened.
fil allerede aaben

203 file not open

fil ikke aaben

204 not input file

You cannot read a file, which has been opened with WRITE.
ikke en inputfil

205 not output file

You cannot write to a file, which has been opened with READ.
ikke en outputfil

206 numeric constant expected
An attempt to read a non-numeric value has been made.
numerisk konstant forventet

207 not random access file
As the file has been opened as a sequential file, you cannot
address an individual record.
ikke en fil med direkte tilgang

208 device not present

The chosen device has not yet been connected to the serial bus.
enhed ikke tilstede

APPENDIX F

209

210

211

212

213

214

215

216

217

218

219

311 ERROR MESSAGES

too many files open

No more than 9 files may be opened at the same time. Only 1

random access file may be opened at a time

for mange filer aabne

read error

During read-in from the serial bus there has been no answer

before time-out.

laesefejl

write error

During print-out to the serial bus there has been no answer

before time-out.

skrivefejl

short block on tape

(kort blok paa band)

long block on tape

lang blok paa baand

checksum error on tape

checksumfejl paa baand

end of tape

slut paa baand

file not found

fil ikke fundet

unknown device

ukendt enhed

illegal operation

ulovlig operation

i/o break

i/o afbrydelse

MESSAGES FROM THE DISK OPERATING SYSTEM

(ONLY IN ENGLISH):

222

223

read error (The data block is not present.)

read error (Checksum error in the data block)

APPENDIX F 312 ERROR MESSAGES

224 read error (Error in byte decoding)

225 write error (Write/read error)

226 write protect on (The diskette is write protected.)

227 read error (Checksum error in the header)

228 write error (Long data block)

229 disk id mismatch (UNMOUNTED or nonmatching diskette)

230 syntax error (Ordinary syntax error)

231 syntax error (Incorrect DOS-command)

232 syntax error (Line too long)

233 syntax error (Incorrect file name)

234 syntax error (No file was indicated)

239 syntax error (Incorrect pass-command)

250 record not present (Reading beyond the tast record)

251 overflow in record (Record length overrun)

252 file too large (No room for the random file)

260 write file open (An already opened file opened again)

261 file not open (Tried to access an unopened file)

262 file not found (The file does not exist in the disk drive.)

263 file exists (The file is already present on the disk.)

264 file type mismatch (Operation on files of different type)

265 no block (The block is reserved.)

266 illegal track and sector (Track/sector does not exist.)

267 illegal system t or s (Illegal system track or sector)

APPENDIX F 313 ERROR MESSAGES

270 no channel (There is no available channel.)

271 dir error (Directory error)

272 disk full (The diskette is filled up.)

273 cbm dos vx.x yyyy (Diskette status)

274 drive not ready (No diskette)

APPENDIX F 314 ERROR MESSAGES

Appendix G

User Comments and

Corrections

These pages are intended to be used for your comments and corrections.

The authors and publishers of this manual will be pleased to learn about

your comments. It will be advantageous to all users that errors are docu-

mented and corrected.

Thanks for your help!

APPENDIX G 316 USER COMMENTS

w
e
y

Appendix H

Sample COMAL Programs

Music Programs

0010
0020
0030
aa4o
0050
0060
0070
0080
0090
90100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320

0010
0020
0030
0040
0050
0060
a070
0080
0090
0100
0110
0120
0130
o140
0150

// save "@Music i"
DIM codes OF 3
USE sound

Loop
PAGE
PRINT "Choose voice (1,2 or 3)"
PRINT "Choose note (a2,c4,65,...)"
PRINT "The numbers = octave:”
PRINT "’cd&’ is middle C (4. octave — 440 Hz)"
PRINT "’ f5#’ is 'f sharp’ in the octave above"
PRINT AT 22,12 "LESSON 1: We play a single note..."
PRINT AT 20,1: "(Press (RUN/STOP) to end ...)”
PRINT
INPUT AT 8,12 "voice? "= voice
INPUT AT 9,15 "note-codet "s codes
Play (1, code#)

ENDLOOP

PROC play (voice, code$)

IF codes ()"z" THEN
note (voice, codes)
gate(voice,1) // attack and decay

ENDIF :
pause(16) // sustain
gate(voice,O) // release

ENDPROC play

PROC pause (sec’ 32)
TIME O
WHILE TIME (1.875¥sec’32 DO NULL

ENDPROC pause

// save "@Music 2"
DIM codet OF 3
USE sound

LOOP
PAGE
PRINT "Type in a note (a2,b5,c4,...)"
PRINT "The 3 voices are played in succession.”

PRINT AT 22,13 "LESSON 2: 3 voices are played..."
PRINT AT 20,1! "Press (RUN/STOP) to end..."

PRINT

FOR voice:=1 TO 3 DO
soundtype (voice, 3)

ENDFOR voice

APPENDIX H 318 SAMPLE PROGRAMS

0160
0170

0180
0190

9200

0210
0220
0230

a240

0250
0260

0270

9280

0290

0300

0310
0320
0330
0340

0350

0360

0370
0380

0390

0010
0020
0030
0040
0050
0060
0070
9080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
9210
0220
0230
0240
0250
0260
0270
9280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380

INPUT AT 7,1: "note-code® "i codes

FOR voice:=1 TO 3 DO
PRINT AT 10,1: “voice ":voice
play (voice, codes)
Play (voice, "z")

ENDFOR voice

ENDLOOP

PROC play (voice, codes)

IF code#<{)"z" THEN
note (voice, codes)
gate(voice,1) // attach and decay

ENDIF
Pause(8) // sustain

gate(voice,O) // release

ENDPROC play

PROC pause (sec’ 32)
TIME 0
WHILE TIME <1. 875#sec’ 32 DO NULL

ENDPROC pause

// save "@Music 3"
DIM codes OF 2, answers OF 5

USE sound

Loop
PAGE
PRINT “Let’s play some notes together”
PRINT "and create a simple melody..."
PRINT AT 22,18 "LESSON 3: We play a melody..."

FOR voicei=1 TO 3 DO
soundt ype (voice, 3)

ENDFOR voice

INPUT AT 4,12 "continue or end (c/e)? "! answers

IF answers="e" THEN STOP
INPUT AT 6,12 "Voice (1/2/3)? "1 voice

play’ melody

ENDLOOP

PROC play (voice, code)
IF code$i)"z" THEN

note (voice, codes)
gate(voice,1) // attack and decay

ENDIF
Pause(tid) // sustain

gate(voice,0O) // release

ENDPROC play

PROC play’melody // Row, Row, Row Your Boat

melody:
DATA "c4",8, "2°02, "c4",8, "2" 2, "cd", 8, "da" 4

DATA "ea", 6, ar aa a, "ea", a, "da", 4, "ea", 8

DATA "fa" 4, "g4",16, "2" 8, "co" 4

APPENDIX H 319 SAMPLE PROGRAMS

0390 «DATA "cS", 4, "c5", 4, "94", 4, "ga", 4
0400 DATA "g4",4, "ed", 4, "24", 4, "eG", 4
0410 DATA "c4",4,"c4", 4, "C4", 4, "2", 8, "ga", B
0420 DATA "Ff4",4, "e4", 8, "d4", 4, "C4", B
0430
0440 RESTORE melody
0450 WHILE NOT EOD DO
0460 READ codes, tid
0470 play (voice, cade®)
0480 ENDWHILE
0490
O500 ENDPROC play’ melody
0510
0520 PROC pause (sec’ 32)

0530 TIME O
0540 WHILE TIME (1.8754%sec’ 32 DO NULL

0550 ENDPROC pause

0010 // save "@Music 4"
0020 DIM codes OF 2
0030 USE sound
0040
0050 LOOP
0060
0070 PAGE
0080 PRINT AT 22,15 "LESSON 4: Sound level, type and ADSR..."

0030 PRINT AT 1,12 "Sound level and sound type can be”

e100 PRINT "selected for each voice."
0110 PRINT
0120 PRINT "Choose the parameters in SOUNDTYPE, "

0130 PRINT “and choose the ADSR values..."

0140 PRINT
0150 PRINT "Your choices will remain valid until"

0160 PRINT “the parameters are redefined.”

O170
0180 INPUT AT 11,12 “VOICE (1/2/35)? "“& voice

0190 INPUT AT 13,15 "VOLUME (0-15)? "3 vol

0200 INPUT AT 15,12 “SOUNDTYPE (1/2/3/4)? "! type

0210 soundtype (voice, type)

0220 volume (vol)
0230 PAGE
0240 PRINT "Voice:"svoices" — Sound type!" ;type

0250 PRINT "The sound level is";vol;"."

0260 PRINT
0270 PRINT " id

0280 PRINT "ADSR parameters: attack, decay,"
0290 PRINT "Sustain and release are chosen..."

Q300 PRINT
0310 PRINT

0320 PRINT " *"
0330 PRINT " eo Each parameter can"

0340 PRINT " #* RHEE vary from 0 to 15.”

O350 PRINT " # *"
0360 PRINT "+ *"
0370 PRINT" A D S R"
0380 PRINT
0390 PRINT "A! attack time D: decay time"

0400 PRINT "S: sustain level R: release time"

0410 PRINT " "

0420 INPUT AT 21,15 "A,D,S,R? "8 a,d,s,r
0430 adsr(voice,a,d,s,1r)
0440
0450 play’ melody
0460

APPENDIX H 320 SAMPLE PROGRAMS

0470 ENDLOOP
0480
0490 PROC play (voice, codes)
oS00 IF code$<)"z" THEN
0510 note (voice, code$)
0520 gate(voice,1) // attack and decay
0530 ENDIF
0540 Pause(tid) // sustain
O350 gate(voice,O) // release
0560 ENDPROC play
0570
0580 PROC play’melody // Row, Row, Row Your Boat
0590 melody:
0600 DATA "C4", 8, wge 2, "ed", 8, Me pe 2, "o4", 8, "dg", 4

0610 DATA "ed", 8,"2",8,"e6",8,"d4",4,"e4", 6
0620 DATA "F4",4, "g4",16,"2",8, "05" 4
Q630 DATA "cS", 4, "cS", 4, "g4", 4, "ga" 4
640 DATA "94", 4, "e6",4,"e4",4, "84" 4
0650 DATA "ca", 4, "04", 4, "C4", 4,"2", 8, "ga" B
0660 DATA "“f4",4, "24", 8, "da", 4, "c4",8
0670
0680 RESTORE melody
0690 WHILE NOT EOD DO
0700 READ codes, tid
0710 Play (voice, codes)
o720 ENDWHILE
O730
0740 ENDPROC play’ melody
0750
0760 PROC pause (sec’ 32)
0770 TIME 0
Q780 WHILE TIME (1.875%*sec’ 32 DO NULL
0790 ENDPROC pause

Q010 // save "@Music 5”
0020 DIM codes OF 3
0030 DIM tone#(50), ads’ pause#(50), r’ pause#(50)
0040 USE sound
0050 volume (15)
0060 soundtype (1, 2)
0070 adsr(1,6,6, 8,6)
0080
00390 nor=
0100 WHILE NOT EOD ba
0110 not+i

0120 READ code$%, tim
0130 tone# (no) t=frequency (codes)
0140 ada’ pause# (no) s=t ime

0150 yr’ pause# (no) s=t ime?

O160 ENDWHILE
0170
Q180 tone#(no+1) #=0
0190 setscore(1, tone#(), ads’ pause#(), r’ pause#())
0200 playscore(1i, 0,0)

0210
9220 number: =0

0230 WHILE NOT waitscore(1,0,0) DO
0240 number :+1
0250 PRINT number:

0260 ENDWHILE
0270 END
0280
0290 PROC pause (sec’ 32)
o3500 TIME ©

APPENDIX H

0310
0320
0330
0340
0350
0360
9370
0380
0390
0400

321

WHILE TIME <(1.875#sec’32 DO NULL
ENDPROC pause

DATA
DATA
DATA
DATA
DATA
DATA
DATA

"ea", 8, "ea", a, "ca", 8, "da", 4

"ed", 8, "ea", 8, "dan, 4, "B44", 8

“Far, 4, "ga", 16, "OB", 4

"os", 4, "es", 4, "94", 4, "94", 4

"ga", 4, "eg", 4, "eg", 4, "eA", 4

"C4", 4, "C4", 4, Moan, 4, "Qa", 8

"FO", 4, "eA", 3, "da", 4, "oA", 3a

Sprite Editor

The program SPRITEEDITOR is on the COMAL demonstration diskette

\(and tape). This program can be used to create sprite images. Adrawing

which has been prepared and saved using this program can later be

loaded into another program using the order:

loadshape (<drawingno>,<filenames>)

SAMPLE PROGRAMS

The sprite editor program starts by displaying the following:

Each of the dots corresponds to a dot on the screen.

G
O
O
B
M
M
O
o
Z

O
o
2
x
X
S
G

F
r
a
v
u
r
r

O
O
A
K
D
P
D
O
-
4
 ICOLOR: 08

fg! 3 DX: @
NDY: 6
GROUND: @
R 2: @
R 3: 8

S: H
HELP

Movement of the drawing cursor from dot to dot is achieved using the

cursor keys. The dots can be marked to indicate that they are to have a

color different from the background color.

Choices are available from a menu shown on the right-hand side of the

screen. If HELP is required, press H. A screen with user information will

then appear.

APPENDIX H 322

Adress List

0010
0020
0030
0040
0050
0060
0070
0080
9030
0100
0110
0120
01350
0140
0150
0160
0170
0180
01390
9200
0210
0220
0230
0240
0250
0260
0270
9280
929390
0300
0310
0320
Q330
0340
0350
0360
0370
9380
0330
0400
0410
0420
0430
0440
0450
0460
0470
0480
0450
0500

// save "@Addr List Demo"
DIM reply# OF 1, name#%(100) OF 40
DIM street$(100) OF 40, city$(100) OF 40
DIM phone#(100) OF 20, flag® OF 40
DIM searchkey$ OF 40, strings OF 150
numbert=0 // number of records
PAGE
PRINT "This program illustrates the use of"
PRINT “SEQUENTIAL FILES. It can be used to"
PRINT "create a list of names, addresses”
PRINT “and telephone numbers. "

PRINT "Each record will have the format:"
PRINT
PRINT " name"
PRINT ” street"
PRINT “ city"
PRINT " phonenumbe r"

PRINT
PRINT
PRINT "Press any key to continue..."

wait’ for’ keystroke

LOOP
show’ menu
flagsia""
wait’ for’ keystroke

CASE reply% OF
WHEN "1"

load’ file

WHEN "2" ,
create’ record

WHEN "3"
list’ file

WHEN "4"
search’ file

WHEN "5"
sort’ file

WHEN "6"
change’ record

WHEN "7"
delete’ record

WHEN "8"
save’ file

OTHERWISE
PRINT "Tllegal reply..."
wait’ for’ keystroke

ENDCASE
ENDLOOP

SAMPLE PROGRAMS

APPENDIX H 323 SAMPLE PROGRAMS

0510 PROC show’ menu
0520 PAGE
0530 PRINT “-----====s= MAIN MENU ss===---—-— 7
o840 PRINT
0550 PRINT
0560 PRINT " <1) LOAD the file”
0570 PRINT “ (2) CREATE a record"
0580 PRINT " (3) LIST the file"
0590 PRINT " (4) SEARCH the file"
0600 PRINT " <S> SORT alphabetically”
0610 PRINT " (6) CHANGE a record"
0620 PRINT " <7) DELETE a record"
0630 PRINT " (8) SAVE revised file"
0640 PRINT
0650 PRINT
0660 PRINT "Records: "snumber
0670 IF number=0 THEN flag$!="Please load or create a file..."

0660 PRINT
0650 PRINT flag®
0700 ENDPROC show’ menu
0710

0720 PROC load’ file
0730 OPEN FILE 1, "Addresses", READ
0740 INPUT FILE 1: number
0750 FOR no:=1 TO number DO
0760 INPUT FILE 12 names (no)
0770 INPUT FILE 12 street%(no)
0760 INPUT FILE 1! city# (no)
07390 INPUT FILE 1! phones (no)
0800 ENDFOR no
oB10 CLOSE FILE 1
0820 ENDPROC load’ file
QOB30
0840 PROC create’ record
o850 PAGE
0860 PRINT "stiss CREATE A NEW RECORD i823”
0a70 PRINT
0880 PRINT
9830 IF number=100 THEN flag$!="No more room for data!"

0900 IF flag#="" THEN
0910 numberi+1
0920 INPUT "Name “a names (number)
0930 INPUT "Street "= streets (number)
0940 INPUT "City "s citys (number)
0950 INPUT "Phone "! phones (number)

0960 ENDIF
0970 ENDPROC create’ record
0980
0990 PROC list’ file
1000 PAGE

1010 PRINT “cites LISTING THE FILE secs"

1020 PRINT
1030 IF number=0 THEN
1040 flag$t]@"No files in memory!"
1050 PRINT
1060 ELSE
1070 FOR not=i TO number DO print’ record (no)

1080 ENDIF
1090 ENDPROC list’ file
1100
1110 PROC search’ file
1120 PAGE
1130 PRINT “ese: FILE SEARCH #2882"

1140 PRINT
1150 PRINT
1160 flag#i="I am searching...”

APPENDIX H 324 SAMPLE PROGRAMS

1170 INPUT “Search key! "! searchkey$
1180 FOR not=1 TO number DO
1190 string$!=name% (no) +st reet$ (no) +city$ (no) +phones (no)
1200 IF searchkey$ IN string$ THEN print’ record (no)
1210 ENDFOR no
1220 flag$s=""
1230 ENDPROC search’ file
1240
1250 PROC print’ record (no)
1260 PRINT
1270 PRINT AT 0,108 "—------~------~- (",no,")"
1280 PRINT AT 0,10: names (no)
1290 PRINT AT 0,10: streets (no)
1300 PRINT AT 0,10: city$(no)
1310 PRINT AT 0,10: phones (no)
1320 PRINT
1330 wait’ for’ keystroke

1340 ENDPROC print’ record
1350
1360 PROC sort’ file
1370 PAGE
1380 PRINT “tae23 SORT BY NAME ALPHABETICALLY teas:"
1390 PRINT
1400 PRINT
1410
1420 PROC swap(REF a%,REF b%) CLOSED
1430 C$i=aS; ati=b$: b¢:acs
1440 ENDPROC swap
1450
1460 REPEAT
1470 no’ swap?=TRUE
1480 FOR not=1 TO number-1 DO
1490 PRINT AT 10,1: "Sorting... ",no
1500 IF name$(not1) (nameé(no) THEN

1510 swap (names (no) , names (no+1))
1520 swap (st reet$ (no), st reet% (not+1))
1530 swap (city$(no), city#(no+l1))
1540 swap (phones (no), phones (no+1))
1550 no’ swap!=FALSE

1560 ENDIF
1570 ENDFOR no
1580 UNTIL no’ swap
1590 ENDPROC sort’ file
1600
1610 PROC change’ record
1620 PAGE
1630 PRINT "ties: CHANGE A RECORD issee"
1640 PRINT
1650 PRINT
1660 INPUT "Which record number? “: no
1670 IF no (=number THEN
1680 print’ record (no)
1690 INPUT AT 14,1: "Is this the right record ? (y/n)? “s replys
1700 PRINT
1710 PRINT
1726 IF replys IN "“yY" THEN
1730 INPUT "Name fo": names (no)
1740 INPUT "Street : "t street$(no)
1750 INPUT "City ' "a city$ (no)
1760 INPUT "Phone =| ": phones(no)
1770 ENDIF
1780 ELSE
1790 flag#:="There are only "+STR#(number)+" records"
1800 ENDIF
1810 ENDPROC change’ record
1820

APPENDIX H 325 SAMPLE PROGRAMS

1830 PROC delete’ record

1840 PAGE
1850 PRINT “si25s DELETE A RECORD :ftes"
1860 PRINT
1870 PRINT
1880 INPUT "Which record number? "t record
1890 IF record) number THEN
1900 flag$!="Use a smaller record number!”

1910 ELSE
1920 print’ record (record)

1930 PRINT
1940 INPUT “Is this the right record (y/n)? "3 replys

1950 PRINT
1960 IF reply# IN "“yY" THEN
1970 FOR not=record TO number-1 DO
1980 name$ (no) #=name$ (no+1)
1990 st reet$ (no) t=st reet$ (not+1)
2000 cityS (no) t=citys (no+rt)
2010 phones (no) ¢=phones (no+1)
2020 ENDFOR no
2030 numberi-1
2040 ENDIF
2050 ENDIF
2060 ENDPROC delete’ record
2070
2080 PROC save’ file
2090 PAGE
2100 PRINT "sees SAVING FILE TO DISK ttee2"
2110 OPEN FILE 1, "@Addresses", WRITE
2120 PRINT FILE 1! STR (number)
2130 PRINT
2140 PRINT
2150 FOR no?=1 TO number DO
2160 PRINT FILE 1: name$(no)
2170 PRINT FILE 1: street%(no)
2180 PRINT FILE 1& city$(no)
2150 PRINT FILE 1: phone% (no)
2200 ENDFOR no
2210 CLOSE FILE t
2220 ENDPROC save’ file
2230
2240 PROC wait’ for’ keystroke

2250 PRINT
2260 PRINT "¢ >... "3
2270 REPEAT
2280 reply$:=KEY$
2290 UNTIL reply <> CHRS (0)
2300 PRINT AT 0,2¢ replys
2310 ENDPROC wait’ for’ keystroke

0010 // save "plotter demo"

0020
Q030 DIM sc$ OF 1
0040
0050 setup’ plotter
0060 //
0070 // MAIN PROGRAM
o0ao //
0090 demo’ size
Q@100 demo’color
0110 demo’ case
0120 demo’ rotation
0130
0140 square (100)

APPENDIX H 326

0150
o160
0170
0180
01390
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
O330
03490
0350
0360
0370
9380
0390
0400
0410
0420
0430
0440
9450
0460
9470
0480
0490
0500

0510
0520
9530
0540
0550
0560
0570
0380
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
9710
0720
9730
0740
9750
0760
0770
0780
0730
9800

Blankline(2)
dotlines (15)
blank’ line (8)
Circle (240, 240, 200)
Blank’ line(14)
spinsquares (150)

setup’ plotter

END // MAIN PROGRAM

PROC demo’ size
FOR ift=0 TO 3 DO

select’ size(i)

print’ hello
blank’ line (1)

ENDFOR i
ENDPROC demo’ size

PROC demo’ color
select’ size(2)
FOR it=0 TO 3 DO

switch’ color(i)
print’ hello

ENDFOR i
ENDPROC demo’ color

PROC demo’ case
blank’ line(1)
select’case(O) // upper case
print’ hello
select’case(1) // lower case
print’ hello

ENDPROC demo’ case

PROC demo’ rotation
blank’ line (2)
rot’ char (1)
print’ hello

rot’ char (Q)
print’ hello

ENDPROC demo’ rotation

PROC dotiines(n)
zero’ pen("h")

FOR it=0 TO n DO
plot ("m", 0, -i#20)
dot’ line (i)
Plot ("d", 400, -i#20)

ENDFOR i
blank’ line (4)
dot” line (o)

ENDPROC dotlines

PROC circle(x0, yO, radius)
plot ("m", x0, yO)
zero’ pen("i")
plot ("r", radius, 0)
FOR v:=0 TO 360 STEP 5 DO

ti=PI#v/180
xi =padius#COs (+t)
y?=radius#SIN(t)

plot("j",x,y)
ENDFGOR v

SAMPLE PROGRAMS

APPENDIX H 327

0810
0820
0830
0840
08so0
0860
0870
0aB80
0890
0300
0910
0920
0930
0940
0950
90960
0970
0980
0990
1000

1010
1020
1030
1040
1050
1060
1070
1080
1030
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
12490
1250
1260
1270
1280
1230
1300
1310
1320
1330
1340
1350
13690
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

blank’ line (4)
ENDPROC circle

PROC square (side)

blank’ line (3)
plot ("j",0, side)
plot ("j", side, side)
plot ("j", side, 0)
plot ("3",0,0)

ENDPROC square

PROC spinsquares(s)
plot ("m", 240, 240)
zero’ pen("i")
FOR vi=0 TO 360 STEP 20 DO

tr=Pl#v/180
draw’ box (s, t)

ENDFOR v
blank’ line (4)

ENDPROC spinsquares

PROC draw’ box (s, t)
plot ("j3", s#COS (t), s¥#SIN(t))

SAMPLE PROGRAMS

plot ("9", s#SQR (2) #COS (t+PI/4), s¥SGR(2) #SIN(t+PI/4))

plot ("j", s#COS(t+PI/2), s#SIN(t+PI/2))
plot ¢"j", 0,90)

ENDPROC draw’ box

PROC blank’ line(b1)
plotter’ on
FOR i:=1 TO bl DO

PRINT FILE 6:
ENDFOR i
plotter’ off

ENDPROC blank’ line

PROC print’ hello
plotter’ on
PRINT FILE 6: "HELLO!"
plotter’ off

ENDPROC print’ hello

// PLOTTER PROCEDURES

PROC plotter’ on

OPEN FILE 6, "u6i", WRITE
ENDPROC plotter’ on

PROC plotter’ off

CLOSE FILE 6
ENDPROC plotter’ off

PROC switch’ color (pen)

talk("2", STRS (pen))
ENDPROC switch’ color

PROC select’ size (size)
talk ("3", STRS (size)).

ENDPROC select’ size

PROC select’ ascii
talk("0O", any

ENDPROC select’ ascii

PROC plot (sc$, x, y)

APPENDIX H 328

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1630
1700
1710
1720
1730
1740
1750
1760
1770
1780
1730
1800
1810
1820
1830
1840
1850
1860

0010
0020
0030
0040
0050
o060
9070
0080
9090
0100
0110
0120
91350
0140
0150
0160
0170
0180
0190
0200
a210
0220
0230

talk("1", sc$+" "“4+STRS(x)+" "+STRE(y))
ENDPROC plot

PROC zero’ pen(zp$)

// zp% = h/i for abs/relative
talk("1", zp$)

ENDPROC zero’ pen

PROC rot’ char(rot)
// rot=0/1 for hor/rot 90 deg CW
talk("4", STR (rot))

ENDPROC rot’ char

PROC dot’ line (dash)
// dash=0 to 15, 0 = unbroken
talk ("5", STR (dash))

ENDPROC dot’ line

PROC select’ case (nr)
// nr=0/1 for upper/lower case
talk ("6", STR€¢(nr))

ENDPROC select’ case

PROC reset’ plotter
talk(7,"")

ENDPROC reset’ plotter

PROC setup’ plotter
select’case(1) // lower case
Switch’color(1) // blue
rot’char(0) // horizontal
Got’ line(O) // unbroken
select’size(1) // normal

ENDPROC setup’ plotter

PROC talk (sat, texts)
OPEN FILE 100, "u6:/s"+sa$, WRITE
PRINT FILE 100: texts
CLOSE FILE 100

ENDPROC talk

// save "@Train Demo"

SAMPLE PROGRAMS

PAGE
PRINT AT 2,2: "ELECTRIC TRAIN DEMO"
PRINT AT 4,27 "Your train should start at the station"
PRINT AT 5,2! “with the passage detector just behind"
PRINT AT 6,2: "the last car. Start the train and then"
PRINT AT 7,2: "press any key to turn control over" ,

PRINT AT 8,2: “to your computer..."

WHILE KEY$=CHR$(0) DO NULL
PAGE
PRINT AT 2,2: "ELECTRIC TRAIN DEMO"

// Port B bit O can be connected to the collector of a Darlington

// Phototransistor. The emitter is connected to ground.
// Bit O will be low when the fototransistor is illuminated.
// Port B bit 1 should be connected to a transistor and relay

// 50 that bit 1 high starts the train.

// MAIN PROGRAM

define’ variables
set’ port’b

APPENDIX H 329 SAMPLE PROGRAMS

0240 start’train

aZz50 print’ list
0260
0270 REPEAT
0280 check’ light
0290 delay (1.5)
9300 stop’train
9310 delay (10)
O320 start’train
0330 UNTIL KEY$<¢)""
0340 stop’train
QO350 PAGE
0360 END “Au revoir!"
0370
O380 // ALL PROCEDURES FOLLOW BELOW
0390
0400 PROC print’ list
0410 PRINT AT 12,4: “train running"
0420 PRINT AT 13,42 "train passes light"
0430 PRINT AT 14,4! "train waiting at station”

0440 PRINT AT 18,4: "Pressing any key will stop the train"

0450 PRINT AT 19,4: "next time it stops at the station..."
@460 ENDPROC print’ list
0470
0480 PROC start’train
a4930 POKE port’b, PEEK(port’b) BITOR 2
o500 advance’ pointer

0510 ENDPROC start’ train
0520
0530 PROC check’ light
0540 WHILE PEEK(port’b) BITAND 10)1 DO NULL
05590 advance’ pointer
Q560 ENDPROC check’ light
0570
0580 PROC delay (sec)
0590 TIME QO
0600 WHILE TIME (sec#60 DO NULL
Q610 ENDPROC delay
0620
9630 PROC stop’train

0640 POKE port’b, PEEK(port’b) BITAND 253
0650 advance’ pointer
0660 ENDPROC stop’train
0670
0680 PROC define’ variabies
0690 port’ bi=éddol
0700 port’ b’ ddri=sddos
0710 position:=1
0720 ENDPROC define’ variables
O750
0740 PROC set’ port’b
0750 POKE port’ b’ddr,2
0760 POKE port’b,2
0770 ENDPROC set’ port’b
0780
0790 PROC advance’ pointer
0800 PRINT AT 10+position,2: " "
0810 IF position<(4 THEN
0820 position!=position+l
0830 ELSE

0840 positions=2
0aso ENDIF
0860 PRINT AT 10+position,2: ">"
0870 ENDPROC advance’ pointer

APPENDIX H 330 SAMPLE PROGRAMS

Index

A
A/D converter 259

Abbreviations, turtle orders 152

ABS 79, 131
Absolute value 131°

Accessories 13

Accuracy 207

Action blocks 42

Action string 179

Activate package 103

Address list demo program 226

ADSR envelope 186, 193

Algorithm 45, 77

Analogue input 259

AND 66, 138
AND THEN 139
Angle, arc 157

Angle brackets 53

Animate 171, 179

Animation 170

APPEND 110
Arc 157

Arcl 160

Arc, left hand 160

Arer 161

Arc, right hand 161

Arc sine 292

Arc tangent 133

Arithmetic operators 290

Array, three-dimensional 143

Array, two-dimensional 143

Arrays 67, 143

Arrays, one-dimensional 69

Arrays, two-dimensional 69

ASCII characters 214, 285

ASCII, convert 214

ASCII, Commodore 214

ASCII format 111

ASCII, standard 214

ASCII value 134

Assembler language 23

Assembler program 264

Assignment operator 47, 66

Asynchronous transmission 246

ATN 133
Attack 186, 193

AUTO 45,91
Automatic line numbering 91

B
Back 160
Background 155

Backup copy 40, 41

Bank switching 269

Basic 9
Basic, transfer to 102

Bell 212
Binary numbers 290

Binary data storage 112

Binary file storage 238

Binary representation 140

Bit operations 140

Bit pattern, sprite 168

BITAND 140
BITOR 141
Bitwise comparisons 291

BITXOR 142
Blank lines 37

Blank spaces 134

Boolean operators 291

Border, color 155

Branch blocks 43

Branch 58

Branching 57

Bubble sort 81,233

c
Calculations 290

Call by reference 126

Capital letters 18

Cartridge, installation 15

CASE 60,117,230
CASE construction 117

CASE-ENDCASE 60, 117
CAT 95
Catalogue 95

CHAIN 99
CHANGE 75, 84, 93
Character codes 285

Character positions 106

Character replacement 217

Characters 55

Character set, freeze 220

Character set, replacement 218

Characters, color 154

Character sets 216

CHR$ 133

INDEX

Christensen, Borge 10

Circle 156

Circles 49

Clear 154

Clear screen 107

Clearscreen 154

Clock 209

Clock, real time 135

CLOSE 113
CLOSE FILE 86, 113, 227

Closed procedure 81, 127, 225
CLOSED 127
CLR/HOME 18

Collision, sprite with graphics 181

Collisions, detection 169

Color, background 167
Color codes 289

Color combinations 289

Color, foreground 167

Color 1 172

Color 2 172

Color 3 172

Column interval 107

COMAL 9
COMAL cartridge 14

COMAL Handbook 11

COMAL operating environment 24

COMAL, origins 10

COMAL procedures 36

COMAL system 263
COMAL users’groups 11, 264
Comma(,) 27, 107

Commands, direct 25

Comment line 53

Comment statements 47, 142

Commodore key 18, 293

Commodore 64 9

Composition, music 188

CON 99

Concatenation, string 66, 299

Condition 58, 64, 114

Conditional execution 57, 58

Conditionals 114

Conjunction 138

Control key 295

Control of errors 121

Control ports 198,258

Coordinates, current 157

Coordinate system 152

COPY 100
Correcting errors 26
COS 132

Cosine 132

CREATE 110, 239
CRSR 294

332 INDEX

CS: 242

CTRL 18, 293

CTRL-A 96

CTRL-P 56

CTRL-U 34

CTRL-V 18

CTRL-W 18

Curcol 212

Currow 212

Cursor keys 33

Cursor, placement 107

CURSOR 56,107

Cursor column 212

Cursor row 212

C64 to PC, file transfer 250

C64SYMB 264

D

Danish 148

Dansk 147

DATA 70

Data direction register 255

Data element 227

Data, fetch from memory 144

Data, printout 105

Data, read from file 111, 112

Data, read from program 108

Data, read-in 104

Data record 227

Data, retrieving 85

Data, save to file 112

Data, saving 85

Data storage 223

Data stream 85

Datacollision 181

Datassette 14, 19

Datassette tape unit 39

DB-25 connector 246

DB-9 connector 259

DDR 255

Decay 186, 193

Declaration statement 54

Default values, sound 191

Define 175

Defkey 212

Degrees 132

DEL 93

Delay 186, 204, 207

Delete viewport image 154

DELETE 101

Delete, data 91

Delete graphics screen 154

Delete line 27

Delete, program 91

INDEX

Delete program lines 93

Demonstration program 19

Demo programs 317

Digital thermometer 259

DIM 66,67,143
DIM statement 297

Dimension, string 54

DIR 96
Direct execution 25

Direct file 110, 223, 236
DISCARD 28,104
Disjunction 139

Disk directory 95

Disk drive 13, 14, 20, 40, 101

Disk drive, and files 242

Diskette files 223

Diskette files, copying 100

Diskette, reset 109

Disk, formating 101

DISPLAY 97,225
Display screen 152

DIV 137
Division, integer 137

DOS error messages 311

DOS, passing orders to 101

DOS, status 100

Draw 156

Draw dot 155

Draw line 155, 156

Drawing 49

Drawing, link to program 183

Drawing, save 169

Drawing, sprite 175

Drawto 155

Drive designation 228

DS: 49, 242
Dump screen 164

Dump text screen 211

Duty cycle, sound 196

Dynamic equals sign 47

E
EDIT 92
ELIF 114, 116
ELSE 58, 114
Empty string 143

END 39, 145
End of file 113
ENDCASE 60, 117
ENOFUNC 129
ENDIF 58, 114
ENDLOOP 89, 120
ENDPROC 52, 124
ENDTRAP 88

333 INDEX

ENDWHILE 64

English 147, 148

ENTER 97, 224

Env3 196

EOD 71, 109

EOF 87, 113

EPROM expansion 268

Equality sign 47
Equipment 13

Erase screen 27

ERR 88,121

ERRFILE 121

Error flag, zeroing 100

Error handling 88, 121

Error messages 121, 301

Error numbers 121, 301

Error reporting 277

Error, revealing 122

Errors 29

Error trapping 121

ERRTEXT$ 90, 121

ESC 137

Even parity 246

Exclusive OR 142

EXEC 94, 126

EXIT 89, 120

EXIT WHEN 88, 89, 120

EXP 79, 133

Expansion, EPROM 268

Exponential function 133

Expression 47

EXTERNAL 84, 128

External procedures 83, 225

External storage medium 13

F

FALSE 57,135

Fetch data from memory 144

File 85

File, access to 110

File classification 241

File, copying 100

File, direct 111

File, end of 113

File handling 85

File number, errors 121

File operations 113

File prefix/suffix 241

File, random 111

File, renaming 101

Files 223

Files, collection 101

Files, deleting 101

File, sequential 111

INDEX

Files, reading from 101

File storage, binary 238

File transfer 249

File type code 241

File types 240

Fill 51,158
Filter 195

Filterfreq 195

Filtertype 195

Find text segment 92

FIND 92
Find name 92

Font, load 219

Font package 216

Font, save 220

FOR construction 119

Foreground color 172

FOR-ENDFOR 35,119
FOR-ENDFOR construction 62

Format disk 101

Formatted printout 106

Formatting, diskette 21

Forward 28, 160

Free 212

Frequency, cutoff 195

Frequency, sound 193, 194

Fullscreen 153

FUNC 129

FUNC-ENDFUNC structure 76,129

Function 76

Function keys 294

Functions 129, 265

Functions, user-defined 129

F1 28,150,294
F2 294

F3 28,150,294
F4 32, 294
F5 28, 150, 294
F6 37, 294
F7 34, 294
F8 35, 294

G
Game ports 198

Garbage collection 101
Gate 186, 192

GET$ 240
Getcharacter 217, 220

Getcolor 155

Getscreen 210

Gettime$ 210
Global variable names 73

GOTO 123
Graphics 148

334 INDEX

Graphics characters 18

Graphicscreen 149, 153

Graphics cursor 28

Graphics screen 28, 148

Graphics screen, save copy 163

Graphics screen, load copy 164

Graphics variables 163

Grey scale 289

H

Habits, good programming 45

HANDLER 88
Handling text 297

Hardcopy 211

Heading 159

Height/width ratio 50

Hexadecimal numbers 290

Hidesprite 181

Hideturtle 159

Higher level

language 23

High-resolution graphics 149

Home 159

l

ICPUG England 264
IEEE Cartridge 253

IEEE serial bus 249

IEEE-488 module 213

IF 58, 114
IF-ENDIF construction 58, 114

IMPORT 83, 127
IN 140
Indentation, line 96

Indentation, program lines 92

Index 67

Indexed variables 67

Inkey$ 209
INPUT 48, 104
INPUT AT 66, 104
Input buffer 104

Input field 104

INPUT FILE 86, 111, 227
Input/Output error messages 310

Ing 163

INST/DEL 18, 294
INT 131
Integer division 137

Integer functions 129

Integer, roundoff to 131

Integers 290

Interrupt 197

Inventory program demo 236

Inverse tangent 133

INDEX

J
Jensen, Jens Erik 10

Jiffy 135
Joystick 201

Joysticks 148, 198, 201

K
KB: 242
Keepfont 220

KERNEL 268
KEY$ 50, 64, 105
Keyboard 293

Keyboard, as file 242

Keyboard, description 18

Keyboard, read 105

Keywords 35

Keywords'in'upper'case 208

Kjeer, Mogens 10
Knight, Jesse 263

L
Label: 108, 123

Language, programming 23, 31

Lassen, Helge 10

Laursen, Lars 10

Learning to program 23

Left 160
LEN 66,135
Length of string 135

Letter height 162

Letter width 162

Lightpen 148, 198, 203

Lightpen, offset 203

Lindsay, Len 11

Line numbering, automatic 91

Line numbering, renumber 91

Line numbers 36

Line numbers, list without 97

LINK 103, 264
Linkfont 217, 219
Linkshape 183

LIST 37, 46, 96, 224
Listing, interrupt 96

Listing, slow 96

LOAD 98, 224
Loadfont 219

Loadscreen 164

Loadshape 183, 169

Local variable names 73, 81

Local variables 127

LOG 133
Log, base 10, 292

Logical constants 57

335 INDEX

Logical operator 66, 138, 291

Logical expressions 57, 114

Logical file 248

Logo 9

LOOP 89
Loop blocks 34, 43, 118

LOOP-ENDLOOP structure 79, 120

Loops 62

Loop structures 118, 120

Lower case mode 26

LP: 49, 214, 242

M
Machine code 264

Machine code package 103

Machine code package, remove 104

Machine code subroutine 144

Machine language 263

MAIN 129
Main program 52

Main program, return to 129

Melody, play 187

Memory management 269

Memory map 269

Memory organization 267

Memory size 95

Menu, with lightpen 205

MERGE 97, 224
Microprocessor 23

Midpoint method 77

MOD 137
Modules 265

Modules, creating 270

Modules, placement 275

Module variables 275

Monitor, installation 17
MOUNT 109
Move pen 156

Move 156

Movesprite 177, 180

Moveto 156

Moving 179

Moving figures 166
MPS-801 printer 164, 214

MPS- 802 printer 214

Multicolored sprite 172

Multicolor graphics 149

Music 184

Music Demo 185

N

Names'in'upper'case 209

Natural logarithm 133

INDEX

NEW 28, 45, 91

NOT 138

Note 192

Note code 186

Nothing 145

Nowrap 161

NTSC standard 177

NULL 64, 145

Numbers 290

Numbers, random 136

Numerical value 131

fe)

Octaves 184

Odd parity 246

OF 60, 117

Offset, lightpen 206

OPEN FILE 86, 110, 227

Operations, computation 290

Operators 137

OR 139

ORD 134

OR ELSE 140

OR, exclusive 142

Osc3 197

OTHERWISE 60, 117

Output device 24

Overlay 215

P

Package 28

Package example 278

Packages 147, 265

Packages, book about 263

Package table, format 271

Paddle 199

Paddles 148, 198

PAGE 27, 48, 107

Pages 268

Paint 158

PAL standard 177

Parallel Port 253

Parameter passing 74, 273

Parameters, actual 73

Parameters, formal 73

Parameter specification 272

Parity bit 246

Pascal 9

PASS 22, 101

Pause, between notes 188

PC to C64, file transfer 250

PC, file transfer to 249

PEEK 144, 215

336 INDEX

Pen 28

Pencolor 51, 155

Pen, lift 159

Pen, lower 159

Pendown 159

Penon 207

Penup 159

Peripheral devices 245

PI 132

Pixel 149, 217

Pixel color 155

Pixel pairs 176

Pixels 176

Play 186

Playscore 189, 193, 194

Plot 155

Plottext 162

POKE 144, 215

Position cursor 107

Position pen 156

Prepass scan 93

Prg 241

Print text 162

PRINT 26, 105

PRINT AT 56, 106

Printer 14

Printer attributes 214

Printer, lines per page 214

Printer- Plotter (1520) 243

PRINT FILE 86, 111, 227

Printout 102

Printout program 96

Printscreen 164

PRINT USING 106

Priority 181

Priority, of calculations 290

PROC 52, 124

Procedure call 125

Procedure, closed 127

Procedure header 272

Procedure header, format 272

Procedure-oriented language 24

Procedure, recursive 76

Procedures 36, 51, 72, 124, 265

Procedures, closed 81

Procedures, external 83

Procedures, name table 271

Procedures, saving 224

Procedure, with parameters 72

Program 31

Program, continue 99

Program, executing 99

Program files, transfer to PC 250

Program lines, delete 93

Program, listing 92, 96, 97

INDEX

Program, loading 97, 98

Programmers Reference Guide 254

Programming 45

Program, running 99

Program, saving 39, 98, 224

Program segment, loading 97

Program, start from disk 294

Program structure check 93

Program, termination 145

Program, verifying 100

Protocol, serial 246

Pulse 196

Push-button 199

Putcharacter 220

Q
Quarter note 188

Quotation marks 54

Quote’mode 209

R

Radian measure 132

RAM 267

Random access file 111, 110, 223, 236

RANDOM 111

RANDOMIZE 59, 136

Random numbers 136

READ 70, 86, 108, 110

Read data 108

READ FILE 112

Reading from file 101

Real functions 129

Real numbers 290

Real time clock 135, 209

Record, file 1114

Recursion 76

REF 126

REF parameters 74

Rel 241

Relational operators 291

Relative file 238

Release 186, 193

Remainder 137

RENAME 101

RENUM 46, 91

Renumbering lines 91

REPEAT 64

Repeating instructions 34

REPEAT structure 118

REPEAT-UNTIL 118

REPEAT-UNTIL construction 64

Repetition 62, 119

Replace text segment 93

337 INDEX

REPORT 122

Reserve memory 143

Resonance 196

RESTORE 32, 108

Retrieving data 85

RETURN 294

Right 28, 160

Ringmod 196

Ring modulation 196

RND 59, 136

ROM areas 268

Root, search program 77

Roundoff 131

RS-232C interface 246

RUN 32, 46, 99

RUN/STOP 32, 46, 293

Run time errors 304

Runtime module 268

Ss

Sample programs 317

SAVE 98, 224

Savefont 220

Savescreen 163

Saveshape 169, 183

Saveshape 169

Saving programs 39

Saving data 85

SCAN 35, 46, 93

Screen adjustment 50

Screen area 152

Screen, as file 242

Screen, character codes 216

Screen, clear 107

Screen, colors 208

Screen dump 164

Screen editor 293

Screen, picture string 211

Screen, text and colors 210

Search and replace 93

Search key 233

Search string 140

Secondary addresses 214

Select unit 102

SELECT 102

SELECT INPUT 101

SELECT OUTPUT 49, 102

Semicolon(;) 47

Semigraphics characters 55

Sensor calibration, thermometer 260

Seq 241

Sequential file 111, 112, 223, 226

Sequential file, move 240

Sequential files, transfer 251

INDEX

Serial port 213

SETEXEC 93, 126
Setfrequency 194

Setheading 159

Setpage 215

Setprinter 214

Setrecorddelay 215

Setscore 193

Setscreen 211

Settime 209

Setting up 13

Setxy 156
SGN 79, 131
Sharp brackets 53

SHIFT 18, 293
SHIFT-CLR/HOME 294
SHIFT-INST/DEL 294
SHIFT-LOCK 18, 293
Showkeys 213

Showlibs 215

Showsprite 181

Showturtle 158

SID chip 184

Signal routines 276

Signals 266

Sign of expression 131

Simulations 25

SIN 132
Sine 132
SIZE 94,95
Sorting 233

Sorting, numbers 81

Sound tevel 192

Sound synthesizer chip 184

Sound 148, 184

Soundtype 187, 192

Spaces, blank 134

SPC$ 90, 134
Split screen 28

Splitscreen 154

Sprite, affix to background 162

Spriteback 173, 176
Sprite, bit pattern 168

Sprite cartoons 170

Spritecollision 181

Spritecolor 173, 175

Sprite, collisions 169

Sprite, collision with graphics 181

Sprite drawing 175

Sprite drawing, save 169

Sprite, enlarged 168, 176

Sprite, information about 182

Spriteing 182

Sprite, link drawing to program 183

Sprite, load drawing 183

338 INDEX

Sprite, multi-colored 172

Spritepos 176

Sprite, priority 168

Sprites 148, 166

Spritesize 176

Sprites, with other graphics 169

Spritex 179

Spritey 179

SQR 131
Square root 131

Stampsprite 182

Standard functions 291

Start bit 246
Startsprites 178, 180

STATUS 100
STATUS$ 100
STEP 63
STOP 145
STOP-key 137
Stopplay 193, 194

STOP-RESTORE 294
Stopsprite 179

Storage, binary file 238

Storage diskette, preparation 21

STR$ 80, 134
Stream number 110

String 54, 66

String constant 54

String, conversion to 134

String, dimensioning 143

String, empty 143

String functions 80, 129, 299

String handling 133

String, length of 135

String operations 298

String segments 298

String variable 54

Structure check 93

Subprogram 51

Subroutine, machine code 144

Sustain 186, 193
SX-64, cartridge slot 16

Sync 195

Synchronization 190

Syntax errors 308

SYS 144, 264
SYS to COMAL 102
System 148

System package 208

T

TAB 106

Tabulation 106

TAN 132

INDEX

Tangent 132

Tape files 223

Tape unit 13

Terminate program 145

Text 47

Text arrays 69

Textbackground 154

Textborder 155

Textcolor 154

Textcolors 208

Text handling 54, 297

Text, print on graphics screen 162

Textscreen 153

Text screen 28, 148

Text screen, dump 211

Text segments 298

Textstyle 162

Text variables 297

THEN 58, 114

Three line interface 247

TIME 135

Time’of'day string 209

Timeon 204

Total turtle trip theorem 35

TRACE 142

Transfer of parameters 74

Transparent 172

TRAP 88

TRAP construction 121

TRAP-ENDTRAP 121

TRAP ESC 137

TRUE 57, 135

Truth value 138

Turn left 160

Turn right 160

Turtle 28, 148

Turtle, current heading 159

Turtle, direction 159

Turtle, graphics 175

Turtle graphics 28, 152

Turtle, hide 159

Turtle, move backward 160

Turtle, move forward 160

Turtle orders, table 30

Turtle, show 158

Turtlesize 159

Typing errors 26

U

U<device>: 242

UniComal 10

Unit 242

UNIT 113

Unit name 114

339 INDEX

UNIT$ 114

UNTIL 64

Upper case mode 26

USE 103, 147

USE font 216

USE graphics 149

USE joysticks 201

USE lightpen 203

USE paddles 199

USE sound 184

USE system 208

USE turtle 149

USE turtle 158

User comments 314

User-defined functions 129

Users’ groups, addresses 264

Usr 110, 241

Vv

VAL 134

Validate 101

Variable name 47

Variable names, local 81

Variables 47

Variables, graphics 163

Variables, import 127

Variables, indexed 67

Variables, local 127

VERIFY 100

Viewport 150, 152, 154

Viewport, save to file 164

Voice, combination 195

Voice, control 184

Voice number 186

Voice 3 196

Voltage levels, RS-232 246

Volume 192

Ww

Waitscore 194

Waveform 192

Waveform patterns 189

WHEN 60, 117

WHILE 64

WHILE structure 64, 118

WHILE-DO-ENDWHILE 118

Window 150, 152

Wrap 161

WRITE 86, 110

WRITE FILE 112

Write-protection 21

INDEX 340

XYZ

Xcor 157

Ycor 157

ZONE 27, 83, 107

special characters

+ 64, 143

// AT, 142

@ 225

6510 chip 23

INDEX

