RCSL No: 42-i1539
Edition: October, 1980

Author: Jan Bardino

Title:

PASCAL80 User's Guide

¢ REGNECENTRALEN
: af 1979

Keywords:

High level language, PASCAL80, Concurrent programming, Standard PASCAL.

Abstract:

This is a tutorial for the language PASCAL8C. The manual contains a
description of PASCAL80 and examples of programs and program constructs.

(88 printed pages).

Copyright © 1980, AJS Regnecentralen af1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contal-
ned hereln are subject to change by RC at any time without prior no-
tice. RC Is not responsible for typographical or arlthmetic errors
which may appear In this manual and shall not be responsible for
any damages caused by reliance on any of the materlals presented.

4211341

TABLE OF CONTENTS

PAGE

].

2.

INTRODUCTION L N N N N R R R

BASIC DEFINITIONS 0900000000860 00000000000000000000008008

2.1
2.2

2.3

VbcabUlarY 0 8000000002000 0008000000000080000CPOCSEOEDPOEES

Syntax Diagrams ®eP oo eSO REOLIOENOOIPRPIBIOEORNOCEOIOGOEBROIEOESE

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

COMMENES seveececsnssonssesssossssrscsncocses
Identifiers tevieesecesocesoosscscnccnsones
NUMDELS cvseesecceccasersssssessscsanecnncnse
SePAratorS cueie sieseeeesensnensesesnaesses i

Strings Of ChaAracterS .ecececscescscoonansns

Fundamental Concepts ssssisies smssussesvsnesessens

THE RASCALsO LANGUAGE LR R I R I R I I N N B

3.1
3.2
3.3

3.4

The PrOCESS Structure P00 0000030000000 000000000080

The Process Heading ceeesecsrecesssesocenvancsoses

The Declaration Part .ec.cecececeecssescsssssanssses

3.3.1
3.3.2
3.3.3
3.3.4

3.3.5

3.3.6

Label Declaration Part ececececssssssesosses
Constants Definition Part cesesesesessnssss
Variable Declaration PArt seeececesscsssses
Type Definition PAart seeecsececscvscnsecses
3:3:04.1 TYPES eeeneessesosnssssssansssncss
3.3.4.2 Type Compatibility eceesesceccccss
Routine Declaration PArt ceeeeesecsescscess
3.3.5.1 Scope RULES wwiwweweuswen i ewesie e
3.3.5.2 Routine BlOCKS cesvsvsonccrcnnnnes
3.3.5.3 FUNCLiONS seevesvsnsoeoccncoscnens

EXport Part ® 000000000050 0000000000000sBB0Ee

The Statement Part 0000000000000 REEORREOEREOEDNOTOTS

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
2.4.6
3.4.7
3.4.8
3.4.9

Statements ceeeeeeecscesoesasssssosnsccscns
Assignment Statement seeessescsssssensocnsse
Exchange Statement wswesassesvienss wasene e
Repetitive Statements .vivesececscecssonans
Conditional StatementS ceveeeesssssesesnsans
Procedure Call .cieseccccssaascsossscssensse
With Statement seeeeeesessceesssesssancecans
ESCKSERIEENERIE = xs ns1 o« w¥e GXsTers) a1 o 3Hs %o Y51 FE) S¥Wa 15

Channel Statement .eeeecececseescoocssnsass

~N o A U U e W W W

10
10
12
13
14
15
17
18
18
31
34
37
38
38
39
40
40
41
44
44
46
48
50
50
51

ii

TABLE OF CONTENTS (continued) PAGE

3.4.10 %to Statement L L B B I TN BN BN BN B D R B RN B BN R BN N BN BN BN B B AN 52
3.4.11 Standard Routines abs, succ, pred, chr,

ord L B R I O B L R O D B B I B BB B O L B 52

4I PRmESS CQIMUNICATION e RO AR RS RO e DS RS S EE RN 54
4.1 General Process Communication ecessssssesscssasesss 54
4,2 The Predefined Communication ROULINES eeeeeeseseees 68

5. PRmESS CONI‘ROL L B B O B I R I B R R I R RN I R I B R R B T DR N B B R R B I 75
5.1 The Predefined Routines for Process Control 75

6l UI‘ILITY PR%RAMS LU B B B O A L L B O O I B B R B I IR R B L 78
6.] Indent L L B I B R B B B D B B B R LR DR R R R B B B BB R B B 78
6.2 Cross Reference Program .sssveseesesovsssssosvssnse 79

APPENDIX:

Ao REFER.B\]CES ©© 0200000000000 050600050000000000600000000000800C 81

INTRODUCTION

This first edition of the PASCAL80 User's Guide is mainly based
on extracts from earlier PASCAL80 papers such as the Report [1],
and some preliminary introductions, and information published in
Danish under the common little "PASCAL80 NYT".

This manual is directed to those who have previously acquired
same familiarity with computer programming, and now wish to get
acquainted with the programming language PASCAL80. The style of
the manual is that of a tutorial, i.e. a demonstration of the
language features by means of examples.

For a concise ultimate of the language definition the PASCALS0
REPORT [1] may be used and the actual implementations are des-
cribed in xx-PASCAL80-REFERENCE manuals, by now xx is RC3502 and
RC850.

Since PASCAL80 is based directly on Wirth's Standard Pascal [2]
familiarity with that language means that the parts concerning
sequential programs, i.e. most of the declarations and control
statements, may be well known. PASCAL80 can be characterized as
Standard Pascal without files but extended with communication
primitives to be used to connect concurrent process incarnations.

For programmers acquainted with ALGOL, or FORTRAN it may prove
helpful to glance at PASCAL80 in terms of these other languages.
For this purpose we list the following characteristics of
PASCALSO0.

1. Declaration of variables is mandatory.

2, Certain key words (e.g. PROCESS, BEGIN) are "reserved" and
cannot be used as identifiers. In this manual they are writ-
ten with capital letters.

3. The semicolon (;) is considered as a statement separator, not
a statement terminator.

4. The standard data types are those of whole numbers, the logi-
cal values, the characters, semaphores, shadows, references,
and pools. The basic data structuring facilities include the
array, the record (corresponding to QOBOL's "structure"),

8.
9.

10.

"11.

12.

the pool, and the set. These structures can be cambined and
nested.

The facilities of the ALGOL switch and the camputed go to of
FORTRAN are represented by the case statement.

The for statement corresponding to the DO loop of FORTRAN,
may only have steps of 1 (TO) or -1 (DOWNIO) and is executed
only as long as the value of the control variable lies within
the limits. Consequently, the controlled statement may not be
executed at all.

There are no conditional expressions and no multiple assign-
ments.

Procedures and functions may be called recursively.

There is no "own" attribute for variables (as in ALGOL).
Parameters are called either by value or by reference;

there is no call by name.

The "block structure" differs fram that of ALGOL insofar as
there are no anonymous blocks, i.e. each block is given a
name, and thereby is made into a routine.

PASCALS80 is equipped with semaphores as a synchronizing tool
and message buffers as a communication tool.

Concurrent process incarnations are synchronized by means of
signal-wait primitives.

2. BASIC DEFINITIONS

2.1 Vocabulary
The basic vocabulary consists of language symbols and user
defined symbols. The language symbols are reserved words (key
words) and punctuation marks:
AND FISE LABEL PROCESS
ARRAY END LOCK RECORD
AS EXPORT MOD REPEAT
BEGIN EXTERNAL NOT SET
BEGINBODY FOR OF THEN
. CASE FORWARD OR TO
CHANNEL FUNCTION OTHERWISE TYPE
CONST GOTO PACKED UNTIL
DIV IF POCL VAR
DO IN PREFIX WHILE
DOWNTO INCLUDE PRCCEDURE WITH
+ Fa * / " 1] < >
<> <= >= () {e .) 4
= = :=: . ’) ; os
kK% (* *) 1 ? <* *s #
The user may not use the reserved words in a context other than
that explicit stated in the definition of PASCAL80; in particu-
lar, these words may not be used as identifiers.

2.2 Syntax Diagrams

The syntax of PASCAL80 is defined graphically by syntax diagrams.
A syntax diagram consists of arrows, language symbols, and names
of syntax diagrams. A PASCAL80 program is syntactically correct
if it can be obtained by traversing the syntax diagrams. A trav-
ersal must follow the arrows. The name of a syntax diagram indi-
cates a traversal of the corresponding diagram. The result of a
traversal is the sequence of language symbols encountered in the
traversal.

2.1

2.2

The following is an example of a syntax diagram.

while statement:

———— SWHILE ————>expression >DO —>statement

>

The syntax diagram defines the name (while statement) and syntax
of language construct. The name is used when the construct is
referred to elsewhere in the text or in other syntax diagrams.
Language symbols are either names in capital letters (e.g. WHILE)
or punctuation marks (e.g. :=).

Constructs defined by other syntax diagrams are given by their
names in small letters (e.g. expression). To be able to distin-
quish between several occurrences of a construct, its name my be

subscripted.
2.2.1 Comments 2.2.1
Camment:
>(* > r>%) > >
bcharacterf.
non-printing symbol<-
><* S>*> =

character<
non-printing symbol<-

Camments may be inserted between any two identifiers, numbers or
special symbols. A comment does not affect the execution of the
program.

~

2.2.2 Identifiers
Names denoting labels, constants, types, variables, processes,
and routines are called identifiers. They must begin with a
letter or an underscore which may be followed by any cambination
and number of letters, digits, and underscores. Contrary to
Standard PASCAL all the characters of an identifier are recog-
nized as significant. Small and big letters are handled as being
the same in identifiers.
identifier:
>letter >r=> > >
> —> [&lettere—

<~digite—

«— ——
letter is A,B,...,&,a,b,C;...,4
digit iS 0’1,2,-.0'9
Examples of legal identifiers:
step use_count Local_Message

very special defined identifier
Note: "Local Message" is identical to "local message",
"LOCAL MESSAGE", and any other cambination of small and big
letters.
2.2.3 Numbers

At label can be either an identifier or a numeric value in
PASCAL80, this is in contrast to Standard Pascal where label is
demanded to be an unsigned integer.

2.2.2

2.2.3

2.2.4

numeric value:

S——>digit >

A
A\

—>#b->r>binary digit->y—>
—>#o->r>octal digit—r>
—>#h->r>hexa digit —3r>

binary digits are 0..1
octal digits are 0..7

hexa digits are 0..9 and a..f

Example of legal numbers:
7913 0033 #0101 #hff00 #07654

Separators 2.2.4

2.2.5

Blanks, nl's, ff's and camments are considered as separators.
Separators can appear between any two consecutive language
symbols.

No separator may occur within an identifier, number, numeric
value, or language symbol. At least one separator must appear
between any pair of consecutive identifiers, character strings,

numbers, numeric values, or language symbols.

Strings of Characters 2.2.5

A character string is a sequence of characters enclosed by quote
marks, both single and double guote marks are legal but the end
mark must match the start mark.

2.3

Character string:

9 string character >r=>"—r—

-

—>'—>r>string character >—>'—

4
=

String characters are the printable subset of the alphabet,
excluding newline (nl) and form feed (ff), i.e. ' ', "!', ...,/
Examples of legal strings:

"abed", " ' is a strange character", '’

Note: If a string surrounded by single quote marks is to contain
a quote mark or a string surrounded by double quote marks is to

contain the surrounding quote mark, then this quote mark is to be

written twice, for example ween o equivalent to Hl‘l, and "' is

equivalent to "'",

Fundamental Concepts

This section gives a brief explanation of a few concepts and the
context in which they are used. The complete description of all
PASCAL80 concepts is given in the following sections.

A program consists of a number of processes. Each process is a
description of some actions and a description of a data struc-
ture. An incarnation of a process is the execution of the actions
on a private data structure. Many incarnations can be executed

concurrently.

Actions are described by statements. The actions of one incarna~
tion are executed one at a time in the order defined by the

statements. The actions manipulate the data structure, which is
described by a number of variables. A variable has a name and a
type. The type describes the set of values the variable can hold

when the program is executed. There is a number of predefined

types (integer, char, boolean, reference, semaphore, and shadow).

2.3

New types are defined either by listing their values or by com—
bining several types into a structured type.

A number of statements and declarations can be combined into a
routine declaration. Activation of a routine is described by

routine calls (statement).

Process incarnations cammunicate by exchanging messages. A mes-—

sage can be accessed by one incarnation at a time.

place data p——>M await access
in M A to M B

Time T: A has exclusive access to the message M.

M &——— read data
A in M B

Time T + 1: B has exclusive access to M.

Variables of the two predefined types reference and semaphore are
used for accessing and exchanging access to messages.

The value of a reference variable is either a reference to a mes-
sage or nil (representing "no reference"). A message can be

accessed through at most one reference variable at a time. Since
process incarnations access messages through reference variables

only, mutually exclusive access to messages is secured.

Incarnations exchange access to messages by means of queue semap-
hores. An incarnation places a message in a semaphore from which
another incarnation can get access to it. Variables of type se-

maphore can be declared in any process. A semaphore variable may
be accessible by many incarnations simultaneously.

Processes can be nested and 'a process which is declared within
another process is a sub-process (of the surrounding process).

An arbitrary numbér of incarnations of sub-processes (children)
can be created, they are all controlled by the parent.

Incarnations are created and removed dynamically.

A process can have formal parameters. When an incarnation of the

process is created a number of actual parameters is given. Incar-

nations cammunicate through common semaphore variables only. In
this way a process determines the cammunication paths of sub-pro-
cesses. Note, however, that the controlling process incarnation
need not participate in the camminication.

10

THE PASCAL80 LANGUAGE 3.

3-1

This chapter consists of descriptions of the different campo-
nents of a PASCAL80 process. First an example which shows the
structure of a complete process definition, and after the example
is given a more precise description of the syntactical defini-

tion, of the different parts of the process definition.

The Process Structure ' 3.1

A PASCAL80 process consists of declarations of constants, types,

variables, routines, labels, and some statements that operate on
the declared odbjects.

This is an outline of a PASCAL80 process:

PROCESS catalog;
CONST
idlength = 10;
catalogsize = 256;
TYPE
identifier = ARRAY (1 .. idlength) OF char;

VAR
name: identifier;
found: boolean;
index: integer;
FUNCTION hash (id: identifier): integer;
VAR
key, next: integer;

ch: char;

"

BEGIN (* body of function hash *)

key:= 1;
next:= 0;
REPEAT

next:= next + 1;
ch:= id (next);
IF ch <> sp
THEN key:= key * ord (ch) MOD catalogsize + 1;
UNTIL (ch = sp) OR (next >= idlength);
hash:= key;
END; (* of hash *)

-

BEGIN (* main program *)

index:= hash (name);
REPEAT

L]
L
L]

found:= —

.
Ld

UNTIL found;

END.
The process contains a declaration of

- two contants: idlength with the value 10 and catalogsize with
the value 256

- a type: identifier which is an array of characters

3.2

12

- three variables: name which can hold a value of type identi-
fier, found which can hold a value of type boolean, and index
which can hold an integer.

- a function hash which maps an identifier to an integer.

The function has a formal parameter id and three local variables
key, next, and ch. The assigmment statement: index:= hash (name)
contains a call of the function; the result of the function is
assigned to the variable index.

All declared objects have names: catalog, idlength, catalogsize,
identifier, name, found, index, hash, id, key, next, and ch.
These names are _defined by declarations before they are used in
statements.

The Process Heading 3.2

The process heading consists of an identification of the process
tc be declared and a parameter description. The process in the
example of section 3.1 has no parameter, the identification is
"catalog".

process heading:

e 3PROCESS ——>process name—>formal parameter—>

(formal parameters are described in subsection 3.3.5).
Declarations cammon to more processes may be defined in a
context, and it may be specified in the call of the campiler

which context(s) to include. The syntax is:

context:

—>context name —>; —>context declarations —»,—>

13

context declarations:

-

——>constant declaration
——>type declaration
——>external routine declaration

external routine declaration:

>r—>procedure heading—>——>; —> external—>
function heading

3.3 The Declaration Part 3.3

The ‘declarations of a program serves as a description of the data
which are manipulated by the actions performed by the program.

declarations:

e .
o

v

P

——>contstant declaration —m ———; —

—>type declaration —>
—>variable declaration———>
——>label declaration >

——>routine declaration—————>
. —>prefixed process declaration->
——>export export part >

The order of declarations is only restricted of the demand for

definition before use.

14

3.3.1 Label Declaration Part 3.3.1

A label is an identification of a statement, it can be either a
number or an identifier. Every label must be declared.

label declaration:

—————>LABEL ——>r——label

W

label:

—>3>r—>number >
— S ijdentifier——

\

Example:
LABEL 7913, even action;

A label is denoted by the ldentifler or the integer value of the
number. (GOTO statement 3.4.10)

A label is defined by a labelled statement.

labelled statement:

———>label —>:—>statement -

Labels must be defined and used in the scope (not block) where
they are declared. A label may only be defined once in a scope.
Scope is defined in subsection 3.3.5.

example:

error_action: exception (error code);

3.3.2

15

Constants Definition Part

If a value is used serveral times in a program, it is useful to
declare a constant with this value. In the program the constant
is used to denote the value.

constant declaration:

—>CONST —>r—>constant hame —>= —>constant expression —yr—>

° <
9™

The constant expression is an expression the value of which may
be canputed at campile time, i.e. each operand must be a constant
or a symbolic value. A very convenient feature of PASCAL80 is the
so-called structured value which may be used for defining
constants and for initialization of structured variables.

structured value:

——>—>character string > >
-—)S&t Cal
——>type name > »value list——>)—>

value list:

N

4
h 4

3 >unit
Lrepetition S>hkk >unit

Units of a value list are given one at a time (separated by ,) or
by repeating a unit. The value of repetition specifies how many
times the unit is repeated.

3.3.2

16

A structured value is built as follows:

- type name denotes a record type:
There must be a unit for each field and the first field gets
the value of the first unit, the second field the value of the
second unit etc. The repetition cannot. be used.

- type name denotes an array type:
There must be a it for each element and the first element
gets the value of the first unit, the second element the value
of the second unit etc.

repetition:

———>constant expression

A4

unit:

W

——>r—>constant expression

>?

The unit "?" specifies no value, i.e. the camponent is skipped,
its type is campatible with any type. This element is necessary
to specify values of camponents which have no symbolic represen—
tation, e.g. values of shielded types. The no value element can
only be used in value lists.

Example:

CONST
catalogsize = 256;
test = true;
nul = 0:

If these values are changed, only the constant declaration needs
to be changed.

17

3.3.3 Variable Declaration Part ' 3.3.3

A declaration of a variable must specify the name and type of the
variable.

variable declaration:

—>VAR->r>variable name list—>:~—>type->r>initialization

v

-
-~

variable declaration

——>r>variable name >

v

r -

initialization:

W

>3= >constant expression

The type of the expression must be campatible with the type of
the variable.

The value specified by the constant expression becomes the ini-
tial value of all variables in the variable name list.

Example:

VAR
found: boolean:= false;
index: 1 .. catalogsize;

name: identifier:= identifier (idlength***sp);

18

The type defines which values a variable can hold. The variable
found can hold the boolean values false and true, the initial
value is false. The variable index can hold an integer in the
range 1 to 256 (catalogsize = 256) the value of index is unde-
fined until first assignment. The value of a variable is changed
by an assigrment:

found:= true;

index:= index MOD catalogsize + 1;

3.3.4 Type Definition Part 3.3.4

All data which is manipulated by a PASCAL80 program has a type.
All operands (variables, constants, values etc.) have a fixed
type and for each operator and statement there are strict rules
defining which types of operands it accepts.

3.3.4.1 'Types 3.3.4.1

A type is a set of values and a method of accessing these values.
There is a number of predefined types: integer, char, boolean,
semaphore, reference, and shadow. New types are named and defined
by type declarations.

type declaration:

S>TYPE—> >type name —>=type —>r——>

i
HAS

19

type:
——a-—-—-—:*enmneration type > >
r——>shielded type ——m—
>pointer type >
>structured type——>
—>named type 5
——>frozen type —>

Type declarations may not be recursive, except in a type declara-
tion:

TYPE name = t;
where t may contain the pointer type f name as an element or

field type:;

Enumeration Types
An enumeration type consists of a finite, totally ordered set of

values. Furthermore, there is a mapping from the set of values to
the integers. '

enumeration type:

>char >
" b——>boolean ————>
——>integer ———>
—>scalar type——>
l——>subrange type——>

b4

The three predefined types char, boolean, and integer are
described below.

Scalar Types
A scalar type is a sequence of values (scalar constants). A

scalar type is declared by listing its values in increasing

order.
scalar type:
>(> —>scalar constant— >) e

4
=

20

scalar constant:
>identifier >
A scalar constant is an identifier appearing in the declaration

of a scalar type T. The type of the scalar constant is T. Con-
sider the following scalar type (€g, €1s eee¢ €ns Cntlr oo+ €N)

then e,.1 is the predecessor of e, and en;) is the successor of ep

the ordinal value of e, is n. The predecessor of ey and the

successor of ey are undefined.

Example:

TYPE
device = (drum, tape, disk);

The type device has the values drum, tape, and disk.

The Type Char

The type char is a predefined enumeration type. Its values are
the (Danish) ISO characters.

0 1 2 3 4 5 6 7 8 9
0| nul soh stx etx eot eng ack bel bs ht
10 . vt ff cr so si dle decl dc2 dc3
20| dc4 nak syn etb can em sub esc fs gs
30| rs u sp ! L R 2 & '
40 | () * + ’ - : o/ 0 1
50 | 2 3 4 5 6 7 8 9 H g
60 < = > 2 @ A B C D E
70 F G H I Jd K L M N 0]
80 P Q R] T U v W X Y
90|z & ¢ & ¢+ _ a b ¢
100 | d e f g h i j k 1 m
110 | n o o q r S t u \Y W
120 x y A S o a 7 del

21

The characters are numbered and the ordinal number of a character
is the sum of its row and column number in the above table. The
ordinal values define the ordering of the characters.

"' (sp), "1" ™', ... ' ' are printing characters.

The Type Boolean

The type boolean is a predefined scalar type, defined as:
TYPE boolean = (false, true);
Subrange Types

A type can also be declared as a subrange of an already defined
type.

A subrange type is a sub-sequence of an enumeration type.

subrange type:

>min bound >, >max bound

A 4

min bound, max bound:

W

>expression
The min and max bounds must be of the same enumeration type.
example:
TYPE
index = 1 .. catalogsize;
small letters = "a" .. "3";

byte = 0 .. 255;

These declarations restrict the set of values of the type to the
specified range.

22

Structured Types

A structured type is a camposition of other types. There are
three kinds of structured types: array, record, and set.

structured type:

N

>array type >
—>PACKED—— —>record type—>|
—>set type—>

A4

A structured type has a number of component types.

Arrag TYES

An array consists of a number of elements of the same type. The
number of elements is specified by an index type.

array type:

—>ARRAY —> (—>r—>index type —r—>) —>0F —>element type —>

P
f A

index type, element type:

>type

A 4

The index type must be an enumeration type or the name of an
enumeration type.

Example:

TYPE
identifier = ARRAY (1 .. idlength) OF char;
count = ARRAY (letters) OF integer;

VAR

id: identifier;

23

The elements of the array "id" have indices fram 1 to 10 (idlength).
The value of an element can be changed:

id (5):= "x";

An array value (whole array) can also be constructed ard
manipulated:

CONST
blank = " "

-

®
L]

IF id <> blank
THEN ...

Then array type
ARRAY (tq,t,) OF tg
is a shorthand for the type

ARRAY (t1) OF ARRAY (t2) OF t3.

This is a multi-dimensional array. The number of index types is
the dimension of the array.

The name of an array variable denotes the whole array. An element
is accessed by the array variable followed by an index enclosed
in parentheses. An index consists of a number of index expres-
sions. The number of index expressions must be less than or equal
to the dimension of the array.

If the element type itself is structured, the component types of

the array type are the camponent types of the element type.

24

array variable:

>variable —> =

Iﬁindec selector —,|

index selector:

W

>(> >index expression > >)

-~
F 2

index expression:

———>expression

A 4

The type of each index expression must be campatible with the

corresponding index type.

Record Types

A4

A record consists of a number of fields. Each field has a name

and a type.
record type:
>RECORD >field list >END >

field list:

s—>r——>Fjeld name list

>field type >

3\

N we

-8
N

field name list:

——>—>field name

N

W

-~
I A

N4

25

Example:

TYPE
catalogentry = RECORD
id: identifier;
hashkey: integer;
medium: device;
addr: range;
END;
VAR
element: catalogentry;

The record of type catalogentry has four fields: id, hashkey,
medium, and addr. These fields are of the type identifier,
integer, device, and range respectively. The value of a field can

be changed or read:

element.medium:= drum;
IF element.id (1) < "a" THEN ...

Values of record type are structured values (see subsection
3.4.1):

element:= catalogentry (blank, 0, drum, 16712);

Set Types

The values of a set type are the subset of some enumeration type.

set type:

>S —>QF >element type —m8 >

element type:

v

>type

The element type must be an enumeration type or the name of an
enumeration type.

26

A set element is a value of the element type. The camponent type
of a set is the element type.

Values of set type are written as a list of set elements.

set:

>(—>r—>r—>element list —> >.)

Vv

&
-~

W -

element list:

Y

—ﬁ'—%element

-—991ement1 R e ———9element2 =

element:

—————>expression

4

All elements in a set must be of the same type and these must all
be campatible with the element type. The empty set is denoted
(se)s The type of (..) is campatible with any set type.

A variable of type set can be given a value:

digits:= (. "0" .. "9".);

The operators on set operands are + (union), * (intersection),
- (difference), and IN (membership).

27

Example:

TYPE
characters = SET OF char;
VAR
digits, letters: characters;
FUNCTION nextid: identifier;
VAR
i: 1 .. idlength;
ch: char;
BEGIN (* body of nextid *)
i=1;
nextids:= blank;
ch:= getchar;
IF ch IN letters THEN
WHILE (ch IN (letters + digits)) AND (i <= idlength) DO

BEGIN
nextid (i):= ch:
iz=1+1;

ch:= getchar;
END;
END; (* of nextid *)

(Note, getchar is not a PASCAL80 primitive).
As the above examples éhow; a type (predefined or programmer
defined) can be used for constructing values of the type,

defining constants, and declaring variables.

Pointer Types

The values of pointer type are pointers to variables or nil (no
pointer).

pointer type:

% type >

28

The value nil belongs to every pointer type; it does not point to
any variable.

Assignments can be made to variables of pointer types.

The variable pointed to by a pointer (value) is denoted by a
variable of pointer type followed by an arrow (4).

For the use of pointer variables and pointer types see the
example in section 4.2 (under "ref").

Frozen Types

In PASCAL80 the programmer has the possibility of declaring vari-
ables and parameters as "read only" i.e. the variable/parameters
cannot be changed inside the process/routine with the read-only

declaration.

frozen type:

! base type

base type:

A variable of a frozen type must not be used as the lefthand side
of an assignment, in an exchange statement, or as a variable
parameter, unless the formal parameter is of the same frozen
type!

A frozen type is compatible with its base type. The camponent
types of a frozen type are the component types of the base type.

Shielded Types

Variables of shielded types enable a process incarnation o

cammunicate with and control other incarnations.

29

shielded type:

——>r——>reference >
——>semaphore—>
—> shadow ———>
—>pool type ——>

The values of shielded types cannot be accessed directly. They
are protected against malicious or accidental misuse. Therefore,
the assignment statement cannot be applied to variables of
shielded types. The exhange statement is provided instead (see
subsection 3.4.3).

The Type Reference

The values of type reference are references to messages or nil
(no reference). A message is always accessible through exactly
one reference variable.

The syntax used to denote the accessible fields of a message
header is derived from considering the type reference as a
predefined pointer type (see section 5.3):

TYPE reference = § message;
The type of the message header is:

TYPE

message = RECORD (*message header*)
size, messagekind: !integer;
ul, u2, u3, ud: 0..255;
(*owner, answer: semaphore;
data: message data;
other implementation dependent fields*)

END;

W

30

The interpretation of size and messagekind is implementation

dependent. The owner, answer, and data fields cannot be used
directly.

Messages

Process incarnations cammunicate by exchanging access to messages
which hold data. When a process has access to a message it can
place data in or read data from the message. A message can be
accessed by one incarnation at a time (see section 2.3)

A message consists of a message header and message data (possibly

empty). A header message is a message with no message data.

The Type Semaphore

A queue semaphore consists of a sequence (fifo) of messages and a

set of waiting process incarnations. One of these is always

empty. The values of type semaphore are queue semaphores.

The semaphore is open when the set of waiting incarnations is
empty and the sequence of messages in non—empty. When the
sequence is empty.and the set of waiting incarnations is none—

empty, the semaphore is locked. If both are empty, the semaphore
is passive.

These concepts are described in details in the -sections concern-
ing process cammunication (chapter 4).

Variables of type semaphore (or variables with semaphore-canpo-
nents) are restricted only to be declared in the declarations of
a process and not in the declarations of a routine.

The Type Shadow

The values of type shadow are references to process incarnations
or nil (no reference). Initially, a shadow variable is nil.

3.3.4.2

3
A shadow variable is given a value by creating a new incarnation.
The incarnation is controlled through the shadow variable.

The predefined routines for controlling incarnations are des-

cribed in the sections concerning process control (chapter 5).

Pool Types

A pool consists of a number of messages.

pool type:

>POOL cardinality OF type —> >

Y

cardinality:

————>expression

A 4

Initially a pool consists of a number of messages. The number is
the value of cardinality (expression) which must be a positive
integer. Each of the messages can hold a value from type. If no

type is specified, the messages have headers only.

With each variable of type pool an anonymous semaphore is asso-
ciated. This is the owner semaphore of all messages in the pool.
A message is ailocated from the pool by the predefined procedure
alloc (see chapter 4).

Type Compatibility

In PASCAL80 any operand has a fixed type which can be determined
statically. The type of constants, variables, and formal parame-

ters is specified in their declaration.

3.3.4.2

32

CONST
length = 16;
TYPE
word = ARRAY (0 .. length - 1) OF boolean;
CONST
nul = word (length *** false);
VAR

status: word;

The constant length is of type integer. The construct

"word (length *** false)" is a value of type word where all
elements are false. The constant nul and the variable status are
both of type word.

The type of an expression is determined by the types of its
operands and the way they are cambined by operators. The addition
of two integers, i.e. length + 1, gives a result of type integer,
canparison of two integers, i.e. j <= length, gives a result of
type boolean, conjunction of two booleans gives a boolean result,
i.e. found AND (j <= length) etc. The operator AND can only be
applied to boolean operands, the operator / can only be applied
to integer operands etc. Similar restrictions are put on the
operands used in all other constructs. In a while statement, for
example, an expression of type boolean must be given:

WHILE found AND (j <= length) DO ...

A value of some type T can be assigned to a variable of the same
type.
status:= nul;

The types of two operands are the same only if their type names

(identifiers) are the same, or the two operands are declared in
the same list.

33

status: word;

mask : word;

result: ARRAY (0 .. length — 1) OF boolean;
trap : ARRAY (0 .. length - 1) OF boolean;
recl, rec2: record ... end;

The types of status and mask are the same, but none of them are
the same as the type of result. Consequently:

status:= mask;
is a valid assignment, but
status:= result;

is not a valid assignment. Furthermore, the type of trap is
neither the same as the type of result nor the same as the type
of status and mask. And the operands recl and rec2 are of the

same type.
The type ty is compatible with the type ty if:

-t ad ty are the same named type
- t4 is a subrange or ty or t, is a subrange of =]
- t1 is SET OF by and t, is SET OF b, and

by is campatible with b,
-t isl
- Y isf t and ty is$ t where t is a type name
-t and t, are of pool type

Note, that the relation coampatible is not symmetric. If the type
tq is compatible with the type ty, a value of type tq can be -

assigned to a variable of type ty.

3.3.5

34

Routine Declaration Part

A number of statements and declarations can be combined into a
routine. When the routine is called, the data structure defined
by the declarations is allocated and the statements are executed.
A routine is either a procedure or a function.

routine declaration:

——s—>procedure heading ; —>block >

——>function heading

procedure heading:

————>PROCEDURE ——>procedure name ——>formal parameters ——>
function heading:

——— > FUNCTION —>function name —formal parameters = :type —>
The type of a function cannot be a shielded type.

Formal Parameters

The formal parameters specify the interface between a block and
the surrounding. For each formal parameter is given its kind,
formal name, and type.

formal parameters:

N

>(parameter description >)

-
s

parameter description:

> >formal name list—>:—>type —>
Lvar—

3.3.5

35

fomal name list:

A4

———>r—>formal hame —

el
r

If VAR is specified the parameter is of kind variable: a var
parameter; otherwise the parameter is of kind value: a value

parameter.

A formal parameter is used as a declared variable of the speci-
fied name and type.

Parameters with camponents of shielded type must be of kind vari-
able.

Example:

TYPE
parity = (even, odd);
frame = 0 .. 31;
FUNCTION frame parity (arg: frame): parity;
CONST
table = (. 0,3,5,6,9,10,12,15,
17,18,20,23,24,27,29,30 .);

(* The set table contains all values of type
frame with even parity *)

BEGIN
IF arg IN table
THEN frame parity:= even
ELISE frame parity:= odd;
END;

A routine can have local declarations as in this case the com—
stant table. A function returns a result, this result is the
value assigned to the funcion name, e.g. frame parity:= even. The
function has a parameter with the name arg and the type frame.
The type of the result is parity.

36

Routine declarations can be nested:

TYPE
parity = (even, odd);
byte = 0 .. 255;
FUNCTION byte parity (arg: byte) : parity;
TYPE
frame = 0 .. 31;
FUNCTION frame parity (arg: frame) : parity;
CONST
table = (. 0,3,5,6,9,10,12,15,
17,18,20,23,24,27,30 .);

BEGIN (* frame parity *)
IF arg IN table
THEN frame parity:= even
ELSE frame parity:= odd;
END;
BEGIN (* byte parity *)
IF frame parity (arg MOD 32) = frame parity (arg DIV 32)
THEN byte parity:= even
ELSE byte parity:= odd;
END;

The declaration of a name in a routine is only valid inside the
routine. Outside the routine it is invisible. The constant table
can therefore only be applied in the function frame parity where
it is declared. But it cannot be applied in the function

byte parity. Similarly, the type frame is not known outside
byte parity. It can, however, be applied in inner routines such
as the function frame parity. The exact rules about valid con-
texts for a variable are called the scope rules (see the next

subsection).

37

The scope rules require that a process or routine is declared
before it is used. A declaration where the block is a forward
block is an announcement of a routine or process declaration

which is given textually later, this is a forward declaration.

The heading of the declaration must be the same as the heading
given in the forward declaration. That is the name, type, and
order of the formal parameters must be the same.

3.3.5.1 Scom Rules 3.3.5.1

A scope is one of the following:

a field list excluding inner scopes,

= a process or routine heading excluding inner scopes,

= a block excluding inner scopes,

-~ a prefix excluding inner scopes,

- a local declaration (in a lock statement) excluding inner scopes.

A name can be declared once in each scope only. All names must; be
declared before they are used. If a name is declared both in a
scope and in an inner scope, it is always the inner declaration
which is effective in the inner scope.

Generally the declaration of a name is effective in the rest of
the block where it is declared. Further details for each kind of

name is given below.

constant name, type name, variable name, and routine name: The

declaration of these names is effective in the rest of the block
excluding inner process blocks.

field name: The declaration of a field name is effective in the
rest of the block excluding inner process blocks. But the field
name can be used in record variables and with-statements only.

3.3.5.2

38

scalar constant: The declaration of a scalar constant name is

effective in the rest of the block excluding inner process
blocks. But used in a type definition of a fieldname the constant

name can be used in with-statements only.

label: The declaration of a label is effective in the scope where
it is declared.

routine parameter name (implicit and explicit): The declaration

of a routine parameter name is effective in the routine block.
Note that the declaration is not effective in the routine

heading.

process name: The declaration of a process name is effective in

the rest of the block where it is declared excluding inner pro-
cess blocks.

Within the block of a routine a recursive call of the routine can

Processes, exception routines, and variables with semaphore or
pool components cannot be declared in a routine block.

Routine Blocks
be made.
3.3.5.3 Functions

A function name may appear as a variable on the left head side of
an assignment. The type in the function heading is the function
type, it specifies the range of the function. The value of a
function is the dynamically last value assigned to the function

variable.

3'3.5.2

3.30503

39

function variable:

————function name >

3.3.6 Export Part 3.3.6

Export part is an implementation dependent feature which may open
for special linkage editor facilities (see chapter 4).

export part:

——>EXPORT r—>export name —>= —>exp.kind —>simple variabla)l—a

HE -
exp.kind:
SVALUE —>
>DISP
>SIZE Note:
——>ADDRESS — The five words for exp.kind
—>QFFSET ——> are not reserved words!
VALUE is for constants only
DISP is for fields only and means displacement relative to
record start
SIZE is for constants, entire variables, and fields. SIZE

means size (in bytes) of the type which is associated

to the "simple variable"
ADDRESS indicates absolute address

OFFSET indicates relative offset in current stack frame

3.4

40

simple variable:

v

——>simple var name >L

field name<— ,<—

simple var name can be either a constant name or a variable name.

The Statement Part

3.4.1

This section contains subsections describing the syntax and the
use of the different statements which are included in the
language. Most of the statements are also found in Standard
PASCAL and may be well known language elements.

Statements

The statements of a process describe the actions which are exe-
cuted by a process incarnation. These statements are collected in

a canpound statement.

canpound statement:

—->BEGIN —>—>statement—>r——>END

A 4

o
Has

The statements are executed one at a time in the specified order.

Below, all statement forms are given together with references to
their precise description:

3.4

3.4.1

3.4.2

41

statement:

——>compound statement

—>procedure call:

———>assignment statement

——>exchange statement

)

——>case statement

——>for statement
———>if statement

WV

Y

——>repeat statement
——>while statement

b

——>with statement

W

W

—>goto statement

——>]1abelled statement

W

——>1ock statement

A 8

————>channel statement

Assignment Statement

assignment statement:

————>variable >:= —>expression

The type of the variable must be compatible with the type of the

expression. -

Assigrments can be made to a variable of:

a simple type,
-~ a pointer type,

simple type or a pointer type.

The assignment statement replaces the current value of the vari-

able by the value of the expression.

W

section

3.4.1
3.4.6
3.4.2
3.4.3
3.4.5
3.4.4
3.4.5
3.4.4
3.4.4
3.4.7
3.4.10
3.4.10
3.4.8
3.4.9

a structured type where all camponents are of a

3.4.2

42

Expressions describe how values are computed. Expressions are

evaluated from left to right using the following precedence
rules:

NOT has the highest precedence followed by
*, /, DIV, MOD, AND followed by
+, -, R . followed by

=, <y L <5y >y >=, IN

expression:

——>gimple expression >

> >—>simple expression—J
— < >
-—av<—)|
— <= —3
— > —3
—> >= —>
—> IN—
simple expression
> 2y term >
———>+—§| c— + <
e & -]
e— OR <
term:
——>——>factor >
< *&
< /<
< DIV<
< MOD<
_(Wl

43

Note: All factors in an expression are evaluated.

Factor:

—>r——>operand > > >
—> (—>expression—) j
—>NOT —>factor

operand:

—>r—>variable >

—>value
Variables

The term variable includes declared variables, formal parameters,
and function variables. All variables are denoted by their name
and possibly a selector.

variable:

—>r—>variable name >
—>function variable —>|
r—>fomal name ———>
(—>array variable ——>
——>record variable ———
—>pointed variable ——>

v

array

record variables are described in subsection 3.3.4
pointed

function variables are described in subsection 3.3.5.3

3.4.3

44

Variables of shielded and pointer types are implicitly given the
following initial values:

semaphore: passive
shadow: nil

reference: nil

pool: a number of messages, determined by the cardinality
expression; the contents of these messages are unde-
fined

pointer: nil

Exchange Statement ' 3.4.3

3.4.4

exchange statement:

—————>variable >s=¢ >variable —

The two variables must either both be of type reference or both
be of type shadow.

The exchange statement exchanges the values of the two variables.

Repetitive Statements 3.4.4

Repeat Statement

repeat statement:

—>REPEAT —>r—>statement —>—>UNTIL —>expression —>

1€
The result of the expression must be of type boolean.

The statement sequence is executed one or more times. Every time
the sequence has been executed, the expression is evaluated, when
the result is true the repeat statement is campleted.

45

While Statement

while statement:

WHILE expression DO statement ——

The result of the expression must be of type boolean.
The statement is executed a number of times (possibly zero). The
expression is evaluated before each execution, when the result is

false, the while statement is completed.

For Statement

for statement:

FOR variable —>:= —>for list—>DO —>statement ——>
for list:
TO
—f——>expressionf————9 ————a-exprression2
—>DOWNTO—

The two expressions must be of the same enumeration type and the
type of the variable must be compatible with this.

The selection of the variable cannot be changed in the statement.
Hence, if the variable has array indices or pointers, changes to
these (in the statement) will not affect the selection.

The statement is executed with consecutive values of the variable
The ordinal value of the variable can either be incremented (in
steps of 1 (succ)) from expression] TO expressionz, or descrem—

ted (in steps 1 (pred)) from expression1 DOWNTO expressionz. The

two expressions are evaluated once, before the repetition. If the

value of expression; is greater than the value of expression, and

TO is specified, the statement is not executed.

46

Similarly, if the value of expressionq is less than the value of
expression, and DOWNTO is specified, the statement is not execu-
ted.

The value of the variable is dependent of the expressions after
the for statement.

3.4.5 Conditional Statements 3.4.5

Case Statement

case statement:

——>CASE ——>switch —>0F - r—>case list element>—>end part—>

-
Has

end part:

> >END >
——>0OTHERWISE —>r—>statement

@

[

case list element:

>—>constant expression ‘J >: —»statement
constant expression->..->constant expression

-

's

W

switch:

>expression

v

47

The values of the constant expressions in case list elements are
called case labels. All case labels and the switch must be of the
same enumeration type and all case labels must be distinct. The
switch is evaluated and the statement labelled by the value of
the switch is executed. If no such label is present, the state-
ment following OTHERWISE is executed; if OTHERWISE is not speci-
fied, an exception occurs.

If Statement

if statement:

—>IF—>expression—>THEN %statement1 —;l—>EISE —9statement2 —)l—)

~
~

The result of the expression must be of type boolean.

Statement is executed if the value of the expression is true. If

it is false, statement, (if specified) is executed.
The statement:
IFe1'IHENIFe2'I‘HENs1 ELSE52

is equivalent to:

IF e4
THEN BEGIN
IF e,
THEN s4q
ELSE s,

3.4.6

48

Procedure Call

routine call:

——————>routine name ————>actual parameters >

A routine call binds actual parameters to formal parameters,

allocates local variables, and executes the campound statement of
the block. When the compound statement is completed, local vari-
ables are deallocated and execution is resumed immediately after
the routine call. All local reference and shadow variables must
be nil when the compound statement is completed, otherwise an
exception occurs.

The variables of a routine are associated with a specific call;
they exist from the routine call until the compound statement (of
the block) is completed. When a routine is called recursively,
several versions of the variables exist simultaneously, one for
each uncompleted call.

The difference between a procedure and a function is that a pro-
cedure call is a statement and a function call a factor (function

variable) in an expression.

A function call is an operand in an expression.

function call:

——>function name ———>actual parameters

W

Actual Parameters

When a process incarnation is created or a routine is called

actual parameters are bound to formal parameters.

actual parameters:

—> (—<r>actual parameter->—>)

3.4‘6

49

actual parameter:

————>expression -

There must be an actual parameter for each explicit formal para-

meter.

The binding of an actual parameter to a formal parameter depends

on the parameter kind:

value:

variable:

The type of the actual parameter must be campatible
with the type of the formal parameter. The value of the
actual parameter is evaluated and this value becames
the initial value of the formal parameter. Assignments
to the formal parameter within the block does not
affect the actual parameter (call by value).

The type of the actual and formal parameter must be the
same. The actual parameter must be a variable, the
value of this variable becames the initial value of the
formal parameter. Changes to the value of the formmal
parameter within the block affects the actual parameter
directly.

The actual parameter selects a variable, this selection
cannot be changed in the block. Hence, if the variable

has array indices or pointers, changes to these do not

affect the selection (call by reference).

An element or a field of a packed variable cannot be an
actual var parameter. The whole packed variable can,
however, be an actual var parameter.

50

3.4.7 With Statement 3.4.7
with statement:
SW >record variable ———>D0 —>statement———>
<
Within the statement fields can be accessed by giving their field
names only.
The with statement
WITH v1, v2, ..., vn DO s;
is a shorthand for the nested with statement shown below.
WITH v1 DO
WITH v2 DO
WITH vn DO s;
The record variable selects a record, this selection cannot be
changed in the statement. Hence, if the record variable has array
indices or pointers, changes to these (in the statement) will not
affect the selection.
3.4.8

Lock Statement 3.4.8

lock statement:

—->LOCK ->reference variable >AS->local declaration—=>DO->statement—>

local declaration:

W

-———>]ocal name >3 —>type

51

reference variable:

——>variable >

local name:

v

——>identifier

The camponent types of the type must be simple. The reference
variable must refer to a message (must not be nil), otherwise an
exception occurs. If the message is too small to represent the
specified type an exception occurs.

In the statement local name is a declared variable with the
specified type. In the statement the reference variable must not
be used as part of an exchange statement or as a parametef to
signal, return, release, pop, or push.

The data part of a message is manipulated as a declared variable

with the local name. It is always the top in the message stack
which is manipulated.

3.4.9 Channel Statement 3.4.9

channel statement:

—>CHANNEL ———>reference variable ——>D0 ——>statement——>

The reference variable must refer to a message (must not be nil).
Any implementation may place restrictions on this message. If the
message is not of this restricted form an exception occurs.

In the statement the reference variable must not be used as part
of an exchange statement or as a parameter to, signal, return,
release, pop, or push.

52

The channel statement controls the handling of peripherals in an
implementation dependent way.

3.4.10 Goto Statement 3.4.10

goto statement:

GOTO label

v

The goto statement, the declaration of the label, and the
definition of the label must be in the same scope.

Execution continues at the statement labelled by the label
(labelled statement).

Jumps out of a channel or lock statement and jumps out of a
routine are not allowed.

labelled statement:

label—>»: —>statement —8

3.4.11 Standard Routines abs, succ, pred, chr, ord 3.4.11

The absolute value of an integer variable is given as the result
of:

FUNCTION abs (int: integer) : integer;

The successor and predecessor of a variable of scalar type is
given as the result of:

FUNCTION succ (s: s_type): s_type
FUNCTION pred (s: s _type): s_type
s _type may be any scalar type.

succ taken on the last element and pred taken on the first ele-
ment of a scalar type results in an exception.

53

The character with the ordinal value n is the. result of a call
chr(n) where chr is defined as:

FUNCTION chr (n: 0 .. 127): char;

The ordinal value of a scalar element is retrieved by the func-
tion ord:

FUNCTION ord (s: s _type): integer;

where s type may be any scalar type.

54

PROCESS COMMUNICATION 4.

4.1

This chapter contains a general description of communication
betweeﬁ incarnations, i.e. a description of the language concepts
and the tables available for the programmer. After that is a more
detailed description of the predefined routines intended for syn-
chronization of the communication between process incarnations.

4.1

General Process Communication

A process consists of a number of statements and declarations. An
incarnation of a process is the execution of the actions on a

private data structure. Many incarnations can be executed concur-
rently.

Process incarnations communicate by exchanging messages. A mes-
sage can be accessed by at most one incarnation at a time.

place data . await access
in M

to M
A B

Time T: A has exclusive access to the message M.

read data

e

in M

Time T + 1: B has exclusive access to M.

The two predefined types reference and semaphore are used for re-
ferencing and exchanging access to messages.

55

The value of a reference variable is either a reference to a
message or nil (representing "no reference"). At most one
variable references a message. Since process incarnations access
messages through reference variables only, mutually exclusive

access to messages is secured.

Queue semaphores are used for exchanging access to messages.

A queue semaphore consists of a sequence (fifo) of messages and a
set of waiting process incarnations. One of these is always
empty.

A queue semaphore s can be in one of three states:

open
1 .
2 The sequence of messages is not empty.
s . The set of incarnations is empty.
N
sequence of
messages
locked
. The sequence of messages is empty.
The set of incarnations is not empty.
s
O e
walting
incarnations
passive
S ' The sequence of messages is empty.
O - > empty

The set of incarnations is empty.

56

Any process may contain declarations of variables of type sema~
phore, and it may receive semaphore variables as parameters when
it is created. All declared semephore variables are initially in
the passive state. In constrast to variables of any other type a
semaphore variable can be accessible by many process incarnations
simul taneously.

example:
PROCESS converter (input, output: semaphore);
VAR

myown: ARRAY (1 .. 2) OF semaphore;

The process converter has access to four semaphores: input,
output, myown(1), and myown(2).

The predefined routines signal and wait are used for exchanging
access to messages.

PROCEDURE signal (VAR r: reference; VAR s: semaphore);
The reference r must reference a message. If the semaphore s is
open or passive, the message referenced by r is entered in the

sequence of messages belonging to s.

open or passive

incarnation executing signal

N | =

r S

—>{]
Q_ message

N

sequence of

messages
prior to signal (r, s)

57

incarnation executing signal

_ sc}//'f>’1
r(:::> . 2
N
N + 1
sequence of
messages

after signal (r, s)

If s is locked one incarnation is removed from the set of waiting
incarnations and reactivated. That is, it will be allowed to cam-
plete the call of wait which caused it to wait.

locked

incarnation executing signal

incarnation executing wait

£ = e
message

waiting incarnations

prior to signal (r, s)

incarnation executing signal

incarnation executing wait

= — 1 O

message

waiting incarnations
after signal (r, s)

58

PROCEDURE wait (VAR r: reference; VAR s: semaphore);

The reference r must be nil. If the semaphore is open the first

message in the sequence is removed and r becames a reference to
this message.

open
1 incarnation executing wait
2 message r
S . @
N

segquence of messages

prior to wait (r, s)

2

S . message incarnation executing wait
: e |
N

sequence of messages

after wait (r, s)

If the state is locked or passive the incarnation is temporarily
stopped and entered in the set of waiting incarnations.

locked or passive

incarnation executing wait

% @

waiting incarnations

prior to wait (f, s)

59

incarnation executing wait

@

r

waiting
incarnations

Incarnation has been stopped during wait (r, s)

It is implementation dependent which one of several waiting in-
carnations is selected for activation during execution of signal.
However, the selection algorithm must be fair: no incarnation may
remain waiting indefinitely on a semaphore, provided some other

incarnations continue to signal messages to that semaphore.

Execution of wait and of signal -is performed indivisibly: e.g.
from the moment an incarnation starts execution of a signal on a
given semaphore and until the execution is campleted, any other
incarnation trying to operate on that semaphore variable is

delayed.

A process may only inspect or alter the contents of a message in
a so—called lock statement. Iet r be a reference variable which

references a message:
IOCK r AS b: t DO s;

In the statement s the message referenced by r is manipulated as
if it were a variable with the name b of type t.

In the following example there are two processes, one which pro-
duces data (e.g. input data) and one which consumes data (e.g.
‘uses the input data in a computation).

60

PRCCESS producer (full, PROCESS: consumer (full,
void: semaphore); void: semaphore);
TYPE TYPE
buffertype = ...; buffertype = ...;
VAR VAR
r: reference; r: reference;
BEGIN BEGIN
REPEAT REPEAT
wait (r, void); wait (r, full);
LOCK r AS b: buffertype DO LOCK r AS b: buffertype DO
BEGIN BEGIN
(*...produce data...*) (*...consume data...*)
END; END;
signal (r, full); signal (r, void);
UNTIL...; UNTIL...;
END; END;

The allocation of messages is specified by declaring a variable
of pool type.

VAR
m: POOL cardinality OF type;

Initially, the variable m contains cardinality messages. These
messages can hold a value from type. The predefined procedure
alloc removes a message from a pool variable:

alloc (r, m, s);

The reference r must be nil. If the pool of messages is not emp-
ty, one of the messages is removed and r references this message.
If the pool is empty the process incarnation waits until a mes-

sage is released (by another incarnation calling the predefined
procedure release).

61

Each message contains information about its origin. The third

parameter to alloc must be a semaphore and it beccmes the answer

semaphore of the message. This is the equivalent of a return

address on an envelope of a letter. The answer semaphore is used

in the predefined procedure return:

PROCEDURE return (VAR r: reference);

A call of return is equivalent to a call of signal:

signal (r, "answer semaphore")

But the answer semaphore is only implicitly available through

return.

The following is a revised version of the producer camsumer

example given above.

PROCESS proceducer (streams
semaphore) ;
TYPE
buffertype = ...;
VAR
r: reference;
POOL 1 OF buffertype;
a: semaphore;
BEGIN
alloc (r, m, a);
REPEAT
LOCK ¢ AS b: buffertype DO
BEGIN
(*...produce buffer...*)
END;
signal (r, stream);

N

wait (r, a);
UNTIL...;
END;

PROCESS comsumer (stream:
semaphore) ;
TYPE
buffertype = ...;
VAR

r: reference;

BEGIN
REPEAT
wait (r, stream);:
LOCK r AS b: buffertype IO
BEGIN
(*...comsume buffer...*)
END;
return (r);
UNTIL...;
END;

62

The following communication flow is possible by means of
SIGNAL/RETURN:

A reference variable may point to none or a stack of messages.
This is a generalization of the concept of reference variables as
described earlier. In general terms a reference variable points

to a stack of messages.

When the value of the reference variable is nil, the stack is
empty.

A well-defined reference variable points to a stack of reference
variables. The message header of the stack elements contains a
field, which chains the messages together. This field is called
the stack chain. This pointer is nil in the last element of the
chain.

Two procedures:

PUSH(<reference variable>,<reference variable>)

POP (<reference variable>,<reference variable>)

are used to manipulate reference variables when interpreted as
stack reference variables.

63

example:

VAR element: REFERENCE:

stack: REFERENCE;

PUSH (element, stack);

POP (element, stack);

PUSH (ref1, ref2)

Before call

refl - well-defined reference to element.
The stack chain field in the element must be NIL.

ref2 - well-defined stackop element or
nil if stack is empty:

After call

refl - nil
ref2 - ref2:= old ref1

If the old refl has no associated message data, the message data
associated the old ref2, if any, are assigned the old refl,
together with the pushing.

If the old refl has associated message data the old refl is just
pushed.

64

Example
1) Before call After call

]ref1h

Ee_fﬂe‘:ﬂl ref2

POP (refl1, ref2)

Before call

refl - nil
ref2 - well-defined stacktop element

65

After call

refl - refl:= old ref2

ref2 - new stacktopelement.
Note: ref2:= nil if the stack
became empty during call.

If the old stackop element has associated message data, and the
new stackop element points to the same message data, the message
data pointer in the popped element is set to nil.

This is not done if the new stackop element points either to
another message data or points to nil.

66

Examples

1) Before call After call

[ref1 }—_L [cef2 [ref1|‘] ref2 EQ

—_—
-

2)
[ref1 Ij_ lref2 ref1 @r—"EZE
3)

[ref h @‘% [ref1 Eef2—}—j%

67

The PUSH and POP procedures are especially suited to the

following situations:

- to associate a new messageheader to received message data by
the PUSH procedure in order to avoid copying of data, and to
signal the message on to the next incarnation in the flow. The
general answer mechanism will be to reestablish the original
message header by a call of POP and return the message to the
sender by calling RETURN.

SIGNAL SIGNAL SIGNAL SIGNAL
RETURN RETURN RETURN RETURN

- to pile together a number of messages and pass the whole batch
to an incarnation by one call of SIGNAL.

Semaphore Pointers

A semaphore pointer variable is a variable of type:
fsemaphore

A semaphore pointer variable is a variable, whose value refer—

ences a semaphore variable.

If the value is not a reference to a semaphore variable, the

value is nil.
The only legal operations on semaphore pointer variables are:
nil, and := (assigrment)

If p is a semaphore pointer variable, p denotes the semaphore
pointed to by p.

4'2

68

The Predefined Communication Routines

signal, wait, return, and release.

There are four predefined cammunication routines, signal, return,
wait, and release.

PROCEDURE signal (VAR r: reference; VAR s: semaphore);
The reference parameter must refer to a message (must not be

nil), otherwise an exception occurs. The reference variable is
nil after a call of signal.

If the semaphore is passive or open, the message referred to by r
becomes the last element of the semaphore's sequence of messages.
If the semaphore is locked, one of the incarnations waiting on
the semaphore campletes its wait call.

When several process incarnations are waiting, it is ﬁnplemeni:a—
tion dependent which one is resumed by a signal call. No process
must, however, be waiting indefinitely if other incarnations con-
tinue to signal messages to the semaphore.

PRCCEDURE return (VAR r: reference);

The parameter must refer to a message (must not be nil), other-

wise an exception occurs.

The call:
return (r);

has the same effect as the call:
signal (r, rf.answerf);

The latter is, however, not a valid call because the answer

semaphore is not explicitly available.

4.2

69

PROCEDURE release (VAR r: reference);

The parameter must refer to a message (must not be nil), other-

wise an exception occurs.

The call:
release (r);

has the same effect as the call:
signal (r, rf.ownerf);

The latter is, however, not a valid call because the owner sama—
phore is not explicitly avaiable.

PROCEDURE wait (VAR r: reference; VAR s: semaphore);

The reference parameter must be nil, otherwise an exception

occurs. After a call of wait it refers to a message.

If the semaphore is open, the first message is removed from the
semaphore's sequence of messages. If the semaphore is passive or
locked, the incarnation waits and enters the set of incarnations
waiting on the semaphore. It can be resumed by another

incarnation calling signal or return.

Open, Locked, Passive, and Sensesem

There are three predefined boolean functions to detect the state

of a semaphore variable:

FUNCTION open . (s: semaphore): boolean
FUNCTION locked (s: semaphore): boolean
FUNCTION passive (s: semaphore): boolean

70

The three states may be depicted as:

open
1
S 2 The sequence of messages is not empty.
) The set of incarnations is empty.
N
sequence of
messages
locked
The sequence of messages is empty.
The set of incarnations is not empty.
S
®
waiting
incarnations
passive
SO" > The sequence of messages is empty.
The set of incarnations is empty.
Sensesem

PROCEDURE sensesem (VAR r: reference;
VAR s: sentaphore);

The body of sensesem is equivalent to:

IF open (s) THEN wait (rx, s);

i.e. take a message from s if there is any, otherwise r remains
nil,

71

Ref

Semaphore pointers may be assigned to denote a semaphore by means
of the predefined routine ref:

FUNCTION ref (s: semaphore): semaphore;
Semaphore pointers are initially set to nil by the system, this
may be used to define a nilpointer which may be useful if
semaphore pointers are used.
example:

var nil pointer:! 4 semaphore; (* nil ._pointer cannot be

. changed since it is frozen*)
sem arr: array (low .. high) of 4 semaphore;

sem_arr (index):= ref (sem);

sem_arr (index):= nil pointer;

Push, pop, and empty

A message may consist of a stack of headers and data areas. The
stack of message headers is the message header stack, and the
stack of the data areas, the message data stack.

72

message:

message header stack

message data stack

A header may or may not point to a data area (m < n). The top
header of the message is header . The top data of a message is

data1 L]

The message is organized as a stack which is manipulated by the
two predefined procedures push and pop.

PROCEDURE push (VAR r1, r2: reference);
The parameter r1 must refer to a message (must not-be nil), and
this message must have exactly one header, otherwise an exception
occurs. The message accessible through r2 (possibly nil) is

called the stack.

_;-The header referred to by r1 becames the new top header of the

.... stack. After the call, r2 refers to the new stack.

If the new top message is a header message, the top data of r2
. remains the same. After the call r1 is nil.

PROCEDRUE -pop (VAR r1, x2: reference);

Reference variable r1 must be nil and r2 must refer to a.message

(must not be nil), otherwise an exception occurs.

.~ The top header is removed from the message (accessed through r2)
- and after the call r2 refers to the remaining part, while r1
refers to the removed message.

73

It may be detected if a reference variable refers to a message
with one header only by means of the predefined boolean function:

FUNCTION empty (r: reference): boolean
The body of empty may be: ' ‘
Pop (iocal ref, r),
empty:= nil (r)
where nil is another st;':mdard function:
Nil

FUNCTION nil (p: pointer type): boolean

pointer_type may be any pointed type, for example reference which
is defined like : -

- TYPE reference = 4 message;

E

Alloc and Openpool

With each variable of type pool an anonymous semaphore is asso-
ciated. This is the owner semaphore of all messages in the pool
A message is-allocated from the pool by the predefined procedure
alloc.

PROCEDURE alloc (VAR r: reference, VAR p: pool 1; VAR s: semaphore);

The pool variable ¢ahbe of any pool type.

The ‘reférence variable must be nil, otherwise an exception i
occurs. After the ‘call’it refers to a message. If the pool ‘of
message is not empty, one of the messages is removed. If the pool
is empty the ihcarnation waits until a message is released to the
pool by another process incarnation calling release. The answer
semaphore of the removed message becames s. - B A

Variables of type pool (or variables with pool camponents) can
only be declared in the declaration of a process and not in the
declarations of a routine.

74

It may be detected if a pool is open (i.e. not empty) by means of
FUNCTION openpool (VAR p: pool 1): boolean;

the function result becames true if the poal'.is not ‘empty (cf.
function open for semaphore).

75

PROCESS CONTROL

3.1

Processes can be nested and a process declared within another
process 1is .a.sub-process (of the .surrounding process). -

An arbitrary number of incarnations of sub-processes (children)
can be created, they are all controlled by the parent. Incar-

nations are created and removed dynamically.

A process can have formal parameters. When an incarnation of the

process is created a number of actual parameters is given. Incar-

nations communicate through common semaphore variables only. In
this way a parent determines the communication paths of children.
Note, however, that the controlling process incarnation need not
participate in the communication.

Variables of the predefined type shadow are used to discern dif-
ferent incarnations of sub-processes. A shadow variable is the

controlling process' link to an incarnation of a child. There is
a number of predefined routines for exercising this control
(start, stop, etc.).

The Predefined Routines for Process Control

1

Link

FUNCTION link (external name: alfa;

process name): integer;

There must not be a process linked to process name, process name
must be the name of a process. The process identified by the
external_name is linked to process name. The external identifica-
tion of processes is implementation dependent.

Result 0 means success, other values are implementation dependent

" error codes.

5.

5.1

76

FUNCTION' create (incarnation name:i alfa;
process name’ (actual parameters);
VAR sh: shadow; storage: integer): integer;

The shadow variable must be nil and process name must be linked

to & process. Result O-'means ‘succeds, ‘other values are implemen-

tation dependent error codes. SR, e

‘A'new incarnation of thé process linked to process name is crea-
ted. The storage parameter specifies the amount of storage for
"holdmg the runtime stack. The store is initialized with thé
“actual parametéers and ‘various administrative J.nformatlons but the
incarnation is stopped. 'THe created incarnation is a g_h_lﬂ;g of the
creating incarnation, the parent. After the call the shadow
variable refers to the child. o

_Remove

50 PROCEDURE remove: (VAR sh: shadow);

“The - shadew variable must refer to a process incarnation -(child),
otherwise an exception occurs. e TR

Remove terminates execution of the child and deallocates all its
resources. Execution of that incarnation cannot be resumed.
Remove also removes all incarnations controlled by the child,
their children ect. '

After the call the shadow variable is nil.

Start, Stop, and Break

The following predefined procedures are used for controlling
children between calls of create and remove.

PROCEDURE start (VAR sh: shadow; priority: integer);

-7:7

Start initiates or resumes execution of a:.child,which: is stopped.
The meaning of priority.is implementation dependent.

bl b i il S atd S - o s i v = R
e Lue . »

PRODURE stop (VAR sh: shadow);

s o~ e .- I ' - o
) T K A = | £ —

The shadow varigble must refer, to .a, process incarnation. (child).
The child is stopped. P T

The. shadow yarisble must refer to a process incarnation {ghild).

The; Ga}l forges an exgeption upon. the. child, [he:meaning of.the
exception code .is implementation dependentuy s z. ;i gver wpur

S p ey ot L

[P TN TS A e B AU -y F SRS | e o YT BResy KR ISR o

Unlink T -t S - N W Ty

FUNCTION unlink (process name): integer; e g
At process must be linked to process; name and- no incarnations of
the process may exist. After the call the link is deleted.
Resylt 0 means. success, other values are implementation dependent

error codes. ST noerint oAl fando

> . Il - X == v o T -
T A - L s o £
) . =) Y A 4
[~q s T £ 3 j.. ~ .

b ~ i 3 Ly
A E [oy
= J e BT
. - 3 . et
AN 3 J a).
s
i v R
=l g
-, - b Fi

6.

78

UTILITY PROGRAMS

6.1

Indent

_Text formatting program

The program performé iudentiou of source programs depend ing on
the options specified in the call and on the keyswords. (reserved
words) of PASCAL/PASCALS(.. '

call:
. .I . . . L g Sa v AR) RN
<outputfile>= g indent <input file> <option>

" <option>::= lines ~ line numbers are added

mark the blockstructure is made clear b§“ﬁééns
. & P of ! between matchlng begln—end s .
;qu e . list ;I.w the _same . as; llnes mark . r..-; .
o ' h_n01nd ; —“the output w1ll be left Justlfied -
'mylnd 7Jthe output 1ndentlon is the same, as the

input 1ndent10n

l¢.. ,, lists. keywords_ig_ capital letters. and

ﬁp _- j 1dent1f1ers in. small (lower case) letters

i uc | épboth key words and Andentifiers. are listed
" in upper case letters

AP he:tLP S produces e U‘St 0f1egal opt,ip_ns

.Storage requizements:. .

The .core store required, for. indent is.16000 hW,(size 16000).

Error messages:

222 1llegal 1nput—f11ename

FRRY

N 1nput flle must be spec1f1ed

6.]

LAt e ' o

call: "indent help", for help RS R i) e
an error is detected in the program call, a new call

[

"indent help" will produce a list of the valid optlons-.v-ww--'w-m—"

» N . .- .- oS as oo N
. . . sty W aan e oAy i FATp
s warning, end(s) missing g e MAsm el oL
an error in the begm—end structure has been detected.
ol ETSTBOUY £ VILCH W0 AL TosBr eI Ui ol
R AN, L I SRl |5 Wt) SR N A R 170 AR e DU s A P
¥E=EO orematiré “end of ‘il
caomment or string not terminated. L
Cross Reference Program 6.2
iy e w AL - PSR T

Produces a cross reference llstlng of the 1dent1f1ers and numbers
and a use count of the PASCAL/PASCALSO key words used 1n tile mput

Eabus v rmaawe P - ol

text. T ' e

3 A e n B L . R, " wFm e
AT LY L Sl S 20 g =)] 3TN

'
IR

The cros§ Feferénce 1ist is’ maae w1th no regard to the block
structure of the’ pr:ografn“L 'Ihe“ 1ist"is Sorted acmrdlng to the
ISO—a.lphabet, i. e. numbers before letters, but w1th no difference
betwéen™ upper’ and” 16Wet case letters.
rey s T

The ‘occurrence Ilst for an 1dent1f1er cons1sts of a sequence of

‘ PASCAL/PHSCALSO lme numbers. “The occurrence kind is specified by
“meand™of " #Hé’ ch‘arécter fol’Lowa.ng the hne number ;"

Sl AL IR

* mefanihg the* identifier or® ‘nuiber is fouhd® in a declaration part.
= meaning the identifier is assigned®to’ Th th&"1iné ‘specified.

: " ‘meaning the ideftifier’ ot mumber-océuried as’a labsl

blank all other uses "EERRRLSRLE

<KLk <in the list is a warnmg dehoting that the name
consists of more than 12 characters, whicn 1s the number
of significant characters for PASCAL~identifiers.

80

Call:

<output file> = cross <input file> <option>

T

e

<option>::= bossline. <yes or no>

<yes Or nori:= yes bossline's aré'édded-Eéztheilféfing.
(default).

o g L

Fome s “ J
-~ L EET @ e TR

el S (e .t - Mk R P S RO
no only PASCAL/PASCALS0 line numbers are
generated. - o

Storage requirements:

The core store required for cross is at least 40000 hW (size
40000), but the requirement depends on the size of the input
text.

Errormess:

?2?7? illegal output-filename
left hand side of the call must be a name..

??? illegal input-filename
input file must be specified

?2? yes or no expected

option 'bossline' must be 'bossline.yes' ar 'bossline.no'

2?2?27 error in bracket structure, detected at line: xx
missing ")" ('s)

??? error in blockstructure, detected at line: xXx
unmatched end

*kkk** yarning: hash table overflow at line: xx

the name table ran full at line xx, the crass referencing

continues for the names met until line xx, new names in

the following lines are ignored.

A. REFERENCES s
TET graeigs gy o L eld 2
[1] Staunstruia, J.:
PASCAL80 Report -)
L PR IR s8I SO STy

RCSL No 52-AA964
NS P tglen & 12,

L

P

[2] Jensen, K. and Wirth, N.:

PASCAL User Manual and Report
SIS RYSmELYT E0s 63T
Springer - Verlag

- N
T OV A
)
Berlin 1974
. 2 - [_— g -~ ~
) ol g R S XY AR OF UL S B o SE
s . [Py a PR ERY
o R T X > . I . 1
RS e ot BT P TS G LR WAL Spiw ¥oal MRSV R 3
R Sud
E R e O
——
2 TITY T
#
~ - 1, i =
TRy SO T T
- iy . Lt S e g wm et
LTTE R SELT L, e s VS SR BAT
= Ll [l L L
0 Ly K8 Fow 2 OF &
" =
. . ERTN
Voare (LA BN 0 1
L . - . .
o i JELS I B S RS Yo i
. £ Ty - . Y Y ey v Tk
R T T S 1 CR T S 5 i
t = o
i e A
.
p - A - -~ - "
EE LT ks vk PR O e o A T
0 - o] e R (R TR
$x T N Lot See TOM ST
i ALK T B P S
oWt VAT LR BT b BE oL cpoeantowlL o pemrn e

Lt Ane et

2 S GG UET I el O

seyrizasha

a— 4 sme B 1 2 = e e - . N i R R Ty P
A 0 .= —— oy .t - whaies aem syl a4 me . e apemtes aan arm
- - = = 2 - - - - - - AT - B e ek e———

! . > I s B r A siee €
R . i ieE hE S o e A e e e
S aA ey R e . e . Ce e e e e
i et AR e e g S e (e e v 18 EReTy S mARS v e aw SR MRE, AR Vokr EaR A eme
B R IRt SR PO 1 N LT O L
ey, - - ey o, s i] T AT
P g s pm ipem s e R —— - . =
1k BErses - = ey de - v leala = > i, PiaE bt
L o= . -
Load o33 t
.

I=ES = =" BT TS T ot L = i =t
o o " ¥ = s s W Eu ® = B i "
e soE A4 - TS Ry —] e .

e
& ~ i m T e W ¥ i | A"

RETURN LETTER
Title: PASCAL80 User's Guide RCSL No.: 42=11539
A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to irfi-

prove the quality and usefulness of its publications. To do this effectively we fieed
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, acéuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:
Address:

Date:
Thank you

42-i 1288

RN ' PR %f’.:‘ *w e s as s e Foldhem e

................. Do not tear - Fold here and stapte
Affix
postage
here
¢ REGNECENTRALEN
: T at 1978

‘Information Departmtent
Lauttupbjerg 1 .
DK-2750 Ballerup
‘Denmark

