

RCSL No: 42-11539

Edition: October, 1980

Author: Jan Bardino

Title:

PASCAL80 User's Guide

§ REGNECENTRALEN

7 af 1979

Keywords:

High level language, PASCAL80, Concurrent programming, Standard PASCAL.

Abstract:

This is a tutorial for the language PASCAL8C. The manual contains a

description of PASCAL80 and examples of programs and program constructs.

(88 printed pages).

Copyright © 1980, A/S Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen
Users of this manual are cautioned that the specifications contal-
ned hereln are subject to change by RC at any time without prior no-
tlce. RC Is not responsible for typographical or arithmetic errors
which may appear In this manual and shall not be responsible for
any damages caused by reliance on any of the materials presented.

42
-1

13
41

TABLE OF CONTENTS PAGE

1. INTRODUCTION bd

BASIC DEFINITIONS eeeeeseeoeseeeeeeaseeeeseesasnaneeeeeenaae

2.1

202

2.3

Vocabulary eeoeeoeeeeeoe aes ea eneseseeneeneeesesnveonenenes

Syntax Diagrams eeneeceeoeeeeoeeresneeeeeeeneneonsenenn

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

COMMENCS sescccccsccncccercccucesnssevvcces

Tdentifiers ..cccccecevecercccccccvecececes

NUMKELS cecccccccccccvccccccccsnccevscssecs

SCPALALOLS e:ae:e 9:0:0:0:0:0:0:0:0:0 0:00 6:6 ied wes Be") 6%

Strings of Characters .eccscscccecccceccece

Fundamental Concepts wisiesiewies sass ewiewicsnesecciesic's

THE PASCAL80 LANGUAGE eo eee ee eeeoeeeeeeeeeeeeeeeeeeoeeoes

3.1

3.2

3.3

3.4

The Process Structure eceeeceeeersee serene sesneoeveces

The ProcesS Heading ..csvcccsccccesevcccucnccvccce

The Declaration Part .ecsccccccccccccccssccccccces

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

Label Declaration Part sae cisisieesie eis ceisesews

Constants Definition Part sesesecesecveccees

Variable Declaration Part wesscccseeccceces

Type Definition Part ssesssievsieseseacese side

32324,.1 TYPOS cocecccccnccnccvcsccccsccces

3.3.4.2 Type Compatibility ...cssccccecees

Routine Declaration Part wsccccovcccccvcccs

3.3.5.1 Scope RULES seweselaweeg wwe saeewe wie

3.3.5.2 Routine BLOCKS .ccecsceeccvcsecccs

3.3.5.3 FUNCtions ..cccsccecessscccccccens

Export Part @eeneeeseeeeseoseevrveseeeoanenesevnee

The Statement Part eect ececeeesneoeeseeerseeeoeeeveeve2enenen

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

2.4.6

3.4.7

3.4.8

3.4.9

StateMentsS ceocececcccccvcccacccsscssesssees

Assignment Statement .escccccesevcccvccecce

Exchange Statement swewsssseisas.o0en ois ere oe

Repetitive StatementS ..csccceccccccevecses

Conditional StatementS ..cscsccceecececcees

Procedure Call .cccccccccsscccscccccsesvecce

With Statement ...cccccccecccsccssccscccene

SI ISIANESIISIN swore towel « Ws GNGNORG) sWal o SMe [aWo ¥al «Wal WGE. fo

Channel Statement ...ccccccccucscccecvecees

S
N
D

H
D

O
U

&
®

W

W

W
W

a
n
e

e
e

ee

es

e
e

e
e

o
o
n

oO

FP

|W

WH

©

O
O

3]

34

37

38

38

39

40

40

4]

44

44

46

48

50

50

51]

ii

TABLE OF CONTENTS (continued) PAGE

3.4.10 Goto Statement eeeeeeoeveeeee eevee eeeeeeeeaeee 52

3.4.11 Standard Routines abs, succ, pred, chr,

ord eee eee eee ee eee eeeeeeeeeeeeeeHeeee 52

4, PROCESS COMMUNICATION eeeeweeeoeeeeweeeeeeeeeevewneeeeeeeeeeee 54

4.1 General Process Communication cecececececcceeseses 54

4.2 The Predefined Communication RoutineS .ecsccscveee 68

5. PROCESS CONTROL *eneeneneaeeneeeneeneeeeaeeneeneeneen eee eaeeneneeneeneee 75

5.1 The Predefined Routines for Process Control 75

6 e UTILITY PROGRAMS eeeereeevwee eee eevn ee eee eeeeeeeeeeeeeeeeeee 78

6 el Indent eeeeceveoeeeeoeoeeeeeeoeeeeeeeeeeeeeeveeeeeeaeeeeeeae 78

6.2 Cross Reference Program ceereceeccccccsecssceseeee 79

APPENDIX :

Ae REFERENCES eoeoneecsccesntcenssescecaesaseeneseexseecesereneeseoensse 81

INTRODUCTION

This first edition of the PASCAL80 User's Guide is mainly based

on extracts from earlier PASCAL80 papers such as the Report [1],

and some preliminary introductions, and information published in

Danish under the common little "PASCAL80 NYT".

This manual is directed to those who have previously acquired

sane familiarity with computer programming, and now wish to get

acquainted with the programming language PASCAL80. The style of

the manual is that of a tutorial, i.e. a demonstration of the

language features by means of examples.

For a concise ultimate of the language definition the PASCAL80

REPORT [1] may be used and the actual implementations are des-

cribed in xx-PASCAL80-REFERENCE manuals, by now xx is RC3502 and

RC850.

Since PASCAL80 is based directly on Wirth's Standard Pascal [2]

familiarity with that language means that the parts concerning

sequential programs, i.e. most of the declarations and control

statements, may be well known. PASCAL80 can be characterized as

Standard Pascal without files but extended with communication

primitives to be used to connect concurrent process incarnations.

For programmers acquainted with ALGOL, or FORTRAN it may prove

helpful to glance at PASCAL80 in terms of these other languages.

For this purpose we list the following characteristics of

PASCAL80.

1. Declaration of variables is mandatory.

2. Certain key words (e.g. PROCESS, BEGIN) are "reserved" and

cannot be used as identifiers. In this manual they are writ-

ten with capital letters.

3. The semicolon (;) is considered as a statement separator, not

a statement terminator.

4. The standard data types are those of whole numbers, the logi-

cal values, the characters, semaphores, shadows, references,

and pools. The basic data structuring facilities include the

array, the record (corresponding to COBOL's "structure"),

10.

“11.

12.

the pool, and the set. These structures can be combined and

nested.

The facilities of the ALGOL switch and the camputed go to of

FORTRAN are represented by the case statement.

The for statement corresponding to the DO loop of FORTRAN,

may only have steps of 1 (TO) or -1 (DOWNTO) and is executed

only as long as the value of the control variable lies within

the limits. Consequently, the controlled statement may not be

executed at all.

There are no conditional expressions and no multiple assign-

ments.

Procedures and functions may be called recursively.

There is no “own" attribute for variables (as in ALGOL).

Parameters are called either by value or by reference;

there is no call by name.

The "block structure" differs fran that of ALGOL insofar as

there are no anonymous blocks, i.e. each block is given a

name, and thereby is made into a routine.

PASCAL80 is equipped with semaphores as a synchronizing tool

and message buffers as a communication tool.

Concurrent process incarnations are synchronized by means of

signal-wait primitives.

2. BASIC DEFINITIONS

2.1 Vocabulary

The basic vocabulary consists of language symbols and user

defined symbols. The language symbols are reserved words (key

words) and punctuation marks:

AND ELSE LABEL PROCESS

ARRAY END LOCK RECORD

AS EXPORT MOD REPEAT

BEGIN EXTERNAL NOT SET

BEGINBODY FOR OF THEN

CASE FORWARD OR TO

CHANNEL FUNCTION OTHERWISE TYPE

CONST GOTO PACKED UNTIL

DIV IF POOL VAR

DO IN PREFIX WHILE

DOWNTO INCLUDE PROCEDURE WITH

+ fae *& / ’ < >

<> <= >= () (. -) 4

= = s=3 . ’ 7 ; om
kkk (* *) 1 ? <* *%> #

The user may not use the reserved words in a context other than

that explicit stated in the definition of PASCAL80; in particu-

lar, these words may not be used as identifiers.

22 Syntax Diagrams

The syntax of PASCAL80 is defined graphically by syntax diagrams.

A syntax diagram consists of arrows, language symbols, and names

of syntax diagrams. A PASCAL80 program is syntactically correct

if it can be cbtained by traversing the syntax diagrams. A trav-

ersal must follow the arrows. The name of a syntax diagram indi-

cates a traversal of the corresponding diagram. The result of a

traversal is the sequence of language symbols encountered in the

traversal.

2.1

2.2

2.201

The following is an example of a syntax diagram.

while statement:

——> WHILE ————rexpression >DO >statement
 >

The syntax diagram defines the name (while statement) and syntax

of language construct. The name is used when the construct is

referred to elsewhere in the text or in other syntax diagrams.

Language symbols are either names in capital letters (e.g. WHILE)

or punctuation marks (e.g. :=).

Constructs defined by other syntax diagrams are given by their

names in small letters (e.g. expression). To be able to distin-

quish between several occurrences of a construct, its name my be

subscripted.

f-caracter

non-printing symbol<

 x , i

character<

non-printing symbol<

Camments may be inserted between any two identifiers, numbers or

special symbols. A comment does not affect the execution of the

program.

2.2.1

a

Names denoting labels, constants, types, variables, processes,

and routines are called identifiers. They must begin with a

letter or an underscore which may be followed by any canbination

and number of letters, digits, and underscores. Contrary to

Standard PASCAL all the characters of an identifier are recog-

nized as significant. Small and big letters are handled as being

the same in identifiers.

>letter >

— > Kkletter<c—

 Vv

<— digit

— eae

letter is A,Byee+epAyapbyCypeee 7A

digit is 071,27 00079

Examples of legal identifiers:

step use_count Local_Message

very Special__ defined__identifier

Note: "Local_Message" is identical to "local message",

"LOCAL MESSAGE", and any other cambination of small and big

2e2e2 Identifiers

identifier:

letters.

2.423 Numbers

At label can be either an identifier or a numeric valve in

PASCAL80, this is in contrast to Standard Pascal where label is

demanded to be an unsigned integer.

26262

222.3

222.4

numeric value:

 Vv
 >digit >

t—>#b >>binary digit >>

[ito >->octal digit—>>

——>#h>>hexa digit —>>

binary digits are 0..1

octal digits are 0..7

hexa digits are 0..9 and a..f

Example of legal numbers:

7913 0033 #b101 #h££00 #07654

Separators 2.2.4

262.5

Blanks, nl‘'s, ff's and comments are considered as separators.

Separators can appear between any two consecutive language

symbols.

No separator may occur within an identifier, number, numeric

value, or language symbol. At least one separator must appear

between any pair of consecutive identifiers, character strings,

numbers, numeric values, or language symbols.

Strings of Characters 2.2.5

A character string is a sequence of characters enclosed by quote

marks, both single and double guote marks are legal but the end

mark must match the start mark.

2.3

Character string:

 ">->string character > >"—>—>

 <

 -—>'—->string character _—__.

String characters are the printable subset of the alphabet,

excluding newline (nl) and form feed (ff), i.e. * ', '!', wee,

Examples of legal strings:

"abcd", " ~ is a strange character", '"'

Note: If a string surrounded by single quote marks is to contain

a quote mark or a string surrounded by double quote marks is to

contain the surrounding quote mark, then this quote mark is to be

written twice, for example WHEN dg equivalent to ty and '''' is

equivalent to """,

Fundamental Concepts

This section gives a brief explanation of a few concepts and the

context in which they are used. The complete description of all

PASCAL80 concepts is given in the following sections.

A program consists of a number of processes. Each process is a

description of some actions and a description of a data struc-

ture. An incarnation of a process is the execution of the actions

on a private data structure. Many incarnations can be executed

concurrently.

Actions are described by statements. The actions of one incarna~

tion are executed one at a time in the order defined by the

statements. The actions manipulate the data structure, which is

described by a number of variables. A variable has a name and a

type. The type describes the set of values the variable can hold

when the program is executed. There is a number of predefined

types (integer, char, boolean, reference, semaphore, and shadow).

2.3

New types are defined either by listing their values or by cam-

bining several types into a structured type.

A number of statements and declarations can be combined into a

routine declaration. Activation of a routine is described by

routine calls (statement).

Process incarnations cammunicate by exchanging messages. A mes-

sage can be accessed by one incarnation at a time.

place data +-———>M await access

in M A to M B

Time T: A has exclusive access to the message M.

M—_ read data

A in M B

Time T + 1: B has exclusive access to M.

Variables of the two predefined types reference and semaphore are

used for accessing and exchanging access to messages.

The value of a reference variable is either a reference to a mes-

sage or nil (representing "no reference"). A message can be

accessed through at most one reference variable at a time. Since

process incarnations access messages through reference variables

only, mutually exclusive access to messages is secured.

Incarnations exchange access to messages by means of queue semap-

hores. An incarnation places a message in a semaphore from which

another incarnation can get access to it. Variables of type se-

maphore can be declared in any process. A semaphore variable may

be accessible by many incarnations simultaneously.

Processes can be nested and‘a process which is declared within

another process is a sub-process (of the surrounding process).

An arbitrary number of incarnations of sub-processes (children)

can be created, they are all controlled by the parent.

Incarnations are created and removed dynamically.

A process can have formal parameters. When an incarnation of the

process is created a number of actual parameters is given. Incar-

nations cammunicate through common semaphore variables only. In

this way a process determines the communication paths of sub-pro-

cesses. Note, however, that the controlling process incarnation

need not participate in the canminication.

10

THE PASCAL80 LANGUAGE 3.

3.1

This chapter consists of descriptions of the different campo-

nents of a PASCAL80 process. First an example which shows the

structure of a complete process definition, and after the example

is given a more precise description of the syntactical defini-

tion, of the different parts of the process definition.

The Process Structure 3.1

A PASCAL80 process consists of declarations of constants, types,

variables, routines, labels, and some statements that operate on

the declared objects.

This is an outline of a PASCAL80 process:

PROCESS catalog;

CONST

idlength = 10;

catalogsize = 256;

TYPE

identifier = ARRAY (1 .. idlength) OF char;

VAR

name: identifier;

found: boolean;

index: integer;

FUNCTION hash (id: identifier): integer;

VAR

key, next: integer;

ch: char;

11

BEGIN (* body of function hash *)

key:= 1;

next:= 0;

REPEAT

next:= next + 1;

ch:= id (next);

IF ch <> sp

THEN key:= key * ord (ch) MOD catalogsize + 1;

UNTIL (ch = sp) OR (next >= idlength);

hash:= key;

END; (* of hash *)

BEGIN (* main program *)

index:= hash (name);

REPEAT

UNTIL found;

END.

The process contains a declaration of

- two contants: idlength with the value 10 and catalogsize with

the value 256

- a type: identifier which is an array of characters

3.2

12

- three variables: name which can hold a value of type identi-

fier, found which can hold a value of type boolean, and index

which can hold an integer.

- a function hash which maps an identifier to an integer.

The function has a formal parameter id and three local variables

key, next, and ch. The assignment statement: index:= hash (name)

contains a call of the function; the result of the function is

assigned to the variable index.

All declared objects have names: catalog, idlength, catalogsize,

identifier, name, found, index, hash, id, key, next, and ch.

These names are defined by declarations before they are used in

statements.

The Process Heading

The process heading consists of an identification of the process

tc be declared and a parameter description. The process in the

example of section 3.1 has no parameter, the identification is

"catalog".

process heading:

—~a——>PROCESS ———>process name———>formal parameter——>

(formal parameters are described in subsection 3.3.5).

Declarations canmon to more processes may be defined ina

context, and it may be specified in the call of the canpiler

which context(s) to include. The syntax is:

context:

— context name~-—>; —— context declarations -—>.—-—>

3.2

13

context declarations:

Vv |

7
i——>constant declaration

i——>type declaration

'—>external routine declaration

external routine declaration:

 >— procedure heading —y>——>; ——> external———>

function heading

3.3 The Declaration Part

The ‘declarations of a program serves as a description of the data

which are manipulated by the actions performed by the program.

declarations:

>. — >

€-

vA

 r——>contstant declaration ————-~>->; and

H——>type declaration ——

+——>variable declaration—————>}

>label declaration >

routine declaration

i——>prefixed process declaration>

 —— export export part —>

The order of declarations is only restricted of the demand for

definition before use.

3.3

14

3.3.1 Label Declaration Part 3.3.1

A label is an identification of a statement, it can be either a

number or an identifier. Every label must be declared.

label declaration:

—————> [ABEL ———>, —— label Vv

label:

—)— number >

i> identifier-——

 Y

Example:

LABEL 7913, even_action;

A label is denoted by the identifier or the integer value of the

number. (GOTO statement 3.4.10)

A label is defined by a labelled statement.

labelled statement:

———> label ——_>: ——_statement —>

Labels must be defined and used in the scope (not block) where

they are declared. A label may only be defined once in a scope.

Scope is defined in subsection 3.3.5.

example:

error_action: exception (error code);

3.3.2

15

Constants Definition Part

If a value is used serveral times in a program, it is useful to

declare a constant with this value. In the program the constant

is used to denote the value.

constant declaration:

——> CONST —>;-> constant name >= —>constant expression —>—>

ok
os

The constant expression is an expression the value of which may

be canputed at compile time, i.e. each operand must be a constant

or a symbolic value. A very convenient feature of PASCAL80 is the

so-called structured value which may be used for defining

constants and for initialization of structured variables.

structured value:

——>r character string > >

—>set >

—>type name >(>value list —>)—

value list:

—_ unit

repetition >a >unit

 Vv

Units of a value list are given one at a time (separated by ,) or

by repeating a unit. The value of repetition specifies how many

times the unit is repeated.

3.3.2

16

A structured value is built as follows:

- type name denotes a record type:

There must be a unit for each field and the first field gets

the value of the first unit, the second field the value of the

second unit etc. The repetition cannot. be used.

= type name denotes an array type:

There must be a unit for each element and the first element

gets the value of the first unit, the second element the value

of the second unit etc.

repetition:

—————constant expression >

unit:

— > constant expression >
 >?

oe

The unit "?" specifies no value, i.e. the canponent is skipped,

its type is canpatible with any type. This element is necessary

to specify values of components which have no symbolic represen-

tation, e.g. values of shielded types. The no value element can

only be used in value lists.

Example:

CONST

catalogsize = 256;

test = true;

nul = 0;

If these values are changed, only the constant declaration needs

to be changed.

17

3.3.3 Variable Declaration Part 3.323

A declaration of a variable must specify the name and type of the

variable.

variable declaration:

— VAR >,Pvariable name list: —>type >>> initialization Vv

>
Po

=
 AN

variable declaration

—>,>> variable nanme——> Vv

r~

initialization:

 > 35 ->constant expression

The type of the expression must be compatible with the type of

the variable.

The value specified by the constant expression becomes the ini-

tial value of all variables in the variable name list.

Example:

VAR

found: boolean:= false;

index: 1 .. catalogsize;

name: identifier:= identifier (idlength***sp);

18

The type defines which values a variable can hold. The variable

found can hold the boolean values false and true, the initial

value is false. The variable index can hold an integer in the

range 1 to 256 (catalogsize = 256) the value of index is unde-

fined until first assignment. The value of a variable is changed

by an assignment:

found:= true;

index:= index MOD catalogsize + 1;

3.3.4 Type Definition Part 3.3.4

All data which is manipulated by a PASCAL80 program has a type.

All operands (variables, constants, values etc.) have a fixed

type and for each operator and statement there are strict rules

defining which types of operands it accepts.

3.3.4.1 ‘Types 3.3.4.1

A type is a set of values and a method of accessing these values.

There is a number of predefined types: integer, char, boolean,

semaphore, reference, and shadow. New types are named and defined

by type declarations.

type declaration:

 >TYPE—> >type name —>=type —

 2: &

19

type:

——— enumeration type > >

>shielded type—————_>

>pointer type >

>structured type—————>

-—>named type >

'——>frozen type >

Type declarations may not be recursive, except in a type declara-

tion:

TYPE name = t;

where t may contain the pointer type + name as an element or

field type;

Enumeration Types

An enumeration type consists of a finite, totally ordered set of

values. Furthermore, there is a mapping from the set of values to

the integers.

enumeration type:

 Vv
 >char >

" /—>boolean ————_—>

}+-——> integer ————_—__>

+——>scalar type———>

———>subrange type——>
The three predefined types char, boolean, and integer are

described below.

Scalar Types

A scalar type is a sequence of values (scalar constants). A

scalar type is declared by listing its values in increasing

order.

scalar type:

> (> —>scalar constant— > >) >

<
rs

20

scalar constant:

>identifier >

A scalar constant is an identifier appearing in the declaration

of a scalar type T. The type of the scalar constant is T. Com

sider the following scalar type (ep, Gy, +++ Ene Gntlr ee* eN)s

then e,.; is the predecessor of e, and e,;; is the successor of ep

the ordinal value of e, is n. The predecessor of eg and the

successor of ey are undefined.

Example:

TYPE

device = (drum, tape, disk);

The type device has the values drum, tape, and disk.

The Type Char

The type char is a predefined enumeration type. Its values are

the (Danish) ISO characters.

0] 2 3 4 5 6 7 8 9

0} nul soh stx etx eot eng ack bel bs ht

10} nk vt ff cr so si dle dcl dc2 dc3

20 | dc4 nak syn etb can em sub esc fsS- gs

30] rs us sp ! " £& s % & '

40] () * + ’ - - if! 0]

50] 2 3 4 5 6 7 8 9 : ;

60 < = > ? @ A B Cc D E

70 F G H I J K L M N 6)

80 P Q R S) T U V W Xx Y

90; 2 &B @ KR F | a ob oc
100} d e £ g h i j k 1 m

110] on re) p gq r s t u Vv W

120} x y Zz re) D a ™ ~~ del

21

The characters are numbered and the ordinal number of a character

is the sum of its row and column number in the above table. The

ordinal values define the ordering of the characters.

' ' (sp), "h' |", ... ' ' are printing characters.

The Type Boolean

The type boolean is a predefined scalar type, defined as:

TYPE boolean = (false, true);

Subrange Types

A type can also be declared as a subrange of an already defined

type.

A subrange type is a sub-sequence of an enumeration type.

subrange type:

 >min bound Poe —>max bound —>

min bound, max bound:

 >ex pression Vv

The min and max bounds must be of the same enumeration type.

example:

TYPE

index = 1 .. catalogsize;

small letters = "a" .. "&";

byte = 0 .. 255;

These declarations restrict the set of values of the type to the

specified range.

22

Structured Types

A structured type is a camposition of other types. There are

three kinds of structured types: array, record, and set.

structured type:

 > >—array type

\—>PACKED——~ __ +—>record type——>

i—>set type———>

VY

A structured type has a number of component types.

Arra Ss

An array consists of a number of elements of the same type. The

number of elements is specified by an index type.

array type:

———>ARRAY > (—>,-— index type >>) ——>OF —>element type-——>

 <
| ia

index type, element type:

_ type —

The index type must be an enumeration type or the name of an

enumeration type.

Example:

TYPE

identifier = ARRAY (1 .. idlength) OF char;

count = ARRAY (letters) OF integer;

VAR

id: identifier;

23

The elements of the array "id" have indices fran 1 to 10 (idlength).

The value of an element can be changed:

id (5)s= "x":

An array value (whole array) can also be constructed and

manipulated:

CONST
blank = " " se

IF id <> blank

THEN wes

Then array type

ARRAY (t1,;t 2) OF t3

is a shorthand for the type

ARRAY (t4) OF ARRAY (to) OF t3.

This is a multi-dimensional array. The number of index types is

the dimension of the array.

The name of an array variable denotes the whole array. An element

is accessed by the array variable followed by an index enclosed

in parentheses. An index consists of a number of index expres-

sions. The number of index expressions must be less than or equal

to the dimension of the array.

If the element type itself is structured, the component types of

the array type are the camponent types of the element type.

24

array variable:

>variable —>

‘Lsindec selector i”

index selector:

 > >index expression >)

VW

<
rs

index expression:

—— expression

Vv

The type of each index expression must be canpatible with the

corresponding index type.

Record Types

A record consists of a number of fields. Each field has a name

and a type.

record type:

>RECORD >field list >END >

field list:

 —> rfield name list >: >field type

field name list:

—_>,—> field name

Y
W

=
a

 <
rs

NY

25

Example:

TYPE

catalogentry = RECORD

id: identifier;

hashkey: integer;

medium: device;

addr: range;

END;

VAR

element: catalogentry;

The record of type catalogentry has four fields: id, hashkey,

medium, and addr. These fields are of the type identifier,

integer, device, and range respectively. The value of a field can

be changed or read:

element .medium:= drum;

IF element.id (1) < "a" THEN ...

Values of record type are structured values (see subsection

3.4.1):

element := catalogentry (blank, 0, drum, 16712);

Set Types

The values of a set type are the subset of some enumeration type.

set type:

 >S OF >elemerit type —————>

element type:

 Vv
 >type

The element type must be an enumeration type or the name of an

enumeration type.

26

A set element is a value of the element type. The camponent type

of a set is the element type.

Values of set type are written as a list of set elements.

sets:

 >(rr elament list —> >.) Vv

 <z

~
a

element list:

 ——>— element >

— element, _—_——.... ———>element,

element:

———_—_——>ex pression Vv

All elements in a set must be of the same type and these must all

be compatible with the element type. The empty set is denoted

(..). The type of (..) is compatible with any set type.

A variable of type set can be given a value:

digits:= (. "0" .. "9".);

The operators on set operands are + (union), * (intersection),

- (difference), and IN (membership).

27

Example:

TYPE

characters = SET OF char;

VAR

digits, letters: characters;

FUNCTION nextid: identifier;

VAR

i: 1 .. idlength;

ch: char;

BEGIN (* body of nextid *)

i:= 1;

nextid:= blank;

ch:= getchar;

IF ch IN letters THEN

WHILE (ch IN (letters + digits)) AND (i <= idlength) DO

BEGIN

nextid (i):= ch;

i:s= it;

ch:= getchar;

END;

END; (* of nextid *)

(Note, getchar is not a PASCAL80 primitive).

As the above examples show> a type (predefined or programmer

defined) can be used for constructing values of the type,

defining constants, and declaring variables.

Pointer Types

The values of pointer type are pointers to variables or nil (no

pointer).

pointer type:

 + type

28

The value nil belongs to every pointer type; it does not point to

any variable.

Assignments can be made to variables of pointer types.

The variable pointed to by a pointer (value) is denoted by a

variable of pointer type followed by an arrow (#).

For the use of pointer variables and pointer types see the

example in section 4.2 (under "ref").

Frozen Types

In PASCAL80 the programmer has the possibility of declaring vari-

ables and parameters as "read only" i.e. the variable/parameters

cannot be changed inside the process/routine with the read-only

declaration.

frozen type:

 ! base type

base type:

A variable of a frozen type must not be used as the lefthand side

of an assignment, in an exchange statement, or as a variable

parameter, unless the formal parameter is of the same frozen

type!

A frozen type is compatible with its base type. The camponent

types of a frozen type are the component types of the base type.

Shielded Types

Variables of shielded types enable a process incarnation to

canmunicate with and control other incarnations.

29

shielded type:

 —>—> reference >

> semaphore ——>

+———> shadow ————>

—>pool type-——>

The values of shielded types cannot be accessed directly. They

are protected against malicious or accidental misuse. Therefore,

the assignment statement cannot be applied to variables of

shielded types. The exhange statement is provided instead (see

subsection 3.4.3).

The Type Reference

The values of type reference are references to messages or nil

(no reference). A message is always accessible through exactly

one reference variable.

The syntax used to denote the accessible fields of a message

header is derived from considering the type reference as a

predefined pointer type (see section 5.3):

TYPE reference = $ message;

The type of the message header is:

TYPE

message = RECORD (*message header*)

size, messagekind: ! integer;

ul, u2, u3, u4: 0..255;

(*owner, answer: semaphore;

data: message data;

other implementation dependent fields*)

END;

30

The interpretation of size and messagekind is implementation

dependent. The owner, answer, and data fields cannot be used

directly.

Messages

Process incarnations canmunicate by exchanging access to messages

which hold data. When a process has access to a message it can

place data in or read data from the message. A message can be

accessed by one incarnation at a time (see section 2.3)

A message consists of a message header and message data (possibly

empty). A header message is a message with no message data.

The Type Semaphore

A queue semaphore consists of a sequence (fifo) of messages and a

set of waiting process incarnations. One of these is always

empty. The values of type semaphore are queue semaphores.

The semaphore is open when the set of waiting incarnations is

empty and the sequence of messages in non-empty. When the

sequence is enpty-.and the set of waiting incarnations is none-

empty, the semaphore is locked. If both are empty, the semaphore

is passive.

These concepts are described in details in the -sections concern-

ing process communication (chapter 4).

Variables of type semaphore (or variables with semaphore-canpo-

nents) are restricted only to be declared in the declarations of

a process and not in the declarations of a routine.

The Type Shadow

The values of type shadow are references to process incarnations

or nil (no reference). Initially, a shadow variable is nil.

3.3.4.2

31

A shadow variable is given a value by creating a new incarnation.

The incarnation is controlled through the shadow variable.

The predefined routines for controlling incarnations are des-

cribed in the sections concerning process control (chapter 5).

Pool Types

A pool consists of a number of messages.

pool type:

POOL cardinality 7 —70F type >

cardinality:

———expression >

Initially a pool consists of a number of messages. The number is

the value of cardinality (expression) which must be a positive

integer. Each of the messages can hold a value from type. If no

type is specified, the messages have headers only.

With each variable of type pool an anonymous semaphore is asso-

ciated. This is the owner semaphore of all messages in the pool.

A message is allocated from the pool by the predefined procedure

alloc (see chapter 4).

Type Compatibility

In PASCAL80 any operand has a fixed type which can be determined

statically. The type of constants, variables, and formal parame-

ters is specified in their declaration.

3.3.4.2

32

CONST

length = 16;

TYPE

word = ARRAY (0 .. length - 1) OF boolean;

CONST

nul = word (length *** false);

VAR

status: word;

The constant length is of type integer. The construct

“word (length *** false)" is a value of type word where all

elements are false. The constant nul and the variable status are

both of type word.

The type of an expression is determined by the types of its

operands and the way they are cambined by operators. The addition

of two integers, i.e. length + 1, gives a result of type integer,

camparison of two integers, i.e. j <= length, gives a result of

type boolean, conjunction of two booleans gives a boolean result,

i.e. found AND (j <= length) etc. The operator AND can only be

applied to boolean operands, the operator / can only be applied

to integer operands etc. Similar restrictions are put on the

operands used in all other constructs. In a while statement, for

example, an expression of type boolean must be given:

WHILE found AND (j <= length) DO...

A value of some type T can be assigned to a variable of the same

type.

status:= nul;

The types of two operands are the same only if their type names

(identifiers) are the same, or the two operands are declared in

the same list.

33

status: word;

mask ;: word;

result: ARRAY (0 .. length - 1) OF boolean;

trap : ARRAY (0 .. length — 1) OF boolean;

rect, rec2: record ... end;

The types of status and mask are the same, but none of them are

the same as the type of result. Consequently:

status := mask;

is a valid assignment, but

status:= result;

is not a valid assignment. Furthermore, the type of trap is

neither the same as the type of result nor the same as the type

of status and mask. And the operands rec and rec2 are of the

same type.

The type t, is compatible with the type t, if:

- t, and t, are the same named type

- t, is a subrange or ty or ty is a subrange of ty

- ty is SET OF by and ty is SET OF by and

b, is compatible with by

-~ t, is ! ty

~ t isf t and ty isf t where t is a type name

~- t, and t, are of pool type

Note, that the relation compatible is not symmetric. If the type

t, is compatible with the type tg, a value of type t; can be -

assigned to a variable of type ty.

3.3.5

34

Routine Declaration Part

A number of statements and declarations can be combined into a

routine. When the routine is called, the data structure defined

by the declarations is allocated and the statements are executed.

A routine is either a procedure or a function.

routine declaration:

—>—>procedure heading *; ———>block >

 (> function heading

procedure heading:

————>PROCEDURE ———>procedure name ——~>formal parameters ——~>

function heading:

————————-> FUNCTION -—>function name —>formal parameters >:type —>

The type of a function cannot be a shielded type.

Formal Parameters

The formal parameters specify the interface between a block and

the surrounding. For each formal parameter is given its kind,

formal name, and type.

formal parameters:

 VY

 > (parameter description >)

 .
ss

parameter description:

 formal name list->:—>type —>

Loe

3.3.5

35

formal name list:

 Vv
 ——> > formal name

 ra
v

If VAR is specified the parameter is of kind variable: a var

parameter; otherwise the parameter is of kind value: a value

parameter °

A formal parameter is used as a declared variable of the speci-

fied name and type.

Parameters with canponents of shielded type must be of kind vari-

able.

Example:

TYPE

parity = (even, odd);

frame = 0 .. 31;

FUNCTION frame parity (arg: frame): parity;

CONST

table = (. 0,3,5,6,9,10,12,15,

17,18,20,23,24,27,29,30 .);

(* The set table contains all values of type

frame with even parity *)

BEGIN

IF arg IN table

THEN frame _parity:= even

ELSE frame _parity:= odd;

END;

A routine can have local declarations as in this case the cor

stant table. A function returns a result, this result is the

value assigned to the funcion name, e.g. frame » parity:= even. The

function has a parameter with the name arg and the type frame.

The type of the result is parity.

36

Routine declarations can be nested:

TYPE

parity = (even, odd);

byte = 0 .. 255;

FUNCTION byte_parity (arg: byte) : parity;

TYPE

frame = 0... 31;

FUNCTION frame_parity (arg: frame) : parity;

CONST

table = (. 0,3,5,6,9,10,12,15,

17,18,20,23,24,27,30 .);

BEGIN (* frame parity *)

IF arg IN table

THEN frame_parity:= even

ELSE frame_parity:= odd;

END;

BEGIN (* byte parity *)

IF frame_parity (arg MOD 32) = frame_parity (arg DIV 32)

THEN byte _parity:= even

ELSE byte _parity:= odd;

END;

The declaration of a name in a routine is only valid inside the

routine. Outside the routine it is invisible. The constant table

can therefore only be applied in the function frame_parity where

it is declared. But it cannot be applied in the function

byte_parity. Similarly, the type frame is not known outside

byte_parity. It can, however, be applied in inner routines such

as the function frame_parity. The exact rules about valid con-

texts for a variable are called the scope rules (see the next

subsection).

37

The scope rules require that a process or routine is declared

before it is used. A declaration where the block is a forward

block is an announcement of a routine or process declaration

which is given textually later, this is a forward declaration.

The heading of the declaration must be the same as the heading

given in the forward declaration. That is the name, type, and

order of the formal parameters must be the same.

3.32501 Scope Rules 3.3.5.1

A scope is one of the following:

a field list excluding inner scopes,

— a process or routine heading excluding inner scopes,

- a block excluding inner scopes,

- a prefix excluding inner scopes,

- a local declaration (in a lock statement) excluding inner scopes.

A name can be declared once in each scope only. All names must be

declared before they are used. If a name is declared both in a

scope and in an inner scope, it is always the inner declaration

which is effective in the inner scope.

Generally the declaration of a name is effective in the rest of

the block where it is declared. Further details for each kind of

name is given below.

constant name, type name, variable name, and routine name: The

declaration of these names is effective in the rest of the block

excluding inner process blocks.

field name: The declaration of a field name is effective in the

rest of the block excluding inner process blocks. But the field

name can be used in record variables and with-statements only.

38

scalar constant: The declaration of a scalar constant name is

effective in the rest of the block excluding inner process

blocks. But used in a type definition of a fieldname the constant

name can be used in with-statements only.

label: The declaration of a label is effective in the scope where

it is declared.

routine parameter name (implicit and explicit): The declaration

of a routine parameter name is effective in the routine block.

Note that the declaration is not effective in the routine

heading.

process name: The declaration of a process name is effective in

the rest of the block where it is declared excluding inner pro-

cess blocks.

Within the block of a routine a recursive call of the routine can

Processes, exception routines, and variables with semaphore or

pool components cannot be declared in a routine block.

3.3.5.2 Routine Blocks

be made.

3.3.5.3 Functions

A function name may appear as a variable on the left head side of

an assignment. The type in the function heading is the function

type, it specifies the range of the function. The value of a

function is the dynamically last value assigned to the function

variable.

3.3.5.2

3232563

3.3.6

39

function variable:

—————> function name >

Export Part 3.3.6

Export part is an implementation dependent feature which May open

for special linkage editor facilities (see chapter 4).

export part;

———> EXPORT export name -—>= —exp.kind —~simple on ‘is

e
ws

exp.kind:

VALUE > —

DISP

—>SIZE Note:

+———>ADDRESS —— The five words for exp.kind

'—_——>OF FSET ———> are not reserved words!

VALUE is for constants only

DISP is for fields only and means displacement relative to.

record start

SIZE is for constants, entire variables, and fields. SIZE

Means size (in bytes) of the type which is associated

to the "simple variable"

ADDRESS indicates absolute address

OFFSET indicates relative offset in current stack frame

3.4

40

simple variable:

 NY ——— simple var name Tl

 field name<— ,<——~

simple var name can be either a constant name or a variable name.

The Statement Part

3.4.1"

This section contains subsections describing the syntax and the

use of the different statements which are included in the

language. Most of the statements are also found in Standard

PASCAL and may be well known language elements.

Statements

The statements of a process describe the actions which are exe-

cuted by a process incarnation. These statements are collected in

a canpound statement.

canpound statement:

 —>BEGIN ——>,- statement—>,—> END Vv

 7s

The statements are executed one at a time in the specified order.

Below, all statement forms are given together with references to

their precise description:

3.4

3.4.1

3.4.2

41

statement: section

——>compound statement

YY

i———>procedure call

i——>assignment statement

 h——exchange statement

 h———>case statement

 ——>for statement

|__ sie statement

 H——>repeat statement

 ———while statement

r—with statement

 ———>goto statement

 ———>labelled statement

 H———>lock statement H—->channel statement

Assignment Statement

assignment statement:

 ——>variable >:3= expression

3.4.1

3.4.6

3.4.2

3.4.3

3.4.5

3.4.4

3.4.5

3.4.4

3.4.4

3.4.7

3.4.10

3.4.10

3.4.8

3.4.9

s

The type of the variable must be compatible with the type of the

expression. .

Assignments can be made to a variable of:

a simple type,

- a pointer type,

simple type or a pointer type.

a structured type where all camponents are of a

The assignment statement replaces the current value of the vari-

able by the value of the expression.

3.4.2

42

Expressions describe how values are computed. Expressions are

evaluated from left to right using the following precedence

rules:

NOT has the highest precedence followed by

*, /, DIV, MOD, AND followed by

+, -, OR \ followed by

=, O, <,; <<, >, >=, IN

expression:

———>simple expression

> > >simple expression

tS oF

——> << —>

-—> <= >

> > —>

-—> >= —>

i—> IN—

simple expression

: 2 term >

> + K— + <4

>- <K— - <+

le oR <

term:

 nay eeestor >

AN
 *

43

Note: All factors in an expression are evaluated.

Factor:

—>—— operand >

}+—> (—>expression—) :

—>NOT —>factor

operand :

 Y NY

—>——— variable

-——>value

 Vv

Variables

The term variable includes declared variables, formal parameters,

and function variables. All variables are denoted by their name

and possibly a selector.

variable:

——> variable name >

+—> function variable —>}

+—>formal name ——————>

-—array variable ———>

-—>record variable ———>

i— >pointed variable ——>

 Vv

array

record variables are described in subsection 3.3.4

pointed

function variables are described in subsection 3.3.5.3

44

Variables of shielded and pointer types are implicitly given the

following initial values:

semaphore: passive

shadow: nil

reference: nil

pool: a number of messages, determined by the cardinality

expression; the contents of these messages are unde-

fined

pointer: nil

——-———variable >:= >variable Vv

The two variables must either both be of type reference or both

The exchange statement exchanges the values of the two variables.

3.4.3 Exchange Statement

exchange statement:

be of type shadow.

3.4.4 Repetitive Statements

Repeat Statement

repeat statement:

———> REPEAT ——>—> statement —>- UNTIL ——>expression ——>

 r<

The result of the expression must be of type boolean.

The statement sequence is executed one or more times. Every time

the sequence has been executed, the expression is evaluated, when

the result is true the repeat statement is completed.

3.4.3

324.4

45

While Statement

while statement:

 WHILE expression DO statement ——>

The result of the expression must be of type boolean.

The statement is executed a number of times (possibly zero). The

expression is evaluated before each execution, when the result is

false, the while statement is completed.

For Statement

for statement:

FOR variable ——>:=~——>for list—~>D0 ——statement ———>

for list:

TO

——express ton——> jp —>expression-

-—>DOWNTO—>

The two expressions must be of the same enumeration type and the

type of the variable must be compatible with this.

The selection of the variable cannot be changed in the statement.

Hence, if the variable has array indices or pointers, changes to

these (in the statement) will not affect the selection.

The statement is executed with consecutive values of the variable

The ordinal value of the variable can either be incremented (in

steps of 1 (succ)) from expression, TO expression., or descrem-

ted (in steps 1 (pred)) from expression, DOWNTO expression,. The

two expressions are evaluated once, before the repetition. If the

value of expression, is greater than the value of expressiony and

TO is specified, the statement is not executed.

46

Similarly, if the value of expression; is less than the value of

expression, and DOWNTO is specified, the statement is not execu-

ted.

The value of the variable is dependent of the expressions after

the for statement.

3.4.5 Conditional Statements 3.4.5

Case Statement

case statement:

——> CASE ——> switch —>0F > case list element Pend part——>

<
7<

end part:

 > >END

-—S>OTHERWISE — >—>statement

Vv

 <

f

case list element:

 >—>constant expression >: —>statement>——>

constant expression>..—constant expression“

 <
iS

 Y

switch:

 >expression >

47

The values of the constant expressions in case list elements are

called case labels. All case labels and the switch must be of the

same enumeration type and all case labels must be distinct. The

switch is evaluated and the statement labelled by the value of

the switch is executed. If no such label is present, the state-

ment following OTHERWISE is executed; if OTHERWISE is not speci-

fied, an exception occurs.

If Statement

if statement:

— > IF expression ——>THEN — statement, = ~ statement.)

—
a

The result of the expression must be of type boolean.

Statement, is executed if the value of the expression is true. If

it is’ false, statement, (if specified) is executed.

The statement:

IF e, THEN IF e, THEN s, ELSE S5

is equivalent to:

IF ey

THEN BEGIN

IF eo

THEN s4

ELSE so

3.4.6

48

Procedure Call

routine call:

———> routine name ————actual parameters >

A routine call binds actual parameters to formal parameters,

allocates local variables, and executes the canpound statement of

the block. When the compound statement is completed, local vari-

ables are deallocated and execution is resumed immediately after

the routine call. All local reference and shadow variables must

be nil when the compound statement is completed, otherwise an

exception occurs.

The variables of a routine are associated with a specific call;

they exist from the routine call until the compound statement (of

the block) is completed. When a routine is called recursively,

several versions of the variables exist simultaneously, one for

each uncompleted call.

The difference between a procedure and a function is that a pro-

cedure call is a statement and a function call a factor (function

variable) in an expression.

A function call is an operand in an expression.

function call:

 ———function name ———>actual parameters >

Actual Parameters

When a process incarnation is created or a routine is called

actual parameters are bound to formal parameters.

actual parameters:

 -—>(—>r>actual parameter)

 <
’

3.4.6

49

actual parameter:

 > expression >

There must be an actual parameter for each explicit formal para-

meter.

The binding of an actual parameter to a formal parameter depends

on the parameter kind:

values:

variable:

The type of the actual parameter must be campatible

with the type of the formal parameter. The value of the

actual parameter is evaluated and this value becames

the initial value of the formal parameter. Assignments

to the formal parameter within the block does not

affect the actual parameter (call by value).

The type of the actual and formal parameter must be the

same. The actual parameter must be a variable; the

value of this variable becanes the initial value of the

formal parameter. Changes to the value of the formal

parameter within the block affects the actual parameter

directly.

The actual parameter selects a variable, this selection

cannot be changed in the block. Hence, if the variable

has array indices or pointers, changes to these do not

affect the selection (call by reference).

An element or a field of a packed variable cannot be an

actual var parameter. The whole packed variable can,

however, be an actual var parameter.

50

3.4.7 With Statement 3.4.7

with statement:

>W. >record variable ———>D0 —>statement ———>

r<

Within the statement fields can be accessed by giving their field

names only.

The with statement

WITH v1, V2, «se, WN DO sg;

is a shorthand for the nested with statement shown below.

WITH v1 DO

WITH v2 DO

WITH vn DO s;

The record variable selects a record, this selection cannot be

changed in the statement. Hence, if the record variable has array

indices or pointers, changes to these (in the statement) will not

affect the selection.

3.4.8

Lock Statement 3.4.8

lock statement:

——>LOCK reference variable-AS—-local declaration-DO—statement-——>

local declaration:

 Vv
 ——— local name >; —>type

51

reference variable:

 Vv
 ——>variable

local name:

Vv
 ——— identifier

The canponent types of the type must be simple. The reference

variable must refer to a message (must not be nil), otherwise an

exception occurs. If the message is too small to represent the

specified type an exception occurs.

In the statement local name is a declared variable with the

specified type. In the statement the reference variable must not

be used as part of an exchange statement or as a parameter to

signal, return, release, pop, or push.

The data part of a message is manipulated as a declared variable

with the local name. It is always the top in the message stack

which is manipulated.

3.4.9 Channel Statement 3.4.9

channel statement:

———> CHANNEL ————>reference variable ——>D0 ——>statement-———>

The reference variable must refer to a message (must not be nil).

Any implementation may place restrictions on this message. If the

message is not of this restricted form an exception occurs.

In the statement the reference variable must not be used as part

of an exchange statement or as a parameter to, signal, return,

release, pop, or push.

52

The channel statement controls the handling of peripherals in an

implementation dependent way.

3.4.10 Goto Statement 3.4.10

goto statement:

GOTO label Vv

The goto statement, the declaration of the label, and the

definition of the label must be in the same scope.

Execution continues at the statement labelled by the label

(labelled statement).

Jumps out of a channel or lock statement and jumps out of a

routine are not allowed.

labelled statement:

 label—~>: —~>statement ——————>

3.4.11 Standard Routines abs, succ, pred, chr, ord 3.4.11

The absolute value of an integer variable is given as the result

of:

FUNCTION abs (int; integer) ; integer;

The successor and predecessor of a variable of scalar type is

given as the result of:

FUNCTION succ (s: s type): s type

FUNCTION pred (s: s_type): s_type

s_type may be any scalar type.

succ taken on the last element and pred taken on the first ele-

ment of a scalar type results in an exception.

53

The character with the ordinal value n is the. result of a call

chr(n) where chr is defined as:

FUNCTION chr (n: 0 .. 127): char;

The ordinal value of a scalar element is retrieved by the func-

tion ord:

FUNCTION ord (s: s type): integer;

where s_type may be any scalar type.

54

PROCESS COMMUNICATION 4.

4.1

This chapter contains a general description of communication

between incarnations, i.e. a description of the language concepts

and the tables available for the programmer. After that is a more

detailed description of the predefined routines intended for syn-

chronization of the communication between process incarnations.

4.1

General Process Communication

A process consists of a number of statements and declarations. An

incarnation of a process is the execution of the actions on a

private data structure. Many incarnations can be executed concur-

rently.

Process incarnations cammunicate by exchanging messages. A mes-

sage can be accessed by at most one incarnation at a time.

place data i] await access

in M to M

Time T: A has exclusive access to the message M.

read data

ke —
in M

Time T + 1: B has exclusive access to M.

The two predefined types reference and semaphore are used for re-

ferencing and exchanging access to messages.

55

The value of a reference variable is either a reference to a

message or nil (representing "no reference"). At most one

variable references a message. Since process incarnations access

messages through reference variables only, mutually exclusive

access to messages is secured.

Queue semaphores are used for exchanging access to messages.

A queue semaphore consists of a sequence (fifo) of messages and a

set of waiting process incarnations. One of these is always

empty.

A queue semaphore s can be in one of three states:

open

1 .

2 The sequence of messages is not empty.

s : The set of incarnations is empty.

N

sequence of

messages

locked

, The sequence of messages is empty.

The set of incarnations is not empty.

s
O _

walting

incarnations

passive

s The sequence of messages is empty. O---> empty
The set of incarnations is empty.

56

Any process may contain declarations of variables of type sema-

phore, and it may receive semaphore variables as parameters when

it is created. All declared semephore variables are initially in

the passive state. In constrast to variables of any other type a

semaphore variable can be accessible by many process incarnations

simultaneously.

example:

PROCESS converter (input, output: semaphore);

VAR

myown: ARRAY (1 .. 2) OF semaphore;

The process converter has access to four semaphores: input,

output, myown(1), and myown(2).

The predefined routines signal and wait are used for exchanging

access to messages.

PROCEDURE signal (VAR r: reference; VAR s: semaphore);

The reference r must reference a message. If the semaphore s is

Open or passive, the message referenced by r is entered in the

sequence of messages belonging to s.

open or passive

incarnation executing signal

1]
r s 2

O-}-=s . message °

N
sequence of

messages

prior to signal (r, s)

57

incarnation executing signal

: ‘Oo

Clim 2
N

N +1

sequence of

messages

N
p

|
=

after signal (r, s)

If s is locked one incarnation is removed fram the set of waiting

incarnations and reactivated. That is, it will be allowed to cam-

plete the call of wait which caused it to wait.

locked

incarnation executing signal

 incarnation executing wait

r |

message

waiting incarnations

prior to signal (r, s)

incarnation executing signal

incarnation executing wait

@ —— O)

waiting incarnations

after signal (r, s)

58

PROCEDURE wait (VAR r: reference; VAR s: semaphore);

The reference r must be nil. If the semaphore is open the first

message in the sequence is removed and r becames a reference to

this message.

open

1 incarnation executing wait

2 message r

F : (ai)

N
sequence of messages

prior to wait (r, s)

2

Ss ‘ message incarnation executing wait

——ke..1°

N
sequence of messages

after wait (r, s)

If the state is locked or passive the incarnation is temporarily

stopped and entered in the set of waiting incarnations.

locked or passive

incarnation executing wait

‘ @

waiting incarnations

prior to wait (r, s)

59

 incarnation executing wait

@)

r

waiting

incarnations

Incarnation has been stopped during wait (r, s)

It is implementation dependent which one of several waiting in-

carnations is selected for activation during execution of signal.

However, the selection algorithm must be fair: no incarnation may

remain waiting indefinitely on a semaphore, provided some other

incarnations continue to signal messages to that semaphore.

Execution of wait and of signal-is performed indivisibly: e.g.

from the mament an incarnation starts execution of a signal on a

given semaphore and until the execution is campleted, any other

incarnation trying to operate on that semaphore variable is

delayed.

A process may only inspect or alter the contents of a message in

a so-called lock statement. Let r be a reference variable which

references a message:

LOCK r AS b: t DO s;

In the statement s the message referenced by r is manipulated as

if it were a variable with the name b of type t.

In the following example there are two processes, one which pro-

duces data (e.g. input data) and one which consumes data (e.g.

‘uses the input data in a computation).

60

PROCESS producer (full, PROCESS: consumer (full,

void: semaphore); void: semaphore);

TYPE TYPE

buffertype = ...; buffertype = ...;

VAR VAR

r: reference; r: reference;

BEGIN BEGIN

REPEAT REPEAT

wait (r, void); wait (r, full);

LOCK r AS b: buffertype DO LOCK r AS b: buffertype DO

BEGIN BEGIN

(*...produce data...*) (*...consume data...*)

END; END;

Signal (r, full); signal (r, void);

UNTIL...3 UNTIL...3

END; END;

The allocation of messages is specified by declaring a variable

of pool type.

VAR

ms: POOL cardinality OF type;

Initially, the variable m contains cardinality messages. These

messages can hold a value from type. The predefined procedure

alloc removes a message from a pool variable:

alloc (r, m, Ss);

The reference r must be nil. If the pool of messages is not enp-

ty, one of the messages is removed and r references this message.

If the pool is empty the process incarnation waits until a mes-

sage is released (by another incarnation calling the predefined

procedure release).

61

Each message contains information about its origin. The third

parameter to alloc must be a semaphore and it becames the answer

semaphore of the message. This is the equivalent of a return

address on an envelope of a letter. The answer semaphore is used

in the predefined procedure return:

PROCEDURE return (VAR r: reference);

A call of return is equivalent to a call of signal:

signal (r, "answer semaphore")

But the answer semaphore is only implicitly available through

return.

The following is a revised version of the producer comsumer

example given above.

PROCESS proceducer (stream: . PROCESS comsumer (stream:

semaphore) ; semaphore) ;

TYPE TYPE

buffertype = ...3 buffertype = ...3

VAR VAR

r: reference; r: reference;

m: POOL 1 OF buffertype;

a: semaphore;

BEGIN BEGIN

alloc (r, m, a); REPEAT

REPEAT wait (r, stream);

LOCK r AS b: buffertype DO LOCK r AS b: buffertype DO

BEGIN BEGIN

(*...produce buffer...*) (*...camsume buffer...*)

END; END;

signal (r, stream); return (r);

wait (r, a); UNTIL. ..;

UNTIL... END;

END;

62

The following communication flow is possible by means of

SIGNAL/RETURN:

A reference variable may point to none or a stack of messages.

This is a generalization of the concept of reference variables as

described earlier. In general terms a reference variable points

to a stack of messages.

When the value of the reference variable is nil, the stack is

empty.

A well-defined reference variable points to a stack of reference

variables. The message header of the stack elements contains a

field, which chains the messages together. This field is called

the stack chain. This pointer is nil in the last element of the

chain.

Two procedures:

PUSH(<reference variable>,<reference variable>)

POP (<reference variable>,<reference variable>)

are used to manipulate reference variables when interpreted as

stack reference variables.

63

example:

VAR element: REFERENCE;

stack: REFERENCE;

PUSH (element, stack);

POP (element, stack);

PUSH (ref1, ref2)

Before call

ref1 - well-defined reference to element.

The stack chain field in the element must be NIL.

ref2 - well-defined stackop element or

nil if stack is empty:

After call

ref1 - nil

ref2 - ref2:= old refi

If the old ref1 has no associated message data, the message data

associated the old ref2, if any, are assigned the old ref1,

together with the pushing.

If the old refi has associated message data the old ref1 is just

pushed.

64

Example

After call

esti}

1) Before call

vee [xef2

POP (ref1, ref2)

Before call

ref1 - nil

ref2 - well-defined stacktop element

65

After call

ref1 - ref1:= old ref2

ref2 -— new stacktopelement.

Note: ref2:= nil if the stack

became empty during call.

If the old stackop element has associated message data, and the

new stackop element points to the same message data, the message

data pointer in the popped element is set to nil.

This is not done if the new stackop element points either to

another message data or points to nil.

66

Examples

1) Before call After call

[refth [ref2 jref1}9 [ref2

2)

etl lre£2 lref1 7 aan

3)

|cef1 A ref2 |cef1 =o,

67

The PUSH and POP procedures are especially suited to the

following situations:

- to associate a new messageheader to received message data by

the PUSH procedure in order to avoid copying of data, and to

signal the message on to the next incarnation in the flow. The

general answer mechanism will be to reestablish the original

message header by a call of POP and return the message to the

sender by calling RETURN.

SIGNAL SIGNAL SIGNAL SIGNAL

RETURN = RETURN --— RETURN ~ RETURN

- to pile together a number of messages and pass the whole batch

to an incarnation by one call of SIGNAL.

Semaphore Pointers

A semaphore pointer variable is a variable of type:

semaphore

A semaphore pointer variable is a variable, whose value refer-

ences a semaphore variable.

If the value is not a reference to a semaphore variable, the

value is nil.

The only legal operations on semaphore pointer variables are:

nil, and := (assignment)

If p is a semaphore pointer variable, p denotes the semaphore

pointed to by p.

4.2

68

The Predefined Communication Routines

signal, wait, return, and release.

There are four predefined cammunication routines, signal, return,

wait, and release.

PROCEDURE signal (VAR r: reference; VAR s: semaphore);

The reference parameter must refer to a message (must not be

nil), otherwise an exception occurs. The reference variable is

nil after a call of signal.

If the semaphore is passive or open, the message referred to by r

becomes the last element of the semaphore's sequence of messages.

If the semaphore is locked, one of the incarnations waiting on

the semaphore campletes its wait call.

When several process incarnations are waiting, it is implementa~

tion dependent which one is resumed by a signal call. No process

must, however, be waiting indefinitely if other incarnations con-

tinue to signal messages to the semaphore.

PROCEDURE return (VAR r: reference);

The parameter must refer to a message (must not be nil), other-

wise an exception occurs.

The call:

return (r);

has the same effect as the call:

signal (r, rf. answer);

The latter is, however, not a valid call because the answer

semaphore is not explicitly available.

4.2

69

PROCEDURE release (VAR r: reference);

The parameter must refer to a message (must not be nil), other-

wise an exception occurs.

The call:

release (r);

has the same effect as the call:

signal (r, rf.ower#);

The latter is, however, not a valid call because the owner sama-

phore is not explicitly avaiable.

PROCEDURE wait (VAR r: reference; VAR s: semaphore);

The reference parameter must be nil, otherwise an exception

occurs. After a call of wait it refers to a message.

If the semaphore is open, the first message is removed from the

semaphore's sequence of messages. If the semaphore is passive or

locked, the incarnation waits and enters the set of incarnations

waiting on the semaphore. It can be resumed by another

incarnation calling signal or return.

Open, Locked, Passive, and Sensesem

There are three predefined boolean functions to detect the state

of a semaphore variable:

FUNCTION open . (s: semaphore): boolean

FUNCTION locked (s: semaphore): boolean

FUNCTION passive (s: semaphore): boolean

70

The three states may be depicted as:

open

1

S 2 The sequence of messages is not empty.

. The set of incarnations is empty.

N

sequence of

messages

locked

The sequence of messages is empty.

The set of incarnations is not empty.

s
O

waiting

incarnations

passive

won > The sequence of messages is empty.

The set of incarnations is empty.

Sensesem

PROCEDURE sensesem (VAR rs: reference;

VAR s: senfaphore);

The body of sensesem is equivalent to:

IF open (s) THEN wait (r, s);

i.e. take a message from s if there is any, otherwise r remains

nil.

71

Ref

Semaphore pointers may be assigned to denote a semaphore by means

of the predefined routine ref:

FUNCTION ref (s: semaphore): semaphore;

Semaphore pointers are initially set to nil by the system, this

may be used to define a nilpointer which may be useful if

semaphore pointers are used.

example:

var nil _pointer:! # semaphore; (* nil _ pointer cannot be

. changed since it is frozen*)

sem_arr: array (low .. high) of # semaphore;

sem_arr (index):= ref (sem);

sem_arr (index):= nil pointer;

Push, pop, and empty

A message may consist of a stack of headers and data areas. The

stack of message headers is the message header stack, and the

stack of the data areas, the message data stack.

72

message:

header

message header stack

message data stack

A header may or may not point to a data area (m < n). The top

header of the message is header,. The top data of a message is

data, ®

The message is organized as a stack which is manipulated by the

two predefined procedures push and pop.

PROCEDURE push (VAR r1, r2: reference);

The parameter r1 must refer to a message (must not-be nil), and

this message must have exactly one header, otherwise an exception

occurs. The message accessible through r2 (possibly nil) is-

called the stack.

_;edhe header referred to by r1 becames the new top header of the

... stack. After the call, r2 refers to the new stack.

If the new top message is a header message, the top data of r2

. Kemains the same. After the call r1 is nil..

PROCEDRUE ‘pop (VAR r1, 42: reference);

Reference variable r1 must be nil and r2 must refer to a-message

{must not be nil), otherwise an exception occurs.

.~ The top header is removed from the message (accessed through r2)

- and after the call r2 refers to the remaining part, while r1

refers to the removed message.

73

It may be detected if a reference variable refers to a message

with one header only by means of the predefined boolean function:

FUNCTION empty (r: reference): boolean

The body of empty may be: , .

pop (local ref, xr),

empty:= nil (r)

where nil is another standard function:

Nil

FUNCTION nil (p: pointer_type): boolean

pointer_type may be any pointed type, for example reference which

is defined like . oS

“TYPE reference =. $-message;

c Alloc and Openpool

With each variable of type pool an anonymous semaphore is asso-

ciated. This is the owner semaphore of all messages in the “pool.

A message is allocated from the pool by the predefined procedure

alloc.

PROCEDURE alloc (VAR r: reference, VAR p: pool 1; VAR Ss: semaphore);

The pool variable ¢af-be of any pool ‘type.

The “reférence ‘variable must be nil, otherwise an exception

occurs. After ‘the ‘call’ it refers to a message. If‘the’ pool ‘of

message is not empty, one of the messages is removed. If the pool

is enpty the incarnation waits until a message is released to the

pool by another process incarnation calling release. The answer

semaphore of the removed message becanes s. ° Ewa

Variables of type pool (or variables with pool camnponents) can

only be declared in the declaration of a process and not in the

declarations of a routine.

74

It may be detected if a pool is open (i.e. not empty) by means of

FUNCTION openpool (VAR p: pool 1): boolean;

the function result becomes true if the pool'.is not ‘enpty (cf.

function open for semaphore).

75

PROCESS CONTROL

5.1

Processes can be nested and a process declared within another

process is .a..sub-process (of the surrounding process). , - :

An arbitrary number of incarnations of sub-processes (children)

can be created, they are all controlled by the parent. Incar-

nations are created and removed dynamically.

A process can have formal parameters. When an incarnation of the

process is created a number of actual parameters is given. Incar-

nations communicate through common semaphore variables only. In

this way a parent determines the communication paths of children.

Note, however, that the controlling process incarnation need not

participate in the communication.

Variables of the predefined type shadow are used to discern dif-

ferent incarnations of sub-processes. A shadow variable is the

controlling process' link to an incarnation of a child. There is

a number of predefined routines for exercising this control

(start, stop, etc.).

The Predefined Routines for Process Control

Link

FUNCTION link (external_name: alfa;

process name): integer;

There must not be a process linked to process name, process name

must be the name of a process. The process identified by the

external _name is linked to process name. The external identifica-

tion of processes is implementation dependent.

Result 0 means success, other values are implementation dependent

“ error codes.

5.

5.1

76

FUNCTION’ create (incarnation_name: alfa;

process ndme’ (actual parameters);

VAR sh: shadow; storage: integer): integer;

The shadow variable must be nil and process name must ke linked

to.€@ process. Result O*mearis ‘success, ‘other values are implemen-

tation dependent error codes. oeRa BE cae

‘A’new incarnation of thé process linked to ‘process name is crea-

ted. The storage parameter specifies the amount of storage for

‘holding the runtime stack. The store is ‘initialized with ‘the

“actual parameters and ‘various administrative informatioris’ but the

incarnation is stopped’. ‘The created incarnation ‘is a child “of the

creating incarnation, the parent. After the call the shadow

variable refers to the child. ee

Remove

i%C.” PROCEDURE remove: (VAR’Sh: shadow);

‘o"Phe shadow variable must refer to a process ‘iricarnation “(child),

otherwise an exception occurs. en .

Remove terminates execution of the child and deallocates all its

resources. Execution of that incarnation cannot be resumed.

Remove also removes all incarnations controlled by the child,

their children ect.

After the call the shadow variable is nil.

Start, Stop, and Break

The following predefined procedures are used for controlling

children between calls of create and remove.

PROCEDURE start (VAR sh: shadow; priority: integer);

i

Start initiates or resumes execution of a-child, which: is stopped.

The meaning of priority.is implementation dependent.

NAT ee an - we i. . , oe ~
whe. bow “ ’

PRODURE stop (VAR sh: shadow);
ag re ~ : . &
MD é i _ + =

The shadow variable must refer, to .a, process incarnation. (child).
The child is stopped. Pa ee ee é

PROCEDURE .break .(VAR sh: shadow; exception_code: integer.) ;
As ae = ry Mca me - a at : ey

feet ai Dee an) oad aN aes

The shadow yariable must, refer to a process ,incarnation (ghild).
The, @i1. forges an exgept-ion upon, the. child. ‘The: meaning ofthe
exception code ,is, implementation dependents: 2. jess tau:

whe ae ky a Ge ar Si 4, Gr rm) Ss eM _ ee Ke

Unlink Dlg oe et cad

FUNCTION unlink (process name): integer; ere ak

At process must be linked to process. name and. no incarnations of

the process may exist. After the call the link is deleted.

Result 0 means. success,.other values are implementation. dependent

error codes. 21g Sn ‘Leer sk 2 GF Canute

- wt ayy ay rayr - Pikes 2 k es = é

‘ - 4 OT ne recL ow 3 3 4% Ione

a aN io Ya Ts

3 ~ ‘ i dk

oe bd Ry te
= a ye i Ee

in
wets YR ae A a ¢ * tf a5

a aan
7 mare oe

~
we ae

6.

78

UTILITY PROGRAMS

6.1

Np 7 ~ vee soe : : Whoa te

Indent

Text formatting program

The program performs indention of source programs depend ing on

the options specified in the call and on the keyswords.. (reserved

words) of PASCAL/PASCAL80. . vam $ ee Gee Opps teem,
me : | Bae eed

call:

]
<outputfile>= , indent <input file> <optiom

ayy ot
Wee es

” <option>::= Lines line numbers are added

mark the blockstructure is made clear by means

a a Peis of |! between Jatching. beg in~end ' S

a 7 list — the. same aS 3. -lipes, mark. | =. oe

_ . noind . "the output . will be ‘deft “justified ._. 7

‘myind “the” output indention is the Same, as the

input indention

Ic. ,, Lists. keywords in. capital letters. and

oy : identifiers in. Sal. . (lower case). letters

: uc _both key. words and Andentifiers. are. listed

in upper case letters

Lage ome AeLp ce produces .a list. of:legal options

_Storage. requirements:

The ,gare store yequired. for. indent is 16000 hW, (size, 16000).

Error messages:

ae illegal input-filename .
ay

7 input file. must be specified

6.1

79

call: "indent help", for help Seon RAST El ee

an error is detected in the program call, anewcall _ _

"indent help" will produce a list of the valid options ~~

° ” _m on at 9 en TA
. A * ar WE eye see Bh ee my b

== warning, end(s) missing were Aaa ARIS Ta cl ae

an error in the begin-end structure has been detected.

wohy SMSYDOU 2 IUCR tO Ol TOBE eo Suet Laie aod:
e 6 . : we omy bo teae ay mn

f Boe eee, | eee PROB RN ote ae Gt iG. ie a!
HRS” amature end ‘of ‘Fite

comment or string not terminated: aE A See

6.2 Cross Reference Program 6.2

Seri ee wea it as ty) eee S5l putin

Produces | s cross reference listing of the idéntifiers and numbers

and a use count of the PASCAL/PASCAL80 key words) ised in as input
Canuck Ot. oneutee sel oh St Cad Bs

text.

gam cod wl gun gi eh eel cin of 4

The crosS ‘Feferencé list is’ “made with rio regard to the block

structure of the’ prograin. The” list“is sorted accord ing to the

ISO-al phabét, ° i. e. numbers” before letters, but! with no difference

between” upper’ and“ lower’ ase letters.
na. of oofs 7

The ‘Sccurtence’ st: for! afi’ ‘Ydéntifier: consists of a sequence of

PASCAL/BASCALBO" tine “HUnibars ® “the océiirrence kind is specified by

“means “of thé: “endacter’ YoLloWing” ‘the® e" Line number 3”
Pog Mab Pik.

* fnéSn ihg the: identifier ‘or’ “puitbe is fouhd" in a declaration part.

M 5 5 Q B 8 oO =] in
g

= rh

= oO n =.

15)

ry)

n n | Q
 =) 8 & Sg < ban
al

fd

=) D 2)
 ® Q ra

a

| 8

meaning the identifier’ St number occurréd”as’a Tabé1:~

; aa wat a) iswees Ue
blank all other uses

K<<<<<<<<<<<<in the list is a warning dénoting that the name
consists of more than 12° characters, nich iS’ the number

of significant characters for PASCAL-identifiers.

80

Calls

<output file> = cross <input file> <option

: Y rt

y

<option>::= bossline. <yes or no>

<yes or no>i:= yes bossline's are aided to ‘the listing.

(default). a. LE. =

det As) OR eS eG abe
no only PASCAL/PASCAL80 line numbers are

generated. oS _—

Storage requirements:

The core store required for cross is at least 40000 hW (size

40000), but the requirement depends on the size of the input

text.

Errormess:

22? illegal output-filename

left hand side of the call must be a name..

2??? illegal input-filename

input file must be specified

22? yes or no expected

option 'bossline’ must be ‘bossline.yes' ar "bossline.no’

2??? error in bracket structure, detected at line: xx

missing ")" ('s)

2??? error in blockstructure, detected at line: xx

unmatched end

xkkkk ~~ Warning: hash table overflow at line: xx

the name table ran full at line xx, the crass referencing

continues for the names met until Line xx, new names in

the following lines are ignored.

A. REFERENCES ‘a

PEP grime ns et! cece

[1] Staunstrup, J.3

PASCAL80 Report 7

RCSL No 52~AA964 a EN EDS

onl? ‘ Pegnee ca <n = geo Den as) | i C8

eg?
[2] Jensen, K. and Wirth, N.:

PASCAL Soya Aig tina face Report
TE CES OS

Springer — Verlag’

t .

Ce ESE AL :
Berlin 1974

rs STK es - a Ae -: 2
; Soe a rae

te at - Boas 4 bp wre ou ” saa ecut Soa bo oGfer +f we REM OMS a el ote ty

ry . . . 4 gve th oe ee SC Bie) af > ee Ce moe, : a nwo sod fe sa0as ude + A gale ~ $f Loni ToaP ube

ot ot ry ak
te ia

rn oe

n = og hee ES ne Soa at ath al 3

a & +! oe rs «
oe go oe! < he wen oe

~ ms bee Me ‘ 3 6 toy ot

2 - zc oamit ek om 4
; Wea sh SE FBS - og & zs 7

r 7" arg
yours re a aN a

See Fe 4 poet a % a “4
ee 2k TG 14; SEN, ow ye ae Mar as

. f “nates eat - + iy oro ony ira %
ae Bh we lie z cm ee Je Og SOL 23 :

- e. = 7
; were

’

ee ee? awe SiS 9 neem ie eng
& SSH tia oe tts eae ae Se «MATL ,

' on my RAS a ate oe eae £2 Sn 7 Awe! o PBe ts TOC tps

Pox 7 Wa BR 48 ea = ae

Sow WY CAR OBS hae be Be oop okt yw eae ies

A.

wine ei eee Ps * SS ee

Sense oe ye Mee

— e883 tT 7 a Oe

Pe . ieee .

Oe ee te

en ee ete pm quem

a ee mw; lavieweqhowety ceo

ol (ere sees & es Pe

- veg
wes PhS

.
2S Dn Seidechs ger)

82

~ - . _

a - ow. + 4<<

ee ee re .

fees penne ap +e os o-

1) ee

er ee a

.

+ steepest “ atin, pew en

A eee we eee te

-
ve,

’ oo net tee ae

rs ws

2° ape = »

G <2 *
Lae oat}

RETURN LETTER

Title: PASCAL80 User's Guide RCSLNo.: 4211539

A/S Regnecentralen af 1979/RC Computer A/S maintains a contiriual effort to im-
prove the quality and usefulness of its publications. To do this effectively we tieed
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42
-1

1
2
8
8

a Pee e te hale eee reece ens Fold ‘here

y EDTA CW vis HERTS Do not tear - Fold here and staple 2. 0.2 eee

Affix
postage
here

§ REGNECENTRALEN
' at 1979

‘{nformation Departient
Lautrupbjerg 1 .

‘DK-2750 Ballerup
-Dentnark

i
e

