

Aalborg i

8000 Ålborg

MIKADOS

Pascal User’s Guide

Dansk Data Elektronik ApS

4 December 1979

Authors: Rolf Molich Copyright 1979

Mette Staugard Dansk Data Elektronik ApS

Pascal User’s Guide 0.1

= = = = = = = cde

Table of contents

1. Introduction 1.1

2. Getting started 2.1

3. System overview 3.1

4. Using the system . 4.1

4.1 Running the compiler 4.2

4.2 Compile time options 4.6

4.3 Passing parameters to a Pascal program 4.10

4.4 Generating a new standard interpreter 4.11

5. System intrinsics

5.1 String handling

5.1.1 Length of string

5.1.2 Locate pattern in string (POS)

5.1.3 Concatenate strings

5.1.4 Copy string

5.2 Input/output

5.2.1 Open/create file

5.2.2 Close file

5.2.3 Check for end-+of-file/end-of-line m
u
r

ur

UT

UT

UT

UI

UT

UT

UT

oo

0
Ø
V

ae

0

RD

ND

BP

 5.2.4 Determine result of i/o operation 5.9

5.2.5 Read/write record from direct access file 5.9

5.2.6 Read/write record from sequential file 5.10

5.2.7 Eject page (PAGE) 5.10

5.2.8 Position to record in direct access file

(SEEK) 5.10

5.2.9 Edit string on output device 5.11

5.2.10 Clear screen on output device 5.13

5.3 Character array manipulation 5.14

5.3.1 Scan character array 5.14

Bo so…s…s…s…D…D…—…—o

Pascal User’s Guide

5.3.2 Move character array (MOVELEFT,MOVERIGHT) 5.15

5.3.3 Initialize character array (FILLCHAR)

5.4 Miscellaneous useful routines

5.4.1 Determine size of structure (SIZEOF)

5.4.2 Read system clock (TIME)

5.4.3 Compute power of ten (PWROFTEN)

5.4.4 Dynamic memory control (MARK, RELEASE)

5.4.5 Move cursor (GOTOXY)

5.4.6 Basic input/output operations

(IN80, OUT80)

5.4.7 Set i/o result

5.4.8 Delay program

5.4.9 Start new program (CHAIN)

Segment procedures and functions

Differences between MIKADOS Pascal and

standard Pascal

7-1 Character set and special symbols

7-2 CASE statements

7.3 Dynamic memory allocation

7-4 GOTO and EXIT statements

7.5 Packed variables

7.5.1 Packed arrays

7.5.2 Packed records

7.5.3 Using packed variables as parameters

7.5.4 PACK and UNPACK standard procedures

7.6 Parametric procedures and. functions

7-7 Program headings

7.8 The standard types

7.8.1 Integer

7.8.2 Real

7-9 Sets

7.10 Strings

7-11 Extended comparisons

5.16

5-17

5.17

5.17

5.18

5.18

5.18

5.19

5.20

5.20

5.21

6.1

FE

ka

MO

ØV

ØV

MU
D

AW

DD

te

te

m
H

o
e

a
W
w
n

np

e
e

RES

RER

RE
SE
N

En

En

rn

r
r

R
o
R

W
w

Pascal User’s Guide 0.3

7.12 READ and READLN

7.13 WRITE and WRITELN

7-14 PUT and GET

7.15 EOF = end-of-file

7.16 EOLN - end-of-line

7.17 Miscellaneous implementation size limits

8. External procedures and functions

8.1 Transfer of parameters

8.2 Parameter formats

8.3 Linking external procedures

9. Pascal E (Extended precision Pascal)

9.1 Interpreter and compiler names

Intrinsic functions

Direct support of READREAL and WRITEREAL

9.2

9.3 Names of interpreter modules

9.4

9.5 Internal representation of real numbers

Appendix A. Compile time error messages

Appendix B. Run time (interpreter) error messages

Appendix C. Revised syntax diagrams

Appendix D. System performance data

D.1 Space requirements

D.2 Execution times

Appendix E. Summary of manual changes

D.1

D.2

Pascal User’s Guide

 —

mm

 e
md

e
e

ne

ee

e
n

mm

mm

EM

em

mm

ma

mm

ER

mm

1. Introduction

This manual describes the MIKADOS Pascal compiler and inter-

preter system running under the multiprogrammed MIKADOS

operating system on the ID-7000 and SPC/1 microcomputers

designed and manufactured by Dansk Data Elektronik ApS (DDE).

The MIKADOS Pascal compiler accepts source programs written in

the standard Pascal high level computer language (with minor

restrictions and extensions) and translates them into code for

a hypothetical computer known as the "P-machine". This code

may subsequently be executed by using an interpreter program,

which simulates the hypothetical computer on an ID-7000 or

SPC/1 computer running under the MIKADOS operating system.

This manual is a reference manual describing the differences

between MIKADOS Pascal and standard Pascal as defined in

Kathleen Jensen and Niklaus Wirth

PASCAL: User Manual and Report

Second Edition

Springer Verlag New York Inc. 1975 (or 1978)

Throughout this manual many references will be made to the

above Pascal standard reference guide (referred to as "J&W").

The reader of this manual is expected to be familiar with the

Pascal language. This manual is not a tutorial book on MIKADOS

Pascal.

The MIKADOS Pascal system is a modified version of the Pascal

compiler and INTEL 8080 interpreter constructed by a team at

the University of California, San Diego, (UCSD), directed by

professor Kenneth Bowles. Users of the Pascal system should

note that any malfunction of the system is the sole respons-—

ibility of Dansk Data Elektronik ApS.

| —…m—…—…<—…<

Pascal User’s Guide

Portions of this manual have been adapted from the UCSD

release I.4 Pascal manual edited by K. A. Shillington.

Dansk Data Elektronik ApS reserves the right to change the

specifications in this manual without warning. Dansk Data

Elektronik ApS is not responsible for the effects of typo-

graphical errors or other inaccuracies in this manual, and

cannot be held liable for the effects of the implementation

and use of the structures described herein.

Pascal User’s Guide 2.1

2. Getting started

The Pascal system package delivered by Dansk Data Elektronik

ApS consists of the following:

1) A copy of the latest edition of this manual.

2) A copy of the Pascal standard reference guide (PASCAL: User

Manual and Report, by Kathleen Jensen and Niklaus Wirth,

Second Edition, Springer Verlag New York Inc.).

3) A floppy disc labelled "Pascal demonstration disc",

(source text and P-code). For a description of these

programs, please refer to the source text. Although these

programs are carefully tested, Dansk Data Elektronik ApS

does not guarantee their correct performance.

4) Two minifloppy discs labelled "Pascal system disc"

containing the latest version of the DDE Pascal system.

These floppy discs contain the following modules:

- the standard interpreter (INTER)

- the Pascal compiler interpreter (PASCAL)

- the P-code for the Pascal compiler (PASCAL)

- the relocatable code for the standard interpreter

modules INTER, ARITH, VARS, PROC, STAPR, PCOMX, PFILS, |

FSYS, SET, FP, INITP, PNAVN, and PTALK; and the

relocatable code for the non-standard interpreter modules

PCOMP, FSYSX and FPX.

- the relocatable code for the standard MIKADOS modules

SOPEN, CREAT, and POSN required to link the interpreter.

- the source code of the main interpreter module (INTER).

- the source code of two Pascal routines:

1) READREAL, used to convert real numbers from ASCII to

binary on input from a text file

2) WRITEREAL, used to convert real numbers from binary to

| which contains a number of Pascal demonstration programs

Pascal User’s Guide

ASCII on output from a text file

A description on how to use these routines may be found

in sections 7.12 and 7.13.

- the standard MIKADOS Editor (EDIT)

- two work files used by the editor (1EDITFIL and 2EDITFIL)

In order to use the MIKADOS Pascal system you must be familiar

with the standard MIKADOS Editor (described in the manual

"MIKADOS Editor User’s Guide", available from DDE), and with

the Pascal language.

If you are familiar with Pascal and with the MIKADOS Editor

we suggest that you start getting familiar with MIKADOS Pascal

by reading sections 3, 4.0, 4.1, and 7.1 in this manual. This

will enable you to write, edit, compile and run simple Pascal

programs on your DDE computer.

If you are using Pascal E (extended precision Pascal), you

should also read sections 9.1 and 9.4 before attempting to use

the Pascal system.

Example: to compile and run the demonstration program

"RECURSIV" (very similar to the program in example

11.9 in J&W), which may be found on the "Pascal

demonstration disc", proceed as follows:

1) insert the "Pascal demonstration disc" in the P2

dise drive

2) insert the "Pascal system disc" in the Pl disc

drive

3) enter >PASCAL,RECURSIV to compile the

program "RECURSIV"

4) after compilation is finished, run the program

"RECURSIV" by entering >INTER,RECURSIV

Note: >RECURSIV will not run the program

Pascal User’s Guide 3.1

3. System overview

The Pascal system consists of three programs: the standard

MIKADOS editor, the Pascal compiler, and the P-code inter-

preter.

The standard MIKADOS editor is used to enter and edit Pascal

source programs in source files stored on magnetic media

(floppy discs or moving head discs). The MIKADOS editor is

described in a separate publication entitled "MIKADOS Editor

User’s Guide", which is available from DDE.

The Pascal compiler accepts source programs written in the

standard Pascal high level computer language (with minor

restrictions and extensions) and translates them into code for

a hypothetical computer known as the "P-machine". The code

produced by the compiler is often referred to as "P-code".

interpreter, which simulates the hypothetical P-machine on an

ID-7000 or SPC/1 computer running under the multiprogrammed

MIKADOS operating system.

The compilation of a Pascal source program produces a P-code

file. If the compiled Pascal program does not reference any

external procedures then the P-code file may be executed

immediately after the compilation without linking using the

standard interpreter (INTER) delivered by DDE. If references

to external procedures (usually assembler subroutines) occur

in the Pascal program, a relocatable file is also produced. In

this case a new version of the interpreter must be linked

which includes the external procedures referenced by the

Pascal program (see chapter 8).

i The translated Pascal program may be executed using a P-code

Pascal User’s Guide

The Pascal compiler is written in Pascal. Thus, a Pascal com-

pilation is an interpretation of the P-code file resulting

from the compilation of the Pascal compiler by itself.

The MIKADOS P-machine is a modified version of the P2 compiler

interpreter originally developed by a team at the Eidgenoessi-

sche Technische Hochschule in Zuerich, Switzerland. The archi-

tecture of the P-machine is without interest to most users of

the MIKADOS Pascal system as its instruction set is quite

complicated and unsuitable for programming and debugging

purposes. However, interested users may obtain a description

of the P-machine instruction set and general architecture by

contacting DDE.

Pascal User’s Guide

4. Using the system

The execution of a Pascal program may be started in 3 ways:

1) Using the normal MIKADOS program start-up command to start

the interpreter (INTER), which then loads a P=code file

and executes it.

Example:

>INTER, QUEENS , OPTION1 ,OPTION2

which executes a Pascal program named “QUEENS” and passes

the parameter string “OPTION1,OPTION2° to the Pascal

program

2) Using the MIKADOS program start-up command to start a

special interpreter, which then loads the appropriate

P-code file and executes it. This is possible only if the

external reference option was specified when the Pascal

program was compiled.

Example:

>ACCOUNTS,A,2,C,D EFG

which executes a Pascal program named “ACCOUNTS” and

passes the parameter string “A,2,C,D° to the Pascal

program (“ EFG” is ignored because of the precéding blank,

see section 4.3)

3) Using the CHAIN procedure (see section 5.4.9)

Section 4.3 describes how to access the parameter string

from a Pascal program.

Pascal User’s Guide

4.1 Running the compiler

To start the Pascal compiler the user inserts the "Pascal

system disc" in the Pl drive, presses “ESC” (“ENTER® on some

terminals), and enters:

>PASCAL, programname ,listoption,externaloption, Pn

or

>INTER, PASCAL, programname , listoption,externaloption, Pn

Note: the last form can only be used if the standard inter=

preter includes the special compiler module, see section 4.4.

The standard interpreter delivered by DDE does not include

the special compiler module.

programname is the file name of the source module to be com-=

piled. The file name must be a legal MIKADOS file

name. The file name may be followed by a and

the identification of the disc on which the file

resides, e.g. PROGR:P3. If a disc identification

is not given all discs are searched in the order

Pl, P2 ... until the file is found. The source

file must be a type K file.

listoption may be used to control the list output produced

by the compiler.

The listoptions recognized by the compiler are

T, L, and Q.

The listoption may be changed anytime during a

compilation using the L and Q compile time options

(see section 4.2).

LT If L or T is specified as the listoption the

compiler will produce a source listing of the

Pascal User’s Guide 4.3

Nil

compiled program on the list device specified by

the last >.LI command entered before the compiler

was started. The list output includes the number

of each source line compiled as well as the block

level (number of RECORDs, BEGINs and statement

CASEs minus number of ENDs processed) before the

line is compiled. The output line never exceeds

80 characters. If a source line does not fit

within the 80 characters, it is divided. Error

messages will appear on the list device just after

the line in which the error was detected.

If T is specified as the listoption the compiler

will output in addition to the above mentioned

after each procedure information about the size

of the compiled procedure (number of bytes of

p=code generated), accumulated segment size (bytes

of p-code), and size of temporary stack area that

will be allocated for local parameters etc. by the

procedure (in bytes).

All output except for the compiler identification

messages may be suppressed by specifying the Q

listoption or the Q compile time option.

If an illegal listoption is specified or if no

listoption is specified, the compiler will

use the console device to keep the operator

informed about the progress of the compilation by

displaying the source line number and the name of

the procedure currently being compiled. Error

messages will appear on the console device (not

on the »>.FE device) together with a printout of

the line in which the error was detected.

Only the first error detected on a source line is

reported with an error message.

Pascal User’s Guide 4.4

externaloption indicates if external procedures are referenced

Pn

in the source program to be compiled.

If this option is not specified, external proce-

dures are illegal in the source program.

The externaloptions recognized by the compiler are

E = compile program referencing external proce=

dures; the interpreter modules required to

execute the resulting program are those

included in the standard interpreter

C = same as E, except special compiler interpreter

module is required to execute the resulting

P=code

F = same as E, except floating point interpreter

module is required to execute the resulting

P+code

D = same as E, except interpreter module for the

SEEK standard procedure is required to execute

the resulting P=code

One or more of the above options may be specified.

The C, F, and D options are used to override

standard interpreter configurations. Note that the

resulting interpreter will always contain the

modules included in the standard interpreter, i.e.

the C, F, and D options are only required if the

corresponding module is not included in the stan=

dard interpreter (see section 4.4).

Illegal externaloptions are ignored.

is the disc identification of the disc where the

P=code file and eventually the relocatable file

generated by the compiler should be placed.

If this option is not specified the files are

placed on disc P2.

Pascal User’s Guide

 r
e

e
e

e
e
e

e
e

mm

mm

mm

e
m

If an option is not specified while one or more of the follow-

ing options are specified, the absence of the option must be

indicated by one or more commas as shown in the following

example:

>PASCAL ,MYPROG:P4, ,E, Pl

i.e. compile the source module MYPROG that resides on disc

PÅ and place the relocatable module on Pl instead of the

default (P2). External references are allowed.

The P-code and the relocatable module (if any) produced by the

compiler are placed in type P and R files, respectively, with

the same name as the source file. If one or both files exist

when the compiler is started, the existing contents are

overwritten. If one or both files do not exist, they are

created by the compiler (basic file size is 10 sectors for the

P-code file and 5 sectors for the relocatable file).

No attempt should be made to execute programs containing

syntactical errors.

Compilation may be aborted at any time by entering a >.BR

(break) command on the console that was used to start the

compilation.

Pascal User’s Guide 4.6

 ee

n
n

e
n

o
n

o
n

e
n

m
m

m
m

m
m

m
m

m
m

m
m

m
m

4.2 Compile time options

Compile time options are set according to a convention

described on pages 100-102 of J&W, where compile time options

are set by means of special "dollar sign" comments inside the

Pascal program text, e.g.

(*$option,option,....¥*)

The syntax used in the MIKADOS Pascal compiler’s control

comments is essentially as described in J&W. However, the

actual options and the letters associated with those options

bear only occasional resemblance to the options listed in J&W.

Except for the I and P options each option must be specified

as a capital letter followed by "+" or "=". Illegal syntax in

a control comment is not reported by the compiler but the

results are unpredictable.

The following options are currently available:

Cc causes the compiler to generate i/o check instructions

after each statement which performs any i/o. The instruc+

tion checks to see if the i/o operation was accomplished

successfully. In the case of an unsuccessful i/o opera=

tion (MIKADOS file system result code >0) the program

will be. terminated with a user i/o error message

C+ i/o check instructions are generated (default)

C= i/o check instructions are not generated

D causes the compiler to generate line numbers in the

P-code. If a run time error occurs the interpreter will

print the number of the source line corresponding to the

Pascal User’s Guide 4.7

code that was executed when the error occurred. Each

line number generated occupies 3 bytes of P=code

D+ line numbers are generated (default)

D- line numbers are not generated

determines whether Pascal GOTO statements are allowed

within the program. This option may be used to restrict

novice programmers from using the GOTO statement in

situations where structured constructs like FOR, WHILE,

REPEAT, CASE and EXIT statements would be more

appropriate

G+ allows the use of the GOTO statement

G- causes the compiler to generate a syntax error upon

encountering a GOTO statement (default)

includes a source file into the compilation. The

characters between “I° and the terminating “*)* are taken
as the file name of the source file to be included. The ”

comment must be closed at the end of the file name,

therefore no other options can follow the file name.

Example: (*#$D=, ISTRUCTURES*)

The compiler cannot keep track of nested inclusions, i.e.

an include file may not have an include file control

comment. This will result in a fatal syntax error.

The compiler will also relax the requirements of the

order in which declarations must be made for included

files which contain CONST, TYPE, VAR, PROCEDURE and

FUNCTION declarations even though the original program

Pascal User’s Guide

 Fm

=
em

 B
E

R
E

n
e

n
e

n
e

e
e

e
n

e
e

e
e

e
e

R
Å

E
R

e
m

E
R

E
R

e
l

has previously completed its declarations. To do so the

include compiler control comment must appear between the

original program’s last VAR declaration and the first of

the original program”’s PROCEDURE or FUNCTION declara=

tions.

controls whether the compiler will generate a program

listing of the following source text. This control

comment is analogous to the L listoption discussed in

section 4.1. The default value of this option is set by

the listoption in the MIKADOS RUN command

Lt+ start output of source listing on the >.LI device

L= stop output of source listing

causes the compiler to skip to a new page on the line

printer if the compiler is generating a source listing

on the line printer at the time when the P control

comment is encountered

is the "quiet compiler" option which can be used to

suppress the output to the console device of procedure

names and line numbers detailing the progress of the

compilation. This control comment is analogous to the Q

listoption discussed in section-4.1. The default value

of this option is set by the listoption in the MIKADOS

RUN command

Q+ causes the compiler to suppress output to the console

device

Q= causes the compiler to output procedure names and

line numbers as well as error messages to the console

device

Pascal User’s Guide 4.9

FE

mm

em

re

This option controls whether the compiler will output

additional code to perform checking on array and string

subscripts, and assignments to variables of subrange

types

R+ turns range checking on (default)

R= turns range checking off

Programs compiled with the R= option set will run

slightly faster and require less code; however, if an

invalid index occurs or an invalid assignment is made,

the program will not be terminated with a run time error.

Until a program has been completely tested and is known

to be correct, it is usually best to compile with the R+

option set. Note that certain string indexing errors

(index<0 or >255) are detected even if range checking is

disabled

Pascal User’s Guide

e
e

ee
 e
e

ee

ae

4.3 Passing parameters to a Pascal program

When a Pascal program is started using a MIKADOS program

start-up command or the CHAIN procedure, the user may pass a

character string from the command or procedure call to the

running program (“OPTION1,OPTION2° in the first example in

section 4.0).

This section describes how the program accesses the

passed parameter string.

The user must make the following declarations:

TYPE PARMARRAY = PACKED ARRAY(. 1..40 .) OF CHAR;

VAR PARM: “*PARMARRAY;

The VAR declaration must be the first VAR declaration made

in the program. After startup, PARM*(1..39) will contain the

parameter string. The parameter string consists of the

characters following the comma after the name of the Pascal

program in the start command to and including the first blank

encountered. A maximum of 39 characters are transferred. The

first character after the parameter string in PARM* will

always be a blank. No blanks can appear within the parameter

string.

Pascal User’s Guide

4.4 Generating a new standard interpreter

The standard interpreter delivered by DDE on the Pascal system

disc (see section 2) includes the SEEK procedure module and

the floating point module, which may not be required by some

installations. To gain more space for the execution of a

compiled Pascal program an installation may choose to change

the standard interpreter configuration.

To accomplish this a recompilation of the main interpreter

module (INTER) on the system dise is required. First INTER

is changed, using the MIKADOS Editor, according to the

following rules:

1) to eliminate the floating point module (savings of approxi-+

mately 1060 decimal bytes) change the line ” EXT FP ~

into ~ EXT FPX ”. Note that interpreters without the

floating point module cannot be used to compile Pascal

programs containing real constants

2) to include the special compiler module (requires

approximately 700 decimal bytes) change the line

“ EXT PCOMX ” into ” EXT PCOMP ”. Note that

interpreters without the special compiler module cannot

be used to compile Pascal programs

3) to eliminate the module containing the standard SEEK

procedure (savings of approximately 800 decimal bytes)

change the line ” EXT FSYS ” into ” EXT FSYSX ”.

The user may also change the top+of-stack address (i.e. the

highest memory location referenced by the interpreter) by

substituting a new value in the “MAXADR: :EQU statement.

Changing this value will also change the size of available

memory for compiling and executing Pascal programs. The value

Pascal User’s Guide 4.12

|

of MAXADR must be odd or zero. Changing MAXADR to OEFFF or

less will ensure that execution of a Pascal program does not

destroy the Debugger program. If MAXADR is set to 0, the

interpreter will use all the memory installed in the region in

which the program is executed.

After performing the necessary changes, compile and link the

new INTER module. Insert a MIKADOS program disc in Pl and the

Pascal system disc in P2. Enter

>ASM, INTER
>LINK, INTER,R1, ,P2

The new standard interpreter will replace the old one.

 BR
S

S
S

E
S

Ø
O
Ø
O
R
$
Ø
O
R
Ø
O
$
Ø
O
$
Ø
O
R
$
Ø
O
$
O

R
Å

Pascal User’s Guide

5. System intrinsics

This chapter describes a number of system procedures and

functions that are built into the interpreter. These proce-

dures may be used without declarations.

Most of the intrinsics assume that users are fluent in the use

of Pascal and are experienced in the use of the system. Since

some of these intrinsics do no checking for range validity,

they may easily cause the system to crash.

Pascal User’s Guide 5.2

5.1 String handling

In order to maintain the integrity of the length of a string,

only string functions or full string assignments should be

used to alter strings. Moves and/or single character assign-

ments do not affect the length of a string which means it

probably becomes wrong. The individual elements of a string

are of type CHAR and may be indexed 1..LENGTH(STRING).

Accessing the string outside this range will have unpredict-

able results if range-checking is off or cause a run-time

error if range checking is on. i

Strings are discussed in detail in section 7.10.

5.1.1 Length of string

FUNCTION LENGTH(ACTUALSTRING: STRING): INTEGER;

Returns the integer value of the current length of the

ACTUALSTRING.

Example: GEESTRING := “123456773

WRITELN(LENGTH(GEESTRING),“ ~“,LENGTH(~~));

will print 7 #O

Pascal User’s Guide 5.3

5.1.2 Locate pattern in string (POS)

FUNCTION POS(PATTERN, SOURCE: STRING): INTEGER;

This function returns the position of the first occurrence in

SOURCE of the pattern in PATTERN. The integer value of the

position of the first character in the matched pattern will be

returned; or if the pattern was not found, zero will be

returned.

Example: SONG := “ROLL ME OVER IN THE CLOVER’;

PATTERN := “VER;
WRITELN(POS(PATTERN,SONG));

will print 10

5.1.3 Concatenate strings

FUNCTION CONCAT(SOURCE1, SOURCE2, ..- : STRING): STRING;

This function returns a string which is the coneatenation of

all the strings passed to it. There may be any number of

SOURCE strings separated by commas.

Example: TEXT1 := “WE HOLD”;

TEXT2 := “THESE TRUTHS TO BE ”;

TEXT2 := CONCAT(TEXT1,° ~,TEXT2,°SELF EVIDENT”);

WRITELN(TEXT2);

will print WE HOLD THESE TRUTHS TO BE SELF EVIDENT

Pascal User’s Guide 5.4

5.1.4 Copy string

FUNCTION COPY(SOURCE: STRING; INDEX, SIZE: INTEGER): STRING;

Returns a string containing SIZE characters copied from SOURCE

starting at the INDEXth position in SOURCE.

Example: DATE := “TODAY IS WEDNESDAY’;

WEEKDAY := COPY(DATE, POS(“IS ~,DATE)+3, 9);

WRITELN(WEEKDAY);

will print WEDNESDAY

Pascal User’s Guide

5.2 Input/output

This section describes the intrinsics used to access the

MIKADOS file system from a Pascal program. A thorough dis-

cussion of the MIKADOS file system may be found in the

"MIKADOS User’s Guide" manual, which is available from DDE.

In several i/o intrinsics a FILENAME is used to identify a

particular file. The FILENAME must be of type STRING. The

syntax of a FILENAME is

<MIKADOS filename> : <disc identification> : <size of

primary file extent> : <file type>

where

<MIKADOS filename> is 1 to 8 printable characters; it is

recommended that only alphanumeric

characters are used in file names

<dise identification> is Pl, P2, ... + If a dise identifica-

tion is not specified, all discs are

searched until the file is located

*<size of primary file extent> specified in number of 256-byte

sectors

<file type> MIKADOS file type. If no file type is

i specified, K (source file) is assumed

After each file system operation the Pascal system checks if

the error code returned by the MIKADOS system was zero. If the

error code was greater than zero, a run-time error is reported

and execution terminates. If i/o checking was disabled when

Pascal User’s Guide 5.6

the program was compiled (see section 4.2), the user program

must call the intrinsic function IORESULT after each file

system operation to determine if the operation completed

successfully. After a MIKADOS file system error has been

reported, further operations on the corresponding file may

have unpredictable results.. MIKADOS and Pascal error codes are

explained in appendix A.

There are three predeclared files: INPUT (console terminal

input), OUTPUT (console terminal output), and LIST (list

device, controlled by the >.LI command). The predeclared

files are TEXT (FILE OF CHAR) files. No attempt should be made

to RESET, REWRITE or CLOSE these files.

In the following sections PHYLE is a type designator, either

TYPE PHYLE

or TYPE PHYLE

FILE OF <type>;

TEXT;

5.2.1 Open/create file

PROCEDURE RESET(FILEID: PHYLE);

This procedure resets the position of a currently open file to

its beginning for the purpose of reading. EOF(FILEID) is set

to false, and EOLN(FILEID) is set to true. FILEID* points to

a blank in TEXT files. A READLN(FILEID) or GET(FILEID)

must be issued before the first record in the file can be

accessed.

Pascal User’s Guide 5.7

PROCEDURE RESET(FILEID: PHYLE; FILENAME: STRING);

This procedure opens a previously existing file identified by

FILENAME. Disc identification, file size and file type may be

omitted in the FILENAME in which case the default values are

used. The file size is always ignored. The opened file is

positioned to its beginning for the purpose of reading. Other-

wise RESET(FILEID, FILENAME) operates exactly as

RESET(FILEID).

PROCEDURE REWRITE(FILEID: PHYLE; FILENAME: STRING);

This procedure opens a previously existing file identified by

FILENAME and positions it to its beginning for the purpose of

writing (and reading). A disc identification must always be

specified in FILENAME. If the file identified by FILENAME can-

not be located, it is created according to the parameters in

FILENAME. In this case the size of the primary extent must be

specified.

EOF(FILEID) is set to false. EOLN(FILEID) is undefined.

As specified in J&W, RESET and REWRITE should not be applied

to the predeclared files INPUT, OUTPUT, and LIST.

rr, . a

Pascal User’s Guide

 mH HH He H
H

H
E

H
E

E
E

e
S

a
e

F
E

m
m

m
m

m
m

E
R

5.2.2 Close file

PROCEDURE CLOSE(FILEID: PHYLE);

Marks the file specified by FILEID closed. The implicit

variable FILEID* is made undefined. CLOSEing a closed file

causes no action.

All files declared within a procedure (program) are closed

automatically by the system when the procedure (program) is

exited.

CLOSE should not be applied to the predeclared files INPUT,

OUTPUT, and LIST.

5.2.3 Check for end-of-file/end-of-line

FUNCTION EOF (FILEID: PHYLE): BOOLEAN;

FUNCTION EOLN(FILEID: PHYLE): BOOLEAN;

These functions are similar to those defined on page 160 of

J&W. However, the user should note the supplementary comments

in sections 7.15 and 7.16.

|
!
|

i Pascal User”s Guide
5.9

5.2.4 Determine result of i/o operation
|

FUNCTION IORESULT: INTEGER;

After any i/o operation, IORESULT returns the resulting
!
|

MIKADOS file system error code as an integer value. The

meaning of the MIKADOS file system error codes is explained

in appendix A.

Use of the IORESULT function is required only in programs

where i/o-checking has been disabled using the’ C- control

comment (see section 4.2), or to detect certain non-serious

errors (error code < 0, see appendix A).

5.2.5 Read/write record from direct access file

PROCEDURE GET(FILEID: PHYLE);

PROCEDURE PUT(FILEID: PHYLE 3

These procedures are similar to those defined on page 158 of

J&W. However, the user should note the supplementary comments

in section 7.14.

 S
S

e
e

Pascal User’s Guide

5.2.6 Read/write record from sequential file

_
s

a
e

e
e
e

e
e

e
e
e

e
e
e

e
e
e

PROCEDURE READ(FILEID: PHYLE; <argument list>)3

PROCEDURE READLN(FILEID: PHYLE; <argument list>);

PROCEDURE WRITE(FILEID: PHYLE; <argument list>);

PROCEDURE WRITELN(FILEID: PHYLE; <argument list>);

These procedures are similar to those defined on page 161 =

163 of J&W. However, the user should note the supplementary

comments in section 7.12 and 7-13.

5.2.7 Eject page (PAGE)

PROCEDURE PAGE(FILEID: PHYLE);

This procedure, as described in J&W (page 164), sends a top-

of-form command (“<ES>”) to the file.

This procedure should be applied only to files of type TEXT.

5.2.8 Position to record in direct access file (SEEK)

PROCEDURE SEEK(FILEID: PHYLE; RECORDNUMBER: INTEGER);

This procedure changes the file pointers so that the next GET

or PUT from/to the file will happen to the RECORDNUMBERth

record of FILEID. Records in files are numbered from 1.

This procedure should not be applied to files of type TEXT.

Pascal User’s Guide

tomatically increased by 1

Updating
Note that the record number is au

by each GET or PUT issued to a direct access file.

a particular record in a direct access file consequently

requires two seeks, i.e.

SEEK(FILE, 5)3

GET(FILE);

(* update record x)

SEEK(FILE, 5); (fchange record no. from 6 to 5*)

PUT(FILE);

(fa GET here would read in record no. 6 +)

5.2.9 Edit string on output device

PROCEDURE EDIT(<editstring>);

where <editstring> ::= <stringidentifier>

or <editstring> ::= <stringidentifier> <editlength>

<editlength> ::= <integer expressiom

This procedure is used to edit (update) a textstring, ¢-&- a

previously entered name or address.

The procedure outputs the current contents of the string

identified by <stringidentifier> to the console device (OUTPUT

unit). After the string has been output the user may edit it

using the standard MIKADOS edit functions (cursor forward and

backward, insert and delete character, rubout and erase to end

of line). The user terminates the operation by pressing RETURN

or ESC, which causes an immediate return from the EDIT

Pascal User’s Guide
5.12

procedure to the Pascal program. Upon return the string

identified by <stringidentifier> contains the edited string.

EOF(INPUT) = TRUE if ESC was pressed.

The ”: <editlength>” is optional and indicates the number of

characters in the string to be edited. If this parameter is

not specified, the editlength is taken to be the current

dynamic length of the string.

If the editlength is greater than the current dynamic length

of the string, the previously undefined string characters are

blanked by the interpreter before the edit operation. After

the edit operation the dynamic length of the string edited is

set equal to the editlength.

If the editlength is specified as being greater than the

maximum size of the string, a run time error occurs. If the

editlength is zero, or if the editlength is not specified and

the length of the string is zero, then the EDIT procedure

returns immediately to the Pascal program, and no i/o

operation takes place.

The value returned by IORESULT is not affected by EDIT.

Pascal User’s Guide

Example: PROGRAM EDITDEMO ;

VAR ANSWER: STRING(9);

BEGIN

REPEAT

BEGIN

WRITE(“Do you want to terminate ? ”);

ANSWER = “No °;

EDIT(ANSWER);

(* Note: program suggests answer No”;

user may accept just by pressing RETURN +)

END;
i

UNTIL (ANSWER="Yes “) OR (ANSWER=" Yeah, man”);

END (fEDITDEMO£).

5.2.10 Clear screen on output device

PROCEDURE CLEARSCREEN ;

of

This procedure clears the screen on the console device

(OUTPUT unit).

The screen is cleared by outputting a 7<XS>” string to the

console driver.

Pascal User’s Guide

5.3 Character array manipulation

ME
E

RE

me
n

me

me

me

mm

mm

mm

mm

mm

mm

en

ne

ae

e
e
)
.

mm

These intrinsics are all byte oriented. Use them with care; no

range checking of any sort is performed on the parameters

passed to these routines.

The intrinsic SIZEOF (defined in section 5.4.1) is meant for

use with these intrinsics; it is convenient not to have to

figure out or remember the number of bytes in a particular

data structure.

The type PACKD used in several declarations of intrinsic

procedures in this section is defined as

TYPE PACKD = PACKED ARRAY(0.-N) OF CHAR;

5.3.1 Scan character array

FUNCTION SCAN(LENGTH: INTEGER; <partial expression>;

ARRAY: PACKD): INTEGER;

This function returns the number of characters from the

starting position to where the scan was terminated. The scan

terminates on either matching the specified LENGTH or satis-

fying the “partial expression>: ‘The ARRAY should be a packed

array of characters and may be subscripted to denote the

starting point. If the expression is satisfied on the charac-

ter at which ARRAY is pointed, the value returned will be

zero. If the length passed was negative, the number returned

will also be negative, and the function will have scanned

backward. The <partial expression> must be of the form

Pascal User’s Guide

 ST Sn
S
T

S
S

S
S

S
S

S
e

h
e
 7<>” or ”=" followed by a <character expression>

Examples: Using the array COUNT := “000012345678 9ABCDEFGHI”

SCAN(+10, =" “5 COUNT(.17.)) will return -10

SCAN(100, <>707, COUNT) will return 4

SCAN(15, =797, COUNT(.0-)) will return 12

SCAN(=7, =7C%, COUNT(.10-)) will return =5

5.3.2 Move character array (MOVELEFT , MOVERIGHT)

PROCEDURE MOVELEFT (SOURCE: PACKD;

VAR DESTINATION: PACKD;

LENGTH: INTEGER);

PROCEDURE MOVERIGHT(SOURCE: PACKD;

VAR DESTINATION: PACKD;

LENGTH: INTEGER);

These procedures do mass moves of byte strings of the LENGTH

specified. MOVELEFT starts from the left end of the specified

SOURCE and copies bytes to the left end of the DESTINATION

traveling right. MOVERIGHT starts from the right end of both

The reason for having

d destination arrays

e moved is critical.

arrays and copies pytes traveling left.

both procedures is that if the source an

overlap the order in which characters ar

The following examples show what happens if you use the

procedure which moves in the wrong direction for your purpose.

Pascal User’s Guide
5.16

 T_T mm mm mm

mm

mm

mm

mm

mm

mm

må

mm

mm

mm

mæ

mæ

FR

mk

rå

Examples: ORIGINAL := “aabcdefghijklmnop’ ;

TEXT := ORIGINAL;

MOVELEFT(TEXT(.10.), TEXT(.2.), 5);

(#TEXT: aijklmfghijklmnop*)

TEXT := ORIGINAL;

MOVERIGHT(TEXT(.2.), TEXT(.1.), 5);

(TEXT: aeeeeefghijklmnopt)

TEXT := ORIGINAL;

MOVELEFT(TEXT(.2.), TEXT(.1.), 5);

(*TEXT: abedeefghijklmnop*)

5.3.3 Initialize character array (FILLCHAR)

PROCEDURE FILLCHAR(VAR DESTINATION: PACKD; LENGTH: INTEGER;

CHARACTER: CHAR);

This procedure takes a (subscripted) packed array of charac-

ters and fills it with the number (LENGTH) of CHARACTERS

specified. The procedure is equivalent to

DESTINATION(.0.) := CHARACTER;

MOVELEFT(DESTINATION(.0.), DESTINATION(.1.), LENGTH=1);

put FILLCHAR is twice as fast.

|

|
|
|

Pascal User’s Guide

5.17

 e
e
 é
r

ER

=

=

5.4 Miscellaneous useful routines

5.4.1 Determine size of structure (SIZEOF)

FUNCTION SIZEOF(<variable or type identifier?): INTEGER 5

This function returns the number of bytes that the “item”

passed as @ parameter occupies on the stack. SIZEOF is

particularly useful in connection with the FILLCHAR, MOVELEFT

and MOVERIGHT intrinsics.

5.4.2 Read system clock (TIME)

FUNCTION TIME: INTEGER ;

This function returns the current value of the system elock in

units of 10 milliseconds as an unsigned 16-bit integer. The

clock is updated py the MIKADOS operating system once every

10 ms = 5 sec depending on the hardware configuration. The

ock updates may vary from system to system.

The absolute value of the returned

however, the differences

bpsequent calls of TIME

interval between el

Clock overflow is ignored.

integer is without significance;

petween the integers returned by two su

may be used as a measure of the time elapsed petween the two

calls.

| Pascal User’s Guide i:

= = —— = = == = LL,
p=

5.4.3 Compute power of ten (PWROFTEN) i ~ =

FUNCTION PWROFTEN(EXPONENT: INTEGER): REAL;

This function returns the value of 10 to the EXPONENT power.

EXPONENT must be an integer in the range 0..37-
|

5.4.4 Dynamic memory control (MARK, RELEASE)

|
i

PROCEDURE MARK(VAR HEAPPTR: ”INTEGER);
|

PROCEDURE RELEASE(VAR HEAPPTR: ”INTEGER);
|

urning dynamic memory

ets HEAPPTR to the current These procedures are used for ret

allocations to the system. MARK s

top=of heap. RELEASE sets the top-of =heap pointer to HEAPPTR.

Further details about these routines and their use may be
|

found in section 7-3-

|

5.4.5 Move cursor (GOTOXY)

PROCEDURE GOTOXY(XCOORD, YCOORD: INTEGER);

This procedure moves the cursor on the console terminal to the

coordinates specified py (XCOORD, YCOORD). The upper left

corner of the terminal screen is assumed to be (1,1). The

lower right corner of the terminal screen is usually (80,24),

put may vary according to the number of characters per line

and the number of lines on the actual display terminal.

i

R
R

ER
E

Pascal User’s Guide
5.19

 |

=

=
 5.4.6 Basic input/output operations (IN80, OUT80) E

K: INTEGER): INTEGER ;

FUNCTION IN80(IOADDRESS, MAS
UE: INTEGER);

PROCEDURE oUT80(IOADDRESS, VAL

These routines perform pasic INTEL 8080 input and output

operations on specified i/o addresses (ports).

A call of the IN80 function is equivalent to the assembler

sequence

IN IOADDRESS

ANI MASK

STA IN80

8 pits are read from the i/o address specified, the

i.e.
K and the result is returned

8 bits are AND’ed with the MAS

as the function value.

A call of the oOUT80 procedure is equivalent to the assembler

sequence

LDA VALUE

out IOADDRESS

i.e. the least significant 8 bits of VALUE are output to the

i/o address specified.

K and VALUE must pe integer expressions. The

IOADDRESS, MAS
on values are ignored.

most significant 8 bits of the expressi

ted in any way- They should be

liar with the ID-7000 ‘and SPC/1

es and the

These operations are not protec

used only by users who are fami

pasic input/output system. Details about i/o address

t and output bit patterns may be obtained from

meaning of inpu
Under no circumstances

the appropriate DDE hardware manuals.

should a user issue oUT80 procedure calls to a device that is

peing controlled by a4 MIKADOS driver.

Pascal User’s Guide
5.20

5.4.7 Set i/o result

PROCEDURE SETIORESULT (NEWIORESULT: INTEGER ds

This procedure sets the value of the internal i/o result

variable to the value specified by the integer expression

NEWIORESULT. The value may subsequently be read by a call

to the IORESULT function (see section 5.2.4).

This procedure provides a convenient way of communicating

i/o result codes between user-written ifo procedures and

application programs.

5.4.8 Delay program

PROCEDURE DELAY(DELAYTIME: INTEGER);

This procedure delays the process executing the current

Pascal program for a time period specified through the

DELAYTIME integer expression. The 16=bit unsigned value

resulting from the computation of the DELAYTIME expression

specifies the number of 10-ms periods that must elaps

before execution of the program is resumed.

Note that in many MIKADOS systems the timer resolution is

coarser than 10 ms.

Pascal User’s Guide

5.4.9 Start new program (CHAIN)

PROCEDURE CHAIN(PROGRAMNAME, PARMSTRING: STRING);

This procedure uses the MIKADOS ”Start a Process” call to

initiate a new process with the execution of the program whose

name is contained in PROGRAMNAME. The parameter string con-

tained in PARMSTRING is passed to the new process.

The dynamic length of PROGRAMNAME must be exactly 10 charac=

1 = 8 must contain the program name. Charac=

-*#° if the new process should execute in ters. Characters

ter 9 must contain a

the same region and pank as the initiating process, otherwise

character 9 should contain

CHR(256*#bank number + binary region number).

n the second character in the disc

is located, i.e. Character 10 must conta

identification of the ‘ise where the program

72” if the program resides on disc P2.

Only the first 39 characters of the parameter string in

new program. The parameter

ing either the VINIT PARMSTRING are transferred to the

string is accessed by the new program us

subroutine (see the “MIKADOS Utility Programs and Subroutines”

manual), or the method described in section 4.3.

The new process will be assigned the standard priority 6.

starting a Pascal compilation from a Pascal program

Example:

(analogous to the MIKADOS >PASCAL,MYPROG:P4, ,E, Pl

command, see section 4.1):

CHAIN(“PASCAL #1°, “MYPROG:P4,,E,Pl ”)3

Pascal User’s Guide

 d
e

6. Segment procedures and functions

Declarations of segment procedures and functions are identical

to declarations of Pascal procedures and functions except they

are preceded by the reserved word “SEGMENT”, for example:

SEGMENT PROCEDURE INITIALIZE;

BEGIN

(* Pascal code x)

END;

Program behavior differs, however, in that code and data for a

segment procedure (function) are in memory only while there is

an active invocation of that procedure.

The user may put large pieces of one-time code, e-g- initiali-

zation code, into a segment procedure. After performing the

initialization, the memory area of the now useles

y space.

s code is

released thus increasing the available memor

The disc which holds the codefile for the program must be

online whenever a new segment procedure is to be called. A

maximum of 15 segment procedures are ordinarily available to

Segment procedures must be the first procedure

aining code-generating statements in a pro-
the user.

declarations cont

gram.

Pascal User’s Guide

The following program is an example of the use of SEGMENT

PROCEDURES:

PROGRAM SEGMENTDEMO ;

(* GLOBAL DECLARATIONS GO HERE *)

PROCEDURE PRINT(T: STRING); FORWARD; (*DONT GENERATE CODE YET*)

SEGMENT PROCEDURE ONE;
BEGIN

PRINT(“SEGMENT NUMBER ONE”)
END;

SEGMENT PROCEDURE TWO;
SEGMENT PROCEDURE THREE;
BEGIN

ONE;
PRINI(“SEGMENT NUMBER THREE”)

END;
BEGIN (*SEGMENT NUMBER TWO*)

THREE;
PRINT (“SEGMENT NUMBER TWO”)

END;

PROCEDURE PRINT;
BEGIN

WRITELN (OUTPUT ,T)
END;

BEGIN
TWO;
WRITELN(“I°°M DONE”)

END.

The above program will give the following output:

SEGMENT NUMBER ONE
SEGMENT NUMBER THREE
SEGMENT NUMBER TWO
IM DONE

Pascal User’s Guide

 r
o

 == rh:

 == == = ——= —— == === (CE

7. Differences between MIKADOS Pascal and standard Pascal

This chapter contains a description of the various differences

between MIKADOS Pascal and standard Pascal. The standard

Pascal referred to is defined in “PASCAL user manual and

report” (2nd edition) by Kathleen Jensen and Niklaus Wirth,

Springer Verlag 1978. The standard is referred to as J&W in

the following discussion.

A number of differences and extensions are treated in other

chapters of this manual. These are

- segment procedures and functions (chapter 6)

- external procedures (chapter 8)

It is recommended that the reader first concentrate upon the

sections of this chapter which describe the differences

associated with the character set.

7.1 Character set and special symbols

The character set used in MIKADOS Pascal differs from that

defined in J&W on page 137 in the following ways:

1) <letter> has been extended to include the national Danish

characters &, 9, A, æ, ø, and &

2) upper and lower case characters are considered equivalent.

For example, the identifiers XYZ and xYz are equivalent,

and the keyword BEGIN may also be written Begin or begin.

3) the left and right brackets C and J used in subscripts

and sets have been replaced by the symbols ”(.” and ”.)”

(the character values associated with the brackets are

S
T
 f
e
 mm

mm

mm

ee

m
m

Pascal User’s Guide

used for national characters). However, in order to

improve the readability of MIKADOS Pascal programs it is

allowed to use “(“ and ”)” instead of “(.” a

around array indices. The <element list> in

be surrounded by “(.” and “.)”.

nd “.)*

a <set> must

4) the left and right brackets { and } cannot be used to

delimit comments (the character values associated with

these brackets are used for national characters); comments

may be written only between the symbols (+

5) SEGMENT, FORWARD, and EXTERNAL are reserved

7.2 CASE statements

J&W on page 31 state that if there is no label

value of the case statement selector, then the

case statement is undefined. MIKADOS Pascal in

and +)

keywords

equal to the

result of the

this case will

execute the statement .immediatgly.following the case state-

ment.

Contrary to the syntax diagrams for <field list> on page 116

of J&W, the MIKADOS Pascal compiler will not permit a semi-

colon before the “END” of a case variant field declaration

within a RECORD declaration. See appendix C for the revised

syntax diagram for <field list>.

7.3

 M
E

ME
R

SE
R

Em

m
m

m
m

m
m

m
s

m
m
s

m
m

m
m

mm

mm

mm

mm

mm

om

om

7.3 Dynamic memory allocation

The standard procedure DISPOSE defined on page 158 of J&W is

not implemented in MIKADOS Pascal. However, the function of

DISPOSE can be approximated by a combined use of the MIKADOS

Pascal intrinsics MARK and RELEASE. The process of recovering

memory space as described below is only an approximation to

the function of DISPOSE in that one cannot explicitly ask that

the storage occupied by one particular variable be released by

the system for other uses.

MIKADOS Pascal allocates storage for variables created by use

of the standard procedure NEW in a stack-like structure called

the “heap”. The following program is a simple demonstration of

how MARK and RELEASE can be used to cause changes in the size

of the heap:

PROGRAM SMALLHEAP

TYPE PERSON = RECORD

NAME: PACKED ARRAY(.0..30.) OF CHAR;

ID: INTEGER

END;
VAR P: “PERSON; (* “** means “pointer to” +)

HEAP: “INTEGER;

BEGIN
MARK(HEAP);
NEW(P); (* ALLOCATE RECORD +)
P*.NAME := “FINKELSTEIN, SAM‘;
P*.ID := 999;
RELEASE(. HEAP) (% RELEASE SPACE OCCUPIED BY RECORD*)

END.

The above program first calls MARK to place the address of the

current top-of—-heap into the variable HEAP. The parameter

Pascal User’s Guide TA

 — = ===10ty

supplied to MARK must be a pointer variable, but need not be

declared to be a pointer to an INTEGER as is traditional.

Next the program calls the standard procedure NEW and this

results in a new variable P* which is located in the heap as

shown in the diagram below:

NEW TOP OF HEAP --> 9 :------ --------- :

<-- OLD TOP OF HEAP

:contents of

sheap at start

:of program :

Once the program no longer needs the variable P* and wishes to

release this memory space to the system for other uses, it

calls RELEASE which resets the top-of-heap to the address

contained in the variable HEAP.

If the above program had done a series of calls to the

standard procedure NEW between the calls to MARK and RELEASE,

then the effect would have been that the storage occupied by

several variables would have been released at once. Also note

that due to the stack nature of the heap it it not possible to

release the memory space used by a single item in the middle

of the heap.

It should be noted that careless use of the intrinsics MARK

and RELEASE can lead to pointers which point to areas of

memory which are no longer a part of the defined heap space. DT e
e

e
e

ma

mm

oe

r
å

Pascal User’s Guide

 F

E

=

S
e

E
R

ER

|

7-4 GOTO and EXIT statements

MIKADOS Pascal has a more limited form of the GOTO statement

than is defined as the standard in J&W. MIKADOS Pascal’s GOTO

statement may not transfer control to a label which is not

within the same block as the GOTO statement itself. The

example presented on page 32 of J&W is not legal in MIKADOS

Pascal.

EXIT is a MIKADOS Pascal extension which accepts as its single

parameter the identifier of a procedure or function to be

exited.

If the procedure identifier passed to EXIT is a recursive

procedure then the most recent invocation of that procedure

will be exited. Also, local files are CLOSEd implicitly

when a procedure is EXITed just as if it had terminated

normally.

The creation of the EXIT statement was inspired by the

occasional need for a straightforward means to abort a

complicated and possibly deeply nested series of procedure

calls upon encountering an error.

Pascal User’s Guide 7.6

7.5 Packed variables

7.5.1 Packed arrays

The MIKADOS Pascal compiler will perform packing of arrays and

records if the ARRAY or RECORD declaration is preceded by the

word PACKED. For example, consider the following declarations:

A: ARRAY(. 0..9 .) OF CHAR;

B: PACKED ARRAY(. 0..9 .) OF CHAR;

The array A will occupy ten 16-bit words of memory, with each

element of the array occupying 1 word. The PACKED ARRAY B on

the other hand will occupy a total of only 5 words since each

16 bit word contains two 8-bit characters. In this manner each

element of the PACKED ARRAY B is 8 bits long.

Packed arrays need not be restricted to arrays of type CHAR,

for example:

C: PACKED ARRAY(. 0..1 .) OF 0..33

D: PACKED ARRAY(. 1..9 .) OF SET OF 0..15;

E: PACKED ARRAY(. 0..239,0..319 .) OF BOOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since

only 2 bits are needed to represent the values in the range

0..3. Therefore C occupies only one 16 bit word of memory, and

12 of the bits in that word are unused. The PACKED ARRAY D is

a 9 word array, since each element of D is a SET which can be

represented in a minimum of 16 bits. Each element of a PACKED

ARRAY OF BOOLEAN, as in the case of E in the above example,

occupies only one bit.

 |
Pascal User’s Guide 7.7

mm

RE

mM

mm

mm

mf

mm

Mm

mm

rå

ER

ER

E
ER

ee

ee

The following 2 declarations are not equivalent due to the

recursive nature of the compiler:

F: PACKED ARRAY(. 0..9 .) OF ARRAY(. 0..3 +») OF CHAR;

G: PACKED ARRAY(. 0..9,0..3 +) OF CHAR;

The second occurrence of the reserved word ARRAY in the

declaration of F causes the packing option in the compiler to

be turned off. The net result is that F becomes an unpacked

array of 40 words. On the other hand, the PACKED ARRAY G is

an array occupying 20 total words. If F had been declared as

F: PACKED ARRAY(. 0..9 .) OF PACKED ARRAY(. 0..3 .) OF CHAR;

or as F: ARRAY(. 0..9 .) OF PACKED ARRAY(. 0..3 -) OF CHAR; .

then F and G would have had identical configurations.

In short, the reserved word PACKED only has true significance

before the last appearance of the reserved word ARRAY in a

declaration of a PACKED ARRAY. When in doubt a good rule of

thumb when declaring a multidimensional PACKED ARRAY is to

place the reserved word PACKED before every appearance of the

reserved word ARRAY to insure that the resultant array will

in fact be packed.

The resultant array will only be packed if the final type of

the array is scalar, boolean, CHAR, subrange, or a set which

can be represented in 8 bits or less. The following declara—

tion will not result in any packing because the final type of

the array cannot be represented in a field of 8 bits:

H: PACKED ARRAY(. 0..3 .) OF 0..1000;

H will be an array which occupies 4 16-bit words.

Pascal User’s Guide 7.8

 == = = - (00 ==

E
R

RE

ER

ne

ne

ne

ne

n
e
n

e
n
e

mk

om

mm

MM

mM

Packing never occurs across word boundaries. This means that

if the type of the element to be packed requires a number of

bits which does not divide evenly into 16, then there will be

some unused bits at the high order end of each of the words

which comprise the array.

Note that a string constant may be assigned to a PACKED ARRAY

OF CHAR but not to an unpacked ARRAY OF CHAR. Likewise, compa-

risons between an ARRAY OF CHAR and a string constant are

illegal. Because of their different sizes, packed arrays can-

not be compared to ordinary unpacked arrays.

A PACKED ARRAY OF CHAR may be output with a single write

statement: .

PROGRAM VERYSLICK;

VAR T: PACKED ARRAY(. 0..10 .) OF CHAR;

BEGIN

T := “HELLO THERE’;

WRITELN(T)

"END.

Initialization of a PACKED ARRAY OF CHAR can be accomplished

very efficiently by using the SIZEOF and FILLCHAR intrinsics

defined in sections 5.4.1 and 5.3.3, respectively.

| 0

Pascal User’s Guide
7.9

7.5.2 Packed records

The following RECORD declaration declares a RECORD with 4

fields. The entire record occupies one 16 bit word as a result

of declaring it to be a PACKED RECORD.

VAR R: PACKED RECORD

I, J, K: 0..315

B: BOOLEAN

END;

The variables I, J, K each take up 5 bits in the word. The

boolean variable B is allocated in the 16th bit of the same

word.

In much the same manner that packed arrays can be multidimen-

sional, packed records may contain fields which themselves are

packed records or packed arrays. Again, slight differences in

the way in which declarations are made will affect the degree

of packing achieved. For example, note that the following two

declarations are not equivalent:

| oo0ocococor—co—… |

Pascal User’s Guide i 7.10

VAR A: PACKED RECORD

C: INTEGER;

F: PACKED RECORD

R: CHAR;

K: BOOLEAN

END;

H: PACKED ARRAY(. 0..3 +) OF CHAR

END;

VAR B: PACKED RECORD

C: INTEGER;
F: RECORD

R: CHAR;
K: BOOLEAN .

END;
H: PACKED ARRAY(. 0..3 +) OF CHAR

END;

As with the reserved word ARRAY, the reserved word PACKED must

appear with every occurrence of the reserved word RECORD in

order for the packed record to retain its packed qualities

throughout all fields of the record. In the above example,

only the record A is as completely packed as possible. In B,

the F field is not packed and therefore occupies two 16 bit

words. In contrast A.F has all of its fields packed into one

word. However, it is important to note that a packed or

unpacked array or record which is a field of a packed record

will always start at the beginning of the next word boundary.

This means that in the case of A in the above example, even

though the F field does not completely fill one word, the H

field starts at the beginning of the next word boundary.

A case variant may be used as the last field of a packed

record, and the amount of space allocated to it will be the

size of the largest variant among the various cases. The

 |

Pascal User’s Guide 7.11

= crea

i

=

|

i

i

i

||

i

i

i

i

|

i

i

I

i

I

I

I

||

= = = = = = v

actual nature of the packing is beyond the scope of this

manual.

VAR K: PACKED RECORD

B: BOOLEAN;

CASE F: BOOLEAN OF

TRUE: (Z: INTEGER);

FALSE: (M: PACKED ARRAY(. 0.-3 -) OF CHAR)

END

END;

In the above example the B and F fields are stored in two

bits of the first 16 bit word of the record. The remaining 14

bits are not used. The size of the case variant field is

always the size of the largest variant, so in the above

example, the case variant field will occupy two words. Thus

the entire packed record will occupy 3 words.

7.5.3 Using packed variables as parameters

No element of a packed array or field of a packed record may

be passed as a variable (call-by-reference) parameter to a

procedure or function. Packed variables may, however, be

passed as call-by-value parameters (as stated in J&W).

ip a ee £

Pascal Users Guide

o
o

e
o

o
e

7.5.4 PACK and UNPACK standard procedures

MIKADOS Pascal does not support the standard procedures PACK

and UNPACK as defined in J&W page 106

7.6 Parametric procedures and functions

MIKADOS Pascal does not support the construct in which

procedures and functions may be declared as formal parameters

in the parameter list of a procedure or function.

See appendix C for the revised syntax diagram of <parameter-—

list>.

7-7 Program headings

Although the MIKADOS Pascal compiler will permit a list of

file parameters to be present following the program iden-

tifier in the PROGRAM statement, these parameters are ignored

by the compiler and will have no effect on the program being

compiled.

Pascal User’s Guide

7.13

 mm
m

F
E

n
e

e
e

e
e
e

E
R

R
Å

R
E

e
m

e
m

m
m

m
l

m
m

m
m

7.8 The standard types

The standard types boolean, character and pointer are exactly

as defined in J&W. This section describes certain implementa-

tion dependent details about integers and reals.

7.8.1 Integers

Integers are represented internally in 16 bit, twos

complement, capable of representing values in the range

-32768.. 32767.

Integer overflow during computation is ignored. The result

of an operation causing integer overflow is unpredictable.

7.8.2 Reals

Reals are represented internally in 32 bit. The detailed

format is described in section 8.2. The mantissa has 23 bits

corresponding to approximately 6.8 digits precision. The

exponent has 8 bits, which corresponds to an exponent range

of approximately 10#*(-38) to 10**38 and true zero.

Real overflow during computation causes a run-time (inter-

preter) error. Real underflow causes the result to be set to

a true zero and execution continues.

The intrinsic functions ARCTAN, COS, EXP, LN, SIN, and SQRT

mentioned in J&W appendix C, page 109, are recognized by the

compiler but cause a run-time error if called.

Pascal User”s Guide 7.14

7.9 Sets

MIKADOS Pascal supports all of the constructs defined for sets

on pages 50-51 of J&W. A set can be at most 255 words in size,

and have at most 4080 elements.

Comparisons and operations on sets are allowed only between

sets which are either of the same base type or subranges of

the same underlying type. For example, in the sample program

below, the base type of the set S is the subrange type 0..49,

while the base type of the set R is the subrange type 0..100.

However, the underlying type of both sets is the type INTEGER,

which by the above definition of compatibility implies that

the comparisons and operations on the sets S and R in the

following program are legal:

PROGRAM SETCOMPARE;

VAR S: SET OF 0..49;

R: SET OF 0..100;

BEGIN

S r= (. 0,5,10,15,20,25,30,35,40,45 .);
(. R := 10,20,30,40,50,60,70,80,90 .);

IF S = R THEN WRITELN(” ...oops... ”)

ELSE WRITELN(“sets work”);

END.

| Pascal User’s Guide 7-15 |

However, in the following example the construct I = J is not

legal since the two sets are of different underlying types.

PROGRAM ILLEGAL;

TYPE NUMBERS=(ZERO, ONE, TWO) ; |

VAR I: SET OF NUMBERS; |

J: SET OF 0..2;

I := (. ZERO .);
|

Jr= (2 1,2 +); i |

IF I=J THEN ; <<<< ERROR |

END.
|

7.10 Strings

MIKADOS Pascal has an additional predeclared type STRING.

Variables of type string are essentially packed arrays of

characters that have a dynamic length attribute, the value of

which is returned by the string intrinsic LENGTH (see section

5.1.1). The default maximum length of a string variable is 80

characters. This default maximum length can be overridden in

the declaration of a string variable by appending the desired

length of the string variable within (. +) or () after the

reserved type identifier STRING. Examples of declarations of

string variables appear below:

TITLE: STRING; (+ defaults to a maximum length of 80

characters *)

NAME: STRING(.20¢) (+ allows the string to be a

maximum of 20 characters *) = a a oe e
e

e
e

e
e
e

Pascal User’s Guide

Note that a string variable has an absolute maximum length of

255 characters. Assignments to string variables can be

performed using the assingment statement, the string intrin-

sics, or by means of a READ statement:

TITLE := ” THIS IS A TITLE 3
or NAME := COPY(TITLE, 1, 20);
or READLN(TITLE);

The individual characters within a string are indexed from 1

to the length of the string, for example:

TITLE(.1.) := 7A‘;
TITLE(. LENGTH(TITLE) .) := “A;

A variable of type string may not be indexed beyond its

current dynamic length. The following sequence will result in

an invalid index run time error:

TITLE := “12347;
TITLE(.5.) := 757;

The dynamic length of a string is accessible as the string

element with index 0, but only if range checking is disabled.

The following sequence will execute without error:

TITLE := “1234°;

(#$R-*) TITLE(.0.) := 5 (*$R+®);

TITLE(.5.) := 7573

A variable of type string may be compared to any other

variable of type string or a string constant no matter what

its current dynamic length. Unlike comparisons involving

variables of other types, string variables may be compared to

items of a different length. The resulting comparison is

Pascal User’s Guide
7.17 |.

lexicographical. Lower case characters are greater than upper

case characters. The following program is a demonstration of |

legal comparisons involving variables of type string:

PROGRAM COMPARESTRINGS ;

VAR S: STRING;

m: STRING(.40.)5

BEGIN

S$:= “SOMETHING” ;

T := “SOMETHING BIGGER”; .

IF S=T THEN WRITELN (“Strings don””t work too well”);

ELSE IF S>T THEN WRITELN(S,° is greater than ~,T) |

ELSE IF S<T THEN WRITELN(S,“ is less than ~,T);

IF S=“SOMETHING” THEN WRITELN(S,° equals 7,5);

IF S>”SAMETHING” THEN

WRITELN(S,” is greater than SAMETHING“) 5

IF S=*SOMETHING ” THEN WRITELN(“Blanks don””t count”);

ELSE WRITELN(“Blanks appear to make a difference”);

S := "XXX";
|

T := “ABCDEF’;
|

IF S>T THEN WRITELN(S,” is greater than “,T) |

ELSE WRITELN(S,” is less than ”,T);
'

IF ”UPPERCASE”<"lowercase” THEN

WRITELN (“lowercase is greater than UPPERCASE”)

ELSE WRITELN (“Lowercase=uppercase”)

END.

The above program should produce the following output:

SOMETHING is less than SOMETHING BIGGER

SOMETHING equals SOMETHING

SOMETHING is greater than SAMETHING

Blanks appear to make 4 difference

XXX is greater than ABCDEF

lowercase is greater than UPPERCASE

e
e

ne

we
e

we
s

T
e
e
n

ee
n

o
e

e
e

m
m

m
m

Pascal User’s Guide

=

e
e

e
e
e

e
e
e

e
e
e

e
e

e
e
e

When a variable of type string is a parameter to the standard

procedures READ and READLN, all characters up to the end of

line character in the source file will be assigned to the

string variable. Note that care must be taken when reading

string variables. The single statement READLN(S1,S2) is equi-

valent to the two statement sequence READ(S1); READLN(S2).

In both cases the string variable S2 will be assigned the

empty string.

7.11 Extended comparisons

MIKADOS Pascal allows = and <> comparisons of any array or

record structure.

7.12 READ and READLN

The standard procedures READ and READLN are compatible with

standard Pascal except for the following:

READ and READLN should be used only on sequential files (files

of type TEXT or FILE OF CHAR).

When a file of type TEXT or FILE OF CHAR is opened, a record

containing one blank is placed in the file window, and

EOLN(FILEID) is set to true.

When a variable of type string is a2 parameter to the standard

procedures READ and READLN, all characters up to the end of

line character in the source file will be assigned to the

string variable.

Bo

Pascal User’s Guide 7.19

N
N
N

E
R
$
é
O
E
R
é
O

Em

EM

FE

mm

ER

ER

If variables of type REAL are to be input, the user must

include in his source module the READREAL procedure, which is

then called by the system to perform the input operation.

READREAL is supplied by DDE on the Pascal system disc.

READREAL must be included in the outermost system block

(level 0) using the Include control comment described in

section 4.2.

If a syntax error is encountered while READing an integer or a

real, the error code returned by IORESULT is set to -3 or -2,

respectively.

7-13 WRITE and WRITELN

The standard procedures WRITE and WRITELN are compatible with

standard Pascal except for the following:

MIKADOS Pascal does not support the output of the words TRUE

and FALSE as the result of writing out the value of a boolean

variable.

If a variable is written without specifying a field length,

the actual number of characters written is equal to the length

of the ASCII representation of the variable. No blanks are

written before or after an integer or real output with a WRITE

or WRITELN. ‘

A record is written onto a file only after it has been

terminated with a WRITELN except for the OUTPUT file where

output always occurs when the final parameter in the procedure

call has been written in the system buffer. WRITE and WRITELN

should be used only on sequential files (files of type TEXT or

FILE OF CHAR).

 |

Pascal User’s Guide
7.20

If during a WRITE or WRITELN more than 80 characters are

written in the system puffer, the 80 characters are output

immediately as a separate record after which the interrupted

operation continues.

If variables of type REAL are to be output the user must

lude in his source module the WRITEREAL procedure, which

ine
rm the output operation.

is called by the system to perfo

WRITEREAL is supplied by DDE on the

WRITEREAL must be included in the outermost program

(block level 0) using the Include control comment described in

Pascal system disc.

block

section 4.2.

N does support the writing of +

entire PACKED ARRAYs OF CHAR in a single WRITE statement. See

section 7.5 for further information about packing.

The following program demonstrates the effects of a field

width specification within a WRITE statement for a variable of type string:

PROGRAM WRITESTRINGS ;

VAR S:STRING;

BEGIN

$:= “THE BIG. BROWN FOX JUMPED... 73

WRITELN(S);

WRITELN(S:30)3

WRITELN(S:10)

END.

The above program will produce the following output:

THE BIG BROWN FOX JUMPED. ++

THE BIG BROWN FOX JUMPED. ++

THE BIG BR

| MIKADOS Pascal’s WRITE and WRITEL

Pascal User’s Guide
7.21 |

Note that when a string variable is written without specifying ii

a field width, the actual number of characters written is

equal to the dynamic length of the string. If the field width

specified is longer than the dynamic length of the string,

then leading blanks are written. If the field width is smaller

than the dynamic length of the string then the excess charac= |

ters will be truncated on the right.
7-14 PUT and GET

These procedures are similar to those defined on page 158 of |

J&W. The following supplementary comments should be noted: .
|

GET(FILEID) a GET(FILEID) is required after a RESET or

REWRITE to assign the value of the first

“pecord to the buffer variable -FILEID*.

Switching between file extents is performed

automatically.

PUT(FILEID) the file is automatically extended as the need

arises.
7.15 EOF = end-of-file

This function is similar to the EOF function defined on page

160 of J&W. The following supplementary comments should be

noted:

After a RESET or a REWRITE has been issued for a file, EOF

returns false. EOF returns true on a closed file. When

EOF(FILEID) is true, EOLN(FILEID) is also true and FILEID*

is undefined.

7.22

R
R
S

F
E

R
E

E
M

E
R

s
å

If EOF(FILEID) becomes true during 2 GET(FILEID) or 4

READ(FILEID, --) then the data thereby obtained may not

be valid.

As direct data files are randomly accessible, the MIKADOS

system does not keep track of which records in @ file have

peen accessed by the user. Consequently, MIKADOS does not

have any information about the number of the last record

accessed in a direct file. No EOF mark exists in direct files.

EOF for a direct file becomes true only if an attempt is made

to GET a record that lies partly or completely outside the

file boundaries.

EOF on the INPUT file occurs when the operator terminates

input by pressing ESC. An EOF condition on the INPUT file is

reset when the next EDIT, or READLN on INPUT is encountered.

The new READ or READLN may of course cause EOF to be set true

again.

EOF on the OUTPUT file occurs when the operator enters a >.BR

(break) command on the console that was used directly or

indirectly to start the Pascal program. Note that the break

condition is reset during the evaluation of EOF(OUTPUT)-

Consequently, EOF(OUTPUT) will be true only in the first

evaluation after the >.BR command was entered.

Pascal User’s Guide

7.23

=

m
m

mm

mm

E
m

mm

Em

mm

mm

ER

rn

7.16 EOLN = end-of-line

This function is similar to the EOLN function defined on page

160 of J&W. The following supplementary comments should be

noted:

After a RESET or a REWRITE has been issued for a file, EOLN

returns true. EOLN returns true on a closed file. The EOLN

function should be used only on files of type TEXT or FILE OF

CHAR.

7.17 Miscellaneous implementation size limits

The following is a list of maximum size limitations imposed

upon the user by the current implementation of MIKADOS Pascal:

1) Maximum number of bytes of object code in a procedure or

function is 2000. Local variables in a procedure or func=

tion can occupy a maximum of 16383 words of memory

2) Maximum number of characters in a string variable is 255

3) Maximum number of words in a set is 2553

maximum number of elements in a set is 255 % 16 = 4080

4) Maximum number of segment procedures and segment functions

is 15

5) Maximum number of procedures or functions within a segment

is 127

6) Maximum number of external procedures is 32 minus number

of module-dependent externaloptions (C, D, F) specified.

Pascal User’s Guide 8.1

mm

RE
.

mm
e.

N
e

mm

mm

mm

mm

mm

ee

mm

må

mm

8. External procedures and functions

A user may reference a procedure (function) written in assem-

bler or a similar language in a Pascal program by declaring it

an external procedure (funetion). Except where otherwise noted

the following discussion applies to functions as well as

procedures.

An external procedure is declared by substituting in the

procedure declaration an “EXTERNAL” directive for the proce-

dure block, e.g.

PROCEDURE SORT(VAR A: ARRAYOFINTEGER; X: INTEGER); EXTERNAL;

When compiling Pascal programs containing external references,

the user must always set the appropriate externaloption (see

section 4.1).

Note: names of external assembler procedures should not be

longer than 5 characters as the assembler treats only the

5 first characters of an entry point name as significant

while the Pascal compiler and the linker consider 8 signifi-

cant characters.

8.1 Transfer of parameters

When a call to an external procedure is made in a Pascal

program, the assembler routine is entered at the entry point

corresponding to the procedure name.

On entry, the top of stack will contain the return address

to the Pascal system. Next on the stack will be information

about the parameters passed to the assembler routine in

reverse order, i.e. last parameter first.

Pascal User’s Guide

Variable (VAR) parameters are represented by a pointer to the

actual structure referenced, while value parameters are either

passed directly on the stack (unstructured parameters) or as

pointers to temporary data structures.

Assembler functions pass their return values on the stack.

Assembler routines are responsible for removing all para-

meter information from the stack before returning control

to the Pascal system.

Example:

Procedure P is declared as

PROCEDURE P(VAR Pl: INTEGER;

P2: BOOLEAN;
P3: STRING); EXTERNAL;

and is called by

P(I, FALSE, “TESTING”);

The Pascal system will analyse the parameters and call the

assembler routine at entry point P (declared as P::). The

stack contents on entry to P will be

top of stack return address to Pascal system

next on stack pointer to first byte (length indicator,

=7) in copy of string constant in work area

third on stack the value “false” (binary 0)

fourth on stack pointer to the variable I

fifth on stack and following should not be used by P

Pascal User’s Guide

 mn

Em

e
e

re

mm

The routine P should remove the four topmost words from the

stack and return to the specified return address after com-

pleting its task.

8.2 Parameter formats

Although an element of a structure may occupy as little as one

bit as in a packed array of boolean, all parameters occupy at

least one word (16 bits) even if not all the information in

the word is valid. The least significant bit of a word is bit

0, the most significant is bit 15.

poolean: one word. Bit 0 indicates the value (false=0, true=1)

and this is the only information used by boolean

comparisons. However, the boolean operators AND, OR

and NOT operate on all 16 bits.

integer: one word, two’s complement, capable of representing

values in the range =32768.. 32767.

scalar (user defined): one word, in range 0. . 32767

char: one word, with low byte containing character.

Pascal User’s Guide 8.4

pointer:

set:

word 0: !sign! high mantissa ! exponent !

The representation has an excess-128 base 2 exponent,

a fractional mantissa that is always normalized,

an implicit 24th mantissa bit, and zero represented

by a zero exponent.

one or three words, depending on type of pointer.

Pascal pointers, internal word pointers: one word,

containing a word address i

Internal byte pointers: one word, containing a byte

address

Internal packed field pointers: three words

word 2: word pointer to word field is in

word l: field width (in bits)

word 0: right bit number of field

0..255 words in data segment, 1..256 words on stack.

Sets are implemented as bit vectors, always with a

lower index of zero. A set variable declared as

SET OF M..N is allocated (N+15) DIV 16 words.

When a set is in the data segment, all words

allocated contain valid information. When a set is on

the stack, it is represented by a word containing the

length, and then that many words, all of which

contain valid information. All elements past the last

word of a set are assumed not to be elements of the

set.

Pascal User’s Guide

records and arrays: any number of words (up to 16384 words in

one dimension). Arrays are stored in row-major order

(last index varying most rapidly) and always have a

lower index of zero. Packed arrays have an integral

number of elements in each word as there is no

packing across word boundaries (it is acceptable to

have unused bits in each word).

strings: 1..128 words. Strings are a flexible version of

packed arrays of characters. A string(n) occupies

(n div 2)+1 words. Byte 0 of a string is the current

length of the string, and bytes 1..length(string)

contain valid characters.

A string constant of length 1 is considered a

character constant unless the delimiter " is used

instead of ”, i.e. in the assembler procedure call

ASM(“y~, "y", “yes”, "yes")

the first argument will be transferred as a

character constant (value on stack), and the other

arguments will be transferred as string constants

(pointer to string on stack).

8.3 Linking external procedures

After a Pascal program containing external references has been

procedures referenced in the program must be linked.

Before linking a new interpreter, construct a special inter-

preter disc using the FCOPY program (described in the "MIKADOS

Utility Programs and Subroutines" manual). The disc must

contain the following:

- all MIKADOS system nullfiles

- a MIKADOS linker

e
e

oe

mm

me

mm

RR

e
e
.
)

RR

compiled, a new interpreter containing a copy of the external

Pascal User’s Guide 8.6

 e
e

e
e

|

Example: Pascal system disc in Pl, user Pascal source disc in

P2. Pascal compilation of "EXTDEMO":

>PASCAL, EXTDEMO, ,E

The resulting P=code file and the resulting relo-

catable file will both be placed on P2

Now insert the special interpreter disc in Pl.

Linking of a new interpreter that will execute

"EXTDEMO" assuming relocatable modules of external

procedure(s) referenced are on either Pl or P2:

>LINK, EXTDEMO,R1

To execute EXTDEMO enter

>EXTDEMO

Note: do not enter >INTER, EXTDEMO

If a special interpreter for a program containing external

references has previously been linked, it may be reused

providing the order of declaration of the external procedures

in the source program has not been changed.

Pascal User’s Guide

i
i
a

e
e
e

«=

9. Pascal E (Extended precision Pascal)

To satisfy users requiring high precision computations, e.g.

for scientific or business applications, DDE has developed a

special version of the Pascal compiler and interpreter called

Pascal E.

In Pascal E real numbers are represented by 8 byte BCD coded

strings. All computations are performed with 13 significant

digits and an exponent range of 10##(-128) ‘to 10**128 and true

Zero.

Any attempt to execute a Pascal program compiled by the

extended precision compiler with a normal interpreter or

vice versa may cause the system to crash or to behave

erratically.

The following sections describe the differences between ordi-

nary Pascal as described in chapters 1 - 8 of this manual and

Pascal E.

9.1 Interpreter and compiler names

The name of the standard interpreter is INTRE (as opposed to

INTER in standard Pascal). The name of the Pascal compiler is

PASCALE (as opposed to PASCAL in standard Pascal).

|

| Pascal User’s Guide 9.2

9.2 Intrinsic functions

Pascal E supports the intrinsic functions SQRT, EXP, LN, TAN,

SIN, COS and ARCTAN. These functions are not supported by

normal Pascal.

9.3 Names of interpreter modules

The BCD floating point interpreter modules are

- FPE (basic BCD operations)

= FPEX (dummy version of FPE; used instead of FPE if BCD

arithmetic is not required)

- FPBCD (basic BCD operations; may be omitted if BCD arith-

metic is not required)

- FPT (BCD functions SQRT, EXP, LN, TAN, SIN, COS and

ARCTAN) '

- FPTX (dummy version of FPT; used instead of FPT if BCD

functions are not required)

The FP and FPX modules used by normal Pascal should not be

used with Pascal E. The FPEX and FPTX modules may be included

in the interpreter instead of the above modules if no floating

point operations are required.

The remaining interpreter modules are the same for PASCAL and

PASCALE (see section 4.4), except that the central interpreter

module is named INTRE instead of INTER.

Pascal User’s Guide

9.3

9.4 Direct support of READREAL and WRITEREAL

The READREAL and WRITEREAL procedures are puilt into the

interpreter. No inclusion is necessary to READ or WRITE real

numbers.

A real number in the parameter list of a WRITE or WRITELN

procedure call may be followed by :el or rel:e2 as described

in J&W (page 86), where el is the field width and e2 is the

number of decimals printed.

ecifies number of decimals to be printed

e2 may be >0 - e2 sp

0 = use exponential notation for number

-1 = no decimals printed, decimal point printed

-2 = no decimals printed, no decimal point printed

If the values of el or e2 are unreasonable, the number is

printed in exponential notation with e1=20.

9.5 Internal representation of real numbers

The real number format is

byte 0 bit 7: sign (1 = minus)

bit 3-0: most significant BCD digit

byte 1-6 12 BCD digits

byte 7 exponent expressed in excess 128 form

The implied decimal point is located immediately to the left

of tne most significant BCD digit. True zero is represented by

a zero exponent.

Pascal User’s Guide

Example: the constant 1.56 is represented as

DB 01,56,00,00,00,00,00,81

Pascal User’s Guide

 Appendix A- Compile time error messages

Most of the error numbers are similar to those defined in

appendix E of J&W. Errors with numbers > 400 cause the

compiler to terminate. Only the first error detected on a

source line is reported.

1: error in simple type

2: identifier expected

3: “PROGRAM expected

4: 7)" expected

5: 7:7 or 7,” expected

6: symbol illegal in context (maybe missing 7,7 on the line

above or 73” in front of ELSE)

7: error in parameter list

8: “OF” expected

9: “(° expected

.

10: error in type

11: 7(.7 expected

12: 7.)” expected

13: ”END” expected

14: “3° expected

15: integer expected

16: “=° expected

17: “BEGIN” expected

18: error in declaration part

19: error in <field list>

20: ”,” expected

21: 7.” expected

50: error in constant

51: “:=° expected

52: “THEN” expected

53: “UNTIL” expected

54: "DO" expected

55: TO” or “DOWNTO” expected in FOR-statement

58: error in <factor> (bad expression)

59: error in variable

101: identifier declared twice

102: low bound exceeds high bound

103: identifier is not of the appropriate class

104: undeclared identifier

105: sign not allowed

106: number expected

107: incompatible subrange types

108: file not allowed here

109: type must not be real

|

i

4.

i

i

i

i

|

i

i

i

i

i

i

I

i

I

i

|

i

|

Pascal User’s Guide

 BR

a

GR

RÅ

RÅ

Å
R

ek

E
R

ES

R
E

ER

RR

ER

rå

110:
111:
113:
114:
115:
116:
117:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147
148:
149:
150:
152:

153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:

<tagfield> type must be scalar or subrange
incompatible with <tagfield> part
index type must be a scalar or a subrange
base type mst not be real
base type must be a scalar or a subrange
error in type of standard procedure parameter
unsatisfied forward reference
re-specified parameters not ok for a forward declared procedure
function result type must be scalar, subrange or pointer

file value parameter not allowed
a forward declared function’s result type cannot be re-specified
missing result type in function declaration
f-format for reals only
error in type of standard function parameter
number of parameters does not agree with declaration
illegal parameter substitution
result type does not agree with declaration
type conflict of operands
expression is not of set type
tests on equality allowed only
strict inclusion not allowed
file canparison not allowed
illegal type of operand(s)
type of operand must be boolean
set element type must be scalar or subrange
set element types must be canpatible
type of variable is not array
index type is not compatible with the declaration
type of variable is not record
type of variable must be file or pointer
illegal parameter solution
illegal type of loop control variable
illegal type of expression
type conflict
assignment of files not allowed
label type incompatible with selecting expression
subrange bounds must be scalar
index type must not be integer
assignment to standard function is not allowed
no such field in this record
type error in read
actual parameter must be a variable
control variable cannot be formal or non-local
multidefined case label
too many cases in case statement
no such variant in this record
real or string tagfields not allowed
previous declaration was not forward
again forward declared
parameter size must be constant
missing variant in declaration

Pascal User’s Guide

 ee mm ee men
a
mm

a

a
n

o
n

n
e
n

e
n

ER

må

164: substitution of standard procedure/function not allowed

165: multidefined label
166: multideclared label
167: undeclared label
168: undefined label
169: error in base set
173: externaloption not specified in RUN command (see section 4.1)

201: error in real number — digit expected

202: string constant mist not exceed source line

203: integer constant exceeds range

250: too many scopes of nested identifiers

251: too many nested procedures or functions

252: too many forward references of procedure entries

253: procedure too long

257: too many external procedures

320: READREAL or WRITEREAL procedure not included (see section 7.12 or 7.13)

398: implementation restriction

399: implementation restriction

400; illegal character in text
401: umexpected end of input
408: include control comment not allowed in inclusion file

10xx: error during open of inclusion file

]lxx: error during open of source file

12xx: error during create/open of P=code file

13xx: error during create/open of relocatable file

ilxx: error during output to relocatable file

15xx: error during output to P-code file

16xx: error during input from source file

In the error messages with numbers >= 1000 the last two digits represent

the MIKADOS file system error code. The MIKADOS file system error codes

are:

1: a file with the specified name does not exist

2: a file with the specified name already exists

3: no more room on disc

4: illegal record length

5: the file is being used by another user

6: the specified DCB is not open
8: attempt to extend a file more than 60 times

9: the filename is illegal (the first character is not printable)

10: illegal disc identification

11: attempt to position file to non-existent record

12: attempt to read or write a record that lies partly or completely

outside the file boundaries

Pascal User’s Guide A.4

 —_
—
o
o

e
e

må

RR

E
m

19:

40:
42:
AM:
48:
50:
52:
69:

-1:
-2:
=3:

MIKADOS file system errors 4, 15, 18, 48, 50, and 52 normally should not

: the file has not been opened for writing
: the catalog om the disc is full
: illegal DCB length

illegal number of sectors in file
illegal file type
the file name has not been reserved (returned by CLOSE if file

not open or DCB bombed)
error in variable length record file format

disc drive not ready
hard error on disc
disc drive is write protected
illegal track/sector mumber or illegal buffer length
transfer extends past last sector of disc drive
illegal disc identification
no data area available to pass parameters to new process

end-of-file disregarded
input error (READ real)
input error (READ integer)

occur in Pascal systems. If they do the system has probably been

destroyed by a pointer or index error.

 =
=

Pascal User’s Guide

V
S
.

.
2.

mm

mm

mm
s

mm

mm

mm

mm

mm

mm

mm

øm

mm

|

Appendix B. Run time (interpreter) error messages

During interpretation of a Pascal program (including the

Pascal compiler itself), the interpreter checks for a number

of error conditions. If an error condition is detected it is

reported with a message similar to the following:

RUN TIME ERROR x NEAR LINE yyyy

or

USER I/O ERROR zz NEAR LINE yyyy

where yyyy is the line number of the last executed Pascal

statement that was compiled with the debug option enabled (see

section 4.2). If the debug option was not enabled during any

part of the compilation of the program section executed before

the error occurred, yyyy will be 0000. x will be replaced by

division by zero
external procedure error (probably wrong interpreter used
to execute program with external references)
invalid index (if index and range checking disabled only
string index < 1 or > 255 detected)

=~ stack or heap overflow
- string too long or parameter error in intrinsic procedure

- standard procedure not implemented
O = floating point overflow
P = floating point error (error in PWROFTEN call)
S + non-existent segment called (system error)
X - exitting procedure never called (system error)

H
o

i)

H 1

B
o
w

If the Pascal compiler fails with an interpreter error

message other than K, M, 0, or P, start by correcting all

syntax errors reported during the compilation. Then recompile

the program. If the error persists, contact DDE.

If the Pascal compiler fails with interpreter error message K,

increase the compiler data area (increase MAXADR, see section

Pascal User’s Guide |
i

4.4), or reduce the number of identifiers declared in the

program.

If the Pascal compiler fails with interpreter error message M,

then the interpreter used is not suitable for compiling the

Pascal program (special compiler module or floating point

module required in the interpreter).

If the Pascal compiler fails with interpreter error message

O or P, then the source statement just after the last one

listed on the list device probably contains a (real) constant

which is not acceptable to the compiler.
The user i/o error message appears if the result code of an

i/o operation is greater than zero, and i/o checking has not

peen disabled (see section 5.2). zz is the result code which

caused the error. The result codes (MIKADOS file system

error codes) are explained in appendix A.

If a program (including the Pascal compiler) fails with an

interpreter error, then the files opened by this program at

the time when the error occurred are not closed. This may

result in file system error 5 (file in use) in subsequent

The error condition can be removed
attempts to open the file.

by restarting the operating system.

Pascal User’s Guide C.1

Ea

 SS 2

ee

m
e

Ea

e
S

re

må

Appendix C. Revised syntax diagrams

'ddentifier ,

 (etter)

unsigned number

unsigned integer (.) 3; ”

(+)
; unsigned integer

 BO

Pascal User’s Guide C.2

unsigned constant

constant identifier 7

 ————_—__—_—_——_—_——-~| unsigned number

constant

| constant identifier

Pascal User’s Guide

simple type

2

type identifier

—_——»} constant

 O
constant

Pascal User’s Guide

 simple type

field list

(UD unsigned

 lol ©
 9

©

Pascal User’s Guide

 mm

mm

field list

identifier 2

(ose identifier |"

År constant

e
T

e
e

R
$
é
O
m
Å

R
o

m
m

ER

ER

ER

ER

ER

ek

field list

 —O
0

Pascal User “s Guide

variable

variable identifier

field identifier

h—+(.)}—_—} field identifier

KO (4)
AL)

factor

+ unsigned constant

N variable

>} function identifier (expression)

expression /}—+()) 4

factor

expression

Cc. r°s Guide Pascal Use
299

29999

4 term

simple expression

 =

i

AJ

Pascal User’s Guide

parameter list

simple expression

type identifier

Pascal User’s Guide

c.9

 SE

s
n

ne

e
e

e
n

e
n

ne

e
e

e
n

e
n
!

oe

rå

state-

 state-

 \ +(ns)— expression statement

REPEAT statement ovr,)-— expression

variable ; i Ko For oS identifier > expression

 Crm variable (co) statement

 (cow) —~ unsigned integer }——______—4

Pascal User’s Guide

me
s

me

Em

me

mæ

må

må

må

mm

ms

ma

mm

må

mm

mm

mm

må

em

NED A unsigned integer

Pascal User’s Guide C.11

(#0001) — saentitier 1) — foer +)

Pascal User’s Guide

Appendix D. System performance data

D.1 Space requirements

The MIKADOS Pascal system consists of two separate programs,

the P-code interpreter and the Pascal compiler.

The standard version of the P-code interpreter occupies

approximately 9700 (hex 2600) bytes. A small, representative

program (the HANOI program on the system demonstration disc)

will run in a MIKADOS region of 12 k bytes (MAXADR=7000 if

region start = 4000).

The minimum version of the interpreter (floating point, SEEK

and special compiler module omitted) occupies approximately

8000 (hex 1F00) bytes. This interpreter requires a MIKADOS

region of 10.5 k bytes or more to execute programs.

The Pascal compiler consists of the root segment, the initia-

lization segment, which is called only at the start of a

compilation, and the compilation segment. The approximate

sizes of these segments are:

Root segment 100 bytes

Initialization segment 6900 bytes

Compilation segment 20800 bytes

To compile a small program (e.g. the HANOI program on the

system demonstration disc) a region of at least 40000 bytes

is required:

Minimum interpreter 8700 bytes

Compiler (longest segment) 21000 bytes

Compiler data area 10300 bytes

|

Pascal User’s Guide D.2

The compiler data area contains the compiler stack and heap.

Experience has shown that a region of 48 k bytes is sufficient

to compile most programs. The Pascal compiler (a Pascal

program of 4700 lines) requires 52 k to compile itself, using

a special MIKADOS system where the region size is 53 k.

D.2 Execution times

The compiler compiles 3 - 5 lines of a "typical" Pascal source

program per second. The Pascal compiler, which is a Pascal .

program of approximately 4700 lines with very few comments,

compiles itself in approximately 19 minutes, giving a

compilation speed of 4.1 lines per second on a 2 MHz CPU.

Execution times for typical Pascal constructs are:

FOR I:=1 TO 5 DO

FOR J:=1 TO 10000 DO BEGIN 47 seconds if debug option enabled

END; 38.5 seconds if debug option disabled

A := 53 (A integer) 140 us

A := B; (A, B integer and local) 200 us

A:=B+C;3 (A, B, C integer and local) 370 us

E := 5.0; (E real and local) 400 us:

E := F; (E, F real and local) 500 us

E := 5.0 + 5.03 (E real and local) 1080 us

D(A) := 53 (D(1..5) integer and local) 510 us

IF TRUE THEN BEGIN END; 90 us

IF A=B THEN BEGIN END; (A, B integer, local, A'= B) 330 us
(same, A <> B) 345 us

m
n

s
m

m
a

mm
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

s
s

m
m

m
m

Pascal User’s Guide D.3

IF (H<“A”) OR (H>727) THEN BEGIN END;

(H char and local, H = “Q”) 650 us

(same, H = 27) 620 us

(same, H = ”q”) 620 us

IF NOT (H IN (.°A°..°2°.)) THEN BEGIN END;

(H char and local, H = “Q”) 800 us

(same, H = “27) 770 us

(same, H = ”q”) 770 us

TOMPROC; (call of empty procedure, level 0) 720 us

TOMPROC(A); (call of empty procedure, level 0,

with one integer value parameter) 860 us

TOMPROC(A); (call of empty procedure, level 0,

with one integer VAR parameter) 880 us

The above measurements were performed using the TIMING

program on the Pascal demonstration disc with 50000 executions

of two identical statements of the above types in a double

FOR-loop as shown in the first construct above. All measure-

ments were made on a 2 MHz CPU.

Pascal User’s Guide

Appendix E. Summary of manual changes

The following is a summary of the changes that have occurred

in this manual:

4 May 1979

27 July 1979

4 Dee 1979

original version

section 2: contents of Pascal system disc

slightly changed

4.0: description of MIKADOS IN command removed

4.2: P control comment (page eject) added

ALA: standard interpreter configuration

changed

5.2 and 5.2.4: support for soft error codes

(IORESULT<0) added

5.2.2: automatic CLOSEing of files

5.2.9: EDIT procedure added ©

5.2.10: CLEARSCREEN procedure added

5.4.2: TIME function unit changed

5.4.6: Basic i/o routines added

5.4.7: SETIORESULT procedure added

5.4.8: DELAY program procedure added

7.8: description of standard types added

7-10: relation between upper and lower case

characters explained

7.12: IORESULT error codes generated by syntax

errors in input

7.14: EOF condition on standard INPUT file

9: description of Pascal E added

section 4.1: T listoption added (p-code size)

4.1: compiler break facility added

4.4: SEEK module renamed to FSYS; dynamic

data area acquisition for interpreter

added (MAXADR = 0)

5.2.8: use of SEEK in update operation clarified

Pascal User’s Guide

 Fr
"

E
m

E
m

E
m

E
M

R
E

F
E

S
S

R
Å

Å
E
R

R
E

E
R

E
R

R
E

E
R

start new process procedure added (CHAIN)

interpreter break facility added

use of EOF with direct access files

clarified

restriction on external procedure name

length documented

rewritten

Pascal manual addendum 1

Description of changes in the Pascal system since

December 4, 1979 (last edition of Pascal manual).

1) When the listoption T is given to the Pascal compiler it

will output after each record in the type definition part

the size of the record (number of bytes).

2) The compile time option N makes it possible to change the

number of lines per page in a program listing from the

Pascal compiler. The integer after N determines the number

of lines per page. The integer must occupy two positions.

Example: (*$N30*)

3) It is now possible to read and set the MIKADOS date and

time from a Pascal program. The user must make the follow-

ing declarations:

TYPE PARMARRAY = PACKED ARRAY (1..40) OF CHAR;
CLOCKRECORD = RECORD

DATE: PACKED ARRAY (1..10) OF CHAR;
TIME: PACKED ARRAY (1..8) OF CHAR

END;

VAR PARM: “PARMARRAY;

CLOCK: “CLOCKARRAY;

The VAR declaration must be the first VAR declaration made

in the program. After startup CLOCK*.DATE(1..10) will con-

tain the date in the form DD.MM.YYYY. CLOCK*.TIME(1..8)

will contain the time in the form HH.MM.SS.

S
n

Ø
S

n
e

e
e

Se

e
e

S
e

em

Em

R
E

r
e

Pascal manual addendum 2

4) In the procedure CHAIN a new parameter has been added.

PROCEDURE CHAIN(PROGRAMNAME, PARMSTRING: STRING;

VAR ADDRESS: “INTEGER) ;

After execution of CHAIN the new parameter contains a poin-

ter to the process control block of the initiated process.

The new parameter is intended for use by future application

programs.

instruction is generated.

6) It is not allowed to use the following form of the RESET

procedure call (cfr. manual page 5.6):

PROCEDURE RESET(FILEID: PHYLE);

7) If the size of the primary file extent in a REWRITE proce- dure call is specified as zero or omitted then the file is

not created if it does not exist.

8) The maximum size of a textfile record has been increased

from 80 to 136 characters.

9) In MIKADOS systems with a version date of 13.03.1980 or

later the record size in a direct file must not exceed

464 bytes. In older MIKADOS systems the record size ina

direct file must not exceed 255 bytes.

| 5) After the RESET and REWRITE procedure calls no i/o check

Pascal manual addendum

a
a
a

e
e
e

e
e
e

RE

10) Before an assembler function places its return value on

the stack it must remove from the stack a number of words

equal to the size of a real variable (4 in Pascal E, 2 in

normal Pascal). A boolean assembler funetion called from

a Pascal E program has to do

shows if the return value is

al

POP

Cc
H
D

POP D ;
D
D

PUSH B

PCHL 3

as the following example

TRUE:

return address

a real occupies 4 words

in Pascal E

place TRUE return value on

stack

return to interpreter

It is assumed that the assembler function does not have

any parameters. The parameter transfer mechanism used by

functions is identical to that used by procedures.

The following compile time error messages have been added:

256: CASE label range too long.

403: ~PROGRAM~ expected.

The following run time error messages have been added:

A - illegal element in OPEN/CLOSE table (system error)

F - attempt to open more then 10 files simultaneously

T — attempt to write more then 136 characters in a textfile

record

