RCSL No: 42-i2351
Edition: June 1.983
Author:

0

Title:

RC703 Microcomputer System,
5.25 inch/96 tpi Flexible Disc Drive (MPI),

Technical Manual

○

Keywords: RC703, FDD716, FDD717, Flexible Disc Drive, Technical Data, OEM-manual.

Abstract:
 MICRO PHERIPHERAL' Product Manual for flexible disc drives 91/92
 (5.25 inch/ 96 tpi).

PROPRIETARY NOTICE

Information contained in this manual is copyrighted, and may not be duplicated in full or in part by any person without prior written approval from Micro Peripherals,. Inc. (MPI)

The purpose of this manual is to provide the user of MPi's Model $9.1 / 9.2$ and $915 / 92 \mathrm{~S}$ Flexilble Disk Drives. with adequately detailed documentation necessary for efficient installation, operation, maintenance, and. ordering of spare parts for the equipment supplied.

Every effort has been made to keep the information contained in this manal current and accurate as of the date of publication or revision. However, no guarantee is given or implied that the manual is error free, or that it is accurate with regard to any particular specification.

Published june 1981

TABLE OF CONTENTS

SECTION 1 GENERAL DESCRIPTION Page
1.1 INTRODUCTION 1-1
1.2 PURPOSE OF EQUIPMENT 1-3
1.3 PHYSICAL DESCRIPTION 1-3
1.4 FUNCTIDNAL DESCRIPTION 1-3
1.5 SPECIFICATIONS $1-4$
1.5.1 Capacity Specifications 1-4
1.5.2 Functional Specifications 1-4
1.5.3 Physical Specifications 1-5
1.5.4 Reliability Specifications 1-5
SECTION 2 INSTALLATION AND CHECKDUT
2.1 INTRODUCTION 2-1
2.2 UNPACKING 2-1
2.3 INSTALLATION 2-2
2.4 HARDWARE 2-2
2.5 DUST COVER 2-2
2.6 COOLING 2-4
2.7 INPUT/OUTPUT CABLE 2-4.
2.8 ḊC POWER 2-4
2.9 OPERATION 2-4
2.9.1 Flexible Diskette Loading 2-4
2.9.2 Flexible Diskette Removal 2-5
2.9.3 Diskette Handlıng Recommendations 2-5
2.10 INITIAL CHECKDUT 2-6

TABLE OF CONTENTS (Continued)

SECTION 3 THEORY OF OPERATION Page
3.1 INTRODUCTION 3-1
3.2 INTERFACING REQUIREMENTS 3-2
3.2.1. Input Lines 3-2
3.2.1.1 Line Termination 3-2
3.2.1. 2 Programmable Shunt 3-2
3.2.1.3 Drive Select 1 to 4 3-3
3.2.1.4 Motor On 3-3
3.2.1.5 Direction Select 3-3
3.2.1.6 Step 3-3
3.2..1.7 Write Gate 3-3
3.2.1.8 Write Data 3-3
3.2.1.9 Side Select 3-6
3.2.1.10 In Use (optional feature) 3-6
3.2.2 Output Lines 3-6
3.2.2.1 Track 00 3-6
3.2.2.2 Index/Sector 3-6
3.2.2.3. Write Protect 3-7
3.2.2.4 Read Data 3-7
3.2.3 Connector 32 3-7
3.2.4 Connector 31 3-. 7
3.3 HOW TO USE THE DRAWINGS 3-9
3.4 GENERAL DESCRIPTION 3-9
3.4.1 Head Positioning Control 3-10
3.4.2. Track 00 Sensor 3-11

TABLEOFCONTENTS (Continued)

SECTION 3 (Continued) Page
3.4.3 Spindle Drive Control 3-12
3.4.4 Index Sensor 3-12
3.4.5 Head Load Mechanism 3-12
3.4.6 Side Selection 3-12
3.4.7 Data Recording and Retrieving $3-12$
3.5 DETAILED DESCRIPTIONS 3-15
3.5.1 Power up/Power down Logic $3-15$
3.5.2 Stepper Motor Control Logic 3-15
3.5.3 Track 00 Logic 3-16
3.5.4 Drive Motor Control Logic 3-16
3.5.5 Index Logic 3-19
3.5.6 Head Load Loaic 3-19
3.5.7 Side Select Loqic 3-19
3.5.8 Write Protect Logic $3-20$
3.5.9 Write/Erase Logic $3-20$
3.5.10 Read Logic $3-23$
3.6 DATA ENCDDING AND RECDVERY $3-23$
3.6.1 FM Encoding 3-23
3.6.2 MFM Encoding $3-24$
3.6.3 M2FM 3-24
3.6.4 Data Recovery $3-25$
3.6.4.1 Bit Shift $3-25$
3.6.4.2 Write Precompensat 1 on $3-25$
3.6.4.3 Data Separation 3-25
3.6.5 Track Format 3-26

TABLE OF CONTENTS (Continued)

SECTION 4. MAINTENANCE Page
$4 . .1$ INTRODUCTION 4-1
4.2 GENERAL INFORMATION 41
4.3 PREVENTIVE MAINTENANCE 4-2
4.3.1. Read/Write Head(s) and Load Pad Inspection 4-2
4.4 RECOMMENDED TOOLS AND TEST EQUIPMENT 4-3
4.4.1 Removal/Replacement 4-3
4.4.2 Adjustment and Measurement 4-3
4.5 REMOVAL/REPLACEMENT PROCEDURES 4-3
4.5.1 Printed Circuit Board Assembly (PCBA) 4-10
4.5.2 Shield Assembly 4-10
4.5.3 Right-Hand Guide/Write Protect Assembly 4-10
4.5.4 Left-Hand Guide Assembly 4-11
4.5.5 Front Panel Bezel and Activity LED 4-11
4.5.6 Cone Assembly 4-13
4.5.7 Carrier Assembly 4-13
4.5.7.1 Index LED 4-14
4.5.7.2 Carrier/Index LED Installation 4-14
4.5.8 Index/Load Boss 4-14
4.5.9 Solenoid 4-15
4.5.10 Drive Motor 4-16
4.5.11 Track 00 Sensor 4-17
4.5.12 Door Button Assembly 4-17
4.5.13 Stepper Band 4-19
4.5.14 Stepper Motor $4-20$
4.5.15 Head/Carriage Assembly 4-20

TABLE OF CONTENTS (Continued)

SECTION $4 .($ Continued). Page
4.5.16 Ejector Assembly 4-21
4.5.17 Spindle Bearings 422
4.5.18 Head Load Pad Assembly 4-23
4.5.19 Harness Assembly 4-23
4.6 ADJUSTMENT PROCEDURES 4-26
4.6.1 Radial-Track Alignment 4-26
4.6.2 Index-To-Data Alignment 4-26
4.6.3 Track 00 Sensor Alignment 4-29
4.6.4 Speed Control Adjustment 4-29:
4.6.5 Track 00 End Stop Adjustment 4-29.
4.6.6 Drive Belt Adjustment $4-30$
4.6.6.1 Mylar (Yellow) Drive Belt Adjustment 4-30
4.6.6.2 Neoprene (Black) Drive Belt Adjustment 4-30
4.6.7 Ejector Latch and Ejector Latch Release Adjustments 4-30
4.6.7.1 Ejector Latch Adjusțment 4-32
4.6.7.2 Ejector Latch Release Adjustment 4-32
4.7 MEASUREMENT PROCEDURES 4-32
4.7.1 Compliance Measurement 4-32
4.7.2 Erase Measurement 4-33
4.7.3 High Frequency Playback Measurement 4-33
SECTION 5 TROUBLESHOOTING
5.1 INTRODUCTION 5-1
5.2. PRELIMINARY TROUBLESHOOTING STEPS 5-2.
5.3 DRIVE WON'T STEP OR STEPS ERRATICALLY. 5-2.

TABLE: OF CONTENTS (Continued)

SECTION 5 (Continued) Page
5.4. HEAD/CARRIAGE OSCILLATES AT TRACK 00 5-3
5.5 DRIVE MOTOR WON'T ROTATE 53
5.6. HEAD WILL NOT LOAD 5-3
5.7 BAD INDEX OUTPUT 5-3
5.8 BAD WRITE PROTECT OUTPUT 5-4
5.9 ACTIVITY INDICATOR DOES NOT LIGHT $5-4$
5.10 READ ERRORS - ALL TRACKS 5-4
5.11 READ ERRORS - RANDOM TRACKS 5-4.
5.12 READ ERRORS - INSIDE TRACKS $5-5$
5.13 CANNOT READ PREWRITTEN DATA:
CAN READ SELFWRITTEN DATA 5-5
S. 14 CANNDT WRITE DATA 5-5
5.15 ERASE BAD 5-5
5.16 DRIVE SPEED UNSTABLE 5-5
OSECTION 6 OPTIONS
6.1 INTRODUCTION 6-1
6.2 DOOR CLOSED SWITCH 6-1
6.3 DOOR LȮCK MECHANISM 6-1
6.4 READY OPTION 6-2
APPENDIX A Spare Parts List A-1
APPENDIX B. Drawings and Schematics B-1
APPENDIX C Signal Name Definitions C:-1.

LIST'OFILLUSTRATIONS

FIGURE Page
1-1 Model 91/92 and 915/92S Disk Drives 1-2
2-1 Outline and Mounting Dimensions 2-3
2-2 Diskette Orientation 2-6
3-1 Track Access Timing 3-4
3-2 Read Initiate Timing 5-4
$3 \rightarrow 3$ Read Signal Timing 3-4
3-4 Write Initiate Timing 3-5
3-5 Write Data Timing 3-5
3-6 General Control and Data Timing Requirements (head load solenoid is activated with drive select) $3=-5$
3-7 Index/Sector Timing (Soft Sector) 3-6:
3-8 Index/Sector Timing (Hard Sector) 5-6:
3-9
DC Power Connector, J2 $3-7$
3-10 Jl Connector Dimensions $3-7$
3-11 Interface Signals 3-8
3-12 Shunt Configuration 3-8
3-13 Write Protect Feature 3-9
3-14 Functional Block Diagram 3-11
3-15 Basic Recording Technique 3-14.
3-16 Wave Forms in Read Sequence 3-14
3-17 Stepper Motor Control Timing 3-1.7
3-18 Motor Control Timing 3-18
3-19 Write Timing 3-21.
3-20 Read Timing 3-22:
3-21 FM Encoding 3-24:

LIST OF ILLUSTRATIONS (Continued)

FIgure Page
3-22 MFM Encoding 3-24
3-23 M2FM Encoding 3-25
3-24 : Typical Track Format 3-27
4-1. . Top View Of Drive $4-5$
4-2 Bottom View Of Drive 4-7
4-3 Model 915, Exploded View 4-9
4-4 Activity Indicator Assembly 4-12
4-5 Door Button Assembly 4-18
4-6 Stepper Band 4-18
4-7 Ejector Assembly 4-22
4-8 Radial Track Alignment Patterns 4-27
4-9. Index-to-Data Alignment Pattern 4-28:
4-10 Ejector Block and Latch - top view 4-31
4-11 Ejector Assembly 4-31
6-1 Door Closed Switch 6-2B-1 Logic PCBA Component LayoutB-2
B-2 Logic PCBA Schematic B-3
B-2A Logic PCBA Schématic B-4
B-3 Ready PCBA Component Layout B-5
B-4 Ready PCBA Schematic B-6

LIST OF TABLES

TABLE Page
2-1 Recommended Connectors - PI 2:-2.
3-1. Section Index 3-1
3-2. Write/Read and Side Selection Conditions 3-19
3-3 Comparison of Encoding Techniques. 3-27
4-1 Section Index 4-1
4-2 Removal/Replacement Procedures $4-4$
4-3 Removal/Replacement Adjustment Check List 4-8
4-4 Harness Assembly Wire List 4-25
4-5 Adjustment Procedures 4-26
5-1 Trouble Symptoms 5-1

SECTION 1

GENERAL DESCRIPTION

1.1 . INTRODUCTION

This product manual contains specifications.and information relating to the Micro Peripherals Inc. Model 9.1/92 and 915/925 Flexible Disk Drives.. This document consists of the following sections:
SECTION I - General Description
SECTION II - Installation - Checkout
SECTION III - Theory of Operation
SECTION IV - Maintenance
SECTION V - Troubleshooting
SECTION VI - Options
APPENDIX A - Spare Parts List
APPENDIX B \quad Drawings and Schematics
APPENDIX C - Signal Name Definition

This .section provides a physical and functional description, and specifications for the Models 91/92 and 915/92S Flexible Disk Drives. In addition to the standard features described, the following additional features are included in all models:
A. "Write Protect" can be used as "Disk Installed" indication.
B. Termination of input signals can be either 150 ohms or split 220/330 ohms.

1.2. PURPOSE OF EQUIPMENT

The Model 91/92 Disk Drive is a compact disk memory device designed for random-access data storage, data entry, and data output applications. Typical applications are intelligent terminal controllers, microcomputers, word processing systems, data communications systems, error logging, micro-program logging, and point-of-sale terminals. The Model 9.1/9.2 is designed to meet and perform to ANSI specification, utiliz:ing standard $51 / 4$ inch diskettes.

1:3. PHYSICAL DESCRIPTION

The Model 91/92 can be mounted vertically or horizonally. However, when mounted horizonally, it is recommended that the $91 / 92$ be positioned so that the PCBA is on the top side. The mechanical components consist of an aluminum chassis, on which is mounted a spindle (belt-driven by a $D C$ motor); a stepper motor/band combination for positioning the magnetic head assembly; and a cone/clutch assembly for centering and holding the recording media under operation. Access for diskette loading is at the front of the drive.

The recording-head assembly is of a glass bonded ferrite/ceramic structure, with lifetime expectancy in excess of 20,000 hours. The electronic circuitry is mounted on a PCBA located on top of the drive.. Power and interface signals plug directly into this board. The following basic circuits. are included:
A. Stepper motor control logic
B. Read circuit
C. Write erase circuit
D. Spindle Drive Mator speed control
E. Index; Track 00 and Write Protect sensing
F. Head load drive

1.4 FUNCTIONAL DESCRIPTION

The Model $9.1 / 92$ is self-contained and requires no operator intervention during operation. The drive consists of a media-rotating system, a head-load and positioning system, and a write/erase and read system. When thefront door is opened, access for inserting the diskette is provided. When inserting the diskette, "all positions except "in/out" are controlled inter:nalliy by physical guides. Correct "in/out" i.s assured by insert:ing the: diskette until a "click" is heard. On the Model 915/925 all positions except "out" are controlled by physical guides. A correct "in" is assured by inserting the diskette until contacting a guide stop..

Closing the front door activates the cone/clutch system which serves two purposes in the following order:
A. Correct centering of the media
B. Clamping the media to the spindle hub

The spindle hub rotates at a constant speed of 300 RPM by means of a DC motor/tachometer and a reference in a closed-loop system. When in operation, it is important that the head-to-media relationship be controlled. This is accomplished by the head-load system in the following way: The media is pressed against the Index/Load Boss which is referenced to the head and the spindle hub; and in Model $91 / 915$ a felt pad is loaded against the media on the opposite side of the head with a force of approximately 18 gr.

The recording head is positioned over the correct track by means of a four-phase stepper motor/band direct-drive mechanism, and its associated electronics. A one-step movement causes a one-track movement. With band positioning, very high step rates can be accomplished with the 911/9.2 system.

When a Write Protected diskette is inserted, the write protect sensor normally disables the write/erase circuits in the drive: When writing, a 0.00525 inch (nominal) data track is recorded, followed by a tunnel erase which trims the track down to 0.005 inch (nominal). Data recovery electronics include a low-frequency amplifier, a differentiator, a cross-over detector, a digital filter, and a final pulse generator.

1.5 SPECIFICATIONS

The mechanical and electrical specifications for the Model 91/92 Flexible Disk Drives are given in the following paragraphs.

1.5.2. Functional Specifications (cont'd)
Rotational Speed (RPM) $\quad 300 \pm 1 \quad 1 / 2 \%$
Average Latency
Transfer Rate
Single Density
Double Density
Encoding Method
Access Time
Track to Track
Average
Head Settling Time
150ms
25ms
Head Load Time
Power-Up-Delay
Interfacing
1.5.3 Physical Specifications
Environmental
Operating Temperature
Non-Operating Temperature
Operating Humidity
Non-Operating Humidity
Operating Altitude
Non-Operating Altitude
Vibration \& Shock (operating)
Electrical
DC Power
Power Dissipation
Mechanical
Height
Width
Length
Weight
Media Requirements
Diskette
Sectoring
Type
40 % F to }11\mp@subsup{5}{}{\circ}\textrm{F}\mathrm{ (4.440
40 % F to }11\mp@subsup{5}{}{\circ}\textrm{F}\mathrm{ (4.440
-40}\mp@subsup{0}{}{\circ}\textrm{F}\mathrm{ to }16\mp@subsup{0}{}{\circ}\textrm{F}(-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }7\mp@subsup{1}{}{10}\textrm{C}
-40}\mp@subsup{0}{}{\circ}\textrm{F}\mathrm{ to }16\mp@subsup{0}{}{\circ}\textrm{F}(-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }7\mp@subsup{1}{}{10}\textrm{C}
20% to 80% (non-condensing)
20% to 80% (non-condensing)
5% to 95% (non-condensing)
5% to 95% (non-condensing)
-500 to 10,000 FT(-152.4 to 3,048m)
-500 to 10,000 FT(-152.4 to 3,048m)
-1000 to 50,000 FT(-304..8 to T5,240m)
-1000 to 50,000 FT(-304..8 to T5,240m)
0.5g, 6 to 600Hz
0.5g, 6 to 600Hz
+12V +5%,0.7 Amp (1.4. Amp surge)
+12V +5%,0.7 Amp (1.4. Amp surge)
0.2v ripple
0.2v ripple
+5V \pm5%,0..4. Amp, 0.1v ripple.
+5V \pm5%,0..4. Amp, 0.1v ripple.
11W operation; 4W standby
11W operation; 4W standby
3.25 in.(82.6mm)
3.25 in.(82.6mm)
5.75 in..(146.1mm)
5.75 in..(146.1mm)
7.5 in.(196.9mm)
7.5 in.(196.9mm)
3.1 lbs.(1.41kg)
3.1 lbs.(1.41kg)
Industry Compatible, 5 1/4in.
Industry Compatible, 5 1/4in.
Soft; 10,16
Soft; 10,16
Sinale or Double Sided
Sinale or Double Sided
Single or Double Density
Single or Double Density

1.5.4. Reliability Specifications

MTBF	9,200 hours (a 25% duty cycle:)
MTTR	0.5 hours
Design Li.fe	5 years
Media Li.fe	3×10^{6} passes/track
Data Integrity	
\quad Soft Errors	1 per 109 bits read
Hard Errors	1 per 1012 bits read
Seek Errors	1 per 106: seeks
UL. and CSA Approved	

SECTION 2

INSTALLATION AND CHECKOUT

2.1 INTRODUCTION

This section provides the information and procedures necessary to place the Model 91/92 Flexible Disk Drives into. operation.

2.2 UNPACKING

CAUTION

During unpacking, care must be exercised to ensure that all tools are non-magnetic and do not inflict damage to the unit.

As the unit is unpacked, inspect it for possible shipping damage. A. ll claims for this type of damage should be filed promptly with the transporter involved. If a claim is filed for damages, save the original packing material. Most packing material may be reuseable if reasonable care is used in unpacking. Unpack the drive as follows:
A. Remove external packing material carefully.
B. Remove the drive from the container.
C. Remove internal packing materials, following instructions provided on the package.
D. Ensure that front access door opens and closes, and that the head-load arm raises when door is opened.
E. Ensure that bezel is secured.
F. Ensure that drive hub manually rotates freely.

G: Ensure that stepper motor/head carriage assembly is not binding at any point, by manually moving carriage back and forth.

2:3 INSTALLATION

Due to its small size and light weight, the Model 9.1/9.2 can be installed or mounted in any convenient location or position. However, the drive must be installed in a location that will prevent the $1 / 0$ cable from exceeding 10 feet in length. Refer to Figure 2-1 for dimensions and mounting provisions.

2.4 HARDWARE

The flexible disk drive is a precision device in which certain critical internal alignments must be maintained. Therefore, in keeping with rigid disk requirements, it is important that the mounting hardware does not introduce significant stress on the drive.

NOTE

Any mounting scheme in which the drive is part of the structural integrity of the enclosure is not permitted.

Since the disk drive cannot be subjected to significant stress when it-is slide mounted, this type of mounting generally satisfies the foregoina requirement. Mounting schemes should allow for adjustable brackets or incorporate resilient members to accommodate tolerances. Mounting schemes involving more than two hard mounting points should be avoided.

2.5 DUST COVER

Since the flexible disk drive is not provided with a dust cover, the design of an enclosure should incorporate a means to prevent direct inqress of loose items, e.g., dust, paper punch waste, etc.

Table 2-1
RECOMMENDED CONNECTORS - P1

TYPE OF CABLE	MANIFACTURER	CONNECTOR P/N	CONTACT P/N
Twisted Pair, 26	AMP	$583717-\mathrm{S}$	$1-58: 36: 16-1$
Flat Cable	$3 M$ "Scotchflex"	$3463-0001$	N.A...

2.6 COOLING

Heat dissipation from a single disk drive is normally less than 15 watts ($40 \mathrm{Btu} / \mathrm{Hr}$). When the drive is mounted so that the components have access to free flow of air, normal convection cooling allows operation over the specified temperature range. When the drive is mounted in a confined environment, air flow may have to be provided to maintain specified air temperatures in the vicinity of the motors, PCBA, and the diskette.

2:7 INPUT/OUTPUT CABLE

Refer to Table 2-1 for cable connector part number and attachment. The maximum cable length from connector to connector is 10 feet. A.ll inputs and outputs are paired, one line for function, one for ground.. Figure 3-11 provides information relative to the connector pin/signal assignments for $1 / 0$ cable.

2.8 DC POWER

DC power to the drive is via connector $\mathrm{P} 2 / \mathrm{J} 2$, which is located on the noncomponent side of the PCBA near the spindle motor. The drive uses +12 V . $D C$ and $+5 V D C$. Paragraph 1.5.3 outlines the voltage and current requirements... The connector is an AMP Mate-N-Lock Part No. 1-480424-0.

2.9 OPERATION

The Model 91/92 Flexible Disk Drive is under direct control of the . interface and power sources. No special start-up procedures are necessary. Secure both power and I/O connectors prior to disk loading.

2.9.1 Flexible Diskette Loading

A. Apply DC power to drive.
B. 91/92 - Open drive door by pushing door latch button.

915/92S - Open drive door by lifting the bottom edge of door with one finger while applying pressure to the door just over the center with the other finger.
C. Remove diskette from its: storage envelope and insert in the drive. The index hole must be on the left side of the jacket and the label on the right towards the door. (See Figure 2-2..)

9:192 - Push the diskette forward until a "click" is heard. 9.15:92S -- Push the diskette forward until contacting guide stops.
D. 91/9:2 - Close door by pushing door down until latch secures the door.

915/9.2S - Close door by pushing door down until fully seated flush with bezel face.

2.9.2 Flexible Diskette Removal
 A. Open the drive door and remove the diskette.

NOTE
When the drive door is opened on the Model 9.1/92 only, the flexible diskette will automatically be ejected to a position where it can be easily removed.
B. A.lways store the diskette in its storage envelope in order to maintain the highest data integrity.
C. Close drive door.

2.9.3 Diskette Handling Recommendations

Since the recorded diskette contains vital information, reasonable care should be exercised in its handling. Longer diskette life and troublefree operation will result if the following recommendations are followed:
A. Do not use a writing device which deposits flakes (i.e., lead or grease pencils) when writing on a diskette jacket label.
B. Do not fasten paper clips to diskette jacket edges.
C. Do not touch diskette surface exposed by jacket slot.
D. Do not clean diskette in any manner.
E. Keep diskette dway from magnetic. fields and from ferro-magnetic materials that may be magnetized.
F. Return diskette to envelope when removed from drive.
G. Protect diskette from liquids, dust and metallic substances at all times.
H. Do not exceed the following storage environmental conditions:

Temperature:	$50[\mathrm{~F}$ to $125[\mathrm{~F}$ (10[C to $51[\mathrm{C}$)
Relative Humidity:	8% to 80%
Maximum Wet Bulb:	$85[\mathrm{~F}(29.4[\mathrm{C})$

I. Diskette should be stored when not in use:

2.10 INITIAL CHECKOUT

The following procedure should be used to determine that the Model 91/ 9.2 is operational. This procedure assumes that the drive is installed, $I / 0$ cable and power are connected, and that the steps in 2.2 have been completed.
A. Apply low level signal to MOTOR $O N$ and assure that spindle hut rotates in correct direction (clockwise from top of drive).
B. Load the diskette and apply a head-load command to the drive:. Check that head-load solenoid actuates and indicator lights on front panel. Select proper device address.
C. Apply stepping and direction commands to the unit. Verify that the actuator steps as commanded.
D. Remove all command signals, turn power off and return diskette to its storage.

Figure 2-2: Diskette Orientation

SECTION 3

THEORY OF OPERATION

3.1 INTRODUCTION

This section contains the interfacing requirements, applications information relevant to the recording and recovery of data, and a description of the operation of the Model 91/92 Flexible Disk Drives. The text is referenced to block and timing diagrams in this section and to detailed schematics in Appendix B. A signal list is contained in Appendix C.. The organization of material in this section is as follows:
A. The interfacing requirements between the host system and the 9.1/92 Drives.
B. A discussion of the use of the detailed drawings: logic levels, signal tracing, component locations, etc.
C. A general description of the electronics and mechanics of the disk drive.
D. A detailed description of the electronics and mechanics of the disk drive.
E. Information pertaining to data encoding and recovery.

Table 3-1 is a section index and lists the topics discussed and their location within this section.

TABLE 3-1: SECTION INDEX

Topic	Paragraph
Interfacing Requirements	3.2
Detailed Drawinq usaqe	3.3
General Description of Drive	3.4
Detailed Description of Drive	3.5
Data Encoding and Recovery	3.6

3.2 INTERFACING REQUIREMENTS

Communication is established via two connectors. Connector Jl establishes a communication link for all input/output signals. These signals are TTL compatible. Connector 32 provides DC power to the device.

3.2.1 Input Lines

The input contral lines have the following electrical specifications:
A. True, Logical Zero $=0 \mathrm{~V}$ to 0.4 V (at $I_{\mathrm{in}}=48 \mathrm{ma} \mathrm{max}$).
B. False, Logical One $=+2.5 \mathrm{~V}$ to +5.25 V (at $I_{\text {out }}=250$ ua max) .

3.2.1.1 Line Termination

The signal interface used by Model $9 \cdot 1 / 92^{\circ}$ is of the "bus" ar "daisy-chain" type. Only one 91/92 unit is logically connected to the interface at any given time. All input signals are terminated directly by a 150 ohm or a $220 / 330$ ohm resistor network. In a daisy-chain configuration, only the last device in the daisy chain should have the terminating network; while in a star configuration, every device should be terminated.

3.2.1.2 Programmable Shunt

The main function of this device is to assign the proper address to the drive in a multi-drive confiquration. In addition, it also determines when the headload solenoid should be activated by using either position 1-14 (with Select) or 7-8 (with Motor On). If position 5-10 is left shorted, the drive is essentially always selected, but the activity light will not come on, and the solenoid will not be activated until the drive position is. selected. The programmable shunt is AMP P/N 435704-16 (MPI P/N 1-79600-001). For convenience, the programmable shunt could be replaced by a dip switch, AMP $P / N 4-35626-4$. (If dip switch is used, maximum height is exceeded by .150 inch.) The seven lines channeled through the shunt are:

> Designator Pins
A. Head Load w/Select T1 1-14
B. Drive Select 1 T2 2-13
C. Drive Selert 2 T3 3-12
D. Drive Select 3 T4 4-11
E. MUX T5 5-10
F. Drive Select 4 T6 6-9.
G. Head Load w/Motor On T7 7-8

3.2.1.. 3 Drive Select 1 To 4

The Select lines provide a means of selecting and deselecting one of the four disk drives attached to the controller. When the signal logic level is true (low), the disk drive electronics are activated, the head is loaded, and the drive is conditioned to respond to step or read/write commands. When the logic level is. false (high), the input control lines and output status lines are disabled. A select line must remain stable in the true (low.) state until the execution of a step or read/write command is completed. After the desired device is selected, allow a 35 msec delay before initiating a read if loading head with select (see Figure 3-2).

3.2.1.4 Motor On

This: input is provided to extend the life of the $D C$ spindlemotor. The motor should be turned off if no activity is required of the Model 9.1/92 after 10 revolutions of the diskette. A. minimum of 0.5 seconds is required before performing a read or write: after the MOTOR ON line is activated (see Figures 3-2 and 3-4).

3.2.1.5 Direction Select

The direction of motion of the Read/Write head is defined by the state of this input line. A true (low.) level defines. direction as "IN" (towards center of the disk); a false (high) level defines the direction as "OUT" (see Figure 3-I).

3.2.1.6 Step

Together with the direction line, a single pulse on this input will move the Read/Write head one track in or out, dependent on the state of the direction line. The motion of the head is initiated on the trailing edge of step pulse. A minimum of 0.2 us pulse width at a maximum frequency of 200 Hz should be maintained to assure step integrity (see Figure 3-1).

3.2.1.7 Write Gate

When true, this input line permits writing of data. When inactive, it permits transmitting data to the controller. Allow. a minimum of' 1 msec. after dropping Write 'Gate before expecting valid Read Data (see Figures 3-4 and 3-6).

3.2.1. 8 Write Data

This input, in conjunction wi.th the Write Gate input, provides data to be written on the diskette. The frequency of the writeoscillator should be held within 0.1% with a pulse width of a minimum of 0.2 usec and maximum of 3.5 usec. The frequency is dependent upon the encoding scheme used and the density option exercised (see Figures $3-4$ and 3-5). It is recommended that the

Figure 3-1: Track Access Timing

Figure 3-2: Read Initiate Timing

Figure 3-3: Read Signal Timing

Figure 3-4: Write Initiate Timing

Figure 3-5: Write Data: Timing

Figure 3-6: General Control and Data Timing Requirements (Head Load Solenoid is Activated with Drive Select)
first leading edge of Write Data occurs no sooner than 4. usec and no later than 8 usec after leading edge of Write Gate. The same recommendation exists for the last. Write Data and trailing edge of Write Gate.

3.2.1.9. Side Select

This input is used to select either the upper or lower head. A 35 usec delay should be allowed for the read amp to recover after a head select event occurs. Only then will valid data be present. (For Model 9:l, this line should always be high.)

3.2.1.10 In Use (Optional Feature)

This line is connected to a driver which could be .used for an - indicator light, or a solenoid for latching the front door.

3.2.2 Output Lines

The control output signals are driven with an open-collector output stage capable of sinking a maximum of 48 ma at logical zero as true state with maximum voltage of 0.4 V measured at the driver. When the line driver is in a logical one or false state, the collector cutoff current is a maximum of 250 ua.

3.2.2.1 Track 00

This output, when true, indicates that the Read/Write head(s) are located over Track 00.

3.2.2.2 Index/Sector

Once every revolution, a pulse is transmitted to the controller indicating. the beginning of a track, but only if a single hole diskette is used. If multi-hole media is used in conjunction with the index, sector pulses (10,16) will also be transmitted to the host system. Leading edge of sector to leading edge of index is $6.25 \mathrm{msec} \pm 0.10 \mathrm{msec}$ for 16 -sector media (see Figures 3-7 and 3-8).

Figure 3-7: Index Sector Timing (soft sector)

Figure 3-8: Index Sector Timing (hard sector)

3.2.2.2.3 Write Protect

This interface signal is provided by the drive: to give the user an indication that a write protected or read-anly diskette: has been installed (see Figure 3-13)... This output is false when the diskette is not write protected: This line may easily be used as a Disk Installed Indicator, if only write protected disks are used.

3.2.2.4. Read Data

This output represents digitized data as detected by the driveelectronics. Information transmitted will be in the encoding scheme used. Pulse width of both clock. and data bits will be l usec +350 nsec. In FM encoding, maximum bit shift for a clock is ± 800 nsec while that for data is $\pm 400 \mathrm{nsec}$ from their nominal bit positions (see Figure 3-3). The leading edge of each Read Data pulse represents the true position of the flux transition on the recording media. .

3.2..3 Connector 32

The DC power connector is located on the non-component side of the printed circuit board. The recommended mating connector is AMP P/ N 1-480424-0 using AMP pins P/N 606:19-1.

3.2.4 Connector Jl

Connection to 31 is through a 34 -pin PCBA edge connector. Even numbered pins are located on the component side while odd numbered pins are located on the solder side. A. key slot is provided between pins 4. and 6. The recommended connector is 3 M Scotchflex P / N 3463-001, or AMP P / N 583717-5 using AMP contacts P/N 1-583616-1.

Pin: +12VDC*
Pin 2 12V Aeturn
Pin 3 5V Return
Pin 4. $5 V O C$

Figure 3-9: DC Power Connector, J2.

BOARD TMICXNESS: OS2: ∞
Figure 3-10: J1. Connector Dimensions

Figure 3-11: Interface Signals - 91/92

Head Load w/Select
Drive Select 1
Drive. Select 2
Drive-Seiect 3
MUX
Dive Selec: 4.
Head Load w/Motor On

1	
2	Shunt
3	
4	
5	
6	
7	

Figure 3:-12:: Shunt Configuration

Figure 3-13: Write Protect Feature

3.3 HOW TO USETHEDRAWINGS:

Drawing 4-04002-001, two sheets, illustrates the electronics of thedisk drive. The electronics of the drive is completely contained on one printed circuit board assembly (PCBA) located on the top of the drive: Components are installed on the PCBA using the grid system. Columns on the board are number annotated; rows on the board are letter annotated. On the drawing sheets IC's have a number/letter desiqnator inside the component symbol.. This number/letter designator physically locates the component on the PCBA..

In general, input signals are shown entering the drawing sheets from the left, and output signals are shown leaving the drawing sheets to theright. Preceding or following some signal lines is a three digit alphanumeric designator enclosed in parenthesis.. These designators locate the source or destination of the signal.

The first number of the designator references a sheet of the drawing. The letter in the designator. references a letter row on the designated sheet of the drawing. The final number of the designator references a number column of the drawing. Note that the drawings are prepared on a letter/number grid.

The sense of logic signals within the disk drive is: zero volts ịs the true, or active, state and plus 3.4 volts is the false, or inactive;, state. Note that the voltage levels are actually:; $O V D C$ to +0.4V DC and $+2 . .4 \mathrm{~V}$ DC to +5 V DC. A slash (/) following a signal term on the drawing: indicates that this signal is active in the high state.

To reduce "clutter" on the arawing sheets, the component part numbers: are listed on the first patye in Appendix. B.

3:4: GENERAL DESCRIPTION

The basic functions of the flexible disk drive are to record and read digital data on a diskette, and to receive and generate the control signals
necessary for completion of the read/write functions. A:Il of the electronics of the disk drive are contained on a single printed circuit board assembly (PCBA).

NOTE

There is no difference between the PCBA for Model 9.1 (single head) and the PCBA for Model 92: (dual head).

Figure 3-14 is a functional block diagram of the following mechanical and electrical components of the disk drive:
A. Head positioning control
B. Track 00 sensor
C. Spindle drive control
D. Index sensor
E. Head load mechanism
F. Side selection
G. Data recording and retrieving

1. Write protect sensor
2. Write/erase control
3. Data recording
4. Data reading

3.4.1 Head Positioning Control

The head positioning circuit is comprised of a four-phase stepper motor/ pulley/band combination for coverting rotational to linear motion. The pulley/ band is attached to the head carriage. Signals from the stepper motor control logic drive the stepper motor which, through the pulley/band, move the head carriage assembly. The stepper motor control logic responds to signals from the user supplied interface.

The four-phase stepper motor operates in a "one-phase on" mode. One step of the motor equals a one-track linear motion of the head.(s). This one-to-one ratio results in high positioning accuracy and high step rates. When positioned at Track 00 the correct: phase on is 4. To move the head: (s) toward the center: of the: diskette, with the DIRECTION line high, the correct phase sequence is as follows:

PHASE ON

00	4.
01	1
02	2
03	3
04	4.

Figure 3-14: Functional Block Diagram

3.4.2 Track 00 Sensor

The track 00 senser comprises a light source (LED) and a phototransistor positioned on either side of a shutter mounted on the: head carriage assembly. The output of this photo detector connects: to. a conditioning circuit that converts the output of the phototransistor to digital TTL levels. When the head positioning logic: positions the head over track 00 , the output of the conditioning circuit is a low-true logic level on the TRACK OO interface line: This: signal also inhibits the stepper motor circuitry from responding: to: any "step out:" command.

3.4.3 Spindle Drive Control

The spindle is rotated, via a belt, by a DC motor/AC tachometer combination.. The electronics for speed control takes timing information from the tachometer (A), compares it with a reference time (B), and generates a driving voltage for the spindle motor proportional to the difference between (A) and (B). When the MOTOR ON interface line is true the control circuit allows the motor to come up to speed. The control circuit also includes a section that disables the motor drive in case of no tachometer output for approximately 150 milliseconds (possible indication of a binding spindle or motor). The diskette is held on the spindle hub by a clamping mechanism which actuates in conjunction with the front door.

3.4.4 Index Sensor

The LED and phototransistor in the index sensor photo detector are mounted on opposite sides of the index hole in the diskette.. The index hole acts as the shutter. When the light beam from the LED passes through the diskette hole and strikes the phototransistor, the output of the phototransistor, through a conditioning circuit, generates a low true logic level on the INDEX interface line. The position of the phototransistor is adjustable.

3.4.5 Head Load Mechanism

The head load mechanism consists of a head load solenoid and a head load solenoid driver. The interface logic may be connected to energize the solenoid via either DRIVE SELECT or MOTOR ON interface signals (see paragraph 3.2.1.4.). Activating the solenoid causes the diskette toi.be pressed against a fixed platen and a spring loaded load arm wi.th a felt pad (Model 91.) or upper head (Model 92) opposite the head to press the diskette against the head. This load arm is lifted when the front access door is opened regardless of the state of the solenaid.

3.4.6 Side Selection

The Model 92 disk drive has two read/write heads; one on each side of the diskette. Therefore, prior to the read or write process the desired "side" (head) of the diskette must be selected. Interface signal SIDE SELECT controls a decoder that enables the read/write amplifiers for either head zero (bottom head) or head one (top head) to be connected into the read/write circuits to the interface.

3.4.7 Data Recording and Retrieving

The drive uses tunnel-erase head(s). The erase gap follows the write/read gap in the head assembly. The- erase gap erases the edges of the written track to provide a guard band between tracks: to allow for positioning tolerances among drives: The: recording: and retrieving electronics consist of:
A. Write current source:
B. Steering Circuit.
C.. Erase driver
D. Read amplifier
E. Differentiator
F. Eross-over detector
G. Pulse generator

3.4.7.1 Data Recording

To record digital data, current is passed through the winding on the write/read head core which sets up a flux field across the write/read gap. This orients the iron oxide particles on thediskette surface underneath the gap to the same polarity. The direction of the flux field is a function of the polarity of thewrite current. Data is written by reversing the current through the head. Each flux reversal represents a data bit. The head(s) in the drive uses a center-tapped write/read winding, where the current reversal is accomplished by steering the current through one or the other of the: two halves of the winding. Figure $3-15$ shows the basic recording technique. The following conditions must be accomplished by the user before therecording can begin:
A. Spindle speed must be stabilized. This condition will exist 0.5 seconds after the MOTOR $O N$ command is issued.
B. Head/media must be stabilized subsequent to the HEAD LOAD command. This requires 35 milliseconds.
C. Head must be settled subsequent to the STEP command. This requires 30 milliseconds (5 milliseconds for motion and 25 milliseconds for settling).

The preceding conditions may be overlapped. It is recommended that the first WRITE DATA command be within 4 to 8 microseconds after WRITE GATE goes true, and the last WRITE DATA command bewithin 4 to 8 microseconds before WRITE GATE goes false. The erase circuit enables the erase current 430 microseconds after WRITE GATE goes true and disables the erase current 850 microseconds after Whlit l,AIE yoes false. These time relationships. are optimized fur proper erasure on both inner and outer tracks.

3.4..7.2. Data: Retrieving

The retrieving (read) electronics comprises the following. elements:
A. Read amplifier
B. Linear filter
C. Differentiator
D. Crossover detector
E. Digital filter
F. Pulse shaper

Before reading can begin, several conditions must be stablished by the user system. First, the same conditions applicable to data recording must be met. Additionally, if the previous operation was writing, I millisecond must be allowed after termination of WRITE GATE to allow for erase and circuitsettling time. Figure $3-16$ shows wave forms in the read sequence. The head generates a wave form with peaks corresponding to the flux transitions. This wave form is amplified, fed through a low-pass filter, and then differentiated to make the peaks occur at zero crossover. The read signal is next fed to a cross-over detector, which generates a pulse for each zero crossover. These pulses are fed through a digital filter which removes false pulses. Finally, the pulse shaper generates a one microsecond pulse corresponding to each flux transition. This composite read data is sent to the user interface via the READ DATA line.

Figure 3-15: Basic Recording Technique

Figure 3-16: Wave Forms in Read Sequence:

3:5: DETAILED.DESCRIPTIONS

The following paragraphs give details of the operation of the disk drive electronics. The descriptions are referenced to sheets 2 and 3: of drawing 4-04002-001. Timing diagrams are interspersed with the text. "Zone" reference numbers and letters in the text locate the circuits on the sheets of drawing 4-04002-001. Voltage levels in timing diagrams are TTL unless otherwise noted. Drawing 4-04002-001 is located in Appendix B.

3.5..1 Power up/Power down Logic (See Sheet 2, Zone B5, B6)

The power up/power down logic ensures that no extraneous writing or erasing is performed while applying or removing power to/from the disk drive. The: logic comprises CR1 and CR2 connected between Vce and multiplexer 5A. This guarantees that 5A will be the first IC to power down and the last IC to power up. Thus, for approximately 10 to 30 milliseconds after the rest of the logic has powered up, the outputs for SA are floating, preventing any writing or erasing. When 5A. finally powers up, and its outputs begin to respond to input signals, the inputs have already stabilized to the levels needed to prevent any extraneous writing or erasing.

3.5.2 Stepper Motor Control Logic (See Sheet 3, Zone C)

The stepper mator control logic consists of two-stage counter 3C and associated logic to decode the outputs of the counter to the correct phases of the stepper motor to cause steps in the desired direction. Each step consists of rotating the stepper motor shaft 1.8 degrees. This rotational motion is converted to linear motion by the band/pulley assembly. The diameter of the pulley is such that a rotation of 1.8 degrees translates into. a linear motion of 0.010415 inches, which is the track-to-track spacing required . 96 tracks per inch equals 0.010415 inches per track).

The stepper motor is a four-phase, 200 pole, 1.8 degree per pole (step) stepper motor. It is operated so that one phase is always energized. Refer to Timing Diagram Figure 3-17.
A. minimum 0.2 microsecond low STEP interface pulse at J1-20. clocks counter 3 C . The outputs of 3 C at pins 13 and 14 generate phases $01,02,03$, and 04. Pins 7 and 10 of 3 C are low true active enable lines. These inputs are controlled by gate $4 \mathrm{C}-12$, which disables the counter if any of its inputs are low true.

Input 4C-1 (W), from 6C-4 (sheet 2) is the same polarity as WRITE GATE. This input diseme's stepping while writing. input 4C-2 is the SELECT/ siqnal, wich is the opposite polarity off DRV SEL (when shunt lG-5 to $1 G-10$ is disconnected). Thus;, no stepping is allowed when the drive is deselected. Input $4 \mathrm{C}-13$ is connected to gate: 4C.-8, the inputs to which are TRACK 00% and DIRECTION. Thus:, no: stepping is permitted in the out direction when the head/ carriage: assembly is located at track 00. This is the eilectronic: track 00 stop.

3.5.3 Track 00 Logic (See Sheet 3, Zone B)

The track logic consists of the track 00 sensor (a LED and a phototransistor), a comparator (4F) and additional logic to generate the TRACK 00 interface output signal. Refer to Timing Diagram, Figure 3-17.

When the head/carriage assembly is located at track 00 , the light from the LED is allowed to strike the track 00 phototransistor. This turns on the transistor and establishes a low logic level at J4-12 and comparator 4F-10. This causes the comparator output at $4 F-13$ to $g 0$ to a high logic level. The output of $4 F-13$ is: gated with 3C-13 and 3C-14 at gate 4C-6 to generate a low level at 4C-6 when the head/carriage assembly is at track. 00 and phase 4 is energized. This is necessary because the track 00 phototransistor may be partially or fully on when the head/carriage is positioned at tracks 01 or 02. However, at these times phase 4 is not energized.

The output of 4C-6 is inverted by 3D-4 and disables stepping in the out direction as described in paragraph 3.5.2. The TRACK 00 signal is also gated with SELECT/ to give the low active TRACK 00 output signal at interface connector Jl-26.

3.5.4 Drive Motor Control Logic (See: Sheet 3, Zone A)

The drive motor control logic comprises tachometer signal digitizer $4 F$, enable one-shot 6E, reference one-shot 6E-13, time compare gate 6C, integrator network CR3, C16, R31, low-frequency amplifier 4F, and power output transistor Q3. Figure $3-18$ is a Timing Diagram of the Drive Motor Logic. When input signal MOTOR ON becomes high at input pin 10 of $6 E$, this one-shot triggers which, via $6[-13$, causes the anode of CR3 to go high. This charges Cl6 through CR3 from R33. The resultant positive voltage at input pin 7 of $4 F$ is amplified and coupled through $Q 3$ as the starting voltage for the drive motor at output pin 31 of 34 .

One-shot $6 E$ is also enabled by signal MOTOR $O N$ so that, after the start trigger generated by MOTOR ON switching high, successive triggers from the TACH DIG signal cause 6E-12 (termed STALLED/) to remain low. If the MOTOR ON signal at J1-16 goes high, $6 E$ becomes disabled which removes the charging source from C16 and causes the drive motor to stop. Also, if the motor stalls TACH DIG will stop triggering 6E-9, the one-shot will time out, and STALLED/ will go high.

The output of the tachometer attached to the drive motor is digitized by $4 F$. The resultant digital signal, termed TACH DIG, is the trigger source for reference one-shot 6E-1. The TACH DIG signal is also one input to comparator gate 6C. 6C compares the TACH DIG: signal with the output of one-shot $6 E-13$. If the drive motor rotates too slowly, TACH DIG becomes low for a longer period than the output of the reference one-shot. This generates a positive pulse at the output of $6 \mathrm{C}-10$ which makes the charge on C16 more positive. The increased charge is amplified by $4 F$ and causes an increase in motor speed. If the drive motor is aperating too fast,

$$
31-18
$$

ง1-20 जजएञाजए

($3 \mathrm{C}-13$

VOLTAGE OF PHASE SIGNALS (LOW $=+.3 \mathrm{~V}, \mathrm{HIGH}=+12 \mathrm{~V}$)

14-12

J1.-26

Figure 3-17: Stepper Motor Control Timing:
the output of $6 C-10$ will switch low, back-biasing $C R-3$, causing $C 16$ to start discharging through R31. This makes the input at $4 \mathrm{~F}-7$ more negative, reducing the amplitude at the output of $4 F$, which slows down the drive motor. Finally TACH DIG will become low for a longer time than the reference signal, causing positive pulses charging Cl6 once again and stabilizing the motor speed.

Figure 3-18: Motor Control Timing

3..5:.5: Index Logic. (See Sheet 3, Zone: B)

The index logic: consists of an LED and a phototransistor, a comparator (4F) and an output driver (2G-6). The LED and phototransistor supply signals to comparator $4 F-14$. This circuit is identical to the TRACK 00 detector circuit.

When an index, or sector, hole in the diskette passes under the index LED, the light impinges on the phototransistor, which causes $4 F-14$ to go to a high logic level. This output signal is gated with SELECT/ to generate the low-active INDEX output signal at connector 31-8..

3.5.6. Head Load Logic (See Sheet 3, Zone D)

The head load logic consists of part of programmable shunt 1 G : and high current driver 5G. When shunt point $1 G-7$ is connected to IG-8 the head is loaded by the low-active MDTOR ON signal.

When, the shunt points $1 G-1$ and $1 G-14$ are connected, the head is loaded by the low-active DRV SEL signals.

3.5.7 Side Select Logic (See Sheet 2, Zone: B.5, B6)

The side select logic comprises data selector 5A and associated circuits. To select side 0, a high level is placed on J1-32. (SIDE SELECT). Side 0 is the bottom head in Model 9.2 drives and the only. head in Model 91 drives. In Model 91 (single head drive:) systems, SIDE SELECT can be left disconnected, (note the termination resistor on this input). A high level on SIDE SELECT becomes a low level on pins 3 and 14 of decoder 5A. 5A. is: a dual decoder. Decoder section 1 controls writing or reading on either head 0 or head 1.. Decoder section 2: controls the erase winding on each head.
A. low level on SIDE SELECT becomes a high level on pins 3 and 14. of decoder 5A, and selects head 1 , the top head in Model 92 systems. Output pins 4 and 5 control head 0 ; output pins 6 and 7 control head 1 . The active level at these outputs is low. In addition to selecting a head, or selecting between heads, either a read or write operation must be selected at the WRITE GATE input pin. The level at WRITE GATE is inverted to control 5A input pin 2. Table 3-2 relates the levels at SIDE SELECT, WRITE GATE, pins 4. 5, 6;, and 7 of $5 A$ to the read or write condition of heads 0 and 1.

Table 3-2: Write/Read and Side Selection Conditions

WRITE GA.TE.	$\begin{aligned} & \text { SIDE } \\ & \text { SELECT } \end{aligned}$	5A. PINS				$\begin{aligned} & \text { SIDE } \\ & \text { SELECTED } \end{aligned}$	READ/ WRITE
		4.	5	6	7		
High	High	Low	High	High	High	0	Read
Low.	High	High	Low.	High	High	0	Write:
High	Low.	High	High	Low	High'	1.	Read
Law.	Low.	High	High	High	Low:	1.	Write

When the output pins of decoder 5A become low levels, emitter current paths are supplied to read/write transistor pairs, thus enabling the appropriate function.

Note that SEDE SELECT, in conjunction with control inputs at pins 13 and 15 of decoder 5A, enables HEAD 1 or HEAD 0 ERASE circuits during write/erase operations.

3.5.8 Write Protect Logic (See Sheet 2, Zone A)

The write protect-logic comprises the WRITE PROTECT sensor (an LED and a phototransistor), analog-to-TTL translator 3G-2 and 3G-4, a "write-disable." gate ($3 E-3$), and output driver $3 \mathrm{E}-11$.

When a write-protected diskette is inserted into the drive, the light from the LED is blocked from turning on the phototransistor. This causes 3G-1 to be high, 3G-2 to be low, and 3G-4 to be high. 3G-4 is gated with SELECT/ by gate 3E-11 to generate the low-active WRITE PROTECT signal at J1-28. The low output at 3G-2 makes 3E-3 high. $3 E-3$ is wire ANDed with gate 6C-1. If either 6C-1 output or $3 E-3$ output is high, writing is disabled at the enable input of decoder 5A and the erase coils are disabled by disabling one-shots $5 B-5$ and $58-13$. If $3 E-3$ output is high, either SELECT/ is low or a write-protected diskette is installed. If 6C-l is high the controlling device is issuing a read command.

When an unprotected diskette is inserted into the drive;, the light. from the LED turns on the phototransistor and 3G-1 becomes low. This disables gate $3 E-11$ from generating WRITE PROTECT and.g. if SELECT/ is high enables the erase one-shots and decoder 5A in the WRITE mode.

3.5.9 Write/Erase Logic (See Sheet 2, Zones B, C, D, 4-7) •

The write/erase logic comprises write flip-flop 2E, a write current source (resistors R23, R24.), two pairs of differentially operated write current drivers (IA), erase one-shots $5 B$ and erase driver gates 6 A.

Before writing can be done the drive must be selected and an unprotected diskette must be installed. Figure 3-19 is a Timing Diagram of the write/erase logic.

A low level on the WRITE GATE initiates writing on the selected head. This enables the write current drivers in 1A (zones D7, C7) and write flip-flop $2 E$. 'Write flip-flop $2 E-11$ is clocked by W DATA. The state of the Q and \bar{Q} outputs of $2 E$ cause the flow of current through the $h^{\prime} W$ head of the selected head to reverse with each clock. This current reversal generates a flux reversal on the: diskette, writing a data bit..

When WRITE GATE goes low, erase one-shot 5B-13 triggers and enables the erase selection of decoder 5A. The appropriate erase head is selected by SIDE SELECT via: pin 14. of 5 A. The duration of the

$C^{2 E-8}$ 20-i1

TW Figure: 3-20: Read Timing
erase signal is a function of the second erase one-shot (5B-5:) which energizes the tunnel-erase coil of the read/write/erase head (s.) ..

3.5..10 Read Logic (See Sheet 2, Zone D)

The read logic comprises preamplifier $2 A$, emitter followers Q1 and Q2,' low-pass filter components L1, L2', L3,. L4., C6, differentiator 28 , crossover detector IC., digital filter $1 E$ and $2 E$, and pulse shaper IE. Figure 3-20 illustrates the read logic timing.

A read/write head senses flux changes on the diskette and generates a sine wave with the peaks occurring at the time of the flux changes. The output of the head is approximately 1.2 to $2 . .7$ millivolts peak-to-peak, depending upon the flux changes per inch (FCI) on the diskette track as detected by the read/write head. The read signal is amplified by 2 A . The gain of 2 A is between 100 and 150 . Therefore, the differential signal at the cathodes of CR4 and CR5 is between 120 and 400 millivolts peak-to-peak. The amplified signal is coupled through emitter followers Q1 and Q2 and the LC filter to differentiator $2 B$.

Pins 7 and 8 of the differentiator have a zero crossing that corresponds to each peak of the read signal. These outputs are: AC coupled through CIO and CII to crossover detector $1 C^{\prime}$, which generates a high-to-low or low-to high digital transition for each zero crossing detected from differentiator 28.

The output of $1 \mathrm{C}-7$ is connected to the frequency doubler circuit R30, C14, and 2D, the output of which clocks digital filter oneshot $1 E$. $1 E$ and $2 E$ block out false crossover detections. The output of $2 \mathrm{E}-6$ is frequency doubled by R40, C 25 , and 2 D , which clocks one-shot pulse shaper $1 E-10$. The output of $1 E-5$ is the composite clock and read data signal, which is gated with signal SELECT to form the low active READ DATA output signal.

3.6 DATA. ENCODING AND RECOVERY

This section provides applications information relevant to the recording and recovery of data with the Model 9:1/9.2 Flexible Disk Drives. The three most common methods for encoding data are described in the following paragraphs. Table 3-3 shows a comparison of these encoding techniques..

3.6.1 FM Encoding

FM (frequency modulation) encoding has the following rules:
A. A data bit, if it 13 a "L", occurs at the center of the bit cell.
B. A clock bit occurs at the start of the bit cell.

Figure 3-2l: FM Encoding

3.6.2 MFM Encoding

MFM (modified FM) encoding has the following rules:
A. A data bit, if it is a "I"; occurs at the center of the bit cell.
B. A clock bit occurs at the start of the bit celll, but only if no data bit occurred in the: previous bit. cell and no data bit will occur in the current bit cell:

Figure 3-22: MFM Encoding

3.6.3 M2FM Encoding

M^{2} FM (modified MFM) encoding has the following rules:
A. A data bit, if it is a "l", occurs at the center of the bit: cell.
B. A clock bit occurs at the start of the bit cell, but only if neither a data nut mor a clock bit occurred in the previous bit cell and no data bit will. occur in the current bit cell.

Figure 3 -23: M2FM Encoding.

3:.6..4. Data Recovery

Data recovery refers to the retrieving of data from the flexible diskette. The following paragraphs describe the problems associated with data recovery and methods to ensure data reliability.

3.6.4..1 Bit Shift

Bit shift refers to the displacement of a bit., as detected by the drive, from its nominal position. The causes of bit shift are manifold -- R/W head resolution, media resolution, diskette speed variation, signal-to-noise ratio of read head output. Any data separation technique used must have a read window of at least $1 . .5$ us to handle this bit shift.

3.6.4.2 Write Precompensation

Certain data patterns cause more bit shift than other patterns. This: bit: shift is predictable and can thus be partially compensated for. For example, if it is known that a bit will be shifted by 500° ns when it is read back, then the bit can be deliberately written 200 ns early. This would give a bit shift of about 350 ns when it is read back. This method of reducing bit shift is called write precompensation.

Bit shift is greater on the inner tracks of the diskette than on the outer tracks, making write precompensation necessary only on the inner tracks. Write precomp of 250 to 300 ns should be used on tracks 36 through 79. If due to controller limitations, write precomp must be used on all tracks, then 125 to. 150 ns should be used. Table $3-3$ shows which encoding methods require the use of write precompensation.
3.6:4.4..3 Data: Separation

Data separation refers to the: separating of the composite data coming from the drive into separate clock and separate data bits.

For: FM recording; a one-shot data separator is quite sufficient: For double densiity recording; a phase-lock-loop (PLL) data separator should be used. There is another method of data separation, the digital counter method. This method is a very poor approximation of a PLL. It has a theoretical read window of only 1.0 us which, as per paragraph 3.6.6.4.1, is not sufficient to handle bit shift.

In: MFM recording, data bits and clock bits are subject to the same amount of bit shift. A. PLL separator with a 50% data window and a 50% clack window should be used.

In M2FM recording, data bits are subject to more bit shift than clock bitsi. A: PLL separator with a 60\% data window and a 40\% clock window should be used.

3.6.5 Track Format

When determining the track format to be used, the following timing restraints should be considered (see Figure 3-24.).
A. Postamble: The postamble period must be at least $3^{\circ} \mathrm{ms}$ to allow. for spindle speed variation of $+1 / 2 \%$.
B. Data Gap: The data gap period must be at least 1 ms to allow. for tunnel erase turn off time.

Encoding Technique:	FM.	MFM	$M^{2}{ }^{2} \mathrm{FM}^{\text {a }}$
Bit. Cell Time	8: us	4. $\mathrm{se}^{\text {S }}$	4. $\mu .5$
Possible pulse spacing	4. 4.5	4. $\mathrm{LS}^{\text {S }}$	4. $\mu \mathrm{s}$.
	8 us	6: 1.	6: us
		8: $\mu \mathrm{s}$	8 \% 4.5
Frequency components			10 us:
Frequency components of read signal	12.5. KHz	125 KHz	125. KHz
of read signal	6.2.5. KHz	9:3.75 KHz	9.3.75: KHz
		$6: 2.5 \mathrm{KHz}$	$\begin{array}{r} \text { 6.2. } 5 \mathrm{KHz} \\ 50: \mathrm{KHz} \end{array}$
Encoder complexity	Simple	Moderate	Moderate
Write precompensation needed	No	Yes	Yes
Data separator recommended	One-shot	PLO($50-50$ window)	P'LO(60-40 window.)
Data separator complexity	Stimple	Moderate	Moderate

Table 3-3: Comparison of Encoding Techniques

INDEX

TRACK

A. Postamble.
D - ID Gap.
8. - Preamble-
E:-DataiRecord
C. - ID: Record
F-DataıGap

Figure: 3-24:: Typical Track Format
E

SECTION: 4

MAINTENANCE

4.1 INTRODUCTION

This section contains preventive maintenance procedures, component removal/replacement procedures, adjustment and measurement procedures. The material is referenced to drawings located throughout the text, a spare parts list located in Appendix A, and drawings. and schematics located in Appendix B.. Adjustment procedures will be required if parts are changed due to malfunction and measurements should be made periodically to ensure: data quality or if malfunctions are suspected. It is recommended that a: master alignment diskettebe kept and that each alignment be verified to the master.

TABLE 4-1: SECTION INDEX

Topic	Paragraph
Preventive Maintenance	.4 .3
Recommended Tools and Test Equipment	4.4.
Removal/Replacement Procedures	4.5.
Adjustment Procedures	4.6
Measurement Procedures	4.7

4:2 GENERAL INFORMATION

The following statements are applicable to all facets of drive: . maintenance:
A. Do not remove any rompunents or the printed circuit board or connect or disconnect any plugs while power is applied to the: drive:.

Bi. Component-location instructionsi, such as right. guider, left guider, etc.., are referenced as viewed from the: rear: of the drive.
C.. Female: connectors that carry signals internal to the drive slip over pins of the male connectors. Most of the connectors are keyed so that they cannot be plugged into the wrong receptacle. However, they can be inserted upside down. For positioning accuracy one side of the female connectors is slotted with socalled "windows" over the pins. Installation instructions are given to install the connectors with the window side facing a certain direction, i.ee..., toward the chasisis, away from the chassis, etc.
D. Do not use magnetic tools within the drive.
E. Instructions are given to "remove screws or replace screws"; it: is understood that flat washers, lock washers, and shims (where required) are also to be removed and, more importantly, replaced. It is important to always replace the exact quantity of washers and shims that were removed and in the same order.

4.3 PREVENTIVEMAINTENANCE

The only recommended preventive maintenance to ensure optimum performance of the disk drive is periodic cleaning of the read/write head(s) and inspection of the head load pad.

4.3.1 Read/Write Head(s) and Load Pad Inspection

Inspect the load pad (or top head) for excessive oxide, using a dental mirror.

CAUTION

Do not move the upper head arm any further than is allowed by the door in i.ts open position.

Refer to Figure 4.1. To clean the head(s) use a lint-free cloth or a cotton swab moistened with either methyl alcohol or 9.1% Isopropyl alcohol. Wipe the head(s) carefully to remove all accumulated oxide and dirt.. Dry the head(s) using a lint-firee: cloth. If cleaning the head(s) does not improve operation, refer to the troubleshooting section. If head(s) are damaged or worn, refer to the head/carriage replacement procedure (paragraph 4.5.15). If head load pad is dirty or worn, refer to head load. pad replacement procedure (paragraph 4.5.518)..

4.4 RECOMMENDED TOOLS AND TEST EQUIPMENT*

The following list of tools and test equipment are recommended for the removal/replacement procedures and the adjustment and measurement procedures in this section.

4.4.i. \uparrow Removal/Replacement

A.. Wire cutters
B. Needlenose pliers with serrated jaws
C. Phillips head screwdriver, No. 0 and No. 1 '
D. Phillips head torque screwdriver, No. 0 set to 20 inch-aunces
E. Phillips head torque screwdriver, No. 1i set to 30 inch-aunces
F. Hex screwdriver, 0.050 inch
G. Dental mirror
H. Nut driver, 0.25 ineh
I. Bent nose tweezers
J. Slot head screwdriver

4..4..2 Adjustment and Measurement

A. Oscilloscope, dual trace, with channel "add" and external sync: capability:
B. Read/write (scratch) diskette
C. CE alignment diskette (MPI part number $1-42003-001$ double/ 1-42002-001 single.)
D. Phillips head screwdrivers, No. 0 and No. 1
E. Phillips head torque: screwdriver, No. O set to 2.0 inch-ounces.

4.5 REMOVAL/REPLACEMENT PROCEDURES

The following material glves sequential instructions; for removing: and replacing major components of the disk drive: Table: 4-2' lists: the removal/ zeplacement procedures contained in this section. Figures $4-1$ and $4-2$ are top: and bottom views of the disk drive that illustrate: the: components for: which replacement instructions are given. The appropriate paragraph should be: referenced when performing: any of these procedures: An: exploded view of the:

Model 915 is illustrated in figure $4-3$ and should be used only as a reference to familiarize yourself with the arranqement of the assemblage. Table 4-3 references assemblies that may need to be adjusted when major components are removed/replaced.

TABLE 4-2: REMOVAL/REPLACEMENT PROCEDURES

Procedure	Paraçaph
Printed Circuit Board Assembly (PCBA) Shield Assembly Right-Hand Guide/Write Protect Assembly Left-Hand Guide Assembly Front Panel Bezel and Activity LED Cone Assembly Carrier Assembly Index/Load Boss Assembly Solenoid Drive Motor Track 00 Sensor Door Button Assembly (91/92 only) Stepper Band Stepper Motor Head/Carriage Assembly Ejector Assembly (91/92 only) Spindle, Bearinqs and Pulley. Head Load Pad Assembly Harness Assembly	

Figure 4-1 Parts List

1.. Activit:y Indicator Female Connector
2. Cable Clamp.
3. Carrier Assembly
4. Carrier Mounting Screws
5. Cone/Clutch Assembly
6. Drive Motor Assembly
7. Ejector Latch Release (91/92 only)
8. Guide Rod Clamps
9. Harness Assembly
10. Head Cable
11. Index LED Female Connector
12. Index/Load Boss Assembly
13. Left Hand Guide
14. Load Pad Assembly
15. Right Hand Guide/Write Protect Ássembly
16. Shield Assembly
17. Solenoid Assembly
18. Track 00 Assembly
19. Upper Arm
20. Write Protect LED Female Connector

Figure 4-2 Parts List
21. Drive Belt
22. Drive Chassis
23. Drive Motor Mounting Screws
24. Head/Carriage Assembly
25. Index/Load Boss Mounting Screws
26. Solenaid Mounting Screw
27. Spindle Pulley
28. Spindle Pulley Mounting Screw
29. Stepper Motor Assembly
30. Strobe Label

TABLE 4-3: REMOVAL/REPLACEMENT ADJUSTMENT CHECK LIST

ASSEMBLY	CHECK OR ADJUSTMENT	PARAGRAPH
Head/carriage	Radial-track alignment Track 00 sensor alignment Track 00 set screw adjustment Compliance	$\begin{aligned} & 4.6 .1 \\ & 4.6 .3 \\ & 4.6 .5 \\ & 4.7 .1 \end{aligned}$
Stepper motor	Radial-track alignment	4.6 .1
Track 00 sensor	Track 00 sensor alignment	4.6 .3
Index/load boss	Index-to-data alig̣nment	4.6 .2
Carrier	Index-to-data alignment Ejector (91/92 only)	$\begin{aligned} & 4.6 .2 \\ & 4.6 .7 \end{aligned}$
Printed Circuit	Drive motor speed	4.6.4
Board (PCB)	Index-to-data aliqnment	4.6 .2
Drive motor	Drive motner speed	4.6 .4
	Drive helt	4.6 .6
Spindle Pulley	Drive motor speed Drive belt	$4.6 .4$
Head Load Pad	Compliance	4.7 .1

?
θ

4..5.1 Printed Circuit Board Assembly (PCBA)

To. remove the printed circuit board (PCBA) proceed as follows:
A. Remove the I / O connector and DC power connector.
B. Remove screws (2) at each side of PCBA.
C. Pull PCBA slightly to the rear of the disk drive.
D. Remove head connector(s) below and at left front edge of PCBA. Grip the connector(s), not the cables, when removing.
E. Remove connectors $\mathrm{P} 4-1$, $\mathrm{P} 4-2$, and $\mathrm{P} 4-3$ at right rear of PCBA.
F. Slide PCBA out the rear of the disk drive.

To replace the PCBA perform the preceding steps A. through F. in the reverse order.

4.5.2 Shie:ld Assembly

To remove the shield assembly, located over the head/carriage assembly, proceed as follows:
A. The shield snaps over the carrier assembly; grip the left side, press down on the left-center of the shield, and lift the left side up. This will unsnap the shield from the left side of the carrier assembly.
B. Lift the shield to the right and up from the disk drive..

To replace the shield, perform the preceding steps A. and B. in the reverse order.

CAUTION

Be sure not to pinch the index LED wires under the right side of the carrier and the shield when installing.

4.5.3 Right-Hand Guide/Write Protect Assembly

The write protect sensor is an integral part of the right-hand guide. To remove this assembly proceed as follows:
A. Remove the PCHA see paragraph 4.5.1).
B. Remove screws (2) holding guide to the disk frame at the bottom of the guide.
C. Remove flat head, countersunk screw at top-front of guide hold--ing guide to bezel.
D. The guide is now free of the drive assembly.
E. Unplug the two female connectors from the write protect photo transistor and LED..
F.. Remove the wires from the cable clamp. The guide/write protect assembly is now free of the drive assembly.

To replace the right-hand guide assembly perform the preceding steps A. through F. in the reverse order. Be sure that:
A. The windows in the female connectors both face away from the guide, when installed.
B. Wires to the write protect LED are routed through the cable clamp on the guide.

4.5.4 Left-Hand Guide Assembly

To remove the left-hand guide assembly proceed as follows:
A. Remove the PCBA (see paragraph 4.5.1).
B. Remove screws (2) holding guide to the drive chassis at thebottom of the guide.
C. Remove flat head, countersunk screw at top-front of guide: holding guide to front panel bezel.
D. Remove head cable(s) from cable clamps. Guide is now free of drive assembly.

To replace the ieft-hand guide assembly perform the preceding steps A. through D. in the reverse order.

4.5.5 Front Panel Bezel and Activity LED

To replace the activity indicator it is necessary to remove the bezel. To remove the bezel proceed as follows. Figure 4-4. shows the activity indicator mounting hardware:
A. Remove four (4) flat head, countersunk screws holding bezel to guides and drive chassis.
B. Open door to free bezel from door/carrier assembly.

C". Pull bezel forward slightly and remove female connector from activity LED. Bezel is now. free of the drive: assembly.
4..5.5.1 Activity LED Removal: To replace the activity LED proceed as
A. Remove bezel (see paragraph 4..5.5).
B. Loosen activity indicator ring around activity indicator clip and pry off.
C. From the front of the bezel, press LED out of the holder. This removes the LED.

4.5.5.2 $\frac{\text { Activity LED Installation: }}{\text { as follows: }}$ To install the activity LED proceed

A. Perform the steps in paragraph 4.5.5.1.

- B. Press LED into clip in bezel from rear of bezel until it snaps in..
C. Hold LED clip with fingers and fit ring over rear part of clip. Press ring until it is flush against bezel..
D. Fit female connector over LED leads with green wire connected to. longest LED lead.
E. Install bezel to drive chassis and guide assemblies (see paragraph 4.5.5).

Figure 4-4: Activity Indicator Assembly

4..5.6. Cone: Assembly

The cone assembly fits within the drive spindle assembly o. To: remove this assembly proceed as follows:

Ai.. Be sure the door is closed.
B. Remove the snap ring and shims from the top of the carrier assembly.
C.. Open daor..
D.. Cone will remain seated in spindle hub and can be lifted out of the drive assembly.

NOTE

Be sure to keep track of the number of shims between snap ring and carrier. The same shims must be replaced during installation.

To replace the cone assembly perform the preceding steps in the: reverse order.

NOTE

Be sure that the replacement cone has a shim and then a spring on the shaft of the conebefore replacing it in the spindle hub.

4..5.7 Carrier Assembly

The carrier assembly lifts the cone from the spindle and the upper arm from the disk media when the door is opened. To remove this assembly proceed as follows:
A. Remove the PCBS (see paragraph 4.5.1).
B. Remove shield assembly (see paragraph 4..5.2:).
C. Remove cone assembly (see paragraph 4.5.6).
D. Remove screws (2) from rear of carrier holding carrier to drive chassis mounting posts.
E. Cut tie wraps nolding index LED wires to carrier.
F. Remove index Lfl female connector.

Gi. 9.15/9.2S only: Remove screws: (2) attaching: bezel to RH \& LH guides and loosen screws. (2) attaching: bezel to chassis. 911/92 only: Remove screws (2) attaching carrier assembly to. front door.
H. Open firont door:.
I. $\frac{9 \cdot 1 \mathrm{~S} / 9.25}{}$ only: Swing top of bezel forward allowing door pins to slip free of bezel door slots.
J.. The carrier is now free.

CAUTION

Do: not lift the carrier straight up. The upper step of the upper head arm rests on top of the carrier assembly. Lifting carriage straight up may damage the head assembly.

Silide the carrier to the right, to clear the head assembly upper arm, and lift out of the unit.
4.5.7.1 Index LED: The index LED is part of the carrier assembly. The carrier assembly must be replaced to replace the index LED.
4.5.7.2 Carrier/Index LED Installation: As mentioned, the index LED is: an integral part of the carrier assembly. To install this assembly perform the following steps in the order listed:
A. Install carrier assembly by performing in reverse the procedures called out in 4.5 .7 steps G thru J..
B. Install screws (2) in rear of carrier assembly loosely. .
C. : Install cone assembly (see paragraph 4..5.6).
D. Close door.
E. Center door in front opening of bezel.
F. Tighten rear carrier screws.
G. Install index LED female connector with connector windows down.
H. Tie wrap index connector wires to the carrier assembly at front and rear.
I. Perform any adjustments called out in Table 4-3.

4.5.8 Index/Load Boss

To. remove the index lnad boss assemtly proceed as follows:
A. Remove PCBA (see paraqraph 4.5.1).

Bl. Remove shield: assembly (see paragraph 4.55.2:) . .
C... Remove index photo transistor female connector at front of boss assembly; pull to right side.
D. Place drive on its left side.
E. Remove the screws (2) in the adjustment slot in the recessed area in the base of the drive chassis.
F.. Lift boss assembly up and out of the drive assembly.

To: replace: the index:/load boss assembly proceed as follows:
A. Place drive on its left side.
B. Install. index/load boss assembly with LED toward front of drive.
C. Install screws loosely in the adjustment slot in the recessed area in the base of the disk drive chassis.
D. Install index photo transistor connector with windows toward drive chassis.
E. Perform any adjustments called out in Table 4-3.

4.5.9 Solenoid:

To remove the solenoid, proceed as follows:
A. Remove the PCBA. (see paragraph 4.5.1).
B. Remove the right-hand guide (see paragraph 4.5.5).
C. Unsolder two leads from the solenoid. Note that older drives: may have the leads attached to the solenoid with spade lugs.
D. Turn the drive on its side and remove the solenoid mounting screw. (1) from bottom of drive chassis.
E. Solenoid is now free.

CAUTION

Be-caraful not to lift solenaid load arm straught up so that it bends upper arm assembly past its normal unloaded position.
Fris filt solenoid and lift to the siide: and: up: out of the drive chassisi.

To: replace the solenoid perform the preceding steps in the reverse order; be sure that:
A.. The bottom part of the load arm of the solenoid is beneath the index/load boss.

Bie The top part of the load arm is beneath the top step of the upper arm.
C. Wires are not pinched between the bottom of the solenoid and the disk drive chassis.
D.. Wires do not interfere with solenoid spring..

4.5.10. Drive Motor

To remove the drive motor; proceed as follows:
A. Remove PCBA (see paragraph $4.5 .1^{1}$). .
8. Place disk drive on its left side.
C. Remove the drive: belt by gripp:ing: bellt near small pulley (motor end); simultaneously pull belt toward spindle pulley and away from the drive chassis. This: will rotate belt. off spindle pulley. The belt can now be lifted off the motor pulley.
D. Remove two drive motor mounting screws from the bottom of thedrive chassis.
E. Drive mator is now free; cut tie wraps holding drive motor wires in harness and pull motor ground spade lug from chassis.

To replace the drive motor proceed as follows:
A.. Perform the preceding steps in the reverse order.
B. Be sure that the wire harness is not pinched between the motor and the chassis.
C. Mount motor so that motor wires exit from rear-center of motor to rear of drive chassis. Tie wrap motor wires into wire: harness.
D. After installing belt, refer to Table 4-3 for adjustment references.

NOTE:

Do not tighten serews in motor mount until belt isi adjusted.

To remove the track 00 sensor proceed as follows:
A. Remove the PCBA (see paragraph 4.5..1)..
B.. Remove the shield assembly (see paragraph 4..5..2.)..
C. Remove the track 00 photo transistor female connector (top of frame:) and track 00 LED female connector (recessed area., bottom of frame).
D. Remove screws (2) at top of chassis holding: sensor assembly to the drive: chassis.
E. Sensor is now free and can be slid to the side and up out of the drive chassis.
F. Refer to Table 4-3 for adjustments necessary.

To replace the track 00 sensor perform the preceding steps in the reverse order. Do not tighten screws until adjustment procedures referenced in Table $4-3$ are performed. Note that when replacing. the connectors, the connector windows face the chassis:-

4.5.12. Door Button Assembly

NOTE

This removal/replacement procedure is associated wi.th the Model 9.1/92 onily. The Model 9.15/92S is not equipped with a door button assembly.

To remove the door button assembly proceed as follows (see Figure 4-5):-
A. Remove bezel (see paragraph 4..5.5)
B. Remove bezel bracket mounting screw.
C. Remove retention ring from ane end of rod.
D. Slide rod from assembly; be sure to catch spring.

To replace the door button assembly perform the preceding steps in the reverse order.

Figure 4-5. Door Button Assembly

Figure: 4-6:. Stepper Band:

4.45.113 Stepper Band

To . remove the stepper band (see Figure 4-6) proceed as follows:. .
A. Remove the PCBA (see paragraph 4..5.14).
B. Open the door.
C. Remove the left-hand guide: (see paragraph 4..5.4). .
D. Place disk drive on right side.
E.. Remove two stepper band mounting. screws, washers and band mounting clip from head/carriage assembly. Remove screw. mounting band to pulley.
F. Band can now be lifted off stepper motor pulley.

To replace the band perform the following steps (see Figure 4-6): :
A. Consider the preceding steps in the reverse order.
B. On the band, slip one head end throuqh the slot in the band.
C. Wrap the band around the pulley.
D. Lay band flat against head/carriage assembly; install screw, washers, and band-mounting clip in rear of head/carriageassembly; note large end of band goes to front of drive chassis.

NOTE

The band mounting clip hole is offset. Install the clip so that the hole is closer to the chassis of the disk drive.
E.- Hold band firmly against head/carriage assembly.; install screw. in front-of-band hole, large end of band.
F. Pull band tight against head/carriage assembly and tighten screw in front of assembly: Move carriage forward and backward: ensure that there is no band crinkle (metal on metal rubting).
G. Screws should nex fuhtened with torque screwdriver to: 20 inchounces..

4.5.14 Stepper: Motor

To remove the stepper motor proceed as follows:
A. Remove the PCBA (see paragraph 4.5.1).
B. Loosen front band mounting screw.
C. Remove screw mounting band to pulley:
D. Cut tie wraps enclosing stepper motor wires in wire harness.
E. Remove two screws on bottom of drive chassis adjacent to the stepper motor.
F. Remove stepper motor from drive chassis..

To replace the stepper motor, perform the preceding steps in the: reverse order. Refer to Table $4-3$ for required adjustments.

4.5.15 Head/Carriage Assembly

To remove the head/carriage assembly proceed as follows:
A. Remove the PCBA (see paragraph 4..5.-1).
B. Remove shield assembly (see paragraph 4.5.2)..
C. Remove left hand guide (see paragraph 4.5.4.)..
D. Remove stepper band (see paragraph 4..5.13).
E. Remove head cable clamp from chassis (plastic clamp in left . rear of chassis).
F. Loosen the two copper guide rod clamps from front and rear of head assembly by loosening the serews in each of these clamps..
G. Remove left-hand guide rod by prying from front and sliding guide rod out the rear of the chassis.
H. Lift head/carriage assembly off the right hand guide rod and out of drive chassis.
I. Be careful of banging and bending upper arm leaf spring. SeeCAUTION statement at paragraph 4.3.1.

To replace the head, carriage assembly, perform the preceding steps in the reverse order and observe the following: precautions:
A. Be sure that the guide rods are firmily seated in the drive chassis.
B. Route head cables from head/carriage assembly through chassis proper:ly.
C. Be sure guide rod clamps are securely tightened.
D. Be sure rear clamp has ground lugs (2.) secured underneath screw.
E. Be sure carriage rides freely on guide rods after installation.
F. Refer to Table 4-3 for required adjustment procedures.

4.5.16 Ejector Assembly

NOTE

This removal/replacement procedure is associated with the Model 9.1/92 only. The Model 9.15/92S is not equipped with a diskette ejector assembly.

To remove the ejector assembly proceed as follows (refer to Figure 4-7):
A. Remove the PCBA (see paragraph 4.5.1).
B. Remove ejector latch release (iff necessary) from carrier by removing screw and sliding latch off carrier assembly.
C. Remove ejector latch from drive chassis by removing screw and sliding latch off drive chassis mounting post.
D. Slide rod out of mounting blocks and remove spring and plastic: block.

To replace the ejector assembly, perform the preceding steps in the reverse order. Refer to Table $4-3$ for required adjustment precedures.

$\because \square$

Figure 4-7
Ejector Assembly

4..5.17 Spindle, Bearings and Pulley

The spindle pulley can be removed by:
A. Remove the Spindle Drive Bolt
B. Remove the Spindle Pulley Mounting Screw
C. Pull the Spindle Pulley from the Spindle Hub Shaft

NOTE
There will be a wave washer and some quantity of shims on the pulley shaft. The same quantity of shims and the wave washer must be replaced in the same order.

NOTE

To replace the spindle and bearings, the unit must be returned to the factory.

4.5:.18 Head Load Pad Assembly

To replace the head load pad assembly in Model $9: 1$ drives, proceed as follows:
A. Remove PCBA (see paragraph 4.5..1)..
B. Remove shield (see paragraph 4.5.52).
C. Manually position head/cariage assembly all the way to the rear of the drive (Track 00); be sure to push carriage not the upper arm.
D. Open door.
E. Grip upper arm.
F. W.ith bent nose tweezers, squeeze the plastic pieces of the Head Load Pad which protrude through the upper arm and press until it drops out of the upper arm.

To replace the pad assembly proceed as follows:
A. Hold pad assembly with bent nose tweezers centered underneath hole in upper arm..
B. Close door.
C. Press lightly on upper arm to engage pad assembly; remove tweezers.
D. Press on upper arm until pad assembly snaps into place.

CAUTION

Do not move the upper head arm any further than is allowed by the door in its open position.
E. Refer to Table 4-3 for required adjustment procedures.

4.5.19 Harness Assembly

If it becomes necessary to replace the harness assembly proceed as follows:
A. Remove PCBA (see paraqraph 4.5.1), this frees the head connec-tor (s) and PCBA connectors ($\mathrm{P} 4-1, \mathrm{P} 4-2$, and $\mathrm{P} 4-3$).
B. Remove connections from:

1. Bezel activity LED
2. Right hand guide write protect sensor (two connections).
3. Index/load boss sensor
4. Index LED
5. Solenoid (two connections).
6. Track 00 sensor (two connections).
C. All harness connections should now be free.
D. Cut plastic tie wraps which tie harness assembly to drive motor and stepper motor wires.

To replace the harness assembly, perform the preceding steps in the reverse order;: refer to Table 4-4. Cable Harness Wire List, for connector termination information.

Table 4-4: Harness Assembly Wire List:

○

4:6 - ADJUSTMENT PROCEDURES

Table 4-5 lists the adjustment procedures contained in this section. The appropriate paragraph should be referred to when performing any of these procedures. It is recommended that a master alignment diskette be kept and that each alignment be verified to the master.

TABLE 4-5: ADJUSTMENT PROCEDURES

Procedure	Paragraph
Radial Track	4.6 .1
Index to Data	4.6 .2
Track 00 Sensor	4.6 .3
Speed Control	4.6 .4
Track 00 End Stop	4.6 .6 .5
Drive Beilt	4.6 .6
Ejector Latch and Release (91/92 only)	4.6 .7

4.6.1 Radial-Track Alignment

To perform radial track alignment perform the following steps in the order listed:
A. Apply power to the disk drive. Apply controls to the drive for recalibration to track 00.
B. Insert a CE alignment diskette (MPI Part No. 1-42003-001 double/ MPI Part No. 1-4.2.002-001 single) and close the door.
C. Sync oscilloscope on leading edge of signal on TP 6 (output of 4F-14.). Connect oscilloscope probes to TP1 and TP2 (inputs to $28-1,-14$). Set the oscilloscope to $50 \mathrm{mV} / \mathrm{cm}$, ac coupled, channel A and B added, with B inverted, 20ms/division. Attach ground probes to TP7.
D. Load head and apply 32. stepping pulses, with the DIRECTION line low. The carriage should now. be located around track 32. The proper phase relationship of stepper motor phases should be: phase $4=0 \mathrm{~V}$, phase 1,2 and $3=+12 \mathrm{~V}$.

EQUAL AMPLITUDE

RITZHT 70% of LEFT

Figure 4-8: Radial Track: Ailignment: Patte:ms;

E. With power on loosen the stepper motor mounting screws on bottom of drive and rotate the motor so that the "cat's eye" pattern appears on the scope and adjacent lobes are within 70\% amplitude (see Figure 4-8). Tighten mounting screws. Command a return to track 00 and then step back to track 32 to verify proper alignment. Command a seek to track 64 and then step back to track 32 to verify proper alignment.

4.6.2 Index-To-Data Alignment

To perform the index-to-data'alignment perform the following steps in the order listed:
A. Verify the radial-track alignment (see paragraph 4.6.1) then move the head to track 01.
B. Set the oscilloscope to 50 microseconds per division.
C. The index sensor mounting screws are located at the bottom of the drive in the recessed area. Loosen the two screws and slide the sensor such that the oscilloscope picture shows a data pattern starting 200 ± 75 microseconds from the start of the trace.
D. Using a 20 inch-ounce torque screwdriver, tighten the screws carefully so that no variations in the oscilloscope display occur.

Figure: 4-9: Index-to-Data Alignment Pattern

4.6.6.3. Track 00 Sensor Alignment

To align the track 00 sensor perform the following steps in the order listed.
A. Verify the radial-track alignment (see paragraph 4.66..1).
B. Apply power to the disk drive and select drive.
C. Connect channel A probe to connector J4-12; set oscilloscope trigger to INTERNAL/AUTO.
D. Loosen the two track 00 sensor mounting serews (top/rear of disk drive, adjacent to solenoid) and adjust the sensor for the conditions in E. and F. following.
E. When the carriage is positioned over track 00 or 01 the signal at $\mathrm{J} 4-12$ shauld be at 0.5 volts (maximum).
F. Command a step-in to track 03. Signal at $34-12$ should go to +4.0 volts minimum.
G. Tighten the sensor mounting screws.

4.6.4. Speed Control Adjustment

To adjust the speed control perform the following steps in the order listed:
A. Apply power to the disk drive and select drive. Apply $O V$ to MOTOR ON.
B. Insert a diskette and close the door.
C. Turn disk drive on its side and observe the strobe effect of spindle pulley. If operating from 60 Hz power observe outer trace; if operating from 50 Hz power observe inner trace. - Adjust R38 on PCB for a stable strobe pattern. Note that a small amount of strobe "creep" is permissible.

4.6.5 Track 00 End Stop Adjustment

To adjust the track 00 end stop perform the following steps in the order listed:
A. Verify the radial track alignment (see paragraph 4.6.1).
B. Verify the track 00 sensor alignment (see paragraph 4.6.3).
C. Apply power to the disk drive and select drive:
D. Command a seek to track 00.
E. Adjust the setscrew located on the left-hand boss in the rear of the drive to approximately 0.010 inch from the end of the carriage (approximately one-third revolution of the set screw.). Command a maximum track seek, then a return to track 00. Assure that the carriage does not hit the end stop.
F. Alternate Adjustment Method: Using an alignment diskette, restore to TRK 00. Assure that a read signal is present. Turn the TRK 00 set screw clock-wise until the read signal amplitude is minimal. Now turn set screw counter clock-wise while pushing back on head carriage until. read signal amplitude reaches approximately one-half of its original value. This
1 assures that the head assembly will not restore past TRK 00.

4.6.6 Drive Belt Adjustment

The new Model drives all have neoprene (black) drive belts. Older Model drives have mylar (yellow) belts. They are adjusted diffferently as follows:

4.6.6.1 Mylar (Yellow.) Drive Belt Adjustment
 Loosen drive motor mounting screws (bottom of chassis). Adjust drive motor so that the tension on one leg of the drive belt is $17+1$ grams. A tensiometer may be used to make this measurement.Tighten the drive motor mounting screws after adjusting the belt.

4.6.6.2 Neoprene: (Black) Drive Belt Adjustment

Loosen drive motor mounting screws (bottom of chassis:). Position the drive motor as close to the spindle assembly as possidle. Tighten the drive motor mounting screws. No belt tension measurement is necessary.

4.6.7 Ejector Latch And Ejector Latch Release Adjustments

NOTE

This adjustment procedure is associated with the Model 91/92 only. The Model 91S/92S is not equipped with a diskette ejector system.

Figure 4-10: Ejector Block and Latch (top view)

Figure 4-11: Ejector Assembly

After installing some component of the ejector assembly (spring, block, etc..), it may be necessary to adjust either, or both, the ejjector latch and ejector latch release. Before attempting to make any adjustments, ensure that the ejector latch and the ejector latch release are not- deformed in shape. Any deformed parts should be replaced.

4.6.7.1 Ejector: Latch Adjustment

With the carrier assembly in the open position, verify that no gap exsists between the ejector latch and the chassis boss. If there is a gap, loosen the ejector latch mounting screw and press the latch firmly against the chassis. Tighten the mounting screw to 1 '1in. lbs. (See Figure: 4-11).

4.6.7.2 Ejector Latch Release Adjustment .

With the carrier assembly in the closed position, verify that ejector latch release is contacting the rear inside of the ejector latch window (See Figure 4-7). If it is not., loosen the latch release mounting screw and slide the ejector latch release toward the rear of the: drive until contact is made, then tighten the mounting screw.

With the carrier assembly in the open position, verify that the tip of the ejector latch release remains in the window of the ejector latch (See Figure 4-11). Slide the ejector block toward the rear of the drive until it becomes latched. Close the carrier assembly and then reopen it. The ejector block should be disengaged. Repeat this procedure four to five times to ensuresmooth operation of the mechanism.

4.7 MEASUREMENT PROCEDURES

The following list of measurement procedures should be made periodically to ensure data quality or if malfunctions are suspected:
A. Compliance Measurement
B. Erase Measurement
C. High Frequency Playback Measurement

4.7.1 Compliance Measurement

To measure compliance perform the following steps in the order listed:
A. Apply power to the disk drive and select drive.
B. Step head(s) to track 79.
C. Write a IF pattern (62.5 KHz) on the entire track.
D. Connect oscilloscope probes to TP1 and TP2 as in radial track alignment procedure (paragraph 4.6.1).
E. Apply a 15 gram load to the upper arm directly above the load pad. If the amplitude observed on the oscilloscope increases by more than 10\% the drive has poor compliance; refer to troubleshooting information Section 5.

4.7.2. Erase Measurement

To measure the effectiveness of the erase, perform the following steps in the order listed.
A. Apply power to the disk drive and select drive.
B. Step the head(s) to track 64.
C. Writge a $1 F$ pattern (62.5 Kilohertz) on the entire track.
D. Connect oscilloscope to TP1 and TP2 as described in radialtrack alignment procedure (see paragraph 4.6...1).
E. Connect a jumper from ground to gate 6A pin 7 (Model 9.1/9.2 bottom head) or 6A pin 1 (Model 92 top head).
F. Step back and forth across track 64 for about 15 seconds.
G. At the end of the 15 -second period, remove jumper installed in Step E above, return head(s) to track 64. The amplitudedisplayed on the oscilloscope should be reduced by at least 8.5\% in some parts of the trace.
H. If the amplitude decrease is less than 85\%, refer to the troubleshooting information, Section 5.

4.7.3 High Frequency Playback Measurement

To measure the amount of high frequency playback, perform the following steps in the order listed.
A. Apply power to the disk drive and select drive.
B. Step the head to track 79.
C. Write a $2 F(250 \mathrm{kilohertz})$ pattern on the entire track.
D. Connect oscilloscope to TP1 and TP2 as described in radialtrack alignment procedure (see paragraph 4.6:.1.)..
E.. The peak-to-peak amplitude displayed on oscilloscope should be: at minimum of 65 mv p-p. If the amplitude is less than $65 \mathrm{mv} \mathrm{p}-\mathrm{p}$;, refer to the troubleshooting information, Section 5 .

SECTION 5

TROUBLESHOOTING

5:1) INTRODUCTION

This section contains general troubleshooting information. It is: assumed that the user has read and understands the material in section 3 , Theory Of Operation.

The first step in troubleshooting should be to verify that the controlling device and interface to: the disk drive are functioning properly. Next, isolate the trouble to the electronic, the electromechanical, or the mechanical components of the drive. Table 5-1 is a list of some trouble symptoms referenced to paragraphs which include possible causes, and suggested fixes.

TABLE 5-1.: TROUBLE SYMPTOMS

Topic	Paragraph
Preliminary Troubleshooting Steps	5.2
Drive Won't Step or Steps Erratically	5.3
Head/Carriage Oscillates at Track 00 (Restore Error)	5\%.4.
Drive Motor Won't Rotate	5.5
Head Will Not Load	5.6
Bad Index Output	$5.7{ }^{\circ}$
Bad Write Protect Output	5.8
Activi.ity Indicator Dees Not Li:ght	$5 . .9$
Read Errors--All Tracks	5.10
Read Errors--Random Tracks	$5 . .11$

TABEE 5-1: TROUBLE SYMPTOMS (Continued)

Topic	Paragraph
Read Errors--Inside Tracks	$5 . .12$
Cannot Read Prewritten Data: Can Read	$5 . .15$
Self-Written Data	
Cannot. Write Data	$5 . .14$
Erase Bad	$5 . .15$
Drive Speed' Unstable	$5 . .16$.

5:2 PRELIMINARY TROUBLESHOOTING:STEPS

The following preliminary steps should be performed first when a suspected malfunction occurs::
A. Check for proper operation of controlling device and interface to disk drive.
B. Check for proper supply voltages to the printed circuit board assembly (PCBA.); refer to section 3:, Interface Requirements.
C. Check for proper insertion of programmable shunt and terminator.
D. Check for proper programming of shunt..

5:3. DRIVE WON'T STEP OR STEPS ERRATICALLY

Verify that head cable(s) do not interfere with carriage moyement.
A. With DIRECTION input low, apply stepping pulses and monitor stepper motor control logic for proper signals as shown by timing diagram, Figure 3-17. The stepper motor control logic is illustrated in Zone C of Sheet 3 of drawing 4-04002-001.
B. In order to step, the following circuit points must be at the levels indicated:

1. Counter $3 C$ pins 7 and 10 must be low.
2. Counter 3 E pin 9 must be high..
C.. If signals measured are as shown by Figure 3-17, replace the stepper motor (see paragraph 4..5i..14.) .-

HEAD/CARRIAGE OSCILLATESSATTTRACK 00 (RESTORE:ERROR)
The: track 00 logic. is, illustrated on Sheet 3;. Zones B. and C..."
A. . Position the head/carriage to extreme rear of drive.
B. Check J4-12 for a low level. If it is not low, replace the track 00 sensor.
C. Check track 00 logic for correct signals.

5:5; DRIVE:MOTORWONT' ROTATE:

The drive motor logic is illustrated on Sheet 3, Zone: A.
A. Signal MOTOR ON must be a low level for drive motor to rotate.
B. Short together the collector and the emitter of output driver Q3. This: should cause the drive motor to rotate at full speed, generating. a: TACH signal. If drive motor does not rotate, replace it. (see paragraph 4.5.10). Check the drive motor logic and compare with timing diagram, figure 3-18.

5.6 HEAD WILL NOTLOAD

The head load logic is illustrated on Sheet 3, Zone D..
A. Check driver 5G pin 3 for a low: level. If output is low, replace head load solenoid.
B. Double-check shunt IG for proper programming.

5:7 BAD INDEX OUTPUT

The index logic is illustrated on Sheet 3, Zone B.
A. Block index LED light path. If $\mathrm{J} 4-8$ is a low level, replace index/load boss assembly (see paragraph 4.5.8.).
B. Remove diskette and close door. Check 34-8 for a low level; if J4-8: is low proceed to step E.
C. Check J4-6 for approximately 1.5 vol.ts; if: $34-6$ is 0 volt or 5 volts:, replace carrier (see paragraph 4.5.7).
D.. If J4-6 is approximate-iy. 1.5 volts, replace: index/load boss assembly. (see paragraph 4.5.8).
E.. Check for correct signal levels: throughout index logic:.

5:8 BADWRITEPROTECT OUTPUT

The write protect.logic is illustrated on Sheet 2, Zone A and B..
A. Block write protect LED light path. If $34-16$ is a low level, replace right hand guide/write protect assembly (see paragraph 4.5.5).
B. Unblock write protect LED light path. If J4-16 is a high level, replace right hand guide/write protect assembly.
C. Check for correct signal levels throughout write protect logic.

5.9 ACTIVITY INDICATOR DOES NOTLIGHT

The activity indicator logic is illustrated on Sheet 3, Zone D:
A. Check activity indicator logic for correct signal levels.
B. If signal levels are correct, replace activity indicator.

5:10 READ ERRORS - ALL TRACKS

The read logic is illustrated on Sheet 2, Zane C and D.
A. Verify that head is loaded by visually checking that head load pad (or upper head on Model 92) contacts diskette. If head is not: loaded refer to paragraph 5.6.
B. Check compliance (see paragraph 4.7.1). If compliance is bad, replace load pad assembly (see paragraph 4.5.18) and/or clean head.
C. Check read logic for proper signals as compared with timing. diagram, Figure 3-20.
D. On Model 91 drives, Jl-32 must be high in order to read.
E. Check HDO READ (or HDI READ if checking read of top head on Model. 92) for a low level.
F. With power removed from the PCBA, check CR4, CRS, Q1, and Q2 for proper resistance readings.

G:. Replace PCBA. If still no read signals from drive, replace: head/ carriage assembly (see paragraph 4.5.15) ..

5:14 READERRORS - RANDOM:TRACKS

A. Replace drive motor: (see paragraph 4.5.10) . .

(5.12. READ:ERRORS - INSIDETRACKS

Verify that shield assembly is installed on carrier.
A. Check compliance (see paragraph 4.7.:I).. If compliance is bad, replace load pad assembly (see paragraph 4.5.18), and/or clean head.
B. Check erase capability (see paragraph 4.7.2). If erase is bad, see paragraph 5.16.
C... Check high frequency output (see paragraph 4.7.3). If output is bad, replace head/carriage' assembly (see paragraph 4.5.i5)..
D. Replace amplifier integrated circuit chip 2A on PCBA.

5.13 CANNOT READ PREWRITTEN DATA: CAN READ SELF-WRITTEN DATA

A. Check radial track alignment (see paragraph 4.6..1)..
B. Check index-to-data alignment (see paragraph 4.6.2).

5.14 CANNOTWRITE:DATA

A. Check WRITE PROTECT output (see paragraph 5.8:).

B:. Check HDO WRITE (or HDI WRIITE if top head on Model 92) for Low level.
C. Check PCBA write circuits for correct signals per timing diagram, Figure 3-19.

5.15 ERASE:BAD

A. If no decrease in amplitude is observed after the 15 -second period outlined in paragraph 4.7.2, replace head/carriage assembly (see paragraph 4.5.15).
8. If amplitude decrease is less than 85\%, replace load pad assembly (see paragraph 4.5.18), and/or clean head.

5.16 DRIVESPEED UNSTABLE

A.. Check: for bad gpindle bearings by removing drive belt and silowly rotating spindle pulley manually. If spindile pulley rotates erratically, return drive to the factory to have spindle bearings: repllaced (see paragraph 4..5\%.16:) ..

B!. If spindle speed drifts slowly, replace capacitor cig on the PEBA.

SECTION: 6

OPTIONS

6.1 INTRODUCTION

There are several optional features which allow the user to configure the 91/92 Disk Drive to satisfy a specific requirement. The options available for the model $91 / 92$ and discussed within this section are as follows:
A. Door: Closed Switch
B. Door Lock
C. Ready

6.2 DOOR CLOSED SWITCH (Figure 6-1)

This: optional feature informs the user as to whether the door of the drive is open or in the closed position. This is accomplished by means of a: microswitch, mounted on the right hand guide (as viewed from rear of drive), and activated by the carrier assembly which controls the swi.tch actuator. The normally closed terminal of the switch is wired into connector J-5 pin 6 . of the drive logic and goes high when the switch is activated. On the drive logic at gate 2G, this high switch output; 'anded' with the Drive Select siqnal, will output a low on J1-34 to the user when the door is closed.

6.3 DOOR LOCK MECHANISM

The user can lock and unlock the drive door by controlling the interface signal on J1-4, driving it to a logical zero or logical one respectively. The solenoid within the door lock mechanism, when energized, causes: the mechanism's actuator to interfere with normal door opening movement. Wher de-energized, movement is unrestricted: the door is unlocked..

On the model 9.1/9.2 Driver, with its button release door, the door look mechanism disables the button frum being depressed when eneraized. The model $915 / 925$ Drive employs the mechan $15 m^{\prime}$ to restrict movement of the door.. The: Door Lock solenaid is electrically connected to the drive: through connector: J.-4, pins: 18 and: 19 .

Figure 6-1: Door Closed Switch

6.4 READY

The ready option signals the user that a diskette is installed in the disk drive and is rotating at the speed necessary to read or write data. When the ready option is installed and properly adjusted, the absence of a Ready signal would signify incorrect diskette speed. This could be the result of a broken drive belt, malfunctioning drive motor, or a bindina diskette.

In examining the Ready Loaic Schematics in appendix B, the trailing edqe of the Index siqnal will fire the adjustable single shot U1. The output, U1-4, will qo low and enable the non-adjustable single shot at U1-9.. When Index is adain sensed, the leading edqe will fire the non-adjustable single shot and the Read smmal, mon $U 1$, 5 , will be true. When the diskette is rotating properl a montmunus stream of Index pulses will be sent to both retriggerable sinqle shots maintaining: a constant Ready siiqnal.

Adjustment of single shot U1-4 is made when the diskette is rotating: at the correct speed while monitoring the Ready signall. Turn potentiometer R2: counter-clockwise until the Ready s,ignal begins: to toggle, then clockwise until the Ready signall remains constantly higho..

APPENDIX A

SPAREPARTS LIST

O

MICRO PERIPHERALS MODEL 91/92\& 915/92S

RECOMMENDED SPARE PARTS LIST

RECOMMENDED SPARE PARTS LIST

-

APPENDIX B

DRAWINGS AND SCHEMATICS

0

0

0

Fiqure B-1:. PCBA Component Layout

REFERENCE NUMBER		PART NUMBER
1		$2-28013-003$ 2 3
4		$1-76000-123$
5		$1-77003-103$
6		$1-79003-563$
7		$1-74014-1503$
7		$1-60006-001$

DESCRIPTION
PCB, Ready Lọgịc
I.C., , 74LS123

RESISTOR, $10 \mathrm{~K}, 1 / 4 . \mathrm{W}$, 5\%,
RESISTOR, 56K, 1/4. W, 5\%
POTENTIDMETER, 5OK
CAPACITOR, 15 uf, 16 V Electrolytic CONNECTOR, PCB Mount

0

0

Figuce 8-3: Ready PCBA Component Layout:

Figure 8-4: Ready PCBA. Schematic

APPENDIX C
SIGNAL NAME DEFINITIONS

0

0

0

SIGNAL
DRIVE SEL
HDO ERASE

HDO READ
HDO WRITE
HDI ERASE
HDI READ
HDI WRITE
HEAD LOAD
MOTOR ON/
PHASE 1
PHASE 2
PHASE 3
PHASE 4
SELECT/

STALLED/

TACH DIG

TRACK 00/

When low indicates that the drive is in a select mode. . When low indicates that erase coil of bottom head is energized.
When low indicates that bottom head of drive is in read mode. When low indicates that bottom head of drive is in write mode. When low indicates that erase coil of top head is energized. When low indicates that top head of drive is in read mode. When low indicates that top head of drive is in write mode. When low indicates that the head load solenoid is energized. When high indicates that the drive motor is enabled. When low. indicates that 01 of the stepper motor is active. When low indicates that 02 of the stepper motor is active. When low indicates that 03 of the stepper motor is active. When low indicates that 04 of the stepper motor is active. When high indicates that drive output signals, the stepper logic, and the write logic are enabled. When high indicates that drive motor is in a stalled condition.
This signal is the digitized representation of the output of the drive motor tachometer.
When high indicates that the read/write head is located at track 00.

RETURN LETTER

RC703 Microcomputer System,
Title:5.25 inch/96 tpi Flex. Disc Drive (MPI),RCSL. No.: 42-i2351 Technical Manual
A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to improve the quality and usefulness of its publications. To do this effectively we need user feedback, your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability:

Do you find errors in this manual? If so, specify by page.
\qquad
\qquad
\qquad
\qquad

How can this manual be improved?
\qquad
\qquad
\qquad
\qquad

Other comments?
\qquad
\qquad
\qquad
\qquad
\qquad

Name:
Title: \qquad
Company: \qquad
Address: \qquad
Date: \qquad
Thank you

Fold here

Do not tear - Fold here and staple

